WO2020057408A1 - 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋 - Google Patents

一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋 Download PDF

Info

Publication number
WO2020057408A1
WO2020057408A1 PCT/CN2019/105281 CN2019105281W WO2020057408A1 WO 2020057408 A1 WO2020057408 A1 WO 2020057408A1 CN 2019105281 W CN2019105281 W CN 2019105281W WO 2020057408 A1 WO2020057408 A1 WO 2020057408A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
steel fiber
micro
structural steel
basalt
Prior art date
Application number
PCT/CN2019/105281
Other languages
English (en)
French (fr)
Inventor
丁一宁
王庆轩
朱昊
柳根金
曾伟
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to AU2019341199A priority Critical patent/AU2019341199A1/en
Publication of WO2020057408A1 publication Critical patent/WO2020057408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal

Definitions

  • the invention relates to a micro tendon of a basalt fiber winding and covering structure type steel fiber core pillar, which belongs to the field of new composite materials.
  • Basalt fiber has the advantages of high strength (tensile strength> 3000 N / mm 2 ), light weight (2.6-2.8 g / cm 3 ), corrosion resistance, etc., but basalt fiber is a linear elastic material, which has obvious brittleness when broken.
  • the purpose of the present invention is to overcome the shortcomings of steel fibers and basalt chopped fibers in their respective performances and the shortcomings when used alone in concrete, to prepare a micro-reinforcement of basalt fiber wrapped and coated structural steel fiber core pillars, which is mixed with concrete.
  • the matrix is not easy to agglomerate, does not occur brittle fracture, and has good bonding performance with the matrix, which can significantly improve the strength of concrete, improve the toughness of concrete under static and impact loads, energy absorption performance, crack resistance and Durability.
  • the utility model relates to a micro-reinforcing bar of a basalt fiber wrapped and covered structural steel fiber core pillar, which comprises a core pillar 1, a fiber coating layer 2, and an adhesive wetting layer 3.
  • the mandrel 1 is a structural steel fiber with a fiber length of 30-60 mm, a diameter of 0.5-0.9 mm, and an aspect ratio of not less than 50; basalt continuous fibers are spirally wrapped around the surface of the structural steel fiber to form a fiber coating layer 2;
  • the mandrel 1 wound around the fiber coating layer 2 is infiltrated and bonded in a bonding sizing agent to form a bonding sizing layer 3, and micro-tendons are obtained after drying and hardening.
  • the structural steel fibers include end-hook steel fibers, wave-shaped steel fibers, and crimped steel fibers.
  • the surface of the structural steel fiber needs to be indented.
  • the depth of the indentation is 0.1-0.2 mm, the length of the indentation is 3-5 mm, and the spacing is 10-15 mm.
  • the equivalent diameter of the steel fiber is not less than 80% of the diameter of the steel fiber before the indentation.
  • the bonding and wetting agent is a resin.
  • the micro-reinforcement according to the present invention uses indented structural steel fibers as core posts to ensure the rigidity, good plastic deformation ability and other physical and mechanical properties of the micro-reinforcement. It is not easy to agglomerate when it is mixed into the concrete matrix, and it does not occur It is brittle and has good bonding performance with the concrete substrate, which can significantly improve the strength of concrete, improve the toughness of concrete under static and impact loads, energy absorption performance, and crack resistance.
  • the micro-reinforcement according to the present invention uses basalt continuous fibers as the coating layer, which overcomes the problem of rust of steel fibers, ensures the micro-reinforcement has good corrosion resistance at the cracks of the concrete, and can improve the durability of the concrete.
