WO2020054374A1 - Polyacetal resin composition - Google Patents

Polyacetal resin composition Download PDF

Info

Publication number
WO2020054374A1
WO2020054374A1 PCT/JP2019/033278 JP2019033278W WO2020054374A1 WO 2020054374 A1 WO2020054374 A1 WO 2020054374A1 JP 2019033278 W JP2019033278 W JP 2019033278W WO 2020054374 A1 WO2020054374 A1 WO 2020054374A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
acid
resin composition
polyacetal
mass
Prior art date
Application number
PCT/JP2019/033278
Other languages
French (fr)
Japanese (ja)
Inventor
直裕 喜来
栄次 増田
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201980043804.0A priority Critical patent/CN112469779B/en
Publication of WO2020054374A1 publication Critical patent/WO2020054374A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • C08G2/24Copolymerisation of aldehydes or ketones with acetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals

Definitions

  • the present invention relates to a polyacetal resin composition having excellent heat stability, an extremely small amount of formaldehyde generation, high strength, and excellent long-term heat resistance.
  • Polyacetal resins have excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., and are mainly used as structural materials and mechanical parts for electrical equipment, automobile parts, precision machinery Widely used for parts and the like.
  • required characteristics tend to be increasingly sophisticated, complex, and specialized. As such required characteristics, it is required to further improve the strength and suppress the generation of formaldehyde while maintaining the excellent slidability, appearance and the like inherently possessed by the polyacetal resin.
  • Patent Document 1 Attempts have also been made to increase the strength by blending a branched structure-introduced polyacetal copolymer.
  • Patent Document 1 a cationic polymerization catalyst,
  • a protonic acid is used as a polymerization catalyst, the initiation of polymerization is delayed, and the polymerization may occur suddenly explosively, which has been a problem in terms of production stability.
  • Patent Document 2 a copolymer obtained by copolymerizing trioxane and a compound having two or more glycidyl ether groups in one molecule has been proposed (Patent Document 2).
  • Patent Document 2 a compound having a plurality of epoxy groups represented by a glycidyl ether group and a plurality of ether oxygens as functional groups is used for polymerization, there remains a problem in polymerization stability.
  • a protonic acid is used as a polymerization catalyst, polymerization does not occur at a low catalyst amount, and when the catalyst amount is increased, a phenomenon occurs in which an intense polymerization reaction occurs suddenly after an irregular induction period, which makes polymerization control difficult. ing.
  • An object of the present invention is to provide a polyacetal resin composition which improves strength and long-term heat resistance without impairing heat resistance such as formaldehyde generation during thermal decomposition.
  • 3. 3 The polyacetal resin composition according to 1 or 2, wherein the branched polyacetal copolymer (B) is a polymer using a protonic acid as a polymerization catalyst.
  • the polyacetal resin composition of the present invention comprises a linear polyacetal resin (A), a trioxane (a), a cyclic acetal compound (b) having an oxyalkylene group having 2 or more carbon atoms in a ring, and two epoxy groups in one molecule.
  • a polyacetal resin composition containing a branched polyacetal copolymer (B) obtained by copolymerizing a polyepoxy compound (c) comprising at least one epoxy group and a hydrocarbon other than an epoxy group. is there.
  • the compounding amount of the branched polyacetal copolymer is 0.1 to 100 parts by mass, preferably 0.5 to 100 parts by mass, per 100 parts by mass of the polyacetal resin (A). is there.
  • the linear polyacetal resin (A) which is the base of the resin composition of the present invention, is a polymer compound having oxymethylene units (—CH 2 O—) as main constituent units, and a polyacetal homopolymer (for example, DuPont, USA) Polyacetal copolymer containing other comonomer units in addition to the oxymethylene group (for example, product name “Duracon” manufactured by Polyplastics Co., Ltd.).
  • the comonomer unit includes an oxyalkylene unit having about 2 to 6 carbon atoms (preferably, about 2 to 4 carbon atoms) (eg, an oxyethylene group (—CH 2 CH 2 O—), an oxypropylene group, A tetramethylene group, etc.).
  • the content of the comonomer unit is an amount that does not significantly impair the crystallinity of the resin, for example, generally 0.01 to 20 mol%, preferably, as a proportion of the constituent units of the polyacetal polymer, It can be selected from the range of about 0.03 to 10 mol%, more preferably about 0.1 to 7 mol%.
  • the polyacetal copolymer may be a two-component copolymer, a three-component terpolymer, or the like.
