WO2020054496A1 - Abnormality detecting device, method for controlling abnormality detecting device, information processing program, and recording medium - Google Patents

Abnormality detecting device, method for controlling abnormality detecting device, information processing program, and recording medium Download PDF

Info

Publication number
WO2020054496A1
WO2020054496A1 PCT/JP2019/034520 JP2019034520W WO2020054496A1 WO 2020054496 A1 WO2020054496 A1 WO 2020054496A1 JP 2019034520 W JP2019034520 W JP 2019034520W WO 2020054496 A1 WO2020054496 A1 WO 2020054496A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
abnormality
actuator
displacement
value
Prior art date
Application number
PCT/JP2019/034520
Other languages
French (fr)
Japanese (ja)
Inventor
正善 月川
白水 岳
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020054496A1 publication Critical patent/WO2020054496A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems

Definitions

  • the present invention relates to an abnormality detection device and the like for detecting an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid.
  • an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid by using a displacement time of the movable portion.
  • Japanese Patent Application Laid-Open No. H11-163,199 discloses that a moving time of a movable part such as a piston that moves between one end and the other end of an actuator is calculated, and an actuator is calculated based on a deviation between the calculated moving time and a normal value.
  • An abnormality detection device that determines whether an abnormality has occurred has been disclosed.
  • JP-A-2015-14990 Japanese Unexamined Patent Publication
  • the displacement time of the movable part is affected by the temperature around the actuator. For example, the displacement time tends to decrease as the ambient temperature increases, and the displacement time increases as the ambient temperature decreases. Tend.
  • the displacement time of the movable part also varies depending on the type, size, purpose of use, installation location, usage time, etc. of the actuator.
  • One aspect of the present invention is an abnormality detection that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid, using a displacement time of the movable portion regardless of a temperature around the actuator and a type of the actuator. It is intended to realize a device or the like.
  • an abnormality detection device includes an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion.
  • the displacement time a time from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator to a time when the movable portion arrives at the other end.
  • a timer that measures the maximum value of the displacement time measured up to the present by the timer, and subtracts the minimum value of the displacement time measured up to the present by the timer, a value of the actuator.
  • a determination unit that determines the presence or absence of an abnormality by using a characteristic amount that is a value divided by the displacement time measured by the clock unit at a time when a predetermined time has elapsed from a start time.
  • a control method provides an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion.
  • the control method wherein, as the displacement time, from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator, to a time when the movable portion arrives at the other end.
  • the presence or absence of an abnormality is determined using a feature amount that is a value divided by the displacement time measured in the timing step. And it includes a determination step.
  • an abnormality of the actuator can be detected using the displacement time of the movable portion regardless of the ambient temperature and the type of the actuator.
  • FIG. 1 is a block diagram illustrating a main configuration of an abnormality detection device and the like according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an outline of an abnormality detection system including the abnormality detection device of FIG. 1. It is a figure showing an example of a calculation method of “movement time of piston”.
  • FIG. 2 is a flowchart illustrating an outline of a process executed by the abnormality detection device in FIG. 1. It is a flowchart which shows the outline of a push-out time table update process and a retraction time table update process.
  • FIG. 6 is a diagram illustrating a relationship between a moving time and a feature amount.
  • the abnormality detection device 10 will be described as a typical example of the abnormality detection device.
  • an outline of the abnormality detection system 1 including the abnormality detection device 10 will be described with reference to FIG.
  • FIG. 2 is a diagram illustrating an outline of the abnormality detection system 1 including the abnormality detection device 10.
  • the abnormality detection system 1 includes an abnormality detection device 10, a PLC (Programmable Logic Controller) 20, a direction switching valve 30, an actuator 40, a first switch (switch itch) 51, and a second switch 52. Contains.
  • the PLC 20 outputs a control signal (hereinafter also referred to as a “control command”; specifically, a Push command or a Pull command) to the direction switching valve 30 via the abnormality detection device 10, and outputs the control signal to the direction switching valve 30.
  • the supply of the pressure fluid (for example, pressure gas) to the actuator 40 is instructed.
  • the PLC 20 outputs a Push command or a Pull command to the direction switching valve 30 via the abnormality detection device 10, and the piston 46 and the piston rod 47 are provided between the first end 42 and the second end 43 of the cylinder 41.
  • the PLC 20 outputs a Push command to change the position of the piston 46 from the first end 42 to the second end 43. To be displaced.
  • the PLC 20 outputs a Pull command to displace the position of the piston 46 from the second end 43 to the first end 42.
  • the PLC 20 reciprocates the piston 46 and the piston rod 47 between the first end 42 and the second end 43 of the cylinder 41 repeatedly.
  • one reciprocation of the piston 46 and the piston rod 47 may be referred to as "1 Frame (frame)".
  • the PLC 20 acquires the detection signal indicating the detection result of each of the first switch 51 and the second switch 52, that is, each of the first detection signal and the second detection signal via the abnormality detection device 10.
  • switch may be abbreviated as “SW”.
  • the PLC 20 outputs a determination result of the abnormality determination from the abnormality detection device 10, that is, a signal indicating whether or not an abnormality has occurred in the actuator 40 (specifically, at least one of the piston packing 48 and the rod packing 49 has been damaged). To get.
  • the direction switching valve 30 can be realized by a well-known solenoid valve, acquires a control command from the PLC 20 via the abnormality detection device 10, and sends a pressure fluid to the first end of the actuator 40 according to the acquired control command. 42 or the second end 43 is selectively supplied.
  • the direction switching valve 30 when the direction switching valve 30 acquires the Push command (push command), the direction switching valve 30 supplies the pressurized fluid to the first end portion 42 side of the cylinder 41 via the first port 44 and the second end portion 43 of the cylinder 41. The pressure fluid on the side is exhausted to the outside through the second port 45.
  • the piston 46 and the piston rod 47 are integrally displaced from the first end 42 of the cylinder 41 toward the second end 43.
  • the displacement direction when the piston 46 and the piston rod 47 are integrally displaced to the side of the piston rod 47 where the piston 46 is not provided will be referred to as the “extrusion direction (left side in FIG. To the right).
  • the direction switching valve 30 when the direction switching valve 30 acquires the Pull command (retraction command), the direction switching valve 30 supplies the pressurized fluid to the second end 43 side of the cylinder 41 through the second port 45, and supplies the first end of the cylinder 41.
  • the pressure fluid on the side 42 is exhausted to the outside through the first port 44.
  • the piston 46 and the piston rod 47 are integrally displaced from the second end 43 of the cylinder 41 toward the first end 42.
  • the displacement direction when the piston 46 and the piston rod 47 are integrally displaced toward the side of the piston rod 47 where the piston 46 is provided is referred to as a “retraction direction (in FIG. From right to left) ".
  • the actuator 40 is configured such that the piston 46 (movable part) connected to the piston rod 47 is displaced in the left-right direction (displacement direction) in FIG. 2 by the supply of the pressure fluid (for example, pressure gas) from the direction switching valve 30.
  • the pressure fluid for example, pressure gas
  • a well-known air cylinder is used.
  • the piston 46 connected to the piston rod 47 is displaced between the first end 42 and the second end 43 of the cylinder 41 in the left-right direction in FIG. That is, the piston 46 and the piston rod 47 move from the first end 42 of the cylinder 41 toward the second end 43 (that is, in the pushing direction) or from the second end 43 to the first end 42. (I.e., in the retraction direction), they are integrally displaced.
  • the actuator 40 is provided with a piston packing 48 for preventing the pressure fluid from leaking from between the cylinder 41 and the piston 46, and preventing the pressure fluid from leaking from between the cylinder 41 and the piston rod 47. And a rod packing 49.
  • the first switch 51 is a sensor that detects the piston 46 displaced to the first end 42 of the cylinder 41
  • the second switch 52 is a sensor that detects the piston 46 displaced to the second end 43 of the cylinder 41. is there.
  • the first switch 51 is disposed on the outer peripheral surface on the first end 42 side of the cylinder 41 which is a fluid pressure cylinder constituting the actuator 40
  • the second switch 52 is disposed on the second end 43 side of the cylinder 41. Is disposed on the outer peripheral surface.
  • Each of the first switch 51 and the second switch 52 is, for example, a limit switch or a magnetic switch.
  • Each of the first switch 51 and the second switch 52 detects the piston 46 when the piston 46 is displaced to a position facing each of the first switch 51 and the second switch 52, and outputs a detection signal indicating that fact. Output to the abnormality detection device 10.
  • each of the first switch 51 and the second switch 52 stops outputting the detection signal.
  • the first switch 51 detects the piston 46 when the piston 46 is displaced to a position facing the first switch 51, that is, detects the piston 46 displaced to the first end 42 of the cylinder 41,
  • the second switch 52 detects the piston 46 when the piston 46 is displaced to a position facing the second switch 52, that is, detects the piston 46 displaced to the second end 43 of the cylinder 41,
  • the abnormality detection system 1 may further include an HMI 60.
  • an HMI (Human Machine Interface) 60 is connected to the PLC 20 via a communication cable such as a USB (Universal Serial Bus) cable.
  • the HMI 60 is an information processing device for setting various parameters (particularly, parameters used by the abnormality detection device 10 and the like) to the abnormality detection system 1 and notifying (for example, displaying) the user. is there.
  • the HMI 60 is configured by, for example, a general-purpose computer.
  • the HMI 60 may be connected to the abnormality detection device 10.
  • the HMI 60 notifies the user of various information acquired from the abnormality detection device 10 via the PLC 20, and displays, for example, various information.
  • the HMI 60 acquires the result of the abnormality determination by the abnormality detection device 10 from the abnormality detection device 10 via the PLC 20 and displays the acquired abnormality determination result.
  • the HMI 60 moves as a difference between the “start time of the control command (Push command or Pull command)” and the “time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41”.
  • the initial values of the time (T 10 and T 20 ) are obtained from the abnormality detection device 10.
  • HMI60 the initial value of the movement time obtained a (T 10 and T 20), the user editable display.
  • HMI60 a reference value abnormality detecting device 10 is used for abnormality determination of (TH 1 and TH 2), obtained from the abnormality detecting device 10 through the PLC 20, the acquired reference value, the user editable display.
  • the abnormality detection system 1 may further include a first switching sensor and a second switching sensor (not shown) that detect each of the Push command and the Pull command input to the direction switching valve 30. That is, the abnormality detection system 1 may further include a first switching sensor and a second switching sensor that detect the start of a control command (each of a Push command and a Pull command) to the direction switching valve 30.
  • the first switching sensor is “a first solenoid that is excited by acquiring the Push command of the direction switching valve 30 and supplies a pressure fluid to the first end 42 side of the cylinder 41 via the first port 44”. And detects an input of a Push command. Specifically, the first switching sensor detects that the Push command acquired by the first solenoid changes from a low level (for example, “0”) to a high level (for example, “1”). The first switching sensor may detect, as “Push command input”, the excitation of the first solenoid by the Push command.
  • the second switching sensor is “a second solenoid that is excited by acquiring a Pull command of the direction switching valve 30 and supplies a pressurized fluid to the second end 43 side of the cylinder 41 via the second port 45”. And detects an input of a Pull command. Specifically, the second switching sensor detects that the Pull command acquired by the second solenoid changes from a low level (for example, “0”) to a high level (for example, “1”). The second switching sensor may detect, as “pull command input”, the excitation of the second solenoid by the pull command.
  • the abnormality detection device 10 acquires a control command from the PLC 20, outputs the acquired control command to the directional control valve 30, and acquires and acquires a detection signal from each of the first switch 51 and the second switch 52.
  • the detection signal is output to the PLC 20.
  • the abnormality detection device 10 determines the “time when the direction switching valve 30 acquires the control command” by the control command acquired from the PLC 20, that is, “displacement of the piston 46 of the actuator 40 to the direction switching valve 30 by the PLC 20 ( Start time of movement) command ”.
  • the abnormality detection device 10 determines, based on the detection signal acquired from each of the first switch 51 and the second switch 52, “when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41. To get.
  • the abnormality detection device 10 includes “a start time of a command for the displacement (movement) of the piston 46 in the actuator 40 by the PLC 20 to the direction switching valve 30” and “the piston 46 is connected to the first end 42 or the second end of the cylinder 41. From the time when the piston 46 arrives at the second end 43 ", the movement time (displacement time) of the piston 46 is calculated.
  • the abnormality detection device 10 determines that the movement of the piston 46 from the “start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42” calculating the extrusion time T 1 is a time until the time "that arrived to the end 43. Further, the abnormality detection device 10 determines that the movement of the piston 46 from the “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43” to calculate the pull-back time T 2 is the time of arrival was time "to.
  • the abnormality detection device 10 determines whether or not an abnormality has occurred in the actuator 40 such as breakage of at least one of the piston packing 48 and the rod packing 49 by using the calculated movement time, and sends a signal indicating the determination result to the PLC 20. Is output.
  • the abnormality detection device 10 calculates the repetition movement time, for example, calculates each time to obtain a control command (Push command or Pull command) from the PLC 20, the moving time (extrusion time T 1 or pull-back time T 2) I do.
  • the abnormality detection device 10 calculates the feature amount by dividing the value obtained by subtracting the minimum value of the travel time calculated up to the present time from the maximum value of the travel time calculated so far by the initial value of the travel time. . In other words, the abnormality detection device 10 divides the value obtained by subtracting the maximum value of the travel time calculated so far by the minimum value of the travel time calculated so far by the initial value of the travel time, and calculates the feature amount. calculate.
  • the abnormality detection device 10 determines whether or not an abnormality such as breakage of at least one of the piston packing 48 and the rod packing 49 has occurred by comparing the calculated feature amount with the reference value, and outputs a signal indicating the determination result. Output to PLC20.
  • the abnormality detection device 10 sets the movement time measured at the point of time when a predetermined time has elapsed (or when a predetermined number of frames have been completed after the actuator 40 has been activated) to the “initial value of the movement time”.
  • the “predetermined time (or the predetermined number of times)” used when the abnormality detection device 10 acquires the “initial value of the traveling time” may be set so that the user can operate the HMI 60 to set the “predetermined time (or the predetermined number of times)”. It may be determined at the factory shipment stage of the detection device 10.
  • the abnormality detection device 10 acquires the “initial value of the movement time” at a point in time when a predetermined time has elapsed (or when a predetermined number of frames have been completed after the actuator 40 has been activated). The abnormality judgment based on the comparison between the amount and the reference value is started.
  • the abnormality detection device 10 transmits the initial value of the movement time, specifically, the “initial value T 10 of the extrusion time T 1 ” and the “initial value T 20 of the retraction time T 2 ” via the PLC 20. Output to the HMI 60, and the HMI 60 displays the initial value of the movement time so that the user can edit it.
  • the abnormality detection device 10 may display the reference value on the HMI 60 so that the user can edit the reference value.
  • FIG. 1 is a block diagram illustrating a main configuration of the abnormality detection device 10 and the like.
  • the abnormality detection device 10 includes, as functional blocks other than the storage unit 170, a command acquisition unit 110, a detection signal acquisition unit 120, a clock unit 130, an update control unit 140, a determination unit 150, and a notification control unit.
  • a section 160 is provided. Note that components which are not directly related to the present embodiment are omitted from the description and block diagrams in order to ensure the simplicity of the description. However, the abnormality detection device 10 may have the omitted configuration according to the actual situation of the embodiment.
  • a storage device (storage unit 170) in which a CPU (central processing unit) or the like is realized by a ROM (read only memory), an NVRAM (non-Volatile random access memory), or the like. This can be realized by reading a stored program into a RAM (random access memory) or the like (not shown) and executing it.
  • a CPU central processing unit
  • NVRAM non-Volatile random access memory
  • the command acquisition unit 110 is a functional block that acquires control commands (Push command and Pull command) from the PLC 20 and outputs the acquired control commands to each of the direction switching valve 30 and the timer 130.
  • the first command acquisition unit 111 acquires a Push command from the PLC 20 and outputs the acquired Push command to each of the direction switching valve 30 and the timer 130.
  • the second command acquisition unit 112 acquires a Pull command from the PLC 20 and outputs the acquired Pull command to each of the direction switching valve 30 and the timer 130.
  • the detection signal acquisition unit 120 acquires the detection signals (the first detection signal and the second detection signal) from each of the first switch 51 and the second switch 52, and sends the acquired detection signals to each of the PLC 20 and the timer 130. This is a functional block to output.
  • the detection signal acquisition unit 120 includes a first detection signal acquisition unit 121 and a second detection signal acquisition unit 122.
  • the first detection signal acquisition unit 121 acquires the first detection signal from the first switch 51, and outputs the acquired first detection signal to each of the PLC 20 and the timer 130.
  • the second detection signal acquisition unit 122 acquires a second detection signal from the second switch 52, and outputs the acquired second detection signal to each of the PLC 20 and the timer 130.
  • the timer 130 receives the control command acquired from the command acquirer 110 to indicate “the time when the direction switching valve 30 acquires the control command”, that is, “the control command for instructing the displacement (movement) of the piston 46 by the PLC 20”. Start time "is obtained.
  • the timing unit 130 acquires “the time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41” based on the detection signal acquired from the detection signal acquisition unit 120.
  • the timing unit 130 determines “the start time of the control command for instructing the displacement (movement) of the piston 46” and “the time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41”. Then, the movement time (displacement time) of the piston 46 is calculated.
  • the clock unit 130 notifies the update control unit 140 of the calculated movement time (displacement time).
  • the timer 130 includes a first timer 131 and a second timer 132.
  • the first timing unit 131 determines that the movement of the piston 46 from the “start time of the Push command output by the PLC 20 in the state where the piston 46 is located at the first end 42” to calculate the extrusion time T 1 is the time of arrival to time, "he said. First time counting section 131, the calculated extrusion time T 1, and notifies the update control unit 140.
  • the second timer 132 calculates the moving time from “the start time of the Pull command output by the PLC 20 in the state where the piston 46 is located at the second end 43” from “the piston 46 moves to the first end 42. to calculate the pull-back time T 2 is the time of arrival to time, "he said.
  • the second counting unit 132 the calculated pull-back time T 2, and notifies the update control unit 140.
  • the update control unit 140 is a functional block that executes update processing of the movement time table 180 (extrusion time table update processing and retraction time table update processing) using the movement time notified from the clock unit 130.
  • An update control unit 141 and a second update control unit 142 are included. Specifically, the update control unit 140 sets an initial value of the moving time (initial value setting), updates the maximum value of the moving time (maximum value setting), and moves the moving time table 180. The processing for updating the minimum value of time (minimum value setting) is executed.
  • the update control unit 140 executes the following process as a process for setting the initial value of the travel time. That is, if no initial value is stored in the movement time table 180 (the extrusion time table 181 and the retraction time table 182), the movement time notified from the timer 130 is stored in the movement time table 180 as an initial value.
  • the update control unit 140 executes the following two processes as a process of updating the maximum value of the travel time. That is, if the maximum value of the travel time is not stored in the travel time table 180, the update control unit 140 stores the travel time notified from the timer 130 as the maximum value of the travel time in the travel time table 180. When the value of the travel time notified from the timer 130 is larger than the maximum value of the travel time stored in the travel time table 180, the update controller 140 uses the value of the travel time notified from the timer 130 to , The maximum value of the travel time stored in the travel time table 180 is updated.
  • the update control unit 140 executes the following two processes as a process of updating the minimum value of the travel time. That is, if the minimum value of the travel time is not stored in the travel time table 180, the update control unit 140 stores the travel time notified from the timer 130 as the minimum value of the travel time in the travel time table 180. When the value of the travel time notified from the clock unit 130 is smaller than the minimum value of the travel time stored in the travel time table 180, the update control unit 140 uses the value of the travel time notified from the clock unit 130. , The minimum value of the travel time stored in the travel time table 180 is updated.
  • the movement time table 180 Due to the “processing of updating the maximum value of the movement time” executed by the update control unit 140, the movement time table 180 (the extrusion time table 181 and the retraction time table 182) is always measured by the clock unit 130 up to the present. The maximum value of the travel time is stored.
  • the moving time table 180 By the “processing of updating the minimum value of the moving time” executed by the update control unit 140, the moving time table 180 (the extrusion time table 181 and the retraction time table 182) is always measured by the clock unit 130 up to the present. The minimum value of the moving time is stored.
  • First update control unit 141 performs a process in which extrusion time table update processing for updating the value stored in the extrusion time table 181 using an extrusion time T 1, which is notified from the first clock section 131.
  • the first update control unit 141 replaces the extrusion time T 1 notified from the first timer 131 with the initial value T 10. Is stored in the extrusion time table 181 (initial value setting).
  • the first update control unit 141 sets the extrusion time T 1 notified from the first clock unit 131 to the maximum value T 1MAX. It is stored in the time table 181 (maximum value setting). Extrusion time T 1, which is notified from the first timer unit 131, the greater than the maximum value T 1MAX stored in the extrusion time table 181, the first update control unit 141 is notified from the first timer unit 131 in extrusion time T 1, and updates the maximum value T 1MAX (maximum setting).
  • the first update control unit 141 sets the extrusion time T 1 notified from the first timer 131 to the minimum value T 1 min. It is stored in the time table 181 (minimum value setting).
  • the extrusion time T 1, which is notified from the first timer unit 131 is smaller than the minimum value T 1min stored in the extrusion time table 181, the first update control unit 141 is notified from the first timer unit 131 in extrusion time T 1, and updates the minimum value T 1min (minimum setting).
  • Second update controller 142 executes processing in a pull-back time table update processing for updating the value stored in the pull-back time table 182 by using the pull-back time T 2, which is notified from the second time measurement section 132 I do.
  • the second update controller 142 pull-back time T 2, which is notified from the second clock unit 132, an initial stores a value T 20 to pull-back time table 182 (default).
  • the second update control unit 142 sets the retraction time T 2 notified from the second timer 132 to the maximum value T 2. It is stored in the retraction time table 182 as 2MAX (maximum value setting). Pull-back time T 2 is sent from the second timer unit 132, when greater than a maximum value T 2MAX stored in pull-back time table 182, the second update controller 142 notifies the second timer unit 132 in pull-back time T 2 that is, updates the maximum value T 2MAX (maximum setting).
  • the second update control unit 142 sets the retraction time T 2 notified from the second timer 132 to the minimum value T 2. It is stored in the retraction time table 182 as 2 min (minimum value setting). If pull-back time T 2 is sent from the second timer unit 132 is smaller than the minimum value T 2min stored in pull-back time table 182, the second update controller 142 notifies the second timer unit 132 The minimum value T 2min is updated with the withdrawal time T 2 (minimum value setting).
  • Determination unit 150 refers to the moving time table 180 (extrusion time table 181 and pull-back time table 182), the initial value of the movement time (extrusion time T 1 and pull-back time T 2), the maximum value, and minimum calculating the amount of feature (W 1 and W 2) with the value. Specifically, the determination unit 150 subtracts the minimum value stored in the travel time table 180 from the maximum value stored in the travel time table 180, and calculates the initial value stored in the travel time table 180. The characteristic amount is calculated by dividing by a value.
  • the determination unit 150 compares the calculated feature values (W 1 and W 2 ) with the reference values (TH 1 and TH 2 ) and determines whether an abnormality such as breakage of at least one of the piston packing 48 and the rod packing 49 has occurred. Determine the presence or absence.
  • each of the reference value TH 1 and the reference value TH 2 as numeric value greater than "0", for example set by the user, are stored in the storage unit 170.
  • the developer of the abnormality detection device 10 is obtained by repeated experiments findings, each of the reference value TH 1 and the reference value TH 2 is the desirably a value larger "0.5" less than "0", It is more desirable that the value be larger than “0” and equal to or smaller than “0.3”.
  • Each of the reference value TH 1 and the reference value TH 2 is, for example, "0.25".
  • the value of the reference value TH 1 value and the reference value TH 2 may be the same numerical value, or may be different values.
  • the determination unit 150 notifies the notification control unit 160 of the result of the determination regarding the occurrence of the abnormality.
  • the determination unit 150 includes a first determination unit 151 and a second determination unit 152.
  • the first determination unit 151 refers to the extrusion time table 181, the initial value T 10 of the extrusion time T 1, the maximum value T 1MAX extrusion time T 1, and obtains the minimum value T 1min extrusion time T 1 .
  • the first determination unit 151 calculates the feature amount W 1 by dividing a value obtained by subtracting the minimum value T 1 min from the maximum value T 1MAX by the initial value T 10 , that is, Accordingly, to calculate a feature amount W 1.
  • the first determination unit 151 compares the calculated feature quantity W 1 and the reference value TH 1, determines the presence or absence of occurrence of an abnormality.
  • the first determination unit 151 the feature amount W 1 is greater than the reference value TH 1, the at least rod packing 49, it is determined that an abnormality such as breakage has occurred, the feature amount W 1, the reference value TH 1 In the following cases, it is determined that no abnormality has occurred. Then, the first determination unit 151 notifies the notification control unit 160 of the determination result.
  • first determination unit 151 determines the feature amount W 1 is greater than the reference value TH 1, the at least rod packing 49, and the damage abnormality has occurred.
  • the second determination unit 152 refers to the pull-back time table 182, the initial value T 20 of pull-back time T 2, the maximum value T 2MAX the pull-back time T 2, and the minimum value T of the pull-back time T 2 Acquire 2 min .
  • the second determination unit 152 a value obtained by subtracting the minimum value T 2min from the maximum value T 2MAX, by dividing by the initial value T 20, calculates the feature amount W 2, that is, Accordingly, to calculate a feature amount W 2.
  • the second determination unit 152 compares the calculated feature amount W 2 and the reference value TH 2, determines the presence or absence of occurrence of an abnormality.
  • the second determination unit 152 the feature amount W 2 larger than the reference value TH 2, at least for piston seal 48, it is determined that an abnormality such as breakage has occurred, the feature amount W 2, the reference value TH 2 In the following cases, it is determined that no abnormality has occurred. Then, the second determination unit 152 notifies the notification control unit 160 of the determination result.
  • the second determination unit 152 determines the feature quantity W 2 larger than the reference value TH 2, at least for the piston packing 48, and the damage abnormality has occurred.
  • Notification control section 160 outputs the determination result notified from determination section 150 (each of first determination section 151 and second determination section 152) to PLC 20.
  • the notification control unit 160 traveling time table 180 (extrusion time table 181 and pull-back time table 182) Referring to the initial value of the movement time (T 10 and T 20), and outputs the HMI60 via PLC20 , The initial value of the movement time is displayed on the HMI 60.
  • Notification control unit 160 outputs the reference values (TH 1 and TH 2 ) to HMI 60 via PLC 20 and causes HMI 60 to display the reference values.
  • the storage unit 170 is a storage device that stores various data used by the abnormality detection device 10.
  • the storage unit 170 includes (1) a control program, (2) an OS program, (3) an application program for executing various functions of the abnormality detection device 10, and (4) a program executed by the abnormality detection device 10.
  • Various data to be read when the application program is executed may be temporarily stored.
  • the above data (1) to (4) are, for example, ROM (read only memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), HDD (Hard Disc Drive), etc.
  • the abnormality detection device 10 may include a temporary storage unit (not shown).
  • the temporary storage unit is a so-called working memory that temporarily stores data used for calculation, calculation results, and the like in the course of various processes executed by the abnormality detection device 10, and is a volatile storage such as a RAM (Random Access Memory). It is composed of devices. Which data is stored in which storage device is appropriately determined based on the purpose of use, convenience, cost, physical restrictions, and the like of the abnormality detection device 10.
  • the storage unit 170 further stores a travel time table 180.
  • the movement time table 180 includes an extrusion time table 181 and a retraction time table 182.
  • the extrusion time table 181, the first update control unit 141, the initial value T 10 of the extrusion time T 1, the maximum value T 1MAX extrusion time T 1, and, the minimum value T 1min extrusion time T 1 is stored .
  • the abnormality detection device 10 whose configuration has been described with reference to FIG. 1 has been arranged as follows in order to facilitate its understanding. That is, the abnormality detection device 10 is an abnormality detection device that detects an abnormality of the actuator 40 in which the piston 46 (movable portion) is displaced by the supply of the pressurized fluid by using the movement time (displacement time) of the piston 46. It has a unit 130 and a determination unit 150.
  • the moving time (specifically, T 2 Extrusion time T 1 and pull-back time) as, in "the first end 42 or second end 43 of the piston 46 is an actuator 40 (one end) From the time when the control command (Push command and Pull command) for the displacement to the second end 43 or the first end 42 (the other end) is started, "the piston 46 is moved to the second end 43 or the first end 42". The time until the “arrival time at the end 42” is measured.
  • the determination unit 150 determines the minimum value of the movement time (T 1MAX and T 2MAX ) measured up to the present time by the time measurement unit 130 from the “maximum value of the movement time (T 1MAX and T 2MAX ) measured by the time measurement unit 130 up to now”.
  • T 1min and T 2min ) is subtracted from the“ movement time measured by the timer 130 at the time when a predetermined time has elapsed from the activation of the actuator 40 (that is, the initial values (T 10 and T 20 )) ”.
  • the presence / absence of an abnormality is determined using the feature amounts (W 1 and W 2 ), which are values divided by ( 1 ).
  • the abnormality detecting apparatus 10 the minimum value from the maximum value (T 1MAX and T 2MAX) a value obtained by subtracting the (T 1min and T 2min), divided by the initial value (T 10 and T 20)
  • the presence or absence of an abnormality in the actuator 40 is determined using the feature values (W 1 and W 2 ) as values.
  • the moving time of the piston 46 is affected by the temperature around the actuator 40.
  • the movement time tends to decrease, and when the temperature around the actuator 40 decreases, the movement time tends to increase.
  • the movement time also varies depending on the type of the actuator 40, the load condition, the installation position, the usage time so far, and the like.
  • a conventional method of setting a normal value for the travel time in advance and comparing the measured travel time with the normal value to determine an abnormality has the following problems. That is, in order to maintain the accuracy of the abnormality determination, the conventional method has to be individually performed according to various factors such as the temperature around the actuator 40, the type of the actuator 40, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator 40” in accordance with the moving time that varies according to “the conditions such as the ambient temperature and the type of the actuator 40”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
  • the abnormality detection device 10 determines whether or not there is an abnormality in the actuator 40 by subtracting the minimum values (T 1min and T 2min ) from the maximum values (T 1MAX and T 2MAX ) to the initial values (T 10 and T 2 ). The determination is made using the feature amounts (W 1 and W 2 ) which are values divided by the above ( 20 ).
  • the magnitude of the change in the travel time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the travel time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the movement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the movement time due to the change in the ambient temperature.
  • the abnormality detection device 10 can determine whether or not an abnormality has occurred based on the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180.
  • the maximum value and the minimum value of the travel time table 180 are determined.
  • the feature amount using the difference of does not change depending on the current travel time.
  • the maximum value and the minimum value of the movement time table 180 are not updated by the movement time measured at the present time, and therefore, the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 does not change. .
  • the characteristic amount using the difference between the maximum value and the minimum value of the travel time table 180 indicates the change in the ambient temperature change. The effects are ignored.
  • the difference between the maximum value and the minimum value of the travel time table 180 is calculated.
  • the feature amount using varies depending on the current travel time.
  • the magnitude of the variation of the characteristic amount due to the influence of the surrounding temperature change is sufficiently smaller than the magnitude of the variation of the characteristic amount due to the influence of the occurrence of the abnormality. This is because the magnitude of the change in the movement time due to the change in the ambient temperature is sufficiently smaller than the magnitude of the change in the movement time due to the occurrence of an abnormality such as a failure.
  • the influence of the ambient temperature change should be ignored or ignored as being sufficiently small compared to the effect of the occurrence of the abnormality. Can be.
  • the abnormality detection device 10 changes “movement time change due to abnormality” to “movement time due to ambient temperature change” based on the feature amount using the difference between the maximum value and the minimum value in the movement time table 180. This is effective in that it can be distinguished from “fluctuations in time.”
  • Abnormality detecting device 10 the initial value (T 10 and T 20) by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) the difference between the" dividing by dimensionless value , A feature value used for determining abnormality of the actuator 40. That is, the abnormality detection device 10 sets a value that is not affected by the type of the actuator 40 or the like as a feature amount used for abnormality determination of the actuator 40.
  • the abnormality detection device 10 performs the dimensionless operation by dividing the “difference between the maximum value and the minimum value of the travel time table 180” by the initial value of the travel time table 180, thereby obtaining the “difference between the maximum value and the minimum value”. Of the actuator 40 is invalidated.
  • the abnormality detecting apparatus 10 dimensionless by dividing by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) and the difference" initial value (T 10 and T 20)
  • the use of the feature amount has an effect that abnormality of various types of actuators 40 can be determined with the same index.
  • the piston 46 is displaced in the cylinder 41 in the pushing direction or the retraction direction which is the opposite direction to the pushing direction.
  • the time when the Push command (the command of the displacement in the pushing direction) is started, second end 43 measures the extrusion time T 1 is the time until the time has arrived to (the extrusion direction side end portion) "
  • the determination unit 150 uses the feature amount W 1 of the extrusion time T 1 At least, it is determined whether there is an abnormality in the rod packing 49 for preventing the pressure fluid from leaking out from at least between the piston rod 47 connected to the piston 46 and the cylinder 41.
  • the abnormality detection device 10 uses the feature amount W 1 of the extrusion time T 1, determines the presence or absence of abnormality in at least the rod packing 49.
  • the leak out is the pressure fluid from between the piston rod 47 and the cylinder 41, there is extrusion time T 1 is shorter (smaller) trend. Accordingly, the abnormality detection device 10 uses the feature amount W 1 of the extrusion time T 1, the effect of that it is possible to determine the presence or absence of abnormality in at least the rod packing 49.
  • the piston 46 is displaced in the cylinder 41 in the pushing direction or the retraction direction which is the opposite direction to the pushing direction.
  • measures the pull-back time T 2 is a time to "
  • the determination unit 150 uses the feature amount W 2 of the pull-back time T 2, at least, the pressure fluid from between the piston 46 and the cylinder 41 It is determined whether there is any abnormality in the piston packing 48 for preventing leakage.
  • the abnormality detection device 10 uses the feature amount W 2 of the pull-back time T 2, determines the presence or absence of abnormality in at least the piston seal 48.
  • the abnormality detection device 10 uses the feature amount W 2 of the pull-back time T 2, the effect of that it is possible to determine the presence or absence of abnormality in at least the piston seal 48.
  • the abnormality detection device 10 notifies the user of the movement time (that is, the initial values (T 10 and T 20 )) measured by the timer 130 when a predetermined time has elapsed from the activation of the actuator 40. 160 is further provided. According to the above configuration, the abnormality detection device 10 has an effect that the user can be notified of the initial values (T 10 and T 20 ).
  • the abnormality detection device 10 (in particular, timing unit 130) is a diagram showing an example of a calculation method by "travel time of the piston 46", specifically, extrusion time T 1 and pull-back time T 2 It is a figure showing an example of each calculation method.
  • the vertical axis in FIG. 3 indicates the detection signals (first detection signal and second detection signal) from the switches (first switch 51 and second switch 52) and the commands (Push command and Pull command, respectively). Level is shown.
  • the horizontal axis in FIG. 3 indicates time (Time), and the unit is ms (millisecond).
  • the Level of the Push command is set to “the start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42.
  • the time at which the value changes from “0 (low)” to “1 (high)” is detected.
  • the first timer 131 sets the time at which the Push command is notified from the first command acquisition unit 111 as "the start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42". May be detected.
  • the first timing unit 131 may detect a time at which the level of the Push command notified from the first command acquisition unit 111 changes from “0 (low)” to “1 (high)”.
  • the first time measurement unit 131 determines that the first command acquisition unit 111 sends the direction switching valve 30 a “start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42”. The time at which the Push command is output may be detected. In other words, the first timing unit 131 detects the time at which the level of the Push command output from the first command acquisition unit 111 to the direction switching valve 30 changes from “0 (low)” to “1 (high)”. Is also good.
  • the Level of the second detection signal from the second switch 52 is set to “0 (low)” as the “time when the piston 46 arrives at the second end 43”. ”To“ 1 (high) ”.