  • the application in high temperature, high humidity and high salt environment in marine and island reef projects has laid a foundation.
  • the micro-reinforcement of the present invention has both the toughness of steel fibers and the high strength and corrosion resistance of basalt fibers; It can also reduce the difficulty of support in military engineering, simplify logistics support, and reduce the support pressure of fortification during wartime.
  • Figure 1 is a schematic diagram of a fiber-restricted concrete crack.
  • Figure 2 is a comparison of stress-strain curves of basalt fiber and steel fiber.
  • FIG. 3 is a schematic diagram of a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a second embodiment of the present invention.
  • the utility model relates to a micro-reinforcing bar of a basalt fiber wrapped and covered structural steel fiber core pillar, which comprises a core pillar 1, a fiber coating layer 2, and an adhesive wetting layer 3.
  • the mandrel 1 is an end-hook-shaped steel fiber with a fiber length of 35 mm and a diameter of 0.55 mm.
  • the end-hook-shaped steel fiber surface has an indentation depth of 0.1 mm, an indentation length of 4 mm, and an indentation distance of 10 mm.
  • Basalt continuous fibers are spirally wrapped along the surface of the structural steel fiber to form a fiber coating layer 2; the core 1 of the wound fiber coating layer 2 is wetted and bonded in the resin to form a bonded wetted layer 3, and dried and hardened We get a micro tendon, as shown in Figure 3.
  • Figure 5 is a comparison diagram of the load-deflection full curve of the end-hook steel fiber, micro-reinforced concrete and plain concrete.
  • the fiber coating layer and adhesive wetting layer on the surface of the micro-reinforcement provided by the invention make the micro-reinforcement have good corrosion resistance at the cracks of the concrete, and can significantly improve the durability of the fiber and the concrete.
  • the effect of micro-reinforcement on concrete is more significant.
  • the effect of micro-reinforcement at 50 kg / m 3 on the strength and toughness of concrete is better than that of the end hook with 50 kg / m 3 Shaped steel fiber.
  • the utility model relates to a micro-reinforcing bar of a basalt fiber wrapped and covered structural steel fiber core pillar, which comprises a core pillar 1, a fiber coating layer 2, and an adhesive wetting layer 3.
  • the mandrel 1 is a wavy steel fiber with a fiber length of 30 mm and a diameter of 0.66 mm; basalt continuous fibers are spirally wrapped along the surface of the structural steel fiber to form a fiber coating layer 2; and the mandrel 1 wound with the fiber coating layer 2 Wetting and bonding are performed in the resin to form a bonding and wetting layer 3, and micro-tendons are obtained after drying and hardening, as shown in FIG. 4.
  • Fig. 6 is a load-deflection curve comparison chart of the corrugated steel fiber, micro-reinforced concrete and plain concrete.
  • the fiber coating layer and the bonding and wetting layer on the surface of the micro-reinforcement provided by the present invention make the micro-reinforcement have good corrosion resistance at the cracks of the concrete, which improves the Fiber and concrete durability.
  • the micro-reinforcement effect on concrete is more significant.
  • the effect of the micro-reinforcement at 40 kg / m 3 on the strength and toughness of concrete is better than the wave-shaped steel fiber at 40 kg / m 3 . .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,包括:芯柱、纤维包覆层、粘结浸润层;芯柱为结构型钢纤维,纤维长度30-60mm、直径0.5-0.9mm、长径比不小于50;玄武岩连续纤维沿结构型钢纤维表面螺旋缠绕包覆形成纤维包覆层;缠绕纤维包覆层的芯柱在粘结浸润剂中进行浸润、粘结,形成粘结浸润层,烘干硬化后得到微筋。微筋芯柱具有较高刚度和较好的力学性能,可避免其在混凝土搅拌时结团;表面压痕提高了芯柱与玄武岩纤维之间的粘结强度,可保证微筋在混凝土基体中的整体受力性能;玄武岩纤维的包覆处理可解决钢纤维的锈蚀难题,提高混凝土的耐久性。

