WO2020057019A1 - 一种多勘探地球物理场并行采集系统及方法 - Google Patents

一种多勘探地球物理场并行采集系统及方法 Download PDF

Info

Publication number
WO2020057019A1
WO2020057019A1 PCT/CN2019/070686 CN2019070686W WO2020057019A1 WO 2020057019 A1 WO2020057019 A1 WO 2020057019A1 CN 2019070686 W CN2019070686 W CN 2019070686W WO 2020057019 A1 WO2020057019 A1 WO 2020057019A1
Authority
WO
WIPO (PCT)
Prior art keywords
acquisition
intelligent
exploration
geophysical
electromagnetic
Prior art date
Application number
PCT/CN2019/070686
Other languages
English (en)
French (fr)
Inventor
倪圣军
周官群
刘惠洲
任川
曹煜
潘乐荀
唐润秋
戚俊
吴昭
Original Assignee
安徽惠洲地质安全研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽惠洲地质安全研究院股份有限公司 filed Critical 安徽惠洲地质安全研究院股份有限公司
Publication of WO2020057019A1 publication Critical patent/WO2020057019A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Definitions

  • the invention belongs to the field of comprehensive geophysical exploration technology in the field of geophysical exploration, and in particular relates to a multi-prospecting geophysical field parallel acquisition system integrating seismic wave field, electric field, and magnetic field, to realize integrated geophysical exploration technology of non-same field source.
  • Geophysical exploration is the exploration technology and method for detecting different geological bodies and anomalous bodies through the physical properties of different geological bodies.
  • Geophysical exploration instruments (referred to as geophysical instruments) are the core of geophysical exploration.
  • Geophysical instruments are based on geophysical exploration theory. Based on the integration of multi-disciplinary technologies such as sensing technology, data acquisition technology and computer technology, it is a professional instrument.
  • Geophysical surveys are generally divided into seismic surveys, electrical surveys, electromagnetic surveys, gravity surveys, magnetic surveys, and radioactive surveys according to the physical field source. It can be further subdivided. For example, seismic exploration can be divided into active and passive source seismic surveys; electrical surveys can be divided into resistivity surveys and IP surveys; electromagnetic surveys can be divided into transient electromagnetic surveys, radio wave transmission surveys, and Magnetotelluric exploration, etc.
  • Each geophysical method has corresponding instruments and equipment, which results in multiple equipment and complicated cables required for comprehensive geophysical methods.
  • Different geophysical methods must be constructed one after the other, which not only restricts the on-site implementation efficiency of comprehensive geophysical methods, but also causes each geophysical method to collect space-time Separation, reduced time resolution.
  • a time-invariant system physically represents a type of system whose structure and parameters do not change with time. Strictly speaking, due to the existence of internal and external influences, a time-invariant system is just an idealized model of a time-varying system. However, as long as this time-varying process is sufficiently slower than the dynamic process of the system, using a time-invariant system instead of a time-varying system for analysis can still guarantee sufficient accuracy.
  • Traditional geophysical exploration also assumes that the detection target is a time-invariant system to simplify it, but for detection targets that are affected by engineering construction, it is a time-varying system, which can adapt to time-varying systems for homogeneous and non-homogeneous integrated geophysical exploration.
  • the equipment is of great innovation significance and is the source of new geophysical methods and new equipment.
  • the technical problem to be solved by the present invention is how to conveniently realize parallel exploration of multiple geophysical fields, which can be adapted to geophysical exploration equipment of a time-varying system affected by engineering construction.
  • a multi-exploration geophysical field parallel acquisition system includes a control host, several intelligent acquisition devices, a large line, and several sensor receiving devices, and the intelligent acquisition device receives a working mode and acquisition parameters issued by the control host,
  • the intelligent acquisition device is connected to several sensor receiving devices through a large line.
  • the intelligent acquisition device switches between multiple working modes.
  • the intelligent acquisition device takes into account active and passive source acquisition.
  • the working modes of several intelligent acquisition devices Set to the same or different.
  • the working mode of the intelligent acquisition device includes collecting any one of electrical signals, earthquakes, transient electromagnetics, radio wave perspective, and magnetotelluric signals.
  • a smart electromagnetic emission device that receives a physical field emission mode and emission parameters issued by the control host, and the smart electromagnetic emission device switches among multiple emission modes.
  • the transmission modes of the intelligent electromagnetic transmission device include an electrical transmission mode, a transient electromagnetic transmission mode, a radio wave perspective transmission mode, and a ground electromagnetic transmission mode.
  • a smart electromagnetic launching device that receives a physical field emission mode and a launch parameter issued by the control host, and the smart electromagnetic launching device is a seismic source or an ordinary electromagnetic launching device.
  • the sensor receiving device is a multi-function sensor or a single-function sensor.
  • the multifunctional sensor includes a seismic signal receiving unit and an electromagnetic signal receiving unit arranged in a housing, and further includes an electric signal receiving unit, and each signal receiving unit leads to two signal transmission lines respectively.
  • hard glue is filled between the seismic signal receiving unit, the electromagnetic signal receiving unit and the casing.
  • the electromagnetic signal receiving unit includes a magnetic rod and a coil sleeved on the magnetic rod, and a signal transmission line is drawn from the first end of the coil and other parts of the coil except the first end.
  • the electromagnetic signal receiving unit further includes a sliding variable-turn device, and a contact of the sliding variable-turn device is in contact with the coil, and a first transmission line of the coil leads to a signal transmission line, and another signal transmission line of the coil passes through the slide Lead out of variable turns device.
  • the electrical signal receiving unit is a metal sheet provided outside the casing.
  • the multifunctional sensor further includes a signal selection switch.
  • Six signal transmission lines from the seismic signal receiving unit, the electromagnetic signal receiving unit, and the electrical signal receiving unit are connected to the signal selection switch, and two signal transmission lines are derived from the signal selection switch.
  • Signal transmission line Six signal transmission lines from the seismic signal receiving unit, the electromagnetic signal receiving unit, and the electrical signal receiving unit are connected to the signal selection switch, and two signal transmission lines are derived from the signal selection switch. Signal transmission line.
  • the centralized intelligent acquisition system refers to a plurality of intelligent acquisition devices concentrated in a box and passing through the inside of the box. Unified power supply, communication connection between each intelligent acquisition device, each intelligent acquisition device is connected to at least one large line, each large line is provided with at least one acquisition channel, and each acquisition channel is connected to a sensor receiving device.
  • the multiple intelligent acquisition devices are connected in series through a large line, which is a distributed intelligent acquisition system.
  • Each large line is provided with at least one acquisition channel, and each acquisition channel is connected to a sensor receiving device.
  • the multiple intelligent acquisition devices are connected in a wireless manner, and the intelligent acquisition devices are arranged independently and freely, that is, a free arrangement intelligent acquisition system.
  • the intelligent acquisition device includes a working mode switching circuit, a signal conditioning circuit, a first analog-to-digital converter, a first processor, a first communication module, and a first working power source; the first processor controls the The working mode switching circuit transmits a signal to an input terminal of a designated signal conditioning circuit, and the signal is switched to the input terminal of the first analog-to-digital converter through the working mode switching circuit.
  • the signal conditioning circuit processes the received signal. And then transmitted to the first analog-to-digital converter, and then sent to the first processor after being processed by the first analog-to-digital converter, and the first processor is connected to the first communication module; the first working power source is the intelligent acquisition The device provides power.
  • the intelligent acquisition device further includes a first memory and a first buffer, where the first buffer temporarily stores data in the first processor, and the first memory stores data in the first processor.
  • the processed data is stored for a long time.
  • the intelligent acquisition device can access the first location time module to obtain the location and time information, and transmit the position and time information to the first processor; the intelligent acquisition device can also access the first external power module as the The intelligent acquisition device provides working power.
  • the intelligent electromagnetic transmitting device includes a transmitting circuit, a transmitting antenna, an isolation module, a second processor, a second communication module, and a second working power source.
  • the transmitting circuit is switched among multiple transmission modes and selects any A transmission mode in which a field source signal corresponding to a transmission mode is transmitted through the transmitting antenna; a transmission circuit and a second processor are isolated by the isolation module, and the second processor is connected to a second In a communication module, the second working power source provides power for the intelligent electromagnetic emission device.
  • the transmission loop includes a transmission mode switching module, a transmission power source, a transmission signal sampling module, and a second analog-to-digital converter.
  • the transmission mode switching module switches among multiple transmission modes and selects any transmission mode.
  • the transmitting mode switching module is connected to the transmitting antenna, the transmitting power source provides power for the transmitting loop, the transmitting signal sampling module is connected to the second analog-to-digital converter, and the isolation module is connected between the second analog-to-digital converter and the second processor. Isolate.
  • the intelligent electromagnetic transmitting device further includes a second memory and a second buffer, where the second buffer temporarily stores data in the second processor, and the second memory stores data in the second processor.
  • the processed data is stored for a long time.
  • the intelligent electromagnetic emission device can access the second location time module to obtain the position and time information, and transmit the position and time information to the second processor; the intelligent electromagnetic emission device can be connected to a second external power module as the Intelligent electromagnetic emission device provides working power.
  • Step 1 Select the arrangement mode of the parallel exploration geophysical field acquisition system according to the exploration environment
  • Step 2 Select the detection method of passive source or active source
  • Step 3 Assemble the structure required for the multi-exploration geophysical parallel acquisition system according to the detection method and arrangement.
  • the equipment involved in the multi-exploration geophysical parallel acquisition system includes a control host, several intelligent acquisition devices, Large line, several sensor receiving devices, and intelligent electromagnetic emission devices, the intelligent acquisition device takes into account both active source and passive source acquisition;
  • Step 4 Perform communication detection on the equipment used
  • Step 5 If it is an active source detection method, the control host issues a physics field emission mode and emission parameters, and the intelligent electromagnetic transmitting device receives the physics field emission mode and emission parameters issued by the control host, and transmits according to the received physics field
  • the mode and transmission parameters are switched in multiple transmission modes and excite the field source; if it is a passive source, collect the natural field source response signal;
  • Step 6 The control host issues a work mode and acquisition parameters, and the intelligent acquisition device receives the work mode and acquisition parameters issued by the control host, and selects a work mode based on the received work mode and acquisition parameters, and sends several
  • the working mode of the intelligent acquisition device is switched to the same or different mode, the intelligent acquisition device performs acquisition according to a specified acquisition parameter, and the intelligent acquisition device can be switched in multiple work modes;
  • Step 7 The intelligent acquisition device switches according to the acquisition settings to perform the next round of data acquisition
  • Step 8 The control host re-issues the launch parameters and acquisition parameters for exploration in different geophysical fields, which is cyclic steps 4-7;
  • Step 9 Multi-exploration geophysical field data collection according to different survey lines, that is, after the current survey line collection is completed, the next survey line collection is performed, that is, steps 1-8 are repeated.
  • step 1 includes: a centralized intelligent acquisition system, a distributed intelligent acquisition system, and a freely arranged intelligent acquisition system.
  • the intelligent electromagnetic emission device excites the corresponding physical field according to the received transmission parameters.
  • the intelligent electromagnetic emission device can emit a set of electrical methods, transient electromagnetics, radio wave perspective, and earth electromagnetics. Combine signals, or excite only one field source signal.
  • the method further comprises: transmitting the data collected by the intelligent acquisition device to the control host or the computer, processing the data and outputting the processing result.
  • the process of processing the data includes: data decompilation, processing, and inversion of the multi-field geophysical data one by one to obtain the media response of the target layer; and then joint inversion of the unrelated fields and multiple Field fusion analysis.
  • the present invention has the following advantages:
  • the present invention proposes a parallel multi-prospecting geophysical field acquisition system that integrates electrical survey, seismic survey, transient electromagnetic survey, radio wave perspective survey, and magnetotelluric survey.
  • the system considers both active and passive sources, and can realize active source geophysical field exploration and long-term monitoring of passive source geophysical fields.
  • the intelligent electromagnetic emission device in this system can excite a physical field at the same time, and can excite multiple physical field signals or multiple physical field signal combinations at different times. Multiple geophysical field response signals are collected in parallel to achieve detection. The methods are diversified and can improve the efficiency of exploration and construction.
  • a combination of multiple observation systems suitable for a variety of geophysical field exploration conditions, taking into account the geophysical exploration environment of the ground, mines and boreholes, and can be adapted to the site survey tasks affected by construction.
  • This system can perform multi-field parallel observation of time-varying signals. The more important feature of this system is the acquisition of multi-physics effect characteristics under an excitation source; the parallel acquisition of data coupled with multi-physics to achieve non-same field Source parallel geophysical prospecting technology.
  • FIG. 1 is a structural diagram of a multi-exploration geophysical field parallel acquisition system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an intelligent acquisition device of a multi-exploration geophysical field parallel acquisition system according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a sensor receiving device of a multi-prospecting geophysical field parallel acquisition system according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an intelligent transmitting device of a multi-prospecting geophysical field parallel acquisition system according to Embodiment 2 of the present invention.
