WO2020058631A1 - Capteur de pression simplifié - Google Patents

Capteur de pression simplifié Download PDF

Info

Publication number
WO2020058631A1
WO2020058631A1 PCT/FR2019/052179 FR2019052179W WO2020058631A1 WO 2020058631 A1 WO2020058631 A1 WO 2020058631A1 FR 2019052179 W FR2019052179 W FR 2019052179W WO 2020058631 A1 WO2020058631 A1 WO 2020058631A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
pressure
cover
deformation body
printed circuit
Prior art date
Application number
PCT/FR2019/052179
Other languages
English (en)
Inventor
François GOUBERT
Christine DARRIET
Bertrand DECHAMBENOIT
Pascal CESARD
Sébastien LABENNE
Original Assignee
Arianegroup Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arianegroup Sas filed Critical Arianegroup Sas
Publication of WO2020058631A1 publication Critical patent/WO2020058631A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/144Multiple part housings with dismountable parts, e.g. for maintenance purposes or for ensuring sterile conditions

Definitions

  • the present invention relates to the general field of pressure sensors, and more particularly pressure sensors comprising a strain gauge.
  • Pressure sensors generally include a strain gauge formed by a Wheatstone bridge installed on a deformable body.
  • the deformation body is subjected to the pressure of a fluid line and the pressure of said fluid is determined by measuring the deformation of the deformation body.
  • Such pressure sensors allow precise pressure measurement, and are thus typically used in the aerospace field.
  • the main object of the present invention is therefore to overcome such drawbacks by proposing a simpler and less expensive pressure sensor to manufacture.
  • the invention makes it possible in particular not to use welding, which is a complex and costly operation to carry out.
  • the invention also makes it possible not to use a sealed bushing, which is an expensive piece which allows the connection wires to exit outside the pressure sensor while ensuring a seal.
  • the invention provides a pressure sensor comprising a pressure tapping body inside which a channel is formed and on which a cover is fixed, said pressure sensor comprising an internal housing formed on the one hand by the pressure tapping body and on the other hand by the cover and in which a strain gauge is installed, the channel of the pressure taking body opening into said internal housing, characterized in that the cover is screwed to the body pressure tap and in that the strain gauge comprises a deformation body which is fixed to the pressure take body and to the cover by pinching the contour of said deformation body between said pressure take body and said cover.
  • the pressure sensor can also include the following characteristics, which can be taken alone or in combination depending on the technical possibilities:
  • a seal is arranged on the contour of the deformation body
  • the cover comprises a hole which opens into the internal housing of the pressure sensor, in which a printed circuit is fixed on the deformation body, and in which said pressure sensor comprises connection wires which are connected to the printed circuit and which pass through the bore of the cover, the bore being filled with a filling material;
  • the printed circuit separates the internal housing on the one hand in a first portion which is directed towards the bore of the cover and on the other hand in a second portion directed towards the channel of the pressure tapping body, the deformation body being located in the second portion, the first portion being filled with the filling material;
  • the filling material is an elastomer, a solder, or a resin
  • a space between the printed circuit and the deformation body is under vacuum
  • a printed circuit comprising a plurality of electronic components and connection tracks is fixed to the deformation body, and in which said pressure sensor comprises connection wires which are connected to the various electronic components via a single connector disposed on the printed circuit which connects each connection wire to an electronic component via the connection tracks;
  • the deformation body comprises a flange which forms the contour of said deformation body and which is pinched by the pressure tapping body and the cover, said deformation body comprising a central portion connected to the flange by a connection portion which is inclined relative to the central portion;
  • the central portion comprises an additional thickness located in the center of said central portion;
