WO2020056844A1 - 一种双零点交叉耦合陶瓷滤波器 - Google Patents

一种双零点交叉耦合陶瓷滤波器 Download PDF

Info

Publication number
WO2020056844A1
WO2020056844A1 PCT/CN2018/111786 CN2018111786W WO2020056844A1 WO 2020056844 A1 WO2020056844 A1 WO 2020056844A1 CN 2018111786 W CN2018111786 W CN 2018111786W WO 2020056844 A1 WO2020056844 A1 WO 2020056844A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
coupling
cross
resonators
filter
Prior art date
Application number
PCT/CN2018/111786
Other languages
English (en)
French (fr)
Inventor
韩巍
赵嘉炜
田富耕
Original Assignee
苏州市协诚五金制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州市协诚五金制品有限公司 filed Critical 苏州市协诚五金制品有限公司
Priority to KR1020197034047A priority Critical patent/KR20200034950A/ko
Publication of WO2020056844A1 publication Critical patent/WO2020056844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer

Definitions

  • the invention relates to the field of filters, in particular to a double-zero cross-coupling ceramic filter.
  • the miniaturization of filters has become a necessary development trend; all-ceramic waveguide filters can achieve the ideal solution for miniaturization of base station filters; because the band-pass filter requires zero to achieve a high near-outband Suppression capability, so the zero design and implementation of the filter becomes very important, otherwise, the technical specifications of the filter will be difficult to meet the requirements of out-of-band suppression; the invention is implemented in a 4 ceramic resonator cavity by designing a suitable coupling slot The function of cross-coupling, and adjusting the amount of cross-coupling by adjusting the size and position of the coupling slot, so as to adjust the zero frequency and strength of the cross-coupling, to achieve the ideal function of the filter.
  • the present invention proposes a double-zero cross-coupling ceramic filter, which can significantly improve the suppression ability of the filter's near-pass band out-of-band and improve the performance of the filter.
  • the present invention provides the following technical solutions:
  • a double-zero-point cross-coupling ceramic filter is composed of four ceramic resonators based on a fully-enclosed metallized integrated ceramic block.
  • the four ceramic resonators are separated by a partition groove and connected by connecting a ceramic body to form a ceramic.
  • the four isolated ceramic resonators form a discrete resonant cavity, and the frequency of the resonant cavity is determined according to the Maxwell's equation, which is related to the dielectric constant of the ceramic material of each ceramic resonator and the size of the ceramic resonator.
  • the frequency of the resonant cavity composed of 4 ceramic resonators is accurately designed and determined according to the requirements of the filter.
  • the contact ceramic body provides coupling between the ceramic resonators.
  • the frequency is determined according to the strength of the ceramic resonators that need to be coupled.
  • a cross-coupling slot is designed between the two ceramic resonators, and the cross-coupling slot can realize the coupling of adjacent ceramic resonators, thereby adjusting the phase of the electromagnetic field to achieve the function of double zero.
  • adjusting the size of the cross-coupling slot can adjust the coupling strength, thereby adjusting the out-of-band suppression level of the filter.
  • the present invention can significantly improve the suppression capability of the filter near the out-of-band band, and improve the performance of the filter.
  • FIG. 1 is a schematic diagram of the front structure of the present invention
  • FIG. 2 is a schematic diagram of the reverse structure of the present invention.
  • FIGS. 1-2 The embodiment of the present invention is further described with reference to FIGS. 1-2.
  • a double-zero-cross-coupled ceramic filter is characterized in that four ceramic resonators 1 are based on a fully-enclosed metallized integrated ceramic block, and the four ceramic resonators 1 are separated by a partition groove 2 and connected by The ceramic bodies 3 are connected to form a ceramic block as a whole, and the four isolated ceramic resonators 1 form separate resonant cavities.
  • the frequency of the resonant cavity is determined according to the Maxwell's equation, and is connected with the ceramic material of each ceramic resonator 1.
  • the electric constant and the size of the ceramic resonator 1 are related.
  • the frequency of the resonant cavity formed by the four ceramic resonators 1 is accurately determined according to the requirements of the filter index.
  • the contact ceramic body 3 provides a space between the ceramic resonators 1. Coupling, the size of the contact ceramic body 3 is determined according to the strength of each ceramic resonator 1 that needs to be coupled.
  • Cross-coupling slots 4 are designed between the two ceramic resonators 1, and the cross-coupling slots 4 can realize phase coupling. The coupling of the adjacent ceramic resonator 1 adjusts the phase of the electromagnetic field to achieve the function of double zero.
  • adjusting the size of the cross-coupling slot 4 can adjust the coupling strength, thereby adjusting the out-of-band suppression level of the filter.
  • the realization of the double zero point is realized by a cross coupling slot.
  • the cross coupling slot can realize the coupling of adjacent ceramic resonators, thereby adjusting the phase of the electromagnetic field to achieve the function of the double zero point; adjusting the cross coupling slot. Size, you can adjust the coupling strength, thereby adjusting the out-of-band suppression level of the filter.
  • the contacting ceramic body By contacting the ceramic body to form a ceramic integrated whole, the filter has sufficient strength and manufacturability.
  • the contacting ceramic body also becomes a microwave signal coupling path between the ceramic resonators. Carefully design the structural size of the contacting ceramic body, and It is guaranteed in production that the correct coupling between ceramic resonators can be achieved to achieve the filter function.
  • Cross-coupling slots are used to achieve cross-coupling.
  • the size and number and distribution of cross-coupling slots will affect the coefficient of cross-coupling.
  • the number, position and size of cross-coupling slots are carefully designed and controlled during the preparation process. , Can form the required double-zero cross-coupling ceramic filter function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种双零点交叉耦合陶瓷滤波器,由4块陶瓷谐振器(1)以全封闭金属化的集成陶瓷块为基础,所述4块陶瓷谐振器通过隔断槽(2)隔离,并通过联系陶瓷体(3)相连,形成一个陶瓷块整体,所述联系陶瓷体(3)为各陶瓷谐振器之间提供了耦合,根据各陶瓷谐振器(1)需要耦合的强度确定所述联系陶瓷体(3)的尺寸,2块所述陶瓷谐振器(1)之间设计有交叉耦合孔(4),所述交叉耦合孔(4)可以实现相邻陶瓷谐振器的耦合,从而调整电磁场相位,达到双零点的功能。该双零点交叉耦合陶瓷滤波器显著改善滤波器的近通带带外的抑制能力,提升滤波器的性能。