  • FIG. 5 is a multi-prospecting geophysical field parallel acquisition system according to the second embodiment of the present invention.
  • FIG. 6 is a multi-exploration geophysical field parallel acquisition system according to the third embodiment of the present invention.
  • FIG. 7 is a multi-exploration geophysical field parallel acquisition system according to the fourth embodiment of the present invention.
  • FIG. 8 is a multi-prospecting geophysical field parallel acquisition system according to the fifth embodiment of the present invention.
  • the intelligent collection devices 2 are connected in series, that is, a distributed intelligent collection system, and the collection method of the intelligent collection device is passive source collection.
  • the multi-exploration geophysical field parallel acquisition system includes a control host 1, several intelligent acquisition devices 2, a large line 3, and several sensor receiving devices 4.
  • the control host 1 is connected to the intelligent acquisition device 2 through a wired method, and the intelligent acquisition device 2 is connected via a large Line 3 is connected to several sensor receiving devices 4, and the aviation plug connected to the large line 3 is connected to the intelligent acquisition device 2.
  • the control host 1 sends the specified working mode and acquisition parameters of the acquisition to the intelligent acquisition device 2.
  • the intelligent acquisition device 2 is in Switch between multiple working modes.
  • the smart acquisition device 2 collects any of electrical, seismic, transient electromagnetic, radio wave perspective, and earth electromagnetic signals by switching the operating mode.
  • the working modes of several intelligent acquisition devices 2 are set to the same. Or different, that is, the intelligent acquisition device 2 collects any one of the five signals, or a parallel acquisition of any combination of the five signals.
  • the intelligent acquisition device 2 can always be a working mode, or at different times. Able to switch to different working modes; when multiple intelligent acquisition devices 2 are included in the parallel acquisition system of exploration geophysics, at the same time, the multiple intelligent acquisition devices 2 are switched to the same working mode or different working modes, At different times, each intelligent acquisition device 2 can switch to a different working mode or keep switching to the same working mode at the previous time.
  • the working modes of several intelligent acquisition devices 2 can be set to the same or different situations: when one intelligent acquisition device 2 is used, the intelligent acquisition device 2 can always be set to one working mode, and it can also be set at different times. Different working modes; when there are multiple intelligent acquisition devices 2, at the same time, the working modes between multiple intelligent acquisition devices 2 can be set to the same or different, and at different times, each intelligent acquisition device 2 works The mode can be set to different or maintain the same working mode at the previous moment, to achieve parallel and simultaneous observation of multiple field signals.
  • the passive source acquisition method in this system means that there is no artificial excitation physical field, that is, there is no intelligent electromagnetic emission device 5, and the intelligent acquisition device 2 collects the response signal of the natural field source.
  • the sensor receiving device 4 is a multi-function sensor or a single-function sensor; the control host may be a dedicated device, a computer, a Pad, or a mobile phone.
  • the intelligent acquisition device 2 is connected in series to form a distributed intelligent acquisition system.
  • the intelligent acquisition device is provided with several channels (1 channel or multiple channels), and each channel is A sensor receiving device 4 is connected, the sensor receiving device 4 is connected to the large line 3, the intelligent acquisition device 2 and the control host 1 are connected by a wired method, and always communicate through the wired method.
  • the wired communication method may be a field bus , Ethernet, fiber, etc.
  • the control host 1 can communicate, set parameters, and issue instructions, that is, the control host 1 sends the work mode and the acquisition parameters to the intelligent acquisition device 2.
  • the intelligent acquisition device 2 After the intelligent acquisition device 2 receives the work mode and the acquisition parameters issued by the control host 1, Set the working mode to any of electrical method, earthquake, transient electromagnetic, radio wave perspective, and ground electromagnetic, that is, to achieve a signal collection, or set the working mode to electrical method, earthquake, transient electromagnetic, radio wave
  • the sensor receiving device 4 can collect different data information according to requirements, that is, to collect electrical signals, seismic signals, transient electromagnetic signals, radio wave signals, and the earth
  • the electromagnetic signal is transmitted to the intelligent acquisition device 2.
  • the intelligent acquisition device 2 includes a working mode switching circuit, a signal conditioning circuit, a first analog-to-digital converter, a first processor, a first communication module, a first memory, a first buffer, and a first Working power; the multifunctional sensor in the sensor receiving device 4 is used to transmit the signal to the signal conditioning circuit through a large line, and the working mode switching circuit switches the sensor signal to the designated conditioning circuit according to different instructions received from the first processor The input terminal is cut to the input end of the first analog-to-digital converter.
  • the signal conditioning circuit processes the received signal and transmits the processed signal to the first analog-to-digital converter.
  • the first buffer temporarily stores data converted by the first analog-to-digital converter in the first processor, and the first memory stores data processed by the first processor Long-term storage;
  • the first communication module is connected to the first processor and can communicate with the control host, the sensor device, and them;
  • the first working power source is The intelligent acquisition device provides working power;
  • the intelligent acquisition device 2 can access the first location time module to obtain the location and time information, and transmit it to the first processor; and an external first external power module can be connected for the intelligent acquisition The device 2 provides working power.
  • the intelligent acquisition device 2 can realize the acquisition of electrical methods, earthquakes, transient electromagnetics, radio wave perspective, and magnetotelluric signals, and concurrent acquisition of multiple exploration geophysical fields taking into account active and passive source acquisitions.
  • the first processor is the control center of the entire acquisition device, and controls the other modules to work in an orderly manner.
  • the first analog-to-digital converter is used to convert the collected analog signals into digital signals.
  • the first communication module is used to issue the acquisition parameters.
  • the first buffer is used to temporarily store the data converted by the first analog-to-digital converter, the first memory is used for long-term storage of the collected data;
  • the signal conditioning circuit is used to ensure the filtering, amplification, and shaping of the collected signal Signal-to-noise ratio of the signal; after the operating mode switching circuit receives the instruction from the control host, it switches to the input signal of the specified physical field conditioning circuit to the analog-to-digital converter, and transmits the signal collected by the sensor receiving device to the specified physical field conditioning.
  • the input of the circuit so as to realize the control and acquisition of a variety of active and passive fields, and to pick up five field signals of electrical method, earthquake, transient electromagnetic, radio wave perspective, and earth electromagnetic field; the first working power supply provides normal work for each part of the system Power required.
  • the first analog-to-digital converter is a high-speed analog-to-digital converter, and the first position time module is used to obtain time synchronization and position information.
  • each intelligent acquisition device 2 can only collect one type of geophysical field at the same time.
  • Each intelligent acquisition device 2 can acquire different geophysical fields at different times. Between multiple intelligent acquisition devices 2 Different or the same geophysical fields can be collected at the same time, so that the intelligent acquisition device 2 can acquire one or more signals of the above five signals in parallel.
  • the sensor receiving device 4 is a multifunctional sensor.
  • the sensor receiving device 4 is provided with a seismic signal receiving unit 410 and an electromagnetic signal receiving unit 420, an electrical signal receiving unit 430, and a signal selection switch 440, which are disposed in a casing 400.
  • Each signal receiving unit leads to two signal transmission lines.
  • the hard signal 450 is filled between the seismic signal receiving unit 410, the electromagnetic signal receiving unit 420, and the casing 400, so as to ensure that the seismic signal receiving unit 410 receives high-frequency signals.
  • the signal selection switch 440 connects six signal transmission lines from the seismic signal receiving unit 410, the electromagnetic signal reception unit 420, and the electrical signal reception unit 430 to the signal selection switch 440, and two signal transmission lines from the signal selection switch 440.
  • Select switch 440 which can adjust the output signal type of the sensor, such as selecting to output the seismic signal detected by the seismic signal receiving unit 410 or the transient electromagnetic signal, radio wave signal, earth electromagnetic signal or electrical signal detected by the electromagnetic signal receiving unit 420
  • the electrical signals detected by the receiving unit 430 can be used to detect any one of the above five signals at the same detection location and at different detection times through the same sensor. Different sensors can also be used at the same time. At the same location, different permutations and combinations of the above five signals were detected.
  • the electrical signal receiving unit 430 is a metal piece provided on the outside of the casing 400 and is used for receiving electrical signals.
  • the seismic signal receiving unit 410 is a seismic sensor core and is used to detect seismic signals.
  • the casing 400 is made of non-metal material, and the casing 400 in this embodiment is made of ABS plastic.
  • the electromagnetic signal receiving unit 420 includes a magnetic rod 421 and a coil 422 sleeved on the magnetic rod 421.
  • the magnetic rod 421 and the coil 422 each lead out a signal transmission line.
  • the electromagnetic signal receiving unit 420 further includes a sliding variable-turn device 423.
  • the contacts of the sliding variable-turn device 423 are in contact with the coil 422, and the signal transmission line corresponding to the coil 422 is led out through the sliding variable-turn device 423. 423 to change the number of coil turns in the access line, so as to achieve the purpose of switching different main frequencies, to receive different frequencies of transient electromagnetic signals, radio law signals, earth electromagnetic signals, etc., among them, the adjustable main on coil 422
  • the frequency is divided into points, and the fixed main frequency can be set instead of continuous adjustment.
  • the two signal transmission lines leading from the signal selection switch 440 are connected to an external large line through a plug, and the signals collected by the seismic signal receiving unit 410, the electromagnetic signal receiving unit 420, and the electrical signal receiving unit 430 are output to In the matching external device, the signal is analyzed, recorded, processed, and stored.
  • the sensor receiving device 4 in the multi-prospecting geophysical field parallel acquisition system in this embodiment can be easily removed from the large line 3. , And can optionally connect different sensor receiving devices 4 to the detection system, which is mainly suitable for the detection of ground-related signals.
  • the sensor receiving device 4 integrates an electrical method electrode, a seismic detector, a transient electromagnetic coil, a radio wave perspective receiving coil, and a ground electromagnetic receiving coil into one, thereby realizing an electrical method signal, a seismic signal, a transient electromagnetic signal, and a radio wave. Signal and ground electromagnetic signals are picked up together.
  • a set of sensor receiving devices can pick up seismic signals, electrical signals, transient electromagnetic signals, radio wave perspective signals, and ground electromagnetic signals as required. Any one of the above five signals can be picked up at the same time. Avoid the complicated operation of replacing the sensor device and improve the collection efficiency.
  • the sensor receiving device 4 may be a single-function sensor, that is, one of an electrode, a geophone, a transient electromagnetic coil, a radio wave receiving coil, and a magnetotelluric receiving coil. receive.
  • the second embodiment is different from the first embodiment in that an intelligent electromagnetic emission device 5 is added.
  • the intelligent electromagnetic emission device 5 receives a physical field emission mode and emission parameters issued by the control host 1.
  • the intelligent electromagnetic emission device 5 is based on the physical field emission mode and The emission parameters excite different field source signals.
  • a smart electromagnetic emission device 5 is added on the basis of FIG. 1.
  • the smart electromagnetic emission device 5 communicates with the control host 1, and the smart electromagnetic emission device 5 and the control host 1 can communicate via a field bus or Ethernet. It can be connected by wired means such as Internet, fiber optics, or wirelessly through Bluetooth or WIFI.
  • the intelligent electromagnetic emission device 5 can be always connected to the control host 1 or disconnected, that is, no matter what method,
  • the control host 1 can send the physical field emission mode and emission parameters to the intelligent electromagnetic emission device 5.
  • the intelligent electromagnetic emission device can switch among multiple emission modes. Among them, the emission mode of the intelligent electromagnetic emission device includes an electrical emission mode, Transient electromagnetic emission mode, radio wave perspective emission mode, earth electromagnetic emission mode.
  • the intelligent acquisition device 2 and the intelligent electromagnetic emission device 5 can be installed on the same side of the observation position, or the two devices can be installed on different sides of the observation position.
  • the intelligent electromagnetic transmitting device 5 and the control host 1 are connected in a wired manner.
  • the intelligent acquisition device 2 and the intelligent electromagnetic device 5 are installed on the opposite side of the work surface.
  • the intelligent acquisition device 2 is installed on the acquisition end.
  • the transmitting device 5 is installed at the transmitting end, and the control host 1 is successively connected with the intelligent acquisition device 2 and the intelligent electromagnetic emission device 5 so as to issue instructions to the intelligent acquisition device 2 and the intelligent electromagnetic emission device 5.
  • the intelligent electromagnetic emission device 5 in the multi-prospecting geophysical field parallel acquisition system can excite a set of signals between electrical methods, transient electromagnetics, radio wave perspective, and ground electromagnetics, or only one field source signal.
  • the intelligent electromagnetic transmission device 5 includes a transmission mode switching module, a transmission power source, a transmission antenna, a transmission signal sampling module, a second analog-to-digital converter, an isolation module, a second memory, a second buffer, and a second process.
  • Transmitter, second communication module, and second working power source wherein the transmitting mode switching module, transmitting power source, transmitting signal sampling module, and second analog-to-digital converter form a transmitting loop, and the transmitting power source provides power for the transmitting loop, and the transmitting mode
  • the switching module can switch among multiple transmission modes and select any one of the transmission modes.
  • the field source signals corresponding to the transmission modes are transmitted through the transmitting antenna, and the acquired transmission signals are transmitted through the transmission signal sampling module.