  • the strain gauge includes at least one resistor which comprises two connection terminals separated by a resistive part, the connection terminals and the resistive part being of the same material, the connection terminals having a width greater than the width of the resistive part, the resistance having a constant thickness.
  • FIG. 1 illustrates a possible embodiment of a pressure sensor according to the invention
  • FIG. 2 illustrates another possible embodiment of a pressure sensor according to the invention
  • FIG. 3 illustrates an isolated view of the deformation body of the strain gauge according to a possible variant of the pressure sensor
  • FIG. 4 illustrates a possible variant of resistance for the strain gauge of the pressure sensor.
  • a pressure sensor 1 comprises a pressure tapping body 2 and a cover 3 which is fixed to said pressure tapping body 2.
  • the pressure tapping body 2 and the cover 3 can be metal.
  • An internal housing 4 is formed by the cooperation between the pressure tapping body 2 and the cover 3, said internal housing 4 being delimited on the one hand by said pressure tapping body 2 and on the other hand by the cover 3.
  • the pressure tapping body 2 is fixed to a device D comprising a fluid whose pressure must be measured, such as for example a reservoir or a fluid circuit.
  • the pressure body 2 can for example be screwed onto the device D.
  • the pressure tapping body 2 comprises a channel 21 which opens into the internal housing 4, thus making it possible to supply the internal housing 4 in fluid, the pressure of which is to be measured by the sensor 1.
  • an extensometric gauge 5 is arranged in the internal housing 4.
  • the strain gauge 5 comprises a deformation body 51 on which a sensitive element 52 is installed.
  • the deformation body 51 is configured to deform under the effect of the pressure of the fluid
  • the sensitive element 52 is configured to measure the deformation of the deformation body 51 in order to determine the pressure of the fluid by calculation from the deformation measured by said sensitive element 52.
  • the sensitive element 52 can be a circuit whose resistance varies as a function of the deformations of the deformation body 51, such as a Wheatstone bridge.
  • the cover 3 is screwed to the pressure tapping body 2.
  • the deformation body 51 is fixed to the pressure tapping body 2 and to the cover 3 by pinching the outline of said deformation body 51.
  • the outline of the deformation body 51 is clamped between the pressure tapping body 2 and the cover 3 when said pressure tapping body 2 is screwed with said cover 3 .
  • the screwing between the pressure tapping body 2 and the cover 3 is ensured by producing on the pressure tapping body 2 and the cover 3 a thread and a tapping which are complementary.
  • the invention is a simpler solution.
  • the cover 3 is screwed around the pressure tapping body 2, while in a second embodiment illustrated in Figure 2, the pressure tapping body 2 is screwed around cover 3.
  • a seal 6 is arranged on the contour of the deformation body 51, thereby improving the tightness of the junction between the pressure tapping body 2 and the cover 3. This characteristic is particularly advantageous since a fixing by screwing has a tightness lower than a fixing by welding.
  • the seal 6 can typically be an annular elastomer seal.
  • the seal 6 can be pinched between the deformation body 51 and the pressure tapping body 2, or else between the deformation body 51 and the cover 3.
  • a printed circuit 7 is installed on the deformation body 51.
  • the printed circuit 7 comprises electronic components and connection tracks which connect the electronic components together.
  • the printed circuit 7 can for example comprise the electronic components for measuring the resistance of the sensitive element 52, and can also include the electronic components for calculating the pressure of the fluid from the resistance measured.
  • the printed circuit 7 can be fixed to the deformation body 51 by studs 71, which are preferably made of a material having good thermal conduction, such as metal and more particularly copper, in order to limit the temperature difference between the sensitive element 52 and the printed circuit 7 so as to improve the precision of the pressure sensor 1.
  • the printed circuit 7 is fixed to the deformation body 51 so as to create a space 8 between said printed circuit and said deformation body 51.
  • This space 8 can be obtained by the studs 71.
  • the cover 3 may include a hole 31 which opens into the internal housing 4, said hole 31 allowing connection wires 9 to exit from the pressure sensor 1 in order to connect said sensor to a control unit.
