WO2020057169A1 - 空调冷媒流量控制的方法、装置及计算机存储介质 - Google Patents

空调冷媒流量控制的方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2020057169A1
WO2020057169A1 PCT/CN2019/088489 CN2019088489W WO2020057169A1 WO 2020057169 A1 WO2020057169 A1 WO 2020057169A1 CN 2019088489 W CN2019088489 W CN 2019088489W WO 2020057169 A1 WO2020057169 A1 WO 2020057169A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
throttling device
indoor unit
inner coil
temperature difference
Prior art date
Application number
PCT/CN2019/088489
Other languages
English (en)
French (fr)
Inventor
马韵华
顾超
国德防
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP19861603.9A priority Critical patent/EP3828473A4/en
Publication of WO2020057169A1 publication Critical patent/WO2020057169A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method, a device, and a computer storage medium for air conditioner refrigerant flow control.
  • the household central air conditioner includes: one multi-air conditioner, that is, one air-conditioning outdoor unit corresponds to multiple air-conditioning indoor units.
  • the compressor of the outdoor unit drives all the indoor units.
  • the branch pipe is on the system pipeline. All indoor units share a main pipe. Connect to outdoor unit.
  • the indoor unit generally includes four temperature sensors, namely: ambient temperature sensor, inner coil temperature sensor, evaporator inlet sensor, and evaporator outlet sensor. In this way, it can be obtained through the evaporator inlet sensor.
  • the inlet temperature and the outlet temperature are obtained through the evaporator outlet sensor, and the refrigerant flow rate of each indoor unit is adjusted according to the temperature difference between the inlet temperature and the outlet temperature.
  • there are only two temperature sensors in most indoor units at present namely the ambient temperature sensor and the inner coil temperature sensor. If the current indoor unit is used to complete a domestic central air-conditioning system, the evaporator inlet sensor and the evaporator outlet sensor need to be used. Put it on the outdoor unit pipe.
  • the outdoor unit adds sensors, the connection line is complicated, and the connection problem is prone to be seen. It can be seen that the process and connection compatible with the existing indoor unit to complete the domestic central air conditioning system are relatively complicated.
  • An embodiment of the present disclosure provides a method for controlling a refrigerant flow rate of an air conditioner.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each indoor unit is connected to the outdoor unit through a corresponding throttling device, and the method includes:
  • the first temperature difference is smaller than a preset temperature difference
  • parameters of at least one throttling device are adjusted, so that a refrigerant flow rate passing through the throttling device is reduced.
  • An embodiment of the present disclosure provides a device for controlling a refrigerant flow rate of an air conditioner.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each of the indoor units is connected to the outdoor unit through a corresponding throttling device, and the device includes:
  • An obtaining unit configured to obtain a suction temperature of a compressor in the outdoor unit, and obtain an inner coil temperature of each of the indoor units;
  • a first adjusting unit configured to adjust a parameter of at least one throttling device when a first temperature difference between the suction temperature and an average temperature of the inner coil is greater than a preset temperature difference, so that the throttling device The flow rate of the refrigerant flowing through the medium increases, wherein the average temperature of the inner coils is an average value after the temperature of each inner coil is summed;
  • a second adjusting unit is configured to adjust parameters of at least one throttling device when the first temperature difference is less than a preset temperature difference, so that a flow rate of the refrigerant flowing through the throttling device is reduced.
  • An embodiment of the present disclosure provides a device for controlling a refrigerant flow rate of an air conditioner, which is used for air conditioning.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each of the indoor units is connected to the outdoor unit through a corresponding throttling device, and the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the average temperature of the inner coil is an average value after summing the temperatures of each inner coil
  • An embodiment of the present disclosure provides an electronic device.
  • the electronic device includes:
  • At least one processor At least one processor
  • a memory connected in communication with the at least one processor; wherein,
  • the memory stores instructions that can be executed by the at least one processor.
  • the at least one processor is caused to execute the foregoing air conditioning refrigerant flow control method.
  • An embodiment of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method of air-conditioning refrigerant flow control.
  • the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions that, when the program instructions are executed by a computer, cause the computer to execute the air conditioner described above.
  • Method of refrigerant flow control
  • the refrigerant flow through the indoor unit can be controlled, and the outlet temperature and inlet temperature of the evaporator are required. Therefore, the indoor unit and There is no need to add an evaporator inlet sensor and an evaporator outlet sensor on the outdoor unit, which reduces the temperature sensor in the central air conditioner, that is, one-to-multiple air conditioner, and is compatible with the existing indoor units.
  • the unity of the machine improves the compatibility of one to multiple air conditioners and saves resources.
  • FIG. 1 is a schematic structural diagram of an air conditioner according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for controlling air-conditioning refrigerant flow according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of an air conditioning refrigerant flow control method according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram of an air conditioning refrigerant flow control device according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram of an air conditioning refrigerant flow control device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the refrigerant flow rate corresponding to the indoor unit can be adjusted according to the difference between the inlet temperature and the outlet temperature of the evaporator. Therefore, an evaporator inlet sensor and an evaporator outlet sensor are required to obtain the corresponding temperature.
  • the refrigerant flow rate corresponding to the indoor unit can be adjusted according to the difference between the inlet temperature and the outlet temperature of the evaporator. Therefore, an evaporator inlet sensor and an evaporator outlet sensor are required to obtain the corresponding temperature.
  • the one-to-multiple air conditioner only the internal coil temperature and the ambient temperature of the indoor unit need to be obtained to control the refrigerant flow rate through the indoor unit.
  • the indoor unit in the air conditioner and a The indoor unit in the towing air conditioner is the same, only the ambient temperature sensor and the inner coil temperature sensor, and there is no need to configure the evaporator inlet sensor and the evaporator outlet sensor, which reduces the domestic central air conditioner, which is a multiple air conditioner, and is compatible.
  • the existing indoor unit realizes the unification of one-to-one-in-one and one-to-multiple-internal units, that is, improves the compatibility of one-to-multiple air conditioners and saves resources.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each indoor unit is connected to the outdoor unit through a corresponding throttling device.
  • Fig. 1 is a schematic structural diagram of an air conditioner according to an exemplary embodiment.
  • the air conditioner includes: an outdoor unit 100, a first indoor unit 200, and a second indoor unit 300.
  • the evaporator in the first indoor unit 200 communicates with the outdoor unit 100 through the throttle device 1.
  • the condenser in the second indoor unit 300 is connected to the condenser in the outdoor unit 100 through the throttle device 2.
  • the sensor is a temperature sensor for detecting a corresponding temperature.
  • the indoor unit of one trailer and multiple indoor units is the same as the indoor unit of one trailer, and the connection between the indoor unit and the outdoor unit is relatively simple, and there is no connection of an evaporator inlet sensor or an evaporator outlet sensor.
  • Each indoor unit only needs to have two corresponding temperature sensors.
  • Each indoor unit is connected with a corresponding throttling device and The outdoor unit is connected, not specific one by one.
  • Step 201 Obtain the suction temperature of the compressor in the outdoor unit, and obtain the inner coil temperature of each indoor unit.
  • the compressor of the outdoor unit is provided with an air intake sensor, so that the air intake temperature Ts of the compressor in the outdoor unit can be obtained through the air intake sensor.
  • an indoor coil sensor is configured in the indoor unit, and the internal coil temperature of each indoor unit can be obtained through the internal coil sensor, respectively: Tm1, Tm2, ... Tmn, that is, there are n indoor units, corresponding to n Internal coil temperature.
  • Step 202 when the first temperature difference between the suction temperature and the average temperature of the inner coil is greater than a preset temperature difference, adjusting parameters of at least one throttling device so that the flow rate of the refrigerant flowing through the throttling device increases,
  • the average temperature of the inner coil is an average value obtained by summing the temperatures of each inner coil.
  • Step 203 When the first temperature difference is smaller than the preset temperature difference, adjust parameters of at least one throttling device so that the flow rate of the refrigerant flowing through the throttling device is reduced.
  • the inner coil temperatures Tm1, Tm2, ... Tmn of each indoor unit have been obtained, and the average inner coil temperature ⁇ Tm can be obtained.
  • a first temperature difference Tsh between the suction temperature Ts and the average temperature ⁇ Tm of the inner coil Ts- ⁇ Tm.
  • Tsh Ts- ⁇ Tm.
