WO2020054721A1 - Method for measuring atrial fibrillation index value - Google Patents

Method for measuring atrial fibrillation index value Download PDF

Info

Publication number
WO2020054721A1
WO2020054721A1 PCT/JP2019/035556 JP2019035556W WO2020054721A1 WO 2020054721 A1 WO2020054721 A1 WO 2020054721A1 JP 2019035556 W JP2019035556 W JP 2019035556W WO 2020054721 A1 WO2020054721 A1 WO 2020054721A1
Authority
WO
WIPO (PCT)
Prior art keywords
atrial fibrillation
index value
acid
measuring
fibrillation index
Prior art date
Application number
PCT/JP2019/035556
Other languages
French (fr)
Japanese (ja)
Inventor
宏隆 藤本
青木 豊
佐藤 孝明
木村 武志
勝紀 増田
勇司 平家
まり子 浅見
静香 宇山
鈴木 一彦
ケビン 浦山
邦好 林
Original Assignee
株式会社島津製作所
学校法人聖路加国際大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 学校法人聖路加国際大学 filed Critical 株式会社島津製作所
Priority to JP2020546036A priority Critical patent/JP7280582B2/en
Publication of WO2020054721A1 publication Critical patent/WO2020054721A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for measuring a substance related to the onset of atrial fibrillation among substances contained in a biological sample such as blood or urine.
  • Atrial fibrillation is a relatively common cardiac arrhythmia.
  • the prevalence of atrial fibrillation increases with age, and in each age group, men are generally more prevalent than women.
  • atrial fibrillation rapid, irregular, and disordered atrial excitation occurs, causing loss of effective atrial contraction, resulting in stagnant blood flow in the atrium and thrombus formation in the atrium.
  • Cerebral embolism (cardiogenic cerebral infarction) caused by thrombus formation in the atria is one of the serious complications of atrial fibrillation, and permanent treatment with anticoagulants is needed to prevent it In many cases.
  • Atrial fibrillation does not provide effective atrial contraction, resulting in a decrease in cardiac output. Therefore, when atrial fibrillation occurs in a patient having a heart disease, hemodynamics cannot be maintained and heart failure worsens. Furthermore, if tachycardia due to atrial fibrillation persists, myocardial damage occurs, resulting in a long-term decline in cardiac function. Therefore, when atrial fibrillation occurs, early sinus rhythm, recurrence prevention, and heart rate regulation treatment using anti-arrhythmic drug therapy, non-drug therapy such as cardioversion and catheter ablation are required. This is important (Non-Patent Document 1).
  • a 12-lead electrocardiogram is standard.
  • atrial fibrillation that occurs only occasionally, such as paroxysm cannot be easily detected by a short examination
  • a Holter electrocardiograph that can continuously take an electrocardiogram for 24 hours is used.
  • echocardiography is performed to rule out non-abnormal heart valves. Risk factors for the transition to persistent atrial fibrillation after the first occurrence of atrial fibrillation include heart failure, elderly (75 years and older), a history of transient ischemic attack and cerebral infarction, chronic obstructive pulmonary disease, Hypertension and the like (Non-Patent Document 2).
  • Atrial fibrillation can be diagnosed relatively early in the onset of atrial fibrillation, not only will it be possible to prevent serious complications such as cerebral infarction, but also take prompt measures to maintain sinus rhythm Can be. Furthermore, it can be used to manage background factors that promote the transition to persistent atrial fibrillation (Non-Patent Document 3). Therefore, a disease marker that specifically captures a pre-onset state or an early state of atrial fibrillation is very useful for treating or preventing atrial fibrillation.
  • Atrial fibrillation treatment drug
  • Non-patent Document 4 inflammatory markers such as osteoprotegerin have been reported as disease markers associated with the onset of atrial fibrillation.
  • ELISA Enzyme-Linked ⁇ ImmunoSorbent ⁇ Assay
  • the immunological detection method is a method of individually measuring a target object.Since it is not possible to measure a plurality of types of objects at one time, a new disease marker having a high specificity for the onset of atrial fibrillation is developed. There was a limit to exhaustive search.
  • Atrial fibrillation is considered to be caused by two factors, a genetic factor (genetic predisposition) and an environmental factor (lifestyle) (Non-Patent Document 7).
  • Genetic predisposition is important in terms of the likelihood of developing a disease, and genetic information can be used as a disease marker to estimate the risk of developing a disease in the future. It is difficult to diagnose.
  • lifestyle is an important environmental factor as well as genetic factors in the case of habits that affect genetic predisposition, but lifestyle habits often change with age, and a variety of factors It is difficult to diagnose overlapping diseases at an early stage.
  • the problem to be solved by the present invention is to measure the amount of metabolites considered to be related to the onset of atrial fibrillation, and to use the measurement result for diagnosis of atrial fibrillation.
  • a method of measuring an atrial fibrillation index value is an index related to the onset of atrial fibrillation
  • a biological sample collected from the subject was analyzed and 16 metabolites, ⁇ -alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, margaric acid, ribose , Isocitrate, phenylalanine, succinic acid, fucose, citric acid, and erythritol, wherein the amount of at least one metabolite is measured as the atrial fibrillation index value.
  • the present inventor searched for metabolites that serve as indices related to atrial fibrillation using a technique called metabolomics in order to comprehensively capture complex changes in pathological conditions associated with atrial fibrillation.
  • a blood sample serum
  • chromatograph mass spectrometer a chromatograph mass spectrometer
  • asparagine-2TMS and “asparagine-3TMS” in Table 1 are derived from the same metabolite (asparagine).
  • the presence or absence of atrial fibrillation in the comparison between the two groups was determined based on an electrocardiogram.
  • the presence or absence of atrial fibrillation can be determined by measuring an atrial fibrillation index value in blood collected from a subject and comparing the measured value with a predetermined threshold value.
  • the range of the atrial fibrillation index value in the blood of a person diagnosed with atrial fibrillation (atrial fibrillation onset) and a person diagnosed as not having atrial fibrillation onset (normal person) is determined in advance. It is determined whether the subject has atrial fibrillation depending on whether the atrial fibrillation index value of the subject falls within the range of a normal person or within the range of atrial fibrillation onset. It is better to determine whether or not.
  • the range of the atrial fibrillation index value in the normal state of the subject is measured in advance, and then the atrial fibrillation index value of the subject is compared with the range, and the atrial fibrillation index value is in the range. If it is out of the range, it may be determined whether or not the subject has atrial fibrillation.
  • the atrial fibrillation index value which is a measured value of the above 16 metabolites, can be used alone for diagnosis of atrial fibrillation.
  • atrial fibrillation Diagnosis accuracy can be improved.
  • both of the two types of atrial fibrillation index values cause atrial fibrillation, compared to a case where only one of the two types of atrial fibrillation index values is in the range indicating that atrial fibrillation has developed. It can be determined that there is a higher possibility of atrial fibrillation when it is within the range indicating that the patient is performing atrial fibrillation.
  • a biological sample collected from a subject refers to any blood, biological tissue, stool, urine, etc., as long as the amount of a metabolite contained in the biological sample can be measured. It may be something. However, blood (whole blood, serum, or plasma) is preferable in consideration of the ease of sample collection and the large content of metabolites.
  • serum a liquid component obtained by coagulating blood cell components without adding an anticoagulant to whole blood can be used.
  • the plasma a liquid component obtained by adding an anticoagulant to whole blood without coagulating blood cell components can be used.
  • chromatographic MS analysis chromatographic MS analysis
  • chromatographic MS analysis is used to search for metabolites related to the onset of atrial fibrillation
  • the biological sample analysis method of the present invention is not limited to chromatographic MS analysis. Immunological analysis methods such as nuclear magnetic resonance (NMR) spectroscopy, enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA) can be used.
  • NMR nuclear magnetic resonance
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • chromatographic MS analysis is excellent in that the amount of metabolites contained in a biological sample can be quantitatively measured.
  • the chromatographic MS analysis refers to an analysis using a gas chromatograph or a liquid chromatograph, and a mass spectrometer as a device for detecting a sample separated by these chromatographs.
  • Examples of the mass spectrometer include a triple quadrupole mass spectrometer, a Q-TOF mass spectrometer, a TOF-TOF mass spectrometer, an ion trap mass spectrometer, and an ion trap time-of-flight mass spectrometer.
  • mass spectrometers highly sensitive analysis is possible even for samples containing a large amount of contaminants other than the analyte (metabolite), and the analysis stability is improved.
  • the amount of metabolite contained in the sample can be quantitatively measured.
  • the atrial fibrillation index value is, particularly of the 16 metabolites, isocitrate, arabinose, ribose, 2-oxoglutaric acid, malic acid, phenylalanine, fumaric acid, succinic acid, fucose, citric acid It is preferably the amount of the substance.
  • the t-test was carried out between the two groups of the group with AF (atrial fibrillation) and the normal group (without AF) for the measurement values of 135 metabolites. Significant differences were observed. Further, these had a P value of less than 0.001 in a separate Mann-Whitney U test. Therefore, the presence or absence of atrial fibrillation can be diagnosed by measuring the amounts of the ten metabolites as an atrial fibrillation index value and comparing the index value with a predetermined threshold value.
  • the predetermined threshold value may be an average value, a median value, or the like when the amount of each of the ten metabolites contained in the biological sample is measured for a large number of subjects.
  • the above-mentioned atrial fibrillation index value is preferably the amount of any of metabolites of ⁇ -alanine, fumaric acid, threonine, succinic acid, and 2-oxoglutaric acid among the 16 metabolites.
  • the above five metabolites in addition to the presence or absence of atrial fibrillation as dependent variables, age, gender, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR value are input as adjustment factors.
  • the P value was smaller than 0.05, indicating that the metabolite showed a high correlation with the presence or absence of atrial fibrillation. . Therefore, atrial fibrillation can be diagnosed at an early stage by measuring the measured values of these five metabolites as atrial fibrillation index values and comparing the measured values with a predetermined threshold value.
  • any one of the 16 metabolites especially 2-oxoglutaric acid, isocitrate, fucose, arabinose, fumaric acid, erythritol, succinic acid, phenylalanine, malic acid, and citric acid It is good to be the amount of that metabolite.
  • the above 10 metabolites were subjected to ROC analysis on the measured values of 135 metabolites in the presence or absence of atrial fibrillation as dependent variables, and their AUC values were determined. The AUC values were large.
  • the measured values of these 10 metabolites are each measured as an atrial fibrillation index value, and by comparing this with a predetermined threshold value, the presence or absence of atrial fibrillation can be diagnosed, and erroneous diagnosis is reduced. can do.
  • the above-mentioned atrial fibrillation index value is particularly ⁇ -alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid among the 16 metabolites. It may be the amount of any metabolite of ribose.
  • the above 10 metabolites are modeled with the presence or absence of atrial fibrillation as dependent variables, age, sex, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR value as adjustment factors When the C statistic was determined for the measured values of 135 metabolites, the metabolite was found to have a large value. Therefore, by measuring the measured values of these 10 metabolites as atrial fibrillation index values and comparing them with a predetermined threshold value, it is possible to diagnose the presence or absence of atrial fibrillation with high accuracy.
  • the amount of a metabolite found in a biological sample by searching for a metabolite having a high relationship with atrial fibrillation using a metabolomics analysis method is measured as an atrial fibrillation index value.
  • the fibrillation index value can be used to diagnose atrial fibrillation.
  • the present inventor analyzed a biological sample (serum) collected from a subject using a gas chromatograph mass spectrometer (GCMS), and comprehensively measured the amounts of a large number of metabolites contained in the biological sample. Then, by analyzing the measured values using various methods, metabolites that seemed to be significantly related to the presence or absence of atrial fibrillation were searched. Table 2 shows the baseline characteristics of subjects who collected biological samples to search for metabolites associated with the development of atrial fibrillation. A method for extracting a subject exhibiting the baseline characteristics shown in Table 2, a method for preparing and analyzing a biological sample, a method for measuring a metabolite, and an analysis of a measurement result will be described below.
  • the median age of the population of $ 7592 subjects was 52 years (interquartile range 42-62 years), of which 3967 (52.3%) were women.
  • 58 patients (0.8%) diagnosed as having atrial fibrillation (AF) by electrocardiography, and others (diagnosed without AF (“normal”) Group)) were 7534 (99.2%).
  • AF atrial fibrillation
  • normal Group diagnosis without AF
  • sample preparation> Pretreatment Blood collected from a subject was allowed to stand for a predetermined time, and then centrifuged to collect a supernatant (serum). The collected serum was stored at -80 ° C until analysis. The time from when blood is collected from the subject until the serum is frozen affects the measured value of metabolites in the serum. Approximately half of the subject population had five to eight hours from blood collection to freezing.
  • the serum and the second mixed solution were shaken at 1,200 rpm at 37 ° C. for 30 minutes, centrifuged at 16,000 ⁇ g at 25 ° C. for 5 minutes, and 150 ⁇ L of the supernatant was added to 140 ⁇ L of water in advance. And mixed using a vortex mixer to obtain a third mixed solution.
  • the third mixture was centrifuged at 16,000 ⁇ g for 5 minutes at 25 ° C., and 180 ⁇ L of the supernatant was collected in a new tube. This was concentrated with a centrifugal evaporator at room temperature for 60 minutes with the speed memory set to "7". After the concentrated supernatant (concentrated liquid) of the third liquid mixture was frozen at ⁇ 80 ° C. for 30 minutes, it was dried overnight to obtain a sample. The obtained sample was stored in a desiccator until analysis.
  • GCMS-TQ8040 A triple quadrupole gas chromatograph mass spectrometer (GCMS-TQ8040) manufactured by Shimadzu Corporation was used for GCMS.
  • the analysis conditions of GCMS are shown below.
  • MS data Measurement of metabolites> Comprehensively detect peaks from the mass spectrum of a sample and compare their peak information (mass-to-charge ratio and signal intensity) with the mass-to-charge ratios of many metabolite-specific substances stored in the MS library Then, metabolites were identified, and measured values (hereinafter, referred to as MS data) of 135 types of metabolites were obtained.
  • Table 3 shows the results of the t-test of both groups as to the results of measuring the amounts of 135 types of metabolites in the AF group and the normal group.
  • Table 3 shows 10 metabolites (isocitrate, arabinose, ribose, 2-oxoglutarate, malate, phenylalanine, fumaric acid, succinate, etc.) that showed a statistically significant difference between the AF group and the normal group.
  • the P value and t statistic of (acid, fucose, citric acid) are listed in ascending order of P value.
  • “mEn (m is a real number, n is an integer)” means “m ⁇ 10 n ”.
  • “3.74E-06” becomes “3.74 ⁇ 10 ⁇ 6 ”.
  • All 10 metabolites shown in Table 3 had a P value of less than 0.001 in a separate Man-Whitney U test.
  • the absolute value of the t statistic was larger as the P value was smaller, and all of the 10 metabolites were negative except ribose. From this, the amounts of the nine metabolites excluding ribose were statistically significantly lower in subjects in the normal group than in the AF group, and the amount of ribose was lower in the test group in the normal group than in the AF group. It can be seen that the number was statistically significantly higher for the participants. From the above results, the measured values of the above 10 metabolites are useful as atrial fibrillation index values, and all of the measured values are compared with a predetermined threshold value. Can be diagnosed as motion.
  • Table 4 shows that AF group / normal group as dependent variables, age, gender, smoking history, current history of hypertension / diabetes, history of heart disease, eGFR (Estimate glomerular filtration rate, estimated glomerular filtration) 2 shows the results of investigating the relationship between the AF group and the measured values of 135 metabolites in the living body by logistic regression analysis.
  • Table 4 shows the five metabolites ( ⁇ -alanine, fumaric acid, threonine, succinic acid, and 2-oxoglutaric acid) having a small P value as a result of logistic regression analysis, together with regression coefficients, standard errors, and P values. They are listed.
  • Table 4 shows a t-statistic, a P-value, and a t-test P-value rank, which are the results of the t-test when the adjustment was not performed with the adjustment factor.
  • the P value rank was higher when adjusted with the adjusting factor than when not adjusted with the adjusting factor.
  • the dependent variable is set as AF group / normal group.
  • ROC analysis Receiveiver ⁇ Operating ⁇ Characteristic ⁇ analysis
  • 10 metabolites (2-oxoglutarate, isocitrate, fucose, arabinose, fumarate, erythritol, succinate, phenylalanine, malate, and citric acid) are useful for diagnosis of atrial fibrillation.
  • Table 5 shows the AUC values of ROC curves (ROC curve) of ten metabolites useful for diagnosing atrial fibrillation.
  • the ROC curve is obtained by plotting the ordinate as a true positive rate, that is, sensitivity, and the abscissa as a false positive rate, that is, “1-specificity”. That is, the sensitivity is calculated from the ratio of subjects determined to be positive to all subjects with atrial fibrillation, and the number of subjects (non-AF) determined to be positive to all subjects in the normal group is calculated. Calculate the false positive rate from the ratio.
  • the ROC curve can be obtained by calculating the sensitivity and the false positive rate at other cutoff values and plotting the values thus obtained on a graph.
  • the AUC value is the value of the area of the portion surrounded by the ROC curve and the horizontal axis.
  • Table 6 shows that the dependent variables same as those in the ROC analysis from which the results shown in Table 5 were obtained include age, sex, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR as adjusting factors.
  • ROC analysis of 135 metabolites for the model into which the values were entered shows 10 metabolites with high C statistics. The C statistic corresponds to the AUC value, and the closer the C statistic is to 1, the higher the diagnostic ability is.
  • Table 6 shows that 10 metabolites ( ⁇ -alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, Margaric acid, ribose) are listed with C statistics.
  • All of the measured values of these 10 metabolites are statistically correlated with atrial fibrillation and are useful as indices for diagnosing the presence or absence of atrial fibrillation.
  • the measured value of ⁇ -alanine (C statistic: 0.917) having the largest C statistic has a strong correlation with atrial fibrillation, and is an excellent index for diagnosing the presence or absence of atrial fibrillation. It can be said that.
  • Table 6 also shows AUC values and AUC ranks obtained by ROC analysis when adjustment was not performed using adjustment factors.
  • the above 10 metabolites had higher AUC ranks when adjusted with the adjusting factor than when not adjusted with the adjusting factor.
  • a method for diagnosing atrial fibrillation is to analyze a biological sample collected from a subject with an analyzer, and from data obtained by the analyzer, 16 metabolites, ⁇ -alanine, threonine, Amount of at least one metabolite selected from malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid, ribose, isocitric acid, phenylalanine, succinic acid, fucose, citric acid, erythritol And diagnosing the presence or absence of atrial fibrillation in the subject based on a result of comparing the atrial fibrillation index value with a predetermined threshold value.
  • Another method of diagnosing atrial fibrillation is to analyze a biological sample collected from a subject with a chromatograph mass spectrometer, and to analyze 16 types of metabolism from data obtained by the chromatograph mass spectrometer. Selected from ⁇ -alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid, ribose, isocitric acid, phenylalanine, succinic acid, fucose, citric acid, erythritol Determining an atrial fibrillation index value that is the amount of at least one metabolite to be determined, and diagnosing the presence or absence of atrial fibrillation in the subject based on a result of comparing the atrial fibrillation index value with a predetermined threshold value. Including.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention is a method for measuring an atrial fibrillation index value, which is an index value related to the onset of atrial fibrillation. This method involves: analyzing an organism specimen harvested from a subject; and measuring, as the atrial fibrillation index value, the amount of at least one metabolite selected from among 16 types of metabolites, including beta-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, heptadecanoic acid, ribose, isocitric acid, phenylalanine, succinic acid, fucose, citric acid, and erithritol. The result of measuring the atrial fibrillation index value described above can be useful in diagnosing atrial fibrillation.