  • the bore 31 formed in the cover 3 is filled with a filling material M.
  • the filling material M can be a solder (that is to say a metal which has been melted), an elastomer, or a resin.
  • This solution is a simple solution to dispense with the use of a sealed crossing.
  • a sealed passage is a piece of glass in which channels are formed to allow the passage of wires.
  • a sealed crossing is indeed an expensive piece.
  • the printed circuit 7 separates the internal housing 4 into a first portion 41 which is directed towards the bore 31 of the cover 3, and into a second portion 42 which is directed towards the channel 21 of the body of pressure tap 2.
  • the deformation body 51 is located in the second portion 42 of the internal housing 4.
  • the first portion 41 is also filled with the filling material M, in addition to the bore 9.
  • said printed circuit 7 can comprise a single connector 72 to which the connection wires 9 are connected.
  • the connector 72 connects each of the connection wires 9 to a connection track, said connection track thus connecting a connection wire 9 to an electronic component of the printed circuit 7.
  • the space 8 between the printed circuit 7 and the deformation body 51 is maintained under vacuum.
  • vacuum maintained is meant here that the pressure in space 8 is less than atmospheric pressure.
  • the pressure in the space 8 is less than or equal to 10,000 (ten thousand) times the pressure of the fluid to be measured.
  • Such a pressure ratio gives an error of 0.01% on the value of 0 (zero).
  • the pressure in space 8 is less than or equal to 1 mbar
  • the pressure in space 8 is less than or equal to 10 mbar
  • the pressure in space 8 is less than or equal to 100 mbar
  • the pressure sensor 1 is a relative pressure sensor, it is possible to keep the atmospheric pressure as a reference without reducing the accuracy of the sensor.
  • FIG. 3 illustrates a possible variant shape for the deformation body 51.
  • the deformation body 51 can comprise a flange 51a forming the outline of said deformation body 51.
  • the flange 51a has the function of '' securing the deformation body 51 by pinching between the pressure tapping body 2 and the cover 3.
  • the deformation body 51 comprises a central portion 51b which is connected to the flange 51a by a connecting portion 51c which is inclined relative to the central portion 51b.
  • Such a shape makes it possible to adapt the deformation body 51 to a fixing by pinching between the pressure tapping body 2 and the cover 3.
  • the central portion 51b comprises an additional thickness 51d at the center of said central portion 51b, thus making it possible to make the deformation signal of the deformation body 51 relative to the pressure linear.
  • resistor 53 which comprises two connection terminals 53a which are connected by a resistive part 53b. Resistance
  • the 53 is produced by depositing a thin layer on the deformation body 51 which is covered with an insulating layer, the insulator being for example silica.
  • connection terminals 53a are configured to ensure the electrical connection of the resistor 53 with the rest of the circuit forming the sensitive element 52.
  • the resistive part 53b is the part of the resistor 53 whose electrical conductivity is reduced in order to give its value of resistance to said resistance 53.
  • connection terminals 53a and the resistive part 53b are produced by a difference in width.
  • the connection terminals 53a has a width Ea greater than the width Eb of the resistive part 53b.
  • the width Ea of the connection terminals 53a can for example be between 1mm and 2mm, while the width Eb of the resistive part 53b can be between lpm and 2pm.
  • the connection terminals 53a and the resistive part 53b are made of the same material which is electrically conductive, and the thickness of the connection terminals 53a and of the resistive part 53b is the same.
  • the material of the resistor 53 can for example be a nickel alloy comprising chromium, other materials that can however be used to form the resistor 53.
  • resistor (s) 53 of the sensitive element 52 simplifies the manufacture of the resistor (s) 53 of the sensitive element 52 since it is no longer necessary to deposit a layer of highly conductive material, typically gold, in order to form the connection terminals. Resistor 53 is thus formed in a single step of depositing electrically conductive material.
  • connection terminals 53a and the resistive part 53b The difference in width between the connection terminals 53a and the resistive part 53b is obtained by adapting the mask for the deposition in a thin layer.