  • the polyacetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like.
  • a polyacetal copolymer is particularly preferred in view of its thermal stability and the like. Further, the effect of improving the strength by blending the branched polyacetal copolymer (B) is more remarkable when the linear polyacetal resin serving as the base is a polyacetal copolymer.
  • the branched polyacetal copolymer of the present invention comprises a trioxane (a), a cyclic acetal compound (b) having an oxyalkylene group having 2 or more carbon atoms in a ring and an epoxy group having two or more epoxy groups in one molecule.
  • the trioxane used in the present invention is a cyclic trimer of formaldehyde, which is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst, and is used after being purified by a method such as distillation. .
  • the cyclic acetal compound having an oxyethylene group having 2 or more carbon atoms in the ring of the present invention is a compound generally used as a comonomer in the production of a polyacetal copolymer, specifically, 1,3-dioxolane, 1,3,6-trioxocan, 1,4-butanediol formal and the like can be mentioned.
  • the component (b) is preferably used in an amount of 0.01 to 20 parts by mass, more preferably 0.05 to 5 parts by mass, per 100 parts by mass of trioxane. .
  • ⁇ (C) a polyepoxy compound having two or more epoxy groups in one molecule and a hydrocarbon other than the epoxy group being composed of a hydrocarbon ⁇
  • the component (c) used in the present invention is characterized in that it is a polyepoxy compound having two or more epoxy groups in one molecule and comprising a hydrocarbon other than the epoxy group.
  • an epoxy group is introduced into a molecule, it is often introduced in the structure of a glycidyl ether group using epichlorohydrin as a raw material, but the epoxy group of the present invention is characterized by having an epoxy group not derived from a glycidyl ether group.
  • the glycidyl ether group of the present invention refers to a group having the following structure. * Represents a binding site to another structure.
  • 1,3-butadiene diepoxide (C-5 below), 1,4-pentadiene diepoxide, 1,5-hexadiene diepoxide (C-4 below), 1,6-peptadiene diepoxide, 1,7-octadiene diepoxide (C-3 below), 1,8-nonadiene diepoxide, 1,9-decadiene diepoxide (C-2 below), 1,10-undecadiene diepoxide, 1, And 11-dodecadiepoxide (C-1 shown below).
  • P represents an integer of 0 to 20.
  • n an integer of 0 to 10
  • m and n each represent an integer of 1 to 10.
  • the component (c) is preferably used in an amount of 0.01 to 5 parts by mass, more preferably 0.03 to 1 part by mass, per 100 parts by mass of trioxane. .
  • the method for polymerizing a branched polyacetal copolymer of the present invention comprises a trioxane, a cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in a ring and a hydrocarbon other than the epoxy group having two or more epoxy groups in one molecule. And a polyepoxy compound of the formula (I) in the presence of a cationic polymerization catalyst.
  • ⁇ Cation polymerization catalyst As the cationic polymerization catalyst, a known polymerization catalyst in cation copolymerization using trioxane as a main monomer can be used. Typically, Lewis acids and proton acids are mentioned. Particularly, a protonic acid is preferable.
  • protic acid examples include perfluoroalkanesulfonic acid, heteropoly acid, isopoly acid and the like.
  • perfluoroalkanesulfonic acids include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, and pentadecafluoro Heptanesulfonic acid and heptadecafluorooctanesulfonic acid are exemplified.
  • Heteropolyacid refers to a polyacid formed by the dehydration and condensation of different types of oxyacids.A specific heterogeneous element is present at the center, and a mononuclear or polynuclear is formed by condensing a condensed acid group by sharing an oxygen atom. Has complex ions.
  • the isopolyacid is also referred to as an isopolyacid, a homonuclear condensed acid, or a homopolycondensate, and refers to a high molecular weight inorganic oxyacid composed of a condensate of an inorganic oxyacid having a single metal of V or VI. .
  • the heteropolyacid examples include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdung tungstovanadic acid, phosphorus tungstovanadic acid, silicotungstic acid, silicomolybdic acid, and silicomolybdenum. Tungstic acid, silicate molybdenum tovanadic acid, and the like.
  • the heteropolyacid is preferably selected from silicomolybdic acid, silicotungstic acid, phosphomolybdic acid, and phosphotungstic acid.
  • isopolyacids include isopolytungstic acid exemplified by paratungstic acid, metatungstic acid, etc., isopolymolybdic acid exemplified by paramolybdic acid, metamolybdic acid, etc., metapolyvanadic acid, and isopolyvanadic acid. And the like. Among them, isopolytungstic acid is preferred from the viewpoint of polymerization activity.
