WO2020058549A1 - Ophthalmic lens for spectral conversion of light and a method for manufacturing same - Google Patents

Ophthalmic lens for spectral conversion of light and a method for manufacturing same Download PDF

Info

Publication number
WO2020058549A1
WO2020058549A1 PCT/ES2019/070611 ES2019070611W WO2020058549A1 WO 2020058549 A1 WO2020058549 A1 WO 2020058549A1 ES 2019070611 W ES2019070611 W ES 2019070611W WO 2020058549 A1 WO2020058549 A1 WO 2020058549A1
Authority
WO
WIPO (PCT)
Prior art keywords
lumogen
luminescent species
species
red
ophthalmic lens
Prior art date
Application number
PCT/ES2019/070611
Other languages
Spanish (es)
French (fr)
Inventor
Jesus Merayo Lloves
Álvaro FERNÁNDEZ-VEGA
Claudia NÚÑEZ ÁLVAREZ
Neville NAHESH OSBORNE
Amador MENÉNDEZ VELÁZQUEZ
Susana DEL OLMO AGUADO
Original Assignee
Fundación Idonial
Instituto Oftalmológico Fernández Vega S.L
Fundación De Investigación Oftalmológica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Idonial, Instituto Oftalmológico Fernández Vega S.L, Fundación De Investigación Oftalmológica filed Critical Fundación Idonial
Publication of WO2020058549A1 publication Critical patent/WO2020058549A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/74UV-absorbing coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation

Definitions

  • the present invention refers to an ophthalmic lens that acts as a spectral converter, blocking radiation with the wavelengths most harmful to the eye and transforming them into radiation with wavelengths beneficial to the eye, while respecting the wavelengths that They regulate circadian rhythms and preserve an acceptable quality of vision.
  • Light is an important component in the visual system. Different wavelengths of light interact with various eye structures. Under pathological conditions, light is an added risk factor that can increase cellular susceptibility.
  • Light in its different wavelengths, is capable of interacting with a large number of chromophores present in the eyeball.
  • Some eye pigments absorb specific wavelengths of light that help maintain cellular homeostasis, while others are negatively affected and induce oxidative stress.
  • the cornea is the main barrier at the eye level of ultraviolet (UV) radiation (absorbs 92% of UV-B and 60% of UV-A).
  • UV radiation can produce changes in the cornea at the cellular level, reducing epithelial proliferation and the concentration of antioxidants, as well as the functionality of the Na + / k + ATPase pump, producing changes in corneal transparency, inflammation, and can lead to keratitis or other conditions.
  • corneal Other ocular structures such as aqueous humor and the lens also absorb a certain amount of UV radiation allowing only a small part to hit the retina.
  • the absorption of UV radiation by aqueous humor produces an increase in the production of free radicals, which causes a reduction in glutathione levels, one of the main ocular antioxidant systems.
  • the lens is affected in the same way by UV radiation with reduced levels of antioxidants and i generation of oxidative damage.
  • UV radiation with reduced levels of antioxidants and i generation of oxidative damage.
  • retinal neurodegenerations In the posterior segment, there are studies in vitro and in vivo models of retinal neurodegenerations that have shown the harmful effects that light exposure (visible and / or short wavelength such as ultraviolet or blue) can have on suboptimal retinas .
  • irradiation at low doses with light in the near red-IR spectrum can generate various biological effects such as cell proliferation, synthesis of collagen and procollagen, release of growth factors from cells, stimulation of macrophages and lymphocytes , and an increase in the production ratio of extracellular matrix. It also has neutralizing effects on reactive oxygen species and induces reduced expression of apoptotic proteins and overexpression of anti-apoptotic proteins, attenuating cell death.
  • filters incorporated into ophthalmic lenses that protect the eye.
  • filters There are essentially two types of filters. Some are filters based on diffraction networks such as photonic crystals, which transmit certain wavelengths and reflect others (in this case they reflect blue so that they do not penetrate the eye). Other filters are purely absorptive filters, which absorb light of certain wavelengths (such as blue) and lose it in the form of heat.
  • the invention proposes a filter that absorbs only specific bands of the spectrum in the UV-blue zone, achieving a minimum absorption around 476 nm so as not to alter the circadian rhythms or biological clocks (sensitive to this type of light) and maintaining certain significant levels. absorption up to 450 nm (the zone from 380 nm to 450 nm is the one that produces the most damage to the retina). By not absorbing the entire strip of blue light, it is also possible not to alter the visual quality too much. All that absorbed light, instead of being lost in the form of heat, is converted spectrally to the near-infrared red, specifically to that area between 600 and 750 nm that provides many therapeutic benefits to the eye.
  • luminescent filters to achieve the required spectral conversion is proposed in this invention. They block light of certain wavelengths, but instead of losing it in the form of heat, they convert it spectrally to another color. In this case they absorb blue light (with associated negative effects) and convert it to red - near infrared, providing the eye with an extra amount of this type of light that has therapeutic benefits.
  • a lens with optimized spectral redistribution is achieved that allows protection of the eye (by blocking UV-blue light) as well as therapy thereof (by providing extra amount of therapeutic red-IR light) close) and does so without altering circadian rhythms (by minimizing absorption around 476 nm) or significantly altering visual quality (by absorbing only a blue stripe and emitting only in a certain region of red; the rest of emission is near infrared, invisible to the human eye, and does not alter visual perception).
  • the inventors have found a suitable combination of luminescent species to achieve this goal without adversely affecting other aspects (such as significant image distortion or high blur).
  • the present invention proposes a solution in view of the identified needs without negative effects.
  • a selective spectral conversion ophthalmic lens is proposed which induces beneficial results by converting harmful wavelengths (UV-blue spectrum) into beneficial wavelengths (red-IR near spectrum) as defined in claim 1.
  • the lens promotes a protective effect and therapeutic in eye pathologies related to the accumulation of light damage and in others where mitochondrial dysfunctions are involved.
  • Another object of this invention is a method to obtain said light spectral conversion lens for application in ophthalmology as defined in claim 8.
  • the invention proposes a system with a multilayer configuration.
  • This system includes several luminescent layers, preferably three. Each layer contains a luminescent species. Two layers are located on the upper face of the lens and contain UV-blue absorbing species. As a luminescent species, Lumogen Blau can be used. Two top layers have been found to be preferable to absorb and block a greater fraction of the harmful UV-blue light. Subsequently, this radiation is emitted and absorbed by another luminescent layer, located at the bottom of the lens, and re-emitted in the form of nearby red-IR light. This bottom layer may contain the luminescent species Lumogen Red.
  • the invention proposes a monolayer embodiment.
  • several luminescent species such as Lumogen Blau and Lumogen Red, are incorporated in the same layer.
  • Lumogen Blau type molecules capture UV-blue light and transfer the energy non-radiatively in an energy cascade to the terminal Lumogen Red type molecules that will be responsible for re-emitting the radiation in a very specific area of the spectrum in the red -Go close. This is what is known as Forster resonance energy transfer (FRET).
  • FRET Forster resonance energy transfer
  • FIG. 1 Illustrative graph of the optical properties of a luminescent filter (multilayer configuration).
  • FIG. 2 Cell viability graph under different conditions.
  • FIG. 3 Images of cells in culture in different situations.
  • FIG. 4 Schematic representation of two embodiments of ophthalmic lens.
  • the invention works as a spectral converter that captures light in the ultraviolet-blue zone converting it to the red-near infrared zone of the electromagnetic spectrum. This allows the transmission of a significant fraction of light in the visible area of the spectrum so as not to alter visual quality, as well as a high transmission in a region of blue (centered around 476 nm) so as not to alter circadian rhythms.
  • organic molecules as luminescent species, which are incorporated into a polymer matrix of high optical transparency and refractivity index close to 1.5, such as PMMA, polyurethane, silicones.
  • This composite system (polymer matrix - luminescent species) is deposited on glass in the form of thin sheets, acting as a luminescent filter that spectrally converts light.
  • Luminescent species with light absorption / emission spectrum in the blue-UV zone of the spectrum are selected for adequate spectral conversion.
  • Lumogen Blau is used.
  • other species with absorption / emission in the red-near infrared zone are chosen.
  • Lumogen Red is used.
  • the UV-blue is converted to the near IR-red.
  • two alternative embodiments of the system are proposed: a multilayer and a single layer.
  • FIG. 1 shows a graph of the optical properties of a luminescent filter (the one corresponding to the multilayer configuration).
  • the dotted line corresponds to the absorption spectrum and the solid line to the emission or photoluminescence spectrum. It looks like in the spectral range from 350nm to 400nm it absorbs almost 90% of incident radiation (dotted line), radiation that is converted to near-infrared red (solid line). It can also be seen that there is only partial absorption in the blue, with a minimum around 476 nm.
  • FIG. 2 is a graph of cell viability in which it is verified how the spectral conversion increases the viability in cells exposed to UV light or to the toxic agent CCCP.
  • FIG. 3 shows images of cells in culture exposed to different treatments. The beneficial effect of spectral conversion that increases cell survival can be observed in those cells exposed to different toxins (either light or chemical agents)
  • FIG. 4 there is a schematic representation of two types of ophthalmic lens embodiments with incorporated luminescent species that are responsible for effecting spectral conversion from UV-blue to red-IR close.
  • FIG. 4a shows a system that consists of the following elements: a glass (4), two luminescent layers (layer 1 and layer 3) on the upper face of the glass and another luminescent layer (layer 2) on the lower face of the same.
  • Layers 1 and 3 contain the Lumogen Blau species and are responsible for capturing UV-blue radiation.
  • Luminescent layer 2 contains the species Lumogen Red, absorbs the radiation emitted by layers 1 and 3, and in turn re-emits it into the near-infrared red zone of the electromagnetic spectrum.
  • a system is shown consisting of the following elements: a glass sheet 4 and a luminescent layer 10 on the upper face of the glass sheet 4.
  • Luminescent layer 10 contains the luminescent species Lumogen Blau and Lumogen Red.
  • the species luminescent Lumogen Blau is responsible for absorbing the UV-blue and transfer the energy non-radiatively to the Lumogen Red species, which then re-emits the radiation in the near red-IR zone of the spectrum.
  • the vials containing the solution are heated (to 70 ° C) and shaken to dissolve the PMMA.
  • the luminescent species (Lumogen Blau and / or Lumogen Red) are then added to the PMMA / toluene solution.
  • Lumogen Blau The corresponding amount of Lumogen Blau is added to obtain a concentration of 9 mg of Lumogen Blau per mi (equal to a weight content of 6%, taking PMMA as a reference) and the appropriate amount of Lumogen Red is also added to obtain a concentration of 6 mg per ml (equal to a weight content of 4%).
  • the solution is filtered and deposited on glass using spin-coating techniques.
  • Lumogen Blau is added to the PMMA / toluene solution to obtain a concentration of 9 mg per ml (equal to a weight content of 6%, again taking PMMA as a reference).
  • the appropriate amount of Lumogen Red is added, in a different solution of PMMA / toluene, to obtain a concentration of 6 mg per ml (equal to a content by weight of 4%).
  • the formulations of the different layers are: PMMA Lumogen Blau 6% (layer 1), PMMA Lumogen Blau 6% (layer 3) and PMMA Lumogen Red 4% (layer 2). Strong luminescence is observed.
  • the concentration of Lumogen Blau with respect to PMMA has only been increased up to 6% so that it does not form aggregates and maintain significant fluorescence, but the absorption is not then as great as desired.
  • another layer with the same characteristics has been deposited on it.
  • an absorption of 90% is achieved without destroying the fluorescence.
  • the layer with the Lumogen Red species is then deposited on the underside, the concentration of this species being 4%.
  • Lumogen species have been used for the exemplary embodiments, the present proposal is applicable to other luminescent species with similar optical properties as regards absorption and emission in the UV-blue and red-IR areas of the spectrum.
  • a lens has been manufactured that simultaneously has protective and therapeutic effects for the eye. It manages not to alter other fundamental biological functions such as circadian rhythms (or biological clocks) or significantly alter visual quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Optical Filters (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The invention relates to an ophthalmic lens for spectral conversion of light and to a method for manufacturing same. The lens for spectral conversion of light includes a glass sheet (4) and a polymeric structure, with an optically transparent support polymer, deposited on at least one face of the glass sheet (4). In said polymeric structures, there is a first luminescent species and a second luminescent species. The first luminescent species absorbs ultraviolet-blue radiation, transferring the energy to the second luminescent species, which emits radiation in the near red-infrared spectrum. This enables the radiation with wavelengths that are most harmful to the eye to be blocked and transforms them into radiation with wavelengths that are beneficial for the eye, while at the same time respecting the wavelengths which regulate the circadian rhythms and preserving an acceptable quality of vision. The biological results confirm the validity of the lens.