Abstract

L'invention concerne un capteur de pression (1) comprenant un corps de prise de pression (2) à l'intérieur duquel est formé un canal (21) et sur lequel est fixé un capot (3), ledit capteur de pression (1) comprenant un logement interne (4) formé d'une part par le corps de prise de pression (2) et d'autre part par le capot (3) et dans lequel est installé une jauge extensométrique (5), le canal (21) du corps de prise de pression (2) débouchant dans ledit logement interne (4), caractérisé en ce que le capot (3) est vissé au corps de prise de pression (2) et en ce que la jauge extensométrique (5) comprend un corps de déformation (51) qui est fixé au corps de prise de pression (2) et au capot (3) par pinçage du contour dudit corps de déformation (51) entre ledit corps de prise de pression (2) et ledit capot (3).

Description

Titre de l'invention
Capteur de pression simplifié
Arrière-olan de l'invention
La présente invention se rapporte au domaine général des capteurs de pression, et plus particulièrement des capteurs de pression comprenant une jauge extensométrique.
Les capteurs de pression comprennent généralement une jauge extensométrique formée par un pont de Wheatstone installé sur un corps déformable.
Le corps de déformation est soumis à la pression d'une ligne de fluide et la pression dudit fluide est déterminée par mesure de la déformation du corps de déformation.
De tels capteurs de pression permettent une mesure de pression précise, et sont ainsi typiquement utilisées dans le domaine aérospatial.
Toutefois, les capteurs de pression actuels rencontrent un problème de complexité et ainsi peuvent être coûteux à fabriquer.
Objet et résumé de l'invention
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un capteur de pression plus simple et moins cher à fabriquer.
L'invention permet notamment de ne pas utiliser de soudure, qui est une opération complexe et coûteuse à réaliser.
De plus, l'invention permet également de ne pas utiliser une traversée étanche, qui est une pièce coûteuse qui permet aux fils de connexion de sortir en dehors du capteur de pression tout en assurant une étanchéité.
Selon un aspect, l'invention propose un capteur de pression comprenant un corps de prise de pression à l'intérieur duquel est formé un canal et sur lequel est fixé un capot, ledit capteur de pression comprenant un logement interne formé d'une part par le corps de prise de pression et d'autre part par le capot et dans lequel est installé une jauge extensométrique, le canal du corps de prise de pression débouchant dans ledit logement interne, caractérisé en ce que le capot est vissé au corps de prise de pression et en ce que la jauge extensométrique comprend un corps de déformation qui est fixé au corps de prise de pression et au capot par pinçage du contour dudit corps de déformation entre ledit corps de prise de pression et ledit capot.
Le capteur de pression peut également comprendre les caractéristiques suivantes, qui peuvent être prises seules ou bien en combinaison suivant les possibilités techniques :
un joint est disposé sur le contour du corps de déformation ;
le capot comprend un perçage qui débouche dans le logement interne du capteur de pression, dans lequel un circuit imprimé est fixé sur le corps de déformation, et dans lequel ledit capteur de pression comprend des fils de connexion qui sont reliés au circuit imprimé et qui traversent le perçage du capot, le perçage étant rempli par un matériau de remplissage ;
le circuit imprimé sépare le logement interne d'une part en une première portion qui est dirigée vers le perçage du capot et d'autre part en une deuxième portion dirigée vers le canal du corps de prise de pression, le corps de déformation étant situé dans la deuxième portion, la première portion étant remplie par le matériau de remplissage ;
le matériau de remplissage est un élastomère, une brasure, ou bien une résine ;
un espace entre le circuit imprimé et le corps de déformation est sous vide ;
un circuit imprimé comprenant une pluralité de composants électroniques et des pistes de connexion est fixé sur le corps de déformation, et dans lequel ledit capteur de pression comprend des fils de connexion qui sont reliés aux différents composants électroniques via un unique connecteur disposé sur le circuit imprimé qui relie chaque fil de connexion à un composant électronique via les pistes de connexion ;
le corps de déformation comprend une bride qui forme le contour dudit corps de déformation et qui est pincée par le corps de prise de pression et le capot, ledit corps de déformation comprenant une portion centrale reliée à la bride par une portion de liaison qui est inclinée par rapport à la portion centrale ;
la portion centrale comprend une surépaisseur située au centre de ladite portion centrale ; la jauge extensométrique comprend au moins une résistance qui comprend deux bornes de connexion séparées par une partie résistive, les bornes de connexion et la partie résistive étant en un même matériau, les bornes de connexion ayant une largeur supérieure à la largeur de la partie résistive, la résistance possédant une épaisseur constante.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la figure 1 illustre un mode de réalisation possible d'un capteur de pression selon l'invention ;
- la figure 2 illustre un autre mode de réalisation possible d'un capteur de pression selon l'invention ;