  • the first timing unit 131 determines the time at which the second detection signal was notified from the second detection signal acquisition unit 122 (or the second detection signal acquisition unit) as “the time when the piston 46 arrived at the second end 43”. 122 may acquire the second detection signal).
  • the first timing unit 131 sets the Level of the second detection signal notified from the second detection signal acquisition unit 122 (or acquired by the second detection signal acquisition unit 122 from the second switch 52) to “0 ( The time at which the “low)” changes to “1 (high)” may be detected.
  • the level of the Pull command is set to “the start time of the Pull command output from the PLC 20 when the piston 46 is located at the second end 43.
  • the time at which the value changes from “0 (low)” to “1 (high)” is detected.
  • the second timer 132 determines the time when the Pull command was notified from the second command acquisition unit 112 as “the start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. May be detected.
  • the second timing unit 132 may detect a time when the level of the Pull command notified from the second command acquisition unit 112 changes from “0 (low)” to “1 (high)”.
  • the second time counting unit 132 determines that the second command acquisition unit 112 sends the direction switching valve 30 a “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. The time at which the Pull command is output may be detected. In other words, the second timing unit 132 detects the time when the level of the Pull command output from the second command acquisition unit 112 to the direction switching valve 30 changes from “0 (low)” to “1 (high)”. Is also good.
  • the Level of the first detection signal from the first switch 51 is set to “0 (low)” as the “time when the piston 46 arrives at the first end 42”. ”To“ 1 (high) ”.
  • the second timer 132 determines the time when the first detection signal was notified from the first detection signal acquisition unit 121 (or the first detection signal acquisition unit) as “the time when the piston 46 arrived at the first end 42”. 121 may detect the first detection signal).
  • the second timing unit 132 sets the Level of the first detection signal notified from the first detection signal acquisition unit 121 (or acquired by the first detection signal acquisition unit 121 from the first switch 51) to “0 ( The time at which the “low)” changes to “1 (high)” may be detected.
  • the second counting unit 132 a pull-back time T 2, as shown in FIG. 3, from "in a state where the piston 46 is positioned in the second end portion 43, the start time of the Pull command PLC20 outputs" It is calculated as the time until "the time when the piston 46 arrives at the first end 42".
  • FIG. 4 is a flowchart illustrating an outline of a process executed by the abnormality detection device 10.
  • the command acquisition unit 110 acquires control commands (Push command and Pull command) from the PLC 20, that is, the first command acquisition unit 111 acquires a Push command, and the second command acquisition unit 112 acquires a Pull command. (S110).
  • the command acquisition unit 110 notifies the time control unit 130 of the acquired control command, that is, the first command acquisition unit 111 notifies the push command to the time measurement unit 130, and the second command acquisition unit 112 measures the Pull command. Notify section 130.
  • the detection signal acquisition unit 120 acquires a detection signal (first detection signal and second detection signal) from each of the first switch 51 and the second switch 52. That is, the first detection signal acquisition unit 121 acquires the second detection signal from the second switch 52, and the second detection signal acquisition unit 122 acquires the first detection signal from the first switch 51 (S120). .
  • the detection signal acquisition unit 120 notifies the time detection unit 130 of the acquired detection signal, that is, the first detection signal acquisition unit 121 notifies the time detection unit 130 of the second detection signal, and the second detection signal acquisition unit 122 Notifies the timer 130 of the first detection signal.
  • the timer 130 calculates “the start time of the control command for instructing the movement of the piston 46” based on the control command (Push command and Pull command) notified from the command acquisition unit 110. In addition, the timing unit 130 determines that the “piston 46 has arrived at the first end 42 or the second end 43” based on the detection signals (the first detection signal and the second detection signal) notified from the detection signal acquisition unit 120. At the time when it was done “. The timer 130 calculates the movement time (from the “start time of the control command instructing the movement of the piston 46” and the “time when the piston 46 arrives at the first end 42 or the second end 43”). extrusion time T 1 and pull-back time T 2) is calculated.
  • the first timing unit 131 determines that the “piston 46 has arrived at the second end 43 from the“ start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42 ”.
  • calculating the extrusion time T 1 is a time until the time ".
  • the second timer 132 calculates the time at which the piston 46 arrives at the first end 42 from the “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. Is calculated (S130).
  • Timing unit 130 (first timing unit 131, and a second timer unit 132) the calculated travel time (the extrusion time T 1 and pull-back time T 2), and notifies the update control unit 140.
  • the update control unit 140 executes an update process of the movement time table 180, that is, the first update control unit 141 executes an extrusion time table update process, and the second update control unit 142 executes a retraction time table update process. (S140). Details of the push-out time table updating process and the pull-back time table updating process will be described later with reference to FIG.
  • Determination unit 150 refers to the moving time table 180 (extrusion time table 181 and pull-back time table 182), the initial value of the movement time (extrusion time T 1 and pull-back time T 2), the maximum value, and minimum calculating the amount of feature (W 1 and W 2) with the value.
  • the first determination unit 151 refers to the extrusion time table 181 and divides the value obtained by subtracting the minimum value T 1 min from the maximum value T 1MAX by the initial value T 10 using Expression 1, that is, by dividing the value by the initial value T 10 . to calculate the amount W 1.
  • the second determination unit 152 refers to the pull-back time table 182, according to Equation 2, i.e., a value obtained by subtracting the minimum value T 2min from the maximum value T 2MAX, by dividing by the initial value T 20, feature amount W 2 to calculate the (S150).
  • the determination unit 150 compares the calculated feature values (W 1 and W 2 ) with the reference values (TH 1 and TH 2 ) to determine whether an abnormality such as breakage of the actuator 40 has occurred (S160).
  • the first determination unit 151 determines that no abnormality has occurred, and sends the determination result to the notification control unit 160. Notice.
  • the notification control unit 160 notifies the PLC 20 of the determination result that "there is no abnormality" notified from the first determination unit 151 (S170).
  • the first determination unit 151 the feature amount W 1 to confirm larger than the reference value TH 1 (No in S160), for at least rod packing 49, it is determined that an abnormality such as breakage has occurred, the determination The result is notified to the notification control unit 160.
  • the notification control unit 160 notifies the PLC 20 of the determination result notified from the first determination unit 151 that "at least the rod packing 49 has an abnormality such as breakage" (S180).
  • the second determination unit 152 confirms that the feature quantity W 2 is the reference value TH 2 or less (Yes in S160), the abnormality is determined not to have occurred, and notifies the determination result to the notification control section 160 .
  • the notification control unit 160 notifies the PLC 20 of the result of the determination that “there is no abnormality” notified from the second determination unit 152 (S170).
  • the second determination unit 152 the feature amount W 2 confirms larger than the reference value TH 2 (No at S160), for at least the piston seal 48, it is determined that an abnormality such as breakage has occurred, the determination The result is notified to the notification control unit 160.
  • the notification control unit 160 notifies the PLC 20 of the determination result notified from the second determination unit 152 that "at least an abnormality such as breakage has occurred in the piston packing 48" (S180).
  • the “processing executed by the abnormality detection device 10” described so far with reference to FIG. 4 can be organized as follows.
  • the “processing performed by the abnormality detection device 10” includes abnormality detection in which the abnormality of the actuator 40 in which the piston 46 (movable part) is displaced by the supply of the pressure fluid is detected using the movement time (displacement time) of the piston 46.
  • This is a control method of the device, which includes a time counting step (S130) and a determining step (S160).
  • the movement time (specifically, the extrusion time T ⁇ b > 1 and the retraction time T ⁇ b > 2 ) is set as “the piston 46 is the first end 42 or the second end 43 (one end) of the actuator 40. From the time when the control command (Push command and Pull command) for the displacement to the second end 43 or the first end 42 (the other end) is started, the piston 46 is moved from the second end 43 to the second end 43. Alternatively, the time until "the time when the vehicle arrives at the first end 42" is measured.
  • the determination step (S160) is based on “the maximum value of the movement time (T 1MAX and T 2MAX ) measured up to the present time in the timing step (S130)” and “measured up to the present time in the timing step (S130)”.
  • the minimum value of the moving time (T 1 min and T 2 min ) ” is subtracted from the moving time measured in the clocking step (S 130) at the time when a predetermined time has elapsed from the time of activation of the actuator 40 (that is, The presence / absence of an abnormality is determined using the feature amounts (W 1 and W 2 ) that are values divided by the “initial values (T 10 and T 20 ))”.
  • the control method the maximum value (T 1MAX and T 2MAX) minimum value of the value obtained by subtracting the (T 1min and T 2min), a value obtained by dividing by the initial value (T 10 and T 20)
  • the presence / absence of abnormality in the actuator 40 is determined using the characteristic amounts (W 1 and W 2 ).
  • the moving time of the piston 46 is affected by the temperature around the actuator 40.
  • the movement time tends to decrease, and when the temperature around the actuator 40 decreases, the movement time tends to increase.
  • the movement time also varies depending on the type of the actuator 40, the load condition, the installation position, the usage time so far, and the like.
  • a conventional method of setting a normal value for the travel time in advance and comparing the measured travel time with the normal value to determine an abnormality has the following problems. That is, in order to maintain the accuracy of the abnormality determination, the conventional method has to be individually performed according to various factors such as the temperature around the actuator 40, the type of the actuator 40, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator 40” in accordance with the moving time that varies according to “the conditions such as the ambient temperature and the type of the actuator 40”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
  • control method the presence or absence of abnormality of the actuator 40, the minimum value from the maximum value (T 1MAX and T 2MAX) a value obtained by subtracting the (T 1min and T 2min), the initial value (T 10 and T
  • the determination is made using the feature amounts (W 1 and W 2 ) which are values divided by the above ( 20 ).
  • the magnitude of the change in the travel time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the travel time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the movement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the movement time due to the change in the ambient temperature.
  • the abnormality detection device 10 can determine whether or not an abnormality has occurred based on the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180.
  • the maximum value and the minimum value of the travel time table 180 are determined.
  • the feature amount using the difference of does not change depending on the current travel time.
  • the maximum value and the minimum value of the movement time table 180 are not updated by the movement time measured at the present time, and therefore, the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 does not change. .
  • the characteristic amount using the difference between the maximum value and the minimum value of the travel time table 180 indicates the change in the ambient temperature change. The effects are ignored.
  • the difference between the maximum value and the minimum value of the travel time table 180 is calculated.
  • the feature amount using varies depending on the current travel time.
  • the magnitude of the variation of the characteristic amount due to the influence of the surrounding temperature change is sufficiently smaller than the magnitude of the variation of the characteristic amount due to the influence of the occurrence of the abnormality. This is because the magnitude of the change in the movement time due to the change in the ambient temperature is sufficiently smaller than the magnitude of the change in the movement time due to the occurrence of an abnormality such as a failure.
  • the influence of the ambient temperature change should be ignored or ignored as being sufficiently small compared to the effect of the occurrence of the abnormality. Can be.
  • control method uses the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 to change “movement time change due to abnormality” to “movement time change due to ambient temperature change”. The effect is that it can be grasped separately from “fluctuations of”.
  • the control method includes an initial value (T 10 and T 20) by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) difference between" a value obtained by dividing by dimensionless,
  • the feature amount is used for determining the abnormality of the actuator 40. That is, in the control method, a value that is not affected by the type of the actuator 40 or the like is used as a feature amount used for determining an abnormality of the actuator 40.
  • the control method divides the “difference between the maximum value and the minimum value of the travel time table 180” by the initial value of the travel time table 180 to make the dimensionless, thereby obtaining the “difference between the maximum value and the minimum value”. Of the actuator 40 is invalidated.
  • control method "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) and the difference between the" features dimensionless by dividing the the initial value (T 10 and T 20)
  • the use of the quantity has the effect that abnormality of various types of actuators 40 can be determined with the same index.
  • FIG. 5 is a flowchart showing an outline of the push-out time table update process and the pull-back time table update process executed by the abnormality detection device 10.
  • the push-out time table update process is executed by the first update control unit 141, and the withdrawal time table update process is executed by the second update control unit 142.
  • the update control unit 140 refers to the travel time table 180 to determine whether the initial value has been stored. That is, the first update control unit 141 determines whether or not the initial value T 10 has been stored in the extrusion time table 181, and the second update control unit 142 has stored the initial value T 20 in the pullback time table 182. Is determined (S1410).
  • the update control unit 140 stores the travel time calculated by the timer 130 as the initial value in the travel time table 180. That is, when confirming that the initial value T 10 is not stored in the extrusion time table 181, the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 in the extrusion time table 181. stores a value T 10 (S1420). Further, when it is confirmed that the initial value T 20 to pull-back time table 182 is not stored, the second update controller 142, a pull-back time T 2 the calculated second clock section 132, pull-back time table 182 to be stored as an initial value T 20 (S1420).
  • the update control unit 140 determines whether “the movement time calculated by the timer 130 is equal to or less than the maximum value stored in the movement time table 180”. That is, the first update control unit 141 determines "whether first calculated extrusion time T 1 of the timer unit 131 is less than or equal to the maximum value T 1MAX stored in the extrusion time table 181" (S1430). The second update controller 142 determines "pull-back time T 2 the calculated second time measurement section 132, or less than the maximum value T 2MAX stored in pull-back time table 182," a (S1430 ).
  • the update control unit 140 determines that “the travel time calculated by the timer 130 is not less than or equal to the maximum value stored in the travel time table 180 (for example, the maximum value Greater). That is, when the maximum value T 1MAX is not stored in the extrusion time table 181, the first update control unit 141 determines that “the extrusion time T 1 calculated by the first timer 131 is stored in the extrusion time table 181. It is not less than the maximum value T1MAX ".
  • the update control unit 140 uses the traveling time calculated by the clock unit 130 to calculate The maximum value of the movement time table 180 is updated. That is, when it is determined that "calculated extrusion time T 1 of the first time counting unit 131 is greater than the maximum value T 1MAX stored in the extrusion time table 181" (No in S1430), the first update control unit 141, Perform the following processing. That is, the first update control unit 141, the calculated extrusion time T 1 of the first time counting unit 131 updates the maximum value T 1MAX extrusion time table 181 (S1440).
  • pull-back time T 2 the calculated second time counting unit 132 is greater than the maximum value T 2MAX stored in pull-back time table 182" (No in S1430) If it is determined that the second update controller 142 Performs the following processing. That is, the second update controller 142 by pull-back time T 2 the calculated second time counting unit 132 updates the maximum value T 2MAX the pull-back time table 182 (S1440).
  • the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 as the maximum value T 1MAX in the extrusion time table 181. I do. Also, when the maximum value T 2MAX the pull-back time table 182 is not stored, the second update controller 142, a pull-back time T 2 the calculated second time counting unit 132, a pull-back time table 182, the maximum Stored as value T2MAX .
  • the update control unit 140 determines whether “the movement time calculated by the timer 130 is equal to or more than the minimum value stored in the movement time table 180”. That is, the first update control unit 141 determines "whether calculated extrusion time T 1 of the first time counting unit 131 is the minimum value T 1min or stored in the extrusion time table 181" (S1450). The second update controller 142 determines "pull-back time T 2 the calculated second time counting unit 132, whether the minimum value T 2min or stored in pull-back time table 182," a (S1450 ).
  • the update control unit 140 determines that “the travel time calculated by the timer 130 is not equal to or greater than the minimum value stored in the travel time table 180 (for example, the maximum value Is smaller). That is, when the minimum value T 1 min is not stored in the extrusion time table 181, the first update control unit 141 determines that “the extrusion time T 1 calculated by the first timer 131 is stored in the extrusion time table 181. Not more than the minimum value T 1 min ". If the minimum value T 2min is not stored in the pull-back time table 182, the second update control unit 142 determines that “the pull-back time T 2 calculated by the second timer 132 is stored in the pull-back time table 182. It is not more than the minimum value T 2 min . "
  • the update controller 140 calculates The minimum value of the movement time table 180 is updated. That is, when it is determined that "calculated extrusion time T 1 of the first time counting unit 131, the minimum value T 1min smaller than that stored in the extrusion time table 181" (No in S1450), the first update control unit 141, Perform the following processing. That is, the first update control unit 141 updates the minimum value T 1 min of the extrusion time table 181 with the extrusion time T 1 calculated by the first clock unit 131 (S1460).
  • the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 as the minimum value T 1 min in the extrusion time table 181. I do.
  • the second update control unit 142 stores the retraction time T 2 calculated by the second timer 132 in the reversion time table 182 in the minimum value. It is stored as the value T 2min .
  • FIG. 6 is a diagram showing the relationship between the moving time and the feature amount, particularly showing the relationship between the pull-back time T 2 and the feature quantity W 2.
  • the horizontal axis in FIG. 6 indicates the number of reciprocations (Frame number) of the piston 46 and the piston rod 47, and the vertical axis indicates the retraction time T 2 (value) on the left side of the paper, and the unit is ⁇ s. ( ⁇ sec).
  • the vertical axis on the right side of the paper indicates the feature amount.
  • the relationship between the movement time and the feature amount will be described with reference to FIG. 6, and the influence on the movement time due to the temperature around the actuator 40 and the influence on the movement time due to an abnormality such as a failure of the actuator 40. The distinction will be described.
  • the pressure fluid for example, pressure gas supplied from the direction switching valve 30 thermally expands, and the cylinder 41, the piston 46, and the like also thermally expand. Affected by temperature. That is, as shown in FIG. 6, even at the stage of abnormal such as a failure in the actuator 40 has not occurred, the movement time of the piston 46 (movable portion) is (displacement time) pull-back time T 2 (Extrusion time T 1) Fluctuates depending on the temperature around the actuator 40.
  • the pressure fluid for example, pressure gas supplied from the direction switching valve 30 thermally expands, and the cylinder 41, the piston 46, and the like also thermally expand. Affected by temperature. That is, as shown in FIG. 6, even at the stage of abnormal such as a failure in the actuator 40 has not occurred, the movement time of the piston 46 (movable portion) is (displacement time) pull-back time T 2 (Extrusion time T 1) Fluctuates depending on the temperature around the actuator 40.
  • the temperature around the actuator 40 Under the condition that the temperature around the actuator 40 does not change, that is, under constant temperature conditions, it is possible to monitor only the movement time of the piston 46 and detect an abnormality such as breakage of the actuator 40.
  • the temperature around the actuator 40 changes. Under conditions in which the temperature around the actuator 40 changes due to the date and time, the season, the operating status of the device around the actuator 40, etc., whether the movement time of the piston 46 fluctuates due to a change in the surrounding temperature, It cannot be distinguished whether it is due to a failure or other abnormality.
  • the abnormality detection device 10 sets the characteristic amount of the movement time. By using W 2 (W 1 ), the variation Der and the variation Dte are distinguished.
  • the abnormality detection device 10 uses the difference between the maximum value and the minimum value of the traveling time measured during the measurement period, that is, the time measured from the start of the abnormality determination to the present time, as the feature amount, thereby obtaining the variation amount. Der is distinguished from the variation Dte.
  • the reason why the fluctuation amount Der and the fluctuation amount Dte can be distinguished will be described in detail.
  • the “movement time fluctuation amount Der due to abnormality” is sufficiently larger than the “movement time fluctuation amount Dte due to ambient temperature change”.
  • the variation amount Dte is negligibly small, while the variation amount Der is sufficiently large.
  • the “variation amount Dte of the traveling time due to a change in ambient temperature” is sufficiently small and should be ignored. Can be.
  • the travel time measured at the present time (the travel time obtained by adding the variation Dte to the travel time that would be measured under constant temperature conditions) is less than or equal to the maximum value up to the present time and greater than or equal to the minimum value.
  • the maximum value and the minimum value are not updated by the current travel time. Therefore, the feature amount calculated using the difference between the maximum value and the minimum value of the movement time does not change, that is, the change amount Dte is ignored in the feature amount.
  • the variation between before and after the update is small enough. That is, when the maximum value or the minimum value is updated by the movement time to which the variation Dte is added, the variation of the feature value before and after the update is such that the maximum value or the minimum value depends on the movement time to which the variation Der is added. This is sufficiently small compared to the variation in the feature value before and after the update in the case of updating. This is because the “movement time variation Der due to abnormality” is sufficiently larger than the “movement time variation Dte due to ambient temperature change”.
  • the abnormality detection device 10 determines “variation in travel time due to abnormality” by “characteristic amount calculated using the difference between the maximum value and minimum value of travel time” as “moving time due to ambient temperature change”. Fluctuations ".
  • the movement time (displacement time) of the piston 46 differs depending on the type of the actuator 40, such as the diameter and length of the cylinder 41, and also depends on the load condition of the actuator 40.
  • the abnormality detection device 10 determines the dimensionless value by dividing the “difference between the maximum value and the minimum value of the movement time” by the “initial value of the movement time”, that is, the influence of the type of the actuator 40 and the like. A value that is not received is set as a feature amount used for determining abnormality of the actuator 40. By dividing the “difference between the maximum value and the minimum value of the travel time” by the “initial value of the travel time” to make it non-dimensional, the abnormality detection device 10 obtains the “difference between the maximum value and the minimum value of the travel time” Of the actuator 40 is invalidated.
  • the abnormality detection device 10 uses the feature amount, which is a dimensionless value obtained by dividing the “difference between the maximum value and the minimum value of the travel time” by the “initial value of the travel time”, as an index used for abnormality determination. Accordingly, various types of abnormalities of the actuator 40 can be determined with the same index.
  • Modification (Acquisition of start time of control command) It is not essential for the abnormality detection device 10 to acquire each of the Push command and the Pull command from the PLC 20.
  • the abnormality detection device 10 only needs to be able to acquire the time when the direction switching valve 30 acquires each of the Push command and the Pull command.
  • sensors (not shown) (a first switching sensor and a second switching sensor) are provided for each of a first solenoid that acquires a Push command and a second solenoid that acquires a Pull command. Then, each of the first switching sensor and the second switching sensor is caused to detect "acquiring each of the Push command and the Pull command by each of the first solenoid and the second solenoid".
  • the abnormality detection device 10 may acquire the time when the direction switching valve 30 acquires each of the Push command and the Pull command from the detection results of the first switching sensor and the second switching sensor. That is, the abnormality detection device 10 may acquire the time when the level of the Push command changes from “0 (low)” to “1 (high)” from the detection result of the first switching sensor. The abnormality detection device 10 may acquire the time when the level of the Pull command changes from “0 (low)” to “1 (high)” from the detection result of the second switching sensor.
  • the configuration in which the PLC 20 is connected to each of the direction switching valve 30, the first switch 51, and the second switch 52 via the abnormality detection device 10 has been described above. It is not essential for each of the detection device 10 and the PLC 20.
  • the PLC 20 may be directly connected to each of the direction switching valve 30, the first switch 51, and the second switch 52.
  • the abnormality detection device 10 is connected to each of the direction switching valve 30 (or each of the first switching sensor and the second switching sensor), the first switch 51, and the second switch 52 via the PLC 20. Is also good.
  • a configuration may be adopted in which the abnormality detection device 10 is connected to each of the direction switching valve 30, the first switch 51, and the second switch 52 via the PLC 20.
  • the abnormality detecting device 10 outputs the time when the level of the Push command changes from “0 (low)” to “1 (high)” from the PLC 20 and the level of the Pull command from “0 (low)” to “1 (high)”. )) May be acquired.
  • the abnormality detecting device 10 sets the time when the level of the second detection signal changes from “0 (low)” to “1 (high)” and the level of the first detection signal via the PLC 20 to “0 (low)”. , The time when the time changes from “1” to “1 (high)” may be acquired.
  • the abnormality detection device 10 and the PLC 20 are separate devices.
  • the abnormality detection device 10 it is not essential that the abnormality detection device 10 be configured as a device independent of the PLC 20. It may be configured as an integrated device with the PLC 20.
  • the control blocks (in particular, the command acquisition unit 110, the detection signal acquisition unit 120, the clock unit 130, the update control unit 140, the determination unit 150, and the notification control unit 160) of the abnormality detection device 10 include an integrated circuit (IC chip) and the like. May be realized by a logic circuit (hardware) formed in the computer, or may be realized by software using a CPU (CenTral Processing Unit).
  • the abnormality detection device 10 includes a CPU that executes instructions of a program that is software for realizing each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU).
  • a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the object of the present invention is achieved when the computer (or CPU) reads the program from the recording medium and executes the program.
  • the recording medium a “temporary tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • An abnormality detection device is an abnormality detection device that detects an abnormality of an actuator whose movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion, wherein the displacement time is A timing unit that measures a time from a time when a displacement command to the other end is started in a state where the movable unit is at one end of the actuator to a time when the movable unit arrives at the other end; From the maximum value of the displacement time measured so far by the unit, the value obtained by subtracting the minimum value of the displacement time measured so far by the time counting unit, at the time when a predetermined time has elapsed from the start time of the actuator A determination unit that determines whether there is an abnormality using a feature amount that is a value divided by the displacement time measured by the clock unit.
  • the abnormality detection device divides a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time by the displacement time measured at a time when a predetermined time has elapsed from the start time.
  • the presence / absence of an abnormality in the actuator is determined by using the feature value which is the obtained value.
  • the displacement time of the movable part is affected by the temperature around the actuator. For example, when the temperature around the actuator increases, the displacement time tends to decrease, and when the temperature around the actuator decreases, the displacement time tends to increase. Further, the displacement time also varies depending on the type of the actuator, load conditions, installation position, usage time so far, and the like.
  • a conventional method of setting a normal value for the displacement time in advance and comparing the measured displacement time with a normal value to determine an abnormality has the following problems.
  • the conventional method in order to maintain the accuracy of the abnormality determination, is individually performed according to various factors such as the temperature around the actuator, the type of the actuator, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value.
  • the conventional method is based on the “conditions such as the ambient temperature and the type of the actuator” in accordance with the displacement time that varies according to “the conditions such as the ambient temperature and the type of the actuator”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
  • the abnormality detection device determines whether or not the actuator has an abnormality by determining whether or not a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time at a predetermined time from the start time. The value is divided by the measured displacement time ".
  • the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the displacement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the displacement time due to the change in the ambient temperature.
  • the difference between the maximum value and the minimum value is used.
  • the amount does not vary with the current displacement time. That is, when the current displacement time is equal to or less than the maximum value and equal to or greater than the minimum value, the influence of the ambient temperature change is ignored in the feature amount using the difference between the maximum value and the minimum value. .
  • the current displacement time affected by the ambient temperature change is larger than the maximum value, or, if smaller than the minimum value, the feature amount using a difference between the maximum value and the minimum value, It fluctuates according to the current displacement time affected by the ambient temperature change.
  • the magnitude of the variation of the feature quantity due to the influence of the ambient temperature change is sufficiently smaller than the magnitude of the variation of the feature quantity due to the influence of the abnormality. This is because the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure.
  • the influence of the ambient temperature change can be neglected or can be ignored as being sufficiently small as compared with the influence of the occurrence of the abnormality.
  • the abnormality detection device determines, based on the feature amount using the difference between the maximum value and the minimum value, the “fluctuation in the displacement time due to the abnormality” and the “displacement due to the ambient temperature change. This is effective in that it can be distinguished from “fluctuations in time.”
  • the abnormality detection device is dimensionless by dividing the “difference between the maximum value and the minimum value” by the “displacement time measured at the time when a predetermined time has elapsed from the start time (that is, the initial value)”. Let the value be the characteristic amount used for the abnormality determination of the actuator. That is, the abnormality detection device sets a value that is not affected by the type of the actuator or the like as the feature amount used for the abnormality determination of the actuator.
  • the anomaly detection device by dividing the “difference between the maximum value and the minimum value” by the “initial value” to make the dimensionless, the “difference between the maximum value and the minimum value” And the effect of the type of the actuator and the like is nullified.
  • the anomaly detection device uses the same dimension as the non-dimensional feature amount by dividing the “difference between the maximum value and the minimum value” by the “initial value”. There is an effect that it is possible to determine the type of abnormality of the actuator.
  • the movable portion is displaced in the cylinder in a pushing direction, or in a retraction direction that is a direction opposite to the pushing direction, and the timing section is configured as the displacement time. From the time when the command for displacement in the pushing direction is started in a state where the movable portion is at the end of the actuator in the retraction direction, the movable portion is moved to the end of the actuator in the pushing direction.
  • the determination unit uses the feature amount related to the extrusion time, at least, from between the cylinder and the rod connected to the movable unit and the cylinder. The presence or absence of an abnormality in the rod packing for preventing the leakage of the pressure fluid may be determined.
  • the abnormality detection device determines at least the presence or absence of an abnormality in the rod packing by using the feature amount related to the extrusion time.
  • an abnormality such as breakage occurs in the rod packing, the pressurized fluid leaks from between the rod and the cylinder, so that the extrusion time tends to be shorter (smaller). Therefore, the abnormality detecting device has an effect that it is possible to determine at least the presence or absence of the abnormality of the rod packing using the feature amount related to the extrusion time.
  • the movable portion is displaced in the cylinder in a pushing direction, or in a retraction direction that is a direction opposite to the pushing direction, and the timing section is configured as the displacement time. From the time when a command for displacement in the retraction direction is started in a state where the movable portion is at the end of the actuator in the pushing direction, the movable portion is moved to the end of the actuator in the retraction direction. Measuring the withdrawal time, which is the time up to the time when it arrives at, and using the characteristic amount related to the withdrawal time, at least the pressure fluid from between the movable part and the cylinder. It may be determined whether or not there is an abnormality in the piston packing for preventing leakage of oil.
  • the abnormality detection device determines at least presence or absence of an abnormality in the piston packing by using the characteristic amount related to the retraction time.
  • an abnormality such as breakage occurs in the piston packing, the pressure fluid leaks from between the movable portion and the cylinder, and the retraction time tends to be long (increased). Therefore, the abnormality detection device has an effect that it is possible to determine at least the presence or absence of abnormality in the piston packing by using the characteristic amount related to the retraction time.
  • the abnormality detection device may further include a notification control unit that notifies a user of the displacement time measured by the clock unit at a point in time when a predetermined time has elapsed from the time of activation of the actuator.
  • the abnormality detection device has an effect that the displacement time (that is, the initial value) measured when a predetermined time has elapsed from the activation time of the actuator can be notified to a user. .
  • the control method is a control method of an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion, wherein the displacement time
  • a timing step for measuring the time from the time when the command for displacement to the other end is started in a state where the movable part is at one end of the actuator, to the time when the movable part arrives at the other end A value obtained by subtracting the minimum value of the displacement time measured so far in the time counting step from the maximum value of the displacement time measured so far in the time counting step is a predetermined time from the activation time of the actuator.
  • the control method divides a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time by the displacement time measured when a predetermined time has elapsed from the start time.
  • the presence / absence of an abnormality in the actuator is determined using a feature value that is a value.
  • the displacement time of the movable part is affected by the temperature around the actuator. For example, when the temperature around the actuator increases, the displacement time tends to decrease, and when the temperature around the actuator decreases, the displacement time tends to increase.
  • the displacement time also varies depending on the type of the actuator, the load condition, the installation position, the usage time so far, and the like.
  • a conventional method of setting a normal value for the displacement time in advance and comparing the measured displacement time with a normal value to determine an abnormality has the following problems.
  • the conventional method in order to maintain the accuracy of the abnormality determination, is individually performed according to various factors such as the temperature around the actuator, the type of the actuator, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value.
  • the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator” in accordance with the displacement time that varies according to “the conditions such as the ambient temperature and the type of the actuator”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
  • control method determines whether or not the actuator is abnormal by measuring a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time when a predetermined time has elapsed from the start time. Is determined by using the characteristic amount which is a value obtained by dividing the calculated displacement time.
  • the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the displacement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the displacement time due to the change in the ambient temperature.
  • the difference between the maximum value and the minimum value is used.
  • the amount does not vary with the current displacement time. That is, when the current displacement time is equal to or less than the maximum value and equal to or greater than the minimum value, the influence of the ambient temperature change is ignored in the feature amount using the difference between the maximum value and the minimum value. .
  • the current displacement time affected by the ambient temperature change is greater than the maximum value, or less than the minimum value
  • the feature amount using the difference between the maximum value and the minimum value is Fluctuates according to the current displacement time affected by the temperature change.
  • the magnitude of the variation of the feature quantity due to the influence of the ambient temperature change is sufficiently smaller than the magnitude of the variation of the feature quantity due to the influence of the abnormality. This is because the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure.
  • the influence of the ambient temperature change can be neglected or can be ignored as being sufficiently small as compared with the influence of the occurrence of the abnormality.
  • control method uses the characteristic amount using the difference between the maximum value and the minimum value to change “the change in the displacement time due to an abnormality” to “the displacement time due to a change in ambient temperature”. The effect is that it can be grasped separately from “fluctuations of”.
  • the control method is a non-dimensional value obtained by dividing the “difference between the maximum value and the minimum value” by the “displacement time measured at the time when a predetermined time has elapsed from the start time (that is, the initial value)”. Is the feature quantity used for the abnormality determination of the actuator. That is, in the control method, a value that is not affected by the type of the actuator or the like is used as the feature amount used for determining abnormality of the actuator.
  • the control method by dividing the "difference between the maximum value and the minimum value" by the “initial value” to make the dimensionless, to "difference between the maximum value and the minimum value", The influence from the type of the actuator or the like is nullified.
  • control method uses the feature amount that is made dimensionless by dividing the “difference between the maximum value and the minimum value” by the “initial value”, thereby providing various types with the same index. This has the effect that abnormality of the actuator can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The objective of the present invention is to detect an abnormality in an actuator using a displacement time of a movable portion, irrespective of the ambient temperature and the type of actuator. An abnormality detecting device (10) determines an abnormality using characteristic values (W1 and W2), which are values obtained by subtracting minimum values (T1min and T2min) of a movement time from maximum values (T1MAX and T2MAX) thereof, and dividing the resulting values by initial values (T10 and T20) of the movement time.