  • Lewis acid examples include halides of boron, tin, titanium, phosphorus, arsenic and antimony, and specifically, boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride , Antimony pentafluoride and its complex compounds or salts.
  • the amount of the polymerization catalyst is not particularly limited, but is preferably 0.1 ppm or more and 50 ppm or less, more preferably 0.1 ppm or more and 30 ppm or less based on the total of all monomers. Especially preferably, it is 0.1 ppm or more and 10 ppm or less. (Hereinafter, all ppm in units are based on mass.)
  • the amount of the terminal group can be adjusted by using a component for adjusting the molecular weight in addition to the above components.
  • a component for adjusting the molecular weight include a chain transfer agent that does not form an unstable terminal, that is, a compound having an alkoxy group such as methylal, monomethoxymethylal, and dimethoxymethylal.
  • the polymerization method of the polyacetal copolymer of the present invention is not particularly limited.
  • the polymerization apparatus is not particularly limited, and a known apparatus is used, and any method such as a batch method and a continuous method can be used.
  • the polymerization temperature is preferably maintained at 65 ° C or more and 135 ° C or less.
  • the cationic polymerization catalyst is preferably used after being diluted with an inert solvent which does not affect the polymerization.
  • Deactivation of the polymerization catalyst after the polymerization can be carried out by a conventionally known method.
  • the reaction can be carried out by adding a basic compound or an aqueous solution thereof to a reaction product discharged from the polymerization machine or a reaction product in the polymerization machine.
  • the basic compound for neutralizing and deactivating the polymerization catalyst is not particularly limited. After polymerization and deactivation, if necessary, washing, separation and recovery of unreacted monomers, drying, etc. are performed by a conventionally known method.
  • the weight average molecular weight of the polyacetal copolymer obtained as described above is preferably 10,000 to 500,000 (in terms of polymethyl methacrylate by GPC), and particularly preferably 20,000 to 150,000.
  • the amount of hemiformal detected by 1 H-NMR is preferably from 0 to 4 mol / kg, particularly preferably from 0 to 2 mmol / kg. kg.
  • impurities, particularly water, in the total amount of monomers and comonomer to be subjected to polymerization be 20 ppm or less, particularly preferably 10 ppm or less.
  • the stabilizer used herein include one or more of a hindered phenol compound, a nitrogen-containing compound, an alkali or alkaline earth metal hydroxide, an inorganic salt, and a carboxylate. it can.
  • general additives for thermoplastic resins for example, dyes, coloring agents such as pigments, lubricants, nucleating agents, release agents, antistatic agents, surfactants, Alternatively, one or more kinds of organic polymer materials, inorganic or organic fibrous, powdery, and plate-like fillers can be added.
  • Linear polyacetal resin (A)> The linear polyacetal resin was prepared as follows. A mixture of 96.7% by mass of trioxane (TOX), 3.3% by mass of 1,3-dioxolane (DO) and 800 ppm of methylal was continuously supplied to a twin-screw paddle type continuous polymerization machine, and trifluoride was used as a catalyst. Polymerization was carried out by adding 20 ppm of boron. The polymer discharged from the discharge port of the polymerization machine was immediately added with an aqueous solution containing 1000 ppm of triethylamine, pulverized and stirred to deactivate the catalyst, and then centrifuged and dried to obtain a linear polyacetal copolymer. A coalescence was obtained.
  • TOX trioxane
  • DO 1,3-dioxolane
  • methylal 800 ppm
  • Polymerization was carried out by adding 20 ppm of boron. The polymer discharged from the discharge port of the polymer
  • Branched polyacetal copolymer (B)> The branched polyacetal copolymer was prepared as follows. 300 g of trioxane (a) is placed in a closed autoclave having a jacket through which a heat medium can pass and a stirring blade, and 1,3-dioxolane (DO) or 1,4-butanediol formal (BDF) is further added as a component (b). ) was added as a component (c) in the proportions shown in Table 1 in parts by mass of the compounds shown in Table 1. After stirring these contents and keeping the internal temperature at about 80 ° C. by passing warm water of 80 ° C.
  • DO 1,3-dioxolane
  • BDF 1,4-butanediol formal
  • the catalyst solution (phosphotungstic acid solution of methyl formate, trifluoromethanesulfonic acid solution of cyclohexane) is shown in Table 1. Polymerization was started by adding the catalyst to the indicated catalyst concentration (relative to all monomers).