Description

LENTE OFTÁLMICA PARA CONVERSIÓN ESPECTRAL DE LA LUZ Y MÉTODO PARA FABRICARLA  OPHTHALMIC LENS FOR SPECTRAL LIGHT CONVERSION AND METHOD FOR MANUFACTURING IT
DESCRIPCIÓN DESCRIPTION
Campo técnico de la invención  Technical field of the invention
La presente invención se refiere a una lente oftálmica que actúa de conversor espectral, bloqueando la radiación con las longitudes de onda más perjudiciales para el ojo y transformándolas a radiación con longitudes de onda beneficiosas para el mismo, al tiempo que respeta las longitudes de onda que regulan los ritmos circadianos y preserva una calidad aceptable de visión. The present invention refers to an ophthalmic lens that acts as a spectral converter, blocking radiation with the wavelengths most harmful to the eye and transforming them into radiation with wavelengths beneficial to the eye, while respecting the wavelengths that They regulate circadian rhythms and preserve an acceptable quality of vision.
Estado de la Técnica State of the Art
La luz es un componente importante en el sistema visual. Las diferentes longitudes de onda de la luz interaccionan con las diversas estructuras oculares. En condiciones patológicas la luz es un factor de riesgo añadido que puede incrementar la susceptibilidad celular. Light is an important component in the visual system. Different wavelengths of light interact with various eye structures. Under pathological conditions, light is an added risk factor that can increase cellular susceptibility.
La luz, en sus diferentes longitudes de onda, es capaz de interactuar con gran número de cromóforos presentes en el globo ocular. Algunos pigmentos oculares absorben longitudes de onda específicas de la luz que ayudan al mantenimiento de la homeostasis celular y otros en, cambio, se encuentran afectados de manera negativa e inducen estrés oxidativo.  Light, in its different wavelengths, is capable of interacting with a large number of chromophores present in the eyeball. Some eye pigments absorb specific wavelengths of light that help maintain cellular homeostasis, while others are negatively affected and induce oxidative stress.
La córnea es la principal barrera a nivel ocular de la radiación ultravioleta (UV) (absorbe 92% de UV-B y el 60% de la UV-A). La radiación UV puede producir en la córnea cambios a nivel celular, reduciendo la proliferación epitelial y la concentración de antioxidantes así como la funcionalidad de la bomba Na+/k+ ATPase, produciendo cambios en la transparencia corneal, inflamación y pudiendo desencadenar en queratitis u otras afectaciones corneales. Otras estructuras oculares como son el humor acuoso y el cristalino también absorben cierta cantidad de radiación UV permitiendo que sólo una pequeña parte incida en la retina. No obstante, la absorción de radiación UV por el humor acuoso produce un incremento de la producción de radicales libres que hace que se reduzcan los niveles de glutatión, uno de los principales sistemas antioxidantes oculares. El cristalino se ve afectado de la misma manera por la radiación UV con la reducción de los niveles de antioxidantes y la i generación de daño oxidativo. En el segmento posterior, existen estudios en modelos in vitro e in vivo de neurodegeneraciones retinianas que han mostrado los efectos nocivos que puede tener la exposición de luz (visible y/o de longitud de onda corta como la ultravioleta o azul) en las retinas subóptimas. The cornea is the main barrier at the eye level of ultraviolet (UV) radiation (absorbs 92% of UV-B and 60% of UV-A). UV radiation can produce changes in the cornea at the cellular level, reducing epithelial proliferation and the concentration of antioxidants, as well as the functionality of the Na + / k + ATPase pump, producing changes in corneal transparency, inflammation, and can lead to keratitis or other conditions. corneal. Other ocular structures such as aqueous humor and the lens also absorb a certain amount of UV radiation allowing only a small part to hit the retina. However, the absorption of UV radiation by aqueous humor produces an increase in the production of free radicals, which causes a reduction in glutathione levels, one of the main ocular antioxidant systems. The lens is affected in the same way by UV radiation with reduced levels of antioxidants and i generation of oxidative damage. In the posterior segment, there are studies in vitro and in vivo models of retinal neurodegenerations that have shown the harmful effects that light exposure (visible and / or short wavelength such as ultraviolet or blue) can have on suboptimal retinas .
De manera opuesta al efecto nocivo que presentan las longitudes de onda corta de la luz (espectro UV-azul), la exposición a luz de longitud de onda larga (espectro rojo - infrarrojo cercano) parece tener efectos positivos. Diversos estudios han mostrado como la exposición a luz del espectro rojo-infrarrojo cercano tiene efectos beneficiosos en diferentes áreas médicas. Este proceso se denomina fotobiomodulación y se ha observado que acelera la cicatrización de heridas, reduce el dolor y tiene propiedades antiinflamatorias. Es más, también se ha señalado que aumenta la recuperación de un daño isquémico en corazón, reduce el daño neuronal derivado de apoplejías en humanos y de otros daños cerebrales en modelos animales patológicos.  Contrary to the harmful effect of short wavelengths of light (UV-blue spectrum), exposure to long-wavelength light (red-near-infrared spectrum) appears to have positive effects. Various studies have shown how exposure to light from the near-infrared red spectrum has beneficial effects in different medical areas. This process is called photobiomodulation and it has been observed to accelerate wound healing, reduce pain and have anti-inflammatory properties. Furthermore, it has also been noted that it enhances recovery from ischemic heart damage, reduces neuronal damage from strokes in humans, and other brain damage in pathological animal models.
A nivel celular, la irradiación a bajas dosis con luz en el espectro rojo-IR cercano puede generar diversos efectos biológicos como son la proliferación celular, la síntesis de colágeno y procolágeno, liberación de factores de crecimiento desde las células, estimulación de macrófagos y linfocitos, e incremento del ratio de producción de matriz extracelular. También tiene efectos neutralizantes de las especies reactivas del oxígeno e induce la reducción de la expresión de proteínas apoptóticas y la sobre expresión de proteínas anti-apoptóticas, atenuando la muerte celular.  At the cellular level, irradiation at low doses with light in the near red-IR spectrum can generate various biological effects such as cell proliferation, synthesis of collagen and procollagen, release of growth factors from cells, stimulation of macrophages and lymphocytes , and an increase in the production ratio of extracellular matrix. It also has neutralizing effects on reactive oxygen species and induces reduced expression of apoptotic proteins and overexpression of anti-apoptotic proteins, attenuating cell death.
Existen filtros incorporados a lentes oftálmicas que protegen al ojo. Hay esencialmente dos tipos de filtros. Unos son filtros basados en redes de difracción como cristales fotónicos, que transmiten unas determinadas longitudes de onda y reflejan otras (en este caso reflejan la azul para que no penetre en el ojo). Otros filtros son filtros puramente absortivos, que absorben luz de determinadas longitudes de onda (como la azul) y la pierden en forma de calor.  There are filters incorporated into ophthalmic lenses that protect the eye. There are essentially two types of filters. Some are filters based on diffraction networks such as photonic crystals, which transmit certain wavelengths and reflect others (in this case they reflect blue so that they do not penetrate the eye). Other filters are purely absorptive filters, which absorb light of certain wavelengths (such as blue) and lose it in the form of heat.