  • Transmitting to a second analog-to-digital converter transmitting data converted by the second analog-to-digital converter to a second processor, and the second buffer converting the second analog-to-digital converter in the second processor
  • Data is temporarily stored, and the second memory stores data processed in the second processor for a long time;
  • the second processor communicates with the second processor Module is connected, the host, and the sensor means and the control and communication between them, the emission loop and the second processor are isolated by the isolation module, said second operating power supply to provide intelligent electromagnetic emitting devices 5.
  • the intelligent electromagnetic emission device can access the second position time module to obtain the position and time information, and transmit the position and time information to the second processor; and a second external power supply module can be connected to provide working power for the intelligent electromagnetic emission device.
  • the second processor is the control center of the entire intelligent electromagnetic transmitting device 5 and controls the orderly work of other modules; the second analog-to-digital converter selects a high-speed analog-to-digital converter, and the second analog-to-digital converter is used to collect the collected data.
  • the analog signal is converted into a digital signal, and the second buffer temporarily stores the data converted by the analog-to-digital converter in the second processor; the second memory stores the data processed in the second processor for a long time; the second location
  • the time module can select the time synchronization and positioning module for time synchronization and position acquisition; the second communication module is used for the transmission mode and the transmission of the transmission parameters and the acquisition of data; the transmission power is used to power the transmission loop, and the transmission mode switching module can switch Select any transmission mode for exciting electrical and magnetic field signals, and select different transmission signals and signal transmission antennas according to different application scenarios.
  • the transmission antennas are used to transmit signals; the transmission signal sampling module is used to collect the transmitted signals, that is, The transmission signal sampling module is used to collect the transmission current; the second working power source or the second external
  • the source module provides power for the intelligent electromagnetic transmitting device 5; the transmitting circuit is isolated from the processor by the isolation module, the transmitting circuit is transmitting analog signals, and the signal processed by the second processor is transmitting digital control signals, isolated.
  • the module is used to isolate the transmitted digital control signals from the transmitted analog signals to avoid interference between the signals.
  • the intelligent acquisition device 2 can acquire any one signal or any combination of signals of electrical method, earthquake, transient electromagnetic, radio wave perspective, and earth electromagnetic.
  • the intelligent electromagnetic emission device 5 is switched to the electromagnetic emission mode, and a plurality of intelligent acquisition devices 2 collect any one of the signals of the electrical method, earthquake, transient electromagnetic, radio wave perspective, and earth electromagnetic through an operating mode switching circuit, or a plurality of arbitrary combinations of signals. , So as to achieve parallel and simultaneous observation of multi-field signals.
  • the third embodiment is different from the second embodiment in that a plurality of intelligent acquisition devices 2 are connected in a wireless manner, and the intelligent acquisition devices 2 are arranged independently and freely, that is, a freely arranged intelligent acquisition system.
  • the intelligent acquisition device 2 adopts a free arrangement form, and a plurality of intelligent acquisition devices 2 are placed side by side at the same measurement point position, and different geophysical field information of the measurement point can be obtained at the same time.
  • passive source acquisition can be used, that is, the intelligent electromagnetic launch device 5 can be connected without an active source, that is, the intelligent electromagnetic launch device 5 can be connected, and the host 1 and the intelligent electromagnetic launch device can be controlled. 5 can also communicate through wired or wireless means.
  • the intelligent electromagnetic emission device 5 and the control host 1 are wirelessly connected to each other and use an active source for acquisition.
  • the intelligent collection devices 2 are arranged independently and freely, and the free arrangement system has strong adaptability and can be flexibly arranged according to the needs of field detection.
  • the fourth embodiment is different from the first embodiment in that the intelligent acquisition device 2 is a centralized intelligent acquisition system, and all or part of several intelligent acquisition devices 2 constitute at least one centralized intelligent acquisition system.
  • the centralized intelligent acquisition system refers to It is that multiple intelligent collection devices are concentrated in one box, and the power is uniformly provided inside the box. Each intelligent collection device is connected to communication. Each intelligent collection device is connected to at least one large line, and each large line is provided with at least one collection line. Channel, each acquisition channel is connected to a sensor receiving device.
  • the intelligent acquisition device 2 communicates with the control host 1 in a wired manner, and performs acquisition in an active source acquisition mode.
  • the intelligent electromagnetic emission device 5 communicates with the control host 1 through a wired manner, and can also communicate through a wireless manner to achieve active source excitation.
  • the intelligent electromagnetic transmitting device 5 and the control host 1 are connected by a wired manner
  • the intelligent acquisition device 2 and the control host 1 are connected by a wired manner.
  • the intelligent acquisition device 2 is connected with four large wires 3, and each of the large wires 3 is provided with a plurality of freely expandable, so that each base station is connected to several channels, and each acquisition channel is connected to a sensor receiving device 4.
  • the intelligent acquisition device 2 can acquire any one signal or any combination of signals of electrical method, earthquake, transient electromagnetic, radio wave perspective, and magnetotelluric.
  • the intelligent electromagnetic emission device 5 is switched to the transient electromagnetic emission mode, and multiple intelligent acquisition devices 2 collect any one or more signals of electrical method, earthquake, transient electromagnetic, radio wave perspective, and earth electromagnetic through the working mode switching circuit. Any combination of.
  • the intelligent acquisition device 2 When the intelligent acquisition device 2 adopts a centralized arrangement, it is particularly suitable for multi-hole and ground combined detection.
  • the fifth embodiment is different from the fourth embodiment in that the acquisition is performed in a passive source acquisition mode, and the intelligent acquisition device 2 and the control host 1 communicate wirelessly.
  • the control host 1 and the intelligent acquisition device 2 perform parameter setting and communication through a wireless mode.
  • the intelligent acquisition device 2 is a centralized intelligent acquisition device.
  • the intelligent acquisition device 2 is connected to four large wires 3 and each The large line 3 is provided with a plurality of freely expandable, so that each base station is connected to several channels, and each acquisition channel is connected to a sensor receiving device 4.
  • the intelligent acquisition device 2 communicates with the control host 1 in a wireless manner, and can also communicate in a wired manner.
  • the centralized intelligent acquisition device 2 communicates with the control host 1 in a wireless manner.
  • the intelligent acquisition device 2 performs acquisition through a passive source, that is, a response signal of a natural field source, and a multi-exploration geophysical field parallel acquisition system.
  • the acquisition or arrangement of multiple centralized intelligent acquisition systems can realize the acquisition of signals of any one of earthquake, electrical method, transient electromagnetic method, radio wave perspective method, magnetotelluric method or any combination of signals.
  • the specific process of the multi-exploration geophysical field parallel acquisition method is as follows:
  • Step 1 Select the arrangement mode of the parallel exploration geophysical field acquisition system according to the exploration environment
  • design the observation system determine whether the intelligent acquisition device 2 chooses a distributed, centralized, or freely arranged arrangement, and further determine the intelligent acquisition device 2, the large line 3, and the sensor receiving device 4 Number, different track spacings correspond to different detection accuracy and detection depth; where, if the system is a centralized intelligent acquisition system, at least one large line is connected, each large line is provided with at least one acquisition channel, and each acquisition channel is connected to one Only the sensor receiving device 4; if the system is a distributed intelligent acquisition system, the intelligent acquisition device 2 is connected in series through the large line 3, each large line 3 is provided with at least one acquisition channel, and each acquisition channel is connected to a sensor to receive Device 4; if the system is a free arrangement intelligent acquisition system, a plurality of intelligent acquisition devices 2 are connected wirelessly, and a plurality of intelligent acquisition devices 2 are arranged independently and freely.
  • Step 2 Select the detection method of passive source or active source
  • Step 3 Assemble the required structure of the multi-exploration geophysical parallel acquisition system according to the detection method and arrangement.
  • the equipment involved in the multi-exploration geophysical parallel acquisition system includes the control host 1, and several intelligent acquisition devices. 2. Large line 3. Several sensor receiving devices 4. Intelligent electromagnetic transmitting device 5. The intelligent acquisition device 2 takes into consideration both active and passive source acquisition;
  • Step 4 Perform communication detection on the used equipment; that is, perform communication detection on the intelligent electromagnetic emission device 5, the intelligent acquisition device 2, and the control host 1.
  • Step 5 If it is an active source, control the host to issue the transmission mode and transmission parameters.
  • the intelligent electromagnetic transmission device 5 receives the transmitted transmission mode and transmission parameters, and switches among several transmission modes according to the received transmission mode and transmission parameters. And excite the field source; if it is a passive source, the response signal is excited by the natural field source;
  • the intelligent acquisition device 2 collects response signals of natural field sources, such as microseismic signals, natural potential signals, and magnetotelluric signals.
  • the response signal can also collect the response signals of multiple natural field sources in parallel.
  • the specific method of the active source exploration geophysical field collection is: the control host 1 issues a physics field emission mode and a transmission parameter to the intelligent electromagnetic transmission device 5, and the intelligent electromagnetic emission device 5 receives the transmission mode and The transmission parameters are switched among various transmission modes according to the received transmission mode and transmission parameters, and the corresponding physical field signals are excited according to the specified transmission parameters.
  • the intelligent electromagnetic transmission device 5 can excite a group of electrical methods, transient electromagnetics, Any combination of signals between radio wave perspective and magnetotellurics, or only one type of field source; or use a seismic source or ordinary electromagnetic emission device to emit an electrical method, earthquake, transient electromagnetic method, radio wave perspective, magnetotelluric signal.
  • the intelligent acquisition device can acquire any one signal or any combination of electrical methods, earthquakes, transient electromagnetics, radio wave perspective, and magnetotelluric signals.
  • the intelligent electromagnetic transmitting device 5 is switched to the radio wave perspective transmission mode, and multiple intelligent acquisition devices 2 collect any one or more signals of electrical method, earthquake, transient electromagnetic, radio wave perspective, and earth electromagnetic through working mode switching circuits. Arbitrary combination to realize parallel and simultaneous observation of multi-field signals.
  • Step 6 The control host issues a work mode and a collection parameter, and the intelligent collection device receives the work mode and the collection parameter, and selects a work mode according to the received work mode and the collection parameter, and switches the work mode to the same or different mode
  • the intelligent acquisition device performs acquisition according to the specified acquisition parameters
  • the internal circuit of the intelligent acquisition device 2 is switched to perform seismic data acquisition; if electrical data is acquired, the internal circuit of the intelligent acquisition device 2 is switched to perform electrical data acquisition; if transient electromagnetic data acquisition is performed, intelligent acquisition The internal circuit of device 2 is switched to perform transient electromagnetic data acquisition; if the internal circuit of radio wave perspective data acquisition intelligent acquisition device 2 is switched, to perform radio wave perspective data acquisition; if the electromagnetic data of the earth is collected, the internal circuit of intelligent acquisition device 2 is switched to perform earth Electromagnetic data acquisition.
  • Each intelligent acquisition device 2 works in one state at the same time, and can collect any one of the geophysical field signals of electrical method, earthquake, transient electromagnetic, radio wave perspective and earth electromagnetic. Working in different states at the same time, collecting different geophysical field signals to achieve parallel acquisition at the same time; several intelligent acquisition devices 2 can work in different states at different times, and several intelligent acquisition devices 2 can collect any one Geophysical field signals of any combination of one or more signals.
  • the control host 1 supports real-time data transmission, and can initially determine the underground geological anomalies based on the data quality.
  • Step 7 The intelligent acquisition device 2 switches according to the acquisition working mode to perform the next round of data acquisition;
  • Step 8 The control host re-issues the launch parameters and acquisition parameters for exploration in different geophysical fields, which is cyclic steps 4-7;
  • Step 9 Multi-exploration geophysical field data collection according to different survey lines, that is, after the current survey line collection is completed, the next survey line collection is performed, that is, steps 1-8 are repeated.
  • the data collected by the intelligent acquisition device 2 is transmitted back to the control host 1 or the computer, and the multi-field geophysical data is decompiled, processed, and inverted one by one to obtain the media response of the target layer; then the unrelated fields are combined Inversion, analysis of multi-field fusion.
  • the present invention proposes a multi-prospecting geophysical parallel acquisition system that integrates electrical exploration, seismic exploration, transient electromagnetic exploration, radio wave perspective exploration, and magnetotelluric exploration.
  • the system excites a physics field, it Geophysical field response signals are collected in parallel and combined to achieve diversified detection methods and improve the efficiency of exploration and construction.
  • the system has a variety of observation system combination forms, which are suitable for a variety of geophysical field exploration conditions, taking into account the geophysical exploration environment of the ground, mines and holes, and can be adapted to the engineering field detection tasks affected by construction.
  • This system can perform multi-field parallel observation of time-varying signals. The more important feature of this system is that it has a multi-physics effect feature acquisition under the action of an excitation field source; parallel acquisition of coupled data with multi-physics to achieve different Field source parallel integrated geophysical technology.