  • a polyacetal copolymer obtained by using the following diglycidyl compound X-1 (butanediol diglycidyl ether: one having two glycidyl ether groups) in place of the component (c) of the present invention was polymerized, and a comparative branched polyacetal copolymer was used. A polymer was obtained.
  • Examples and Comparative Examples> The various components shown in Table 1 were added and mixed at the ratio shown in Table 1, and were melt-kneaded with a vented twin-screw extruder to prepare a pellet-shaped composition.
  • ethylene bis (oxyethylene) bis [3- (5-tert-butyl- 4-hydroxy-m-tolyl) propionate] product name: Irganox 245, manufactured by BASF 0.35 parts by mass and melamine 0.08 parts by mass were added.
  • Table 1 shows that the present invention is excellent in physical properties such as strength and heat aging resistance (long-term heat resistance), and also excellent in suppressing formaldehyde generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a polyacetal resin composition which exhibits improved strength and long term heat resistance without compromising heat resistance quality such as the amount of formaldehyde generated upon thermal decomposition. The present invention achieves the foregoing by means of a polyacetal resin composition obtained by mixing 100 parts by mass of a linear polyacetal resin (A) with 0.1-100 parts by mass of a branched polyacetal copolymer (B) obtained by copolymerizing: trioxane (a); a cyclic acetal compound (b) having an oxyalkylene group having two or more carbon atoms in the ring; and a polyepoxy compound (c) which has two or more epoxy groups per molecule and which comprises a hydrocarbon other than the epoxy groups.

Description

ポリアセタール樹脂組成物Polyacetal resin composition
 本発明は、熱安定性に優れホルムアルデヒドの発生量が極めて少なく、強度が高く、長期耐熱性に優れたポリアセタール樹脂組成物に関する。 (4) The present invention relates to a polyacetal resin composition having excellent heat stability, an extremely small amount of formaldehyde generation, high strength, and excellent long-term heat resistance.
 ポリアセタール樹脂は、機械的特性、熱的特性、電気的特性、摺動性、成形性等において、優れた特性を持っており、主に構造材料や機構部品等として電気機器、自動車部品、精密機械部品等に広く使用されている。しかし、ポリアセタール樹脂が利用される分野の拡大に伴い、要求特性は益々高度化、複合化、特殊化する傾向にある。そのような要求特性として、ポリアセタール樹脂が本来有する優れた摺動性、外観等を維持したまま、強度向上、ホルムアルデヒドの発生抑制に対し一層の向上が要求される。 Polyacetal resins have excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., and are mainly used as structural materials and mechanical parts for electrical equipment, automobile parts, precision machinery Widely used for parts and the like. However, with the expansion of the field in which polyacetal resin is used, required characteristics tend to be increasingly sophisticated, complex, and specialized. As such required characteristics, it is required to further improve the strength and suppress the generation of formaldehyde while maintaining the excellent slidability, appearance and the like inherently possessed by the polyacetal resin.
 これに対し、単に強度を向上させるだけの目的であれば、ポリアセタール樹脂に繊維状フィラー等を充填する方法が一般的であるが、この方法では、繊維状フィラー等の充填による成形品の外観不良や摺動特性の低下等の問題、更には靱性低下の問題がある。 In contrast, for the purpose of simply improving the strength, a method of filling a polyacetal resin with a fibrous filler or the like is generally used. And the sliding characteristics are reduced, and the toughness is reduced.
 また、ポリアセタール共重合体では、コモノマー量を減少させることにより、摺動性や外観を実質的に損なうことなく強度を向上させることが知られているが、コモノマー減量の手法においては、靱性が低下するのみならずポリマーの熱安定性も低下する等の問題が生じ、必ずしも要求に応え得るものではなかった。 In addition, it is known that in a polyacetal copolymer, by reducing the amount of comonomer, the strength is improved without substantially impairing the slidability and appearance, but in the method of reducing the comonomer, the toughness is reduced. In addition to this, problems such as a decrease in the thermal stability of the polymer have arisen, and the requirements have not always been met.