En las últimas décadas, se han desarrollado diferentes especies luminiscentes (basadas en compuestos orgánicos y algunos inorgánicos) con interesantes propiedades que se han usado en disciplinas como la fotovoltaica o la industria LED. El alto rendimiento cuántico (relación de fotones emitidos respecto a fotones absorbidos) de algunas de estas especies -en especial las moléculas orgánicas- han permitido avances y mejoras de amplificadores ópticos, láseres, fotodetectores y concentradores solares. En la energía solar fotovoltaica, se emplean sistemas de conversión espectral con el objeto de capturar la banda más ancha posible del espectro electromagnético y convertirla a radiación cuyas longitudes de onda coincidan con el bandgap de la celda solar. Sin embargo, en el campo de la oftalmología el reto es bastante más complejo, ya que como ha sido mencionado sólo se deben captar ciertas zonas del espectro, permitiendo la máxima transmitancia posible de luz para el resto de zonas, en aras a no distorsionar parámetros ya aludidos como la calidad visual y los ritmos circadianos. In the last decades, different luminescent species (based on organic and some inorganic compounds) with interesting properties have been developed that have been used in disciplines such as photovoltaics or the LED industry. The high quantum yield (ratio of emitted photons to absorbed photons) of some of these species -especially organic molecules- have allowed advances and improvements in optical amplifiers, lasers, photodetectors and solar concentrators. In photovoltaic solar energy, spectral conversion systems are used in order to capture the widest possible band of the electromagnetic spectrum and convert it to radiation whose wavelengths coincide with the bandgap of the solar cell. However, in the field of ophthalmology the challenge is much more complex, since as it has been mentioned, only certain areas of the spectrum should be captured, allowing the maximum possible light transmittance for the rest of the areas, in order not to distort previously mentioned parameters such as visual quality and Cardiac rhtyms.
Breve descripción de la invención Brief description of the invention
Como se ha indicado, los filtros convencionales usados en las lentes oftálmicas absorben una gran fracción del ancho de banda correspondiente a la luz azul. As noted, conventional filters used in ophthalmic lenses absorb a large fraction of the bandwidth corresponding to blue light.
La invención propone un filtro que absorbe sólo franjas específicas del espectro en la zona del azul-UV logrando una absorción mínima en torno a 476 nm para no alterar los ritmos circadianos o relojes biológicos (sensibles a este tipo de luz) y manteniendo ciertos niveles significativos de absorción hasta 450 nm (la zona de 380 nm a 450 nm es la que más daño produce en la retina). Al no absorber toda la franja de luz azul, también se logra no alterar demasiado la calidad visual. Toda esa luz absorbida, en vez de ser perdida en forma de calor se convierte espectralmente al rojo-infrarrojo cercano, en concreto a esa zona entre 600 y 750 nm que proporciona muchos beneficios terapéuticos al ojo.  The invention proposes a filter that absorbs only specific bands of the spectrum in the UV-blue zone, achieving a minimum absorption around 476 nm so as not to alter the circadian rhythms or biological clocks (sensitive to this type of light) and maintaining certain significant levels. absorption up to 450 nm (the zone from 380 nm to 450 nm is the one that produces the most damage to the retina). By not absorbing the entire strip of blue light, it is also possible not to alter the visual quality too much. All that absorbed light, instead of being lost in the form of heat, is converted spectrally to the near-infrared red, specifically to that area between 600 and 750 nm that provides many therapeutic benefits to the eye.
Se propone en esta invención el desarrollo de filtros luminiscentes para conseguir la conversión espectral requerida. Bloquean luz de ciertas longitudes de onda, pero en vez de perderla en forma de calor la convierten espectralmente a otro color. En este caso absorben luz azul (con efectos negativos asociados) y la convierten al rojo - infrarrojo cercano, proporcionando al ojo una cantidad extra de este tipo de luz que tiene beneficios terapéuticos.  The development of luminescent filters to achieve the required spectral conversion is proposed in this invention. They block light of certain wavelengths, but instead of losing it in the form of heat, they convert it spectrally to another color. In this case they absorb blue light (with associated negative effects) and convert it to red - near infrared, providing the eye with an extra amount of this type of light that has therapeutic benefits.
En definitiva, de acuerdo con la presente invención se consigue una lente con redistribución espectral optimizada que permite la protección del ojo (al bloquear la luz UV-azul) así como la terapia del mismo (al proporcionar cantidad extra de la terapéutica luz roja-IR cercana) y lo hace sin alterar los ritmos circadianos (al minimizar la absorción en torno a los 476 nm) ni alterar significativamente la calidad visual (al absorber sólo una franja del azul y emitir sólo en cierta región del rojo; el resto de emisión es infrarrojo cercano, invisible al ojo humano, y no altera la percepción visual).  Ultimately, in accordance with the present invention, a lens with optimized spectral redistribution is achieved that allows protection of the eye (by blocking UV-blue light) as well as therapy thereof (by providing extra amount of therapeutic red-IR light) close) and does so without altering circadian rhythms (by minimizing absorption around 476 nm) or significantly altering visual quality (by absorbing only a blue stripe and emitting only in a certain region of red; the rest of emission is near infrared, invisible to the human eye, and does not alter visual perception).
Los inventores han encontrado una combinación adecuada de especies luminiscentes para lograr este objetivo sin que afecte adversamente otros aspectos (como una distorsión significativa de la imagen o borrosidad elevada). La presente invención plantea una solución en vista de las necesidades identificadas sin efectos negativos. Se propone una lente oftálmica de conversión espectral selectiva que induce resultados beneficiosos al convertir longitudes de onda nocivas (espectro UV - azul) en longitudes de onda beneficiosas (espectro rojo - IR cercano) según define la reivindicación 1. La lente promueve un efecto protector y terapéutico en patologías oculares relacionadas con la acumulación de daño por luz y en otras donde las disfunciones mitocondriales están involucradas. The inventors have found a suitable combination of luminescent species to achieve this goal without adversely affecting other aspects (such as significant image distortion or high blur). The present invention proposes a solution in view of the identified needs without negative effects. A selective spectral conversion ophthalmic lens is proposed which induces beneficial results by converting harmful wavelengths (UV-blue spectrum) into beneficial wavelengths (red-IR near spectrum) as defined in claim 1. The lens promotes a protective effect and therapeutic in eye pathologies related to the accumulation of light damage and in others where mitochondrial dysfunctions are involved.
Es también objeto de esta invención un método para obtener dicha lente de conversión espectral de la luz para su aplicación en oftalmología según define la reivindicación 8. La invención propone un sistema con configuración multicapa. Este sistema incluye varias capas luminiscentes, preferiblemente tres. Cada capa contiene una especie luminiscente. Dos capas están ubicadas en la cara superior de la lente y contienen especies que absorben en el UV-azul. Como especie luminiscente se puede usar Lumogen Blau. Se ha comprobado que es preferible usar dos capas superiores para absorber y bloquear una mayor fracción de la nociva luz UV-azul. Posteriormente, esta radiación es emitida y absorbida por otra capa luminiscente, ubicada en la parte inferior de la lente, y reemitida en forma de luz roja-IR cercana. Esta capa inferior puede contener la especie luminiscente Lumogen Red.  Another object of this invention is a method to obtain said light spectral conversion lens for application in ophthalmology as defined in claim 8. The invention proposes a system with a multilayer configuration. This system includes several luminescent layers, preferably three. Each layer contains a luminescent species. Two layers are located on the upper face of the lens and contain UV-blue absorbing species. As a luminescent species, Lumogen Blau can be used. Two top layers have been found to be preferable to absorb and block a greater fraction of the harmful UV-blue light. Subsequently, this radiation is emitted and absorbed by another luminescent layer, located at the bottom of the lens, and re-emitted in the form of nearby red-IR light. This bottom layer may contain the luminescent species Lumogen Red.
Alternativamente, la invención propone una realización monocapa. En este caso se incorporan varias especies luminiscentes, como Lumogen Blau y Lumogen Red, en una misma capa. Las moléculas del tipo Lumogen Blau capturan la luz UV-azul y transfieren la energía no radiativamente en una cascada energética a las moléculas terminales de tipo Lumogen Red que serán las encargadas de re-emitir la radiación en una zona muy específica del espectro en el rojo-IR cercano. Es lo que se conoce como transferencia de energía por resonancia Fórster (FRET).  Alternatively, the invention proposes a monolayer embodiment. In this case, several luminescent species, such as Lumogen Blau and Lumogen Red, are incorporated in the same layer. Lumogen Blau type molecules capture UV-blue light and transfer the energy non-radiatively in an energy cascade to the terminal Lumogen Red type molecules that will be responsible for re-emitting the radiation in a very specific area of the spectrum in the red -Go close. This is what is known as Forster resonance energy transfer (FRET).