Description

心房細動指標値の測定方法How to measure atrial fibrillation index
 本発明は、血液や尿等の生体試料に含まれる物質のうち心房細動の発症に関連する物質の測定方法に関する。 The present invention relates to a method for measuring a substance related to the onset of atrial fibrillation among substances contained in a biological sample such as blood or urine.
 心房細動は比較的よく認められる心臓不整脈である。心房細動の有病率は加齢に伴い増加し、また、各年齢層では一般に男性の方が女性よりも有病率が高い。心房細動では、速く不規則で無秩序な心房興奮が起こり、有効な心房収縮が消失するため、心房内の血流が停滞して心房内に血栓が形成される。心房内の血栓形成が原因となって発症する脳塞栓(心原性脳梗塞)は心房細動の重篤な合併症の一つであり、その予防として抗凝固薬による治療が永続的に必要となる場合が多い。 Atrial fibrillation is a relatively common cardiac arrhythmia. The prevalence of atrial fibrillation increases with age, and in each age group, men are generally more prevalent than women. In atrial fibrillation, rapid, irregular, and disordered atrial excitation occurs, causing loss of effective atrial contraction, resulting in stagnant blood flow in the atrium and thrombus formation in the atrium. Cerebral embolism (cardiogenic cerebral infarction) caused by thrombus formation in the atria is one of the serious complications of atrial fibrillation, and permanent treatment with anticoagulants is needed to prevent it In many cases.
 また、心房細動では有効な心房収縮が得られないため心拍出量が減少する。そのため、心疾患を有する患者で心房細動が発生すると、血行動態が保てず心不全が増悪する。さらに、心房細動による頻脈が持続すると心筋障害が起こり、長期的には心機能の低下をもたらす。従って、心房細動が発生した場合には、抗不整脈薬による薬物療法や、電気的除細動及びカテーテルアブレーション等の非薬物療法を用いた早期の洞調律化や再発予防、心拍数調節治療が重要となる(非特許文献1)。 心 拍 In addition, atrial fibrillation does not provide effective atrial contraction, resulting in a decrease in cardiac output. Therefore, when atrial fibrillation occurs in a patient having a heart disease, hemodynamics cannot be maintained and heart failure worsens. Furthermore, if tachycardia due to atrial fibrillation persists, myocardial damage occurs, resulting in a long-term decline in cardiac function. Therefore, when atrial fibrillation occurs, early sinus rhythm, recurrence prevention, and heart rate regulation treatment using anti-arrhythmic drug therapy, non-drug therapy such as cardioversion and catheter ablation are required. This is important (Non-Patent Document 1).
 心房細動の診断手法としては12誘導心電図検査が標準的である。しかしながら、発作性のように時々しか起こらない心房細動は短時間の検査では見つけ出すことが容易でないことから、24時間継続して心電図がとれるホルター心電計が用いられる。さらに、心臓の弁の異常ではないことを除外するためには、心エコー検査が行われる。心房細動が初めて発生してから持続性心房細動に移行する危険因子としては、心不全、高齢(75歳以上)、一過性脳虚血発作や脳梗塞の既往、慢性閉塞性肺疾患、高血圧などが挙げられる(非特許文献2)。 12As a diagnostic technique for atrial fibrillation, a 12-lead electrocardiogram is standard. However, since atrial fibrillation that occurs only occasionally, such as paroxysm, cannot be easily detected by a short examination, a Holter electrocardiograph that can continuously take an electrocardiogram for 24 hours is used. In addition, echocardiography is performed to rule out non-abnormal heart valves. Risk factors for the transition to persistent atrial fibrillation after the first occurrence of atrial fibrillation include heart failure, elderly (75 years and older), a history of transient ischemic attack and cerebral infarction, chronic obstructive pulmonary disease, Hypertension and the like (Non-Patent Document 2).
 心房細動を発症した比較的早い段階において心房細動の診断ができれば、脳梗塞などの重篤な合併症の予防が可能となるばかりでなく、洞調律維持のための迅速な対応をとることができる。さらに、持続性心房細動への移行を促進する背景因子の管理に役立てることができる(非特許文献3)。従って、心房細動の発症前状態や早期の状態を特異的に捉えた疾患マーカーは、心房細動の治療や予防のために非常に有用である。 If atrial fibrillation can be diagnosed relatively early in the onset of atrial fibrillation, not only will it be possible to prevent serious complications such as cerebral infarction, but also take prompt measures to maintain sinus rhythm Can be. Furthermore, it can be used to manage background factors that promote the transition to persistent atrial fibrillation (Non-Patent Document 3). Therefore, a disease marker that specifically captures a pre-onset state or an early state of atrial fibrillation is very useful for treating or preventing atrial fibrillation.
 これまで、心房細動の発症と関連する疾患マーカーとして、オステオプロテゲリン(Osteoprotegerin)などの炎症性マーカーが報告されている(非特許文献4)。この疾患マーカーの検出には、汎用性の高いELISA(Enzyme-Linked ImmunoSorbent Assay) という免疫学的検出法が用いられている。免疫学的検出法は、目的の対象物を個々に測定する方法であり、複数種類の対象物を一度に測定することはできないため、心房細動の発症に対する特異性の高い新規の疾患マーカーを網羅的に探索するには限界があった。 炎症 So far, inflammatory markers such as osteoprotegerin have been reported as disease markers associated with the onset of atrial fibrillation (Non-patent Document 4). For the detection of this disease marker, an immunological detection method called ELISA (Enzyme-Linked {ImmunoSorbent} Assay)} having high versatility is used. The immunological detection method is a method of individually measuring a target object.Since it is not possible to measure a plurality of types of objects at one time, a new disease marker having a high specificity for the onset of atrial fibrillation is developed. There was a limit to exhaustive search.
 近年、代謝物を解析するメタボローム解析(メタボロミクス)を用いて、様々な疾患マーカーを探索する試みが行われている。心房細動におけるメタボローム解析としては、これまでのところ2つの報告がなされている。一つは、2008年のMayrらによる、核磁気共鳴分光法(NMR)を用いたメタボローム解析とプロテオーム解析を組み合わせた前向き研究(追跡調査による研究)の報告であり、この研究では、心臓外科手術後に心房細動を発症した群と洞調律を維持したコントロール群を比較検討し、心房細動発症群における心房筋組織の代謝物の変化を観察している(非特許文献5)。心臓外科手術後に心房細動に進展した群では、心房筋組織において統率されていない代謝物の変化が認められ、心房細動の発症に関連する代謝物としてケトン体の存在が示唆された。 In recent years, attempts have been made to search for various disease markers using metabolome analysis (metabolomics) for analyzing metabolites. There have been two reports on metabolome analysis in atrial fibrillation so far. One was a report by Mayr et al. In 2008 on a prospective study (a follow-up study) that combined metabolomic and proteomic analysis using nuclear magnetic resonance spectroscopy (NMR). A group that subsequently developed atrial fibrillation was compared with a control group that maintained sinus rhythm, and changes in metabolites of atrial muscle tissue in the group that developed atrial fibrillation were observed (Non-Patent Document 5). In the group that progressed to atrial fibrillation after cardiac surgery, uncontrolled metabolite changes were observed in atrial muscle tissue, suggesting the presence of ketone bodies as metabolites associated with the development of atrial fibrillation.
 もう一つは、2015年のAlonsoらによるARIC(Atherosclerosis Risk in Communities)研究の報告であり、この研究では、1919名のアフリカ系アメリカ人を22年間追跡調査し、心房細動を新規発症した183名の対象者の血清を分析している(非特許文献6)。そして、分析の結果から心房細動の発症と関連する代謝物を解析し、その結果、胆汁酸の代謝と関連のあるGlycolithocholate sulfate及びGlycocholenate sulfateが心房細動の発症と関連する代謝物として報告された。
 このように、心房細動の発症に関連するマーカー候補の報告があるものの、いずれのマーカー候補も実際に臨床応用がされていない。
The other is the report of the ALIC (Atherosclerosis Risk in Communities) study by Alonso et al. In 2015, in which 1919 African Americans were followed up for 22 years and 183 newly developed atrial fibrillation. The serum of several subjects is analyzed (Non-Patent Document 6). Then, metabolites related to the onset of atrial fibrillation were analyzed from the results of the analysis, and as a result, Glycolithocholate sulfate and Glycocholenate sulfate related to bile acid metabolism were reported as metabolites related to the onset of atrial fibrillation. Was.
As described above, although there are reports of marker candidates related to the onset of atrial fibrillation, none of the marker candidates has actually been clinically applied.
 心房細動はその発症要因として、遺伝因子(遺伝的素因)と環境因子(生活習慣)の二つが考えられている(非特許文献7)。遺伝的素因は、疾患の発症し易さという点で重要であり、遺伝子情報を疾患マーカーの一つとして将来における疾患発症のリスクを推定できると考えられるが、遺伝子素因だけでは早期の段階で疾患を診断することは困難である。また、生活習慣は、遺伝的素因に影響を及ぼすような習慣の場合は遺伝因子と同様に重要な環境因子となるが、生活習慣は年齢とともに変化することが多く、また、多種多様な要因が重なり合って発症する疾患を早期の段階で診断することは困難である。 Atrial fibrillation is considered to be caused by two factors, a genetic factor (genetic predisposition) and an environmental factor (lifestyle) (Non-Patent Document 7). Genetic predisposition is important in terms of the likelihood of developing a disease, and genetic information can be used as a disease marker to estimate the risk of developing a disease in the future. It is difficult to diagnose. In addition, lifestyle is an important environmental factor as well as genetic factors in the case of habits that affect genetic predisposition, but lifestyle habits often change with age, and a variety of factors It is difficult to diagnose overlapping diseases at an early stage.
 本発明が解決しようとする課題は、心房細動の発症に関連すると考えられる代謝物の量を測定することであり、ひいては、その測定結果を心房細動の診断に役立てることである。 The problem to be solved by the present invention is to measure the amount of metabolites considered to be related to the onset of atrial fibrillation, and to use the measurement result for diagnosis of atrial fibrillation.
 上記課題を解決するために成された本発明は、心房細動の発症に関連する指標である心房細動指標値を測定する方法であって、