Abstract

多勘探地球物理并行采集系统及方法,涉及地球物理勘探技术领域,包括:控制主机(1)、智能电磁发射装置(5)、若干台智能采集装置(2)、大线(3)、若干只传感器接收装置(4);智能采集装置(2)接收控制主机(1)下发的工作模式及采集参数,智能电磁发射装置(5)接收控制主机下发的物理场发射模式及发射参数;智能采集装置(2)通过大线(3)与传感器接收装置(4)连接;智能采集装置(2)能够采集电法、地震、瞬变电磁、大地电磁、无线电波中的任意一种信号。本采集系统及方法优点在于实现了集多种地球物理勘探方法于一体的系统,一次布置观测系统,一次激发物理场实现多场并行采集,探测方法多样化,大幅提高勘探施工效率。

Description

一种多勘探地球物理场并行采集系统及方法 技术领域
本发明属于地球物理勘探领域的综合地球物理勘探技术领域,具体涉及一种集成地震波场、电场、磁场的多勘探地球物理场并行采集系统,实现非同场源的综合物探技术。
背景技术
地球物理勘探是通过不同地质体的物理属性差异,探测不同地质体与异常体的勘探技术与方法,地球物理勘探仪器(简称物探仪器)是地球物理勘探的核心,物探仪器是以地球物理勘探理论为基础,结合传感技术、数据采集技术及计算机技术等多学科技术的融合而形成的专业仪器。地球物理勘探按照物理场源的不同,一般分为地震勘探、电法勘探、电磁法勘探、重力勘探、磁法勘探和放射性勘探等。还可以进一步细分,如地震勘探可以分为主动源及被动源地震勘探;电法勘探可以分为电阻率勘探与激电勘探;电磁法勘探可以分为瞬变电磁勘探、无线电波透射勘探及大地电磁勘探等。每种物探方法均有对应的仪器设备,导致综合物探时所需的设备多、线缆复杂,不同物探方法要先后施工,不仅制约了综合物探的现场实施效率,而且造成各物探方法在采集时空分离、时间分辨率降低。
现有的物探设备中,一般只能同时实现同源场的综合物探,如地震勘探的反射波、折射波及地震面波同时勘探;电法勘探中电阻率法、激发极化法和自然电场法的同时勘探。要实现不同源、多地球物理场勘探,需要复杂的多种物探装备,装置类型复杂,施工效率低。不同源的综合物探具有场源响应的正交性,如震电勘探是指震源激发下的电响应,与震源作用下的地震信号不相关,震源激发下的电信号与震信号具有正交性,这一正交属性具有评价地层渗透性 的作用,是目前非常规能源勘探的热点问题;类似的电震勘探,目前还在探索中。
时不变系统物理上代表结构和参数都不随时间变化的一类系统。严格地说,由于内部影响和外部影响的存在,时不变系统只是时变系统的一种理想化模型。但是,只要这种时变过程比之系统动态过程足够地慢,那么采用时不变系统代替时变系统进行分析,仍可保证具有足够的精确度。传统物探也假设探测对象为时不变系统来简化,但对于正在受工程施工影响较大的探测目标来讲为时变系统,能够适应时变系统进行同源和非同源的综合地球物理勘探装备具有重大创新意义,是物探新方法、新装备的源头。
发明内容
本发明所要解决的技术问题在于如何方便的实现多地球物理场并行勘探,可适应受工程施工影响时变系统物探装备。
本发明是通过以下技术方案解决上述技术问题的:
一种多勘探地球物理场并行采集系统,包括:控制主机、若干台智能采集装置、大线、若干只传感器接收装置,所述智能采集装置接收所述控制主机下发的工作模式及采集参数,所述智能采集装置通过大线与若干只传感器接收装置连接,所述智能采集装置在多种工作模式中切换,所述智能采集装置兼顾主动源及被动源采集,若干台智能采集装置的工作模式设置为相同或者不同。
更进一步地,所述智能采集装置的工作模式包括采集电法、地震、瞬变电磁、无线电波透视及大地电磁中的任意一种信号。
更进一步地,还包括:智能电磁发射装置,所述智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,所述智能电磁发射装置在多种 发射模式中切换。
更进一步地,所述智能电磁发射装置的发射模式包括电法发射模式、瞬变电磁发射模式、无线电波透视发射模式、大地电磁发射模式。
更进一步地,还包括:智能电磁发射装置,智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,所述智能电磁发射装置为震源或普通的电磁发射装置。
更进一步地,所述传感器接收装置为多功能传感器或者单功能传感器。
更进一步地,所述多功能传感器包括设置在外壳内的地震信号接收单元和电磁信号接收单元,还包括电法信号接收单元,每个信号接收单元分别引出两根信号传输线。
更进一步地,所述地震信号接收单元、电磁信号接收单元与外壳之间均填充硬质胶。
更进一步地,所述电磁信号接收单元包括磁棒、套设在磁棒上的线圈,线圈的第一端及线圈上除第一端之外的其他部位分别引出一根信号传输线。
更进一步地,所述电磁信号接收单元还包括滑动变匝数装置,滑动变匝数装置的触头与线圈接触,线圈的第一端引出一根信号传输线,线圈的另一根信号传输线经滑动变匝数装置引出。
更进一步地,所述电法信号接收单元为设置在外壳外部的金属片。
更进一步地,所述多功能传感器还包括信号选择开关,从地震信号接收单元、电磁信号接收单元、电法信号接收单元引出的六根信号传输线连接到信号选择开关,并从信号选择开关引出两根信号传输线。
更进一步地,所述若干台智能采集装置中的全部或者部分组成至少一台集中式智能采集系统,集中式智能采集系统指的是多台智能采集装置集中在一个 箱体中,通过箱体内部统一供电,每台智能采集装置之间通讯连接,每台智能采集装置至少连接一条大线,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置。
更进一步地,所述多台智能采集装置通过大线进行串联连接,即为分布式智能采集系统,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置。
更进一步地,所述多台智能采集装置通过无线方式进行连接,所述智能采集装置之间各自独立自由排列,即为自由排列智能采集系统。
更进一步地,所述智能采集装置包括工作模式切换电路、信号调理电路、第一模数转换器、第一处理器、第一通讯模块、第一工作电源;所述第一处理器控制所述工作模式切换电路将信号传输到所指定信号调理电路的输入端,通过所述工作模式切换电路将信号切至第一模数转换器的输入端,所述信号调理电路将所接收的信号进行处理后传输给第一模数转换器,经过所述第一模数转换器的处理后发送给第一处理器,第一处理器连接第一通讯模块;所述第一工作电源为所述智能采集装置提供电源。
更进一步地,所述智能采集装置还包括第一存储器、第一缓存器,所述第一缓存器将第一处理器中的数据暂时进行存储,所述第一存储器对第一处理器中所处理的数据长期存储。
更进一步地,所述智能采集装置能够接入第一位置时间模块获取所处的位置和时间信息,传输给第一处理器;所述智能采集装置还能够接入第一外接电源模块为所述智能采集装置提供工作电源。
更进一步地,所述智能电磁发射装置包括发射回路、发射天线、隔离模块、第二处理器、第二通讯模块、第二工作电源,所述发射回路在多种发射模式中 切换,并选择任一种发射模式,将发射模式所对应的场源信号通过所述发射天线将信号发射出去;发射回路和第二处理器之间由所述隔离模块进行隔离,所述第二处理器连接第二通讯模块,所述第二工作电源为所述智能电磁发射装置提供电源。
更进一步地,所述发射回路包括发射模式切换模块、发射电源、发射信号取样模块、第二模数转换器,所述发射模式切换模块在多种发射模式中切换,并选择任一种发射模式,发射模式切换模块连接所述发射天线,发射电源为发射回路提供电源,发射信号取样模块与第二模数转换器连接,第二模数转换器与第二处理器之间由所述隔离模块进行隔离。
更进一步地,所述智能电磁发射装置还包括第二存储器、第二缓存器,所述第二缓存器将第二处理器中的数据暂时进行存储,所述第二存储器对第二处理器中所处理的数据长期存储。
更进一步地,所述智能电磁发射装置能够接入第二位置时间模块获取所处的位置和时间信息,传输给第二处理器;所述智能电磁发射装置能够外接第二外接电源模块为所述智能电磁发射装置提供工作电源。
一种多勘探地球物理场并行采集方法,包括:
步骤1:根据勘探环境情况选择多勘探地球物理场并行采集系统的排列方式;
步骤2:选择被动源或主动源的探测方式;
步骤3:根据探测方式以及排列方式对多探勘地球物理场并行采集系统所需要的结构进行组装,其中,多勘探地球物理场并行采集系统所涉及到的设备包括控制主机、若干台智能采集装置、大线、若干只传感器接收装置、智能电磁发射装置,所述智能采集装置兼顾主动源及被动源采集;
步骤4:对所用的设备进行通讯检测;
步骤5:如果为主动源探测方式,控制主机下发物理场发射模式及发射参数,智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,并根据所接收的物理场发射模式及发射参数在多种发射模式中切换,并激发场源;如果为被动源,采集自然场源响应信号;
步骤6:所述控制主机下发工作模式及采集参数,智能采集装置接收所述控制主机下发的工作模式及采集参数,并根据所接收的工作模式及采集参数,选择工作模式,将若干台所述智能采集装置的工作模式切换为相同或者不同的模式,所述智能采集装置按照指定采集参数进行采集,所述智能采集装置能够在多种工作模式中切换;
步骤7:所述智能采集装置按照采集设定进行切换,进行下一轮数据采集;
步骤8:控制主机重新下发发射参数及采集参数,进行不同地球物理场勘探,即循环步骤4-7;
步骤9:按不同测线进行多勘探地球物理场数据采集,即当前测线采集完成后,执行下一个测线采集,即循环步骤1-8。
更进一步地,所述步骤1中所述排列方式包括:集中式智能采集系统、分布式智能采集系统、自由排列智能采集系统。
更进一步地,所述智能电磁发射装置按照所接收的发射参数进行激发相应的物理场,通过所述智能电磁发射装置能够发射一组电法、瞬变电磁、无线电波透视及大地电磁之间任意组合信号,或者只激发一种场源信号。
更进一步地,还包括:将智能采集装置所采集的数据传回控制主机或计算机,对数据进行处理并输出处理结果。
更进一步地,所述对数据进行处理的过程包括:对多场物探数据逐一进行 数据解编、处理并反演,获得目的层的介质响应情况;然后对不相关场进行联合反演,对多场融合分析。