Ambas configuraciones desarrolladas (monocapa y multicapa) permiten bloquear la luz con longitudes de onda perjudiciales e intensificar y proporcionar cantidad extra de luz con longitudes de onda beneficiosas, siendo esta cantidad de luz mayor en la configuración multicapa. Se ha tenido en cuenta que, a pesar del efecto nocivo de la luz azul, ésta ejerce cierta influencia sobre los ritmos circadianos o ritmos biológicos. Por ello, se ha identificado una situación de compromiso en la zona azul del espectro permitiendo sólo una absorción parcial de este tipo de luz. Más adelante se detallan ambas realizaciones preferentes. Breve descripción de las figuras Both developed configurations (monolayer and multilayer) make it possible to block light with harmful wavelengths and to intensify and provide an extra amount of light with beneficial wavelengths, this amount of light being greater in the multilayer configuration. It has been taken into account that, despite the harmful effect of blue light, it exerts a certain influence on circadian rhythms or biological rhythms. Therefore, a compromise situation has been identified in the blue zone of the spectrum allowing only a partial absorption of this type of light. Both preferred embodiments are detailed below. Brief description of the figures
FIG. 1 : Gráfica ilustrativa de las propiedades ópticas de un filtro luminiscente (configuración multicapa). FIG. 1: Illustrative graph of the optical properties of a luminescent filter (multilayer configuration).
FIG. 2: Gráfico viabilidad celular en diferentes condiciones.  FIG. 2: Cell viability graph under different conditions.
FIG. 3: Imágenes de células en cultivo en diferentes situaciones.  FIG. 3: Images of cells in culture in different situations.
FIG. 4: Representación esquemática de dos realizaciones de lente oftálmica.  FIG. 4: Schematic representation of two embodiments of ophthalmic lens.
Descripción detallada de la invención Detailed description of the invention
Con referencia a las figuras anteriores y para una mejor comprensión de la invención, se describen con detalle varias realizaciones particulares sin carácter limitante. With reference to the previous figures and for a better understanding of the invention, several particular embodiments are described in detail without limitation.
En esencia, la invención funciona como un conversor espectral que captura la luz en la zona ultravioleta-azul convirtiéndola a la zona rojo-infrarrojo cercano del espectro electromagnético. Así se permite la transmisión de una fracción significativa de luz en la zona visible del espectro para no alterar la calidad visual, así como una elevada transmisión en una región del azul (centrada en torno a los 476 nm) para no alterar los ritmos circadianos.  In essence, the invention works as a spectral converter that captures light in the ultraviolet-blue zone converting it to the red-near infrared zone of the electromagnetic spectrum. This allows the transmission of a significant fraction of light in the visible area of the spectrum so as not to alter visual quality, as well as a high transmission in a region of blue (centered around 476 nm) so as not to alter circadian rhythms.
Para conseguir este comportamiento, se propone la siguiente estrategia:  To achieve this behavior, the following strategy is proposed:
Emplear moléculas orgánicas como especies luminiscentes, las cuales van incorporadas a una matriz polimérica de alta transparencia óptica e índice de refractividad cercano a 1 ,5, tal como PMMA, poliuretano, siliconas.  Use organic molecules as luminescent species, which are incorporated into a polymer matrix of high optical transparency and refractivity index close to 1.5, such as PMMA, polyurethane, silicones.
Este sistema compuesto (matriz polimérica - especies luminiscentes) se deposita sobre vidrio en forma de láminas delgadas, actuando como filtro luminiscente que convierte espectralmente la luz.  This composite system (polymer matrix - luminescent species) is deposited on glass in the form of thin sheets, acting as a luminescent filter that spectrally converts light.
Para una conversión espectral adecuada se seleccionan especies luminiscentes con espectro de absorción / emisión de luz en la zona azul-UV del espectro. Preferentemente, se usa Lumogen Blau. Además, se eligen otras especies con absorción / emisión en la zona rojo - infrarrojo cercano. Preferentemente, se usa Lumogen Red. Mediante la combinación sinérgica de ambas especies, se convierte el UV-azul al rojo-IR cercano. Para ello se proponen dos realizaciones alternativas del sistema: una multicapa y otra monocapa.  Luminescent species with light absorption / emission spectrum in the blue-UV zone of the spectrum are selected for adequate spectral conversion. Preferably Lumogen Blau is used. In addition, other species with absorption / emission in the red-near infrared zone are chosen. Preferably Lumogen Red is used. By the synergistic combination of both species, the UV-blue is converted to the near IR-red. For this, two alternative embodiments of the system are proposed: a multilayer and a single layer.
La FIG. 1 muestra una gráfica de las propiedades ópticas de un filtro luminiscente (el correspondiente a la configuración multicapa). La línea punteada se corresponde con el espectro de absorción y la línea continua con el espectro de emisión o fotoluminiscencia. Se ve como en el rango espectral que va de 350 nm a 400 nm se absorbe casi el 90% de la radiación incidente (línea punteada), radiación que es convertida hacia el rojo- infrarrojo cercano (línea continua). Se puede observar también que sólo hay una absorción parcial en el azul, con un mínimo en torno a 476 nm. FIG. 1 shows a graph of the optical properties of a luminescent filter (the one corresponding to the multilayer configuration). The dotted line corresponds to the absorption spectrum and the solid line to the emission or photoluminescence spectrum. It looks like in the spectral range from 350nm to 400nm it absorbs almost 90% of incident radiation (dotted line), radiation that is converted to near-infrared red (solid line). It can also be seen that there is only partial absorption in the blue, with a minimum around 476 nm.
La FIG. 2 es un gráfico de viabilidad celular en el que se comprueba como la conversión espectral incrementa la viabilidad en células expuestas a luz UV o al agente tóxico CCCP. FIG. 2 is a graph of cell viability in which it is verified how the spectral conversion increases the viability in cells exposed to UV light or to the toxic agent CCCP.
La FIG. 3 muestra imágenes de células en cultivo expuestas a diferentes tratamientos. Puede observarse el efecto beneficioso de la conversión espectral que incrementa la supervivencia celular en aquellas células expuestas a los diferentes tóxicos (ya sea luz o agentes químicos) FIG. 3 shows images of cells in culture exposed to different treatments. The beneficial effect of spectral conversion that increases cell survival can be observed in those cells exposed to different toxins (either light or chemical agents)
En suma, de los estudios in vitro puede apreciarse como esta conversión puede proteger frente al daño producido por la exposición a luz UV-azul. Es incluso capaz de reducir la muerte celular producida por otros agentes tóxicos como el Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), un inhibidor químico de la fosforilación oxidativa en la mitocondria produciendo muerte celular. In sum, it can be seen from in vitro studies how this conversion can protect against damage caused by exposure to UV-blue light. It is even capable of reducing cell death caused by other toxic agents such as Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a chemical inhibitor of oxidative phosphorylation in the mitochondria causing cell death.
En la FIG. 4 se tiene una representación esquemática de dos tipos realizaciones de lentes oftálmicas con especies luminiscentes incorporadas que son responsables de efectuar la conversión espectral del UV-azul al rojo-IR cercano. In FIG. 4 there is a schematic representation of two types of ophthalmic lens embodiments with incorporated luminescent species that are responsible for effecting spectral conversion from UV-blue to red-IR close.
En la FIG. 4a se muestra un sistema que se compone de los siguientes elementos: un vidrio (4), dos capas luminiscentes (capa 1 y capa 3) en la cara superior del vidrio y otra capa luminiscente (capa 2) en la cara inferior del mismo. Las capas 1 y 3 contienen la especie Lumogen Blau y son responsables de capturar radiación UV-azul. La capa luminiscente 2 contiene la especie Lumogen Red, absorbe la radiación emitida por las capas 1 y 3 y a su vez la reemite en la zona rojo-infrarrojo cercano del espectro electromagnético. In FIG. 4a shows a system that consists of the following elements: a glass (4), two luminescent layers (layer 1 and layer 3) on the upper face of the glass and another luminescent layer (layer 2) on the lower face of the same. Layers 1 and 3 contain the Lumogen Blau species and are responsible for capturing UV-blue radiation. Luminescent layer 2 contains the species Lumogen Red, absorbs the radiation emitted by layers 1 and 3, and in turn re-emits it into the near-infrared red zone of the electromagnetic spectrum.