Description

異常検出装置、異常検出装置の制御方法、情報処理プログラム、および記録媒体Anomaly detection device, control method of anomaly detection device, information processing program, and recording medium
 本発明は、圧力流体の供給により可動部が変位するアクチュエータの異常を検出する異常検出装置等に関する。 The present invention relates to an abnormality detection device and the like for detecting an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid.
 従来、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置が知られている。例えば、下掲の特許文献1には、アクチュエータの一端と他端との間を移動するピストン等の可動部の移動時間を算出し、算出した移動時間と正常値との偏差に基づいて、アクチュエータの異常が発生したか否かを判定する異常検出装置が開示されている。 Conventionally, there has been known an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid by using a displacement time of the movable portion. For example, Japanese Patent Application Laid-Open No. H11-163,199 discloses that a moving time of a movable part such as a piston that moves between one end and the other end of an actuator is calculated, and an actuator is calculated based on a deviation between the calculated moving time and a normal value. An abnormality detection device that determines whether an abnormality has occurred has been disclosed.
日本国公開特許公報「特開2015-14990号公報」Japanese Unexamined Patent Publication "JP-A-2015-14990"
 しかしながら、上述のような従来技術には、可動部の変位時間と正常値との偏差を用いてアクチュエータの異常を検出するには、アクチュエータの周囲の温度、アクチュエータの種類等に応じて、適切な正常値を設定しなければならないという問題がある。 However, in the related art as described above, in order to detect the abnormality of the actuator using the deviation between the displacement time of the movable portion and the normal value, an appropriate value is set according to the temperature around the actuator, the type of the actuator, and the like. There is a problem that a normal value must be set.
 すなわち、一般に、可動部の変位時間はアクチュエータの周囲の温度の影響を受け、例えば、周囲の温度が上昇すると変位時間は短くなる傾向があり、また、周囲の温度が下降すると変位時間は長くなる傾向がある。また、可動部の変位時間は、アクチュエータの種類、大きさ、使用目的、設置場所、これまでの使用時間等によっても変動する。 That is, in general, the displacement time of the movable part is affected by the temperature around the actuator. For example, the displacement time tends to decrease as the ambient temperature increases, and the displacement time increases as the ambient temperature decreases. Tend. In addition, the displacement time of the movable part also varies depending on the type, size, purpose of use, installation location, usage time, etc. of the actuator.
 そのため、上述のような従来技術は、可動部の変位時間に影響する、アクチュエータの周囲の温度、アクチュエータの種類等の要因を考慮して、可動部の変位時間について、正常値を設定する必要がある。 Therefore, in the above-described related art, it is necessary to set a normal value for the displacement time of the movable part in consideration of factors such as the temperature around the actuator and the type of the actuator, which affect the displacement time of the movable part. is there.
 本発明の一態様は、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記アクチュエータの周囲の温度および前記アクチュエータの種類に関わらず、前記可動部の変位時間を用いて検出する異常検出装置等を実現することを目的とする。 One aspect of the present invention is an abnormality detection that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid, using a displacement time of the movable portion regardless of a temperature around the actuator and a type of the actuator. It is intended to realize a device or the like.
 上記の課題を解決するために、本発明の一態様に係る異常検出装置は、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置であって、前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時部と、前記計時部によって現在までに計測された前記変位時間の最大値から、前記計時部によって現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時部によって計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定部と、を備えている。 In order to solve the above problem, an abnormality detection device according to an aspect of the present invention includes an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion. Wherein, as the displacement time, a time from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator to a time when the movable portion arrives at the other end. And a timer that measures the maximum value of the displacement time measured up to the present by the timer, and subtracts the minimum value of the displacement time measured up to the present by the timer, a value of the actuator. A determination unit that determines the presence or absence of an abnormality by using a characteristic amount that is a value divided by the displacement time measured by the clock unit at a time when a predetermined time has elapsed from a start time. There.
 上記の課題を解決するために、本発明の一態様に係る制御方法は、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置の制御方法であって、前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時ステップと、前記計時ステップにて現在までに計測された前記変位時間の最大値から、前記計時ステップにて現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時ステップにて計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定ステップと、を含んでいる。 In order to solve the above problem, a control method according to an aspect of the present invention provides an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion. The control method, wherein, as the displacement time, from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator, to a time when the movable portion arrives at the other end. A time counting step for measuring the time, and a value obtained by subtracting a minimum value of the displacement time measured so far in the time counting step from a maximum value of the displacement time measured up to the present time in the time counting step. At a point in time when a predetermined time has elapsed from the point in time when the actuator is activated, the presence or absence of an abnormality is determined using a feature amount that is a value divided by the displacement time measured in the timing step. And it includes a determination step.
 本発明の一態様によれば、周囲の温度およびアクチュエータの種類に関わらず、可動部の変位時間を用いて、アクチュエータの異常を検出することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that an abnormality of the actuator can be detected using the displacement time of the movable portion regardless of the ambient temperature and the type of the actuator.
本発明の実施形態1に係る異常検出装置等の要部構成を示すブロック図である。FIG. 1 is a block diagram illustrating a main configuration of an abnormality detection device and the like according to a first embodiment of the present invention. 図1の異常検出装置を含む異常検出システムの概要を示す図である。FIG. 2 is a diagram illustrating an outline of an abnormality detection system including the abnormality detection device of FIG. 1. 「ピストンの移動時間」の算出方法の一例を示す図である。It is a figure showing an example of a calculation method of “movement time of piston”. 図1の異常検出装置が実行する処理の概要を示すフロー図である。FIG. 2 is a flowchart illustrating an outline of a process executed by the abnormality detection device in FIG. 1. 押出時間テーブル更新処理および引戻時間テーブル更新処理の概要を示すフロー図である。It is a flowchart which shows the outline of a push-out time table update process and a retraction time table update process. 移動時間と特徴量との関係を示す図である。FIG. 6 is a diagram illustrating a relationship between a moving time and a feature amount.
 〔実施形態1〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。本実施の形態においては、例えば異常検出装置10を、異常検出装置の典型例として説明を行う。以下では先ず、異常検出装置10の理解を容易にするために、異常検出装置10を含む異常検出システム1の概要を、図2を用いて説明する。
[Embodiment 1]
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated. In the present embodiment, for example, the abnormality detection device 10 will be described as a typical example of the abnormality detection device. Hereinafter, first, in order to facilitate understanding of the abnormality detection device 10, an outline of the abnormality detection system 1 including the abnormality detection device 10 will be described with reference to FIG.
 §1.適用例
 (制御システムの概要)
 図2は、異常検出装置10を含む異常検出システム1の概要を示す図である。異常検出システム1は、異常検出装置10、PLC(Programmable Logic Controller、プログラマブル・ロジック・コントローラ)20、方向切替弁30、アクチュエータ40、第1スイッチ(スイッチitch、スイッチ)51、および、第2スイッチ52を含んでいる。
§1. Application example (Overview of control system)
FIG. 2 is a diagram illustrating an outline of the abnormality detection system 1 including the abnormality detection device 10. The abnormality detection system 1 includes an abnormality detection device 10, a PLC (Programmable Logic Controller) 20, a direction switching valve 30, an actuator 40, a first switch (switch itch) 51, and a second switch 52. Contains.
 PLC20は、異常検出装置10を介して、方向切替弁30に制御信号(以下、「制御指令」ともいう。具体的には、Push指令またはPull指令)を出力して、方向切替弁30に、アクチュエータ40への圧力流体(例えば、圧力気体)の供給を指示する。PLC20は、異常検出装置10を介して、Push指令またはPull指令を方向切替弁30に出力し、シリンダ41の第1端部42と第2端部43との間で、ピストン46およびピストンロッド47を一体的に、図2の紙面左右方向に往復移動させる。 The PLC 20 outputs a control signal (hereinafter also referred to as a “control command”; specifically, a Push command or a Pull command) to the direction switching valve 30 via the abnormality detection device 10, and outputs the control signal to the direction switching valve 30. The supply of the pressure fluid (for example, pressure gas) to the actuator 40 is instructed. The PLC 20 outputs a Push command or a Pull command to the direction switching valve 30 via the abnormality detection device 10, and the piston 46 and the piston rod 47 are provided between the first end 42 and the second end 43 of the cylinder 41. Are integrally reciprocated in the horizontal direction on the paper of FIG.
 具体的には、ピストン46がシリンダ41の第1端部42に位置する状態において、PLC20は、Push指令を出力することにより、ピストン46の位置を、第1端部42から第2端部43へと変位させる。ピストン46がシリンダ41の第2端部43に位置する状態において、PLC20は、Pull指令を出力することにより、ピストン46の位置を、第2端部43から第1端部42へと変位させる。 Specifically, in a state where the piston 46 is located at the first end 42 of the cylinder 41, the PLC 20 outputs a Push command to change the position of the piston 46 from the first end 42 to the second end 43. To be displaced. In a state in which the piston 46 is located at the second end 43 of the cylinder 41, the PLC 20 outputs a Pull command to displace the position of the piston 46 from the second end 43 to the first end 42.
 PLC20は、ピストン46およびピストンロッド47をシリンダ41の第1端部42と第2端部43との間で繰り返し往復させる。以下の説明においては、ピストン46およびピストンロッド47の1往復を「1Frame(フレーム)」と称することがある。 The PLC 20 reciprocates the piston 46 and the piston rod 47 between the first end 42 and the second end 43 of the cylinder 41 repeatedly. In the following description, one reciprocation of the piston 46 and the piston rod 47 may be referred to as "1 Frame (frame)".
 また、PLC20は、第1スイッチ51および第2スイッチ52の各々の検知結果を示す検知信号を、つまり、第1検知信号および第2検知信号の各々を、異常検出装置10を介して取得する。以下の説明および図面において、「スイッチ」は「SW」と略記することがある。 {Circle around (2)} The PLC 20 acquires the detection signal indicating the detection result of each of the first switch 51 and the second switch 52, that is, each of the first detection signal and the second detection signal via the abnormality detection device 10. In the following description and drawings, “switch” may be abbreviated as “SW”.
 さらに、PLC20は、異常検出装置10から、異常判定の判定結果を、つまり、アクチュエータ40における異常(具体的には、ピストンパッキン48およびロッドパッキン49の少なくとも一方の破損)の発生の有無を示す信号を取得する。 Further, the PLC 20 outputs a determination result of the abnormality determination from the abnormality detection device 10, that is, a signal indicating whether or not an abnormality has occurred in the actuator 40 (specifically, at least one of the piston packing 48 and the rod packing 49 has been damaged). To get.
 方向切替弁30は、周知の電磁弁により実現することができ、異常検出装置10を介して、PLC20からの制御指令を取得し、取得した制御指令に従って、圧力流体をアクチュエータ40の第1端部42または第2端部43に、選択的に供給する。 The direction switching valve 30 can be realized by a well-known solenoid valve, acquires a control command from the PLC 20 via the abnormality detection device 10, and sends a pressure fluid to the first end of the actuator 40 according to the acquired control command. 42 or the second end 43 is selectively supplied.
 例えば、方向切替弁30は、Push指令(押出指令)を取得すると、第1ポート44を介してシリンダ41の第1端部42側に圧力流体を供給すると共に、シリンダ41の第2端部43側の圧力流体を、第2ポート45を介して外部に排気する。これにより、ピストン46およびピストンロッド47は、シリンダ41の第1端部42から第2端部43に向かって、一体的に変位する。以下の説明において、ピストン46およびピストンロッド47が、ピストンロッド47のピストン46が備えられていない側へと、一体的に変位する場合のその変位方向を、「押出方向(図2において、紙面左側から右側への方向)」と表現する。 For example, when the direction switching valve 30 acquires the Push command (push command), the direction switching valve 30 supplies the pressurized fluid to the first end portion 42 side of the cylinder 41 via the first port 44 and the second end portion 43 of the cylinder 41. The pressure fluid on the side is exhausted to the outside through the second port 45. Thus, the piston 46 and the piston rod 47 are integrally displaced from the first end 42 of the cylinder 41 toward the second end 43. In the following description, the displacement direction when the piston 46 and the piston rod 47 are integrally displaced to the side of the piston rod 47 where the piston 46 is not provided will be referred to as the “extrusion direction (left side in FIG. To the right). "
 また、方向切替弁30は、Pull指令(引戻指令)を取得すると、第2ポート45を介してシリンダ41の第2端部43側に圧力流体を供給すると共に、シリンダ41の第1端部42側の圧力流体を、第1ポート44を介して外部に排気する。これにより、ピストン46およびピストンロッド47は、シリンダ41の第2端部43から第1端部42に向かって、一体的に変位する。以下の説明において、ピストン46およびピストンロッド47が、ピストンロッド47のピストン46が備えられている側へと、一体的に変位する場合のその変位方向を、「引戻方向(図2において、紙面右側から左側への方向)」と表現する。 Further, when the direction switching valve 30 acquires the Pull command (retraction command), the direction switching valve 30 supplies the pressurized fluid to the second end 43 side of the cylinder 41 through the second port 45, and supplies the first end of the cylinder 41. The pressure fluid on the side 42 is exhausted to the outside through the first port 44. Thus, the piston 46 and the piston rod 47 are integrally displaced from the second end 43 of the cylinder 41 toward the first end 42. In the following description, the displacement direction when the piston 46 and the piston rod 47 are integrally displaced toward the side of the piston rod 47 where the piston 46 is provided is referred to as a “retraction direction (in FIG. From right to left) ".
 アクチュエータ40は、方向切替弁30からの圧力流体(例えば、圧力気体)の供給によって、ピストンロッド47に連結されたピストン46(可動部)が、図2の左右方向(変位方向)に変位するアクチュエータであり、例えば、周知のエアシリンダである。アクチュエータ40において、ピストンロッド47に連結されたピストン46は、シリンダ41の第1端部42と第2端部43との間で、図2の左右方向に変位する。つまり、ピストン46およびピストンロッド47は、シリンダ41の第1端部42から第2端部43に向かって(つまり、押出方向に)、または、第2端部43から第1端部42に向かって(つまり、引戻方向に)、一体的に変位する。 The actuator 40 is configured such that the piston 46 (movable part) connected to the piston rod 47 is displaced in the left-right direction (displacement direction) in FIG. 2 by the supply of the pressure fluid (for example, pressure gas) from the direction switching valve 30. For example, a well-known air cylinder is used. In the actuator 40, the piston 46 connected to the piston rod 47 is displaced between the first end 42 and the second end 43 of the cylinder 41 in the left-right direction in FIG. That is, the piston 46 and the piston rod 47 move from the first end 42 of the cylinder 41 toward the second end 43 (that is, in the pushing direction) or from the second end 43 to the first end 42. (I.e., in the retraction direction), they are integrally displaced.
 アクチュエータ40は、シリンダ41とピストン46との間から圧力流体が漏れ出てしまうのを防ぐためのピストンパッキン48と、シリンダ41とピストンロッド47との間から圧力流体が漏れ出てしまうのを防ぐためのロッドパッキン49とを備えている。 The actuator 40 is provided with a piston packing 48 for preventing the pressure fluid from leaking from between the cylinder 41 and the piston 46, and preventing the pressure fluid from leaking from between the cylinder 41 and the piston rod 47. And a rod packing 49.
 第1スイッチ51は、シリンダ41の第1端部42に変位したピストン46を検知するセンサであり、第2スイッチ52は、シリンダ41の第2端部43に変位したピストン46を検知するセンサである。例えば、第1スイッチ51は、アクチュエータ40を構成する流体圧シリンダであるシリンダ41の第1端部42側の外周面に配設され、第2スイッチ52は、シリンダ41の第2端部43側の外周面に配設される。第1スイッチ51および第2スイッチ52の各々は、例えば、リミットスイッチまたは磁気式スイッチである。 The first switch 51 is a sensor that detects the piston 46 displaced to the first end 42 of the cylinder 41, and the second switch 52 is a sensor that detects the piston 46 displaced to the second end 43 of the cylinder 41. is there. For example, the first switch 51 is disposed on the outer peripheral surface on the first end 42 side of the cylinder 41 which is a fluid pressure cylinder constituting the actuator 40, and the second switch 52 is disposed on the second end 43 side of the cylinder 41. Is disposed on the outer peripheral surface. Each of the first switch 51 and the second switch 52 is, for example, a limit switch or a magnetic switch.
 第1スイッチ51および第2スイッチ52の各々は、ピストン46が第1スイッチ51および第2スイッチ52の各々に対向する位置に変位したときに、ピストン46を検知し、その旨を示す検知信号を異常検出装置10に出力する。また、ピストン46が変位して第1スイッチ51および第2スイッチ52の各々と対向しなくなると、第1スイッチ51および第2スイッチ52の各々は、検知信号の出力を停止する。 Each of the first switch 51 and the second switch 52 detects the piston 46 when the piston 46 is displaced to a position facing each of the first switch 51 and the second switch 52, and outputs a detection signal indicating that fact. Output to the abnormality detection device 10. When the piston 46 is displaced and no longer faces each of the first switch 51 and the second switch 52, each of the first switch 51 and the second switch 52 stops outputting the detection signal.
 すなわち、第1スイッチ51は、ピストン46が第1スイッチ51に対向する位置に変位したときにピストン46を検知し、つまり、シリンダ41の第1端部42に変位したピストン46を検知し、第1検知信号を異常検出装置10に出力する(第1検知信号=1)。また、第1スイッチ51は、ピストン46が変位して第1スイッチ51と対向しなくなると、第1検知信号の出力を停止する(第1検知信号=0)。 That is, the first switch 51 detects the piston 46 when the piston 46 is displaced to a position facing the first switch 51, that is, detects the piston 46 displaced to the first end 42 of the cylinder 41, The first detection signal is output to the abnormality detection device 10 (first detection signal = 1). Further, the first switch 51 stops outputting the first detection signal (first detection signal = 0) when the piston 46 is displaced and no longer faces the first switch 51.
 同様に、第2スイッチ52は、ピストン46が第2スイッチ52に対向する位置に変位したときにピストン46を検知し、つまり、シリンダ41の第2端部43に変位したピストン46を検知し、第2検知信号を異常検出装置10に出力する(第2検知信号=1)。また、第2スイッチ52は、ピストン46が変位して第2スイッチ52と対向しなくなると、第2検知信号の出力を停止する(第2検知信号=0)。 Similarly, the second switch 52 detects the piston 46 when the piston 46 is displaced to a position facing the second switch 52, that is, detects the piston 46 displaced to the second end 43 of the cylinder 41, The second detection signal is output to the abnormality detection device 10 (second detection signal = 1). The second switch 52 stops outputting the second detection signal when the piston 46 is displaced and no longer faces the second switch 52 (the second detection signal = 0).
 図2に示すように、異常検出システム1は、さらにHMI60を含んでいてもよい。図2に示す例において、PLC20には、例えばUSB(Universal Serial Bus)ケーブルである通信ケーブルを介して、HMI(Human Machine Interface)60が接続している。HMI60は、異常検出システム1に対して各種のパラメータ(特に、異常検出装置10等が用いるパラメータ)を設定したり、ユーザに通知したりする(例えば、表示したりする)ための情報処理装置である。HMI60は、例えば、汎用のコンピュータで構成される。HMI60は、異常検出装置10に接続されていてもよい。 As shown in FIG. 2, the abnormality detection system 1 may further include an HMI 60. In the example illustrated in FIG. 2, an HMI (Human Machine Interface) 60 is connected to the PLC 20 via a communication cable such as a USB (Universal Serial Bus) cable. The HMI 60 is an information processing device for setting various parameters (particularly, parameters used by the abnormality detection device 10 and the like) to the abnormality detection system 1 and notifying (for example, displaying) the user. is there. The HMI 60 is configured by, for example, a general-purpose computer. The HMI 60 may be connected to the abnormality detection device 10.
 HMI60は、PLC20から介して異常検出装置10から取得する各種の情報を、ユーザに通知し、例えば、各種の情報を表示する。HMI60は、異常検出装置10による異常判定の結果を、PLC20から介して異常検出装置10から取得し、取得した異常判定の結果を表示する。HMI60は、「制御指令(Push指令またはPull指令)の開始時点」と、「ピストン46が、シリンダ41の第1端部42または第2端部43へと到着した時点」との差分である移動時間の初期値(T10およびT20)を、異常検出装置10から取得する。HMI60は、取得した移動時間の初期値(T10およびT20)を、ユーザに、編集可能に表示する。HMI60は、異常検出装置10が異常判定に用いる基準値(THおよびTH)を、PLC20から介して異常検出装置10から取得し、取得した基準値を、ユーザに、編集可能に表示する。 The HMI 60 notifies the user of various information acquired from the abnormality detection device 10 via the PLC 20, and displays, for example, various information. The HMI 60 acquires the result of the abnormality determination by the abnormality detection device 10 from the abnormality detection device 10 via the PLC 20 and displays the acquired abnormality determination result. The HMI 60 moves as a difference between the “start time of the control command (Push command or Pull command)” and the “time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41”. The initial values of the time (T 10 and T 20 ) are obtained from the abnormality detection device 10. HMI60 the initial value of the movement time obtained a (T 10 and T 20), the user editable display. HMI60 a reference value abnormality detecting device 10 is used for abnormality determination of (TH 1 and TH 2), obtained from the abnormality detecting device 10 through the PLC 20, the acquired reference value, the user editable display.
 また、異常検出システム1は、方向切替弁30へのPush指令およびPull指令の各々の入力を検知する、不図示の第1切替センサおよび第2切替センサをさらに含んでいてもよい。すなわち、異常検出システム1は、方向切替弁30に対する制御指令(Push指令およびPull指令の各々)の開始を検知する、第1切替センサおよび第2切替センサをさらに含んでいてもよい。 The abnormality detection system 1 may further include a first switching sensor and a second switching sensor (not shown) that detect each of the Push command and the Pull command input to the direction switching valve 30. That is, the abnormality detection system 1 may further include a first switching sensor and a second switching sensor that detect the start of a control command (each of a Push command and a Pull command) to the direction switching valve 30.
 例えば、第1切替センサは、方向切替弁30の「Push指令を取得することで励磁され、第1ポート44を介してシリンダ41の第1端部42側に圧力流体を供給する第1ソレノイド」に設けられ、Push指令の入力を検知する。具体的には、第1切替センサは、第1ソレノイドが取得するPush指令がローレベル(例えば、「0」)からハイレベル(例えば、「1」)に変化するのを検知する。第1切替センサは、「Push指令の入力」として、Push指令による第1ソレノイドの励磁を検知してもよい。 For example, the first switching sensor is “a first solenoid that is excited by acquiring the Push command of the direction switching valve 30 and supplies a pressure fluid to the first end 42 side of the cylinder 41 via the first port 44”. And detects an input of a Push command. Specifically, the first switching sensor detects that the Push command acquired by the first solenoid changes from a low level (for example, “0”) to a high level (for example, “1”). The first switching sensor may detect, as “Push command input”, the excitation of the first solenoid by the Push command.
 例えば、第2切替センサは、方向切替弁30の「Pull指令を取得することで励磁され、第2ポート45を介してシリンダ41の第2端部43側に圧力流体を供給する第2ソレノイド」に設けられ、Pull指令の入力を検知する。具体的には、第2切替センサは、第2ソレノイドが取得するPull指令がローレベル(例えば、「0」)からハイレベル(例えば、「1」)に変化するのを検知する。第2切替センサは、「Pull指令の入力」として、Pull指令による第2ソレノイドの励磁を検知してもよい。 For example, the second switching sensor is “a second solenoid that is excited by acquiring a Pull command of the direction switching valve 30 and supplies a pressurized fluid to the second end 43 side of the cylinder 41 via the second port 45”. And detects an input of a Pull command. Specifically, the second switching sensor detects that the Pull command acquired by the second solenoid changes from a low level (for example, “0”) to a high level (for example, “1”). The second switching sensor may detect, as “pull command input”, the excitation of the second solenoid by the pull command.
 異常検出装置10は、PLC20から制御指令を取得し、取得した制御指令を方向切替弁30へと出力し、また、第1スイッチ51および第2スイッチ52の各々から検知信号を取得し、取得した検知信号をPLC20へと出力する。 The abnormality detection device 10 acquires a control command from the PLC 20, outputs the acquired control command to the directional control valve 30, and acquires and acquires a detection signal from each of the first switch 51 and the second switch 52. The detection signal is output to the PLC 20.
 異常検出装置10は、PLC20から取得する制御指令によって、「方向切替弁30が制御指令を取得する時点」を、つまり、「PLC20による、方向切替弁30への、アクチュエータ40におけるピストン46の変位(移動)の指令の開始時点」を、取得する。 The abnormality detection device 10 determines the “time when the direction switching valve 30 acquires the control command” by the control command acquired from the PLC 20, that is, “displacement of the piston 46 of the actuator 40 to the direction switching valve 30 by the PLC 20 ( Start time of movement) command ”.
 また、異常検出装置10は、第1スイッチ51および第2スイッチ52の各々から取得する検知信号によって、「ピストン46が、シリンダ41の第1端部42または第2端部43へと到着した時点」を取得する。 In addition, the abnormality detection device 10 determines, based on the detection signal acquired from each of the first switch 51 and the second switch 52, “when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41. To get.
 異常検出装置10は、「PLC20による、方向切替弁30への、アクチュエータ40におけるピストン46の変位(移動)の指令の開始時点」と、「ピストン46が、シリンダ41の第1端部42または第2端部43へと到着した時点」とから、ピストン46の移動時間(変位時間)を算出する。 The abnormality detection device 10 includes “a start time of a command for the displacement (movement) of the piston 46 in the actuator 40 by the PLC 20 to the direction switching valve 30” and “the piston 46 is connected to the first end 42 or the second end of the cylinder 41. From the time when the piston 46 arrives at the second end 43 ", the movement time (displacement time) of the piston 46 is calculated.
 具体的には、異常検出装置10は、移動時間として、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」から、「ピストン46が第2端部43へと到着した時刻」までの時間である押出時間Tを算出する。また、異常検出装置10は、移動時間として、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」から、「ピストン46が第1端部42へと到着した時刻」までの時間である引戻時間Tを算出する。 More specifically, the abnormality detection device 10 determines that the movement of the piston 46 from the “start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42” calculating the extrusion time T 1 is a time until the time "that arrived to the end 43. Further, the abnormality detection device 10 determines that the movement of the piston 46 from the “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43” to calculate the pull-back time T 2 is the time of arrival was time "to.