本发明相比现有技术具有以下优点:
(1)本发明提出一种集成电法勘探、地震勘探、瞬变电磁勘探、无线电波透视勘探及大地电磁勘探于一体的多勘探地球物理场并行采集系统。本系统兼顾主动源与被动源,可实现主动源地球物理场勘探,也可进行被动源地球物理场长期监测。
(2)本系统中智能电磁发射装置在同一时刻能够激发一种物理场,且在不同时刻能够激发多种物理场信号或多种物理场信号组合,多地球物理场响应信号并行采集,实现探测方法多样化,并能提高勘探施工效率。
(3)多种观测系统组合形式,适应于多种地球物理场勘探条件,兼顾地面、矿山及孔中地球物理勘探环境,可适应受施工影响的工程现场探测任务。该系统可对时变信号进行多场并行观测,本系统更为重要的特色是具备一种激发源作用下的多物理场效应特征获取;与多物理场耦合数据的并行获得,实现非同场源的并行综合物探技术。
附图说明
图1为本发明实施例一的多勘探地球物理场并行采集系统的结构图。
图2为本发明实施例一的多勘探地球物理场并行采集系统的智能采集装置示意图。
图3为本发明实施例一的多勘探地球物理场并行采集系统的传感器接收装置示意图。
图4为本发明实施例二的多勘探地球物理场并行采集系统的智能发射装置示意图。
图5是本发明实施例二的多勘探地球物理场并行采集系统。
图6为本发明实施例三的多勘探地球物理场并行采集系统。
图7为本发明实施例四的多勘探地球物理场并行采集系统。
图8为本发明实施例五的多勘探地球物理场并行采集系统。
图中:1-控制主机、2-智能采集装置、3-连接大线、4-传感器接收装置、5-智能电磁发射装置、400-外壳、410-地震信号接收单元、420-电磁信号接收单元、430-电法信号接收单元、440-信号选择开关、450-硬质胶、421-磁棒、422-线圈、423-滑动变匝数装置。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例一:
如图1所示,智能采集装置2之间串联连接,即为分布式智能采集系统,所述智能采集装置采集方式为被动源采集。
多勘探地球物理场并行采集系统包括控制主机1、若干台智能采集装置2、大线3、若干只传感器接收装置4,控制主机1通过有线方式与智能采集装置2连接,智能采集装置2通过大线3与若干只传感器接收装置4连接,将连接大线3的航插头与智能采集装置2相连,控制主机1给智能采集装置2下发采集的指定工作模式及采集参数,智能采集装置2在多种工作模式中切换,智能采集装置2通过工作模式切换采集电法、地震、瞬变电磁、无线电波透视及大地电磁的信号的任一种,若干台智能采集装置2的工作模式设置为相同或者不同,即智能采集装置2采集这五种信号的任一种,或者这五种信号任意组合的并行 采集。
其中,若干台智能采集装置表示一台智能采集装置或多台智能采集装置,同理,若干只传感器接收装置表示一只传感器接收装置或多只传感器接收装置。智能采集装置2在多种工作模式中切换的情况包括:当勘探地球物理场并行采集系统中包括一台智能采集装置时,智能采集装置2既可以一直为一种工作模式,又可以在不同时刻能够切换为不同的工作模式;当勘探地球物理场并行采集系统中包括多台智能采集装置2时,在相同时刻,多台智能采集装置2之间切换为相同的工作模式或不同的工作模式,在不同时刻,每台智能采集装置2都能够切换为不同的工作模式或者保持切换为上一时刻的相同工作模式。同理,若干台智能采集装置2的工作模式能够设置为相同或者不同的情况为:当一台智能采集装置2时,智能采集装置2能够一直设置为一种工作模式,也能够在不同时刻设置为不同的工作模式;当多台智能采集装置2时,在同一时刻,多台智能采集装置2之间的工作模式能够设置为相同的或不同,在不同时刻,每台智能采集装置2的工作模式能够设置为不同或者保持上一时刻的相同工作模式,实现多场信号并行同步观测。
本系统中被动源采集方式指没有人工激发物理场,即没有智能电磁发射装置5,智能采集装置2采集自然场源的响应信号。其中,传感器接收装置4为多功能传感器或单功能传感器;控制主机可以是专用设备、计算机、Pad或手机等。
具体的,本实施例中为多台智能采集装置,并将智能采集装置2进行串联连接,形成分布式智能采集系统,智能采集装置设置若干通道(1个通道或多通道),每个通道上都连接一只传感器接收装置4,传感器接收装置4连接大线3上,智能采集装置2与控制主机1之间通过有线方式连接,且通过有线方式一直通讯,该有线的通讯方式可以是现场总线、以太网、光纤等方式进行通信。 控制主机1能够进行通讯、参数设置、下发指令等,即控制主机1向智能采集装置2下发工作模式及采集参数,智能采集装置2接收到控制主机1下发工作模式及采集参数后,将工作模式设置在电法、地震、瞬变电磁、无线电波透视和大地电磁的任一种,即实现一种信号的采集,或者将工作模式设置在电法、地震、瞬变电磁、无线电波透视和大地电磁的组合方式,即实现多种信号的并行采集,传感器接收装置4能够根据需求采集不同的数据信息,即采集电法信号、地震信号、瞬变电磁信号、无线电波信号即以及大地电磁信号,并将所采集的信号传输给所述智能采集装置2。
如图2所示,所述智能采集装置2包括工作模式切换电路、信号调理电路、第一模数转换器、第一处理器、第一通讯模块、第一存储器、第一缓存器、第一工作电源;利用传感器接收装置4中的多功能传感器通过大线将信号传输给信号调理电路,所述工作模式切换电路根据所收到第一处理器的不同指令切换传感器信号到所指定调理电路的输入端,并切至第一模数转换器的输入端,所述信号调理电路将所接收的信号进行处理后传输给第一模数转换器,经过所述第一模数转换器的处理后,发送给第一处理器,所述第一缓存器将第一处理器中的第一模数转换器所转换的数据暂时进行存储,所述第一存储器对第一处理器中所处理的数据长期存储;所述第一通讯模块与第一处理器连接,并可与控制主机、传感器装置以及它们之间进行通信;所述第一工作电源为所述智能采集装置提供工作电源;所述智能采集装置2可接入第一位置时间模块获取所处的位置和时间信息,传输给第一处理器;还可外接第一外接电源模块为所述智能采集装置2提供工作电源。
具体的,智能采集装置2可实现电法、地震、瞬变电磁、无线电波透视及大地电磁信号的采集,且兼顾主动源及被动源采集的多勘探地球物理场的并行 采集。其中,第一处理器为整个采集装置的控制中心,控制其他模块有序工作,第一模数转换器用于将所采集的模拟信号转换为数字信号,第一通讯模块用于采集参数的下达及采集数据的发送;第一缓存器用于对第一模数转换器转换的数据暂时存储,第一存储器用于已采集数据的长期存储;信号调理电路用于采集信号的滤波、放大、整形等保证信号的信噪比;工作模式切换电路收到控制主机指令后,切换到指定的物理场调理电路到模数转换器的输入信号,并将传感器接收装置所采集的信号传输到指定的物理场调理电路的输入端,从而实现多种主被动场的控制和采集,实现电法、地震、瞬变电磁、无线电波透视及大地电磁五种场信号的拾取;第一工作电源提供系统各部分正常工作所需电源。其中,第一模数转换器选用高速的模数转换器,第一位置时间模块用于获取时间同步和位置信息。
综上,同一观测系统中,每台智能采集装置2同一时刻能够只能采集一种地球物理场,每台智能采集装置2在不同时刻能够采集不同地球物理场,多台智能采集装置2之间在同一时刻能够分别采集不同或相同的地球物理场,实现智能采集装置2并行采集上述五种信号的一种或多种信号。
如图3所示,传感器接收装置4为多功能传感器,传感器接收装置4设置在外壳400内的地震信号接收单元410和电磁信号接收单元420,电法信号接收单元430、信号选择开关440,每个信号接收单元分别引出两根信号传输线。地震信号接收单元410、电磁信号接收单元420与外壳400之间均填充硬质胶450,从而保证地震信号接收单元410对高频信号的接收。
信号选择开关440从地震信号接收单元410、电磁信号接收单元420、电法信号接收单元430引出的六根信号传输线连接到信号选择开关440,并从信号选择开关440引出两根信号传输线,通过控制信号选择开关440,可调节传感器的 输出信号类型,如选择输出地震信号接收单元410探测到的地震信号或者电磁信号接收单元420探测到的瞬变电磁信号、无线电波信号、大地电磁信号或者电法信号接收单元430探测到的电法信号,从而能够实现通过同一个传感器,在同一探测地点,在不同探测时间内探测出上述五种信号当中的任意一种,也可利用不同的传感器,在同一时间同一地点,探测出上述五种信号的不同排列组合。其中,电法信号接收单元430为设置在外壳400外部的金属片,用于接收电法信号。地震信号接收单元410为地震传感器芯体,用来探测地震信号。外壳400为非金属材质,本实施例中的外壳400由ABS塑料制成。
电磁信号接收单元420包括磁棒421、套设在磁棒421上的线圈422,磁棒421及线圈422分别引出一根信号传输线。电磁信号接收单元420还包括滑动变匝数装置423,滑动变匝数装置423的触头与线圈422接触,且线圈422对应的信号传输线经滑动变匝数装置423引出,通过调节滑动变匝装置423以改变接入线路中的线圈匝数,从而达到切换不同主频的目的,用以接收不同频率的瞬变电磁信号、无线电法信号、大地电磁信号等,其中,线圈422上的可调节主频分为分点式,可设定固定的主频频率,并非连续性调节方式。
从信号选择开关440引出的两根信号传输线通过一插拔夹连接到外部的大线上,并将地震信号接收单元410、电磁信号接收单元420、电法信号接收单元430采集到的信号输出到与之匹配的外部装置中,从而对信号进行分析、记录、处理、保存,本实施例中的多勘探地球物理场并行采集系统中的传感器接收装置4可以很方便的从大线3上拆下,并可以根据需要随意的将不同的传感器接收装置4连接到探测系统中,主要适用于地面相关信号的探测。
具体的,传感器接收装置4将电法电极、地震检测器、瞬变电磁线圈、无线电波透视接收线圈及大地电磁接收线圈集成为一体,实现电法信号、地震信 号、瞬变电磁信号、无线电波信号及大地电磁信号一体拾取,一套传感器接收装置可根据需要拾取地震信号、电法信号、瞬变电磁信号、无线电波透视信号、大地电磁信号,可同时拾取以上五种中任一种信号,避免更换传感器设备的复杂操作,提高采集效率。另外,传感器接收装置4可以是单功能传感器,即电极、地震检波器、瞬变电磁线圈、无线电波透视接收线圈及大地电磁接收线圈其中的某一种,用于普通单独地球物理勘探方法数据的接收。