En la FIG. 4b se muestra un sistema que se compone de los siguientes elementos: una lámina de vidrio 4 y una capa luminiscente 10 en la cara superior de la lámina de vidrio 4. La capa luminiscente 10 contiene las especies luminiscentes Lumogen Blau y Lumogen Red. La especie luminiscente Lumogen Blau es la responsable de absorber el UV-azul y transferir la energía no radiativamente a la especie Lumogen Red, la cual entonces reemite la radiación en la zona rojo-IR cercano del espectro. In FIG. 4b a system is shown consisting of the following elements: a glass sheet 4 and a luminescent layer 10 on the upper face of the glass sheet 4. Luminescent layer 10 contains the luminescent species Lumogen Blau and Lumogen Red. The species luminescent Lumogen Blau is responsible for absorbing the UV-blue and transfer the energy non-radiatively to the Lumogen Red species, which then re-emits the radiation in the near red-IR zone of the spectrum.
A continuación, en mayor detalle se explica un ejemplo de fabricación para ambas realizaciones de lente monocapa y multicapa, usando en ambos casos polimetacrilato de metilo (PMMA) como matriz de soporte. Next, a manufacturing example is explained in more detail for both monolayer and multilayer lens embodiments, using in both cases methyl polymethacrylate (PMMA) as the support matrix.
- En un vial con tolueno se añade PMMA para obtener una concentración de 150 mg / mi de PMMA en tolueno.  - PMMA is added to a toluene vial to obtain a concentration of 150 mg / ml of PMMA in toluene.
- Los viales que contienen la disolución se calientan (a 70 ° C) y se agitan para disolver el PMMA.  - The vials containing the solution are heated (to 70 ° C) and shaken to dissolve the PMMA.
- Se añaden entonces las especies luminiscentes (Lumogen Blau y / o Lumogen Red) a la disolución de PMMA / tolueno.  - The luminescent species (Lumogen Blau and / or Lumogen Red) are then added to the PMMA / toluene solution.
En la configuración monocapa: In the monolayer configuration:
- Se agregan ambas especies (Lumogen Blau y Lumogen Red) a la misma disolución de PMMA / tolueno.  - Both species (Lumogen Blau and Lumogen Red) are added to the same PMMA / toluene solution.
- Se agrega la cantidad correspondiente de Lumogen Blau para obtener una concentración de 9 mg de Lumogen Blau por mi (igual a un contenido en peso del 6%, tomando como referencia el PMMA) y también se agrega la cantidad adecuada de Lumogen Red para obtener una concentración de 6 mg por mi (igual a un contenido en peso del 4%).  - The corresponding amount of Lumogen Blau is added to obtain a concentration of 9 mg of Lumogen Blau per mi (equal to a weight content of 6%, taking PMMA as a reference) and the appropriate amount of Lumogen Red is also added to obtain a concentration of 6 mg per ml (equal to a weight content of 4%).
- Nos referiremos a esta formulación como PMMA Lumogen Blau 6% Lumogen Red 4%.  - We will refer to this formulation as PMMA Lumogen Blau 6% Lumogen Red 4%.
- Una vez que todos los componentes están bien disueltos, la solución se filtra y se deposita sobre un vidrio por técnicas de spin-coating.  - Once all the components are well dissolved, the solution is filtered and deposited on glass using spin-coating techniques.
Se han probado otras formulaciones diferentes, como PMMA Lumogen Blau 6% Lumogen Red 6% y PMMA Lumogen Blau 6% Lumogen Red 8%. En todos los casos, la luminiscencia de la capa luminiscente depositada sobre el vidrio no es demasiado alta, probablemente debido a la formación de ciertos agregados, aunque para ciertas aplicaciones podría ser suficiente.  Other different formulations have been tried, such as PMMA Lumogen Blau 6% Lumogen Red 6% and PMMA Lumogen Blau 6% Lumogen Red 8%. In all cases, the luminescence of the luminescent layer deposited on the glass is not too high, probably due to the formation of certain aggregates, although it may be sufficient for certain applications.
En la configuración multicapa: In the multilayer configuration:
- Se agrega la cantidad adecuada de Lumogen Blau a la disolución PMMA / tolueno para obtener una concentración de 9 mg por mi (igual a un contenido en peso del 6%, tomando como referencia nuevamente el PMMA). - Se agrega la cantidad adecuada de Lumogen Red, en una disolución diferente de PMMA / tolueno, para obtener una concentración de 6 mg por mi (igual a un contenido en peso del 4%). - The appropriate amount of Lumogen Blau is added to the PMMA / toluene solution to obtain a concentration of 9 mg per ml (equal to a weight content of 6%, again taking PMMA as a reference). - The appropriate amount of Lumogen Red is added, in a different solution of PMMA / toluene, to obtain a concentration of 6 mg per ml (equal to a content by weight of 4%).
- Una vez que todos los componentes están bien disueltos, las disoluciones se filtran y centrifugan sobre un sustrato de vidrio limpio.  - Once all the components are well dissolved, the solutions are filtered and centrifuged on a clean glass substrate.
Las formulaciones de las diferentes capas son: PMMA Lumogen Blau 6% (capa 1), PMMA Lumogen Blau 6% (capa 3) y PMMA Lumogen Red 4% (capa 2). Se observa una fuerte luminiscencia.  The formulations of the different layers are: PMMA Lumogen Blau 6% (layer 1), PMMA Lumogen Blau 6% (layer 3) and PMMA Lumogen Red 4% (layer 2). Strong luminescence is observed.
Ha sido complejo conseguir una absorción en torno a los 390 nm de casi el 90%. A priori, parecería lógico que se puede conseguir mayor absorción simplemente incorporando más moléculas de Lumogen Blau en la capa (mayor concentración de Lumogen Blau), pero si se incrementa demasiado la concentración llega un momento en el que se forman agregados y se inhibe o destruye la fluorescencia. Las técnicas propuestas salvan este problema con una estructura multicapa.  It has been complex to achieve an absorption around 390 nm of almost 90%. A priori, it would seem logical that greater absorption can be achieved simply by incorporating more Lumogen Blau molecules in the layer (higher Lumogen Blau concentration), but if the concentration is increased too much, there comes a time when aggregates are formed and it is inhibited or destroyed fluorescence. The proposed techniques overcome this problem with a multilayer structure.
Por ello, en esta configuración, se ha incrementado sólo hasta el 6% la concentración de Lumogen Blau con respecto a PMMA para que no formase agregados y mantuviese una fluorescencia significativa, pero la absorción no es entonces tan grande como la deseada. Para ello se ha depositado encima otra capa de las mismas características. Así entre estas dos capas depositadas en la cara superior del vidrio se logra una absorción del 90% sin destruir la fluorescencia. La capa con la especie Lumogen Red se deposita entonces en la cara inferior, siendo la concentración de esta especie del 4%.  Therefore, in this configuration, the concentration of Lumogen Blau with respect to PMMA has only been increased up to 6% so that it does not form aggregates and maintain significant fluorescence, but the absorption is not then as great as desired. For this, another layer with the same characteristics has been deposited on it. Thus, between these two layers deposited on the upper face of the glass, an absorption of 90% is achieved without destroying the fluorescence. The layer with the Lumogen Red species is then deposited on the underside, the concentration of this species being 4%.
Aunque para los ejemplos de realización se han usado las especies Lumogen, la presente propuesta es aplicable a otras especies luminiscentes con propiedades ópticas similares en lo que se refiera a la absorción y emisión en las zonas UV-azul y rojo-IR del espectro.  Although Lumogen species have been used for the exemplary embodiments, the present proposal is applicable to other luminescent species with similar optical properties as regards absorption and emission in the UV-blue and red-IR areas of the spectrum.
Mediante las técnicas descritas, por primera vez se ha fabricado una lente que simultáneamente tiene efectos protector y terapéutico para el ojo. Consigue no alterar otras funciones biológicas fundamentales como son los ritmos circadianos (o relojes biológicos) ni alterar significativamente la calidad visual.  Using the techniques described, for the first time a lens has been manufactured that simultaneously has protective and therapeutic effects for the eye. It manages not to alter other fundamental biological functions such as circadian rhythms (or biological clocks) or significantly alter visual quality.