 異常検出装置10は、算出した移動時間を用いて、ピストンパッキン48およびロッドパッキン49の少なくとも一方の破損等の、アクチュエータ40における異常の発生の有無を判定し、判定結果を示す信号を、PLC20へと出力する。 The abnormality detection device 10 determines whether or not an abnormality has occurred in the actuator 40 such as breakage of at least one of the piston packing 48 and the rod packing 49 by using the calculated movement time, and sends a signal indicating the determination result to the PLC 20. Is output.
 すなわち、異常検出装置10は、繰り返し移動時間を算出し、例えば、PLC20から制御指令(Push指令またはPull指令)を取得するたびに、移動時間(押出時間Tまたは引戻時間T)を算出する。異常検出装置10は、現在までに算出した移動時間の最大値から、現在までに算出した移動時間の最小値を差し引いた値を、移動時間の初期値によって除することによって、特徴量を算出する。言い換えれば、異常検出装置10は、現在までに算出した移動時間の最大値を、現在までに算出した移動時間の最小値によって減算した値を、移動時間の初期値によって除して、特徴量を算出する。異常検出装置10は、算出した特徴量と基準値とを比較することにより、ピストンパッキン48およびロッドパッキン49の少なくとも一方の破損等の異常の発生の有無を判定し、判定結果を示す信号を、PLC20へと出力する。 That is, the abnormality detection device 10 calculates the repetition movement time, for example, calculates each time to obtain a control command (Push command or Pull command) from the PLC 20, the moving time (extrusion time T 1 or pull-back time T 2) I do. The abnormality detection device 10 calculates the feature amount by dividing the value obtained by subtracting the minimum value of the travel time calculated up to the present time from the maximum value of the travel time calculated so far by the initial value of the travel time. . In other words, the abnormality detection device 10 divides the value obtained by subtracting the maximum value of the travel time calculated so far by the minimum value of the travel time calculated so far by the initial value of the travel time, and calculates the feature amount. calculate. The abnormality detection device 10 determines whether or not an abnormality such as breakage of at least one of the piston packing 48 and the rod packing 49 has occurred by comparing the calculated feature amount with the reference value, and outputs a signal indicating the determination result. Output to PLC20.
 ここで、アクチュエータ40を起動させた直後の時点である動作初期時点(起動時点)においては、ピストン46の移動時間が安定しない。そのため、異常検出装置10は、「アクチュエータ40を起動させた後、所定時間が経過した(または、所定の回数のフレームが完了した)」時点で計時した移動時間を、「移動時間の初期値」として取得する。異常検出装置10が「移動時間の初期値」を取得する際に用いる「所定時間(または、所定の回数)」は、ユーザがHMI60を操作して設定できるようにしておいてもよいし、異常検出装置10の工場出荷段階で決められていてもよい。異常検出装置10は、「アクチュエータ40を起動させた後、所定時間が経過した(または、所定の回数のフレームが完了した)」時点で、「移動時間の初期値」を取得し、また、特徴量と基準値との比較による異常判定を開始する。 Here, the movement time of the piston 46 is not stable at the initial operation point (start point) immediately after the actuator 40 is started. Therefore, the abnormality detection device 10 sets the movement time measured at the point of time when a predetermined time has elapsed (or when a predetermined number of frames have been completed after the actuator 40 has been activated) to the “initial value of the movement time”. To get as The “predetermined time (or the predetermined number of times)” used when the abnormality detection device 10 acquires the “initial value of the traveling time” may be set so that the user can operate the HMI 60 to set the “predetermined time (or the predetermined number of times)”. It may be determined at the factory shipment stage of the detection device 10. The abnormality detection device 10 acquires the “initial value of the movement time” at a point in time when a predetermined time has elapsed (or when a predetermined number of frames have been completed after the actuator 40 has been activated). The abnormality judgment based on the comparison between the amount and the reference value is started.
 さらに、異常検出装置10は、移動時間の初期値を、具体的には、「押出時間Tの初期値T10」および「引戻時間Tの初期値T20」を、PLC20を介してHMI60に出力し、HMI60に、移動時間の初期値を、ユーザによって編集可能に表示させる。異常検出装置10は、基準値についても、HMI60に、ユーザによって編集可能に表示させてもよい。 Further, the abnormality detection device 10 transmits the initial value of the movement time, specifically, the “initial value T 10 of the extrusion time T 1 ” and the “initial value T 20 of the retraction time T 2 ” via the PLC 20. Output to the HMI 60, and the HMI 60 displays the initial value of the movement time so that the user can edit it. The abnormality detection device 10 may display the reference value on the HMI 60 so that the user can edit the reference value.
 §2.構成例
 (コントローラの詳細)
 図1は、異常検出装置10等の要部構成を示すブロック図である。図1に示すように、異常検出装置10は、記憶部170以外の機能ブロックとして、指令取得部110、検知信号取得部120、計時部130、更新制御部140、判定部150、および、通知制御部160を備えている。なお、記載の簡潔性を担保するため、本実施の形態に直接関係のない構成は、説明およびブロック図から省略している。ただし、実施の実情に則して、異常検出装置10は、当該省略された構成を備えてもよい。図1に例示した各機能ブロックは、例えば、CPU(central processing unit)等が、ROM(read only memory)、NVRAM(non-Volatile random access memory)等で実現された記憶装置(記憶部170)に記憶されているプログラムを不図示のRAM(random access memory)等に読み出して実行することで実現できる。以下、異常検出装置10における各機能ブロックについて説明する。
§2. Configuration example (controller details)
FIG. 1 is a block diagram illustrating a main configuration of the abnormality detection device 10 and the like. As illustrated in FIG. 1, the abnormality detection device 10 includes, as functional blocks other than the storage unit 170, a command acquisition unit 110, a detection signal acquisition unit 120, a clock unit 130, an update control unit 140, a determination unit 150, and a notification control unit. A section 160 is provided. Note that components which are not directly related to the present embodiment are omitted from the description and block diagrams in order to ensure the simplicity of the description. However, the abnormality detection device 10 may have the omitted configuration according to the actual situation of the embodiment. Each functional block illustrated in FIG. 1 is, for example, a storage device (storage unit 170) in which a CPU (central processing unit) or the like is realized by a ROM (read only memory), an NVRAM (non-Volatile random access memory), or the like. This can be realized by reading a stored program into a RAM (random access memory) or the like (not shown) and executing it. Hereinafter, each functional block in the abnormality detection device 10 will be described.
  (記憶部以外の機能ブロックの詳細)
 指令取得部110は、PLC20から制御指令(Push指令およびPull指令)を取得し、取得した制御指令を方向切替弁30および計時部130の各々へと出力する機能ブロックであり、第1指令取得部111と第2指令取得部112とを含む。第1指令取得部111は、PLC20からPush指令を取得し、取得したPush指令を方向切替弁30および計時部130の各々へと出力する。第2指令取得部112は、PLC20からPull指令を取得し、取得したPull指令を方向切替弁30および計時部130の各々へと出力する。
(Details of functional blocks other than the storage unit)
The command acquisition unit 110 is a functional block that acquires control commands (Push command and Pull command) from the PLC 20 and outputs the acquired control commands to each of the direction switching valve 30 and the timer 130. 111 and a second command acquisition unit 112. The first command acquisition unit 111 acquires a Push command from the PLC 20 and outputs the acquired Push command to each of the direction switching valve 30 and the timer 130. The second command acquisition unit 112 acquires a Pull command from the PLC 20 and outputs the acquired Pull command to each of the direction switching valve 30 and the timer 130.
 検知信号取得部120は、第1スイッチ51および第2スイッチ52の各々から検知信号(第1検知信号および第2検知信号)を取得し、取得した検知信号をPLC20および計時部130の各々へと出力する機能ブロックである。検知信号取得部120は、第1検知信号取得部121と第2検知信号取得部122とを含む。第1検知信号取得部121は、第1スイッチ51から第1検知信号を取得し、取得した第1検知信号をPLC20および計時部130の各々へと出力する。第2検知信号取得部122は、第2スイッチ52から第2検知信号を取得し、取得した第2検知信号をPLC20および計時部130の各々へと出力する。 The detection signal acquisition unit 120 acquires the detection signals (the first detection signal and the second detection signal) from each of the first switch 51 and the second switch 52, and sends the acquired detection signals to each of the PLC 20 and the timer 130. This is a functional block to output. The detection signal acquisition unit 120 includes a first detection signal acquisition unit 121 and a second detection signal acquisition unit 122. The first detection signal acquisition unit 121 acquires the first detection signal from the first switch 51, and outputs the acquired first detection signal to each of the PLC 20 and the timer 130. The second detection signal acquisition unit 122 acquires a second detection signal from the second switch 52, and outputs the acquired second detection signal to each of the PLC 20 and the timer 130.
 計時部130は、指令取得部110から取得した制御指令によって、「方向切替弁30が制御指令を取得する時点」を、つまり、「PLC20による、ピストン46の変位(移動)を指示する制御指令の開始時点」を、取得する。計時部130は、検知信号取得部120から取得した検知信号によって、「ピストン46が、シリンダ41の第1端部42または第2端部43へと到着した時点」を取得する。計時部130は、「ピストン46の変位(移動)を指示する制御指令の開始時点」と、「ピストン46が、シリンダ41の第1端部42または第2端部43へと到着した時点」とから、ピストン46の移動時間(変位時間)を算出する。計時部130は、算出した移動時間(変位時間)を、更新制御部140に通知する。計時部130は、第1計時部131と第2計時部132とを含む。 The timer 130 receives the control command acquired from the command acquirer 110 to indicate “the time when the direction switching valve 30 acquires the control command”, that is, “the control command for instructing the displacement (movement) of the piston 46 by the PLC 20”. Start time "is obtained. The timing unit 130 acquires “the time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41” based on the detection signal acquired from the detection signal acquisition unit 120. The timing unit 130 determines “the start time of the control command for instructing the displacement (movement) of the piston 46” and “the time when the piston 46 arrives at the first end 42 or the second end 43 of the cylinder 41”. Then, the movement time (displacement time) of the piston 46 is calculated. The clock unit 130 notifies the update control unit 140 of the calculated movement time (displacement time). The timer 130 includes a first timer 131 and a second timer 132.
 第1計時部131は、移動時間として、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」から、「ピストン46が第2端部43へと到着した時刻」までの時間である押出時間Tを算出する。第1計時部131は、算出した押出時間Tを、更新制御部140に通知する。 The first timing unit 131 determines that the movement of the piston 46 from the “start time of the Push command output by the PLC 20 in the state where the piston 46 is located at the first end 42” to calculate the extrusion time T 1 is the time of arrival to time, "he said. First time counting section 131, the calculated extrusion time T 1, and notifies the update control unit 140.
 第2計時部132は、移動時間として、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」から、「ピストン46が第1端部42へと到着した時刻」までの時間である引戻時間Tを算出する。第2計時部132は、算出した引戻時間Tを、更新制御部140に通知する。 The second timer 132 calculates the moving time from “the start time of the Pull command output by the PLC 20 in the state where the piston 46 is located at the second end 43” from “the piston 46 moves to the first end 42. to calculate the pull-back time T 2 is the time of arrival to time, "he said. The second counting unit 132, the calculated pull-back time T 2, and notifies the update control unit 140.
 更新制御部140は、計時部130から通知された移動時間を用いて、移動時間テーブル180の更新処理(押出時間テーブル更新処理および引戻時間テーブル更新処理)を実行する機能ブロックであり、第1更新制御部141と第2更新制御部142とを含む。具体的には、更新制御部140は、移動時間テーブル180について、移動時間の初期値を設定する処理(初期値設定)、移動時間の最大値を更新する処理(最大値設定)、および、移動時間の最小値を更新する処理(最小値設定)を実行する。 The update control unit 140 is a functional block that executes update processing of the movement time table 180 (extrusion time table update processing and retraction time table update processing) using the movement time notified from the clock unit 130. An update control unit 141 and a second update control unit 142 are included. Specifically, the update control unit 140 sets an initial value of the moving time (initial value setting), updates the maximum value of the moving time (maximum value setting), and moves the moving time table 180. The processing for updating the minimum value of time (minimum value setting) is executed.
 更新制御部140は、移動時間の初期値を設定する処理として、以下の処理を実行する。すなわち、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)に初期値が格納されていないと、計時部130から通知された移動時間を、初期値として移動時間テーブル180に格納する。 The update control unit 140 executes the following process as a process for setting the initial value of the travel time. That is, if no initial value is stored in the movement time table 180 (the extrusion time table 181 and the retraction time table 182), the movement time notified from the timer 130 is stored in the movement time table 180 as an initial value.
 更新制御部140は、移動時間の最大値を更新する処理として、以下の2つの処理を実行する。すなわち、更新制御部140は、移動時間テーブル180に移動時間の最大値が格納されていないと、計時部130から通知された移動時間を、移動時間の最大値として移動時間テーブル180に格納する。更新制御部140は、計時部130から通知された移動時間の値が、移動時間テーブル180に格納されている移動時間の最大値よりも大きいと、計時部130から通知された移動時間の値で、移動時間テーブル180に格納されている移動時間の最大値を更新する。 The update control unit 140 executes the following two processes as a process of updating the maximum value of the travel time. That is, if the maximum value of the travel time is not stored in the travel time table 180, the update control unit 140 stores the travel time notified from the timer 130 as the maximum value of the travel time in the travel time table 180. When the value of the travel time notified from the timer 130 is larger than the maximum value of the travel time stored in the travel time table 180, the update controller 140 uses the value of the travel time notified from the timer 130 to , The maximum value of the travel time stored in the travel time table 180 is updated.
 更新制御部140は、移動時間の最小値を更新する処理として、以下の2つの処理を実行する。すなわち、更新制御部140は、移動時間テーブル180に移動時間の最小値が格納されていないと、計時部130から通知された移動時間を、移動時間の最小値として移動時間テーブル180に格納する。更新制御部140は、計時部130から通知された移動時間の値が、移動時間テーブル180に格納されている移動時間の最小値よりも小さいと、計時部130から通知された移動時間の値で、移動時間テーブル180に格納されている移動時間の最小値を更新する。 The update control unit 140 executes the following two processes as a process of updating the minimum value of the travel time. That is, if the minimum value of the travel time is not stored in the travel time table 180, the update control unit 140 stores the travel time notified from the timer 130 as the minimum value of the travel time in the travel time table 180. When the value of the travel time notified from the clock unit 130 is smaller than the minimum value of the travel time stored in the travel time table 180, the update control unit 140 uses the value of the travel time notified from the clock unit 130. , The minimum value of the travel time stored in the travel time table 180 is updated.
 更新制御部140の実行する「移動時間の最大値を更新する処理」によって、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)には常に、計時部130によって現在までに計測された移動時間の最大値が格納される。更新制御部140の実行する「移動時間の最小値を更新する処理」によって、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)には常に、計時部130によって現在までに計測された移動時間の最小値が格納される。以下、第1更新制御部141および第2更新制御部142の各々による、移動時間の初期値を設定する処理(初期値設定)、移動時間の最大値を更新する処理(最大値設定)、および、移動時間の最小値を更新する処理(最小値設定)の詳細を説明する。 Due to the “processing of updating the maximum value of the movement time” executed by the update control unit 140, the movement time table 180 (the extrusion time table 181 and the retraction time table 182) is always measured by the clock unit 130 up to the present. The maximum value of the travel time is stored. By the “processing of updating the minimum value of the moving time” executed by the update control unit 140, the moving time table 180 (the extrusion time table 181 and the retraction time table 182) is always measured by the clock unit 130 up to the present. The minimum value of the moving time is stored. Hereinafter, a process of setting the initial value of the traveling time (initial value setting), a process of updating the maximum value of the traveling time (maximum value setting), and a process performed by each of the first update control unit 141 and the second update control unit 142. The process of updating the minimum value of the traveling time (minimum value setting) will be described in detail.
 第1更新制御部141は、第1計時部131から通知される押出時間Tを用いて押出時間テーブル181に格納されている値を更新する処理である押出時間テーブル更新処理を実行する。 First update control unit 141 performs a process in which extrusion time table update processing for updating the value stored in the extrusion time table 181 using an extrusion time T 1, which is notified from the first clock section 131.
 すなわち、押出時間テーブル181に押出時間Tの初期値T10が格納されていないと、第1更新制御部141は、第1計時部131から通知される押出時間Tを、初期値T10として押出時間テーブル181に格納する(初期値設定)。 That is, if the initial value T 10 of the extrusion time T 1 is not stored in the extrusion time table 181, the first update control unit 141 replaces the extrusion time T 1 notified from the first timer 131 with the initial value T 10. Is stored in the extrusion time table 181 (initial value setting).
 押出時間テーブル181に押出時間Tの最大値T1MAXが格納されていないと、第1更新制御部141は、第1計時部131から通知される押出時間Tを、最大値T1MAXとして押出時間テーブル181に格納する(最大値設定)。第1計時部131から通知される押出時間Tが、押出時間テーブル181に格納されている最大値T1MAXよりも大きいと、第1更新制御部141は、第1計時部131から通知される押出時間Tで、最大値T1MAXを更新する(最大値設定)。 If the maximum value T 1MAX of the extrusion time T 1 is not stored in the extrusion time table 181, the first update control unit 141 sets the extrusion time T 1 notified from the first clock unit 131 to the maximum value T 1MAX. It is stored in the time table 181 (maximum value setting). Extrusion time T 1, which is notified from the first timer unit 131, the greater than the maximum value T 1MAX stored in the extrusion time table 181, the first update control unit 141 is notified from the first timer unit 131 in extrusion time T 1, and updates the maximum value T 1MAX (maximum setting).
 押出時間テーブル181に押出時間Tの最小値T1minが格納されていないと、第1更新制御部141は、第1計時部131から通知される押出時間Tを、最小値T1minとして押出時間テーブル181に格納する(最小値設定)。第1計時部131から通知される押出時間Tが、押出時間テーブル181に格納されている最小値T1minよりも小さいと、第1更新制御部141は、第1計時部131から通知される押出時間Tで、最小値T1minを更新する(最小値設定)。 If the minimum value T 1 min of the extrusion time T 1 is not stored in the extrusion time table 181, the first update control unit 141 sets the extrusion time T 1 notified from the first timer 131 to the minimum value T 1 min. It is stored in the time table 181 (minimum value setting). The extrusion time T 1, which is notified from the first timer unit 131 is smaller than the minimum value T 1min stored in the extrusion time table 181, the first update control unit 141 is notified from the first timer unit 131 in extrusion time T 1, and updates the minimum value T 1min (minimum setting).
 第2更新制御部142は、第2計時部132から通知される引戻時間Tを用いて引戻時間テーブル182に格納されている値を更新する処理である引戻時間テーブル更新処理を実行する。 Second update controller 142 executes processing in a pull-back time table update processing for updating the value stored in the pull-back time table 182 by using the pull-back time T 2, which is notified from the second time measurement section 132 I do.
 すなわち、引戻時間テーブル182に引戻時間Tの初期値T20が格納されていないと、第2更新制御部142は、第2計時部132から通知される引戻時間Tを、初期値T20として引戻時間テーブル182に格納する(初期値設定)。 That is, when the pull-back time table 182 an initial value T 20 of pull-back time T 2 is not stored, the second update controller 142, pull-back time T 2, which is notified from the second clock unit 132, an initial stores a value T 20 to pull-back time table 182 (default).
 引戻時間テーブル182に引戻時間Tの最大値T2MAXが格納されていないと、第2更新制御部142は、第2計時部132から通知される引戻時間Tを、最大値T2MAXとして引戻時間テーブル182に格納する(最大値設定)。第2計時部132から通知される引戻時間Tが、引戻時間テーブル182に格納されている最大値T2MAXよりも大きいと、第2更新制御部142は、第2計時部132から通知される引戻時間Tで、最大値T2MAXを更新する(最大値設定)。 If the maximum value T 2MAX of the retraction time T 2 is not stored in the retraction time table 182, the second update control unit 142 sets the retraction time T 2 notified from the second timer 132 to the maximum value T 2. It is stored in the retraction time table 182 as 2MAX (maximum value setting). Pull-back time T 2 is sent from the second timer unit 132, when greater than a maximum value T 2MAX stored in pull-back time table 182, the second update controller 142 notifies the second timer unit 132 in pull-back time T 2 that is, updates the maximum value T 2MAX (maximum setting).
 引戻時間テーブル182に引戻時間Tの最小値T2minが格納されていないと、第2更新制御部142は、第2計時部132から通知される引戻時間Tを、最小値T2minとして引戻時間テーブル182に格納する(最小値設定)。第2計時部132から通知される引戻時間Tが、引戻時間テーブル182に格納されている最小値T2minよりも小さいと、第2更新制御部142は、第2計時部132から通知される引戻時間Tで、最小値T2minを更新する(最小値設定)。 If the minimum value T 2min of the retraction time T 2 is not stored in the retraction time table 182, the second update control unit 142 sets the retraction time T 2 notified from the second timer 132 to the minimum value T 2. It is stored in the retraction time table 182 as 2 min (minimum value setting). If pull-back time T 2 is sent from the second timer unit 132 is smaller than the minimum value T 2min stored in pull-back time table 182, the second update controller 142 notifies the second timer unit 132 The minimum value T 2min is updated with the withdrawal time T 2 (minimum value setting).
 判定部150は、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)を参照して、移動時間(押出時間Tおよび引戻時間T)の初期値、最大値、および、最小値を用いて特徴量(WおよびW)を算出する。具体的には、判定部150は、移動時間テーブル180に格納されている最大値から、移動時間テーブル180に格納されている最小値を差し引いた値を、移動時間テーブル180に格納されている初期値によって除することによって、特徴量を算出する。 Determination unit 150 refers to the moving time table 180 (extrusion time table 181 and pull-back time table 182), the initial value of the movement time (extrusion time T 1 and pull-back time T 2), the maximum value, and minimum calculating the amount of feature (W 1 and W 2) with the value. Specifically, the determination unit 150 subtracts the minimum value stored in the travel time table 180 from the maximum value stored in the travel time table 180, and calculates the initial value stored in the travel time table 180. The characteristic amount is calculated by dividing by a value.
 判定部150は、算出した特徴量(WおよびW)と基準値(THおよびTH)とを比較して、ピストンパッキン48およびロッドパッキン49の少なくとも一方の破損等の異常の発生の有無を判定する。 The determination unit 150 compares the calculated feature values (W 1 and W 2 ) with the reference values (TH 1 and TH 2 ) and determines whether an abnormality such as breakage of at least one of the piston packing 48 and the rod packing 49 has occurred. Determine the presence or absence.
 基準値THおよび基準値THの各々は、「0」よりも大きな数値として、例えばユーザによって設定され、記憶部170に格納されている。異常検出装置10の開発者が実験を重ねて得た知見では、基準値THおよび基準値THの各々は、「0」よりも大きく「0.5」以下の数値であるのが望ましく、「0」よりも大きく「0.3」以下の数値であるのがより望ましい。基準値THおよび基準値THの各々は、例えば「0.25」である。基準値THの値と基準値THの値とは、同じ数値であってもよいし、異なる数値であってもよい。 Each of the reference value TH 1 and the reference value TH 2 as numeric value greater than "0", for example set by the user, are stored in the storage unit 170. The developer of the abnormality detection device 10 is obtained by repeated experiments findings, each of the reference value TH 1 and the reference value TH 2 is the desirably a value larger "0.5" less than "0", It is more desirable that the value be larger than “0” and equal to or smaller than “0.3”. Each of the reference value TH 1 and the reference value TH 2 is, for example, "0.25". The value of the reference value TH 1 value and the reference value TH 2, may be the same numerical value, or may be different values.
 判定部150は、異常の発生の有無に係る判定の結果を、通知制御部160に通知する。判定部150は、第1判定部151と第2判定部152とを含む。 The determination unit 150 notifies the notification control unit 160 of the result of the determination regarding the occurrence of the abnormality. The determination unit 150 includes a first determination unit 151 and a second determination unit 152.
 第1判定部151は、押出時間テーブル181を参照して、押出時間Tの初期値T10、押出時間Tの最大値T1MAX、および、押出時間Tの最小値T1minを取得する。第1判定部151は、最大値T1MAXから最小値T1minを差し引いた値を、初期値T10によって除することによって、特徴量Wを算出し、つまり、
Figure JPOXMLDOC01-appb-M000001
 
 
により、特徴量Wを算出する。第1判定部151は、算出した特徴量Wと基準値THとを比較して、異常の発生の有無を判定する。
The first determination unit 151 refers to the extrusion time table 181, the initial value T 10 of the extrusion time T 1, the maximum value T 1MAX extrusion time T 1, and obtains the minimum value T 1min extrusion time T 1 . The first determination unit 151 calculates the feature amount W 1 by dividing a value obtained by subtracting the minimum value T 1 min from the maximum value T 1MAX by the initial value T 10 , that is,
Figure JPOXMLDOC01-appb-M000001


Accordingly, to calculate a feature amount W 1. The first determination unit 151 compares the calculated feature quantity W 1 and the reference value TH 1, determines the presence or absence of occurrence of an abnormality.
 第1判定部151は、特徴量Wが基準値THよりも大きいと、少なくともロッドパッキン49について、破損等の異常が発生していると判定し、特徴量Wが、基準値TH以下であると、異常は発生していないと判定する。そして、第1判定部151は、この判定結果を、通知制御部160に通知する。 The first determination unit 151, the feature amount W 1 is greater than the reference value TH 1, the at least rod packing 49, it is determined that an abnormality such as breakage has occurred, the feature amount W 1, the reference value TH 1 In the following cases, it is determined that no abnormality has occurred. Then, the first determination unit 151 notifies the notification control unit 160 of the determination result.
 ロッドパッキン49に破損等の異常が発生すると、シリンダ41とピストンロッド47との間から圧力流体がシリンダ41の外部に漏れ出てしまうため、押出時間Tが短くなる(小さくなる)。そこで、第1判定部151は、特徴量Wが基準値THよりも大きいと、少なくともロッドパッキン49について、破損等の異常が発生していると判定する。 When abnormality such as damage to the rod packing 49 is generated, the pressure fluid from between the cylinder 41 and the piston rod 47 from leaking to the outside of the cylinder 41, the extrusion time T 1 is shorter (smaller). Therefore, first determination unit 151 determines the feature amount W 1 is greater than the reference value TH 1, the at least rod packing 49, and the damage abnormality has occurred.
 第2判定部152は、引戻時間テーブル182を参照して、引戻時間Tの初期値T20、引戻時間Tの最大値T2MAX、および、引戻時間Tの最小値T2minを取得する。第2判定部152は、最大値T2MAXから最小値T2minを差し引いた値を、初期値T20によって除することによって、特徴量Wを算出し、つまり、
Figure JPOXMLDOC01-appb-M000002
 