实施例二:与实施例一的区别在于增加了智能电磁发射装置5,智能电磁发射装置5接收控制主机1下发的物理场发射模式及发射参数,智能电磁发射装置5根据物理场发射模式及发射参数激发不同的场源信号。其中,也可以利用震源或普通的电磁发射装置发射某一种电法、地震、瞬变电磁法、无线电波透视、大地电磁的信号。
如图4所示,在图1的基础上增加智能电磁发射装置5,智能电磁发射装置5与控制主机1之间进行通信,智能电磁发射装置5与控制主机1之间能够通过现场总线、以太网、光纤等有线方式进行连接,也可以通过蓝牙、WIFI进行无线方式进行通信,智能电磁发射装置5中可以与控制主机1之间一直通讯连接,也可以断开连接,即不管是什么方式,控制主机1都能实现向智能电磁发射装置5下发物理场发射模式及发射参数,智能电磁发射装置能够在多种发射模式中切换,其中,智能电磁发射装置的发射模式包括电法发射模式、瞬变电磁发射模式、无线电波透视发射模式、大地电磁发射模式。智能采集装置2与智能电磁发射装置5能够安装在观测位置的同一侧,也可将两装置安装在观测位置的不同侧。本实施例中,智能电磁发射装置5与控制主机1之间通过有线方式进行连接,智能采集装置2与智能电磁装置5安装在工作面的相对侧,智能采集装置2安装在采集端,智能电磁发射装置5安装在发射端,控制主机1先后 与智能采集装置2、智能电磁发射装置5连接,实现向智能采集装置2、智能电磁发射装置5下发指令。多勘探地球物理场并行采集系统中智能电磁发射装置5能够激发一组电法、瞬变电磁、无线电波透视及大地电磁之间组合信号,或者只激发一种场源信号。
如图5所示,智能电磁发射装置5包括发射模式切换模块、发射电源、发射天线、发射信号取样模块、第二模数转换器、隔离模块、第二存储器、第二缓存器、第二处理器、第二通讯模块、第二工作电源,其中,发射模式切换模块、发射电源、发射信号取样模块、第二模数转换器组成发射回路,所述发射电源为发射回路供电,所述发射模式切换模块能够在多种发射模式中切换并选择任一种发射模式,将发射模式所对应的场源信号通过所述发射天线将信号发射出去,通过所述发射信号取样模块将所采集的发射信号传输给第二模数转换器,将所述第二模数转换器所转换的数据传输给第二处理器,所述第二缓存器将第二处理器中的第二模数转换器所转换的数据暂时进行存储,所述第二存储器对第二处理器中所处理的数据长期存储;所述第二处理器与第二通讯模块连接,并可与控制主机、传感器装置以及它们之间进行通信,发射回路和第二处理器由所述隔离模块进行隔离,所述第二工作电源为智能电磁发射装置5提供电源。所述智能电磁发射装置可接入第二位置时间模块获取所处的位置和时间信息,传输给第二处理器;还可外接第二外接电源模块为所述智能电磁发射装置提供工作电源。
具体的,第二处理器是整个智能电磁发射装置5的控制中心,控制其他模块的有序工作;第二模数转换器选用高速的模数转换器,第二模数转换器用于将所采集的模拟信号转换为数字信号,第二缓存器将第二处理器中的模数转换器所转换的数据暂时进行存储;第二存储器对第二处理器中所处理的数据长期 存储;第二位置时间模块能够选择时间同步及定位模块,用于时间同步和位置获取;第二通讯模块用于发射模式及发射参数的下达及采集数据的发送;发射电源为发射回路供电,发射模式切换模块能够切换选择任一种发射模式,用于激发电、磁场信号,根据不同的应用场景选择不同发射信号及信号发射天线,发射天线用于将信号发射出去;发射信号取样模块用于采集发射的信号,即发射信号取样模块用于采集发射电流;第二工作电源或所述第二外接电源模块为智能电磁发射装置5提供电源;其中,发射回路和处理器之间由所述隔离模块进行隔离,发射回路为发射模拟信号,第二处理器所处理的信号为发射数字控制信号,隔离模块用于将发射数字控制信号与发射模拟信号之间进行隔离,避免信号之间的干扰。
具体的,智能电磁发射装置5在不同的发射模式下,智能采集装置2能够采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种任意组合信号。例如,智能电磁发射装置5切换至电磁发射模式,多台智能采集装置2通过工作模式切换电路采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种任意组合信号,从而实现多场信号并行同步观测。
实施例三:与实施例二的区别在于,多台智能采集装置2通过无线方式进行连接,智能采集装置2之间各自独立自由排列,即为自由排列智能采集系统。
如图6所示,智能采集装置2采用自由排列形式,同一测点位置并列放置多台智能采集装置2,则可同一时刻获得该测点的不同地球物理场信息。对多地球物理场进行并行采集时,可被动源采集,即可以不连接智能电磁发射装置5,也可主动源进行采集,即可以连接智能电磁发射置5,并且控制主机1与智能电磁发射装置5之间也可以通过有线或无线的方式进行通信。本实施例中,智能电磁发射装置5与控制主机1通过无线连接,利用主动源进行采集。
利用智能采集装置2之间各自独立自由排列,自由排列系统适应性强,据现场探测需求进行灵活布置。
实施例四:与实施例一的区别在于:智能采集装置2为集中式智能采集系统,若干台智能采集装置2中的全部或者部分组成至少一台集中式智能采集系统,集中式智能采集系统指的是多台智能采集装置集中在一个箱体中,通过箱体内部统一供电,每台智能采集装置之间通讯连接,每台智能采集装置至少连接一条大线,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置。智能采集装置2与控制主机1通过有线方式进行通信,且为主动源采集方式进行采集。
如图7所示,智能电磁发射装置5与控制主机1通过有线方式进行通信,还可以通过无线方式进行通讯,实现主动源激发。本实施例中,智能电磁发射装置5与控制主机1之间通过有线方式进行连接,智能采集装置2与控制主机1通过有线方式进行连接。智能采集装置2上连接有四根大线3,且每条大线3设置上有多个可自由扩展,形成每个基站连接若干通道,每个采集通道都连接一只传感器接收装置4。
智能电磁发射装置5在不同的发射模式下,智能采集装置2能够采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种信号的任意组合。例如,智能电磁发射装置5切换至瞬变电磁发射模式,多台智能采集装置2通过工作模式切换电路采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种信号的任意组合。
智能采集装置2采用集中式排列时,特别适合多孔及地面组合探测。
实施例五:与实施例四区别在于:为被动源采集方式进行采集,智能采集装置2与控制主机1通过无线方式进行通信。
如图8所示,控制主机1和智能采集装置2通过无线模式进行参数设置及通讯,智能采集装置2为集中式智能采集装置,智能采集装置2上连接有四根大线3,且每条大线3设置上有多个可自由扩展,形成每个基站连接若干通道,每个采集通道都连接一只传感器接收装置4。智能采集装置2与控制主机1通过无线方式进行通信,还可以有线方式进行通信,本实施例中,集中式智能采集装置2与控制主机1是无线方式进行通信。智能采集装置2是通过被动源进行采集,即采集自然场源的响应信号,多勘探地球物理场并行采集系统对电法、瞬变电磁法、无线电波透视法、大地电磁法其中任意一种方法的采集或者布置多台集中式智能采集系统实现对地震、电法、瞬变电磁法、无线电波透视法、大地电磁法任一种的信号或者任意组合的信号进行采集。
根据如图1-9所示,在具体实施过程中,多勘探地球物理场并行采集方法的具体过程为:
步骤1:根据勘探环境情况选择多勘探地球物理场并行采集系统的排列方式;
具体的,根据测线长度、精度要求等设计观测系统,确定智能采集装置2是选择分布式、集中式还是自由排列的排列方式,并进一步确定智能采集装置2、大线3及传感器接收装置4的数量,不同的道间距对应不同的探测精度和探测深度;其中,若系统为集中式智能采集系统时,至少连接一条大线,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置4;若系统为分布式智能采集系统时,则将智能采集装置2通过大线3进行串联连接,每条大线3设置至少一个采集通道,每个采集通道连接一只传感器接收装置4;若系统为自由排列智能采集系统时,则将多台智能采集装置2通过无线方式进行连接,若干台智能采集装置2之间各自独立自由排列。
步骤2:选择被动源或主动源的探测方式;
步骤3:根据探测方式以及排列方式对多探勘地球物理场并行采集系统所需要的结构进行组装,其中,多勘探地球物理场并行采集系统所涉及到的设备包括控制主机1、若干台智能采集装置2、大线3、若干只传感器接收装置4、智能电磁发射装置5,所述智能采集装置2兼顾主动源及被动源采集;
步骤4:对所用的设备进行通讯检测;即对智能电磁发射装置5、智能采集装置2、控制主机1进行通讯检测。
步骤5:如果为主动源,控制主机下发发射模式及发射参数,智能电磁发射装置5接收下发的发射模式及发射参数,并根据所接收的发射模式及发射参数在若干种发射模式中切换,并激发场源;如果为被动源,通过自然场源激发响应信号;
具体的,被动源勘探地球物理场采集的具体方式为:智能采集装置2采集自然场源的响应信号,如采集微震信号、自然电位信号及大地电磁信号,可以同时采集某一种自然场源的响应信号,也可以并行采集多种自然场源的响应信号。
具体的,主动源勘探地球物理场采集的具体方式为:控制主机1向智能电磁发射装置5下发物理场发射模式及发射参数,所述智能电磁发射装置5接收控制主机下发的发射模式及发射参数,根据所接收的发射模式及发射参数在多种发射模式中切换,并根据指定发射参数进行激发相应的物理场信号,通过智能电磁发射装置5能够激发一组电法、瞬变电磁、无线电波透视及大地电磁之间任意组合信号,或者只激发一种场源;或者利用震源或普通的电磁发射装置发射某一种电法、地震、瞬变电磁法、无线电波透视、大地电磁的信号。