- la figure 3 illustre une vue isolée du corps de déformation de la jauge extensométrique selon une variante possible du capteur de pression ;
- la figure 4 illustre une variante possible de résistance pour la jauge extensométrique du capteur de pression.
Description détaillée de l'invention
Comme illustré sur la figure 1 et la figure 2, un capteur de pression 1 comprend un corps de prise de pression 2 et un capot 3 qui est fixé audit corps de prise de pression 2. Le corps de prise de pression 2 et le capot 3 peuvent être en métal.
Un logement interne 4 est formé par la coopération entre le corps de prise de pression 2 et le capot 3, ledit logement interne 4 étant délimité d'une part par ledit corps de prise de pression 2 et d'autre part par le capot 3.
Le corps de prise de pression 2 est fixé sur un dispositif D comprenant un fluide dont la pression doit être mesurée, comme par exemple un réservoir ou un circuit fluidique. Le corps de pression 2 peut par exemple être vissé sur le dispositif D.
Le corps de prise de pression 2 comprend un canal 21 qui débouche dans le logement interne 4, permettant ainsi d'alimenter le logement interne 4 en fluide dont la pression est à mesurer par le capteur 1.
Afin de mesurer la pression du fluide, une jauge extensométrique 5 est disposée dans le logement interne 4. La jauge extensométrique 5 comprend un corps de déformation 51 sur lequel un élément sensible 52 est installé.
Le corps de déformation 51 est configuré pour se déformer sous l'effet de la pression du fluide, et l'élément sensible 52 est configuré pour mesurer la déformation du corps de déformation 51 afin de déterminer la pression du fluide par calcul à partir de la déformation mesurée par ledit élément sensible 52.
L'élément sensible 52 peut être est un circuit dont la résistance varie en fonction des déformations du corps de déformation 51, tel qu'un pont de Wheatstone.
Afin de simplifier le capteur de pression 1, et ainsi également simplifier la fabrication dudit capteur de pression 1, le capot 3 est vissé au corps de prise de pression 2. De plus, le corps de déformation 51 est fixé au corps de prise de pression 2 et au capot 3 par pinçage du contour dudit corps de déformation 51. Le contour du corps de déformation 51 est serré entre le corps de prise de pression 2 et le capot 3 lors du vissage dudit corps de prise de pression 2 avec ledit capot 3.
Le vissage entre le corps de prise de pression 2 et le capot 3 est assuré en réalisant sur le corps de prise de pression 2 et le capot 3 un filetage et un taraudage qui sont complémentaires.
Par rapport à la solution de l'état de la technique dans laquelle le corps de prise de pression et le capot sont soudés, la soudure assurant également la fixation du corps de déformation, l'invention est une solution plus simple.
Dans un premier mode de réalisation illustré sur la figure 1, le capot 3 est vissé autour du corps de prise de pression 2, tandis que dans un deuxième mode de réalisation illustré sur la figure 2, le corps de prise de pression 2 est vissé autour du capot 3.
De manière avantageuse, un joint 6 est disposé sur le contour du corps de déformation 51, permettant ainsi d'améliorer l'étanchéité de la jonction entre le corps de prise de pression 2 et le capot 3. Cette caractéristique est particulièrement avantageuse car une fixation par vissage possède une étanchéité inférieure à une fixation par soudure. Le joint 6 peut typiquement être un joint annulaire en élastomère.
Le joint 6 peut être pincé entre le corps de déformation 51 et le corps de prise de pression 2, ou bien entre le corps de déformation 51 et le capot 3.
Comme illustré sur les figures 1 et 2, un circuit imprimé 7 est installé sur le corps de déformation 51. Le circuit imprimé 7 comprend des composants électroniques et des pistes de connexion qui relient les composants électroniques entre eux. Le circuit imprimé 7 peut par exemple comprendre les composants électroniques pour mesurer la résistance de l'élément sensible 52, et peut également comprendre les composants électroniques pour calculer la pression du fluide à partir de la résistance mesurée.
Le circuit imprimé 7 peut être fixé au corps de déformation 51 par des plots 71, qui de préférence sont en un matériau possédant une bonne conduction thermique, tel que du métal et plus particulièrement du cuivre, afin de limiter la différence de température entre l'élément sensible 52 et le circuit imprimé 7 de sorte à améliorer la précision du capteur de pression 1.
La fixation du circuit imprimé 7 sur le corps de déformation 51 est réalisée de sorte à créer un espace 8 entre ledit circuit imprimé et ledit corps de déformation 51. Cet espace 8 peut être obtenu par les plots 71.
Le capot 3 peut comprendre un perçage 31 qui débouche dans le logement interne 4, ledit perçage 31 permettant de permettre à des fils de connexion 9 de sortir du capteur de pression 1 afin de connecter ledit capteur à une unité de commande.
Afin d'assurer l'étanchéité du capteur 1, le perçage 31 formé dans le capot 3 est rempli d'un matériau de remplissage M. Le matériau de remplissage M peut être une brasure (c'est-à-dire un métal qui a été fondu), un élastomère, ou bien une résine. Cette solution est une solution simple permettant de se passer de l'utilisation d'une traversée étanche. Une traversée étanche est une pièce en verre dans laquelle des canaux sont formés pour permettre le passage de fils. Une traversée étanche est en effet une pièce onéreuse. Comme visible sur les figures 1 et 2, le circuit imprimé 7 sépare le logement interne 4 en une première portion 41 qui est dirigée vers le perçage 31 du capot 3, et en une deuxième portion 42 qui est dirigée vers le canal 21 du corps de prise de pression 2. Le corps de déformation 51 est situé dans la deuxième portion 42 du logement interne 4.