 
により、特徴量Wを算出する。第2判定部152は、算出した特徴量Wと基準値THとを比較して、異常の発生の有無を判定する。
The second determination unit 152 refers to the pull-back time table 182, the initial value T 20 of pull-back time T 2, the maximum value T 2MAX the pull-back time T 2, and the minimum value T of the pull-back time T 2 Acquire 2 min . The second determination unit 152, a value obtained by subtracting the minimum value T 2min from the maximum value T 2MAX, by dividing by the initial value T 20, calculates the feature amount W 2, that is,
Figure JPOXMLDOC01-appb-M000002


Accordingly, to calculate a feature amount W 2. The second determination unit 152 compares the calculated feature amount W 2 and the reference value TH 2, determines the presence or absence of occurrence of an abnormality.
 第2判定部152は、特徴量Wが基準値THよりも大きいと、少なくともピストンパッキン48について、破損等の異常が発生していると判定し、特徴量Wが、基準値TH以下であると、異常は発生していないと判定する。そして、第2判定部152は、この判定結果を、通知制御部160に通知する。 The second determination unit 152, the feature amount W 2 larger than the reference value TH 2, at least for piston seal 48, it is determined that an abnormality such as breakage has occurred, the feature amount W 2, the reference value TH 2 In the following cases, it is determined that no abnormality has occurred. Then, the second determination unit 152 notifies the notification control unit 160 of the determination result.
 ピストンパッキン48に破損等の異常が発生すると、シリンダ41とピストンパッキン48との間から圧力流体が第2端部43側から第1端部42側へと漏れ出てしまうため、引戻時間T2が長くなる(大きくなる)。そこで、第2判定部152は、特徴量Wが基準値THよりも大きいと、少なくともピストンパッキン48について、破損等の異常が発生していると判定する。 If an abnormality such as breakage occurs in the piston packing 48, the pressurized fluid leaks from between the cylinder 41 and the piston packing 48 from the second end 43 to the first end 42, so that the retraction time T2 Becomes longer (larger). Therefore, the second determination unit 152 determines the feature quantity W 2 larger than the reference value TH 2, at least for the piston packing 48, and the damage abnormality has occurred.
 通知制御部160は、判定部150(第1判定部151および第2判定部152の各々)から通知された判定結果をPLC20へと出力する。また、通知制御部160は、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)を参照し、移動時間の初期値(T10およびT20)を、PLC20を介してHMI60に出力し、移動時間の初期値をHMI60に表示させる。通知制御部160は、基準値(THおよびTH)を、PLC20を介してHMI60に出力し、基準値をHMI60に表示させる。 Notification control section 160 outputs the determination result notified from determination section 150 (each of first determination section 151 and second determination section 152) to PLC 20. The notification control unit 160, traveling time table 180 (extrusion time table 181 and pull-back time table 182) Referring to the initial value of the movement time (T 10 and T 20), and outputs the HMI60 via PLC20 , The initial value of the movement time is displayed on the HMI 60. Notification control unit 160 outputs the reference values (TH 1 and TH 2 ) to HMI 60 via PLC 20 and causes HMI 60 to display the reference values.
  (記憶部の詳細)
 記憶部170は、異常検出装置10が使用する各種データを格納する記憶装置である。なお、記憶部170は、異常検出装置10が実行する(1)制御プログラム、(2)OSプログラム、(3)異常検出装置10が有する各種機能を実行するためのアプリケーションプログラム、および、(4)該アプリケーションプログラムを実行するときに読み出す各種データを非一時的に記憶してもよい。上記の(1)~(4)のデータは、例えば、ROM(read only memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)、HDD(Hard Disc Drive)等の不揮発性記憶装置に記憶される。異常検出装置10は、図示しない一時記憶部を備えていてもよい。一時記憶部は、異常検出装置10が実行する各種処理の過程で、演算に使用するデータおよび演算結果等を一時的に記憶するいわゆるワーキングメモリであり、RAM(Random Access Memory)等の揮発性記憶装置で構成される。どのデータをどの記憶装置に記憶するのかについては、異常検出装置10の使用目的、利便性、コスト、または、物理的な制約等から適宜決定される。記憶部170はさらに移動時間テーブル180を格納している。
(Details of storage unit)
The storage unit 170 is a storage device that stores various data used by the abnormality detection device 10. The storage unit 170 includes (1) a control program, (2) an OS program, (3) an application program for executing various functions of the abnormality detection device 10, and (4) a program executed by the abnormality detection device 10. Various data to be read when the application program is executed may be temporarily stored. The above data (1) to (4) are, for example, ROM (read only memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), HDD (Hard Disc Drive), etc. Stored in a non-volatile storage device. The abnormality detection device 10 may include a temporary storage unit (not shown). The temporary storage unit is a so-called working memory that temporarily stores data used for calculation, calculation results, and the like in the course of various processes executed by the abnormality detection device 10, and is a volatile storage such as a RAM (Random Access Memory). It is composed of devices. Which data is stored in which storage device is appropriately determined based on the purpose of use, convenience, cost, physical restrictions, and the like of the abnormality detection device 10. The storage unit 170 further stores a travel time table 180.
 移動時間テーブル180には、更新制御部140によって、移動時間(押出時間Tおよび引戻時間T)の初期値(T10およびT20)、最大値(T1MAXおよびT2MAX)、最小値(T1minおよびT2min)が格納される。移動時間テーブル180は、押出時間テーブル181と引戻時間テーブル182とを含む。 A moving time table 180, the update control unit 140, the initial value of the movement time (extrusion time T 1 and pull-back time T 2) (T 10 and T 20), the maximum value (T 1MAX and T 2MAX), the minimum value (T 1min and T 2min ) are stored. The movement time table 180 includes an extrusion time table 181 and a retraction time table 182.
 押出時間テーブル181には、第1更新制御部141によって、押出時間Tの初期値T10、押出時間Tの最大値T1MAX、および、押出時間Tの最小値T1minが格納される。引戻時間テーブル182には、第2更新制御部142によって、引戻時間Tの初期値T20、引戻時間Tの最大値T2MAX、および、引戻時間Tの最小値T2minが格納される。 The extrusion time table 181, the first update control unit 141, the initial value T 10 of the extrusion time T 1, the maximum value T 1MAX extrusion time T 1, and, the minimum value T 1min extrusion time T 1 is stored . The pull-back time table 182, the second update controller 142, the initial value T 20 of pull-back time T 2, the maximum value T 2MAX the pull-back time T 2, and the minimum value T 2min of pullback time T 2 Is stored.
 (異常検出装置についての整理)
 これまでに図1を用いて構成を説明してきた異常検出装置10について、その理解を容易にするため、以下のように整理しておく。すなわち、異常検出装置10は、圧力流体の供給によりピストン46(可動部)が変位するアクチュエータ40の異常を、ピストン46の移動時間(変位時間)を用いて検出する異常検出装置であって、計時部130と判定部150とを備えている。計時部130は、移動時間(具体的には、押出時間Tおよび引戻時間T)として、「ピストン46がアクチュエータ40の第1端部42または第2端部43(一端)にある状態で、第2端部43または第1端部42(他端)への変位の制御指令(Push指令およびPull指令)が開始された時刻」から、「ピストン46が第2端部43または第1端部42へと到着した時刻」までの時間を計測する。判定部150は、「計時部130によって現在までに計測された前記移動時間の最大値(T1MAXおよびT2MAX)」から、「計時部130によって現在までに計測された前記移動時間の最小値(T1minおよびT2min)」を差し引いた値を、「アクチュエータ40の起動時点から所定時間経過した時点で計時部130によって計測された前記移動時間(つまり、初期値(T10およびT20))」によって除した値である特徴量(WおよびW)を用いて、異常の有無を判定する。
(Arrangement of abnormality detection device)
The abnormality detection device 10 whose configuration has been described with reference to FIG. 1 has been arranged as follows in order to facilitate its understanding. That is, the abnormality detection device 10 is an abnormality detection device that detects an abnormality of the actuator 40 in which the piston 46 (movable portion) is displaced by the supply of the pressurized fluid by using the movement time (displacement time) of the piston 46. It has a unit 130 and a determination unit 150. State timing unit 130, the moving time (specifically, T 2 Extrusion time T 1 and pull-back time) as, in "the first end 42 or second end 43 of the piston 46 is an actuator 40 (one end) From the time when the control command (Push command and Pull command) for the displacement to the second end 43 or the first end 42 (the other end) is started, "the piston 46 is moved to the second end 43 or the first end 42". The time until the “arrival time at the end 42” is measured. The determination unit 150 determines the minimum value of the movement time (T 1MAX and T 2MAX ) measured up to the present time by the time measurement unit 130 from the “maximum value of the movement time (T 1MAX and T 2MAX ) measured by the time measurement unit 130 up to now”. T 1min and T 2min ) ”is subtracted from the“ movement time measured by the timer 130 at the time when a predetermined time has elapsed from the activation of the actuator 40 (that is, the initial values (T 10 and T 20 )) ”. The presence / absence of an abnormality is determined using the feature amounts (W 1 and W 2 ), which are values divided by ( 1 ).
 前記の構成によれば、異常検出装置10は、最大値(T1MAXおよびT2MAX)から最小値(T1minおよびT2min)を差し引いた値を、初期値(T10およびT20)によって除した値である特徴量(WおよびW)を用いて、アクチュエータ40の異常の有無を判定する。 According to the arrangement, the abnormality detecting apparatus 10, the minimum value from the maximum value (T 1MAX and T 2MAX) a value obtained by subtracting the (T 1min and T 2min), divided by the initial value (T 10 and T 20) The presence or absence of an abnormality in the actuator 40 is determined using the feature values (W 1 and W 2 ) as values.
 一般に、圧力流体の供給によりピストン46が変位するアクチュエータ40について、ピストン46の前記移動時間は、アクチュエータ40の周囲の温度の影響を受ける。例えば、アクチュエータ40の周囲の温度が上昇すると前記移動時間は短くなる傾向があり、アクチュエータ40の周囲の温度が下降すると前記移動時間は長くなる傾向がある。また、前記移動時間は、アクチュエータ40の種類、負荷条件、設置位置、これまでの使用時間等によっても変動する。 Generally, for the actuator 40 in which the piston 46 is displaced by the supply of the pressurized fluid, the moving time of the piston 46 is affected by the temperature around the actuator 40. For example, when the temperature around the actuator 40 increases, the movement time tends to decrease, and when the temperature around the actuator 40 decreases, the movement time tends to increase. The movement time also varies depending on the type of the actuator 40, the load condition, the installation position, the usage time so far, and the like.
 そのため、前記移動時間について正常値を予め設定しておき、計測した前記移動時間と正常値とを比較して異常を判定する従来の方法には、以下の課題がある。すなわち、異常判定の精度を維持するためには、従来の方法は、アクチュエータ40の周囲の温度、アクチュエータ40の種類、負荷条件、設置位置、これまでの使用時間等といった種々の要因に応じて個別に、前記正常値を設定する必要がある。言い換えれば、従来の方法は、「周囲の温度、アクチュエータ40の種類等の条件」に応じて変動する前記移動時間に対応させて、「周囲の温度、アクチュエータ40の種類等の条件」に応じた適切な正常値を適宜設定しなければ、異常判定の精度を維持できない。 Therefore, a conventional method of setting a normal value for the travel time in advance and comparing the measured travel time with the normal value to determine an abnormality has the following problems. That is, in order to maintain the accuracy of the abnormality determination, the conventional method has to be individually performed according to various factors such as the temperature around the actuator 40, the type of the actuator 40, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator 40” in accordance with the moving time that varies according to “the conditions such as the ambient temperature and the type of the actuator 40”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
 これに対して、異常検出装置10はアクチュエータ40の異常の有無を、最大値(T1MAXおよびT2MAX)から最小値(T1minおよびT2min)を差し引いた値を、初期値(T10およびT20)によって除した値である特徴量(WおよびW)を用いて判定する。 On the other hand, the abnormality detection device 10 determines whether or not there is an abnormality in the actuator 40 by subtracting the minimum values (T 1min and T 2min ) from the maximum values (T 1MAX and T 2MAX ) to the initial values (T 10 and T 2 ). The determination is made using the feature amounts (W 1 and W 2 ) which are values divided by the above ( 20 ).
 ここで、周囲の温度変化に伴う前記移動時間の変動の大きさは、故障等の異常の発生に伴う前記移動時間の変動の大きさに比べて、十分に小さいと想定することができる。つまり、異常の発生の影響による前記移動時間の変動の大きさは、周囲の温度変化の影響による前記移動時間の変動の大きさに比べて、十分に大きい。 Here, it can be assumed that the magnitude of the change in the travel time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the travel time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the movement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the movement time due to the change in the ambient temperature.
 したがって、異常が発生した時点で計時される移動時間は、直前までに計測された(つまり、異常の発生していない、せいぜい周囲の温度変化の影響を受けたに過ぎない)移動時間の最大値(つまり、移動時間テーブル180に格納されている最大値)よりも大きくなり、または、直前までに計測された移動時間の最小値(つまり、移動時間テーブル180に格納されている最小値)よりも小さくなる。つまり、異常が発生すると、現在時点(=異常発生時点)で計時される移動時間が、最大値または最小値となり、言い換えれば、現在時点(=異常発生時点)で計時される移動時間によって、移動時間テーブル180の最大値または最小値が更新される。したがって、移動時間テーブル180の最大値と最小値の差を用いて算出される特徴量に、異常の発生が影響する。そのため、異常検出装置10は、移動時間テーブル180の最大値と最小値の差を用いて算出される特徴量によって、異常の発生の有無を判定することができる。 Therefore, the travel time measured at the time of occurrence of the abnormality is the maximum value of the travel time measured immediately before (that is, the time at which the abnormality did not occur and was at most affected by the change in ambient temperature). (That is, the maximum value stored in the travel time table 180) or the minimum value of the travel time measured until immediately before (that is, the minimum value stored in the travel time table 180). Become smaller. That is, when an abnormality occurs, the movement time measured at the current time (= the abnormality occurrence time) becomes the maximum value or the minimum value. In other words, the movement time is measured according to the movement time measured at the current time (= the abnormality occurrence time). The maximum value or the minimum value of the time table 180 is updated. Therefore, the occurrence of an abnormality affects the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180. Therefore, the abnormality detection device 10 can determine whether or not an abnormality has occurred based on the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180.
 これに対して、周囲の温度変化の影響を受けた、現在の移動時間が、移動時間テーブル180の最大値以下、かつ、最小値以上である場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量は、現在の移動時間によって変動しない。言い換えれば、移動時間テーブル180の最大値および最小値は、現在時点で計時される移動時間によって更新されず、したがって、移動時間テーブル180の最大値と最小値との差を用いる特徴量も変動しない。つまり、現在の移動時間が、移動時間テーブル180の最大値以下、かつ、最小値以上である場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量において、周囲の温度変化の影響は無視される。 On the other hand, when the current travel time affected by the ambient temperature change is equal to or less than the maximum value of the travel time table 180 and equal to or greater than the minimum value, the maximum value and the minimum value of the travel time table 180 are determined. The feature amount using the difference of does not change depending on the current travel time. In other words, the maximum value and the minimum value of the movement time table 180 are not updated by the movement time measured at the present time, and therefore, the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 does not change. . In other words, when the current travel time is equal to or less than the maximum value of the travel time table 180 and greater than or equal to the minimum value, the characteristic amount using the difference between the maximum value and the minimum value of the travel time table 180 indicates the change in the ambient temperature change. The effects are ignored.
 また、周囲の温度変化の影響を受けた、現在の移動時間が、移動時間テーブル180の最大値より大きく、または、前記最小値より小さい場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量は、現在の移動時間によって変動する。しかしながら、周囲の温度変化の影響による特徴量の変動の大きさは、異常の発生の影響による特徴量の変動の大きさに比べて、十分に小さい。周囲の温度変化に伴う移動時間の変動の大きさは、故障等の異常の発生に伴う移動時間の変動の大きさに比べて、十分に小さいからである。 When the current travel time affected by the ambient temperature change is larger than the maximum value of the travel time table 180 or smaller than the minimum value, the difference between the maximum value and the minimum value of the travel time table 180 is calculated. The feature amount using varies depending on the current travel time. However, the magnitude of the variation of the characteristic amount due to the influence of the surrounding temperature change is sufficiently smaller than the magnitude of the variation of the characteristic amount due to the influence of the occurrence of the abnormality. This is because the magnitude of the change in the movement time due to the change in the ambient temperature is sufficiently smaller than the magnitude of the change in the movement time due to the occurrence of an abnormality such as a failure.
 したがって、移動時間テーブル180の最大値と最小値との差を用いる特徴量において、周囲の温度変化の影響は、無視され、または、異常の発生の影響に比べて十分に小さなものとして無視することができる。 Therefore, in the feature amount using the difference between the maximum value and the minimum value of the movement time table 180, the influence of the ambient temperature change should be ignored or ignored as being sufficiently small compared to the effect of the occurrence of the abnormality. Can be.
 つまり、異常検出装置10は、移動時間テーブル180の最大値と最小値との差を用いる特徴量によって、「異常を原因とする移動時間の変動」を、「周囲の温度変化を原因とする移動時間の変動」から区別して、捉えることができるとの効果を奏する。 In other words, the abnormality detection device 10 changes “movement time change due to abnormality” to “movement time due to ambient temperature change” based on the feature amount using the difference between the maximum value and the minimum value in the movement time table 180. This is effective in that it can be distinguished from "fluctuations in time."
 異常検出装置10は、初期値(T10およびT20)によって「最大値(T1MAXおよびT2MAX)と最小値(T1minおよびT2min)との差分」を除して無次元化した値を、アクチュエータ40の異常判定に用いる特徴量とする。つまり、異常検出装置10は、アクチュエータ40の種類等からの影響を受けない値を、アクチュエータ40の異常判定に用いる特徴量とする。 Abnormality detecting device 10, the initial value (T 10 and T 20) by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) the difference between the" dividing by dimensionless value , A feature value used for determining abnormality of the actuator 40. That is, the abnormality detection device 10 sets a value that is not affected by the type of the actuator 40 or the like as a feature amount used for abnormality determination of the actuator 40.
 異常検出装置10は、「移動時間テーブル180の最大値と最小値との差分」を、移動時間テーブル180の初期値によって除して無次元化することによって、「最大値と最小値との差分」への、アクチュエータ40の種類等からの影響を無効化する。 The abnormality detection device 10 performs the dimensionless operation by dividing the “difference between the maximum value and the minimum value of the travel time table 180” by the initial value of the travel time table 180, thereby obtaining the “difference between the maximum value and the minimum value”. Of the actuator 40 is invalidated.
 したがって、異常検出装置10は、「最大値(T1MAXおよびT2MAX)と最小値(T1minおよびT2min)との差分」を初期値(T10およびT20)によって除して無次元化した特徴量を用いることによって、同一の指標で、様々な種類のアクチュエータ40の異常を判定することができるとの効果を奏する。 Accordingly, the abnormality detecting apparatus 10, dimensionless by dividing by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) and the difference" initial value (T 10 and T 20) The use of the feature amount has an effect that abnormality of various types of actuators 40 can be determined with the same index.
 異常検出装置10において、ピストン46は、シリンダ41内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、計時部130は、前記移動時間として、「ピストン46がアクチュエータ40の第1端部42(前記引戻方向側の端部)にある状態で、Push指令(前記押出方向への変位の指令)が開始された時刻」から、「ピストン46がアクチュエータ40の第2端部43(前記押出方向側の端部)へと到着した時刻」までの時間である押出時間Tを計測し、判定部150は、押出時間Tに係る特徴量Wを用いて、少なくとも、ピストン46に連結されたピストンロッド47とシリンダ41との間から前記圧力流体が漏れ出てしまうのを防ぐためのロッドパッキン49の異常の有無を判定する。 In the abnormality detection device 10, the piston 46 is displaced in the cylinder 41 in the pushing direction or the retraction direction which is the opposite direction to the pushing direction. In the state where the piston 46 is at the first end 42 (the end on the retraction direction side) of the actuator 40, the time when the Push command (the command of the displacement in the pushing direction) is started, second end 43 measures the extrusion time T 1 is the time until the time has arrived to (the extrusion direction side end portion) ", the determination unit 150 uses the feature amount W 1 of the extrusion time T 1 At least, it is determined whether there is an abnormality in the rod packing 49 for preventing the pressure fluid from leaking out from at least between the piston rod 47 connected to the piston 46 and the cylinder 41.
 前記の構成によれば、異常検出装置10は、押出時間Tに係る特徴量Wを用いて、少なくともロッドパッキン49の異常の有無を判定する。ここで、ロッドパッキン49に破損等の異常が発生すると、ピストンロッド47とシリンダ41との間から前記圧力流体が漏れ出てしまうため、押出時間Tが短くなる(小さくなる)傾向がある。したがって、異常検出装置10は、押出時間Tに係る特徴量Wを用いて、少なくともロッドパッキン49の異常の有無を判定することができるとの効果を奏する。 According to the arrangement, the abnormality detection device 10 uses the feature amount W 1 of the extrusion time T 1, determines the presence or absence of abnormality in at least the rod packing 49. Here, if abnormality such as damage to the rod packing 49 occurs, the leak out is the pressure fluid from between the piston rod 47 and the cylinder 41, there is extrusion time T 1 is shorter (smaller) trend. Accordingly, the abnormality detection device 10 uses the feature amount W 1 of the extrusion time T 1, the effect of that it is possible to determine the presence or absence of abnormality in at least the rod packing 49.
 異常検出装置10において、ピストン46は、シリンダ41内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、計時部130は、前記移動時間として、「ピストン46がアクチュエータ40の第2端部43にある状態で、Pull指令(前記引戻方向への変位の指令)が開始された時刻」から、「ピストン46がアクチュエータ40の第1端部42へと到着した時刻」までの時間である引戻時間Tを計測し、判定部150は、引戻時間Tに係る特徴量Wを用いて、少なくとも、ピストン46とシリンダ41との間から前記圧力流体が漏れ出てしまうのを防ぐためのピストンパッキン48の異常の有無を判定する。 In the abnormality detection device 10, the piston 46 is displaced in the cylinder 41 in the pushing direction or the retraction direction which is the opposite direction to the pushing direction. The time when the piston 46 arrives at the first end 42 of the actuator 40 from the time when the Pull command (the command for the displacement in the retraction direction) is started in the state where the piston 46 is at the second end 43 of the actuator 40. measures the pull-back time T 2 is a time to ", the determination unit 150 uses the feature amount W 2 of the pull-back time T 2, at least, the pressure fluid from between the piston 46 and the cylinder 41 It is determined whether there is any abnormality in the piston packing 48 for preventing leakage.
 前記の構成によれば、異常検出装置10は、引戻時間Tに係る特徴量Wを用いて、少なくともピストンパッキン48の異常の有無を判定する。ここで、ピストンパッキン48に破損等の異常が発生すると、ピストン46とシリンダ41との間から前記圧力流体が漏れ出てしまうため、引戻時間Tが長くなる(大きくなる)傾向がある。したがって、異常検出装置10は、引戻時間Tに係る特徴量Wを用いて、少なくともピストンパッキン48の異常の有無を判定することができるとの効果を奏する。 According to the arrangement, the abnormality detection device 10 uses the feature amount W 2 of the pull-back time T 2, determines the presence or absence of abnormality in at least the piston seal 48. Here, if abnormality such as damage to the piston seal 48 occurs, from between the piston 46 and the cylinder 41 leaks out is the pressure fluid, pull-back time T 2 becomes longer (larger) tend. Accordingly, the abnormality detection device 10 uses the feature amount W 2 of the pull-back time T 2, the effect of that it is possible to determine the presence or absence of abnormality in at least the piston seal 48.
 異常検出装置10は、アクチュエータ40の起動時点から所定時間経過した時点で計時部130によって計測された前記移動時間(つまり、初期値(T10およびT20))を、ユーザに通知する通知制御部160をさらに備えている。前記の構成によれば、異常検出装置10は、初期値(T10およびT20)を、ユーザに通知することができるとの効果を奏する。 The abnormality detection device 10 notifies the user of the movement time (that is, the initial values (T 10 and T 20 )) measured by the timer 130 when a predetermined time has elapsed from the activation of the actuator 40. 160 is further provided. According to the above configuration, the abnormality detection device 10 has an effect that the user can be notified of the initial values (T 10 and T 20 ).
 (移動時間について)
 図3は、異常検出装置10(特に、計時部130)による「ピストン46の移動時間」の算出方法の一例を示す図であり、具体的には、押出時間Tおよび引戻時間Tの各々の算出方法の一例を示す図である。図3の縦軸は、スイッチ(第1スイッチ51および第2スイッチ52の各々)からの検知信号(第1検知信号および第2検知信号)、および、指令(Push指令およびPull指令の各々)のLevelを示している。また、図3の横軸は、時間(Time)を示しており、単位はms(ミリ秒)である。
(About travel time)
3, the abnormality detection device 10 (in particular, timing unit 130) is a diagram showing an example of a calculation method by "travel time of the piston 46", specifically, extrusion time T 1 and pull-back time T 2 It is a figure showing an example of each calculation method. The vertical axis in FIG. 3 indicates the detection signals (first detection signal and second detection signal) from the switches (first switch 51 and second switch 52) and the commands (Push command and Pull command, respectively). Level is shown. The horizontal axis in FIG. 3 indicates time (Time), and the unit is ms (millisecond).
  (押出時間について)
 第1計時部131は、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」として、例えば図3に示すように、Push指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知する。第1計時部131は、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」として、第1指令取得部111からPush指令を通知された時刻を検知してもよい。言い換えれば、第1計時部131は、第1指令取得部111から通知されるPush指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。また、第1計時部131は、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」として、第1指令取得部111が方向切替弁30にPush指令を出力する時刻を検知してもよい。言い換えれば、第1計時部131は、第1指令取得部111が方向切替弁30に出力するPush指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。
(About extrusion time)
As illustrated in FIG. 3, for example, as illustrated in FIG. 3, the Level of the Push command is set to “the start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42. The time at which the value changes from "0 (low)" to "1 (high)" is detected. The first timer 131 sets the time at which the Push command is notified from the first command acquisition unit 111 as "the start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42". May be detected. In other words, the first timing unit 131 may detect a time at which the level of the Push command notified from the first command acquisition unit 111 changes from “0 (low)” to “1 (high)”. In addition, the first time measurement unit 131 determines that the first command acquisition unit 111 sends the direction switching valve 30 a “start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42”. The time at which the Push command is output may be detected. In other words, the first timing unit 131 detects the time at which the level of the Push command output from the first command acquisition unit 111 to the direction switching valve 30 changes from “0 (low)” to “1 (high)”. Is also good.
 第1計時部131は、「ピストン46が第2端部43へと到着した時刻」として、例えば図3に示すように、第2スイッチ52からの第2検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知する。第1計時部131は、「ピストン46が第2端部43へと到着した時刻」として、第2検知信号取得部122から第2検知信号を通知された時刻(または、第2検知信号取得部122が第2検知信号を取得した時刻)を検知してもよい。言い換えれば、第1計時部131は、第2検知信号取得部122から通知される(または、第2検知信号取得部122が第2スイッチ52から取得する)第2検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。 As shown in FIG. 3, for example, as illustrated in FIG. 3, the Level of the second detection signal from the second switch 52 is set to “0 (low)” as the “time when the piston 46 arrives at the second end 43”. ”To“ 1 (high) ”. The first timing unit 131 determines the time at which the second detection signal was notified from the second detection signal acquisition unit 122 (or the second detection signal acquisition unit) as “the time when the piston 46 arrived at the second end 43”. 122 may acquire the second detection signal). In other words, the first timing unit 131 sets the Level of the second detection signal notified from the second detection signal acquisition unit 122 (or acquired by the second detection signal acquisition unit 122 from the second switch 52) to “0 ( The time at which the “low)” changes to “1 (high)” may be detected.
 第1計時部131は、押出時間Tを、図3に示すように、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」から、「ピストン46が第2端部43へと到着した時刻」までの時間として、算出する。 First time counting portion 131, the extrusion time T 1, as shown in FIG. 3, from "in a state where the piston 46 is positioned at the first end portion 42, the start time of the Push command PLC20 outputs", " Until the piston 46 arrives at the second end 43 ”.
  (引戻時間について)
 第2計時部132は、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」として、例えば図3に示すように、Pull指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知する。第2計時部132は、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」として、第2指令取得部112からPull指令を通知された時刻を検知してもよい。言い換えれば、第2計時部132は、第2指令取得部112から通知されるPull指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。また、第2計時部132は、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」として、第2指令取得部112が方向切替弁30にPull指令を出力する時刻を検知してもよい。言い換えれば、第2計時部132は、第2指令取得部112が方向切替弁30に出力するPull指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。
(About withdrawal time)
As illustrated in FIG. 3, for example, as illustrated in FIG. 3, the level of the Pull command is set to “the start time of the Pull command output from the PLC 20 when the piston 46 is located at the second end 43. The time at which the value changes from "0 (low)" to "1 (high)" is detected. The second timer 132 determines the time when the Pull command was notified from the second command acquisition unit 112 as “the start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. May be detected. In other words, the second timing unit 132 may detect a time when the level of the Pull command notified from the second command acquisition unit 112 changes from “0 (low)” to “1 (high)”. In addition, the second time counting unit 132 determines that the second command acquisition unit 112 sends the direction switching valve 30 a “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. The time at which the Pull command is output may be detected. In other words, the second timing unit 132 detects the time when the level of the Pull command output from the second command acquisition unit 112 to the direction switching valve 30 changes from “0 (low)” to “1 (high)”. Is also good.
 第2計時部132は、「ピストン46が第1端部42へと到着した時刻」として、例えば図3に示すように、第1スイッチ51からの第1検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知する。第2計時部132は、「ピストン46が第1端部42へと到着した時刻」として、第1検知信号取得部121から第1検知信号を通知された時刻(または、第1検知信号取得部121が第1検知信号を取得した時刻)を検知してもよい。言い換えれば、第2計時部132は、第1検知信号取得部121から通知される(または、第1検知信号取得部121が第1スイッチ51から取得する)第1検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を検知してもよい。 As shown in FIG. 3, for example, as shown in FIG. 3, the Level of the first detection signal from the first switch 51 is set to “0 (low)” as the “time when the piston 46 arrives at the first end 42”. ”To“ 1 (high) ”. The second timer 132 determines the time when the first detection signal was notified from the first detection signal acquisition unit 121 (or the first detection signal acquisition unit) as “the time when the piston 46 arrived at the first end 42”. 121 may detect the first detection signal). In other words, the second timing unit 132 sets the Level of the first detection signal notified from the first detection signal acquisition unit 121 (or acquired by the first detection signal acquisition unit 121 from the first switch 51) to “0 ( The time at which the “low)” changes to “1 (high)” may be detected.
 第2計時部132は、引戻時間Tを、図3に示すように、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」から、「ピストン46が第1端部42へと到着した時刻」までの時間として、算出する。 The second counting unit 132, a pull-back time T 2, as shown in FIG. 3, from "in a state where the piston 46 is positioned in the second end portion 43, the start time of the Pull command PLC20 outputs" It is calculated as the time until "the time when the piston 46 arrives at the first end 42".
 §3.動作例
 (異常検出装置の実行する処理の全体概要)
 図4は、異常検出装置10が実行する処理の概要を示すフロー図である。指令取得部110は、PLC20から制御指令(Push指令およびPull指令)を取得し、つまり、第1指令取得部111がPush指令を取得し、また、第2指令取得部112がPull指令を取得する(S110)。指令取得部110は、取得した制御指令を計時部130に通知し、つまり、第1指令取得部111がPush指令を計時部130に通知し、また、第2指令取得部112がPull指令を計時部130に通知する。
§3. Example of operation (Overview of the process executed by the abnormality detection device)
FIG. 4 is a flowchart illustrating an outline of a process executed by the abnormality detection device 10. The command acquisition unit 110 acquires control commands (Push command and Pull command) from the PLC 20, that is, the first command acquisition unit 111 acquires a Push command, and the second command acquisition unit 112 acquires a Pull command. (S110). The command acquisition unit 110 notifies the time control unit 130 of the acquired control command, that is, the first command acquisition unit 111 notifies the push command to the time measurement unit 130, and the second command acquisition unit 112 measures the Pull command. Notify section 130.
 検知信号取得部120は、第1スイッチ51および第2スイッチ52の各々から検知信号(第1検知信号および第2検知信号)を取得する。つまり、第1検知信号取得部121が、第2スイッチ52から第2検知信号を取得し、また、第2検知信号取得部122が、第1スイッチ51から第1検知信号を取得する(S120)。検知信号取得部120は、取得した検知信号を計時部130に通知し、つまり、第1検知信号取得部121が第2検知信号を計時部130に通知し、また、第2検知信号取得部122が第1検知信号を計時部130に通知する。 The detection signal acquisition unit 120 acquires a detection signal (first detection signal and second detection signal) from each of the first switch 51 and the second switch 52. That is, the first detection signal acquisition unit 121 acquires the second detection signal from the second switch 52, and the second detection signal acquisition unit 122 acquires the first detection signal from the first switch 51 (S120). . The detection signal acquisition unit 120 notifies the time detection unit 130 of the acquired detection signal, that is, the first detection signal acquisition unit 121 notifies the time detection unit 130 of the second detection signal, and the second detection signal acquisition unit 122 Notifies the timer 130 of the first detection signal.
 計時部130は、指令取得部110から通知された制御指令(Push指令およびPull指令)により、「ピストン46の移動を指示する制御指令の開始時点」を算出する。また、計時部130は、検知信号取得部120から通知された検知信号(第1検知信号および第2検知信号)により、「ピストン46が、第1端部42または第2端部43へと到着した時点」を算出する。計時部130は、算出した「ピストン46の移動を指示する制御指令の開始時点」と「ピストン46が、第1端部42または第2端部43へと到着した時点」とから、移動時間(押出時間Tおよび引戻時間T)を算出する。 The timer 130 calculates “the start time of the control command for instructing the movement of the piston 46” based on the control command (Push command and Pull command) notified from the command acquisition unit 110. In addition, the timing unit 130 determines that the “piston 46 has arrived at the first end 42 or the second end 43” based on the detection signals (the first detection signal and the second detection signal) notified from the detection signal acquisition unit 120. At the time when it was done ". The timer 130 calculates the movement time (from the “start time of the control command instructing the movement of the piston 46” and the “time when the piston 46 arrives at the first end 42 or the second end 43”). extrusion time T 1 and pull-back time T 2) is calculated.
 すなわち、第1計時部131は、「ピストン46が第1端部42に位置している状態において、PLC20が出力するPush指令の開始時刻」から、「ピストン46が第2端部43へと到着した時刻」までの時間である押出時間Tを算出する。第2計時部132は、「ピストン46が第2端部43に位置している状態において、PLC20が出力するPull指令の開始時刻」から、「ピストン46が第1端部42へと到着した時刻」までの時間である引戻時間T2を算出する(S130)。計時部130(第1計時部131、および、第2計時部132)は、算出した移動時間(押出時間Tおよび引戻時間T)を、更新制御部140に通知する。 That is, the first timing unit 131 determines that the “piston 46 has arrived at the second end 43 from the“ start time of the Push command output by the PLC 20 when the piston 46 is located at the first end 42 ”. calculating the extrusion time T 1 is a time until the time ". The second timer 132 calculates the time at which the piston 46 arrives at the first end 42 from the “start time of the Pull command output by the PLC 20 when the piston 46 is located at the second end 43”. Is calculated (S130). Timing unit 130 (first timing unit 131, and a second timer unit 132) the calculated travel time (the extrusion time T 1 and pull-back time T 2), and notifies the update control unit 140.
 更新制御部140は、移動時間テーブル180の更新処理を実行し、つまり、第1更新制御部141が押出時間テーブル更新処理を、第2更新制御部142が引戻時間テーブル更新処理を、実行する(S140)。押出時間テーブル更新処理および引戻時間テーブル更新処理の詳細については、図5を用いて後述する。 The update control unit 140 executes an update process of the movement time table 180, that is, the first update control unit 141 executes an extrusion time table update process, and the second update control unit 142 executes a retraction time table update process. (S140). Details of the push-out time table updating process and the pull-back time table updating process will be described later with reference to FIG.
 判定部150は、移動時間テーブル180(押出時間テーブル181および引戻時間テーブル182)を参照して、移動時間(押出時間Tおよび引戻時間T)の初期値、最大値、および、最小値を用いて特徴量(WおよびW)を算出する。 Determination unit 150 refers to the moving time table 180 (extrusion time table 181 and pull-back time table 182), the initial value of the movement time (extrusion time T 1 and pull-back time T 2), the maximum value, and minimum calculating the amount of feature (W 1 and W 2) with the value.