  • the throttling device when the throttling device can be an electronic expansion valve, if Tsh> Tsh0, the valve of at least one electronic expansion valve can be increased, so that the refrigerant flow rate through the electronic expansion valve increases, corresponding to the indoor unit. Intermediate refrigerant flow becomes large. If Tsh ⁇ Tsh0, the valve of at least one electronic expansion valve can be reduced, and the flow rate of the refrigerant flowing through the electronic expansion valve is reduced, and the flow rate of the refrigerant flowing through the corresponding indoor unit is reduced. The same can be done for the adjustment of other throttle valves.
  • the parameters of at least one throttling device can be adjusted so that the refrigerant flow through the throttling device increases, and when Tsh ⁇ Tsh0, at least one throttling can be adjusted.
  • the parameters of the flow device reduce the flow of the refrigerant flowing through the throttling device, thereby changing the flow of the refrigerant corresponding to the indoor unit.
  • the refrigerant flow rate through the indoor unit can be controlled.
  • the indoor unit in the air conditioner and the one-to-one air conditioner The indoor units are the same, only the ambient temperature sensor and the inner coil temperature sensor, and there is no need to configure the evaporator inlet sensor and the evaporator outlet sensor, which reduces the temperature sensor in the central air conditioner, that is, one multi-air conditioner, and is compatible with the existing indoor
  • the unit realizes the unification of one-to-one-in-one and one-to-in-one-in-one, which improves the compatibility of one-to-over and multi-air conditioners and saves resources.
  • the adjustment can be made according to the temperature of the inner coil of each indoor unit, including: comparing the temperature of each inner coil with the average temperature of the inner coil; if the current temperature of the inner coil is greater than the average temperature of the inner coil, The indoor unit corresponding to the current inner coil temperature is determined as the first indoor unit; the parameters of the first throttling device corresponding to the first indoor unit are adjusted so that the refrigerant flow rate flowing through the first throttling device increases.
  • Tm1, Tm2, ..., Tmn and ⁇ Tm are compared respectively. If Tm2> ⁇ Tm, the second indoor unit corresponding to Tm2 can be determined as the first indoor unit, and the throttling device corresponding to the second indoor unit can be determined. 2 is determined as the first throttling device, and the parameters of the throttling device 2 are adjusted so that the flow rate of the refrigerant flowing through the throttling device 2 increases. If the throttle device 2 is an electronic expansion valve, the valve of the electronic expansion valve can be opened large, and the number of steps performed when the valve is opened can be determined according to [Tsh-Tsh0]. Similarly, if Tm3, Tm6 ...
  • Tmn are larger than ⁇ Tm respectively
  • the corresponding third indoor unit, sixth indoor unit ... nth indoor unit are determined as the first indoor unit, and the corresponding throttling device 3 3.
  • the throttling device n is determined as the first throttling device, and the parameters of the first throttling device are adjusted so that the flow rate of the refrigerant flowing through the first throttling device increases.
  • the parameters of at least one throttling device to reduce the flow of refrigerant flowing through the throttling device. For example, randomly adjusting the parameters of one, two, or more throttling devices such that The flow of the refrigerant flowing through the throttling device is reduced.
  • Tm1, Tm2, ..., Tmn and ⁇ Tm are compared. If Tm1 ⁇ Tm, the first indoor unit corresponding to Tm1 can be determined as the first indoor unit, and the throttling device corresponding to the first indoor unit can be determined. 1 is determined as the second throttling device, and the parameters of the throttling device 1 are adjusted so that the flow rate of the refrigerant flowing through the throttling device 1 is reduced. If the throttling device 1 is an electronic expansion valve, the valve of the electronic expansion valve can be closed, and the number of steps performed when the valve is closed can be determined according to [Tsh-Tsh0]. Similarly, if Tm4, Tm5 ...
  • the corresponding fourth indoor unit, fifth indoor unit ... are determined as the second indoor unit, and the corresponding throttling device 4, throttling device 5 ... It is determined as the second throttling device, and the parameters of the second throttling device are adjusted so that the flow rate of the refrigerant flowing through the second throttling device is reduced.
  • the first temperature difference is greater than a preset temperature difference, that is, when the actual superheat degree is relatively large, the refrigerant flow rate of the system needs to be increased.
  • the room with a high inner coil temperature can be increased.
  • the refrigerant flow rate of the unit, and the first temperature difference is less than the preset temperature difference value, that is, the actual superheat degree is relatively small, the refrigerant flow rate of the system needs to be reduced, preferably, the refrigerant flow rate of the indoor unit with a low inner coil temperature can be reduced In this way, the temperature control in the area where each indoor unit is located will be more balanced, and the human body will feel more comfortable.
  • the bias flow adjustment can be performed. That is, in another embodiment of the present disclosure, the bias flow adjustment can be performed.
  • the temperature difference determines the second temperature difference between the ambient temperature of each indoor unit and the inner coil temperature; when the relative difference between the maximum second temperature difference and the minimum second temperature difference is greater than the set
  • the indoor unit corresponding to the maximum second temperature difference is determined as the third indoor unit, and the indoor unit corresponding to the minimum second temperature difference is determined to be the fourth indoor unit; and the third throttle corresponding to the third indoor unit is adjusted
  • the parameters of the device increase the refrigerant flow rate in the third throttle device, and adjust the parameters of the fourth throttle device corresponding to the fourth indoor unit to reduce the refrigerant flow rate in the fourth throttle device.
  • the unit is determined as the third indoor unit, and the indoor unit corresponding to the minimum second temperature difference is determined as the fourth indoor unit. Finally, the parameters of the third throttling device corresponding to the third indoor unit are adjusted so that the third throttling device has a medium current. The passing refrigerant flow increases and the parameters of the fourth throttling device corresponding to the fourth indoor unit are adjusted, so that the refrigerant flow passing through the fourth throttling device is reduced.
  • ⁇ Tw1, ⁇ Tw2 ..., ⁇ Twn, ⁇ Tw2 is the largest and ⁇ Twn is the smallest.
  • A is a natural number greater than zero
  • the second indoor unit can be determined as the third indoor unit
  • the nth indoor unit is determined as the fourth indoor unit
  • the second indoor unit is corresponding.
  • the throttling device 2 is determined as the third throttling device
  • the throttling device n corresponding to the nth indoor unit is determined as the fourth throttling device.
  • the parameters of the throttling device 2 are adjusted so that the refrigerant flowing through the throttling device 2 passes through.
  • the flow rate is increased, and the parameters of the throttling device n are adjusted so that the flow rate of the refrigerant flowing through the throttling device n is reduced.
  • the throttling device is an electronic expansion valve
  • the valve of the electronic expansion valve 2 can be opened large.
  • the number of steps performed when opening the valve can be determined according to A / 2.
  • the valve of the electronic expansion valve n can be closed small.
  • the number of steps performed by closing the valve can also be determined according to A / 2.
  • the refrigerant circulation of the system does not need to be adjusted.
  • the bias flow adjustment can be performed to further improve the balance of the flow in each indoor unit, so that each indoor unit has an active area. The temperature is relatively balanced, further improving the user experience.
  • only superheat adjustment may be performed, that is, adjustment is performed according to the first temperature difference, or only bias flow adjustment is performed, that is, adjustment is performed according to the second temperature difference, or both
  • the superheat degree adjustment and the bias current adjustment are performed.
  • the superheat degree adjustment may be performed before the bias current adjustment.
  • Fig. 3 is a flow chart showing a method for controlling an air-conditioning refrigerant flow rate according to an exemplary embodiment. As shown in Figure 3, the process of air conditioning refrigerant flow control includes:
  • Step 301 Obtain the suction temperature of the compressor in the outdoor unit, and obtain the inner coil temperature of each indoor unit.
  • the compressor of the outdoor unit is provided with an air intake sensor, so that the air intake temperature Ts of the compressor in the outdoor unit can be obtained through the air intake sensor.
  • an indoor coil sensor is configured in the indoor unit, and the internal coil temperature of each indoor unit can be obtained through the internal coil sensor, respectively: Tm1, Tm2, ... Tmn, that is, there are n indoor units, corresponding to n Internal coil temperature.
  • Step 302 When the first temperature difference between the suction temperature and the average temperature of the inner coil is equal to the preset temperature difference, determine a second temperature difference between the ambient temperature of each indoor unit and the temperature of the inner coil. .
  • each indoor unit is equipped with an internal ring temperature sensor.
  • Step 303 When the relative difference between the maximum second temperature difference and the minimum second temperature difference is greater than the set value, determine the indoor unit corresponding to the maximum second temperature difference as the third indoor unit, and set the minimum first The indoor unit corresponding to the two temperature differences is determined as a fourth indoor unit.