 分岐構造導入したポリアセタール共重合体を配合した強度向上も試みられているが(特許文献1)、分岐構造を導入したポリアセタール共重合体の重合の際に、コモノマーの種類によっては、カチオン重合触媒、特にプロトン酸を重合触媒とする場合に、重合開始が遅れ、突然爆発的に重合が起こってしまうことがあり、生産安定性の面からも課題があった。 Attempts have also been made to increase the strength by blending a branched structure-introduced polyacetal copolymer (Patent Document 1). However, when polymerizing a branched structure-introduced polyacetal copolymer, a cationic polymerization catalyst, In particular, when a protonic acid is used as a polymerization catalyst, the initiation of polymerization is delayed, and the polymerization may occur suddenly explosively, which has been a problem in terms of production stability.
 例えば、ポリアセタール共重合体に関して、トリオキサンと、1分子中にグリシジルエーテル基を2個以上有する化合物とを共重合させた共重合体が提案されている(特許文献2)。しかし、グリシジルエーテル基に代表されるエポキシ基とエーテル酸素を官能基として複数個有する化合物を重合に使用する場合、重合安定性に課題が残っている。特にプロトン酸を重合触媒に使用した場合、低触媒量では重合が起こらず、触媒量を上げると、不定期な誘導期ののち、突然激しい重合反応が起こる現象が発生し、重合制御を難しくしている。 For example, as a polyacetal copolymer, a copolymer obtained by copolymerizing trioxane and a compound having two or more glycidyl ether groups in one molecule has been proposed (Patent Document 2). However, when a compound having a plurality of epoxy groups represented by a glycidyl ether group and a plurality of ether oxygens as functional groups is used for polymerization, there remains a problem in polymerization stability. In particular, when a protonic acid is used as a polymerization catalyst, polymerization does not occur at a low catalyst amount, and when the catalyst amount is increased, a phenomenon occurs in which an intense polymerization reaction occurs suddenly after an irregular induction period, which makes polymerization control difficult. ing.
特公昭55-019942号公報Japanese Patent Publication No. 55-019942 特開2001-163944号公報JP 2001-163944 A
 本発明の目的は、加熱分解時のホルムアルデヒド発生量等の耐熱品質を損なうことなく、強度、長期耐熱性のレベルを改善するポリアセタール樹脂組成物を提供することにある。 目的 An object of the present invention is to provide a polyacetal resin composition which improves strength and long-term heat resistance without impairing heat resistance such as formaldehyde generation during thermal decomposition.
 本発明は下記によって達成された。
1. 線状ポリアセタール樹脂(A)100質量部に対して
トリオキサン(a)、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(b)、1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物(c)を共重合して得られる分岐ポリアセタール共重合体)(B)を0.1~100質量部を混合して得られるポリアセタール樹脂組成物。
2. 前記ポリエポキシ化合物(c)が下記式で表されるポリエポキシ化合物である前記1記載のポリアセタール樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
Pは0~20の整数を表す。
3. 分岐ポリアセタール共重合体(B)がプロトン酸を重合触媒とした重合体である前記1または2に記載のポリアセタール樹脂組成物。
The present invention has been achieved by the following.
1. Trioxane (a), cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in the ring (b) based on 100 parts by mass of linear polyacetal resin (A), and two or more epoxy groups in one molecule A polyacetal resin composition obtained by mixing 0.1 to 100 parts by mass of a branched polyacetal copolymer (B) obtained by copolymerizing a polyepoxy compound (c) comprising a hydrocarbon other than an epoxy group.
2. 2. The polyacetal resin composition according to the above 1, wherein the polyepoxy compound (c) is a polyepoxy compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
P represents an integer of 0 to 20.
3. 3. The polyacetal resin composition according to 1 or 2, wherein the branched polyacetal copolymer (B) is a polymer using a protonic acid as a polymerization catalyst.
 本発明によれば、加熱分解時のホルムアルデヒド発生量等の耐熱品質を損なうことなく、強度、長期耐熱性のレベルを改善するポリアセタール樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a polyacetal resin composition having improved strength and long-term heat resistance without impairing heat resistance such as formaldehyde generation during thermal decomposition.
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments at all, and may be implemented with appropriate changes within the scope of the present invention. can do.
<ポリアセタール樹脂組成物>
 本発明のポリアセタール樹脂組成物は、線状ポリアセタール樹脂(A)とトリオキサン(a)、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(b)及び1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物(c)を共重合して得られる分岐ポリアセタール共重合体(B)とを含有するポリアセタール樹脂組成物である事を特徴とするものである。
 本発明の樹脂組成物において、かかる分岐ポリアセタール共重合体の配合量は、ポリアセタール樹脂(A)100質量部に対し、0.1~100質量部であり、好ましくは0.5~100質量部である。
<Polyacetal resin composition>
The polyacetal resin composition of the present invention comprises a linear polyacetal resin (A), a trioxane (a), a cyclic acetal compound (b) having an oxyalkylene group having 2 or more carbon atoms in a ring, and two epoxy groups in one molecule. A polyacetal resin composition containing a branched polyacetal copolymer (B) obtained by copolymerizing a polyepoxy compound (c) comprising at least one epoxy group and a hydrocarbon other than an epoxy group. is there.