 すなわち、第1判定部151は、押出時間テーブル181を参照して、数式1によって、つまり、最大値T1MAXから最小値T1minを差し引いた値を、初期値T10によって除することによって、特徴量Wを算出する。第2判定部152は、引戻時間テーブル182を参照して、数式2によって、つまり、最大値T2MAXから最小値T2minを差し引いた値を、初期値T20によって除することによって、特徴量Wを算出する(S150)。 That is, the first determination unit 151 refers to the extrusion time table 181 and divides the value obtained by subtracting the minimum value T 1 min from the maximum value T 1MAX by the initial value T 10 using Expression 1, that is, by dividing the value by the initial value T 10 . to calculate the amount W 1. The second determination unit 152 refers to the pull-back time table 182, according to Equation 2, i.e., a value obtained by subtracting the minimum value T 2min from the maximum value T 2MAX, by dividing by the initial value T 20, feature amount W 2 to calculate the (S150).
 判定部150は、算出した特徴量(WおよびW)と基準値(THおよびTH)とを比較して、アクチュエータ40の破損等の異常の発生の有無を判定する(S160)。 The determination unit 150 compares the calculated feature values (W 1 and W 2 ) with the reference values (TH 1 and TH 2 ) to determine whether an abnormality such as breakage of the actuator 40 has occurred (S160).
 すなわち、第1判定部151は、特徴量Wが基準値TH以下であることを確認すると(S160でYes)、異常は発生していないと判定し、この判定結果を通知制御部160に通知する。通知制御部160は、第1判定部151から通知された「異常は発生していない」との判定結果をPLC20に通知する(S170)。 That is, when the first determination unit 151 confirms that the feature amount W 1 is equal to or smaller than the reference value TH 1 (Yes in S160), the first determination unit 151 determines that no abnormality has occurred, and sends the determination result to the notification control unit 160. Notice. The notification control unit 160 notifies the PLC 20 of the determination result that "there is no abnormality" notified from the first determination unit 151 (S170).
 第1判定部151は、特徴量Wが基準値THよりも大きいことを確認すると(S160でNo)、少なくともロッドパッキン49について、破損等の異常が発生していると判定し、この判定結果を通知制御部160に通知する。通知制御部160は、第1判定部151から通知された「少なくともロッドパッキン49について、破損等の異常が発生している」との判定結果をPLC20に通知する(S180)。 The first determination unit 151, the feature amount W 1 to confirm larger than the reference value TH 1 (No in S160), for at least rod packing 49, it is determined that an abnormality such as breakage has occurred, the determination The result is notified to the notification control unit 160. The notification control unit 160 notifies the PLC 20 of the determination result notified from the first determination unit 151 that "at least the rod packing 49 has an abnormality such as breakage" (S180).
 第2判定部152は、特徴量Wが基準値TH以下であることを確認すると(S160でYes)、異常は発生していないと判定し、この判定結果を通知制御部160に通知する。通知制御部160は、第2判定部152から通知された「異常は発生していない」との判定結果をPLC20に通知する(S170)。 The second determination unit 152 confirms that the feature quantity W 2 is the reference value TH 2 or less (Yes in S160), the abnormality is determined not to have occurred, and notifies the determination result to the notification control section 160 . The notification control unit 160 notifies the PLC 20 of the result of the determination that “there is no abnormality” notified from the second determination unit 152 (S170).
 第2判定部152は、特徴量Wが基準値THよりも大きいことを確認すると(S160でNo)、少なくともピストンパッキン48について、破損等の異常が発生していると判定し、この判定結果を通知制御部160に通知する。通知制御部160は、第2判定部152から通知された「少なくともピストンパッキン48について、破損等の異常が発生している」との判定結果をPLC20に通知する(S180)。 The second determination unit 152, the feature amount W 2 confirms larger than the reference value TH 2 (No at S160), for at least the piston seal 48, it is determined that an abnormality such as breakage has occurred, the determination The result is notified to the notification control unit 160. The notification control unit 160 notifies the PLC 20 of the determination result notified from the second determination unit 152 that "at least an abnormality such as breakage has occurred in the piston packing 48" (S180).
 これまで図4を参照しながら説明してきた「異常検出装置10が実行する処理」は、以下のように整理することができる。すなわち、「異常検出装置10が実行する処理」は、圧力流体の供給によりピストン46(可動部)が変位するアクチュエータ40の異常を、ピストン46の移動時間(変位時間)を用いて検出する異常検出装置の制御方法であって、計時ステップ(S130)と、判定ステップ(S160)と、を含んでいる。計時ステップ(S130)において、前記移動時間(具体的には、押出時間Tおよび引戻時間T)として、「ピストン46がアクチュエータ40の第1端部42または第2端部43(一端)にある状態で、第2端部43または第1端部42(他端)への変位の制御指令(Push指令およびPull指令)が開始された時刻」から、「ピストン46が第2端部43または第1端部42へと到着した時刻」までの時間が計測される。判定ステップ(S160)は、「計時ステップ(S130)にて現在までに計測された前記移動時間の最大値(T1MAXおよびT2MAX)」から、「計時ステップ(S130)にて現在までに計測された前記移動時間の最小値(T1minおよびT2min)」を差し引いた値を、「アクチュエータ40の起動時点から所定時間経過した時点で計時ステップ(S130)にて計測された前記移動時間(つまり、初期値(T10およびT20))」によって除した値である特徴量(WおよびW)を用いて、異常の有無を判定する。 The “processing executed by the abnormality detection device 10” described so far with reference to FIG. 4 can be organized as follows. In other words, the “processing performed by the abnormality detection device 10” includes abnormality detection in which the abnormality of the actuator 40 in which the piston 46 (movable part) is displaced by the supply of the pressure fluid is detected using the movement time (displacement time) of the piston 46. This is a control method of the device, which includes a time counting step (S130) and a determining step (S160). In the timing step (S < b > 130), the movement time (specifically, the extrusion time T < b > 1 and the retraction time T < b > 2 ) is set as “the piston 46 is the first end 42 or the second end 43 (one end) of the actuator 40. From the time when the control command (Push command and Pull command) for the displacement to the second end 43 or the first end 42 (the other end) is started, the piston 46 is moved from the second end 43 to the second end 43. Alternatively, the time until "the time when the vehicle arrives at the first end 42" is measured. The determination step (S160) is based on “the maximum value of the movement time (T 1MAX and T 2MAX ) measured up to the present time in the timing step (S130)” and “measured up to the present time in the timing step (S130)”. The minimum value of the moving time (T 1 min and T 2 min ) ”is subtracted from the moving time measured in the clocking step (S 130) at the time when a predetermined time has elapsed from the time of activation of the actuator 40 (that is, The presence / absence of an abnormality is determined using the feature amounts (W 1 and W 2 ) that are values divided by the “initial values (T 10 and T 20 ))”.
 前記の方法によれば、前記制御方法は、最大値(T1MAXおよびT2MAX)から最小値(T1minおよびT2min)を差し引いた値を、初期値(T10およびT20)によって除した値である特徴量(WおよびW)を用いて、アクチュエータ40の異常の有無を判定する。 According to the method, the control method, the maximum value (T 1MAX and T 2MAX) minimum value of the value obtained by subtracting the (T 1min and T 2min), a value obtained by dividing by the initial value (T 10 and T 20) The presence / absence of abnormality in the actuator 40 is determined using the characteristic amounts (W 1 and W 2 ).
 一般に、圧力流体の供給によりピストン46が変位するアクチュエータ40について、ピストン46の前記移動時間は、アクチュエータ40の周囲の温度の影響を受ける。例えば、アクチュエータ40の周囲の温度が上昇すると前記移動時間は短くなる傾向があり、アクチュエータ40の周囲の温度が下降すると前記移動時間は長くなる傾向がある。また、前記移動時間は、アクチュエータ40の種類、負荷条件、設置位置、これまでの使用時間等によっても変動する。 Generally, for the actuator 40 in which the piston 46 is displaced by the supply of the pressurized fluid, the moving time of the piston 46 is affected by the temperature around the actuator 40. For example, when the temperature around the actuator 40 increases, the movement time tends to decrease, and when the temperature around the actuator 40 decreases, the movement time tends to increase. The movement time also varies depending on the type of the actuator 40, the load condition, the installation position, the usage time so far, and the like.
 そのため、前記移動時間について正常値を予め設定しておき、計測した前記移動時間と正常値とを比較して異常を判定する従来の方法には、以下の課題がある。すなわち、異常判定の精度を維持するためには、従来の方法は、アクチュエータ40の周囲の温度、アクチュエータ40の種類、負荷条件、設置位置、これまでの使用時間等といった種々の要因に応じて個別に、前記正常値を設定する必要がある。言い換えれば、従来の方法は、「周囲の温度、アクチュエータ40の種類等の条件」に応じて変動する前記移動時間に対応させて、「周囲の温度、アクチュエータ40の種類等の条件」に応じた適切な正常値を適宜設定しなければ、異常判定の精度を維持できない。 Therefore, a conventional method of setting a normal value for the travel time in advance and comparing the measured travel time with the normal value to determine an abnormality has the following problems. That is, in order to maintain the accuracy of the abnormality determination, the conventional method has to be individually performed according to various factors such as the temperature around the actuator 40, the type of the actuator 40, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator 40” in accordance with the moving time that varies according to “the conditions such as the ambient temperature and the type of the actuator 40”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
 これに対して、前記制御方法は、アクチュエータ40の異常の有無を、最大値(T1MAXおよびT2MAX)から最小値(T1minおよびT2min)を差し引いた値を、初期値(T10およびT20)によって除した値である特徴量(WおよびW)を用いて判定する。 In contrast, the control method, the presence or absence of abnormality of the actuator 40, the minimum value from the maximum value (T 1MAX and T 2MAX) a value obtained by subtracting the (T 1min and T 2min), the initial value (T 10 and T The determination is made using the feature amounts (W 1 and W 2 ) which are values divided by the above ( 20 ).
 ここで、周囲の温度変化に伴う前記移動時間の変動の大きさは、故障等の異常の発生に伴う前記移動時間の変動の大きさに比べて、十分に小さいと想定することができる。つまり、異常の発生の影響による前記移動時間の変動の大きさは、周囲の温度変化の影響による前記移動時間の変動の大きさに比べて、十分に大きい。 Here, it can be assumed that the magnitude of the change in the travel time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the travel time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the movement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the movement time due to the change in the ambient temperature.
 したがって、異常が発生した時点で計時される移動時間は、直前までに計測された(つまり、異常の発生していない、せいぜい周囲の温度変化の影響を受けたに過ぎない)移動時間の最大値(つまり、移動時間テーブル180に格納されている最大値)よりも大きくなり、または、直前までに計測された移動時間の最小値(つまり、移動時間テーブル180に格納されている最小値)よりも小さくなる。つまり、異常が発生すると、現在時点(=異常発生時点)で計時される移動時間が、最大値または最小値となり、言い換えれば、現在時点(=異常発生時点)で計時される移動時間によって、移動時間テーブル180の最大値または最小値が更新される。したがって、移動時間テーブル180の最大値と最小値の差を用いて算出される特徴量に、異常の発生が影響する。そのため、異常検出装置10は、移動時間テーブル180の最大値と最小値の差を用いて算出される特徴量によって、異常の発生の有無を判定することができる。 Therefore, the travel time measured at the time of occurrence of the abnormality is the maximum value of the travel time measured immediately before (that is, the time at which the abnormality did not occur and was at most affected by the change in ambient temperature). (That is, the maximum value stored in the travel time table 180) or the minimum value of the travel time measured until immediately before (that is, the minimum value stored in the travel time table 180). Become smaller. That is, when an abnormality occurs, the movement time measured at the current time (= the abnormality occurrence time) becomes the maximum value or the minimum value. In other words, the movement time is measured according to the movement time measured at the current time (= the abnormality occurrence time). The maximum value or the minimum value of the time table 180 is updated. Therefore, the occurrence of an abnormality affects the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180. Therefore, the abnormality detection device 10 can determine whether or not an abnormality has occurred based on the feature amount calculated using the difference between the maximum value and the minimum value of the movement time table 180.
 これに対して、周囲の温度変化の影響を受けた、現在の移動時間が、移動時間テーブル180の最大値以下、かつ、最小値以上である場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量は、現在の移動時間によって変動しない。言い換えれば、移動時間テーブル180の最大値および最小値は、現在時点で計時される移動時間によって更新されず、したがって、移動時間テーブル180の最大値と最小値との差を用いる特徴量も変動しない。つまり、現在の移動時間が、移動時間テーブル180の最大値以下、かつ、最小値以上である場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量において、周囲の温度変化の影響は無視される。 On the other hand, when the current travel time affected by the ambient temperature change is equal to or less than the maximum value of the travel time table 180 and equal to or greater than the minimum value, the maximum value and the minimum value of the travel time table 180 are determined. The feature amount using the difference of does not change depending on the current travel time. In other words, the maximum value and the minimum value of the movement time table 180 are not updated by the movement time measured at the present time, and therefore, the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 does not change. . In other words, when the current travel time is equal to or less than the maximum value of the travel time table 180 and greater than or equal to the minimum value, the characteristic amount using the difference between the maximum value and the minimum value of the travel time table 180 indicates the change in the ambient temperature change. The effects are ignored.
 また、周囲の温度変化の影響を受けた、現在の移動時間が、移動時間テーブル180の最大値より大きく、または、前記最小値より小さい場合、移動時間テーブル180の最大値と最小値との差を用いる特徴量は、現在の移動時間によって変動する。しかしながら、周囲の温度変化の影響による特徴量の変動の大きさは、異常の発生の影響による特徴量の変動の大きさに比べて、十分に小さい。周囲の温度変化に伴う移動時間の変動の大きさは、故障等の異常の発生に伴う移動時間の変動の大きさに比べて、十分に小さいからである。 When the current travel time affected by the ambient temperature change is larger than the maximum value of the travel time table 180 or smaller than the minimum value, the difference between the maximum value and the minimum value of the travel time table 180 is calculated. The feature amount using varies depending on the current travel time. However, the magnitude of the variation of the characteristic amount due to the influence of the surrounding temperature change is sufficiently smaller than the magnitude of the variation of the characteristic amount due to the influence of the occurrence of the abnormality. This is because the magnitude of the change in the movement time due to the change in the ambient temperature is sufficiently smaller than the magnitude of the change in the movement time due to the occurrence of an abnormality such as a failure.
 したがって、移動時間テーブル180の最大値と最小値との差を用いる特徴量において、周囲の温度変化の影響は、無視され、または、異常の発生の影響に比べて十分に小さなものとして無視することができる。 Therefore, in the feature amount using the difference between the maximum value and the minimum value of the movement time table 180, the influence of the ambient temperature change should be ignored or ignored as being sufficiently small compared to the effect of the occurrence of the abnormality. Can be.
 つまり、前記制御方法は、移動時間テーブル180の最大値と最小値との差を用いる特徴量によって、「異常を原因とする移動時間の変動」を、「周囲の温度変化を原因とする移動時間の変動」から区別して、捉えることができるとの効果を奏する。 That is, the control method uses the feature amount using the difference between the maximum value and the minimum value of the movement time table 180 to change “movement time change due to abnormality” to “movement time change due to ambient temperature change”. The effect is that it can be grasped separately from "fluctuations of".
 前記制御方法は、初期値(T10およびT20)によって「最大値(T1MAXおよびT2MAX)と最小値(T1minおよびT2min)との差分」を除して無次元化した値を、アクチュエータ40の異常判定に用いる特徴量とする。つまり、前記制御方法は、アクチュエータ40の種類等からの影響を受けない値を、アクチュエータ40の異常判定に用いる特徴量とする。 The control method includes an initial value (T 10 and T 20) by the "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) difference between" a value obtained by dividing by dimensionless, The feature amount is used for determining the abnormality of the actuator 40. That is, in the control method, a value that is not affected by the type of the actuator 40 or the like is used as a feature amount used for determining an abnormality of the actuator 40.
 前記制御方法は、「移動時間テーブル180の最大値と最小値との差分」を、移動時間テーブル180の初期値によって除して無次元化することによって、「最大値と最小値との差分」への、アクチュエータ40の種類等からの影響を無効化する。 The control method divides the “difference between the maximum value and the minimum value of the travel time table 180” by the initial value of the travel time table 180 to make the dimensionless, thereby obtaining the “difference between the maximum value and the minimum value”. Of the actuator 40 is invalidated.
 したがって、前記制御方法は、「最大値(T1MAXおよびT2MAX)と最小値(T1minおよびT2min)との差分」を初期値(T10およびT20)によって除して無次元化した特徴量を用いることによって、同一の指標で、様々な種類のアクチュエータ40の異常を判定することができるとの効果を奏する。 Accordingly, the control method, "maximum value (T 1MAX and T 2MAX) and the minimum value (T 1min and T 2min) and the difference between the" features dimensionless by dividing the the initial value (T 10 and T 20) The use of the quantity has the effect that abnormality of various types of actuators 40 can be determined with the same index.
 (押出時間テーブル更新処理および引戻時間テーブル更新処理)
 図5は、異常検出装置10が実行する押出時間テーブル更新処理および引戻時間テーブル更新処理の概要を示すフロー図である。押出時間テーブル更新処理は、第1更新制御部141によって実行され、引戻時間テーブル更新処理は、第2更新制御部142によって実行される。
(Extrusion time table update processing and pullback time table update processing)
FIG. 5 is a flowchart showing an outline of the push-out time table update process and the pull-back time table update process executed by the abnormality detection device 10. The push-out time table update process is executed by the first update control unit 141, and the withdrawal time table update process is executed by the second update control unit 142.
 更新制御部140は、移動時間テーブル180を参照して、初期値が格納済であるかを判定する。つまり、第1更新制御部141は、押出時間テーブル181に初期値T10が格納済であるかを判定し、第2更新制御部142は、引戻時間テーブル182に初期値T20が格納済であるかを判定する(S1410)。 The update control unit 140 refers to the travel time table 180 to determine whether the initial value has been stored. That is, the first update control unit 141 determines whether or not the initial value T 10 has been stored in the extrusion time table 181, and the second update control unit 142 has stored the initial value T 20 in the pullback time table 182. Is determined (S1410).
 移動時間テーブル180に初期値が格納されていないことを確認すると(S1410でNo)、更新制御部140は、計時部130の算出した移動時間を、移動時間テーブル180に、初期値として格納する。つまり、押出時間テーブル181に初期値T10が格納されていないことを確認すると、第1更新制御部141は、第1計時部131の算出した押出時間Tを、押出時間テーブル181に、初期値T10として格納する(S1420)。また、引戻時間テーブル182に初期値T20が格納されていないことを確認すると、第2更新制御部142は、第2計時部132の算出した引戻時間Tを、引戻時間テーブル182に、初期値T20として格納する(S1420)。 If it is confirmed that the initial value is not stored in the travel time table 180 (No in S1410), the update control unit 140 stores the travel time calculated by the timer 130 as the initial value in the travel time table 180. That is, when confirming that the initial value T 10 is not stored in the extrusion time table 181, the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 in the extrusion time table 181. stores a value T 10 (S1420). Further, when it is confirmed that the initial value T 20 to pull-back time table 182 is not stored, the second update controller 142, a pull-back time T 2 the calculated second clock section 132, pull-back time table 182 to be stored as an initial value T 20 (S1420).
 更新制御部140は、「計時部130の算出した移動時間が、移動時間テーブル180に格納されている最大値以下であるか」を判定する。つまり、第1更新制御部141は、「第1計時部131の算出した押出時間Tが、押出時間テーブル181に格納されている最大値T1MAX以下であるか」を判定する(S1430)。また、第2更新制御部142は、「第2計時部132の算出した引戻時間Tが、引戻時間テーブル182に格納されている最大値T2MAX以下であるか」を判定する(S1430)。 The update control unit 140 determines whether “the movement time calculated by the timer 130 is equal to or less than the maximum value stored in the movement time table 180”. That is, the first update control unit 141 determines "whether first calculated extrusion time T 1 of the timer unit 131 is less than or equal to the maximum value T 1MAX stored in the extrusion time table 181" (S1430). The second update controller 142 determines "pull-back time T 2 the calculated second time measurement section 132, or less than the maximum value T 2MAX stored in pull-back time table 182," a (S1430 ).
 移動時間テーブル180に最大値が格納されていない場合、更新制御部140は、「計時部130の算出した移動時間は、移動時間テーブル180に格納されている最大値以下ではない(例えば、最大値より大きい)」と判定する。つまり、押出時間テーブル181に最大値T1MAXが格納されていない場合、第1更新制御部141は、「第1計時部131の算出した押出時間Tは、押出時間テーブル181に格納されている最大値T1MAX以下ではない」と判定する。また、引戻時間テーブル182に最大値T2MAXが格納されていない場合、第2更新制御部142は、「第2計時部132の算出した引戻時間Tは、引戻時間テーブル182に格納されている最大値T2MAX以下ではない」と判定する。 When the maximum value is not stored in the travel time table 180, the update control unit 140 determines that “the travel time calculated by the timer 130 is not less than or equal to the maximum value stored in the travel time table 180 (for example, the maximum value Greater). That is, when the maximum value T 1MAX is not stored in the extrusion time table 181, the first update control unit 141 determines that “the extrusion time T 1 calculated by the first timer 131 is stored in the extrusion time table 181. It is not less than the maximum value T1MAX ". The storage, when the maximum value T 2MAX the pull-back time table 182 is not stored, the second update controller 142, the "pull-back time T 2 the calculated second time measuring section 132, pull-back time table 182 Is not less than or equal to the maximum value T2MAX that has been set.
 「計時部130の算出した移動時間が、移動時間テーブル180に格納されている最大値より大きい」と判定すると(S1430でNo)、更新制御部140は、計時部130の算出した移動時間によって、移動時間テーブル180の最大値を更新する。つまり、「第1計時部131の算出した押出時間Tが、押出時間テーブル181に格納されている最大値T1MAXより大きい」と判定すると(S1430でNo)、第1更新制御部141は、以下の処理を実行する。すなわち、第1更新制御部141は、第1計時部131の算出した押出時間Tによって、押出時間テーブル181の最大値T1MAXを更新する(S1440)。また、「第2計時部132の算出した引戻時間Tが、引戻時間テーブル182に格納されている最大値T2MAXより大きい」と判定すると(S1430でNo)、第2更新制御部142は、以下の処理を実行する。すなわち、第2更新制御部142は、第2計時部132の算出した引戻時間Tによって、引戻時間テーブル182の最大値T2MAXを更新する(S1440)。 If it is determined that “the traveling time calculated by the clock unit 130 is larger than the maximum value stored in the traveling time table 180” (No in S1430), the update control unit 140 uses the traveling time calculated by the clock unit 130 to calculate The maximum value of the movement time table 180 is updated. That is, when it is determined that "calculated extrusion time T 1 of the first time counting unit 131 is greater than the maximum value T 1MAX stored in the extrusion time table 181" (No in S1430), the first update control unit 141, Perform the following processing. That is, the first update control unit 141, the calculated extrusion time T 1 of the first time counting unit 131 updates the maximum value T 1MAX extrusion time table 181 (S1440). Further, "pull-back time T 2 the calculated second time counting unit 132 is greater than the maximum value T 2MAX stored in pull-back time table 182" (No in S1430) If it is determined that the second update controller 142 Performs the following processing. That is, the second update controller 142 by pull-back time T 2 the calculated second time counting unit 132 updates the maximum value T 2MAX the pull-back time table 182 (S1440).
 押出時間テーブル181に最大値T1MAXが格納されていない場合、第1更新制御部141は、第1計時部131の算出した押出時間Tを、押出時間テーブル181に、最大値T1MAXとして格納する。また、引戻時間テーブル182に最大値T2MAXが格納されていない場合、第2更新制御部142は、第2計時部132の算出した引戻時間Tを、引戻時間テーブル182に、最大値T2MAXとして格納する。 When the maximum value T 1MAX is not stored in the extrusion time table 181, the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 as the maximum value T 1MAX in the extrusion time table 181. I do. Also, when the maximum value T 2MAX the pull-back time table 182 is not stored, the second update controller 142, a pull-back time T 2 the calculated second time counting unit 132, a pull-back time table 182, the maximum Stored as value T2MAX .
 更新制御部140は、「計時部130の算出した移動時間が、移動時間テーブル180に格納されている最小値以上であるか」を判定する。つまり、第1更新制御部141は、「第1計時部131の算出した押出時間Tが、押出時間テーブル181に格納されている最小値T1min以上であるか」を判定する(S1450)。また、第2更新制御部142は、「第2計時部132の算出した引戻時間Tが、引戻時間テーブル182に格納されている最小値T2min以上であるか」を判定する(S1450)。 The update control unit 140 determines whether “the movement time calculated by the timer 130 is equal to or more than the minimum value stored in the movement time table 180”. That is, the first update control unit 141 determines "whether calculated extrusion time T 1 of the first time counting unit 131 is the minimum value T 1min or stored in the extrusion time table 181" (S1450). The second update controller 142 determines "pull-back time T 2 the calculated second time counting unit 132, whether the minimum value T 2min or stored in pull-back time table 182," a (S1450 ).
 移動時間テーブル180に最小値が格納されていない場合、更新制御部140は、「計時部130の算出した移動時間は、移動時間テーブル180に格納されている最小値以上ではない(例えば、最大値より小さい)」と判定する。つまり、押出時間テーブル181に最小値T1minが格納されていない場合、第1更新制御部141は、「第1計時部131の算出した押出時間Tは、押出時間テーブル181に格納されている最小値T1min以上ではない」と判定する。また、引戻時間テーブル182に最小値T2minが格納されていない場合、第2更新制御部142は、「第2計時部132の算出した引戻時間Tは、引戻時間テーブル182に格納されている最小値T2min以上ではない」と判定する。 If the minimum value is not stored in the travel time table 180, the update control unit 140 determines that “the travel time calculated by the timer 130 is not equal to or greater than the minimum value stored in the travel time table 180 (for example, the maximum value Is smaller). That is, when the minimum value T 1 min is not stored in the extrusion time table 181, the first update control unit 141 determines that “the extrusion time T 1 calculated by the first timer 131 is stored in the extrusion time table 181. Not more than the minimum value T 1 min ". If the minimum value T 2min is not stored in the pull-back time table 182, the second update control unit 142 determines that “the pull-back time T 2 calculated by the second timer 132 is stored in the pull-back time table 182. It is not more than the minimum value T 2 min . "
 「計時部130の算出した移動時間が、移動時間テーブル180に格納されている最小値より小さい」と判定すると(S1450でNo)、更新制御部140は、計時部130の算出した移動時間によって、移動時間テーブル180の最小値を更新する。つまり、「第1計時部131の算出した押出時間Tが、押出時間テーブル181に格納されている最小値T1minより小さい」と判定すると(S1450でNo)、第1更新制御部141は、以下の処理を実行する。すなわち、第1更新制御部141は、第1計時部131の算出した押出時間Tによって、押出時間テーブル181の最小値T1minを更新する(S1460)。また、「第2計時部132の算出した引戻時間Tが、引戻時間テーブル182に格納されている最小値T2minより小さい」と判定すると(S1450でNo)、第2更新制御部142は、以下の処理を実行する。すなわち、第2更新制御部142は、第2計時部132の算出した引戻時間Tによって、引戻時間テーブル182の最小値T2minを更新する(S1460)。 When it is determined that “the traveling time calculated by the timer 130 is smaller than the minimum value stored in the traveling time table 180” (No in S1450), the update controller 140 calculates The minimum value of the movement time table 180 is updated. That is, when it is determined that "calculated extrusion time T 1 of the first time counting unit 131, the minimum value T 1min smaller than that stored in the extrusion time table 181" (No in S1450), the first update control unit 141, Perform the following processing. That is, the first update control unit 141 updates the minimum value T 1 min of the extrusion time table 181 with the extrusion time T 1 calculated by the first clock unit 131 (S1460). Further, "pull-back time T 2 the calculated second time counting unit 132, the minimum value T 2min smaller than that stored in the pull-back time table 182" (No in S1450) If it is determined that the second update controller 142 Performs the following processing. That is, the second update controller 142 by pull-back time T 2 the calculated second time counting unit 132, and updates the minimum value T 2min of pullback time table 182 (S1460).
 押出時間テーブル181に最小値T1minが格納されていない場合、第1更新制御部141は、第1計時部131の算出した押出時間Tを、押出時間テーブル181に、最小値T1minとして格納する。また、引戻時間テーブル182に最小値T2minが格納されていない場合、第2更新制御部142は、第2計時部132の算出した引戻時間Tを、引戻時間テーブル182に、最小値T2minとして格納する。 When the minimum value T 1 min is not stored in the extrusion time table 181, the first update control unit 141 stores the extrusion time T 1 calculated by the first timer 131 as the minimum value T 1 min in the extrusion time table 181. I do. When the minimum value T 2 min is not stored in the retraction time table 182, the second update control unit 142 stores the retraction time T 2 calculated by the second timer 132 in the reversion time table 182 in the minimum value. It is stored as the value T 2min .
 (移動時間と特徴量との関係について)
 図6は、移動時間と特徴量との関係を示す図であり、特に、引戻時間Tと特徴量Wとの関係を示す図である。押出時間Tと特徴量Wとの関係も、図6に示すのと同様となる。図6の横軸は、ピストン46およびピストンロッド47の往復回数(Frame回数)を示し、縦軸は、紙面左側の縦軸が引戻時間T(の値)を示しており、単位はμs(μ秒)である。紙面右側の縦軸は特徴量を示している。以下、図6を参照して、移動時間と特徴量との関係について説明し、また、アクチュエータ40の周囲の温度による移動時間への影響と、アクチュエータ40の故障等の異常による移動時間への影響との区別について説明する。
(Relationship between travel time and feature value)
Figure 6 is a diagram showing the relationship between the moving time and the feature amount, particularly showing the relationship between the pull-back time T 2 and the feature quantity W 2. The relationship between the extrusion time T 1 and the feature amount W 1, the same as shown in FIG. The horizontal axis in FIG. 6 indicates the number of reciprocations (Frame number) of the piston 46 and the piston rod 47, and the vertical axis indicates the retraction time T 2 (value) on the left side of the paper, and the unit is μs. (Μsec). The vertical axis on the right side of the paper indicates the feature amount. Hereinafter, the relationship between the movement time and the feature amount will be described with reference to FIG. 6, and the influence on the movement time due to the temperature around the actuator 40 and the influence on the movement time due to an abnormality such as a failure of the actuator 40. The distinction will be described.
  (周辺の温度変化による移動時間への影響)
 アクチュエータ40において、方向切替弁30から供給される圧力流体(例えば、圧力気体)は熱膨張し、また、シリンダ41およびピストン46等も熱膨張するため、アクチュエータ40の動作は、アクチュエータ40の周囲の温度からの影響を受ける。すなわち、図6に示すように、アクチュエータ40に故障等の異常が発生していない段階でも、ピストン46(可動部)の移動時間(変位時間)である引戻時間T(押出時間T)は、アクチュエータ40の周囲の温度によって変動している。
(Effects on travel time due to changes in ambient temperature)
In the actuator 40, the pressure fluid (for example, pressure gas) supplied from the direction switching valve 30 thermally expands, and the cylinder 41, the piston 46, and the like also thermally expand. Affected by temperature. That is, as shown in FIG. 6, even at the stage of abnormal such as a failure in the actuator 40 has not occurred, the movement time of the piston 46 (movable portion) is (displacement time) pull-back time T 2 (Extrusion time T 1) Fluctuates depending on the temperature around the actuator 40.
 アクチュエータ40の周囲の温度が変化しないという条件下では、すなわち、恒温条件下では、ピストン46の移動時間のみを監視して、アクチュエータ40の破損等の異常を検知することができるが、実際には、アクチュエータ40の周囲の温度は変化する。日時、季節、アクチュエータ40の周囲の装置の稼働状況等の影響によりアクチュエータ40の周囲の温度が変化する条件下では、ピストン46の移動時間の変動が、周囲の温度変化によるものか、アクチュエータ40の故障等の異常によるものかを区別できない。 Under the condition that the temperature around the actuator 40 does not change, that is, under constant temperature conditions, it is possible to monitor only the movement time of the piston 46 and detect an abnormality such as breakage of the actuator 40. The temperature around the actuator 40 changes. Under conditions in which the temperature around the actuator 40 changes due to the date and time, the season, the operating status of the device around the actuator 40, etc., whether the movement time of the piston 46 fluctuates due to a change in the surrounding temperature, It cannot be distinguished whether it is due to a failure or other abnormality.
 異常検出装置10は、「異常を原因とする移動時間の変動量Der」が「周囲の温度変化を原因とする移動時間の変動量Dte」よりも大きいという条件の下で、移動時間の特徴量W(W)を用いることにより、変動量Derと変動量Dteとを区別する。異常検出装置10は、測定期間中に計時した、つまり、異常判定を開始してから現在までの間に計時した、移動時間の最大値と最小値の差を特徴量として用いることによって、変動量Derと変動量Dteとを区別する。以下、変動量Derと変動量Dteとの区別が可能となる理由について、詳細を説明する。 Under the condition that the “variation amount Der of the movement time due to the abnormality” is larger than the “variation amount Dte of the movement time due to the change in ambient temperature”, the abnormality detection device 10 sets the characteristic amount of the movement time. By using W 2 (W 1 ), the variation Der and the variation Dte are distinguished. The abnormality detection device 10 uses the difference between the maximum value and the minimum value of the traveling time measured during the measurement period, that is, the time measured from the start of the abnormality determination to the present time, as the feature amount, thereby obtaining the variation amount. Der is distinguished from the variation Dte. Hereinafter, the reason why the fluctuation amount Der and the fluctuation amount Dte can be distinguished will be described in detail.
 図6に示すように、「異常を原因とする移動時間の変動量Der」は、「周囲の温度変化を原因とする移動時間の変動量Dte」に比べて、十分に大きい。そして、移動時間の最大値と最小値の差を用いて算出される特徴量において、変動量Dteは無視できるほど小さいのに対して、変動量Derは十分に大きい。 (6) As shown in FIG. 6, the “movement time fluctuation amount Der due to abnormality” is sufficiently larger than the “movement time fluctuation amount Dte due to ambient temperature change”. In the feature amount calculated using the difference between the maximum value and the minimum value of the moving time, the variation amount Dte is negligibly small, while the variation amount Der is sufficiently large.
 すなわち、アクチュエータ40の故障等の異常が発生した場合に計時される移動時間は、変動量Derが十分に大きいため、異常発生前に計時された移動時間の最大値よりも大きくなり、または、異常発生前に計時された移動時間の最小値よりも小さくなる。そのため、異常が発生すると、移動時間の最大値または最小値は、異常が発生した場合に計時される移動時間によって更新され、つまり、異常発生時点(=現在時点)で計時される移動時間によって更新される。そして、変動量Derは十分に大きいため、更新後の「最大値から最小値を差し引いた値」は、更新前の(つまり、異常発生前の)「最大値から最小値を差し引いた値」に比べて、十分に大きい。つまり、「異常を原因とする移動時間の変動量Der」は、移動時間の最大値と最小値の差を用いて算出される特徴量においても無視されない。 That is, the movement time measured when an abnormality such as a failure of the actuator 40 occurs becomes larger than the maximum value of the movement time measured before the occurrence of the abnormality because the variation Der is sufficiently large. It becomes smaller than the minimum value of the movement time measured before the occurrence. Therefore, when an abnormality occurs, the maximum value or the minimum value of the traveling time is updated by the traveling time measured when the abnormality occurs, that is, updated by the traveling time measured at the time of occurrence of the abnormality (= current time). Is done. Since the fluctuation amount Der is sufficiently large, the “value obtained by subtracting the minimum value from the maximum value” after the update is the “value obtained by subtracting the minimum value from the maximum value” before the update (that is, before the occurrence of the abnormality). In comparison, it is large enough. That is, the “variation amount Der of the traveling time due to the abnormality” is not ignored even in the feature amount calculated using the difference between the maximum value and the minimum value of the traveling time.
 これに対して、移動時間の最大値と最小値の差を用いて算出される特徴量において、「周囲の温度変化を原因とする移動時間の変動量Dte」は、十分に小さく、無視することができる。 On the other hand, in the feature amount calculated using the difference between the maximum value and the minimum value of the traveling time, the “variation amount Dte of the traveling time due to a change in ambient temperature” is sufficiently small and should be ignored. Can be.
 例えば、現在時点で計時された移動時間(恒温条件下で計時されるであろう移動時間に、変動量Dteが加算された移動時間)が、現在時点までの最大値以下、かつ、最小値以上である場合、現在時点の移動時間によって最大値および最小値が更新されることはない。そのため、移動時間の最大値と最小値の差を用いて算出される特徴量は変動せず、つまり、特徴量において変動量Dteは無視される。 For example, the travel time measured at the present time (the travel time obtained by adding the variation Dte to the travel time that would be measured under constant temperature conditions) is less than or equal to the maximum value up to the present time and greater than or equal to the minimum value. , The maximum value and the minimum value are not updated by the current travel time. Therefore, the feature amount calculated using the difference between the maximum value and the minimum value of the movement time does not change, that is, the change amount Dte is ignored in the feature amount.
 また、変動量Dteが加算された現在時点の移動時間によって最大値または最小値が更新される場合であっても、移動時間の最大値と最小値の差を用いて算出される特徴量について、更新前と更新後との間の変動は十分に小さい。すなわち、変動量Dteが加算された移動時間によって最大値または最小値が更新された場合の、更新前後での特徴量の変動は、変動量Derが加算された移動時間によって最大値または最小値が更新された場合の、更新前後での特徴量の変動に比べて、十分小さい。「異常を原因とする移動時間の変動量Der」は、「周囲の温度変化を原因とする移動時間の変動量Dte」に比べて、十分に大きいからである。 Further, even when the maximum value or the minimum value is updated by the moving time at the current time to which the fluctuation amount Dte is added, for the feature amount calculated using the difference between the maximum value and the minimum value of the moving time, The variation between before and after the update is small enough. That is, when the maximum value or the minimum value is updated by the movement time to which the variation Dte is added, the variation of the feature value before and after the update is such that the maximum value or the minimum value depends on the movement time to which the variation Der is added. This is sufficiently small compared to the variation in the feature value before and after the update in the case of updating. This is because the “movement time variation Der due to abnormality” is sufficiently larger than the “movement time variation Dte due to ambient temperature change”.