Description

一种双零点交叉耦合陶瓷滤波器 技术领域
本发明涉及滤波器领域,尤其是涉及一种双零点交叉耦合陶瓷滤波器。
背景技术
无线通信基站的发展,滤波器的小型化成为必要的发展趋势;全陶瓷波导式的滤波器能够实现基站滤波器小型化的理想解决方案;由于带通滤波器需要零点来实现高的近带外抑制能力,故滤波器的零点设计及实现变得非常重要,否则,滤波器的技术指标难以达到带外抑制的要求;本发明在一个4块陶瓷谐振腔,通过设计合适的耦合槽孔,实现交叉耦合的功能,并通过调节耦合槽孔的尺寸,位置等参数,调节交叉耦合量,从而调节交叉耦合的零点频率以及强度,实现滤波器的理想功能。
发明内容
针对现有滤波器的问题,本发明提出一种双零点交叉耦合陶瓷滤波器,能够显著改善滤波器的近通带带外的抑制能力,提升滤波器的性能。
为实现上述目的,本发明提供了如下技术方案:
一种双零点交叉耦合陶瓷滤波器,由4块陶瓷谐振器以全封闭金属化的集成陶瓷块为基础,所述4块陶瓷谐振器通过隔断槽隔离,并通过联系陶瓷体相连,形成一个陶瓷块整体,隔离的4块陶瓷谐振器形成分立的谐振腔,所述谐振腔的频率根据麦柯斯韦方程所确定,与各陶瓷谐振器的陶瓷材料介电常数、陶瓷谐振器的尺寸相关,4块陶瓷谐振器所组成的谐振腔的频率根据滤波器的指标要求精确设计确定,所述联系陶瓷体为各陶瓷谐振器之间提供了耦合,根据各陶瓷谐振器需要耦合的强度确定所述联系陶瓷体的尺寸,2块所述陶瓷谐振器之间设计有交叉耦合槽孔,所述交叉耦合槽孔可以实现相邻陶瓷谐振器的耦合,从而调整电磁场相位,达到双零点的功能。
优选地,调节所述交叉耦合槽孔的尺寸,可以调节耦合强度,从而调节滤波器的带外抑制水平。
通过采用上述技术方案,本发明能够显著改善滤波器的近通带带外的抑制能力,提升滤波器的性能。
附图说明
图1为本发明的正面结构示意图;
图2为本发明的反面结构示意图。
图中附图标记:1、陶瓷谐振器;2、隔断槽;3、联系陶瓷体;4、交叉耦合槽孔;5、滤波器输入孔;6、滤波器输出孔。
具体实施方式
为了使本领域的技术人员可以更好地理解本发明,下面结合附图和实施例对本发明技术方案进一步说明。
参照图1-2对本发明实施例做进一步的说明。
一种双零点交叉耦合陶瓷滤波器,其特征在于,由4块陶瓷谐振器1以全封闭金属化的集成陶瓷块为基础,所述4块陶瓷谐振器1通过隔断槽2隔离,并通过联系陶瓷体3相连,形成一个陶瓷块整体,隔离的4块陶瓷谐振器1形成分立的谐振腔,所述谐振腔的频率根据麦柯斯韦方程所确定,与各陶瓷谐振器1的陶瓷材料介电常数、陶瓷谐振器1的尺寸相关,4块陶瓷谐振器1所组成的谐振腔的频率根据滤波器的指标要求精确设计确定,所述联系陶瓷体3为各陶瓷谐振器1之间提供了耦合,根据各陶瓷谐振器1需要耦合的强度确定所述联系陶瓷体3的尺寸,2块所述陶瓷谐振器1之间设计有交叉耦合槽孔4,所述交叉耦合槽孔4可以实现相邻陶瓷谐振器1的耦合,从而调整电磁场相位,达到双零点的功能。
进一步地,调节所述交叉耦合槽孔4的尺寸,可以调节耦合强度,从而调节滤波器的带外抑制水平。
通过采用上述技术方案,双零点的实现,通过一个交叉耦合槽孔来实现,交叉耦合槽孔可以实现相邻陶瓷谐振器的耦合,从而调整电磁场相位,达到双零点的功能;调节交叉耦合槽孔的尺寸,可以调节耦合强度,从而调节滤波器的带外抑制水平。通过联系陶瓷体,形成一个陶瓷集成整体,使滤波器具有足够的强度和可制造性,联系陶瓷体也成为陶瓷谐振器之间的微波信号耦合通路,细致设计联系陶瓷体的结构尺寸,并在生产中得到保证,可实现陶瓷谐振器间的正确耦合,以实现滤波器功能。通过交叉耦合槽孔,实现交叉耦合,交叉耦合槽孔的尺寸和数量及分布,将会影响交叉耦合的系数,通过细致设计交叉耦合槽孔的数量、位置和尺寸,并在制备过程中得以控制,可形成所需要的双零点交叉耦合陶瓷滤波器功能。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (2)