 被検者から採取された生体試料を分析し、16種の代謝物であるβ‐アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボース、イソクエン酸、フェニルアラニン、コハク酸、フコース、クエン酸、エリスリトールから選ばれる少なくとも1種の代謝物の量を前記心房細動指標値として測定することを特徴とする。
The present invention has been made to solve the above problems, a method of measuring an atrial fibrillation index value is an index related to the onset of atrial fibrillation,
A biological sample collected from the subject was analyzed and 16 metabolites, β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, margaric acid, ribose , Isocitrate, phenylalanine, succinic acid, fucose, citric acid, and erythritol, wherein the amount of at least one metabolite is measured as the atrial fibrillation index value.
 本発明者は、心房細動に関連する複合的な病態の変化を包括的にとらえるため、メタボロミクスといわれる手法を用いて、心房細動に関連する指標となる代謝物を探索した。具体的には、多数の被検者から採取した血液試料(血清)をクロマトグラフ質量分析装置を用いて分析し、該血液試料に含まれる多数の代謝物の量を網羅的に測定した結果を包括的に解析することにより、上述した16種の代謝物が心房細動に大きく関連することを見出した。従って、これら16種の代謝物の量の少なくとも一つを心房細動指標値として、心房細動の診断に利用することができる。 (4) The present inventor searched for metabolites that serve as indices related to atrial fibrillation using a technique called metabolomics in order to comprehensively capture complex changes in pathological conditions associated with atrial fibrillation. Specifically, a blood sample (serum) collected from a large number of subjects is analyzed using a chromatograph mass spectrometer, and the result of comprehensively measuring the amounts of a large number of metabolites contained in the blood sample is obtained. By comprehensive analysis, it was found that the above 16 metabolites were significantly associated with atrial fibrillation. Therefore, at least one of these 16 metabolite amounts can be used as an atrial fibrillation index value for diagnosis of atrial fibrillation.
 上述した16種の代謝物は、血清に含まれる多数の代謝物のうち堅牢な135種の代謝物の測定値について、心房細動の有無の2群について統計解析を行った結果、心房細動の有無との間に高い相関関係が見られた代謝物である。表1に135種の代謝物のリストを示す。表1に示す代謝物名に含まれる「-nTMS」、「-nTMS(m)」、「-メチルオキシム-nTMS」、又は「-メチルオキシム-nTMS(m)」(n及びmは自然数)は、ガスクロマトグラフ質量分析装置による分析時に添加された試薬に起因するものである。したがって、例えば表1中の「アスパラギン-2TMS」と「アスパラギン-3TMS」は同一の代謝物(アスパラギン)に由来する。なお、2群比較の際の心房細動の有無は、心電図に基づき判定した。 As for the above-mentioned 16 metabolites, as a result of performing statistical analysis on two groups with and without atrial fibrillation, a measurement value of 135 robust metabolites among many metabolites contained in serum was obtained. Is a metabolite with a high correlation with the presence or absence of Table 1 shows a list of 135 metabolites. “-NTMS”, “-nTMS (m)”, “-methyloxime-nTMS”, or “-methyloxime-nTMS (m)” (n and m are natural numbers) included in the metabolite names shown in Table 1 are , Due to the reagent added during the analysis by the gas chromatograph mass spectrometer. Therefore, for example, “asparagine-2TMS” and “asparagine-3TMS” in Table 1 are derived from the same metabolite (asparagine). The presence or absence of atrial fibrillation in the comparison between the two groups was determined based on an electrocardiogram.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 具体的には、例えば、被検者から採取した血液中の心房細動指標値を測定し、その測定値を所定の閾値と比較することにより、心房細動の有無を判別することができる。この場合、あらかじめ、心房細動と診断された者(心房細動発症者)、および心房細動発症者ではないと診断された者(正常者)の血液中の心房細動指標値の範囲を求めておき、被検者の心房細動指標値が正常者の範囲に入るか、心房細動発症者の範囲に入るか、のいずれであるかによって、被検者が心房細動であるかどうかを判別すると良い。また、被検者の健常時における心房細動指標値の範囲を予め測定しておき、その後の被検者の心房細動指標値を前記範囲と比較し、該心房細動指標値が前記範囲から外れている場合に被検者が心房細動かどうかを判別しても良い。 Specifically, for example, the presence or absence of atrial fibrillation can be determined by measuring an atrial fibrillation index value in blood collected from a subject and comparing the measured value with a predetermined threshold value. In this case, the range of the atrial fibrillation index value in the blood of a person diagnosed with atrial fibrillation (atrial fibrillation onset) and a person diagnosed as not having atrial fibrillation onset (normal person) is determined in advance. It is determined whether the subject has atrial fibrillation depending on whether the atrial fibrillation index value of the subject falls within the range of a normal person or within the range of atrial fibrillation onset. It is better to determine whether or not. Further, the range of the atrial fibrillation index value in the normal state of the subject is measured in advance, and then the atrial fibrillation index value of the subject is compared with the range, and the atrial fibrillation index value is in the range. If it is out of the range, it may be determined whether or not the subject has atrial fibrillation.
 上記16種の代謝物の測定値である心房細動指標値は単独で心房細動の診断に用いることも可能であるが、複数の心房細動指標値を組み合わせて用いることにより、心房細動の診断精度を上げることができる。例えば、2種類の心房細動指標値のいずれか一方だけが心房細動を発症していることを示す範囲にある場合よりも、2種類の心房細動指標値の両方が心房細動を発症していることを示す範囲にある場合の方が、心房細動である可能性が高いと判断することができる。 The atrial fibrillation index value, which is a measured value of the above 16 metabolites, can be used alone for diagnosis of atrial fibrillation. However, by using a combination of a plurality of atrial fibrillation index values, atrial fibrillation Diagnosis accuracy can be improved. For example, both of the two types of atrial fibrillation index values cause atrial fibrillation, compared to a case where only one of the two types of atrial fibrillation index values is in the range indicating that atrial fibrillation has developed. It can be determined that there is a higher possibility of atrial fibrillation when it is within the range indicating that the patient is performing atrial fibrillation.
 本発明における「被検者から採取された生体試料」とは、該生体試料に含まれる代謝物の量を測定することができるものであれば血液、生体組織、糞便、尿等、どのようなものでも良い。ただし、試料の採取のし易さ、代謝物の含有量の多さを考慮すると血液(全血、血清、又は血漿)が好ましい。血清としては、全血に対して抗凝固剤を添加せずに血球成分を凝固させてから得られる液性成分を使用することができる。また、血漿としては、全血に対して抗凝固剤を添加して血球成分を凝固させずに得られる液性成分を使用することができる。 In the present invention, "a biological sample collected from a subject" refers to any blood, biological tissue, stool, urine, etc., as long as the amount of a metabolite contained in the biological sample can be measured. It may be something. However, blood (whole blood, serum, or plasma) is preferable in consideration of the ease of sample collection and the large content of metabolites. As the serum, a liquid component obtained by coagulating blood cell components without adding an anticoagulant to whole blood can be used. In addition, as the plasma, a liquid component obtained by adding an anticoagulant to whole blood without coagulating blood cell components can be used.
 また、心房細動の発症に関連する代謝物の探索にはクロマトグラフ質量分析(クロマトグラフMS分析)を用いたが、本発明における生体試料の分析手法としては、クロマトグラフMS分析に限らず、核磁気共鳴(NMR)分光法、酵素結合免疫吸着検定法(ELISA)及びラジオイムノアッセイ(RIA)等の免疫学的分析法などを用いることができる。ただし、定量的に生体試料に含まれる代謝物の量を測定することができる点でクロマトグラフMS分析が優れている。クロマトグラフMS分析とは、ガスクロマトグラフ、又は液体クロマトグラフと、これらクロマトグラフで分離された試料の検出装置としての質量分析装置を用いた分析をいう。質量分析装置としては、トリプル四重極型質量分析装置、Q-TOF型質量分析装置、TOF-TOF型質量分析装置、イオントラップ質量分析装置、又はイオントラップ飛行時間型質量分析装置が挙げられる。これらの質量分析装置を用いると、分析対象物(代謝物)以外の夾雑物を多く含む試料であっても高感度な分析が可能であり、分析安定性が向上するため、高い再現性で生体試料に含まれる代謝物の量を定量的に測定することができる。 In addition, although chromatographic mass spectrometry (chromatographic MS analysis) was used to search for metabolites related to the onset of atrial fibrillation, the biological sample analysis method of the present invention is not limited to chromatographic MS analysis. Immunological analysis methods such as nuclear magnetic resonance (NMR) spectroscopy, enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA) can be used. However, chromatographic MS analysis is excellent in that the amount of metabolites contained in a biological sample can be quantitatively measured. The chromatographic MS analysis refers to an analysis using a gas chromatograph or a liquid chromatograph, and a mass spectrometer as a device for detecting a sample separated by these chromatographs. Examples of the mass spectrometer include a triple quadrupole mass spectrometer, a Q-TOF mass spectrometer, a TOF-TOF mass spectrometer, an ion trap mass spectrometer, and an ion trap time-of-flight mass spectrometer. With these mass spectrometers, highly sensitive analysis is possible even for samples containing a large amount of contaminants other than the analyte (metabolite), and the analysis stability is improved. The amount of metabolite contained in the sample can be quantitatively measured.
 上記心房細動指標値の測定方法において、
 前記心房細動指標値は、前記16種の代謝物のうちの特にイソクエン酸、アラビノース、リボース、2-オキソグルタル酸、リンゴ酸、フェニルアラニン、フマル酸、コハク酸、フコース、クエン酸のいずれかの代謝物の量であることが好ましい。
In the method of measuring the atrial fibrillation index value,