智能电磁发射装置在不同的发射模式下,智能采集装置能够采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种信号的任意组合。例如,智能电磁发射装置5切换至无线电波透视发射模式,多台智能采集装置2通过工作模式切换电路采集电法、地震、瞬变电磁、无线电波透视及大地电磁任一种信号或多种信号的任意组合,实现多场信号并行同步观测。
步骤6:所述控制主机下发工作模式及采集参数,智能采集装置接收工作模式及采集参数,并根据所接收的工作模式及采集参数,选择工作模式,将工作模式切换为相同或者不同的模式,所述智能采集装置按照指定采集参数进行采集;
具体的,若地震数据采集,智能采集装置2内部电路切换,进行地震数据采集;若电法数据采集,智能采集装置2内部电路切换,进行电法数据采集;若瞬变电磁数据采集,智能采集装置2内部电路切换,进行瞬变电磁数据采集;若无线电波透视数据采集智能采集装置2内部电路切换,进行无线电波透视数据采集;若大地电磁数据采集,智能采集装置2内部电路切换,进行大地电磁数据采集。
每台智能采集装置2在同一时刻工作在一个状态,能够采集电法、地震、瞬变电磁、无线电波透视及大地电磁的任意一种地球物理场信号,多台智能采集装置2之间能够在同一时刻工作在不同的状态,采集不同的地球物理场信号,实现在同一时刻的并行采集;若干台智能采集装置2能够在不同时刻能工作在不同状态,若干台智能采集装置2能够采集任意一种或多种信号的任意组合的地球物理场信号。在数据采集过程中,控制主机1支持数据的实时回传,可根据数据质量初步判断地下地质异常情况。
步骤7:所述智能采集装置2按照采集工作模式进行切换,进行下一轮数据采集;
步骤8:控制主机重新下发发射参数及采集参数,进行不同地球物理场勘探,即循环步骤4-7;
步骤9:按不同测线进行多勘探地球物理场数据采集,即当前测线采集完成后,执行下一个测线采集,即循环步骤1-8。
进一步,将智能采集装置2所采集的数据传回控制主机1或计算机,对多场物探数据逐一进行数据解编、处理并反演,获得目的层的介质响应情况;然后对不相关场进行联合反演,对多场融合分析。
综上,本发明提出一种集成电法勘探、地震勘探、瞬变电磁勘探、无线电波透视勘探及大地电磁勘探于一体的多勘探地球物理并行采集系统,该系统在激发一个物理场时,多地球物理场响应信号并行组合采集,实现探测方法多样化,并能提高勘探施工效率。该系统具有多种观测系统组合形式,适应于多种地球物理场勘探条件,兼顾地面、矿山及孔中地球物理勘探环境,可适应受施工影响的工程现场探测任务。该系统可对时变信号进行多场并行观测,本系统更为重要的特色是具备一种激发场源作用下的多物理场效应特征获取;与多物理场耦合数据的并行获得,实现非同场源的并行综合物探技术。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种多勘探地球物理场并行采集系统,其特征在于,包括:控制主机、若干台智能采集装置、大线、若干只传感器接收装置,所述智能采集装置接收所述控制主机下发的工作模式及采集参数,所述智能采集装置通过大线与若干只传感器接收装置连接,所述智能采集装置在多种工作模式中切换,所述智能采集装置兼顾主动源及被动源采集,若干台智能采集装置的工作模式设置为相同或者不同。
  2. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述智能采集装置的工作模式包括采集电法、地震、瞬变电磁、无线电波透视及大地电磁中的任意一种信号。
  3. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,还包括:智能电磁发射装置,所述智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,所述智能电磁发射装置在多种发射模式中切换。
  4. 根据权利要求3所述的一种多勘探地球物理场并行采集系统,其特征在于,所述智能电磁发射装置的发射模式包括电法发射模式、瞬变电磁发射模式、无线电波透视发射模式、大地电磁发射模式。
  5. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,还包括:智能电磁发射装置,智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,所述智能电磁发射装置为震源或普通的电磁发射装置。
  6. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述传感器接收装置为多功能传感器或者单功能传感器。
  7. 根据权利要求6所述的一种多勘探地球物理场并行采集系统,其特征在 于,所述多功能传感器包括设置在外壳内的地震信号接收单元和电磁信号接收单元,还包括电法信号接收单元,每个信号接收单元分别引出两根信号传输线。
  8. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述若干台智能采集装置中的全部或者部分组成至少一台集中式智能采集系统,集中式智能采集系统指的是多台智能采集装置集中在一个箱体中,通过箱体内部统一供电,每台智能采集装置之间通讯连接,每台智能采集装置至少连接一条大线,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置。
  9. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述多台智能采集装置通过大线进行串联连接,即为分布式智能采集系统,每条大线设置至少一个采集通道,每个采集通道连接一只传感器接收装置。
  10. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述多台智能采集装置通过无线方式进行连接,所述智能采集装置之间各自独立自由排列,即为自由排列智能采集系统。
  11. 根据权利要求1所述的一种多勘探地球物理场并行采集系统,其特征在于,所述智能采集装置包括工作模式切换电路、信号调理电路、第一模数转换器、第一处理器、第一通讯模块、第一工作电源;所述第一处理器控制所述工作模式切换电路将信号传输到所指定信号调理电路的输入端,通过所述工作模式切换电路将信号切至第一模数转换器的输入端,所述信号调理电路将所接收的信号进行处理后传输给第一模数转换器,经过所述第一模数转换器的处理后发送给第一处理器,第一处理器连接第一通讯模块;所述第一工作电源为所述智能采集装置提供电源。
  12. 根据权利要求3所述的一种多勘探地球物理场并行采集系统,其特征在于,所述智能电磁发射装置包括发射回路、发射天线、隔离模块、第二处理器、第二通讯模块、第二工作电源,所述发射回路在多种发射模式中切换,并选择任一种发射模式,将发射模式所对应的场源信号通过所述发射天线发射出去;发射回路和第二处理器之间由所述隔离模块进行隔离,所述第二处理器连接第二通讯模块,所述第二工作电源为所述智能电磁发射装置提供电源。
  13. 一种采用权利要求1-12任一项所述的一种多勘探地球物理场并行采集方法,其特征在于,包括:
    步骤1:根据勘探环境情况选择多勘探地球物理场并行采集系统的排列方式;
    步骤2:选择被动源或主动源的探测方式;
    步骤3:根据探测方式以及排列方式对多探勘地球物理场并行采集系统所需要的结构进行组装,其中,多勘探地球物理场并行采集系统所涉及到的设备包括控制主机、若干台智能采集装置、大线、若干只传感器接收装置、智能电磁发射装置;
    步骤4:对所用的设备进行通讯检测;
    步骤5:如果为主动源探测方式,控制主机下发物理场发射模式及发射参数,智能电磁发射装置接收所述控制主机下发的物理场发射模式及发射参数,并根据所接收的物理场发射模式及发射参数在多种发射模式中切换,并激发场源;如果为被动源,采集自然场源响应信号;
    步骤6:所述控制主机下发工作模式及采集参数,智能采集装置接收所述控制主机下发的工作模式及采集参数,并根据所接收的工作模式及采集参数,选择工作模式,将若干台所述智能采集装置的工作模式切换为相同或者不同的模 式,所述智能采集装置按照指定采集参数进行采集,所述智能采集装置能够在多种工作模式中切换;
    步骤7:所述智能采集装置按照采集设定进行切换,进行下一轮数据采集;
    步骤8:控制主机重新下发发射参数及采集参数,进行不同地球物理场勘探,即循环步骤4-7;
    步骤9:按不同测线进行多勘探地球物理场数据采集,即当前测线采集完成后,执行下一个测线采集,即循环步骤1-8。
  14. 根据权利要求13所述的一种多勘探地球物理场并行采集方法,其特征在于,所述智能电磁发射装置按照所接收的发射参数进行激发相应的物理场,通过所述智能电磁发射装置能够激发一组电法、瞬变电磁、无线电波透视及大地电磁之间任意组合信号,或者只激发一种场源信号。
  15. 根据权利要求13所述的一种多勘探地球物理场并行采集方法,其特征在于,还包括:将智能采集装置所采集的数据传回控制主机或计算机,对数据进行处理并输出处理结果。
  16. 根据权利要求15所述的一种多勘探地球物理场并行采集方法,其特征在于,所述对数据进行处理的过程包括:对多场物探数据逐一进行数据解编、处理并反演,获得目的层的介质响应情况;然后对不相关场进行联合反演,对多场融合分析。
PCT/CN2019/070686 2018-09-21 2019-01-07 一种多勘探地球物理场并行采集系统及方法 WO2020057019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110593.1A CN109116442A (zh) 2018-09-21 2018-09-21 一种多勘探地球物理场并行采集系统及方法
CN201811110593.1 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057019A1 true WO2020057019A1 (zh) 2020-03-26