  1. 一种双零点交叉耦合陶瓷滤波器,其特征在于,由4块陶瓷谐振器(1)以全封闭金属化的集成陶瓷块为基础,所述4块陶瓷谐振器(1)通过隔断槽(2)隔离,并通过联系陶瓷体(3)相连,形成一个陶瓷块整体,隔离的4块陶瓷谐振器(1)形成分立的谐振腔,所述谐振腔的频率根据麦柯斯韦方程所确定,与各陶瓷谐振器(1)的陶瓷材料介电常数、陶瓷谐振器(1)的尺寸相关,4块陶瓷谐振器(1)所组成的谐振腔的频率根据滤波器的指标要求精确设计确定,所述联系陶瓷体(3)为各陶瓷谐振器(1)之间提供了耦合,根据各陶瓷谐振器(1)需要耦合的强度确定所述联系陶瓷体(3)的尺寸,2块所述陶瓷谐振器(1)之间设计有交叉耦合槽孔(4),所述交叉耦合槽孔(4)可以实现相邻陶瓷谐振器(1)的耦合,从而调整电磁场相位,达到双零点的功能。
  2. 根据权利要求1所述的一种双零点交叉耦合陶瓷滤波器,其特征在于,调节所述交叉耦合槽孔(4)的尺寸,可以调节耦合强度,从而调节滤波器的带外抑制水平。
PCT/CN2018/111786 2018-09-18 2018-10-25 一种双零点交叉耦合陶瓷滤波器 WO2020056844A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197034047A KR20200034950A (ko) 2018-09-18 2018-10-25 더블 영점 교차결합 세라믹 필터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811083424.3 2018-09-18
CN201811083424.3A CN108987863A (zh) 2018-09-18 2018-09-18 一种双零点交叉耦合陶瓷滤波器

Publications (1)

Publication Number Publication Date
WO2020056844A1 true WO2020056844A1 (zh) 2020-03-26

Family

ID=64546291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111786 WO2020056844A1 (zh) 2018-09-18 2018-10-25 一种双零点交叉耦合陶瓷滤波器

Country Status (3)