  • ⁇ Tw1 ⁇ Tw2 ..., ⁇ Twn, ⁇ Tw2 is the largest and ⁇ Twn is the smallest.
  • A is a natural number greater than zero.
  • the operating environment is set to determine that the refrigerant flow is unevenly divided.
  • the second indoor unit may be determined as a third indoor unit, and the nth indoor unit may be determined as a fourth indoor unit.
  • Step 304 Adjust the parameters of the third throttling device corresponding to the third indoor unit so that the refrigerant flow through the third throttling device increases, and adjust the parameters of the fourth throttling device corresponding to the fourth indoor unit so that the first The flow of refrigerant flowing through the four-throttle device is reduced.
  • the second indoor unit is a third indoor unit
  • the nth indoor unit is a fourth indoor unit.
  • the throttling device 2 corresponding to the second indoor unit may be determined as the third throttling device
  • the throttling device n corresponding to the nth indoor unit may be determined as the fourth throttling device
  • the parameters of the throttling device 2 may be adjusted.
  • the refrigerant flow rate in the throttle device 2 is increased, and the parameters of the throttle device n are adjusted, so that the refrigerant flow rate in the throttle device n is reduced.
  • the throttling device is an electronic expansion valve
  • the valve of the electronic expansion valve 2 can be opened large.
  • the number of steps performed during valve opening can be determined according to A / 2.
  • the valve of the electronic expansion valve n can be closed small.
  • the number of steps performed by closing the valve can also be determined according to A / 2.
  • the refrigerant flow through the indoor unit can be biased.
  • the indoor unit in the air conditioner and the one-to-one air conditioner The indoor units are the same, only the ambient temperature sensor and the inner coil temperature sensor, and there is no need to configure the evaporator inlet sensor and the evaporator outlet sensor, which reduces the temperature sensor in the central air conditioner, that is, one multi-air conditioner, and is compatible with the existing indoor
  • the unit realizes the unification of one-to-one-in-one and one-to-in-one-in-one, which improves the compatibility of one-to-over and multi-air conditioners and saves resources.
  • the flow balance in each indoor unit can be further improved through the bias flow control, so that the temperature in the area of each indoor unit is more balanced, and the user experience is further improved.
  • the refrigerant flow rate control when the refrigerant flow rate control is performed, not only the bias flow adjustment but also the superheat adjustment can be performed, that is, the adjustment is performed according to the first temperature difference, which specifically may include: when the first temperature difference is greater than a preset temperature When there is a difference, adjust the parameters of at least one throttling device so that the refrigerant flow through the throttling device increases; when the first temperature difference is less than a preset temperature difference, adjust the parameters of at least one throttling device so that throttling The flow rate of the refrigerant flowing in the flow device is reduced.
  • adjusting the parameters of at least one throttling device so that the refrigerant flow through the throttling device increases includes: comparing the temperature of each inner coil with the average temperature of the inner coil; if the current inner coil temperature is greater than Coil average temperature, determine the indoor unit corresponding to the current internal coil temperature as the first indoor unit; adjust the parameters of the first throttling device corresponding to the first indoor unit, so that the refrigerant flow through the first throttling device increases .
  • adjusting the parameters of the at least one throttling device to reduce the refrigerant flow through the throttling device includes: comparing the temperature of each inner coil with the average temperature of the inner coil; if the current inner coil temperature is less than the inner coil The average temperature of the tube determines the indoor unit corresponding to the current inner coil temperature as the second indoor unit; adjusting the parameters of the second throttling device corresponding to the second indoor unit to reduce the refrigerant flow through the second throttling device.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each indoor unit is connected to the outdoor unit through a corresponding electronic expansion valve, and superheat degree adjustment and bias flow adjustment can be performed when the air conditioning refrigerant flow rate is controlled.
  • the preset temperature difference Tsh0 and the set value A are stored.
  • Fig. 4 is a flow chart showing a method for controlling a refrigerant flow rate of an air conditioner according to an exemplary embodiment. As shown in Figure 4, the process of air conditioning refrigerant flow control includes:
  • Step 401 Obtain the suction temperature of the compressor in the outdoor unit, and obtain the inner coil temperature and the ambient temperature of each indoor unit.
  • An air intake sensor is arranged on the compressor of the outdoor unit in the air conditioner, so that the air intake temperature Ts of the compressor in the outdoor unit can be obtained by the air intake sensor.
  • the indoor unit is equipped with an inner coil sensor and an inner ring temperature sensor, and the inner coil temperature Tm1, Tm2, ... Tmn of each indoor unit and the corresponding ambient temperature Tai1, Tai2 can be obtained through the inner coil sensor. ... Tain.
  • Step 402 Determine whether Tsh> Tsh0 is established? If yes, go to step 403; otherwise, go to step 407.
  • the average temperature of the inner coil ⁇ Tm (Tm1 + Tm2 + ... + Tmn) / n.
  • Tsh Ts- ⁇ Tm, if Tsh> Tsh0, it is determined that the actual superheat degree is relatively high, and step 403 is performed.
  • Step 403 Determine an indoor unit as the current indoor unit.
  • An indoor unit may be determined as the current indoor unit according to a preset rule.
  • Step 404 Determine whether the current internal disk temperature Tmd> ⁇ Tm of the current indoor unit is established? If yes, go to step 405; otherwise, go to step 406.
  • Step 405 Determine the current indoor unit as the first indoor unit, and open the valve of the first electronic expansion valve corresponding to the first indoor unit.
  • the number of steps performed by the valve opening of the first electronic expansion valve can be determined according to [Tsh-Tsh0].
  • Step 406 Have all the indoor units been determined as the current indoor units? If yes, the process ends, otherwise, return to step 403.
  • Step 407 Determine whether Tsh ⁇ Tsh0 is established? If yes, go to step 408; otherwise, go to step 412.
  • Step 408 Determine an indoor unit as the current indoor unit.
  • An indoor unit may be determined as the current indoor unit according to a preset rule.
  • Step 409 Determine whether the current internal disk temperature Tmd ⁇ Tm of the current indoor unit is established? If yes, go to step 410; otherwise, go to step 411.
  • Step 410 Determine the current indoor unit as the second indoor unit, and close the valve of the second electronic expansion valve corresponding to the second indoor unit.
  • the number of steps performed when the valve of the second electronic expansion valve is closed can be determined according to [Tsh-Tsh0].
  • Step 411 Have all the indoor units been determined as the current indoor units? If yes, the process ends, otherwise, return to step 408.
  • Step 412 Determine a second temperature difference between the ambient temperature of each indoor unit and the temperature of the inner coil.
  • Tsh Tsh0
  • Step 413 Is the relative difference between the maximum second temperature difference and the minimum second temperature difference> A true? If yes, go to step 414, otherwise, the process ends.
  • Step 414 Determine the indoor unit corresponding to the maximum second temperature difference as the third indoor unit, and determine the indoor unit corresponding to the minimum second temperature difference as the fourth indoor unit.
  • Step 415 The valve of the third electronic expansion valve corresponding to the third indoor unit is opened, and the valve of the fourth electronic expansion valve corresponding to the fourth indoor unit is closed.
  • the number of steps performed when the valve is opened may be determined according to A / 2
  • the number of steps performed when the valve is closed may also be determined according to A / 2.
  • the refrigerant flow through the indoor unit can be controlled.
  • the indoor unit in the air conditioner and the one-to-one air conditioner The indoor unit is the same, only the ambient temperature sensor and the inner coil temperature sensor, and there is no need to configure the evaporator inlet sensor and the evaporator outlet sensor, which reduces the temperature sensor in the central air conditioner, that is, one multi-air conditioner, and is compatible with the existing indoor unit.
  • the balance of the flow in each indoor unit can be further improved, so that the temperature in the area of each indoor unit is more balanced, and the user experience is further improved.
  • a device for air-conditioning refrigerant flow control can be constructed.
  • Fig. 5 is a block diagram of an air conditioning refrigerant flow control device according to an exemplary embodiment.
  • the air conditioner includes an outdoor unit and at least two indoor units. Each indoor unit is connected to the outdoor unit through a corresponding throttling device. As shown in FIG. 5, the device may include an obtaining unit 510, a first adjusting unit 530, and a third unit.
  • the adjustment unit 530 wherein:
  • the obtaining unit 510 is configured to obtain a suction temperature of a compressor in an outdoor unit, and obtain an inner coil temperature of each indoor unit.