Description

一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋 技术领域
本发明涉及一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,属于新型复合材料领域。
背景技术
在抵抗混凝土的裂缝时,传统结构型钢纤维(长度不小于3 cm, 长径比不小于50,主要用于抵抗或限制结构裂缝的扩展并改善混凝土结构构件开裂后韧性的纤维)与玄武岩纤维具有不同的优势;钢纤维具有较高的抗拉强度(1000 N/mm 2左右);屈服强度后仍有显著的塑性变形性能。此外,端部弯钩形或波浪形的钢纤维与混凝土界面之间存在较好的粘结性能(图1);但钢纤维存在锈蚀的问题,由于混凝土结构在正常使用阶段是带裂缝工作的;裂缝的出现加剧了钢纤维锈蚀引起的混凝土结构耐久性降低,尤其是沿海高温、高湿、高盐环境的共同作用将加剧混凝土裂缝处钢纤维的锈蚀与钢纤维混凝土结构耐久性的劣化。
玄武岩纤维具有高强(抗拉强度> 3000 N/mm 2)、轻质(2.6-2.8 g/cm 3)、耐腐蚀等优点,但玄武岩纤维是一种线弹性材料,破坏时有较为明显的脆性特征(图2)且其作为短切纤维使用时,由于单丝直径很小,弹模(80-100 GPa)及刚度较低,与混凝土共同作用时存在下列问题:搅拌时分散困难、易结团,纤维掺量难以提高,对基体的增强增韧效果十分有限;且其与基体的粘结性能主要由纤维表面的摩擦力提供。
技术问题
本发明的目的是克服钢纤维和玄武岩短切纤维在各自性能上的缺陷及在混凝土中单独使用时的不足,制备出一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,掺入混凝土基体中不易结团,不发生脆断,且与基体间具有良好的粘结性能,能够显著改善混凝土的强度、提高混凝土在静载及冲击荷载下的韧性、吸收能量的性能、抗裂性和耐久性。
技术解决方案
为达到上述目的,本发明采用的技术方案如下 :
一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,包括芯柱1、纤维包覆层2、粘结浸润层3。所述的芯柱1为结构型钢纤维,纤维长度30-60 mm、直径0.5-0.9 mm、长径比不小于50;玄武岩连续纤维沿结构型钢纤维表面螺旋缠绕包覆形成纤维包覆层2;缠绕纤维包覆层2的芯柱1在粘结浸润剂中进行浸润、粘结,形成粘结浸润层3,烘干硬化后得到微筋。
所述的结构型钢纤维包括端部弯钩形钢纤维、波浪形钢纤维、压棱形钢纤维。
当结构型钢纤维为端部弯钩形钢纤维时,结构型钢纤维表面还需进行压痕处理,压痕深度0.1-0.2 mm,压痕长度3-5 mm,间距10-15 mm;压痕处钢纤维的等效直径不低于压痕前钢纤维直径的80%。
所述的粘结浸润剂为树脂。
有益效果
本发明的效果和益处:
1)本发明涉及的微筋采用压痕处理的结构型钢纤维作为芯柱,保证了微筋的刚度、良好的塑性变形能力及其它物理、力学性能,掺入混凝土基体中不易结团,不发生脆断,且与混凝土基体间具有良好的粘结性能,能够显著改善混凝土的强度、提高混凝土在静载及冲击荷载下的韧性、吸收能量的性能、抗裂性。
2)本发明涉及的微筋采用玄武岩连续纤维作为包覆层,克服了钢纤维的锈蚀问题,保证了微筋在混凝土裂缝处具有良好的耐腐蚀性,可改善混凝土的耐久性,为其在海洋及岛礁工程中高温、高湿、高盐环境下的应用奠定了基础。
3)不同纤维混杂体系具有下列优点:i)可优化不同纤维材料的性能;ii)不同纤维对混凝土性能产生的正混杂效应,1 + 1 > 2 。
将具有不同特性的两种材料合成为一种复合材料,使其具有不同材料的不同优势,例如:本发明涉及的微筋既具有钢纤维的韧性、又具有玄武岩纤维的高强与耐腐蚀性能;还可在军事工程中降低保障难度,使后勤保障简单化,减轻战时工事抢修的保障压力。
附图说明
图1为纤维限制混凝土裂缝示意图。
图2为玄武岩纤维与钢纤维的应力-应变关系曲线对比。
图3为本发明第一实施例的示意图。
图4为本发明第二实施例的示意图。
图5 端部弯钩形钢纤维增强混凝土、微筋增强混凝土及素混凝土荷载-挠度全曲线对比图。
图6 波浪形钢纤维增强混凝土、微筋增强混凝土及素混凝土荷载-挠度全曲线对比图。
图中:1芯柱、2纤维包覆层、3粘结浸润层。
本发明的实施方式
以下结合具体实施例对本发明做进一步说明。
实施例1
一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,包括芯柱1、纤维包覆层2、粘结浸润层3。所述的芯柱1为端部弯钩形钢纤维,纤维长度35 mm,直径0.55 mm,端部弯钩形钢纤维表面的压痕深度0.1 mm,压痕长度4 mm,压痕间距10 mm;玄武岩连续纤维沿结构型钢纤维表面螺旋缠绕包覆形成纤维包覆层2;缠绕纤维包覆层2的芯柱1在树脂中进行浸润、粘结,形成粘结浸润层3,烘干硬化后得到微筋,如图3所示。
图5为该端部弯钩形钢纤维、微筋增强混凝土及素混凝土的荷载-挠度全曲线的对比图,从图中能够看出,与传统的端部弯钩形钢纤维相比,本发明提供的微筋表面的纤维包覆层和粘结浸润层使得微筋在混凝土裂缝处具有良好的耐腐蚀性,能够显著改善纤维及混凝土的耐久性。此外,相同掺量下微筋对混凝土的增强增韧效果更加显著,50 kg/m 3掺量的微筋对混凝土强度及韧性的影响优于掺量为50 kg/m 3的端部弯钩形钢纤维。
实施例2
一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,包括芯柱1、纤维包覆层2、粘结浸润层3。所述的芯柱1为波浪形钢纤维,纤维长度30 mm,直径0.66 mm;玄武岩连续纤维沿结构型钢纤维表面螺旋缠绕包覆形成纤维包覆层2;缠绕纤维包覆层2的芯柱1在树脂中进行浸润、粘结,形成粘结浸润层3,烘干硬化后得到微筋,如图4所示。
图6为该波浪形钢纤维、微筋增强混凝土及素混凝土荷载-挠度全曲线对比图。从图中能够看出,与传统的波浪形钢纤维相比,本发明提供的微筋表面的纤维包覆层和粘结浸润层使得微筋在混凝土裂缝处具有良好的耐腐蚀性,改善了纤维及混凝土的耐久性。此外,相同掺量下微筋对混凝土的增强增韧效果更加显著,40 kg/m 3掺量的微筋对混凝土强度及韧性的影响优于掺量为40 kg/m 3的波浪形钢纤维。
以上所述实施例仅表达了本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (4)