In the resin composition of the present invention, the compounding amount of the branched polyacetal copolymer is 0.1 to 100 parts by mass, preferably 0.5 to 100 parts by mass, per 100 parts by mass of the polyacetal resin (A). is there.
<(A)線状ポリアセタール樹脂>
 以下、本発明のポリアセタール樹脂組成物の構成について詳細に説明する。
 本発明の樹脂組成物の基体である線状ポリアセタール樹脂(A)とは、オキシメチレン単位(-CHO-)を主たる構成単位とする高分子化合物であり、ポリアセタールホモポリマー(例えば米国デュポン社製、商品名「デルリン」等)、オキシメチレン基以外に他のコモノマー単位を含有するポリアセタールコポリマー(例えば、ポリプラスチックス(株)社製、商品名「ジュラコン」等)が含まれる。
<(A) Linear polyacetal resin>
Hereinafter, the configuration of the polyacetal resin composition of the present invention will be described in detail.
The linear polyacetal resin (A), which is the base of the resin composition of the present invention, is a polymer compound having oxymethylene units (—CH 2 O—) as main constituent units, and a polyacetal homopolymer (for example, DuPont, USA) Polyacetal copolymer containing other comonomer units in addition to the oxymethylene group (for example, product name “Duracon” manufactured by Polyplastics Co., Ltd.).
 ポリアセタールコポリマーにおいて、コモノマー単位には炭素数2~6程度(好ましくは、炭素数2~4程度)のオキシアルキレン単位(例えば、オキシエチレン基(-CHCHO-)、オキシプロピレン基、オキシテトラメチレン基等)が含まれる。
 また、コモノマー単位の含有量は、樹脂の結晶性を大幅に損なわない程度の量、例えば、ポリアセタール重合体の構成単位に占める割合として、一般的には0.01~20モル%、好ましくは、0.03~10モル%、更に好ましくは、0.1~7モル%程度の範囲から選択できる。
In the polyacetal copolymer, the comonomer unit includes an oxyalkylene unit having about 2 to 6 carbon atoms (preferably, about 2 to 4 carbon atoms) (eg, an oxyethylene group (—CH 2 CH 2 O—), an oxypropylene group, A tetramethylene group, etc.).
Further, the content of the comonomer unit is an amount that does not significantly impair the crystallinity of the resin, for example, generally 0.01 to 20 mol%, preferably, as a proportion of the constituent units of the polyacetal polymer, It can be selected from the range of about 0.03 to 10 mol%, more preferably about 0.1 to 7 mol%.
 ポリアセタールコポリマーは、二成分で構成されたコポリマー、三成分で構成されたターポリマー等であってよい。ポリアセタールコポリマーは、ランダムコポリマーの他、ブロックコポリマー、グラフトコポリマー等であってよい。
 本発明において配合するポリアセタール樹脂(A)としては、その熱安定性等の点で特にポリアセタールコポリマーが好ましい。また分岐ポリアセタール共重合体(B)の配合による強度改善効果も、基体となる線状ポリアセタール樹脂がポリアセタールコポリマーである場合、より顕著である。
The polyacetal copolymer may be a two-component copolymer, a three-component terpolymer, or the like. The polyacetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like.
As the polyacetal resin (A) to be blended in the present invention, a polyacetal copolymer is particularly preferred in view of its thermal stability and the like. Further, the effect of improving the strength by blending the branched polyacetal copolymer (B) is more remarkable when the linear polyacetal resin serving as the base is a polyacetal copolymer.
<(B)分岐ポリアセタール共重合体>
 本発明の分岐ポリアセタール共重合体は、トリオキサン(a)、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(b)および1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物(c)とを共重合し、分岐構造を形成させたポリアセタール共重合体である。
<(B) Branched polyacetal copolymer>
The branched polyacetal copolymer of the present invention comprises a trioxane (a), a cyclic acetal compound (b) having an oxyalkylene group having 2 or more carbon atoms in a ring and an epoxy group having two or more epoxy groups in one molecule. Is a polyacetal copolymer in which a branched structure is formed by copolymerizing a hydrocarbon polyepoxy compound (c).