Claims

REIVINDICACIONES
1. Lente oftálmica para conversión espectral de la luz que comprende: 1. Ophthalmic lens for spectral conversion of light comprising:
- una lámina de vidrio (4);  - a glass sheet (4);
- una estructura polimérica;  - a polymeric structure;
caracterizada por que la estructura polimérica es un polímero de soporte ópticamente transparente depositado sobre al menos una cara de la lámina de vidrio (4), donde dicha estructura comprende al menos una primera especie luminiscente y una segunda especie luminiscente, donde la primera especie luminiscente absorbe el espectro de radiación ultravioleta-azul y la segunda especie luminiscente absorbe el espectro de radiación rojo-infrarrojo cercano. characterized in that the polymeric structure is an optically transparent support polymer deposited on at least one face of the glass sheet (4), where said structure comprises at least a first luminescent species and a second luminescent species, where the first luminescent species absorbs the ultraviolet-blue radiation spectrum and the second luminescent species absorb the near-infrared red-radiation spectrum.
2. Lente oftálmica según la reivindicación 1 , donde la estructura de polímero de soporte es polimetilmetacrilato, PPMA, que comprende una capa principal (10), donde la primera especie luminiscente es Lumogen Blau y la segunda especie luminiscente es Lumogen Red, ambas integradas en la misma capa principal (10). 2. Ophthalmic lens according to claim 1, where the support polymer structure is polymethylmethacrylate, PPMA, which comprises a main layer (10), where the first luminescent species is Lumogen Blau and the second luminescent species is Lumogen Red, both integrated in the same main layer (10).
3. Lente oftálmica según la reivindicación 1 , donde la estructura de polímero soporte es de PPMA y comprende una primera capa (1) que comprende la primera especie y una segunda capa (2) la segunda especie. 3. Ophthalmic lens according to claim 1, wherein the support polymer structure is PPMA and comprises a first layer (1) comprising the first species and a second layer (2) the second species.
4. Lente oftálmica según la reivindicación 3, donde la capa primera (1) se ubica en la cara situada encima de la lámina de vidrio (4) y la segunda capa (2) se ubica en la cara situada debajo de la lámina de vidrio (4). 4. Ophthalmic lens according to claim 3, where the first layer (1) is located on the face located above the glass sheet (4) and the second layer (2) is located on the face located under the glass sheet (4).
5. Lente oftálmica según la reivindicación 4, donde la estructura de PPMA comprende una tercera capa (3) que comprende la primera especie y que se ubica entre la primera capa (1) y la lámina de vidrio (4). 5. Ophthalmic lens according to claim 4, wherein the PPMA structure comprises a third layer (3) that comprises the first species and that is located between the first layer (1) and the glass sheet (4).
6. Lente oftálmica según una cualquiera de las reivindicaciones 2 a 5, donde la concentración de Lumogen Blau está entre el 5%-7% y la concentración de Lumogen Red está entre el 3%-5%. 6. Ophthalmic lens according to any one of claims 2 to 5, wherein the Lumogen Blau concentration is between 5% -7% and the Lumogen Red concentration is between 3% -5%.
7. Lente oftálmica según la reivindicación 6, donde la concentración de Lumogen Blau es el 6% y la concentración de Lumogen Red es el 4%. 7. Ophthalmic lens according to claim 6, where the Lumogen Blau concentration is 6% and the Lumogen Red concentration is 4%.
8. Método para fabricar una lente oftálmica según una cualquiera de las reivindicaciones anteriores 1 a 7, caracterizado por que comprende las siguientes etapas: 8. Method for manufacturing an ophthalmic lens according to any one of the preceding claims 1 to 7, characterized in that it comprises the following steps:
- generar una estructura polimérica;  - generate a polymeric structure;
- depositar la estructura polimérica sobre al menos una de las caras de una lámina de vidrio (4);  - depositing the polymeric structure on at least one of the faces of a glass sheet (4);
caracterizada por que la estructura polimérica es un polímero de soporte ópticamente transparente que comprende al menos una primera especie luminiscente y/o una segunda especie luminiscente, donde la primera especie luminiscente absorbe el espectro de radiación ultravioleta-azul y la segunda especie luminiscente absorbe el espectro de radiación rojo-infrarrojo cercano. characterized in that the polymeric structure is an optically transparent support polymer comprising at least a first luminescent species and / or a second luminescent species, where the first luminescent species absorbs the ultraviolet-blue radiation spectrum and the second luminescent species absorbs the spectrum of near-infrared red radiation.
9. Método según la reivindicación 8, donde la primera especie luminiscente es Lumogen Blau y la segunda especie luminiscente es Lumogen Red. 9. The method according to claim 8, wherein the first luminescent species is Lumogen Blau and the second luminescent species is Lumogen Red.
10. Método según la reivindicación 9, donde generar la estructura polimérica de las especies luminiscentes comprende: 10. Method according to claim 9, wherein generating the polymeric structure of the luminescent species comprises:
- disolver PMMA y tolueno para obtener una disolución con una concentración 150 mg PMMA / mi disolución;  - dissolve PMMA and toluene to obtain a solution with a concentration of 150 mg PMMA / my solution;
- agregar especies luminiscentes Lumogen Blau para obtener una concentración de 9 mg/ml, y/o Lumogen Red para obtener una concentración de 6 mg/ml;  - add luminescent species Lumogen Blau to obtain a concentration of 9 mg / ml, and / or Lumogen Red to obtain a concentration of 6 mg / ml;
- depositar sobre un vidrio por técnicas de spin-coating.  - deposit on a glass by spin-coating techniques.
PCT/ES2019/070611 2018-09-19 2019-09-18 Ophthalmic lens for spectral conversion of light and a method for manufacturing same WO2020058549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830900A ES2749195B2 (en) 2018-09-19 2018-09-19 OPHTHALMIC LENS FOR SPECTRAL CONVERSION OF LIGHT AND METHOD TO MANUFACTURE IT
ESP201830900 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020058549A1 true WO2020058549A1 (en) 2020-03-26