Family

ID=64856222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070686 WO2020057019A1 (zh) 2018-09-21 2019-01-07 一种多勘探地球物理场并行采集系统及方法

Country Status (2)

Country Link
CN (1) CN109116442A (zh)
WO (1) WO2020057019A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796328A (zh) * 2020-07-09 2020-10-20 长安大学 一种多源频率域地空电磁探测采集系统及方法
WO2022251921A1 (en) * 2021-06-04 2022-12-08 Bhp Innovation Pty Ltd A geophysical data acquisition device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116442A (zh) * 2018-09-21 2019-01-01 安徽惠洲地质安全研究院股份有限公司 一种多勘探地球物理场并行采集系统及方法
CN112612061B (zh) * 2020-11-25 2024-03-22 重庆大学 一种无主机式矿用本安型瞬变电磁探测装置、方法及系统
CN113655541B (zh) * 2021-08-11 2022-04-29 中国矿业大学 基于定向钻-探-测一体化的水下盾构隧道安全保障方法
CN113689564B (zh) * 2021-09-10 2022-07-19 济南轨道交通集团有限公司 城市区域三维地球物理场构建方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137640A (zh) * 1996-02-15 1996-12-11 地质矿产部机械电子研究所 多功能电磁遥测系统
CN102394905A (zh) * 2011-07-21 2012-03-28 合肥国为电子有限公司 用于地球物理勘探的交叉站高速通信系统及其通信协议
CN103149593A (zh) * 2013-01-29 2013-06-12 上海艾都能源科技有限公司 一种解决天然电场物探仪的场源稳定性的方法及装置
US20130187647A1 (en) * 2012-01-23 2013-07-25 Vista Clara, Inc. Nmr logging apparatus
CN104237970A (zh) * 2014-09-23 2014-12-24 中国石油天然气集团公司 地震电磁联合勘探系统及其数据采集装置和数据采集方法
US8941816B2 (en) * 2006-05-02 2015-01-27 National Science Foundation Rotary laser positioning for geophysical sensing
CN204302505U (zh) * 2014-11-19 2015-04-29 北京霍里思特科技有限公司 分布式地震数据采集系统
CN104678456A (zh) * 2015-02-14 2015-06-03 合肥国为电子有限公司 兼具电磁和地震数据采集功能的地球物理勘探仪器
CN109116442A (zh) * 2018-09-21 2019-01-01 安徽惠洲地质安全研究院股份有限公司 一种多勘探地球物理场并行采集系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137640A (zh) * 1996-02-15 1996-12-11 地质矿产部机械电子研究所 多功能电磁遥测系统
US8941816B2 (en) * 2006-05-02 2015-01-27 National Science Foundation Rotary laser positioning for geophysical sensing
CN102394905A (zh) * 2011-07-21 2012-03-28 合肥国为电子有限公司 用于地球物理勘探的交叉站高速通信系统及其通信协议
US20130187647A1 (en) * 2012-01-23 2013-07-25 Vista Clara, Inc. Nmr logging apparatus
CN103149593A (zh) * 2013-01-29 2013-06-12 上海艾都能源科技有限公司 一种解决天然电场物探仪的场源稳定性的方法及装置
CN104237970A (zh) * 2014-09-23 2014-12-24 中国石油天然气集团公司 地震电磁联合勘探系统及其数据采集装置和数据采集方法
CN204302505U (zh) * 2014-11-19 2015-04-29 北京霍里思特科技有限公司 分布式地震数据采集系统
CN104678456A (zh) * 2015-02-14 2015-06-03 合肥国为电子有限公司 兼具电磁和地震数据采集功能的地球物理勘探仪器
CN109116442A (zh) * 2018-09-21 2019-01-01 安徽惠洲地质安全研究院股份有限公司 一种多勘探地球物理场并行采集系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796328A (zh) * 2020-07-09 2020-10-20 长安大学 一种多源频率域地空电磁探测采集系统及方法
CN111796328B (zh) * 2020-07-09 2023-08-15 长安大学 一种多源频率域地空电磁探测采集系统及方法
WO2022251921A1 (en) * 2021-06-04 2022-12-08 Bhp Innovation Pty Ltd A geophysical data acquisition device

Also Published As

Publication number Publication date
CN109116442A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020057019A1 (zh) 一种多勘探地球物理场并行采集系统及方法
CN102012525B (zh) 分布式多参数深部电磁断面成像系统及测量方法
CN102466813B (zh) 无线遥测存储式地震仪系统
US20120250457A1 (en) Systems and methods for wireless communication in a geophysical survey streamer
US9297917B2 (en) High-precision time synchronization for a cabled network in linear topology
CN102096111B (zh) 收发天线分离式核磁共振找水装置及找水方法
CN103499841B (zh) 巷孔瞬变电磁装置及测量方法
CN103018781B (zh) 2d/3d核磁共振与瞬变电磁联用仪及野外工作方法
CN104583808A (zh) 用于薄层阵列感应测井系统的电子设备
CN105301663A (zh) 时频电磁勘探数据空中采集装置及系统
CN103499844B (zh) 全程全空间瞬变电磁装置及测量方法
CN103837903A (zh) 基于无线网络的地下全波核磁共振探测装置
CN106383364A (zh) 一种伪随机扫频核磁共振探测仪器
CN103955004A (zh) 四通道核磁共振信号全波采集系统及采集方法
CN104502984A (zh) 特定频率噪声对消地下核磁共振探测装置及探测方法
US11901642B1 (en) Input multiplexed signal processing apparatus and methods
CN103995286B (zh) 一种声波接收换能器及井下方位噪声检漏装置和检漏方法
CN111856601B (zh) 一种分布式磁共振地下水探测装置及探测方法
CN102466814B (zh) 无线遥测地震仪系统
CN108957589A (zh) 多勘探地球物理场信号接收传感器及传感器串、观测系统
CN103149593A (zh) 一种解决天然电场物探仪的场源稳定性的方法及装置
CN109061745A (zh) 一种隧道掌子面瞬变电磁雷达探水系统及探水装置
CN109343129A (zh) 一种基于无线网桥的大覆盖地面核磁共振探测装置及方法
Li et al. Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
CN205139386U (zh) 时频电磁勘探数据空中采集装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862881

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19862881

Country of ref document: EP

Kind code of ref document: A1