Selon une variante possible permettant d'améliorer l'étanchéité du capteur de pression 1, la première portion 41 est également remplie par le matériau de remplissage M, en plus du perçage 9.
Comme cela est visible sur les figures 1 et 2, afin de simplifier la connexion des fils de connexion 9 aux composants électroniques du circuit imprimé 7, ledit circuit imprimé 7 peut comprendre un unique connecteur 72 auquel les fils de connexion 9 sont reliés. Le connecteur 72 relie chacun des fils de connexion 9 à une piste de connexion, ladite piste de connexion reliant ainsi un fil de connexion 9 à un composant électronique du circuit imprimé 7.
Afin d'améliorer la précision du capteur de pression 1 pour déterminer la pression du fluide circulant dans le canal 21, dans le cas où le capteur de pression 1 est un capteur de pression absolue, l'espace 8 entre le circuit imprimé 7 et le corps de déformation 51 est maintenu sous vide. On entend ici par maintenu sous vide le fait que la pression dans l'espace 8 est inférieure à la pression atmosphérique. De préférence, la pression dans l'espace 8 est inférieure ou égale à 10000 (dix mille) fois la pression du fluide à mesurer. Un tel ratio de pression permet d'obtenir une erreur de 0,01% sur la valeur du 0 (zéro). Ainsi, par exemple, pour un fluide à mesurer dont la pression est de l'ordre de 10 bar, la pression dans l'espace 8 est inférieure ou égale à 1 mbar, pour un fluide à mesurer dont la pression est de l'ordre de 100 bar, la pression dans l'espace 8 est inférieure ou égale à 10 mbar, et pour un fluide à mesurer dont la pression est de l'ordre de 1000 bar, la pression dans l'espace 8 est inférieure ou égale à 100 mbar.
Dans le cas où le capteur de pression 1 est un capteur de pression relative, il est possible de conserver la pression atmosphérique en référence sans réduire la précision du capteur.
La figure 3 illustre une variante possible de forme pour le corps de déformation 51. Ainsi, comme cela est visible sur les figures 1 à 2, et comme illustré plus en détail sur la figure 3, le corps de déformation 51 peut comprendre une bride 51a formant le contour dudit corps de déformation 51. La bride 51a a pour fonction d'assurer la fixation du corps de déformation 51 par pinçage entre le corps de prise de pression 2 et le capot 3.
De plus, le corps de déformation 51 comprend une portion centrale 51b qui est reliée à la bride 51a par une portion de liaison 51c qui est inclinée par rapport à la portion centrale 51b.
Une telle forme permet d'adapter le corps de déformation 51 à une fixation par pinçage entre le corps de prise de pression 2 et le capot 3.
De plus, de manière avantageuse, la portion centrale 51b comprend une surépaisseur 51d au centre de ladite portion centrale 51b, permettant ainsi de rendre linéaire le signal de déformation du corps de déformation 51 par rapport à la pression.
Selon une variante illustrée sur la figure 4 permettant de simplifier la fabrication de l'élément sensible 52, ledit élément sensible
52 comprend au moins une résistance 53 qui comprend deux bornes de connexion 53a qui sont reliées par une partie résistive 53b. La résistance
53 est fabriquée par dépôt en couche mince sur le corps de déformation 51 qui est recouvert d'une couche d'isolant, l'isolant étant par exemple de la silice.
Les bornes de connexion 53a sont configurées pour assurer la connexion électrique de la résistance 53 avec le reste du circuit formant l'élément sensible 52. La partie résistive 53b est la partie de la résistance 53 dont la conductivité électrique est réduite afin de donner sa valeur de résistance à ladite résistance 53.
Dans la variante illustrée sur la figure 4, la différence de conductivité électrique entre les bornes de connexion 53a et la partie résistive 53b est réalisée par une différence de largeur. Les bornes de connexion 53a possède une largeur Ea supérieure à la largeur Eb de la partie résistive 53b. La largeur Ea des bornes de connexion 53a peut par exemple est comprise entre 1mm et 2mm, tandis que la largeur Eb de la partie résistive 53b peut être comprise entre lpm et 2pm. Les bornes de connexion 53a et la partie résistive 53b sont dans un même matériau qui est conducteur électriquement, et l'épaisseur des bornes de connexion 53a et de la partie résistive 53b est la même. Le matériau de la résistance 53 peut par exemple être un alliage de nickel comprenant du chrome, d'autres matériaux pouvant cependant être utilisés pour former la résistance 53.
Cette variante permet de simplifier la fabrication de la ou des résistances 53 de l'élément sensible 52 car il n'est plus nécessaire de déposer une couche en matériau hautement conducteur, typiquement de l'or, afin de former les bornes de connexion. La résistance 53 est ainsi former en une seule étape de dépôt de matériau conducteur électriquement.
La différence de largeur entre les bornes de connexion 53a et la partie résistive 53b est obtenue en adaptant le masque pour le dépôt en couche mince.