Country Link
KR (1) KR20200034950A (zh)
CN (1) CN108987863A (zh)
WO (1) WO2020056844A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461995A (zh) * 2018-12-27 2019-03-12 苏州艾福电子通讯有限公司 一种采用陶瓷介质的波导滤波器
KR102319051B1 (ko) 2019-01-08 2021-11-02 주식회사 케이엠더블유 도파관 필터
CN109546270B (zh) * 2019-01-11 2020-07-28 华为技术有限公司 一种滤波器
CN109904572A (zh) * 2019-01-30 2019-06-18 苏州市协诚五金制品有限公司 一种实现介质陶瓷谐振器间耦合的结构
CN109841935A (zh) * 2019-03-15 2019-06-04 苏州市协诚五金制品有限公司 一种叠层陶瓷波导滤波器
CN109786910A (zh) * 2019-03-15 2019-05-21 苏州市协诚五金制品有限公司 一种实现交叉耦合零点的陶瓷波导滤波器
WO2021096177A1 (ko) * 2019-11-13 2021-05-20 주식회사 케이엠더블유 유전체 세라믹 필터
CN110828947B (zh) * 2019-11-15 2021-09-07 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器
CN110797613B (zh) * 2019-11-15 2022-03-11 中国电子科技集团公司第二十六研究所 一种十阶六陷波的介质波导滤波器
CN113036363A (zh) * 2019-12-25 2021-06-25 深圳市大富科技股份有限公司 一种通信设备及滤波器
KR20220127971A (ko) * 2021-03-12 2022-09-20 주식회사 케이엠더블유 세라믹 도파관 필터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062386A1 (en) * 2013-11-18 2016-08-31 Huawei Technologies Co., Ltd. Resonator, filter, duplexer and multiplexer
CN106058397A (zh) * 2015-04-13 2016-10-26 Ace技术株式会社 利用交叉耦合的腔体滤波器
CN106981708A (zh) * 2016-01-19 2017-07-25 Ace技术株式会社 包含陶瓷谐振器的腔体滤波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3319166B1 (en) * 2015-11-27 2020-07-01 Huawei Technologies Co., Ltd. Dielectric filter, transceiver and base station
CN110291681B (zh) * 2017-02-16 2021-10-22 华为技术有限公司 介质滤波器、收发设备及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062386A1 (en) * 2013-11-18 2016-08-31 Huawei Technologies Co., Ltd. Resonator, filter, duplexer and multiplexer
CN106058397A (zh) * 2015-04-13 2016-10-26 Ace技术株式会社 利用交叉耦合的腔体滤波器
CN106981708A (zh) * 2016-01-19 2017-07-25 Ace技术株式会社 包含陶瓷谐振器的腔体滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV, WENZHONG ET AL.: "Simulation of Coupling Aperture Diameter and Its Influence to Filter Properties", PIEZOELECTRICS & ACOUSTOOPTICS, vol. 27, no. 3, 30 June 2005 (2005-06-30), pages 303 - 304 *

Also Published As

Publication number Publication date
KR20200034950A (ko) 2020-04-01
CN108987863A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020056844A1 (zh) 一种双零点交叉耦合陶瓷滤波器
Torabi et al. Miniature harmonic-suppressed microstrip bandpass filter using a triple-mode stub-loaded resonator and spur lines
Ai et al. Miniaturized Quint-Band Bandpass Filter Based on Multi-Mode Resonator and $\lambda/4$ Resonators With Mixed Electric and Magnetic Coupling
CN110504512A (zh) 一种电容耦合结构及应用该结构的介质滤波器
CN108390137B (zh) 一种耦合结构介质谐振器滤波器
CN110165347B (zh) 一种加载开路枝节的高隔离度微带双工器
Li et al. Dual-band dual-channel bandpass filters using high quality factor dielectric resonators
US20180316078A1 (en) Multi-Band RF Monoblock Filter
Boe et al. Dual-band filter composed of dielectric and waveguide resonators with in-band transmission zeros
CN110416669B (zh) 介质滤波器、信号收发装置及基站
WO2011134497A1 (en) A waveguide e-plane filter structure
KR20120094225A (ko) 소형 Gbps 무선신호 송수신기용 다중 극점 대역통과 여파기용 신형 메타재질 CRLH 기본구조와 그의 교차결합에 의한 채널 선택도 향상법
Liu et al. A novel method to design triple-mode SIW filter based on the complementary split ring resonators (CSRRs)
Du et al. Ceramic dielectric-filled cavity filter
CN210182542U (zh) 介质滤波器、信号收发装置及基站
Xia et al. An ultra-wideband balanced bandpass filter based on defected ground structures
CN105680127A (zh) 基于信号干扰理论的差分带通滤波器
Dai et al. Compact LTCC dual-band bandpass filter using stepped impedance resonators
Liu et al. Inline asymmetric response quarter-mode SIW bandpass filters with controllable mixed electric and magnetic coupling
Majidifar et al. Dual-band bandstop filter using modified stepped-impedance hairpin resonators
TWM596461U (zh) 物聯網雙工器
Li et al. Novel high-selectivity dual-band substrate integrated waveguide filter with multi-transmission zeros
Boufouss et al. High Selectivity Dual-Band Bandpass Filter for 5G Mobile Communications
KR101583015B1 (ko) 분리된 커플링 경로를 갖는 이중모드 대역통과 필터
Du et al. A controllable and low loss dual-band bandpass filter by using a simple ring resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934337

Country of ref document: EP

Kind code of ref document: A1