The atrial fibrillation index value is, particularly of the 16 metabolites, isocitrate, arabinose, ribose, 2-oxoglutaric acid, malic acid, phenylalanine, fumaric acid, succinic acid, fucose, citric acid It is preferably the amount of the substance.
 上記10種の代謝物は、135種の代謝物の測定値について、AFあり(心房細動)群と正常群(AFなし)の2群間でt検定を行ったところ、両群の間に有意な差が認められたものである。また、これらは別途Mann-WhitneyのU検定でP値が0.001未満であった。従って、上記10種の代謝物の量を心房細動指標値として測定し、該指標値と所定の閾値との比較により、心房細動の有無を診断することができる。所定の閾値は、多数の被検者について、前記10種の代謝物それぞれの生体試料中に含まれる量を測定したときの平均値や中央値等とすることができる。 As for the above-mentioned 10 metabolites, the t-test was carried out between the two groups of the group with AF (atrial fibrillation) and the normal group (without AF) for the measurement values of 135 metabolites. Significant differences were observed. Further, these had a P value of less than 0.001 in a separate Mann-Whitney U test. Therefore, the presence or absence of atrial fibrillation can be diagnosed by measuring the amounts of the ten metabolites as an atrial fibrillation index value and comparing the index value with a predetermined threshold value. The predetermined threshold value may be an average value, a median value, or the like when the amount of each of the ten metabolites contained in the biological sample is measured for a large number of subjects.
 また、上記心房細動指標値は、前記16種の代謝物のうちの特にβ-アラニン、フマル酸、トレオニン、コハク酸、2-オキソグルタル酸のいずれかの代謝物の量であることが好ましい。
 上記5種の代謝物は、従属変数として心房細動の有無に加えて、調整因子として年齢、性別、喫煙歴、高血圧・糖尿病の現病歴あり、心疾患の既往歴あり、及びeGFR値を投入したモデルについて135種の代謝物の測定値のロジスティック回帰分析を行ったところ、P値が0.05よりも小さく、心房細動の有無との間に高い相関関係が見られた代謝物である。従って、これら5種の代謝物の測定値を心房細動指標値として測定し、これと所定の閾値と比較することにより、心房細動を早期の段階で診断することができる。
In addition, the above-mentioned atrial fibrillation index value is preferably the amount of any of metabolites of β-alanine, fumaric acid, threonine, succinic acid, and 2-oxoglutaric acid among the 16 metabolites.
For the above five metabolites, in addition to the presence or absence of atrial fibrillation as dependent variables, age, gender, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR value are input as adjustment factors. When a logistic regression analysis of the measured values of 135 metabolites was performed for the model obtained, the P value was smaller than 0.05, indicating that the metabolite showed a high correlation with the presence or absence of atrial fibrillation. . Therefore, atrial fibrillation can be diagnosed at an early stage by measuring the measured values of these five metabolites as atrial fibrillation index values and comparing the measured values with a predetermined threshold value.
 また、上記心房細動指標値としては、前記16種の代謝物のうちの特に2-オキソグルタル酸、イソクエン酸、フコース、アラビノース、フマル酸、エリスリトール、コハク酸、フェニルアラニン、リンゴ酸、クエン酸のいずれかの代謝物の量であると良い。
 上記10種の代謝物は、従属変数として心房細動の有無において、135種の代謝物の測定値についてROC解析し、そのAUC値を求めたところ、その値が大きかった代謝物である。従って、これら10種の代謝物の測定値をそれぞれ心房細動指標値として測定し、これと所定の閾値との比較により、心房細動の有無を診断することができ、しかも、誤診断を少なくすることができる。
In addition, as the above-mentioned atrial fibrillation index value, any one of the 16 metabolites, especially 2-oxoglutaric acid, isocitrate, fucose, arabinose, fumaric acid, erythritol, succinic acid, phenylalanine, malic acid, and citric acid It is good to be the amount of that metabolite.
The above 10 metabolites were subjected to ROC analysis on the measured values of 135 metabolites in the presence or absence of atrial fibrillation as dependent variables, and their AUC values were determined. The AUC values were large. Therefore, the measured values of these 10 metabolites are each measured as an atrial fibrillation index value, and by comparing this with a predetermined threshold value, the presence or absence of atrial fibrillation can be diagnosed, and erroneous diagnosis is reduced. can do.
 さらには、上記心房細動指標値は、前記16種の代謝物のうちの特にβ-アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボースのいずれか代謝物の量であると良い。
 上記10種の代謝物は、従属変数として心房細動の有無、調整因子として年齢、性別、喫煙歴、高血圧・糖尿病の現病歴あり、心疾患の既往歴あり、及びeGFR値を投入したモデルについて135種の代謝物の測定値についてC統計量を求めたところ、その値が大きかった代謝物である。従って、これら10種の代謝物の測定値をそれぞれ心房細動指標値として測定し、これと所定の閾値とを比較することにより、心房細動の有無を高い精度で診断することができる。
Furthermore, the above-mentioned atrial fibrillation index value is particularly β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid among the 16 metabolites. It may be the amount of any metabolite of ribose.
The above 10 metabolites are modeled with the presence or absence of atrial fibrillation as dependent variables, age, sex, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR value as adjustment factors When the C statistic was determined for the measured values of 135 metabolites, the metabolite was found to have a large value. Therefore, by measuring the measured values of these 10 metabolites as atrial fibrillation index values and comparing them with a predetermined threshold value, it is possible to diagnose the presence or absence of atrial fibrillation with high accuracy.
 本発明では、メタボロミクスの解析手法を用いて心房細動との関連性が大きい代謝物を探索することによって見出した代謝物の生体試料中の量を心房細動指標値として測定するため、該心房細動指標値を、心房細動の診断に役立てることができる。  In the present invention, the amount of a metabolite found in a biological sample by searching for a metabolite having a high relationship with atrial fibrillation using a metabolomics analysis method is measured as an atrial fibrillation index value. The fibrillation index value can be used to diagnose atrial fibrillation.
 本発明者は、被検者から採取した生体試料(血清)をガスクロマトグラフ質量分析装置(GCMS)を用いて分析し、該生体試料に含まれる多数の代謝物の量を網羅的に測定した。そして、それらの測定値を様々な手法を用いて解析することにより、心房細動の有無に大きく関連すると思われる代謝物を探索した。表2に心房細動の発症に関連する代謝物を探索するための生体試料を採取した被検者のベースライン特性を示す。表2のベースライン特性を示す被検者の抽出方法、生体試料の調製及び分析方法、代謝物の測定方法、測定結果の解析等について以下に説明する。 (4) The present inventor analyzed a biological sample (serum) collected from a subject using a gas chromatograph mass spectrometer (GCMS), and comprehensively measured the amounts of a large number of metabolites contained in the biological sample. Then, by analyzing the measured values using various methods, metabolites that seemed to be significantly related to the presence or absence of atrial fibrillation were searched. Table 2 shows the baseline characteristics of subjects who collected biological samples to search for metabolites associated with the development of atrial fibrillation. A method for extracting a subject exhibiting the baseline characteristics shown in Table 2, a method for preparing and analyzing a biological sample, a method for measuring a metabolite, and an analysis of a measurement result will be described below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<被検者の抽出>
 研究倫理委員会の承認のもと、2015年10月から2016年9月までの1年間に聖路加国際病院附属クリニック予防医療センターを訪れた人間ドック受診者(約4万5000人)の中から7601人の受診者をランダムにサンプリングし、そのうち本実験への不参加を表明した者を除外した残りの7592人の対象者を被検者とした。なお、全ての被検者には、病歴や生活習慣(喫煙等)について、自己記入式の質問票での回答結果が付随している。また、人間ドック受診時に身長、体重、体格指数(BMI)、血圧、及び血液検査(ヘモグロビンA1c、空腹時血糖、クレアチニン(GFR推定値))の結果等も被検者には付随している。
<Extraction of subject>
With the approval of the Research Ethics Committee, a total of 45,000 people who visited the St. Luke's International Hospital Clinic Preventive and Medical Center during the year from October 2015 to September 2016 7601 examinees were sampled randomly, and the remaining 7592 subjects were excluded as subjects, excluding those who indicated that they did not participate in this experiment. It should be noted that all subjects are accompanied by self-completed questionnaires regarding medical histories and lifestyle (such as smoking). In addition, the height, weight, body mass index (BMI), blood pressure, and results of blood tests (hemoglobin A1c, fasting blood glucose, creatinine (GFR estimated value), etc.) are also attached to the subject at the medical checkup.
 聖路加国際病院附属クリニック予防医療センターは東京都中央区にあり、人間ドック受診者の多くの居住地域は東京近傍にある。また、今回の被検者は全て日本人とした。従って、今回の被検者は、環境要因、民族的要因ともに均一な集団といえる。 予 防 The St. Luke's International Hospital Clinic Preventive Medical Center is located in Chuo-ku, Tokyo, and many residents of health check-ups are located near Tokyo. The subjects were all Japanese. Therefore, it can be said that the subjects this time are a group with uniform environmental and ethnic factors.
 7592人の被検者の集団の中央値年齢は52歳(四分位範囲42歳~62歳)であり、そのうち3967名(52.3%)は女性であった。また、心電図検査で心房細動(AF)ありと診断された者(「AF群」と呼ぶ)は58人(0.8%)、それ以外の者(AFなしと診断された者(「正常群」と呼ぶ))は7534人(99.2%)であった。上記した表2に示すように、AF群では女性よりも男性の方が統計的に有意に多く、また、正常群よりもAF群の方が統計的に有意に年齢が高かった。 The median age of the population of $ 7592 subjects was 52 years (interquartile range 42-62 years), of which 3967 (52.3%) were women. In addition, 58 patients (0.8%) diagnosed as having atrial fibrillation (AF) by electrocardiography, and others (diagnosed without AF (“normal”) Group)) were 7534 (99.2%). As shown in Table 2 above, in the AF group, the males were statistically significantly more than the females, and the AF group was statistically significantly older than the normal group.