Claims

REVEN DICATIONS
1. Capteur de pression (1) comprenant un corps de prise de pression (2) à l'intérieur duquel est formé un canal (21) et sur lequel est fixé un capot (3), ledit capteur de pression (1) comprenant un logement interne (4) formé d'une part par le corps de prise de pression (2) et d'autre part par le capot (3) et dans lequel est installé une jauge extensométrique (5), le canal (21) du corps de prise de pression (2) débouchant dans ledit logement interne (4),
caractérisé en ce que le capot (3) est vissé au corps de prise de pression
(2) et en ce que la jauge extensométrique (5) comprend un corps de déformation (51) qui est fixé au corps de prise de pression (2) et au capot
(3) par pinçage du contour dudit corps de déformation (51) entre ledit corps de prise de pression (2) et ledit capot (3).
2. Capteur de pression (1) selon la revendication 1, dans lequel un joint (6) est disposé sur le contour du corps de déformation (51).
3. Capteur de pression (1) selon l'une quelconque des revendications 1 à 2, dans lequel le capot (3) comprend un perçage (31) qui débouche dans le logement interne (4), dans lequel un circuit imprimé (7) est fixé sur le corps de déformation (51), et dans lequel ledit capteur de pression (1) comprend des fils de connexion (9) qui sont reliés au circuit imprimé (7) et qui traversent le perçage du capot (3), le perçage (31) étant rempli par un matériau de remplissage (M).
4. Capteur de pression (1) selon la revendication 3, dans lequel le circuit imprimé (7) sépare le logement interne (4) d'une part en une première portion (41) qui est dirigée vers le perçage (31) du capot (3) et d'autre part en une deuxième portion (42) dirigée vers le canal (21) du corps de prise de pression (2), le corps de déformation (51) étant situé dans la deuxième portion (42), la première portion (41) étant remplie par le matériau de remplissage (M).
5. Capteur de pression (1) selon la revendication 3 ou la revendication 4, dans lequel le matériau de remplissage (M) est un élastomère, une brasure, ou bien une résine.
6. Capteur de pression (1) selon l'une quelconque des revendications 3 à 5, dans lequel un espace (8) entre le circuit imprimé (7) et le corps de déformation (51) est sous vide.
7. Capteur de pression (1) selon l'une quelconque des revendications 1 à 6, dans lequel un circuit imprimé (7) qui comprend une pluralité de composants électroniques et des pistes de connexion est fixé sur le corps de déformation (51), et dans lequel ledit capteur de pression (1) comprend des fils de connexion (9) qui sont reliés aux différents composants électroniques via un unique connecteur (72) disposé sur le circuit imprimé (7) qui relie chaque fil de connexion (9) à un composant électronique via les pistes de connexion.
8. Capteur de pression (1) selon l'une quelconque des revendications 1 à 7, dans lequel le corps de déformation (51) comprend une bride (51a) qui forme le contour dudit corps de déformation (51) et qui est pincée par le corps de prise de pression (2) et le capot (3), ledit corps de déformation (51) comprenant une portion centrale (51b) reliée à la bride (51a) par une portion de liaison (51c) qui est inclinée par rapport à la portion centrale (51a).
9. Capteur de pression (1) selon la revendication 8, dans lequel la portion centrale (51b) comprend une surépaisseur (51d) située au centre de ladite portion centrale (51b).
10. Capteur de pression (1) selon l'une quelconque des revendications 1 à 9, dans lequel la jauge extensométrique (5) comprend au moins une résistance (53) qui comprend deux bornes de connexion (53a) séparées par une partie résistive (53b), les bornes de connexion (53a) et la partie résistive (53b) étant en un même matériau, les bornes de connexion (53a) ayant une largeur (Ea) supérieure à la largeur (Eb) de la partie résistive (53b), la résistance (53) possédant une épaisseur constante.
PCT/FR2019/052179 2018-09-18 2019-09-18 Capteur de pression simplifié WO2020058631A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858413A FR3086057B1 (fr) 2018-09-18 2018-09-18 Capteur de pression simplifie
FR1858413 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020058631A1 true WO2020058631A1 (fr) 2020-03-26