 したがって、適切な基準値TH(TH)を設定することによって、変動量Dteの加算による特徴量の変動は無視して、変動量Derの加算による特徴量の変動のみを捉えることができる。つまり、移動時間の最大値と最小値の差を用いて算出される特徴量において、変動量Dteの影響を無視しつつ、変動量Derの影響を確実に捉えることができる。異常検出装置10は、移動時間の最大値と最小値の差を用いて算出される特徴量によって、「異常を原因とする移動時間の変動」を、「周囲の温度変化を原因とする移動時間の変動」から区別して、捉えることができる。 Therefore, by setting an appropriate reference value TH 2 (TH 1 ), it is possible to ignore the variation in the feature amount due to the addition of the variation amount Dte and to grasp only the variation in the feature amount due to the addition of the variation amount Der. That is, in the feature amount calculated using the difference between the maximum value and the minimum value of the movement time, the effect of the variation Der can be reliably grasped while ignoring the effect of the variation Dte. The abnormality detection device 10 determines “variation in travel time due to abnormality” by “characteristic amount calculated using the difference between the maximum value and minimum value of travel time” as “moving time due to ambient temperature change”. Fluctuations ".
  (アクチュエータの種類等と移動時間との関係)
 ピストン46(可動部)の移動時間(変位時間)は、シリンダ41の径の大きさおよび長さなど、アクチュエータ40の種類等によって異なり、また、アクチュエータ40の負荷条件等によっても異なる。
(Relationship between actuator type and travel time)
The movement time (displacement time) of the piston 46 (movable part) differs depending on the type of the actuator 40, such as the diameter and length of the cylinder 41, and also depends on the load condition of the actuator 40.
 そこで、異常検出装置10は、「移動時間の初期値」によって「移動時間の最大値と最小値の差分」を除して無次元化した値を、つまり、アクチュエータ40の種類等からの影響を受けない値を、アクチュエータ40の異常判定に用いる特徴量とする。「移動時間の最大値と最小値の差分」を、「移動時間の初期値」によって除して無次元化することによって、異常検出装置10は、「移動時間の最大値と最小値の差分」への、アクチュエータ40の種類等からの影響を無効化する。 Therefore, the abnormality detection device 10 determines the dimensionless value by dividing the “difference between the maximum value and the minimum value of the movement time” by the “initial value of the movement time”, that is, the influence of the type of the actuator 40 and the like. A value that is not received is set as a feature amount used for determining abnormality of the actuator 40. By dividing the “difference between the maximum value and the minimum value of the travel time” by the “initial value of the travel time” to make it non-dimensional, the abnormality detection device 10 obtains the “difference between the maximum value and the minimum value of the travel time” Of the actuator 40 is invalidated.
 異常検出装置10は、「移動時間の最大値と最小値の差分」を、「移動時間の初期値」によって除して無次元化した値である特徴量を、異常判定に用いる指標とすることによって、同一の指標で、様々な種類のアクチュエータ40の異常を判定することができる。 The abnormality detection device 10 uses the feature amount, which is a dimensionless value obtained by dividing the “difference between the maximum value and the minimum value of the travel time” by the “initial value of the travel time”, as an index used for abnormality determination. Accordingly, various types of abnormalities of the actuator 40 can be determined with the same index.
 §4.変形例
 (制御指令の開始時点の取得について)
 異常検出装置10がPLC20からPush指令およびPull指令の各々を取得することは必須ではなく、異常検出装置10は、方向切替弁30がPush指令およびPull指令の各々を取得する時点を取得できればよい。例えば、方向切替弁30において、Push指令を取得する第1ソレノイド、および、Pull指令を取得する第2ソレノイドの各々に不図示のセンサ(第1切替センサおよび第2切替センサ)を設ける。そして、第1切替センサおよび第2切替センサの各々に、「第1ソレノイドおよび第2ソレノイドの各々による、Push指令およびPull指令の各々を取得」を検知させる。異常検出装置10は、第1切替センサおよび第2切替センサの各々の検知結果から、方向切替弁30がPush指令およびPull指令の各々を取得する時点を取得してもよい。すなわち、異常検出装置10は、第1切替センサの検知結果から、Push指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を取得してもよい。異常検出装置10は、第2切替センサの検知結果から、Pull指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻を取得してもよい。
§4. Modification (Acquisition of start time of control command)
It is not essential for the abnormality detection device 10 to acquire each of the Push command and the Pull command from the PLC 20. The abnormality detection device 10 only needs to be able to acquire the time when the direction switching valve 30 acquires each of the Push command and the Pull command. For example, in the direction switching valve 30, sensors (not shown) (a first switching sensor and a second switching sensor) are provided for each of a first solenoid that acquires a Push command and a second solenoid that acquires a Pull command. Then, each of the first switching sensor and the second switching sensor is caused to detect "acquiring each of the Push command and the Pull command by each of the first solenoid and the second solenoid". The abnormality detection device 10 may acquire the time when the direction switching valve 30 acquires each of the Push command and the Pull command from the detection results of the first switching sensor and the second switching sensor. That is, the abnormality detection device 10 may acquire the time when the level of the Push command changes from “0 (low)” to “1 (high)” from the detection result of the first switching sensor. The abnormality detection device 10 may acquire the time when the level of the Pull command changes from “0 (low)” to “1 (high)” from the detection result of the second switching sensor.
 (異常検知システムの構成について)
 これまで、PLC20が、異常検出装置10を介して、方向切替弁30、第1スイッチ51、および、第2スイッチ52の各々と接続する構成を説明してきたが、このような接続構成は、異常検出装置10およびPLC20の各々にとって必須ではない。PLC20が、方向切替弁30、第1スイッチ51、および、第2スイッチ52の各々と直接接続してもよい。また、異常検出装置10は、PLC20を介して、方向切替弁30(または、第1切替センサおよび第2切替センサの各々)、第1スイッチ51、および、第2スイッチ52の各々に接続してもよい。
(About the configuration of the abnormality detection system)
The configuration in which the PLC 20 is connected to each of the direction switching valve 30, the first switch 51, and the second switch 52 via the abnormality detection device 10 has been described above. It is not essential for each of the detection device 10 and the PLC 20. The PLC 20 may be directly connected to each of the direction switching valve 30, the first switch 51, and the second switch 52. The abnormality detection device 10 is connected to each of the direction switching valve 30 (or each of the first switching sensor and the second switching sensor), the first switch 51, and the second switch 52 via the PLC 20. Is also good.
 例えば、異常検出装置10が、PLC20を介して、方向切替弁30、第1スイッチ51、および、第2スイッチ52の各々と接続する構成を採用してもよい。異常検出装置10は、PLC20から、Push指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻、および、Pull指令のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻の各々を取得してもよい。異常検出装置10は、PLC20を介して、第2検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻、および、第1検知信号のLevelが「0(ロー)」から「1(ハイ)」に変化する時刻の各々を取得してもよい。 For example, a configuration may be adopted in which the abnormality detection device 10 is connected to each of the direction switching valve 30, the first switch 51, and the second switch 52 via the PLC 20. The abnormality detecting device 10 outputs the time when the level of the Push command changes from “0 (low)” to “1 (high)” from the PLC 20 and the level of the Pull command from “0 (low)” to “1 (high)”. )) May be acquired. The abnormality detecting device 10 sets the time when the level of the second detection signal changes from “0 (low)” to “1 (high)” and the level of the first detection signal via the PLC 20 to “0 (low)”. , The time when the time changes from “1” to “1 (high)” may be acquired.
 (異常検出装置の構成について)
 これまで、異常検出装置10と、PLC20とが別個の装置である例を説明してきたが、異常検出装置10を、PLC20から独立した装置として構成することは必須ではなく、異常検出装置10を、PLC20に一体の装置として構成してもよい。
(About the configuration of the abnormality detection device)
So far, an example has been described in which the abnormality detection device 10 and the PLC 20 are separate devices. However, it is not essential that the abnormality detection device 10 be configured as a device independent of the PLC 20. It may be configured as an integrated device with the PLC 20.
 〔ソフトウェアによる実現例〕
 異常検出装置10の制御ブロック(特に、指令取得部110、検知信号取得部120、計時部130、更新制御部140、判定部150、および、通知制御部160)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(CenTral Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (in particular, the command acquisition unit 110, the detection signal acquisition unit 120, the clock unit 130, the update control unit 140, the determination unit 150, and the notification control unit 160) of the abnormality detection device 10 include an integrated circuit (IC chip) and the like. May be realized by a logic circuit (hardware) formed in the computer, or may be realized by software using a CPU (CenTral Processing Unit).
 後者の場合、異常検出装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)等を備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路等を用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the abnormality detection device 10 includes a CPU that executes instructions of a program that is software for realizing each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU). Alternatively, a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. Then, the object of the present invention is achieved when the computer (or CPU) reads the program from the recording medium and executes the program. As the recording medium, a “temporary tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 (付記事項)
 本発明の一態様に係る異常検出装置は、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置であって、前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時部と、前記計時部によって現在までに計測された前記変位時間の最大値から、前記計時部によって現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時部によって計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定部と、を備えている。
(Appendix)
An abnormality detection device according to an aspect of the present invention is an abnormality detection device that detects an abnormality of an actuator whose movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion, wherein the displacement time is A timing unit that measures a time from a time when a displacement command to the other end is started in a state where the movable unit is at one end of the actuator to a time when the movable unit arrives at the other end; From the maximum value of the displacement time measured so far by the unit, the value obtained by subtracting the minimum value of the displacement time measured so far by the time counting unit, at the time when a predetermined time has elapsed from the start time of the actuator A determination unit that determines whether there is an abnormality using a feature amount that is a value divided by the displacement time measured by the clock unit.
 前記の構成によれば、前記異常検出装置は、現在までに計測した前記変位時間の最大値から最小値を差し引いた値を、前記起動時点から所定時間経過した時点で計測した前記変位時間によって除した値である特徴量を用いて、前記アクチュエータの異常の有無を判定する。 According to the configuration, the abnormality detection device divides a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time by the displacement time measured at a time when a predetermined time has elapsed from the start time. The presence / absence of an abnormality in the actuator is determined by using the feature value which is the obtained value.
 一般に、圧力流体の供給により可動部が変位するアクチュエータについて、前記可動部の前記変位時間は、前記アクチュエータの周囲の温度の影響を受ける。例えば、前記アクチュエータの周囲の温度が上昇すると前記変位時間は短くなる傾向があり、前記アクチュエータの周囲の温度が下降すると前記変位時間は長くなる傾向がある。また、前記変位時間は、前記アクチュエータの種類、負荷条件、設置位置、これまでの使用時間等によっても変動する。 Generally, for an actuator in which the movable part is displaced by the supply of a pressure fluid, the displacement time of the movable part is affected by the temperature around the actuator. For example, when the temperature around the actuator increases, the displacement time tends to decrease, and when the temperature around the actuator decreases, the displacement time tends to increase. Further, the displacement time also varies depending on the type of the actuator, load conditions, installation position, usage time so far, and the like.
 そのため、前記変位時間について正常値を予め設定しておき、計測した前記変位時間と正常値とを比較して異常を判定する従来の方法には、以下の課題がある。すなわち、異常判定の精度を維持するためには、従来の方法は、前記アクチュエータの周囲の温度、前記アクチュエータの種類、負荷条件、設置位置、これまでの使用時間等といった種々の要因に応じて個別に、前記正常値を設定する必要がある。言い換えれば、従来の方法は、「周囲の温度、前記アクチュエータの種類等の条件」に応じて変動する前記変位時間に対応させて、「周囲の温度、前記アクチュエータの種類等の条件」に応じた適切な正常値を適宜設定しなければ、異常判定の精度を維持できない。 Therefore, a conventional method of setting a normal value for the displacement time in advance and comparing the measured displacement time with a normal value to determine an abnormality has the following problems. In other words, in order to maintain the accuracy of the abnormality determination, the conventional method is individually performed according to various factors such as the temperature around the actuator, the type of the actuator, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method is based on the “conditions such as the ambient temperature and the type of the actuator” in accordance with the displacement time that varies according to “the conditions such as the ambient temperature and the type of the actuator”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
 これに対して、前記異常検出装置は、前記アクチュエータの異常の有無を、「現在までに計測した前記変位時間の最大値から最小値を差し引いた値を、前記起動時点から所定時間経過した時点で計測した前記変位時間によって除した値」である前記特徴量を用いて判定する。 On the other hand, the abnormality detection device determines whether or not the actuator has an abnormality by determining whether or not a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time at a predetermined time from the start time. The value is divided by the measured displacement time ".
 ここで、周囲の温度変化に伴う前記変位時間の変動の大きさは、故障等の異常の発生に伴う前記変位時間の変動の大きさに比べて、十分に小さいと想定することができる。つまり、異常の発生の影響による前記変位時間の変動の大きさは、周囲の温度変化の影響による前記変位時間の変動の大きさに比べて、十分に大きい。 Here, it can be assumed that the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the displacement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the displacement time due to the change in the ambient temperature.
 したがって、異常が発生した時点で計時される変位時間は、直前までに計測された(つまり、異常の発生していない、せいぜい周囲の温度変化の影響を受けたに過ぎない)前記変位時間の前記最大値よりも大きくなり、または、直前までに計測された前記変位時間の前記最小値よりも小さくなる。つまり、異常が発生すると、現在時点(=異常発生時点)で計時される変位時間が、前記最大値または前記最小値となり、前記最大値と前記最小値の差を用いて算出される前記特徴量に、異常の発生が影響する。そのため、前記異常検出装置は、前記最大値と前記最小値の差を用いて算出される前記特徴量によって、異常の発生の有無を判定することができる。 Therefore, the displacement time measured at the time of occurrence of the abnormality is the time of the displacement time measured immediately before (that is, the occurrence of the abnormality, which is at most affected only by the change in ambient temperature). It becomes larger than the maximum value or becomes smaller than the minimum value of the displacement time measured immediately before. That is, when an abnormality occurs, the displacement time measured at the current time point (= the abnormality occurrence time point) becomes the maximum value or the minimum value, and the feature amount calculated using the difference between the maximum value and the minimum value. The occurrence of an abnormality affects the Therefore, the abnormality detection device can determine whether an abnormality has occurred based on the feature amount calculated using the difference between the maximum value and the minimum value.
 これに対して、周囲の温度変化の影響を受けた、現在の変位時間が、前記最大値以下、かつ、前記最小値以上である場合、前記最大値と前記最小値との差を用いる前記特徴量は、現在の変位時間によって変動しない。つまり、現在の変位時間が、前記最大値以下、かつ、前記最小値以上である場合、前記最大値と前記最小値との差を用いる前記特徴量において、周囲の温度変化の影響は無視される。 On the other hand, when the current displacement time affected by the ambient temperature change is equal to or less than the maximum value and equal to or greater than the minimum value, the difference between the maximum value and the minimum value is used. The amount does not vary with the current displacement time. That is, when the current displacement time is equal to or less than the maximum value and equal to or greater than the minimum value, the influence of the ambient temperature change is ignored in the feature amount using the difference between the maximum value and the minimum value. .
 また、周囲の温度変化の影響を受けた、現在の変位時間が、前記最大値より大きく、または、前記最小値より小さい場合、前記最大値と前記最小値との差を用いる前記特徴量は、周囲の温度変化の影響を受けた、現在の変位時間によって変動する。しかしながら、周囲の温度変化の影響による前記特徴量の変動の大きさは、異常の発生の影響による前記特徴量の変動の大きさに比べて、十分に小さい。周囲の温度変化に伴う前記変位時間の変動の大きさは、故障等の異常の発生に伴う前記変位時間の変動の大きさに比べて、十分に小さいからである。 In addition, the current displacement time affected by the ambient temperature change is larger than the maximum value, or, if smaller than the minimum value, the feature amount using a difference between the maximum value and the minimum value, It fluctuates according to the current displacement time affected by the ambient temperature change. However, the magnitude of the variation of the feature quantity due to the influence of the ambient temperature change is sufficiently smaller than the magnitude of the variation of the feature quantity due to the influence of the abnormality. This is because the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure.
 したがって、前記最大値と前記最小値との差を用いる前記特徴量において、周囲の温度変化の影響は、無視され、または、異常の発生の影響に比べて十分に小さなものとして無視することができる。 Therefore, in the feature value using the difference between the maximum value and the minimum value, the influence of the ambient temperature change can be neglected or can be ignored as being sufficiently small as compared with the influence of the occurrence of the abnormality. .
 つまり、前記異常検出装置は、前記最大値と前記最小値との差を用いる前記特徴量によって、「異常を原因とする前記変位時間の変動」を、「周囲の温度変化を原因とする前記変位時間の変動」から区別して、捉えることができるとの効果を奏する。 In other words, the abnormality detection device determines, based on the feature amount using the difference between the maximum value and the minimum value, the “fluctuation in the displacement time due to the abnormality” and the “displacement due to the ambient temperature change. This is effective in that it can be distinguished from "fluctuations in time."
 前記異常検出装置は、「起動時点から所定時間経過した時点で計測した前記変位時間(つまり、初期値)」によって、「前記最大値と前記最小値との差分」を除して無次元化した値を、前記アクチュエータの異常判定に用いる前記特徴量とする。つまり、前記異常検出装置は、前記アクチュエータの種類等からの影響を受けない値を、前記アクチュエータの異常判定に用いる前記特徴量とする。 The abnormality detection device is dimensionless by dividing the “difference between the maximum value and the minimum value” by the “displacement time measured at the time when a predetermined time has elapsed from the start time (that is, the initial value)”. Let the value be the characteristic amount used for the abnormality determination of the actuator. That is, the abnormality detection device sets a value that is not affected by the type of the actuator or the like as the feature amount used for the abnormality determination of the actuator.
 前記異常検出装置は、「前記最大値と前記最小値との差分」を、「前記初期値」によって除して無次元化することによって、「前記最大値と前記最小値との差分」への、前記アクチュエータの種類等からの影響を無効化する。 The anomaly detection device, by dividing the “difference between the maximum value and the minimum value” by the “initial value” to make the dimensionless, the “difference between the maximum value and the minimum value” And the effect of the type of the actuator and the like is nullified.
 したがって、前記異常検出装置は、「前記最大値と前記最小値との差分」を、「前記初期値」によって除して無次元化した前記特徴量を用いることによって、同一の指標で、様々な種類の前記アクチュエータの異常を判定することができるとの効果を奏する。 Therefore, the anomaly detection device uses the same dimension as the non-dimensional feature amount by dividing the “difference between the maximum value and the minimum value” by the “initial value”. There is an effect that it is possible to determine the type of abnormality of the actuator.
 本発明の一態様に係る異常検出装置において、前記可動部は、シリンダ内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、前記計時部は、前記変位時間として、前記可動部が前記アクチュエータの前記引戻方向側の端部にある状態で前記押出方向への変位の指令が開始された時刻から、前記可動部が前記アクチュエータの前記押出方向側の端部へと到着した時刻までの時間である押出時間を計測し、前記判定部は、前記押出時間に係る前記特徴量を用いて、少なくとも、前記可動部に連結されたロッドと前記シリンダとの間から前記圧力流体が漏れ出てしまうのを防ぐためのロッドパッキンの異常の有無を判定してもよい。 In the abnormality detection device according to one aspect of the present invention, the movable portion is displaced in the cylinder in a pushing direction, or in a retraction direction that is a direction opposite to the pushing direction, and the timing section is configured as the displacement time. From the time when the command for displacement in the pushing direction is started in a state where the movable portion is at the end of the actuator in the retraction direction, the movable portion is moved to the end of the actuator in the pushing direction. And measuring the extrusion time that is the time until the arrival time, the determination unit uses the feature amount related to the extrusion time, at least, from between the cylinder and the rod connected to the movable unit and the cylinder The presence or absence of an abnormality in the rod packing for preventing the leakage of the pressure fluid may be determined.
 前記の構成によれば、前記異常検出装置は、前記押出時間に係る前記特徴量を用いて、少なくとも前記ロッドパッキンの異常の有無を判定する。ここで、前記ロッドパッキンに破損等の異常が発生すると、前記ロッドと前記シリンダとの間から前記圧力流体が漏れ出てしまうため、前記押出時間が短くなる(小さくなる)傾向がある。したがって、前記異常検出装置は、前記押出時間に係る前記特徴量を用いて、少なくとも前記ロッドパッキンの異常の有無を判定することができるとの効果を奏する。 According to the configuration, the abnormality detection device determines at least the presence or absence of an abnormality in the rod packing by using the feature amount related to the extrusion time. Here, if an abnormality such as breakage occurs in the rod packing, the pressurized fluid leaks from between the rod and the cylinder, so that the extrusion time tends to be shorter (smaller). Therefore, the abnormality detecting device has an effect that it is possible to determine at least the presence or absence of the abnormality of the rod packing using the feature amount related to the extrusion time.
 本発明の一態様に係る異常検出装置において、前記可動部は、シリンダ内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、前記計時部は、前記変位時間として、前記可動部が前記アクチュエータの前記押出方向側の端部にある状態で前記引戻方向への変位の指令が開始された時刻から、前記可動部が前記アクチュエータの前記引戻方向側の端部へと到着した時刻までの時間である引戻時間を計測し、前記判定部は、前記引戻時間に係る前記特徴量を用いて、少なくとも、前記可動部と前記シリンダとの間から前記圧力流体が漏れ出てしまうのを防ぐためのピストンパッキンの異常の有無を判定してもよい。 In the abnormality detection device according to one aspect of the present invention, the movable portion is displaced in the cylinder in a pushing direction, or in a retraction direction that is a direction opposite to the pushing direction, and the timing section is configured as the displacement time. From the time when a command for displacement in the retraction direction is started in a state where the movable portion is at the end of the actuator in the pushing direction, the movable portion is moved to the end of the actuator in the retraction direction. Measuring the withdrawal time, which is the time up to the time when it arrives at, and using the characteristic amount related to the withdrawal time, at least the pressure fluid from between the movable part and the cylinder. It may be determined whether or not there is an abnormality in the piston packing for preventing leakage of oil.
 前記の構成によれば、前記異常検出装置は、前記引戻時間に係る前記特徴量を用いて、少なくとも前記ピストンパッキンの異常の有無を判定する。ここで、前記ピストンパッキンに破損等の異常が発生すると、前記可動部と前記シリンダとの間から前記圧力流体が漏れ出てしまうため、前記引戻時間が長くなる(大きくなる)傾向がある。したがって、前記異常検出装置は、前記引戻時間に係る前記特徴量を用いて、少なくとも前記ピストンパッキンの異常の有無を判定することができるとの効果を奏する。 According to the configuration, the abnormality detection device determines at least presence or absence of an abnormality in the piston packing by using the characteristic amount related to the retraction time. Here, if an abnormality such as breakage occurs in the piston packing, the pressure fluid leaks from between the movable portion and the cylinder, and the retraction time tends to be long (increased). Therefore, the abnormality detection device has an effect that it is possible to determine at least the presence or absence of abnormality in the piston packing by using the characteristic amount related to the retraction time.
 本発明の一態様に係る異常検出装置は、前記アクチュエータの起動時点から所定時間経過した時点で前記計時部によって計測された前記変位時間を、ユーザに通知する通知制御部をさらに備えてもよい。 The abnormality detection device according to one aspect of the present invention may further include a notification control unit that notifies a user of the displacement time measured by the clock unit at a point in time when a predetermined time has elapsed from the time of activation of the actuator.
 前記の構成によれば、前記異常検出装置は、前記アクチュエータの起動時点から所定時間経過した時点で計測した前記変位時間(つまり、初期値)を、ユーザに通知することができるとの効果を奏する。 According to the configuration, the abnormality detection device has an effect that the displacement time (that is, the initial value) measured when a predetermined time has elapsed from the activation time of the actuator can be notified to a user. .
 本発明の一態様に係る制御方法は、圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置の制御方法であって、前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時ステップと、前記計時ステップにて現在までに計測された前記変位時間の最大値から、前記計時ステップにて現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時ステップにて計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定ステップと、を含んでいる。 The control method according to an aspect of the present invention is a control method of an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid using a displacement time of the movable portion, wherein the displacement time As a timing step for measuring the time from the time when the command for displacement to the other end is started in a state where the movable part is at one end of the actuator, to the time when the movable part arrives at the other end, A value obtained by subtracting the minimum value of the displacement time measured so far in the time counting step from the maximum value of the displacement time measured so far in the time counting step is a predetermined time from the activation time of the actuator. A determination step of determining the presence or absence of an abnormality by using a feature amount that is a value divided by the displacement time measured in the timing step when the time has elapsed. .
 前記の方法によれば、前記制御方法は、現在までに計測した前記変位時間の最大値から最小値を差し引いた値を、前記起動時点から所定時間経過した時点で計測した前記変位時間によって除した値である特徴量を用いて、前記アクチュエータの異常の有無を判定する。 According to the above-described method, the control method divides a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time by the displacement time measured when a predetermined time has elapsed from the start time. The presence / absence of an abnormality in the actuator is determined using a feature value that is a value.
 一般に、圧力流体の供給により可動部が変位するアクチュエータについて、前記可動部の前記変位時間は、前記アクチュエータの周囲の温度の影響を受ける。例えば、前記アクチュエータの周囲の温度が上昇すると前記変位時間は短くなる傾向があり、前記アクチュエータの周囲の温度が下降すると前記変位時間は長くなる傾向がある。また、前記変位時間は、前記アクチュエータの種類、負荷条件、設置位置、これまでの使用時間等によっても変動する。 Generally, for an actuator in which the movable part is displaced by the supply of a pressure fluid, the displacement time of the movable part is affected by the temperature around the actuator. For example, when the temperature around the actuator increases, the displacement time tends to decrease, and when the temperature around the actuator decreases, the displacement time tends to increase. The displacement time also varies depending on the type of the actuator, the load condition, the installation position, the usage time so far, and the like.
 そのため、前記変位時間について正常値を予め設定しておき、計測した前記変位時間と正常値とを比較して異常を判定する従来の方法には、以下の課題がある。すなわち、異常判定の精度を維持するためには、従来の方法は、前記アクチュエータの周囲の温度、前記アクチュエータの種類、負荷条件、設置位置、これまでの使用時間等といった種々の要因に応じて個別に、前記正常値を設定する必要がある。言い換えれば、従来の方法は、「周囲の温度、前記アクチュエータの種類等の条件」に応じて変動する前記変位時間に対応させて、「周囲の温度、前記アクチュエータの種類等の条件」に応じた適切な正常値を適宜設定しなければ、異常判定の精度を維持できない。 Therefore, a conventional method of setting a normal value for the displacement time in advance and comparing the measured displacement time with a normal value to determine an abnormality has the following problems. In other words, in order to maintain the accuracy of the abnormality determination, the conventional method is individually performed according to various factors such as the temperature around the actuator, the type of the actuator, the load condition, the installation position, and the usage time so far. , It is necessary to set the normal value. In other words, the conventional method corresponds to the “conditions such as the ambient temperature and the type of the actuator” in accordance with the displacement time that varies according to “the conditions such as the ambient temperature and the type of the actuator”. Unless an appropriate normal value is appropriately set, the accuracy of the abnormality determination cannot be maintained.
 これに対して、前記制御方法は、前記アクチュエータの異常の有無を、「現在までに計測した前記変位時間の最大値から最小値を差し引いた値を、前記起動時点から所定時間経過した時点で計測した前記変位時間によって除した値」である前記特徴量を用いて判定する。 On the other hand, the control method determines whether or not the actuator is abnormal by measuring a value obtained by subtracting a minimum value from a maximum value of the displacement time measured up to the present time when a predetermined time has elapsed from the start time. Is determined by using the characteristic amount which is a value obtained by dividing the calculated displacement time.
 ここで、周囲の温度変化に伴う前記変位時間の変動の大きさは、故障等の異常の発生に伴う前記変位時間の変動の大きさに比べて、十分に小さいと想定することができる。つまり、異常の発生の影響による前記変位時間の変動の大きさは、周囲の温度変化の影響による前記変位時間の変動の大きさに比べて、十分に大きい。 Here, it can be assumed that the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure. That is, the magnitude of the change in the displacement time due to the occurrence of the abnormality is sufficiently larger than the magnitude of the change in the displacement time due to the change in the ambient temperature.
 したがって、異常が発生した時点で計時される変位時間は、直前までに計測された(つまり、異常の発生していない、せいぜい周囲の温度変化の影響を受けたに過ぎない)前記変位時間の前記最大値よりも大きくなり、または、直前までに計測された前記変位時間の前記最小値よりも小さくなる。つまり、異常が発生すると、現在時点(=異常発生時点)で計時される変位時間が、前記最大値または前記最小値となり、前記最大値と前記最小値の差を用いて算出される前記特徴量に、異常の発生が影響する。そのため、前記制御方法は、前記最大値と前記最小値の差を用いて算出される前記特徴量によって、異常の発生の有無を判定することができる。 Therefore, the displacement time measured at the time of occurrence of the abnormality is the time of the displacement time measured immediately before (that is, the occurrence of the abnormality, which is at most affected only by the change in ambient temperature). It becomes larger than the maximum value or becomes smaller than the minimum value of the displacement time measured immediately before. That is, when an abnormality occurs, the displacement time measured at the current time point (= the abnormality occurrence time point) becomes the maximum value or the minimum value, and the feature amount calculated using the difference between the maximum value and the minimum value. The occurrence of an abnormality affects the Therefore, the control method can determine whether an abnormality has occurred based on the characteristic amount calculated using the difference between the maximum value and the minimum value.
 これに対して、周囲の温度変化の影響を受けた、現在の変位時間が、前記最大値以下、かつ、前記最小値以上である場合、前記最大値と前記最小値との差を用いる前記特徴量は、現在の変位時間によって変動しない。つまり、現在の変位時間が、前記最大値以下、かつ、前記最小値以上である場合、前記最大値と前記最小値との差を用いる前記特徴量において、周囲の温度変化の影響は無視される。 On the other hand, when the current displacement time affected by the ambient temperature change is equal to or less than the maximum value and equal to or greater than the minimum value, the difference between the maximum value and the minimum value is used. The amount does not vary with the current displacement time. That is, when the current displacement time is equal to or less than the maximum value and equal to or greater than the minimum value, the influence of the ambient temperature change is ignored in the feature amount using the difference between the maximum value and the minimum value. .
 また、周囲の温度変化の影響を受けた、現在の変位時間が、前記最大値より大きく、または、前記最小値より小さい、前記最大値と前記最小値との差を用いる前記特徴量は、周囲の温度変化の影響を受けた、現在の変位時間によって変動する。しかしながら、周囲の温度変化の影響による前記特徴量の変動の大きさは、異常の発生の影響による前記特徴量の変動の大きさに比べて、十分に小さい。周囲の温度変化に伴う前記変位時間の変動の大きさは、故障等の異常の発生に伴う前記変位時間の変動の大きさに比べて、十分に小さいからである。 In addition, the current displacement time affected by the ambient temperature change is greater than the maximum value, or less than the minimum value, the feature amount using the difference between the maximum value and the minimum value is Fluctuates according to the current displacement time affected by the temperature change. However, the magnitude of the variation of the feature quantity due to the influence of the ambient temperature change is sufficiently smaller than the magnitude of the variation of the feature quantity due to the influence of the abnormality. This is because the magnitude of the change in the displacement time due to a change in the ambient temperature is sufficiently smaller than the magnitude of the change in the displacement time due to the occurrence of an abnormality such as a failure.
 したがって、前記最大値と前記最小値との差を用いる前記特徴量において、周囲の温度変化の影響は、無視され、または、異常の発生の影響に比べて十分に小さなものとして無視することができる。 Therefore, in the feature value using the difference between the maximum value and the minimum value, the influence of the ambient temperature change can be neglected or can be ignored as being sufficiently small as compared with the influence of the occurrence of the abnormality. .
 つまり、前記制御方法は、前記最大値と前記最小値との差を用いる前記特徴量によって、「異常を原因とする前記変位時間の変動」を、「周囲の温度変化を原因とする前記変位時間の変動」から区別して、捉えることができるとの効果を奏する。 In other words, the control method uses the characteristic amount using the difference between the maximum value and the minimum value to change “the change in the displacement time due to an abnormality” to “the displacement time due to a change in ambient temperature”. The effect is that it can be grasped separately from "fluctuations of".
 前記制御方法は、「起動時点から所定時間経過した時点で計測した前記変位時間(つまり、初期値)」によって、「前記最大値と前記最小値との差分」を除して無次元化した値を、前記アクチュエータの異常判定に用いる前記特徴量とする。つまり、前記制御方法は、前記アクチュエータの種類等からの影響を受けない値を、前記アクチュエータの異常判定に用いる前記特徴量とする。 The control method is a non-dimensional value obtained by dividing the “difference between the maximum value and the minimum value” by the “displacement time measured at the time when a predetermined time has elapsed from the start time (that is, the initial value)”. Is the feature quantity used for the abnormality determination of the actuator. That is, in the control method, a value that is not affected by the type of the actuator or the like is used as the feature amount used for determining abnormality of the actuator.
 前記制御方法は、「前記最大値と前記最小値との差分」を、「前記初期値」によって除して無次元化することによって、「前記最大値と前記最小値との差分」への、前記アクチュエータの種類等からの影響を無効化する。 The control method, by dividing the "difference between the maximum value and the minimum value" by the "initial value" to make the dimensionless, to "difference between the maximum value and the minimum value", The influence from the type of the actuator or the like is nullified.
 したがって、前記制御方法は、「前記最大値と前記最小値との差分」を、「前記初期値」によって除して無次元化した前記特徴量を用いることによって、同一の指標で、様々な種類の前記アクチュエータの異常を判定することができるとの効果を奏する。 Therefore, the control method uses the feature amount that is made dimensionless by dividing the “difference between the maximum value and the minimum value” by the “initial value”, thereby providing various types with the same index. This has the effect that abnormality of the actuator can be determined.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
  10 異常検出装置
  40 アクチュエータ
  41 シリンダ
  42 第1端部(一端、他端、引戻方向側の端部)
  43 第2端部(一端、他端、押出方向側の端部)
  46 ピストン(可動部)
  47 ピストンロッド(ロッド)
  48 ピストンパッキン
  49 ロッドパッキン
 130 計時部
 131 第1計時部(計時部)
 132 第2計時部(計時部)
 150 判定部
 151 第1判定部(判定部)
 152 第2判定部(判定部)
 160 通知制御部
   T 押出時間(変位時間)
  T10 初期値(起動時点から所定時間経過した時点の変位時間)
  T20 初期値(起動時点から所定時間経過した時点の変位時間)
 T1MAX 最大値
 T2MAX 最大値
 T1min 最小値
 T2min 最小値
   T 引戻時間(変位時間)
   W 特徴量
   W 特徴量
 S130 計時ステップ
 S160 判定ステップ
10 Abnormality detection device 40 Actuator 41 Cylinder 42 First end (one end, other end, end on retraction direction side)
43 2nd end (one end, the other end, end on the extrusion direction side)
46 piston (movable part)
47 Piston rod (rod)
48 Piston packing 49 Rod packing 130 Clock section 131 1st clock section (clock section)
132 Second timekeeping unit (timekeeping unit)
150 determination unit 151 first determination unit (determination unit)
152 second judgment unit (judgment unit)
160 Notification control unit T 1 Extrusion time (displacement time)
T 10 Initial value (displacement time after the lapse of a predetermined from the activation time period)
T 20 Initial value (displacement time after the lapse of a predetermined from the activation time period)
T 1MAX maximum value T 2MAX maximum T 1min minimum T 2min minimum T 2 pull-back time (displacement time)
W 1 feature amount W 2 feature amount S130 Timing step S160 Judgment step