<試料の調製>
(1)前処理
 被検者から採取された血液を、所定時間放置した後、遠心分離し、上澄み(血清)を採取した。採取した血清は分析までの間、-80℃で保管した。なお、被検者から血液を採取してから血清を冷凍するまでの時間は血清中の代謝物の測定値に影響を及ぼす。今回の被検者集団の約半数が、血液を採取してから冷凍するまでの時間が5~8時間であった。
<Sample preparation>
(1) Pretreatment Blood collected from a subject was allowed to stand for a predetermined time, and then centrifuged to collect a supernatant (serum). The collected serum was stored at -80 ° C until analysis. The time from when blood is collected from the subject until the serum is frozen affects the measured value of metabolites in the serum. Approximately half of the subject population had five to eight hours from blood collection to freezing.
(2)本処理
 -80℃で保存されていた血清を25℃、5分で解凍した。解凍後の血清を、10,000×g、4℃、1minで遠心分離した後、氷上静置し、これに、第1混合液(メタノール/水/クロロホルム、2.5:1:1)250μLに、内部標準溶液(2‐イソプロピルリンゴ酸:0.1mg/mL)6μLを添加し、ボルテックスミキサーを用いて混合して第2混合液を得た。
(2) Main treatment The serum stored at -80 ° C was thawed at 25 ° C for 5 minutes. The thawed serum was centrifuged at 10,000 × g at 4 ° C. for 1 min, and then allowed to stand on ice, and added to 250 μL of a first mixture (methanol / water / chloroform, 2.5: 1: 1). 6 μL of an internal standard solution (2-isopropylmalic acid: 0.1 mg / mL) was added, and mixed using a vortex mixer to obtain a second mixed solution.
 その後、血清と前記第2混合液を、37℃、30分間、1,200rpmで振盪した後、25℃、5分間、16,000×gで遠心分離し、上清150μLを、水140μLを予め加えたチューブに添加し、ボルテックスミキサーを用いて混合して、第3混合液を得た。
 次に、上記第3混合液を、25℃、5分間、16,000×gで遠心し、その上清180μLを新しいチューブに回収した。これを、室温、60分間、スピードメモリを「7」に設定して遠心エバポレーターで濃縮した。
 濃縮した第3混合液の上清(濃縮液)を-80℃、30分で凍結した後、これをオーバーナイトで乾燥したものをサンプルとした。得られたサンプルは分析までデシケーターで保存した。
Thereafter, the serum and the second mixed solution were shaken at 1,200 rpm at 37 ° C. for 30 minutes, centrifuged at 16,000 × g at 25 ° C. for 5 minutes, and 150 μL of the supernatant was added to 140 μL of water in advance. And mixed using a vortex mixer to obtain a third mixed solution.
Next, the third mixture was centrifuged at 16,000 × g for 5 minutes at 25 ° C., and 180 μL of the supernatant was collected in a new tube. This was concentrated with a centrifugal evaporator at room temperature for 60 minutes with the speed memory set to "7".
After the concentrated supernatant (concentrated liquid) of the third liquid mixture was frozen at −80 ° C. for 30 minutes, it was dried overnight to obtain a sample. The obtained sample was stored in a desiccator until analysis.
<試料のGCMS分析>
 デシケーターで保存されていたサンプルに、メトキシアミン溶液(20mg/mL、ピリジンで溶解)80μLを添加した後、これを37℃、30分間、1,200rpmで振盪した。続いて、N-メチル-N-トリメチルシリルトリフルオロアセトアミド40μLを添加し、37℃、30分間、1,200rpmで振盪した後、25℃、5分間、16,000×gで遠心分離し、その上清50μLをガラスバイアルに入れ、このバイアルをGCMSのオートサンプラーにセットした。
<GCMS analysis of sample>
After 80 μL of a methoxyamine solution (20 mg / mL, dissolved in pyridine) was added to the sample stored in the desiccator, the mixture was shaken at 37 ° C. for 30 minutes at 1,200 rpm. Subsequently, 40 μL of N-methyl-N-trimethylsilyltrifluoroacetamide was added, and the mixture was shaken at 1,200 rpm at 37 ° C. for 30 minutes, then centrifuged at 16,000 × g at 25 ° C. for 5 minutes, and 50 μL of the supernatant was collected. The vial was placed in a glass vial, and the vial was set in an auto sampler of GCMS.
 GCMSには、株式会社島津製作所製のトリプル四重極型ガスクロマトグラフ質量分析計(GCMS-TQ8040)を用いた。GCMSの分析条件を以下に示す。
(1)カラム:DB-5((5%-フェニル)-メチルポリシロキサン、無極性)、長さ30m、内径0.25mm、膜厚1.00μm
(2)カラムオーブン温度:80℃
(3)インジェクション温度:280℃
(4)インジェクションモード:スプリット
(5)ヘリウムガス流量:39cm/sec
(6)カラム温度:0-2.5min;80℃、2.5-18.5min;80-280℃に上昇、18.5-23.0min;280℃
(7)MSイオン源温度:200℃
(8)インターフェイス温度:250℃
(9)検出器電圧:0.2kV
(10)質量範囲:m/z 85-500
A triple quadrupole gas chromatograph mass spectrometer (GCMS-TQ8040) manufactured by Shimadzu Corporation was used for GCMS. The analysis conditions of GCMS are shown below.
(1) Column: DB-5 ((5% -phenyl) -methylpolysiloxane, nonpolar), length 30 m, inner diameter 0.25 mm, film thickness 1.00 μm
(2) Column oven temperature: 80 ° C
(3) Injection temperature: 280 ° C
(4) Injection mode: split (5) Helium gas flow rate: 39 cm / sec
(6) Column temperature: 0-2.5 min; 80 ° C., 2.5-18.5 min; rise to 80-280 ° C., 18.5-23.0 min; 280 ° C.
(7) MS ion source temperature: 200 ° C
(8) Interface temperature: 250 ° C
(9) Detector voltage: 0.2 kV
(10) Mass range: m / z 85-500
<データ解析>
<代謝物の測定>
 試料のマススペクトルからピークを網羅的に検出し、それらのピーク情報(質量電荷比及び信号強度)をMSライブラリに格納されている多数の代謝物に特異的な物質の質量電荷比と比較することで、代謝物を同定し、135種類の代謝物の測定値(以下、MSデータという。)を求めた。
<Data analysis>
<Measurement of metabolites>
Comprehensively detect peaks from the mass spectrum of a sample and compare their peak information (mass-to-charge ratio and signal intensity) with the mass-to-charge ratios of many metabolite-specific substances stored in the MS library Then, metabolites were identified, and measured values (hereinafter, referred to as MS data) of 135 types of metabolites were obtained.
<統計解析>
 MSデータを取得した被検者について、統計解析に必要な臨床情報、検査データを、聖路加国際病院の研究倫理委員会の承諾のもと、聖路加国際大学情報システムセンターから入手し、臨床情報、検査データとMSデータの突合わせを行った。被検者の臨床情報及び検査データは全て被検者を表す管理番号で管理されており、データの突き合わせの際に、被検者が特定されないようにした。
<Statistical analysis>
Obtain the clinical information and test data required for statistical analysis from the subject who obtained the MS data from the St. Luke's International University Information System Center with the consent of the Research Ethics Committee of St. Luke's International Hospital, Clinical information, test data and MS data were compared. The clinical information and test data of the subject are all managed by a management number indicating the subject, and the subject is not specified when the data is matched.
 統計解析では、単変量解析として対応のないt検定、マン-ホイットニーのU検定を用いた。多変量解析としてロジスティック回帰分析を用いた。また、診断能力の評価には、各代謝物単独のモデルでは、ROC曲線より算出されたAUC値を用い、調整因子を用いた多変量解析モデルでは、C統計量を用いた。 In statistical analysis, unpaired t-test and Mann-Whitney U test were used as univariate analysis. Logistic regression analysis was used as multivariate analysis. In the evaluation of the diagnostic ability, the AUC value calculated from the ROC curve was used in the model of each metabolite alone, and the C statistic was used in the multivariate analysis model using the adjustment factor.
 表3は、AF群と正常群について135種の代謝物の量を測定した結果について、両群のt検定を行った結果を示している。表3には、AF群と正常群の間で統計的に有意な差が認められた10種の代謝物(イソクエン酸、アラビノース、リボース、2-オキソグルタル酸、リンゴ酸、フェニルアラニン、フマル酸、コハク酸、フコース、クエン酸)のP値及びt統計量を、P値が小さいものから順に列挙している。なお、表3において、「mEn(mは実数、nは整数)」は「m×10」を意味する。例えば「3.74E-06」は「3.74×10-6」となる。表3に示す10種の代謝物は、いずれも別途行ったマン-ホイットニーのU検定でP値が0.001未満であった。 Table 3 shows the results of the t-test of both groups as to the results of measuring the amounts of 135 types of metabolites in the AF group and the normal group. Table 3 shows 10 metabolites (isocitrate, arabinose, ribose, 2-oxoglutarate, malate, phenylalanine, fumaric acid, succinate, etc.) that showed a statistically significant difference between the AF group and the normal group. The P value and t statistic of (acid, fucose, citric acid) are listed in ascending order of P value. In Table 3, “mEn (m is a real number, n is an integer)” means “m × 10 n ”. For example, “3.74E-06” becomes “3.74 × 10 −6 ”. All 10 metabolites shown in Table 3 had a P value of less than 0.001 in a separate Man-Whitney U test.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、10種の代謝物は、いずれもP値が小さいほどt統計量の絶対値が大きく、リボースを除きいずれも負の値であった。このことから、リボースを除く9種の代謝物の量は、AF群よりも正常群の被検者の方が統計的に有意に少なく、リボースの量は、AF群よりも正常群の被検者の方が統計的に有意に多かったことが分かる。
 以上の結果から、上記10種の代謝物の測定値は心房細動指標値として有用であり、いずれも測定値と所定の閾値とを比較し該閾値よりも大きいとき、もしくは小さいときは心房細動であると診断することができる。
As shown in Table 3, the absolute value of the t statistic was larger as the P value was smaller, and all of the 10 metabolites were negative except ribose. From this, the amounts of the nine metabolites excluding ribose were statistically significantly lower in subjects in the normal group than in the AF group, and the amount of ribose was lower in the test group in the normal group than in the AF group. It can be seen that the number was statistically significantly higher for the participants.
From the above results, the measured values of the above 10 metabolites are useful as atrial fibrillation index values, and all of the measured values are compared with a predetermined threshold value. Can be diagnosed as motion.