Family

ID=68393016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070611 WO2020058549A1 (en) 2018-09-19 2019-09-18 Ophthalmic lens for spectral conversion of light and a method for manufacturing same

Country Status (2)

Country Link
ES (1) ES2749195B2 (en)
WO (1) WO2020058549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180068759A1 (en) * 2016-09-06 2018-03-08 Biotronik Se & Co. Kg Stretchable Electrode Conductor Arrangement and Medical Implant
US11538946B1 (en) * 2021-07-04 2022-12-27 HillBerry GAT LTD. Deep ultraviolet and infrared silicon sensor module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674898A1 (en) * 2004-12-21 2006-06-28 Corning Incorporated Light polarizing products and method of making same
WO2014120681A2 (en) * 2013-01-29 2014-08-07 Nitto Denko Corporation Optical element for correcting color blindness
US20150017109A1 (en) * 2013-07-12 2015-01-15 Photoprotective Technologies, Inc Phototherapeutic Near IR Fluorescent Light Filters
WO2016002670A1 (en) * 2014-06-30 2016-01-07 横浜ゴム株式会社 Ultraviolet-curable resin composition and laminate using same
EP3327488A1 (en) * 2016-11-23 2018-05-30 Essilor International Optical article comprising a dye resistant to photo-degradation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2164302A1 (en) * 2008-09-12 2010-03-17 Ilford Imaging Switzerland Gmbh Optical element and method for its production
US8724054B2 (en) * 2009-05-27 2014-05-13 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
JPWO2013077323A1 (en) * 2011-11-24 2015-04-27 シャープ株式会社 Light guide, solar cell module and solar power generation device
EP3047527B1 (en) * 2014-01-28 2017-11-29 Philips Lighting Holding B.V. A light emitting device
EP3125005A1 (en) * 2015-07-29 2017-02-01 Tecnología Sostenible y Responsable SL Optical product comprising two pigments
JP2017102271A (en) * 2015-12-02 2017-06-08 川本光学工業株式会社 Spectacles for cutting-off blue light
CN106405706A (en) * 2016-06-06 2017-02-15 安徽省光学膜材料工程研究院有限公司 Blue light conversion diffusion barrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674898A1 (en) * 2004-12-21 2006-06-28 Corning Incorporated Light polarizing products and method of making same
WO2014120681A2 (en) * 2013-01-29 2014-08-07 Nitto Denko Corporation Optical element for correcting color blindness
US20150017109A1 (en) * 2013-07-12 2015-01-15 Photoprotective Technologies, Inc Phototherapeutic Near IR Fluorescent Light Filters
WO2016002670A1 (en) * 2014-06-30 2016-01-07 横浜ゴム株式会社 Ultraviolet-curable resin composition and laminate using same
EP3327488A1 (en) * 2016-11-23 2018-05-30 Essilor International Optical article comprising a dye resistant to photo-degradation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180068759A1 (en) * 2016-09-06 2018-03-08 Biotronik Se & Co. Kg Stretchable Electrode Conductor Arrangement and Medical Implant
US11538946B1 (en) * 2021-07-04 2022-12-27 HillBerry GAT LTD. Deep ultraviolet and infrared silicon sensor module
US20230006075A1 (en) * 2021-07-04 2023-01-05 HillBerry GAT LTD. Deep ultraviolet and infrared silicon sensor module

Also Published As

Publication number Publication date
ES2749195B2 (en) 2021-11-29
ES2749195A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
ES2247946B2 (en) THERAPEUTIC CONTACT LENS FOR PSEUDO-AFAQUIC EYES AND / OR IN NEURODEGENERATION PROCESS.
US20210263336A1 (en) Device to prevent retinal hypoxia
ES2944911T3 (en) High performance light wavelength selective filtering provides increased contrast sensitivity
ES2478693B1 (en) Short wavelength blocking element in led type lighting sources
ES2312284B1 (en) SAFETY AND PREVENTION GLASSES WITH SURFACE TREATED FOR THE PROTECTION AND THERAPY OF EYES IN OFFICES AND SPORTS.
US7703917B2 (en) Therapeutic prophylactic ophthalmologic lens for pseudoaphakic eyes and/or eyes suffering neurodegeneration
ES2298089B2 (en) SAFETY HELMET VISOR AND PREVENTION WITH SURFACE TREATED FOR EYE PROTECTION AND THERAPY.
ES2303484B2 (en) COVERAGE, COATING OR DISPLAY MATERIAL FOR EYE PROTECTION AND THERAPY AGAINST THE EFFECTS OF BLUE LIGHT.
ES2257976B2 (en) THERAPEUTIC AND PROFILACTIC OPHTHALMOLOGICAL LENS FOR PSEUDOAFAQUIC EYES AND / OR IN THE PROCESS OF NEURODEGENERATION.
ES2281303B1 (en) PREVENTION COMPONENT FOR HEALTHY EYES AND THERAPY AND PROFILAXIS FOR PSEUDO-AFAQUIC EYES AND / OR IN PROCESS OF VEHICLE NEURODEGENERATION.
ES2749195B2 (en) OPHTHALMIC LENS FOR SPECTRAL CONVERSION OF LIGHT AND METHOD TO MANUFACTURE IT
Pardhan et al. Eye complications of exposure to ultraviolet and blue-violet light
Anduze Ultraviolet radiation and cataract development in the US Virgin Islands
KR20200141221A (en) Method for manufacturing contact lens comprising beta-carotene for blocking blue lights
CN103340716B (en) Laser goggles
Domínguez-Salgado et al. Is the blue light filter for spectacle and intraocular lenses helpful in improving ocular health? A systematic review of the literature
CN114644801A (en) Transparent sun-proof lens material and manufacturing method thereof
Kirk Smick et al. Blue light hazard
Sliney Light and eye safety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795601

Country of ref document: EP

Kind code of ref document: A1