 ≪(a)トリオキサン≫
 本発明において用いられるトリオキサンとは、ホルムアルデヒドの環状三量体であり、一般的には酸性触媒の存在下でホルムアルデヒド水溶液を反応させることによって得られ、これを蒸留等の方法で精製して用いられる。
{(A) Trioxane}
The trioxane used in the present invention is a cyclic trimer of formaldehyde, which is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst, and is used after being purified by a method such as distillation. .
 ≪(b)炭素数2以上のオキシエチレン基を環内に有する環状アセタール化合物≫
 本発明の炭素数2以上のオキシエチレン基を環内に有する環状アセタール化合物とは、ポリアセタール共重合体の製造においてコモノマーとして一般に使用される化合物である、具体的には、1,3-ジオキソラン、1,3,6-トリオキソカン、1,4-ブタンジオールホルマール等が挙げられる。
 本発明において、(b)成分は、トリオキサン100質量部に対して0.01~20質量部の範囲となるように使用するのが好ましく、さらに好ましくは0.05~5質量部の範囲である。
{(B) Cyclic acetal compound having an oxyethylene group having 2 or more carbon atoms in the ring}
The cyclic acetal compound having an oxyethylene group having 2 or more carbon atoms in the ring of the present invention is a compound generally used as a comonomer in the production of a polyacetal copolymer, specifically, 1,3-dioxolane, 1,3,6-trioxocan, 1,4-butanediol formal and the like can be mentioned.
In the present invention, the component (b) is preferably used in an amount of 0.01 to 20 parts by mass, more preferably 0.05 to 5 parts by mass, per 100 parts by mass of trioxane. .
 ≪(c)1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物≫
 本発明で使用する(c)成分は、1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物であることを特徴とする。
 一般に分子内にエポキシ基を導入する場合、エピクロルヒドリンを原材料としたグリシジルエーテル基の構造で導入されることが多いが、本発明のエポキシ基は、グリシジルエーテル基由来ではないエポキシ基を有することを特徴とする。
{(C) a polyepoxy compound having two or more epoxy groups in one molecule and a hydrocarbon other than the epoxy group being composed of a hydrocarbon}
The component (c) used in the present invention is characterized in that it is a polyepoxy compound having two or more epoxy groups in one molecule and comprising a hydrocarbon other than the epoxy group.
Generally, when an epoxy group is introduced into a molecule, it is often introduced in the structure of a glycidyl ether group using epichlorohydrin as a raw material, but the epoxy group of the present invention is characterized by having an epoxy group not derived from a glycidyl ether group. And
 本発明のグリシジルエーテル基とは、下記の構造の基をいう。*は他の構造との結合部位を表す。 グ リ The glycidyl ether group of the present invention refers to a group having the following structure. * Represents a binding site to another structure.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ジグリシジルエーテル基のみに由来のエポキシ基を有するエポキシ化合物をコモノマーとすることが周知技術として知られているが、本発明では、グリシジルエーテル基が存在しない方が、組成物のホルムアルデヒド発生量を抑制しつつ強度が改善されることを見出したものである。  It is well known in the art that an epoxy compound having an epoxy group derived only from a diglycidyl ether group is used as a comonomer. In the present invention, the absence of a glycidyl ether group suppresses the amount of formaldehyde generated in the composition. It has been found that the strength is improved while performing.
 具体的には、1,3-ブタジエンジエポキシド(下記C-5)、1,4-ペンタジエンジエポキシド、1,5-ヘキサジエンジエポキシド(下記C-4)、1,6-ペプタジエンジエポキシド、1,7-オクタジエンジエポキシド(下記C-3)、1,8-ノナジエンジエポキシド、1,9-デカジエンジエポキシド(下記C-2)、1,10-ウンデカジエンジエポキシド、1,11-ドデカジエポキシド(下記C-1)等を挙げることができる。 Specifically, 1,3-butadiene diepoxide (C-5 below), 1,4-pentadiene diepoxide, 1,5-hexadiene diepoxide (C-4 below), 1,6-peptadiene diepoxide, 1,7-octadiene diepoxide (C-3 below), 1,8-nonadiene diepoxide, 1,9-decadiene diepoxide (C-2 below), 1,10-undecadiene diepoxide, 1, And 11-dodecadiepoxide (C-1 shown below).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 好ましくは、下記一般式1,2で表されるエポキシ化合物である。
Figure JPOXMLDOC01-appb-C000005
Pは、0~20の整数を表す。
Preferred are epoxy compounds represented by the following general formulas 1 and 2.