 表4は、従属変数としてAF群/正常群、調整因子として年齢、性別、喫煙歴、高血圧・糖尿病の現病歴あり、心疾患の既往歴あり、及びeGFR(Estimate glomerular filtration rate、推定糸球体濾過量)値を投入し、AF群と135種の生体内代謝産物の測定値との関連を、ロジスティック回帰分析で検討した結果を示している。表4には、ロジスティック回帰分析の結果、P値が小さかった5種の代謝物(β-アラニン、フマル酸、トレオニン、コハク酸、2-オキソグルタル酸)を、回帰係数、標準誤差、P値とともに列挙している。表4に示すように、5種の代謝物のうちβ-アラニンのP値が最も小さく、β-アラニンと心房細動との間に強い相関が認められた。表4には、調整因子での調整を行わなかった時のt検定結果であるt統計量、P値、及びt検定P値順位を併せて示した。上記5種の代謝物は、いずれも調整因子で調整したときの方が、調整因子で調整しなかったときよりもP値順位が上位であった。このように調整因子で調整を行うことで順位が上がり、指標としての有用性が増した。 Table 4 shows that AF group / normal group as dependent variables, age, gender, smoking history, current history of hypertension / diabetes, history of heart disease, eGFR (Estimate glomerular filtration rate, estimated glomerular filtration) 2 shows the results of investigating the relationship between the AF group and the measured values of 135 metabolites in the living body by logistic regression analysis. Table 4 shows the five metabolites (β-alanine, fumaric acid, threonine, succinic acid, and 2-oxoglutaric acid) having a small P value as a result of logistic regression analysis, together with regression coefficients, standard errors, and P values. They are listed. As shown in Table 4, among the five metabolites, β-alanine had the smallest P value, and a strong correlation was observed between β-alanine and atrial fibrillation. Table 4 also shows a t-statistic, a P-value, and a t-test P-value rank, which are the results of the t-test when the adjustment was not performed with the adjustment factor. Among the above five metabolites, the P value rank was higher when adjusted with the adjusting factor than when not adjusted with the adjusting factor. By adjusting the adjustment factor in this way, the ranking is raised, and the usefulness as an index is increased.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次に、各代謝物の測定値を心房細動指標値としたときの、その診断能力(つまり、心房細動の診断精度の高さ)を検討するため、従属変数をAF群/正常群として、135種の代謝物についてROC解析(Receiver Operating Characteristic analysis)を行った。その結果、10種の代謝物(2-オキソグルタル酸、イソクエン酸、フコース、アラビノース、フマル酸、エリスリトール、コハク酸、フェニルアラニン、リンゴ酸、クエン酸)の測定値が心房細動の診断に有用であることが分かった。表5は、心房細動の診断に有用な10種の代謝物のROC曲線(ROC curve)のAUC値を示している。 Next, in order to examine the diagnostic ability (that is, high diagnostic accuracy of atrial fibrillation) when the measured value of each metabolite is used as an atrial fibrillation index value, the dependent variable is set as AF group / normal group. ROC analysis (Receiver \ Operating \ Characteristic \ analysis) was performed on 135 kinds of metabolites. As a result, measured values of 10 metabolites (2-oxoglutarate, isocitrate, fucose, arabinose, fumarate, erythritol, succinate, phenylalanine, malate, and citric acid) are useful for diagnosis of atrial fibrillation. I understood that. Table 5 shows the AUC values of ROC curves (ROC curve) of ten metabolites useful for diagnosing atrial fibrillation.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ROC曲線は、縦軸を真陽性率、つまり感度、横軸を偽陽性率、つまり「1-特異度」を尺度としてプロットしたものである。すなわち、心房細動の被検者全体に対する、陽性と判断された被検者の割合より感度を計算し、正常群の被検者全体に対する、陽性と判断された被検者(非AF)の割合より偽陽性率を計算する。同様にして他のカットオフ値での感度と偽陽性率を計算し、このようにして求めた値をグラフにプロットすることによりROC曲線が得られる。AUC値はROC曲線と横軸で囲まれた部分の面積の値である。AUC値が大きいほどAFの有無を診断する精度が高いと判断することができる。ROC曲線からAUC値を求めた結果、AUC値の大きかった生体内代謝物は2-オキソグルタル酸(AUC=0.733)、イソクエン酸(AUC=0.723)、フコース(AUC=0.722)であった。 The ROC curve is obtained by plotting the ordinate as a true positive rate, that is, sensitivity, and the abscissa as a false positive rate, that is, “1-specificity”. That is, the sensitivity is calculated from the ratio of subjects determined to be positive to all subjects with atrial fibrillation, and the number of subjects (non-AF) determined to be positive to all subjects in the normal group is calculated. Calculate the false positive rate from the ratio. Similarly, the ROC curve can be obtained by calculating the sensitivity and the false positive rate at other cutoff values and plotting the values thus obtained on a graph. The AUC value is the value of the area of the portion surrounded by the ROC curve and the horizontal axis. It can be determined that the larger the AUC value, the higher the accuracy of diagnosing the presence or absence of AF. As a result of calculating the AUC value from the ROC curve, metabolites in the living body having a large AUC value were 2-oxoglutaric acid (AUC = 0.733), isocitrate (AUC = 0.723), and fucose (AUC = 0.722).
 一方、表6は、表5に示す結果が得られたROC解析と同じ従属変数に、調整因子として年齢、性別、喫煙歴、高血圧・糖尿病の現病歴あり、心疾患の既往歴あり、及びeGFR値を投入したモデルについて135種の代謝物のROC解析を行った結果、C統計量が高かった10種の代謝物を示している。C統計量はAUC値に相当し、C統計量が1に近づくほど診断能力が高いことを示している。表6には、135種の代謝物のうちC統計量が多い順に10種の代謝物(β-アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボース)をC統計量とともに列挙している。これら10種の代謝物の測定値はいずれも、心房細動と統計学的に相関しており、心房細動の有無を診断する指標として有用である。特に、C統計量が最も大きかったβ-アラニン(C統計量:0.917)の測定値は、心房細動との間で強い相関がみられ、心房細動の有無を診断する指標として優れているといえる。 On the other hand, Table 6 shows that the dependent variables same as those in the ROC analysis from which the results shown in Table 5 were obtained include age, sex, smoking history, current history of hypertension / diabetes, history of heart disease, and eGFR as adjusting factors. ROC analysis of 135 metabolites for the model into which the values were entered shows 10 metabolites with high C statistics. The C statistic corresponds to the AUC value, and the closer the C statistic is to 1, the higher the diagnostic ability is. Table 6 shows that 10 metabolites (β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, Margaric acid, ribose) are listed with C statistics. All of the measured values of these 10 metabolites are statistically correlated with atrial fibrillation and are useful as indices for diagnosing the presence or absence of atrial fibrillation. In particular, the measured value of β-alanine (C statistic: 0.917) having the largest C statistic has a strong correlation with atrial fibrillation, and is an excellent index for diagnosing the presence or absence of atrial fibrillation. It can be said that.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6には併せて、調整因子での調整を行わなかった時のROC解析により求められたAUC値、及びAUC順位を記載した。上記10種の代謝物は、調整因子で調整したときの方が、調整因子で調整しなかったときよりもAUC順位が上位であった。このように調整因子で調整を行うことで10種の代謝物の順位が上がり、指標としての有用性が増す。 Table 6 also shows AUC values and AUC ranks obtained by ROC analysis when adjustment was not performed using adjustment factors. The above 10 metabolites had higher AUC ranks when adjusted with the adjusting factor than when not adjusted with the adjusting factor. By performing the adjustment with the adjustment factor in this way, the order of the ten metabolites is increased, and the usefulness as an index is increased.
 このように、被検者の生体試料に含まれる16種の代謝物の量を測定した結果は、被検者における心房細動の有無の診断に利用することができる。
 すなわち、心房細動の診断方法は、被検者から採取された生体試料を分析装置で分析すること、前記分析装置で得られたデータから、16種の代謝物であるβ‐アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボース、イソクエン酸、フェニルアラニン、コハク酸、フコース、クエン酸、エリスリトールから選ばれる少なくとも1種の代謝物の量である心房細動指標値を求めること、前記心房細動指標値を所定の閾値と比較した結果に基づき、前記被検者における心房細動の有無を診断すること、を含む。
Thus, the result of measuring the amounts of the 16 metabolites contained in the biological sample of the subject can be used for diagnosing the presence or absence of atrial fibrillation in the subject.
That is, a method for diagnosing atrial fibrillation is to analyze a biological sample collected from a subject with an analyzer, and from data obtained by the analyzer, 16 metabolites, β-alanine, threonine, Amount of at least one metabolite selected from malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid, ribose, isocitric acid, phenylalanine, succinic acid, fucose, citric acid, erythritol And diagnosing the presence or absence of atrial fibrillation in the subject based on a result of comparing the atrial fibrillation index value with a predetermined threshold value.
 また、心房細動を診断する別の方法は、被検者から採取された生体試料をクロマトグラフ質量分析装置で分析すること、前記クロマトグラフ質量分析装置で得られたデータから、16種の代謝物であるβ‐アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボース、イソクエン酸、フェニルアラニン、コハク酸、フコース、クエン酸、エリスリトールから選ばれる少なくとも1種の代謝物の量である心房細動指標値を求めること、前記心房細動指標値を所定の閾値と比較した結果に基づき、前記被検者における心房細動の有無を診断すること、を含む。 Another method of diagnosing atrial fibrillation is to analyze a biological sample collected from a subject with a chromatograph mass spectrometer, and to analyze 16 types of metabolism from data obtained by the chromatograph mass spectrometer. Selected from β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutaric acid, serine, arabinose, margaric acid, ribose, isocitric acid, phenylalanine, succinic acid, fucose, citric acid, erythritol Determining an atrial fibrillation index value that is the amount of at least one metabolite to be determined, and diagnosing the presence or absence of atrial fibrillation in the subject based on a result of comparing the atrial fibrillation index value with a predetermined threshold value. Including.