  1. 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,其特征在于,所述的微筋包括芯柱(1)、纤维包覆层(2)、粘结浸润层(3);所述的芯柱(1)为结构型钢纤维,纤维长度30-60 mm、直径0.5-0.9 mm、长径比不小于50;玄武岩连续纤维沿结构型钢纤维表面螺旋缠绕包覆形成纤维包覆层(2);缠绕纤维包覆层(2)的芯柱(1)在粘结浸润剂中进行浸润、粘结,形成粘结浸润层(3),烘干硬化后得到微筋。
  2. 根据权利要求1所述的一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,其特征在于,所述的结构型钢纤维包括:端部弯钩形钢纤维、波浪形钢纤维、压棱形钢纤维。
  3. 根据权利要求2所述的一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,其特征在于,所述的结构型钢纤维为端部弯钩形钢纤维,其表面还需要进行压痕处理:压痕深度0.1-0.2 mm,压痕长度3-5 mm,间距10-15 mm;压痕处钢纤维的等效直径不低于压痕前钢纤维直径的80%。
  4. 根据权利要求1或2或3所述的一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋,其特征在于,所述的粘结浸润剂为树脂。
PCT/CN2019/105281 2018-09-20 2019-09-11 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋 WO2020057408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019341199A AU2019341199A1 (en) 2018-09-20 2019-09-11 Micro rebar having basalt fiber-wrapped structural steel fiber core column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811097242.1 2018-09-20
CN201811097242.1A CN109020285A (zh) 2018-09-20 2018-09-20 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋

Publications (1)

Publication Number Publication Date
WO2020057408A1 true WO2020057408A1 (zh) 2020-03-26

Family

ID=64617046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105281 WO2020057408A1 (zh) 2018-09-20 2019-09-11 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋

Country Status (3)

Country Link
CN (1) CN109020285A (zh)
AU (1) AU2019341199A1 (zh)
WO (1) WO2020057408A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080815A (zh) * 2020-08-29 2020-12-15 河南交通职业技术学院 挤出式玄武岩钢纤维生产设备
CN113754383A (zh) * 2021-10-13 2021-12-07 昭通市宜昭高速公路投资开发有限公司 一种可弯曲混凝土及其制备方法
CN114407189A (zh) * 2022-01-25 2022-04-29 中国电建集团山东电力管道工程有限公司 输配水用承压管道及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020285A (zh) * 2018-09-20 2018-12-18 大连理工大学 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋
CN111574084B (zh) * 2020-06-20 2023-12-29 武汉新途工程新材料科技有限公司 一种覆塑带翼微细钢纤维
CN112408915B (zh) * 2020-11-25 2021-09-03 北京城建九秋实混凝土有限公司 一种环保抗冻型混凝土及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1915884A (zh) * 2005-08-19 2007-02-21 深圳市海川实业股份有限公司 一种混杂碳纤维玻璃纤维增强树脂筋
CN1962534A (zh) * 2005-11-08 2007-05-16 深圳市海川实业股份有限公司 一种纤维增强树脂筋
US20170342654A1 (en) * 2015-01-19 2017-11-30 Teijin Limited Fiber material for cement reinforcement
CN109020285A (zh) * 2018-09-20 2018-12-18 大连理工大学 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋
CN208869514U (zh) * 2018-09-20 2019-05-17 大连理工大学 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2285496A1 (en) * 1998-10-21 2000-04-21 Kema Coatings Limited Protection of a pipeline
CN101328752A (zh) * 2008-05-23 2008-12-24 合肥工业大学 纤维复合材料薄壁钢管混凝土组合结构
CN203393038U (zh) * 2013-08-25 2014-01-15 牡丹江金石玄武岩纤维有限公司 水泥混凝土用玄武岩短切纤维结构
CN104060765A (zh) * 2014-06-16 2014-09-24 四川航天五源复合材料有限公司 一种钢—连续纤维复合筋及其制备方法
CN104060766A (zh) * 2014-06-16 2014-09-24 四川航天五源复合材料有限公司 一种建筑用钢-连续纤维复合筋
CN107032675A (zh) * 2017-04-12 2017-08-11 北京建筑大学 一种玄武岩纤维加固水泥基复合材料及其制备方法
CN207418948U (zh) * 2017-09-22 2018-05-29 上海兰邦工业纤维有限公司 一种高耐切割性芳纶包芯纱
CN108130983A (zh) * 2017-12-31 2018-06-08 郑州登电玄武石纤有限公司 一种玄武岩纤维/钢筋复合筋