Claims (7)

  1.  圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置であって、
     前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時部と、
     前記計時部によって現在までに計測された前記変位時間の最大値から、前記計時部によって現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時部によって計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定部と、
    を備える異常検出装置。
    An abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid, using a displacement time of the movable portion,
    As the displacement time, a time measuring a time from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator to a time when the movable portion arrives at the other end. Department and
    A value obtained by subtracting the minimum value of the displacement time measured so far by the time counting unit from the maximum value of the displacement time measured so far by the time counting unit has passed a predetermined time from the activation time of the actuator. Using a feature amount that is a value divided by the displacement time measured by the timing unit at a time, a determination unit that determines whether there is an abnormality,
    An abnormality detection device comprising:
  2.  前記可動部は、シリンダ内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、
     前記計時部は、前記変位時間として、前記可動部が前記アクチュエータの前記引戻方向側の端部にある状態で前記押出方向への変位の指令が開始された時刻から、前記可動部が前記アクチュエータの前記押出方向側の端部へと到着した時刻までの時間である押出時間を計測し、
     前記判定部は、前記押出時間に係る前記特徴量を用いて、少なくとも、前記可動部に連結されたロッドと前記シリンダとの間から前記圧力流体が漏れ出てしまうのを防ぐためのロッドパッキンの異常の有無を判定する
    請求項1に記載の異常検出装置。
    The movable section is displaced in the cylinder in a pushing direction or a retraction direction which is a direction opposite to the pushing direction,
    The timing section is configured such that, as the displacement time, from the time at which a command for displacement in the pushing direction is started in a state where the movable section is at the end of the actuator on the retraction direction side, the movable section is controlled by the actuator. The extrusion time, which is the time until the end of the extrusion direction, is measured,
    The determination unit uses the characteristic amount related to the extrusion time, at least, a rod packing for preventing the pressure fluid from leaking from between the rod and the cylinder connected to the movable unit. The abnormality detection device according to claim 1, wherein the presence or absence of an abnormality is determined.
  3.  前記可動部は、シリンダ内を、押出方向、または、前記押出方向の逆方向である引戻方向に変位し、
     前記計時部は、前記変位時間として、前記可動部が前記アクチュエータの前記押出方向側の端部にある状態で前記引戻方向への変位の指令が開始された時刻から、前記可動部が前記アクチュエータの前記引戻方向側の端部へと到着した時刻までの時間である引戻時間を計測し、
     前記判定部は、前記引戻時間に係る前記特徴量を用いて、少なくとも、前記可動部と前記シリンダとの間から前記圧力流体が漏れ出てしまうのを防ぐためのピストンパッキンの異常の有無を判定する
    請求項1または2に記載の異常検出装置。
    The movable section is displaced in the cylinder in a pushing direction or a retraction direction which is a direction opposite to the pushing direction,
    The time counting section is configured such that, as the displacement time, from the time when a command for displacement in the retraction direction is started in a state where the movable section is at the end of the actuator on the pushing direction side, the movable section is controlled by the actuator. Measure the withdrawal time, which is the time until the arrival at the end of the withdrawal direction,
    The determination unit uses the characteristic amount related to the retraction time to determine at least whether there is an abnormality in the piston packing for preventing the pressure fluid from leaking from between the movable unit and the cylinder. The abnormality detection device according to claim 1, wherein the determination is performed.
  4.  前記アクチュエータの起動時点から所定時間経過した時点で前記計時部によって計測された前記変位時間を、ユーザに通知する通知制御部をさらに備える
    請求項1から3のいずれか1項に記載の異常検出装置。
    The abnormality detection device according to any one of claims 1 to 3, further comprising a notification control unit configured to notify a user of the displacement time measured by the time measurement unit when a predetermined time has elapsed from the activation time of the actuator. .
  5.  圧力流体の供給により可動部が変位するアクチュエータの異常を、前記可動部の変位時間を用いて検出する異常検出装置の制御方法であって、
     前記変位時間として、前記可動部が前記アクチュエータの一端にある状態で他端への変位の指令が開始された時刻から、前記可動部が前記他端へと到着した時刻までの時間を計測する計時ステップと、
     前記計時ステップにて現在までに計測された前記変位時間の最大値から、前記計時ステップにて現在までに計測された前記変位時間の最小値を差し引いた値を、前記アクチュエータの起動時点から所定時間経過した時点で前記計時ステップにて計測された前記変位時間によって除した値である特徴量を用いて、異常の有無を判定する判定ステップと、
    を含む制御方法。
    A method of controlling an abnormality detection device that detects an abnormality of an actuator in which a movable portion is displaced by supply of a pressure fluid, using a displacement time of the movable portion,
    As the displacement time, a time measuring a time from a time when a command for displacement to the other end is started in a state where the movable portion is at one end of the actuator to a time when the movable portion arrives at the other end. Steps and
    A value obtained by subtracting the minimum value of the displacement time measured so far in the time counting step from the maximum value of the displacement time measured so far in the time counting step is a predetermined time from the activation time of the actuator. A determination step of determining the presence or absence of an abnormality using a feature amount that is a value obtained by dividing the displacement time measured in the timing step at the time when the time has elapsed,
    Control method including:
  6.  請求項1から4のいずれか一項に記載の異常検出装置としてコンピュータを機能させるための情報処理プログラムであって、前記各部としてコンピュータを機能させるための情報処理プログラム。 An information processing program for causing a computer to function as the abnormality detection device according to any one of claims 1 to 4, wherein the information processing program causes the computer to function as each of the units.
  7.  請求項6に記載の情報処理プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the information processing program according to claim 6 is recorded.
PCT/JP2019/034520 2018-09-14 2019-09-03 Abnormality detecting device, method for controlling abnormality detecting device, information processing program, and recording medium WO2020054496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172601A JP6954247B2 (en) 2018-09-14 2018-09-14 Anomaly detection device, control method of abnormality detection device, information processing program, and recording medium
JP2018-172601 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054496A1 true WO2020054496A1 (en) 2020-03-19

Family

ID=69777601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034520 WO2020054496A1 (en) 2018-09-14 2019-09-03 Abnormality detecting device, method for controlling abnormality detecting device, information processing program, and recording medium

Country Status (2)

Country Link
JP (1) JP6954247B2 (en)
WO (1) WO2020054496A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113051311A (en) * 2021-03-16 2021-06-29 鱼快创领智能科技(南京)有限公司 Method, system and device for monitoring abnormal change of liquid level of vehicle oil tank
CN115539462A (en) * 2022-12-05 2022-12-30 宁波佳尔灵气动机械有限公司 Cylinder expansion and contraction adjustment control method and system, storage medium and intelligent terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212043A (en) * 1989-02-08 1990-08-23 Makino Milling Mach Co Ltd Method and device for foreseeing accident of machine tool
US5486997A (en) * 1994-08-04 1996-01-23 General Electric Company Predictor algorithm for actuator control
JPH09208147A (en) * 1996-02-02 1997-08-12 Hitachi Building Syst Co Ltd Abnormality diagnosis device for hydraulic elevator
JPH10281113A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Abnormal condition diagnostic device for actuator
JP2004133857A (en) * 2002-10-15 2004-04-30 Denso Corp Device for monitoring operation of actuator
JP2018119679A (en) * 2017-01-23 2018-08-02 株式会社不二越 Abnormality detection device of hydraulic device, hydraulic device, and working mother machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212043A (en) * 1989-02-08 1990-08-23 Makino Milling Mach Co Ltd Method and device for foreseeing accident of machine tool
US5486997A (en) * 1994-08-04 1996-01-23 General Electric Company Predictor algorithm for actuator control
JPH09208147A (en) * 1996-02-02 1997-08-12 Hitachi Building Syst Co Ltd Abnormality diagnosis device for hydraulic elevator
JPH10281113A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Abnormal condition diagnostic device for actuator
JP2004133857A (en) * 2002-10-15 2004-04-30 Denso Corp Device for monitoring operation of actuator
JP2018119679A (en) * 2017-01-23 2018-08-02 株式会社不二越 Abnormality detection device of hydraulic device, hydraulic device, and working mother machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113051311A (en) * 2021-03-16 2021-06-29 鱼快创领智能科技(南京)有限公司 Method, system and device for monitoring abnormal change of liquid level of vehicle oil tank
CN113051311B (en) * 2021-03-16 2023-07-28 鱼快创领智能科技(南京)有限公司 Method, system and device for monitoring abnormal change of liquid level of vehicle oil tank
CN115539462A (en) * 2022-12-05 2022-12-30 宁波佳尔灵气动机械有限公司 Cylinder expansion and contraction adjustment control method and system, storage medium and intelligent terminal
CN115539462B (en) * 2022-12-05 2023-05-09 宁波佳尔灵气动机械有限公司 Cylinder expansion adjustment control method, system, storage medium and intelligent terminal

Also Published As

Publication number Publication date
JP2020045924A (en) 2020-03-26
JP6954247B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6011875B2 (en) Actuator abnormality detection system
WO2020054496A1 (en) Abnormality detecting device, method for controlling abnormality detecting device, information processing program, and recording medium
EP3450774B1 (en) Cylinder operation state monitoring device
JP4707717B2 (en) Diagnostic device for at least one pneumatic valve actuator device
US7987726B2 (en) Method and apparatus for diagnosis of liquid losses in pressure measuring transducers filled with pressure transmitting liquids
CN104942651B (en) The displacement compensation device of lathe
US20210310582A1 (en) Method for determining the degree of wear of a valve, and apparatus for carrying out said method
EP2918851B1 (en) Positioner
KR20100014066A (en) Method for fault localization and diagnosis in a fluidic installation
CN108953730B (en) Apparatus and method for characterizing a fluid control valve
US10480549B2 (en) Cylinder operating condition monitoring device
CN112393015A (en) Method and apparatus for monitoring solenoid valve health
US10533586B2 (en) Cylinder operating condition monitoring device
US20220339798A1 (en) Deterioration determination apparatus, deterioration determination method, and computer-readable storage medium storing a control program
CN109975147B (en) Loss detection method and loss detection system for linear actuator
CN113740051A (en) Diagnostic method for a process valve, diagnostic module and process valve
CN108469803B (en) Maintenance judgment index estimation device, maintenance judgment index estimation method, and flow control device
KR101765859B1 (en) Apparatus for diagnosing efficiency of hydraulic actuator for power plant and method for diagnosing efficiency thereof
CN103780180B (en) Magnetic powder cluth and brake feedback control system and feedback
JP2016118528A (en) Method and device for measuring leakage from elastic body
JPS61228181A (en) Servating of valve&#39;s life and its device
JP2021021457A (en) Information processing unit for abnormality determination, control program and determination method
EP3296603A1 (en) Valve attachment, valve and method for controlling a valve
JP2014207065A (en) Electromagnetic movable device and movable part behavior estimating method
JP2019199897A (en) Fluid leakage detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860559

Country of ref document: EP

Kind code of ref document: A1