Family

ID=65685491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052179 WO2020058631A1 (fr) 2018-09-18 2019-09-18 Capteur de pression simplifié

Country Status (2)

Country Link
FR (1) FR3086057B1 (fr)
WO (1) WO2020058631A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587485A1 (fr) * 1985-09-17 1987-03-20 Marelli Autronica Capteur de pression
EP0430445A2 (fr) * 1989-11-02 1991-06-05 Matsushita Electric Industrial Co., Ltd. Capteur de pression piézoélectrique
US5665920A (en) * 1995-01-12 1997-09-09 Endress + Hauser Gmbh + Co. Device with exchangeable sealing element for measuring pressure or differential pressure
WO2001023855A2 (fr) * 1999-09-27 2001-04-05 Siemens Aktiengesellschaft Systeme de capteur de pression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587485A1 (fr) * 1985-09-17 1987-03-20 Marelli Autronica Capteur de pression
EP0430445A2 (fr) * 1989-11-02 1991-06-05 Matsushita Electric Industrial Co., Ltd. Capteur de pression piézoélectrique
US5665920A (en) * 1995-01-12 1997-09-09 Endress + Hauser Gmbh + Co. Device with exchangeable sealing element for measuring pressure or differential pressure
WO2001023855A2 (fr) * 1999-09-27 2001-04-05 Siemens Aktiengesellschaft Systeme de capteur de pression

Also Published As

Publication number Publication date
FR3086057B1 (fr) 2022-03-18
FR3086057A1 (fr) 2020-03-20

Similar Documents

Publication Publication Date Title
US6588268B1 (en) Flow rate sensor, temperature sensor and flow rate detecting apparatus
US6813944B2 (en) Flow sensor
US9677947B2 (en) Temperature sensor
US20060053896A1 (en) Pressure sensor
US10781094B2 (en) Pressure sensor assembly mounted to a ceramic substrate
FR2775075A1 (fr) Capteur de pression differentielle
JP5933782B1 (ja) 流量測定装置に一体に設けられた物理量測定装置および物理量測定方法
US9739680B2 (en) Flat covered leadless pressure sensor assemblies suitable for operation in extreme environments
FR2887629A1 (fr) Capteur de pression
EP3304022B1 (fr) Dispositif de mesure de pression à fiabilité améliorée et procédé de calibrage associé
KR20020020747A (ko) 유량센서유닛과 이를 이용한 유량계 및 유량센서
FR2822231A1 (fr) Capteur de temperature
FR2872281A1 (fr) Capteur de pression
FR2865803A1 (fr) Capteur de pression comportant un diaphragme
CN110967077B (zh) 具有密封的3d打印的微型喇叭阵列的超声波换能器
FR3017211A1 (fr) Dispositif de determination de pression et de temperature, capteur de pression et de temperature comprenant un tel dispositif et procede de fabrication d’un tel dispositif
FR3032791A1 (fr) Capteur de pression miniature a membrane metallique et procede de fabrication
WO2020058631A1 (fr) Capteur de pression simplifié
US6886402B2 (en) Gas flow rate and temperature measuring element
JP2000028411A (ja) 流量センサー及び流量検出装置
EP3994437B1 (fr) Capteur de pression double
FR3032272A1 (fr) Dispositif de determination de pression et de temperature, capteur de pression et de temperature comprenant un tel dispositif et procede de fabrication d’un tel dispositif
JPH11311559A (ja) センサー回路系
US6901806B2 (en) Electrical capacitance sapphire diaphragm pressure sensor and a method of fabricating the same
FR3022627A1 (fr) Dispositif de mesure de pression et de temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19790671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19790671

Country of ref document: EP

Kind code of ref document: A1