Claims (7)

  1.  心房細動の発症に関連する指標である心房細動指標値を測定する方法であって、
     被検者から採取された生体試料を分析し、16種の代謝物であるβ‐アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボース、イソクエン酸、フェニルアラニン、コハク酸、フコース、クエン酸、エリスリトールから選ばれる少なくとも1種の代謝物の量を前記心房細動指標値として測定する、心房細動指標値の測定方法。
    A method of measuring an atrial fibrillation index value that is an index related to the onset of atrial fibrillation,
    A biological sample collected from the subject was analyzed and 16 metabolites, β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, margaric acid, ribose A method for measuring an atrial fibrillation index value, wherein the amount of at least one metabolite selected from isocitrate, phenylalanine, succinic acid, fucose, citric acid, and erythritol is measured as the atrial fibrillation index value.
  2.  請求項1に記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、イソクエン酸、アラビノース、リボース、2-オキソグルタル酸、リンゴ酸、フェニルアラニン、フマル酸、コハク酸、フコース、クエン酸のいずれかの代謝物の量である、心房細動指標値の測定方法。
    The method of measuring an atrial fibrillation index value according to claim 1,
    The atrial fibrillation index value is isocitrate, arabinose, ribose, 2-oxoglutaric acid, malic acid, phenylalanine, fumaric acid, succinic acid, fucose, the amount of any metabolite of citric acid, atrial fibrillation index How to measure the value.
  3.  請求項1に記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、β-アラニン、フマル酸、トレオニン、コハク酸、2-オキソグルタル酸のいずれかの代謝物の量である、心房細動指標値の測定方法。
    The method of measuring an atrial fibrillation index value according to claim 1,
    A method for measuring an atrial fibrillation index value, wherein the atrial fibrillation index value is an amount of a metabolite of any of β-alanine, fumaric acid, threonine, succinic acid, and 2-oxoglutarate.
  4.  請求項1に記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、2-オキソグルタル酸、イソクエン酸、フコース、アラビノース、フマル酸、エリスリトール、コハク酸、フェニルアラニン、リンゴ酸、クエン酸のいずれかの代謝物の量である、心房細動指標値の測定方法。
    The method of measuring an atrial fibrillation index value according to claim 1,
    The atrial fibrillation index value is an amount of any metabolite of 2-oxoglutarate, isocitrate, fucose, arabinose, fumarate, erythritol, succinate, phenylalanine, malate, or citric acid. How to measure the value.
  5.  請求項1に記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、β-アラニン、トレオニン、リンゴ酸、フマル酸、2-ヒドロキシピリジン、2-オキソグルタル酸、セリン、アラビノース、マルガリン酸、リボースのいずれかの代謝物の量である、心房細動指標値の測定方法。
    The method of measuring an atrial fibrillation index value according to claim 1,
    The atrial fibrillation index value is β-alanine, threonine, malic acid, fumaric acid, 2-hydroxypyridine, 2-oxoglutarate, serine, arabinose, margaric acid, the amount of any metabolite of ribose, atria How to measure fibrillation index values.
  6.  請求項1に記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、β-アラニンの量である、心房細動指標値の測定方法。
    The method of measuring an atrial fibrillation index value according to claim 1,
    A method for measuring an atrial fibrillation index value, wherein the atrial fibrillation index value is an amount of β-alanine.
  7.  請求項1~6のいずれかに記載の心房細動指標値の測定方法において、
     前記心房細動指標値が、生体試料をクロマトグラフMS分析することによって得られたデータに基づき測定された代謝物の量である、心房細動指標値の測定方法。
    The method for measuring an atrial fibrillation index value according to any one of claims 1 to 6,
    A method for measuring an atrial fibrillation index value, wherein the atrial fibrillation index value is an amount of a metabolite measured based on data obtained by performing a chromatographic MS analysis on a biological sample.
PCT/JP2019/035556 2018-09-12 2019-09-10 Method for measuring atrial fibrillation index value WO2020054721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546036A JP7280582B2 (en) 2018-09-12 2019-09-10 How to measure atrial fibrillation index