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1915884A (zh) * 2005-08-19 2007-02-21 深圳市海川实业股份有限公司 一种混杂碳纤维玻璃纤维增强树脂筋
CN1962534A (zh) * 2005-11-08 2007-05-16 深圳市海川实业股份有限公司 一种纤维增强树脂筋
US20170342654A1 (en) * 2015-01-19 2017-11-30 Teijin Limited Fiber material for cement reinforcement
CN109020285A (zh) * 2018-09-20 2018-12-18 大连理工大学 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋
CN208869514U (zh) * 2018-09-20 2019-05-17 大连理工大学 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080815A (zh) * 2020-08-29 2020-12-15 河南交通职业技术学院 挤出式玄武岩钢纤维生产设备
CN112080815B (zh) * 2020-08-29 2022-09-09 河南交通职业技术学院 挤出式玄武岩钢纤维生产设备
CN113754383A (zh) * 2021-10-13 2021-12-07 昭通市宜昭高速公路投资开发有限公司 一种可弯曲混凝土及其制备方法
CN113754383B (zh) * 2021-10-13 2022-07-05 昭通市宜昭高速公路投资开发有限公司 一种可弯曲混凝土及其制备方法
CN114407189A (zh) * 2022-01-25 2022-04-29 中国电建集团山东电力管道工程有限公司 输配水用承压管道及制备方法

Also Published As

Publication number Publication date
CN109020285A (zh) 2018-12-18
AU2019341199A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2020057408A1 (zh) 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋
CN105715882B (zh) 一种小口径的竹缠绕复合管及其制造方法
CN102449249B (zh) 复合增强件
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
CN105464288A (zh) 复合筋增强ecc和混凝土组合梁及其施工方法
CN1936206A (zh) 钢-连续纤维复合筋增强混凝土抗震结构
CN206635632U (zh) 一种frp约束钢管混凝土拱结构
CN106835936A (zh) 一种frp约束钢管混凝土拱结构
CN105507497A (zh) 一种建筑用竹缠绕管混凝土浇灌复合柱体及其制备方法
CN208869514U (zh) 一种玄武岩纤维缠绕包覆结构型钢纤维芯柱的微筋
CN207583000U (zh) 一种frp与锚栓钢板加固系统
CN103132654A (zh) Frp筋材端头螺母及其制造方法和应用
CN104501192B (zh) 多层复合的玻璃钢涂层
CN217500800U (zh) 一种高强度耐腐蚀复合筋
CN206467898U (zh) 一种竹复合管‑钢管内外约束混凝土组合柱
JP6151047B2 (ja) 複合構造体の施工方法及び複合構造体
CN201605707U (zh) 混合型碳纤维板
CN209855031U (zh) 一种高强度保温墙板
CN115012587A (zh) 一种基于frp制备的网笼及其制备方法
CN206635633U (zh) 一种外包frp钢管拱结构
CN102092158A (zh) 一种混凝土表面粘贴frp纤维材料的结构及其实现方法
CN110359724A (zh) 一种仿生树干纤维混凝土梁柱结构
CN114059720B (zh) 一种玄武岩纤维增韧竹筋的制备方法
CN111501383B (zh) 一种新型玄武岩纤维复合筋及其制备方法和应用
CN209975871U (zh) 一种玄武岩复合材料筋材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019341199

Country of ref document: AU

Date of ref document: 20190911

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861457

Country of ref document: EP

Kind code of ref document: A1