  • the first adjusting unit 520 is specifically configured to compare the temperature of each inner coil with the average temperature of the inner coil; if the current temperature of the inner coil is greater than the average temperature of the inner coil, The indoor unit corresponding to the temperature is determined as the first indoor unit; the parameters of the first throttling device corresponding to the first indoor unit are adjusted so that the refrigerant flow rate flowing through the first throttling device increases.
  • the second adjusting unit 530 is specifically configured to compare the temperature of each inner coil with the average temperature of the inner coil; if the current temperature of the inner coil is less than the average temperature of the inner coil, The indoor unit corresponding to the temperature is determined as the second indoor unit; the parameters of the second throttling device corresponding to the second indoor unit are adjusted so that the refrigerant flow rate flowing through the second throttling device is reduced.
  • a third adjusting unit configured to determine a second temperature difference between the ambient temperature of each indoor unit and the temperature of the inner coil when the first temperature difference is equal to the preset temperature difference; when the maximum second temperature difference is When the relative difference between the minimum second temperature difference is greater than the set value, the indoor unit corresponding to the maximum second temperature difference is determined as the third indoor unit, and the indoor unit corresponding to the minimum second temperature difference is determined as The fourth indoor unit; and, adjusting the parameters of the third throttling device corresponding to the third indoor unit so that the refrigerant flow through the third throttling device increases, and adjusting the parameters of the fourth throttling device corresponding to the fourth indoor unit , So that the flow rate of the refrigerant flowing through the fourth throttling device is reduced.
  • An embodiment of the present disclosure provides an air conditioning refrigerant flow control device for air conditioning.
  • the air conditioner includes an outdoor unit and at least two indoor units. Each indoor unit is connected to the outdoor unit through a corresponding throttling device.
  • the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the parameters of at least one throttling device are adjusted so that the flow rate of the refrigerant flowing through the throttling device is reduced.
  • An embodiment of the present disclosure provides a computer-readable storage medium on which computer instructions are stored, and is characterized in that, when the instructions are executed by a processor, the steps of the foregoing method are implemented.
  • Fig. 6 is a block diagram of an air conditioning refrigerant flow control device according to an exemplary embodiment.
  • the air conditioner includes an outdoor unit and at least two indoor units. Each indoor unit is connected to the outdoor unit through a corresponding throttling device. As shown in FIG. 6, the device may include an obtaining unit 610 and a third adjusting unit 620.
  • the obtaining unit 610 is configured to obtain a suction temperature of a compressor in an outdoor unit, and obtain an inner coil temperature of each indoor unit.
  • the third adjusting unit 620 is configured to determine the difference between the ambient temperature of each indoor unit and the temperature of the inner coil when the first temperature difference between the suction temperature and the average temperature of the inner coil is equal to a preset temperature difference.
  • the second temperature difference wherein the average temperature of the inner coil is the average value of the temperature of each inner coil; and when the relative difference between the maximum second temperature difference and the minimum second temperature difference is greater than a set value
  • the indoor unit corresponding to the maximum second temperature difference is determined as the third indoor unit, and the indoor unit corresponding to the minimum second temperature difference is determined to be the fourth indoor unit; and, the first indoor unit corresponding to the third indoor unit is adjusted.
  • the parameters of the three throttling devices increase the refrigerant flow rate in the third throttling device, and the parameters of the fourth throttling device corresponding to the fourth indoor unit are adjusted to reduce the refrigerant flow rate in the fourth throttling device.
  • the first adjusting unit is configured to adjust parameters of at least one throttling device when the first temperature difference is greater than a preset temperature difference, so that a refrigerant flow rate in the throttling device increases.
  • the second adjusting unit is configured to adjust parameters of at least one throttling device when the first temperature difference is less than a preset temperature difference, so that the flow rate of the refrigerant flowing through the throttling device is reduced.
  • the first adjusting unit is specifically configured to compare the temperature of each inner coil with the average temperature of the inner coil; if the current temperature of the inner coil is greater than the average temperature of the inner coil, the current temperature of the inner coil
  • the corresponding indoor unit is determined as the first indoor unit; the parameters of the first throttling device corresponding to the first indoor unit are adjusted so that the refrigerant flow rate flowing through the first throttling device increases.
  • the second adjustment unit is specifically configured to compare the temperature of each inner coil with the average temperature of the inner coil; if the current temperature of the inner coil is less than the average temperature of the inner coil, the current temperature of the inner coil
  • the corresponding indoor unit is determined as the second indoor unit; the parameters of the second throttling device corresponding to the second indoor unit are adjusted so that the refrigerant flow rate flowing through the second throttling device is reduced.
  • the flow of the refrigerant flowing through the indoor unit can be controlled in a biased manner.
  • the indoor units are the same, only the ambient temperature sensor and the inner coil temperature sensor, and there is no need to configure the evaporator inlet sensor and the evaporator outlet sensor, which reduces the temperature sensor in the central air conditioner, that is, one multi-air conditioner, and is compatible with the existing indoor
  • the unit realizes the unification of one-to-one-in-one and one-to-in-one-in-one, which improves the compatibility of one-to-over and multi-air conditioners and saves resources.
  • the flow balance in each indoor unit can be further improved through the bias flow control, so that the temperature in the area of each indoor unit is more balanced, and the user experience is further improved.
  • an air conditioning refrigerant flow control device for an air conditioner.
  • the air conditioner includes an outdoor unit and at least two indoor units, and each of the indoor units communicates with all the units through a corresponding throttling device.
  • the outdoor unit is connected, and the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the first temperature difference between the suction temperature and the average temperature of the inner coil is equal to a preset temperature difference, determine a second temperature difference between the ambient temperature of each indoor unit and the temperature of the inner coil Value, wherein the average temperature of the inner coil is an average value after summing the temperatures of each inner coil;
  • the indoor unit corresponding to the maximum second temperature difference is determined as the third indoor unit, and the minimum second temperature difference is determined.
  • the indoor unit corresponding to the value is determined as the fourth indoor unit;
  • An embodiment of the present disclosure provides a computer-readable storage medium on which computer instructions are stored, and is characterized in that, when the instructions are executed by a processor, the steps of the foregoing method are implemented.
  • a computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions.
  • the computer is caused to execute the method for controlling the air-conditioning refrigerant flow rate.
  • An embodiment of the present disclosure provides an electronic device having a structure as shown in FIG. 7.
  • the electronic device includes:
  • At least one processor 700, and one processor 700 is taken as an example in FIG. 7; and the memory 701 may further include a communication interface 702 and a bus 703.
  • the processor 700, the communication interface 702, and the memory 701 can complete communication with each other through the bus 703.
  • the communication interface 702 may be used for information transmission.
  • the processor 700 may call a logic instruction in the memory 701 to execute the method in the foregoing embodiment.
  • logic instructions in the memory 701 can be implemented in the form of software functional units and sold or used as independent products, and can be stored in a computer-readable storage medium.
  • the memory 701 is a computer-readable storage medium and can be used to store software programs and computer-executable programs, such as program instructions / modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 700 executes functional applications and data processing by running software programs, instructions, and modules stored in the memory 701, that is, implementing the method in the foregoing method embodiment.
  • the memory 701 may include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the terminal device, and the like.
  • the memory 701 may include a high-speed random access memory, and may further include a non-volatile memory.
  • the technical solution of the embodiment of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions for making a computer device (which may be a personal computer, a server, or a network). Equipment, etc.) perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the first element may be called the second element, and likewise, the second element may be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences of The "second component” can be renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the terms used in the present application are used only to describe embodiments and not to limit the claims. As used in the description of the embodiments and claims, the singular forms "a” (a), “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise .
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit may be only a logical function division.
  • multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了空调冷媒流量控制的方法、装置及计算机存储介质,属于智能家电技术领域。空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,该方法包括:获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。这样,实现了一拖一内机与一拖多内机的统一并节省了资源。

Description

空调冷媒流量控制的方法、装置及计算机存储介质
本申请基于申请号为201811084930.4、申请日为2018.09.18的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及空调冷媒流量控制的方法、装置及计算机存储介质。
背景技术
随着生活水平的提高,空调已经是人们日常生活的必备品。家用中央空调包括:一拖多空调,就是一台空调室外机对应多台空调室内机,室外机的压缩机共同带动所有的室内机,分歧管在系统管路上,所有室内机共用一根主管道连接到室外机。
在这种家用中央空调系统中,室内机上一般包括四个温度传感器,分别为:环境温度传感器、内盘管温度传感器、蒸发器入口传感器以及蒸发器出口传感器,这样,可通过蒸发器入口传感器获取入口温度,以及通过蒸发器出口传感器获取出口温度,并根据入口温度与出口温度之间的温度差来调整每个室内机流经的冷媒流量。但是,目前的大部分室内机中都只有两个温度传感器,即环境温度传感器和内盘管温度传感器,若使用目前的室内机完成家用中央空调系统,需将蒸发器入口传感器以及蒸发器出口传感器放入室外机管路上。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
室外机增加了传感器,连接线路复杂,容易出现线路连接问题,可见,兼容现有室内机完成家用中央空调系统的工艺、连接都比较复杂。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种空调冷媒流量控制的方法。
在一些实施例中,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述方法包括:
获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
本公开实施例提供了一种空调冷媒流量控制的装置。
在一些实施例中,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述装置包括:
获取单元,用于获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
第一调整单元,用于当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
第二调整单元,用于当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
本公开实施例提供了一种空调冷媒流量控制的装置,用于空调。
在一些实施例中,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述该装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
本公开实施例提供了一种电子设备。
在一些实施例中,所述电子设备包括:
至少一个处理器;和
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行上述的空调冷媒流量控制的方法。
本公开实施例提供了一种计算机可读存储介质。
在一些实施例中,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令设置为执行上述的空调冷媒流量控制的方法。
本公开实施例提供了一种计算机程序产品。
在一些实施例中,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述的空调冷媒流量控制的方法。
本公开实施例提供的一些技术方案可以实现以下技术效果:
本公开实施例中,只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行控制,并需要蒸发器的出口温度以及入口温度,因此,室内机以及室外机上都不需要增加蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种空调的结构示意图。
图2是本公开实施例提供的一种空调冷媒流量控制方法的流程图;
图3是本公开实施例提供的一种空调冷媒流量控制方法的流程图;
图4是本公开实施例提供的一种空调冷媒流量控制方法的流程图;
图5是本公开实施例提供的一种空调冷媒流量控制装置的框图;
图6是本公开实施例提供的一种空调冷媒流量控制装置的框图。
图7是本公开实施例提供的电子设备的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
一拖多空调中,可根据蒸发器入口温度与出口温度之间的差值来调整对应室内机流经的冷媒流量,因此,需要蒸发器入口传感器以及蒸发器出口传感器来获取对应的温度。本公开实施例中,一拖多空调中,只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行控制,这样,该空调中的室内机与一拖一空调中的室内机一致,只有环境温度传感器和内盘管温度传感器,而不需要配置蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖 多空调的兼容性以及节省了资源。
本公开实施例中,空调包括:室外机以及至少两个室内机,每个室内机通过一个对应的节流装置与室外机连接。
图1是根据一示例性实施例示出的一种空调的结构示意图。如图1所示,本实施例中,空调包括:室外机100,第一室内机200,第二室内机300,其中,第一室内机200中的蒸发器通过节流装置1与室外机100中的冷凝器连接,第二室内机300的蒸发器通过节流装置2与室外机100中的冷凝器连接。每个室内机中,只有对应的内环温传感器和内盘管传感器,这里,传感器即为温度传感器,用以检测对应的温度。可见,一拖多中室内机与一拖一室内机一致,室内机与室外机的连接也比较简单,没有蒸发器入口传感器或蒸发器出口传感器的连接。
这里,只有两个室内机,对于三个、四个以及N个室内机的结构也如此,每个室内机只需有两个对应温度传感器,,每个室内机通过一个对应的节流装置与室外机连接,具体就不一一例举了。
在上述空调中,可只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行控制。
图2是根据一示例性实施例示出的一种空调冷媒流量控制方法的流程图。如图2所示,空调冷媒流量控制的过程包括:
步骤201:获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度。
如图1所示,室外机的压缩机上配置了吸气传感器,从而,可通过吸气传感器获取室外机中压缩机的吸气温度Ts。同样,室内机中配置了内盘管传感器,即可通过内盘管传感器获取每个室内机的内盘管温度,分别为:Tm1、Tm2、…Tmn,即有n个室内机,对应有n个内盘管温度。
当然,其他可获取温度的检测装置也可应用于此,不限于温度传感器,或者通过软件公式计算获取温度也可应用于此。
步骤202:当吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大,其中,内盘管平均温度为每个内盘管温度求和后的平均值。
步骤203:当第一温度差值小于预设温度差值时,调整至少一个节流装 置的参数,使得节流装置中流经的冷媒流量缩小。
已经获取了每个室内机的内盘管温度Tm1、Tm2、…Tmn,可得到内盘管平均温度△Tm,内盘管平均温度为每个内盘管温度求和后的平均值,即△Tm=(Tm1+Tm2+…+Tmn)/n。
然后,获得吸气温度Ts与内盘管平均温度△Tm之间的第一温度差值Tsh,Tsh=Ts-△Tm。可根据空调的型号,进行多次测试,可获得一个预设温度差值Tsh0,即预先配置一个预设温度差值Tsh0,这样,当第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大;而当第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小。
本实施例中,节流装置可为电子膨胀阀时,若Tsh>Tsh0时,可将至少一个电子膨胀阀的阀门调大,从而,该电子膨胀阀流经的冷媒流量增大,对应室内机中冷媒流量变大。若Tsh<Tsh0时,可将至少一个电子膨胀阀的阀门调小,而该电子膨胀阀流经的冷媒流量缩小,对应的室内机流经的冷媒流量变小。对于其他节流阀的调整也可如此,若Tsh>Tsh0时,可调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大,而Tsh<Tsh0时,可调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小,从而,改变对应室内机流经的冷媒流量。
可见,本公开实施例中,只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行控制,这样,该空调中的室内机与一拖一空调中的室内机一致,只有环境温度传感器和内盘管温度传感器,而不需要配置蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。
当然,本公开实施例中,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大的方式有很多,例如,随机调整一个、两个或多个节流装置的参数,使得节流装置中流经的冷媒流量增大。较佳地,可根据每个室内机的内盘管温度进行调整,包括:将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度大于内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;调整第一室内机对应的第一节流 装置的参数,使得第一节流装置中流经的冷媒流量增大。
例如:分别将Tm1、Tm2、…Tmn与△Tm进行比较,若Tm2>△Tm,则可将Tm2对应第2个室内机确定为第一室内机,将第2个室内机对应的节流装置2确定为第一节流装置,调整节流装置2的参数,使得节流装置2中流经的冷媒流量增大。若节流装置2为电子膨胀阀,可将电子膨胀阀的阀门开大,阀门开大执行的步数可根据[Tsh-Tsh0]确定。同样,若Tm3、Tm6…Tmn都分别大于△Tm,则可对应的第3个室内机、第6个室内机…第n个室内机都确定为第一室内机,将对应的节流装置3、节流装置6…节流装置n确定为第一节流装置,调整第一节流装置的参数,使得第一节流装置中流经的冷媒流量增大。
同样,本公开实施例中,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小的方式有很多,例如,随机调整一个、两个或多个节流装置的参数,使得节流装置中流经的冷媒流量缩小。较佳地,可根据每个室内机的内盘管温度进行调整,包括:将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度小于内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;调整第二室内机对应的第二节流装置的参数,使得第一节流装置中流经的冷媒流量缩小。
例如:分别将Tm1、Tm2、…Tmn与△Tm进行比较,若Tm1<△Tm,则可将Tm1对应第1个室内机确定为第一室内机,将第1个室内机对应的节流装置1确定为第二节流装置,调整节流装置1的参数,使得节流装置1中流经的冷媒流量缩小。若节流装置1为电子膨胀阀,可将电子膨胀阀的阀门关小,阀门关小执行的步数可根据[Tsh-Tsh0]确定。同样,若Tm4、Tm5…都分别小于△Tm,则可对应的第4个室内机、第5个室内机…都确定为第二室内机,将对应的节流装置4、节流装置5…确定为第二节流装置,调整第二节流装置的参数,使得第二节流装置中流经的冷媒流量缩小。