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170954 2018-09-12
JP2018-170954 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054721A1 true WO2020054721A1 (en) 2020-03-19

Family

ID=69777865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035556 WO2020054721A1 (en) 2018-09-12 2019-09-10 Method for measuring atrial fibrillation index value

Country Status (3)

Country Link
JP (2) JP7280582B2 (en)
TW (1) TW202012928A (en)
WO (1) WO2020054721A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157130A1 (en) * 2011-05-17 2012-11-22 株式会社あすか製薬メディカル Method for differentiating adenoma of primary aldosteronism and method for determining 18-oxocortisol (18-oxof) and 18-hydroxycortisol (18-ohf)
WO2018024905A1 (en) * 2016-08-04 2018-02-08 Roche Diagnostics Gmbh Circulating esm-1 (endocan) in the assessment of atrial fibrillation and stroke
JP2018072337A (en) * 2016-10-21 2018-05-10 国立研究開発法人国立循環器病研究センター Method of predicting recurrence risk of major adverse cardiac event

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2374762T3 (en) 2007-10-10 2012-02-21 Bg Medicine, Inc. PROCEDURES TO DETECT SERIOUS ADVERSE CARDIOVASCULAR AND CEREBROVASCULAR COMPLICATIONS.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157130A1 (en) * 2011-05-17 2012-11-22 株式会社あすか製薬メディカル Method for differentiating adenoma of primary aldosteronism and method for determining 18-oxocortisol (18-oxof) and 18-hydroxycortisol (18-ohf)
WO2018024905A1 (en) * 2016-08-04 2018-02-08 Roche Diagnostics Gmbh Circulating esm-1 (endocan) in the assessment of atrial fibrillation and stroke
JP2018072337A (en) * 2016-10-21 2018-05-10 国立研究開発法人国立循環器病研究センター Method of predicting recurrence risk of major adverse cardiac event

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAKUNO, DAIHIKO ET AL.: "Plasma Amino Acid Profiling Identifies Specific Amino Acid Associations with Cardiovascular Function in Patients with Systolic Heart Failure", PLOS ONE, vol. 10, no. 2, 6 February 2015 (2015-02-06), pages e0117325, XP055694101 *

Also Published As

Publication number Publication date
JP2023100797A (en) 2023-07-19
JP7280582B2 (en) 2023-05-24
JPWO2020054721A1 (en) 2021-09-02
TW202012928A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
Lindahl et al. The new high-sensitivity cardiac troponin T assay improves risk assessment in acute coronary syndromes
KR102636885B1 (en) Ceramides and their use in diagnosing cvd
WO2008017928A2 (en) Method for the prediction of vascular events and the diagnosis of acute coronary syndrome
JP7018605B2 (en) Colorectal cancer test method
Liyan et al. Assay of ischemia‐modified albumin and C‐reactive protein for early diagnosis of acute coronary syndromes
KR20180064164A (en) Kit for diagnosis of coronary heart disease using multi-metabolites and clinical parameters, and method for providing information for diagnosis of coronary heart disease using the same
Moon et al. Evaluation of heart-type fatty acid-binding protein in early diagnosis of acute myocardial infarction
WO2020169799A1 (en) Method for the diagnosis of macce in patients who underwent gastrointestinal surgery
CN117074698B (en) Marker combination, kit, system and application for early diagnosis of acute myocardial infarction
WO2016049828A1 (en) Obese population specific biomarker composition and use thereof
JP7280582B2 (en) How to measure atrial fibrillation index
JP6727660B2 (en) Judgment marker for diabetic nephropathy
Hájek et al. High positive predictive value of PAPP-A for acute coronary syndrome diagnosis in heparin-naïve patients
US20050106104A1 (en) Methods for diagnosing cardiovascular disorders
WO2016049830A1 (en) Chronic heart disease patient specific biomarker composition and use thereof
Dupuy et al. Analytical assessment and performance of the 0/3h algorithm with novel high sensitivity cardiac troponin I
Etli Investigation of serum ischemia-modified albumin levels in coronary artery disease patients
JP2011106847A (en) Evaluation method and kit for evaluating risk of cardiovascular disease
Negreva et al. Significant increase in C-reactive protein and serum amyloid A in the early hours of paroxysmal atrial fibrillation
Nordenskjöld et al. Unrecognized myocardial infarctions detected by cardiac magnetic resonance imaging are associated with cardiac troponin I levels
TWI739155B (en) Copd index-value measurement method
CN111624264B (en) Metabolic composition for early detection of acute rejection of transplanted kidney, screening method and application
WO2023079706A1 (en) Method for assessing diabetic nephropathy
CN117589897A (en) Coronary heart disease serology early warning biomarker, detection reagent and kit
KR20240010449A (en) Metabolomics characteristics for diagnosis of acute mesenteric ischemia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859341

Country of ref document: EP

Kind code of ref document: A1