可见,一拖多空调中,第一温度差值大于预设温度差值,即实际过热度比较大时,需要加大系统的冷媒流量,较佳地,可加大内盘管温度高的室内机的冷媒流量,而第一温度差值小于预设温度差值,即实际过热度比较小时,则需减少系统的冷媒流量,较佳地,可缩小内盘管温度低的室内机的冷媒流量,这样,每个室内机所在的区域的温度控制会比较均衡,人 体感觉比较舒服。
当第一温度差值等于预设温度差值时,即实际过热度与目标过热度一致时,系统的冷媒流量不需要增加,但是,可能会有的室内机流经的冷媒流量过多,有的室内机流经的冷媒流量过小,即冷媒分流不均,此时可进行偏流调整,即本公开另一实施例中,可进行偏流调整,具体包括:当第一温度差值等于预设温度差值时,确定每个室内机的环境温度与内盘管温度之间的第二温度差值;当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机;调整第三室内机对应的第三节流装置的参数,使得第三节流装置中流经的冷媒流量增大,以及调整第四室内机对应的第四节流装置的参数,使得第四节流装置中流经的冷媒流量缩小。
如图1所示,每个室内机中配置有内环温传感器,这样,可通过内环温传感器,获取每个室内机对应的环境温度Tai1、Tai2、…Tain,这样,当Tsh=Tsh0时,可确定每个室内机的环境温度与内盘管温度之间的第二温度差值,即第二温度差值△Tw1=Tai1-Tm1,△Tw2=Tai2-Tm2、…、△Twn=Tain-Tmn。然后,将最大第二温度差值与最小第二温度差值之间的相对差值与设定值进行比较,当相对差值大于设定值时,可将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机;最后,调整第三室内机对应的第三节流装置的参数,使得第三节流装置中流经的冷媒流量增大,以及调整第四室内机对应的第四节流装置的参数,使得第四节流装置中流经的冷媒流量缩小。
例如:△Tw1、△Tw2…、△Twn中,△Tw2最大,△Twn最小,这样,当|△Tw2-△Twn|>A时,其中,A为大于零的自然数,可根据空调的型号以及运行环境进行设定,可确定冷媒流量分流不均,此时,可将第2个室内机确定为第三室内机,第n个室内机确定为第四室内机,将第2个室内机对应的节流装置2确定为第三节流装置,将第n个室内机对应的节流装置n确定为第四节流装置,调整节流装置2的参数,使得节流装置2中流经的冷媒流量增大,以及调整节流装置n的参数,使得节流装置n中流经的冷媒流量缩小。若节流装置为电子膨胀阀,可将电子膨胀阀2的阀门 开大,较佳地,开阀执行的步数可根据A/2确定。可将电子膨胀阀n的阀门关小,较佳地,关阀执行的步数也可根据A/2确定。
可见,第一温度差值等于预设温度差值时,系统的冷媒流通不需要调整了,但是,可进行偏流调整,进一步提高每个室内机中流量的均衡性,使得每个室内机作用区域的温度比较均衡,进一步提高用户的体验。
当然,本公开实施例中进行冷媒流量控制时,可只进行过热度调整,即根据第一温度差值进行调整,或者,只执行偏流调整,即根据第二温度差值进行调整,或者,既进行过热度调整又进行偏流调整等等,较佳地,可先进行过热度调整再进行偏流调整。
图3是根据一示例性实施例示出的一种空调冷媒流量控制方法的流程图。如图3所示,空调冷媒流量控制的过程包括:
步骤301:获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度。
如图1所示,室外机的压缩机上配置了吸气传感器,从而,可通过吸气传感器获取室外机中压缩机的吸气温度Ts。同样,室内机中配置了内盘管传感器,即可通过内盘管传感器获取每个室内机的内盘管温度,分别为:Tm1、Tm2、…Tmn,即有n个室内机,对应有n个内盘管温度。
步骤302:当吸气温度与内盘管平均温度之间的第一温度差值等于预设温度差值时,确定每个室内机的环境温度与内盘管温度之间的第二温度差值。
已经获取了每个室内机的内盘管温度Tm1、Tm2、…Tmn,可得到内盘管平均温度△Tm,内盘管平均温度为每个内盘管温度求和后的平均值,即△Tm=(Tm1+Tm2+…+Tmn)/n。获得吸气温度Ts与内盘管平均温度△Tm之间的第一温度差值Tsh,预先配置一个预设温度差值Tsh0,这样,当第一温度差值等于预设温度差值时,此时系统的冷媒流量不需要改变,但是需要进行偏流调整。
如图1所示,每个室内机中配置有内环温传感器,这样,可通过内环温传感器,获取每个室内机对应的环境温度Tai1、Tai2、…Tain,这样,当Tsh=Tsh0时,可确定每个室内机的环境温度与内盘管温度之间的第二温度差值,即第二温度差值△Tw1=Tai1-Tm1,△Tw2=Tai2-Tm2、…、△ Twn=Tain-Tmn。
步骤303:当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机。
例如:△Tw1、△Tw2…、△Twn中,△Tw2最大,△Twn最小,这样,当|△Tw2-△Twn|>A时,其中,A为大于零的自然数,可根据空调的型号以及运行环境进行设定,可确定冷媒流量分流不均,此时,可将第2个室内机确定为第三室内机,第n个室内机确定为第四室内机。
步骤304:调整第三室内机对应的第三节流装置的参数,使得第三节流装置中流经的冷媒流量增大,以及调整第四室内机对应的第四节流装置的参数,使得第四节流装置中流经的冷媒流量缩小。
例如:第2个室内机为第三室内机,第n个室内机为第四室内机。则可将第2个室内机对应的节流装置2确定为第三节流装置,将第n个室内机对应的节流装置n确定为第四节流装置,调整节流装置2的参数,使得节流装置2中流经的冷媒流量增大,以及调整节流装置n的参数,使得节流装置n中流经的冷媒流量缩小。若节流装置为电子膨胀阀,可将电子膨胀阀2的阀门开大,较佳地,开阀执行的步数可根据A/2确定。可将电子膨胀阀n的阀门关小,较佳地,关阀执行的步数也可根据A/2确定。
可见,本实施例中,只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行偏流控制,这样,该空调中的室内机与一拖一空调中的室内机一致,只有环境温度传感器和内盘管温度传感器,而不需要配置蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。并且,通过偏流控制可进一步提高每个室内机中流量的均衡性,使得每个室内机作用区域的温度比较均衡,进一步提高用户的体验。
当然,本实施例中,进行冷媒流量控制时,不仅可以进行偏流调整,还可进行过热度调整,即根据第一温度差值进行调整,具体可包括:当第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大;当第一温度差值小于预设温度差值时,调 整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小。
较佳地,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大包括:将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度大于内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;调整第一室内机对应的第一节流装置的参数,使得第一节流装置中流经的冷媒流量增大。
较佳地,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小包括:将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度小于内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;调整第二室内机对应的第二节流装置的参数,使得第二节流装置中流经的冷媒流量缩小。
过热度调整,即根据第一温度差值进行调整的具体过程可与上述实施例一致,不再累述了。
下面将操作流程集合到具体实施例中,举例说明本公开实施例提供的控制方法。
本实施例中,空调包括室外机以及至少两个室内机,每个室内机通过一个对应的电子膨胀阀与室外机连接,空调冷媒流量控制时即可进行过热度调整又可进行偏流调整。保存了预设温度差值Tsh0以及设定值A。
图4是根据一示例性实施例示出的一种空调冷媒流量控制方法的流程图。如图4所示,空调冷媒流量控制的过程包括:
步骤401:获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度和环境温度。
空调中室外机压缩机上配置有吸气传感器,从而,可通过吸气传感器获取室外机中压缩机的吸气温度Ts。同样,室内机中配置了内盘管传感器和内环温传感器,即可通过内盘管传感器获取每个室内机的内盘管温度Tm1、Tm2、…Tmn,以及对应的环境温度Tai1、Tai2、…Tain。
步骤402:判断Tsh>Tsh0是否成立?若是,执行步骤403,否则,执行步骤407。
其中,内盘管平均温度△Tm=(Tm1+Tm2+…+Tmn)/n。这样,Tsh=Ts-△Tm,若Tsh>Tsh0,确定实际过热度比较高,执行步骤403。
步骤403:确定一个室内机为当前室内机。
可根据预设规则,确定一个室内机为当前室内机。
步骤404:判断当前室内机的当前内盘温度Tmd>△Tm是否成立?若是,执行步骤405,否则,执行步骤406。
步骤405:将当前室内机确定为第一室内机,并将第一室内机对应的第一电子膨胀阀的阀门开大。
第一电子膨胀阀的阀门开大执行的步数,可根据[Tsh-Tsh0]确定。
步骤406:是否所有的室内机都已确定为当前室内机?若是,流程结束,否则,返回步骤403。
步骤407:判断Tsh<Tsh0是否成立?若是,执行步骤408,否则,执行步骤412。
步骤408:确定一个室内机为当前室内机。
可根据预设规则,确定一个室内机为当前室内机。
步骤409:判断当前室内机的当前内盘温度Tmd<△Tm是否成立?若是,执行步骤410,否则,执行步骤411。
步骤410:将当前室内机确定为第二室内机,并将第二室内机对应的第二电子膨胀阀的阀门关小。
第二电子膨胀阀的阀门关小执行的步数,可根据[Tsh-Tsh0]确定。
步骤411:是否所有的室内机都已确定为当前室内机?若是,流程结束,否则,返回步骤408。
步骤412:确定每个室内机的环境温度与内盘管温度之间的第二温度差值。
这里,Tsh=Tsh0,则可确定每个室内机的环境温度与内盘管温度之间的第二温度差值,即第二温度差值△Tw1=Tai1-Tm1,△Tw2=Tai2-Tm2、…、△Twn=Tain-Tmn。
步骤413:最大第二温度差值与最小第二温度差值之间的相对差值>A是否成立?若是,执行步骤414,否则,流程结束。
步骤414:将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机。
步骤415:将第三室内机对应的第三电子膨胀阀的阀门开大,将第四室 内机对应的第四电子膨胀阀的阀门关小。
较佳地,开阀执行的步数可根据A/2确定,关阀执行的步数也可根据A/2确定。
可见,本实施例中,只需获取室内机的内盘管温度,以及环境温度,就可对室内机流经的冷媒流量进行控制,这样,该空调中的室内机与一拖一空调中的室内机一致,只有环境温度传感器和内盘管温度传感器,而不需要配置蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。并且,通过过热度控制和偏流控制可进一步提高每个室内机中流量的均衡性,使得每个室内机作用区域的温度比较均衡,进一步提高用户的体验。
根据上述空调冷媒流量控制的过程,可构建一种空调冷媒流量控制的装置。
图5是根据一示例性实施例示出的一种空调冷媒流量控制装置的框图。空调包括室外机以及至少两个室内机,每个室内机通过一个对应的节流装置与室外机连接,如图5所示,该装置可包括:获取单元510,第一调整单元530和第三调整单元530,其中,
获取单元510,用于获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度。
第一调整单元520,用于当吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大,其中,内盘管平均温度为每个内盘管温度求和后的平均值。
第二调整单元530,用于当第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小。
本公开一实施例中,第一调整单元520,具体用于将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度大于内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;调整第一室内机对应的第一节流装置的参数,使得第一节流装置中流经的冷媒流量增大。
本公开一实施例中,第二调整单元530,具体用于将每个内盘管温度与 内盘管平均温度进行比较;若当前内盘管温度小于内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;调整第二室内机对应的第二节流装置的参数,使得第二节流装置中流经的冷媒流量缩小。
本公开一实施例中,还包括:
第三调整单元,用于当第一温度差值等于预设温度差值时,确定每个室内机的环境温度与内盘管温度之间的第二温度差值;当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机;以及,调整第三室内机对应的第三节流装置的参数,使得第三节流装置中流经的冷媒流量增大,调整第四室内机对应的第四节流装置的参数,使得第四节流装置中流经的冷媒流量缩小。
可见,本实施例中,只需获取室内机的内盘管温度,就可对室内机流经的冷媒流量进行控制,并需要蒸发器的出口温度以及入口温度,因此,室内机以及室外机上都不需要增加蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。
本公开一实施例中,提供了一种空调冷媒流量控制的装置,用于空调,空调包括室外机以及至少两个室内机,每个室内机通过一个对应的节流装置与室外机连接,该装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度;
当吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大,其中,内盘管平均温度为每个内盘管温度求和后的平均值;
当第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机指令, 其特征在于,该指令被处理器执行时实现上述方法的步骤。
图6是根据一示例性实施例示出的一种空调冷媒流量控制装置的框图。空调包括室外机以及至少两个室内机,每个室内机通过一个对应的节流装置与室外机连接,如图6所示,该装置可包括:获取单元610和第三调整单元620。
获取单元610,用于获取室外机中压缩机的吸气温度,以及获取每个室内机的内盘管温度。
第三调整单元620,用于当吸气温度与内盘管平均温度之间的第一温度差值等于预设温度差值时,确定每个室内机的环境温度与内盘管温度之间的第二温度差值,其中,内盘管平均温度为每个内盘管温度求和后的平均值;并当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机;以及,调整第三室内机对应的第三节流装置的参数,使得第三节流装置中流经的冷媒流量增大,调整第四室内机对应的第四节流装置的参数,使得第四节流装置中流经的冷媒流量缩小。
本公开一实施例中,还包括:
第一调整单元,用于当第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量增大。
第二调整单元,用于当第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得节流装置中流经的冷媒流量缩小。
本公开一实施例中,第一调整单元,具体用于将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度大于内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;调整第一室内机对应的第一节流装置的参数,使得第一节流装置中流经的冷媒流量增大。
本公开一实施例中,第二调整单元,具体用于将每个内盘管温度与内盘管平均温度进行比较;若当前内盘管温度小于内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;调整第二室内机对应的第二节流装置的参数,使得第二节流装置中流经的冷媒流量缩小。
可见,本实施例中,只需获取室内机的内盘管温度,以及环境温度, 就可对室内机流经的冷媒流量进行偏流控制,这样,该空调中的室内机与一拖一空调中的室内机一致,只有环境温度传感器和内盘管温度传感器,而不需要配置蒸发器入口传感器以及蒸发器出口传感器,减少了家用中央空调即一拖多空调中温度传感器,兼容了现有的室内机,实现了一拖一内机与一拖多内机的统一,即提高了一拖多空调的兼容性以及节省了资源。并且,通过偏流控制可进一步提高每个室内机中流量的均衡性,使得每个室内机作用区域的温度比较均衡,进一步提高用户的体验。
本公开一实施例中,提供了一种空调冷媒流量控制的装置,用于空调,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述该装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
当所述吸气温度与内盘管平均温度之间的第一温度差值等于预设温度差值时,确定每个室内机的环境温度与所述内盘管温度之间的第二温度差值,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的室内机确定为第四室内机;
调整所述第三室内机对应的第三节流装置的参数,使得所述第三节流装置中流经的冷媒流量增大,以及调整所述第四室内机对应的第四节流装置的参数,使得所述第四节流装置中流经的冷媒流量缩小。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述方法的步骤。
本公开一实施例中,提供一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述空调冷媒流量控制的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例提供了一种电子设备,其结构如图7所示,该电子设备包括:
至少一个处理器(processor)700,图7中以一个处理器700为例;和存储器(memory)701,还可以包括通信接口(Communication Interface)702和总线703。其中,处理器700、通信接口702、存储器701可以通过总线703完成相互间的通信。通信接口702可以用于信息传输。处理器700可以调用存储器701中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器701中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器701作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器700通过运行存储在存储器701中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器701可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器701可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的 部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的 对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种空调冷媒流量控制的方法,其特征在于,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述方法包括:
    获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
    当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
    当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
  2. 如权利要求1所述的方法,其特征在于,所述调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大包括:
    将每个内盘管温度与所述内盘管平均温度进行比较;
    若当前内盘管温度大于所述内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;
    调整所述第一室内机对应的第一节流装置的参数,使得所述第一节流装置中流经的冷媒流量增大。
  3. 如权利要求1所述的方法,其特征在于,所述调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小包括:
    将每个内盘管温度与所述内盘管平均温度进行比较;
    若当前内盘管温度小于所述内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;
    调整所述第二室内机对应的第二节流装置的参数,使得所述第二节流装置中流经的冷媒流量缩小。
  4. 如权利要求1、2或3所述的方法,其特征在于,所述方法还包括:
    当所述第一温度差值等于预设温度差值时,确定每个室内机的环境温度与所述内盘管温度之间的第二温度差值;
    当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温 度差值对应的室内机确定为第四室内机;
    调整所述第三室内机对应的第三节流装置的参数,使得所述第三节流装置中流经的冷媒流量增大,以及调整所述第四室内机对应的第四节流装置的参数,使得所述第四节流装置中流经的冷媒流量缩小。
  5. 一种空调冷媒流量控制的装置,其特征在于,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述装置包括:
    获取单元,用于获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
    第一调整单元,用于当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
    第二调整单元,用于当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
  6. 如权利要求5所述的装置,其特征在于,
    所述第一调整单元,具体用于将每个内盘管温度与所述内盘管平均温度进行比较;若当前内盘管温度大于所述内盘管平均温度,将当前内盘管温度对应的室内机确定为第一室内机;调整所述第一室内机对应的第一节流装置的参数,使得所述第一节流装置中流经的冷媒流量增大。
  7. 如权利要求5所述的装置,其特征在于,
    所述第二调整单元,具体用于将每个内盘管温度与所述内盘管平均温度进行比较;若当前内盘管温度小于所述内盘管平均温度,将当前内盘管温度对应的室内机确定为第二室内机;调整所述第二室内机对应的第二节流装置的参数,使得所述第二节流装置中流经的冷媒流量缩小。
  8. 如权利要求5、6或7所述的装置,其特征在于,还包括:
    第三调整单元,用于当所述第一温度差值等于预设温度差值时,确定每个室内机的环境温度与所述内盘管温度之间的第二温度差值;当最大第二温度差值与最小第二温度差值之间的相对差值大于设定值时,将最大第二温度差值对应的室内机确定为第三室内机,将最小第二温度差值对应的 室内机确定为第四室内机;以及,调整所述第三室内机对应的第三节流装置的参数,使得所述第三节流装置中流经的冷媒流量增大,调整所述第四室内机对应的第四节流装置的参数,使得所述第四节流装置中流经的冷媒流量缩小。
  9. 一种空调冷媒流量控制的装置,用于空调,其特征在于,所述空调包括室外机以及至少两个室内机,每个所述室内机通过一个对应的节流装置与所述室外机连接,所述该装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取所述室外机中压缩机的吸气温度,以及获取每个所述室内机的内盘管温度;
    当所述吸气温度与内盘管平均温度之间的第一温度差值大于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量增大,其中,所述内盘管平均温度为每个内盘管温度求和后的平均值;
    当所述第一温度差值小于预设温度差值时,调整至少一个节流装置的参数,使得所述节流装置中流经的冷媒流量缩小。
  10. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1-4所述方法的步骤。
PCT/CN2019/088489 2018-09-18 2019-05-27 空调冷媒流量控制的方法、装置及计算机存储介质 WO2020057169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19861603.9A EP3828473A4 (en) 2018-09-18 2019-05-27 PROCESS AND DEVICE FOR REGULATING THE FLOW OF REFRIGERANT FOR AIR CONDITIONERS, AND COMPUTER INFORMATION SUPPORT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811084930.4 2018-09-18
CN201811084930.4A CN109028494B (zh) 2018-09-18 2018-09-18 空调冷媒流量控制的方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2020057169A1 true WO2020057169A1 (zh) 2020-03-26

Family

ID=64622580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088489 WO2020057169A1 (zh) 2018-09-18 2019-05-27 空调冷媒流量控制的方法、装置及计算机存储介质

Country Status (3)

Country Link
EP (1) EP3828473A4 (zh)
CN (1) CN109028494B (zh)
WO (1) WO2020057169A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738941A (zh) * 2022-03-28 2022-07-12 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN114738940A (zh) * 2022-03-28 2022-07-12 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN115200080A (zh) * 2022-07-29 2022-10-18 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 一种供热温度控制方法、系统、设备及存储介质
WO2022227527A1 (zh) * 2021-04-25 2022-11-03 青岛海尔空调器有限总公司 空调制热的控制方法、系统及空调器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028494B (zh) * 2018-09-18 2020-09-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质
CN110686375B (zh) * 2019-09-10 2021-01-15 珠海格力电器股份有限公司 空调换热介质控制方法、装置、介质、计算机设备及空调
CN110762729B (zh) * 2019-09-23 2021-04-16 宁波奥克斯电气股份有限公司 一种控制空调器的方法及空调器
CN110671781B (zh) * 2019-10-24 2021-06-18 宁波奥克斯电气股份有限公司 一种多联机冷媒调节控制方法、装置、存储介质及空调器
CN113531811B (zh) * 2021-07-09 2022-11-18 青岛海尔空调器有限总公司 空调器的控制方法、空调器、存储介质及程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070000A (ko) * 2007-12-26 2009-07-01 주식회사 대우일렉트로닉스 공기조화기의 과부하 방지 장치
CN102353121A (zh) * 2011-09-13 2012-02-15 Tcl空调器(中山)有限公司 一种多联机冷媒流量的控制方法
CN207635547U (zh) * 2017-12-19 2018-07-20 珠海格力电器股份有限公司 空调控制系统和空调
CN109028494A (zh) * 2018-09-18 2018-12-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质
CN109028495A (zh) * 2018-09-18 2018-12-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065593A (en) * 1990-09-18 1991-11-19 Electric Power Research Institute, Inc. Method for controlling indoor coil freeze-up of heat pumps and air conditioners
CN1104605C (zh) * 2000-06-02 2003-04-02 海尔集团公司 一拖多空调器改进的制冷系统
CN101038097B (zh) * 2006-03-15 2011-02-02 海尔集团公司 空调制冷系统及制冷剂流量控制方法
KR101992139B1 (ko) * 2011-11-30 2019-06-25 삼성전자주식회사 공기조화기
CN207081237U (zh) * 2017-08-18 2018-03-09 广东高而美制冷设备有限公司 一种高温空调热泵系统
CN107726554B (zh) * 2017-09-19 2020-01-17 青岛海尔空调电子有限公司 一种多联机舒适度均衡控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070000A (ko) * 2007-12-26 2009-07-01 주식회사 대우일렉트로닉스 공기조화기의 과부하 방지 장치
CN102353121A (zh) * 2011-09-13 2012-02-15 Tcl空调器(中山)有限公司 一种多联机冷媒流量的控制方法
CN207635547U (zh) * 2017-12-19 2018-07-20 珠海格力电器股份有限公司 空调控制系统和空调
CN109028494A (zh) * 2018-09-18 2018-12-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质
CN109028495A (zh) * 2018-09-18 2018-12-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828473A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227527A1 (zh) * 2021-04-25 2022-11-03 青岛海尔空调器有限总公司 空调制热的控制方法、系统及空调器
CN114738941A (zh) * 2022-03-28 2022-07-12 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN114738940A (zh) * 2022-03-28 2022-07-12 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN114738941B (zh) * 2022-03-28 2024-03-22 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN114738940B (zh) * 2022-03-28 2024-03-22 青岛海尔空调电子有限公司 用于空调器制冷控制的方法及装置、空调器、存储介质
CN115200080A (zh) * 2022-07-29 2022-10-18 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 一种供热温度控制方法、系统、设备及存储介质
CN115200080B (zh) * 2022-07-29 2023-06-20 呼伦贝尔安泰热电有限责任公司海拉尔热电厂 一种供热温度控制方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN109028494B (zh) 2020-09-18
CN109028494A (zh) 2018-12-18
EP3828473A1 (en) 2021-06-02
EP3828473A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2020057169A1 (zh) 空调冷媒流量控制的方法、装置及计算机存储介质
CN104101127B (zh) 多联机空调系统及其化霜控制方法
CN107152750B (zh) 结霜控制方法和装置
EP3153797A1 (en) Multi-split air conditioning system and medium pressure control method thereof
CN106247686B (zh) 空调器的回油控制方法、回油控制装置和空调器
CN106610091B (zh) 基于过热度的空调膨胀阀控制方法和控制装置
CN109579213B (zh) 一种空调器温度控制方法、存储设备及空调器
CN107255309B (zh) 空调系统、控制方法及计算机可读存储介质
CN109059360A (zh) 电子膨胀阀的控制方法、空调及计算机可读存储介质
CN109028495B (zh) 空调冷媒流量控制的方法、装置及计算机存储介质
US10655867B2 (en) System and method for operating a packaged terminal air conditioner unit
WO2021134959A1 (zh) 空调及用于空调除霜控制的方法、装置
CN211451145U (zh) 一种暖气温度调节装置
CN112797581B (zh) 空调温度控制方法、空调器及计算机可读存储介质
CN110410967A (zh) 多联机空调系统管路噪音的控制方法和多联机空调系统
WO2019024683A1 (zh) 一种膨胀阀的控制方法及装置
CN106546420B (zh) 空调样机的阀体检测方法及装置、空调系统
CN110186153A (zh) 空调器及其运行控制方法、运行控制装置和计算机可读存储介质
WO2023202156A1 (zh) 空调器、空调器控制方法、电子设备及存储介质
CN217952534U (zh) 双系统空调机组
CN114593515A (zh) 用于控制多联机系统的方法及装置、多联机系统
CN115183348A (zh) 双系统空调机组及其控制方法
CN108592314A (zh) 定速空调器及其控制方法、计算机可读存储介质
CN115218272A (zh) 空调器及空调器控制方法
CN111102669B (zh) 多冷媒回路的空调系统及其控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019861603

Country of ref document: EP

Effective date: 20210226

NENP Non-entry into the national phase

Ref country code: DE