Figure JPOXMLDOC01-appb-C000005
P represents an integer of 0 to 20.
Figure JPOXMLDOC01-appb-C000006
nは,0~10の整数、m、nは、それぞれ1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000006
n represents an integer of 0 to 10, and m and n each represent an integer of 1 to 10.
 本発明において、(c)成分は、トリオキサン100質量部に対して0.01~5質量部の範囲となるように使用するのが好ましく、さらに好ましくは0.03~1質量部の範囲である。 In the present invention, the component (c) is preferably used in an amount of 0.01 to 5 parts by mass, more preferably 0.03 to 1 part by mass, per 100 parts by mass of trioxane. .
<分岐ポリアセタール共重合体の重合方法>
 本発明の分岐ポリアセタール共重合体の重合方法は、トリオキサン、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物および1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物とを、カチオン重合触媒の存在下、共重合させることを特徴とする。
<Method of polymerizing branched polyacetal copolymer>
The method for polymerizing a branched polyacetal copolymer of the present invention comprises a trioxane, a cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in a ring and a hydrocarbon other than the epoxy group having two or more epoxy groups in one molecule. And a polyepoxy compound of the formula (I) in the presence of a cationic polymerization catalyst.
<カチオン重合触媒>
 カチオン重合触媒としては、トリオキサンを主モノマーとするカチオン共重合において公知の重合触媒が使用できる。代表的には、ルイス酸、プロトン酸が挙げられる。特に、プロトン酸であることが好ましい。
<Cation polymerization catalyst>
As the cationic polymerization catalyst, a known polymerization catalyst in cation copolymerization using trioxane as a main monomer can be used. Typically, Lewis acids and proton acids are mentioned. Particularly, a protonic acid is preferable.
 ≪プロトン酸≫
 プロトン酸としては、パーフルオロアルカンスルホン酸、ヘテロポリ酸、イソポリ酸等が挙げられる。パーフルオロアルカンスルホン酸の具体例として、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸、ペンタデカフルオロへプタンスルホン酸、ヘプタデカフルオロオクタンスルホン酸が挙げられる。
≪Protonic acid≫
Examples of the protic acid include perfluoroalkanesulfonic acid, heteropoly acid, isopoly acid and the like. Specific examples of perfluoroalkanesulfonic acids include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, and pentadecafluoro Heptanesulfonic acid and heptadecafluorooctanesulfonic acid are exemplified.
 ヘテロポリ酸とは、異種の酸素酸が脱水縮合して生成するポリ酸をいい、中心に特定の異種元素が存在し、酸素原子を共有して縮合酸基が縮合してできる単核又は複核の錯イオンを有する。イソポリ酸とは、イソ多重酸、同核縮合酸、同種多重酸とも称され、V価又はVI価の単一種類の金属を有する無機酸素酸の縮合体から成る高分子量の無機酸素酸をいう。 Heteropolyacid refers to a polyacid formed by the dehydration and condensation of different types of oxyacids.A specific heterogeneous element is present at the center, and a mononuclear or polynuclear is formed by condensing a condensed acid group by sharing an oxygen atom. Has complex ions. The isopolyacid is also referred to as an isopolyacid, a homonuclear condensed acid, or a homopolycondensate, and refers to a high molecular weight inorganic oxyacid composed of a condensate of an inorganic oxyacid having a single metal of V or VI. .
 ヘテロポリ酸の具体例として、リンモリブデン酸、リンタングステン酸、リンモリブドタングステン酸、リンモリブドバナジン酸、リンモリブドタングストバナジン酸、リンタングストバナジン酸、ケイタングステン酸、ケイモリブデン酸、ケイモリブドタングステン酸、ケイモリブドタングステントバナジン酸等が挙げられる。特に、重合活性の観点から、ヘテロポリ酸は、ケイモリブデン酸、ケイタングステン酸、リンモリブデン酸、リンタングステン酸から選択されることが好ましい。 Specific examples of the heteropolyacid include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdung tungstovanadic acid, phosphorus tungstovanadic acid, silicotungstic acid, silicomolybdic acid, and silicomolybdenum. Tungstic acid, silicate molybdenum tovanadic acid, and the like. Particularly, from the viewpoint of polymerization activity, the heteropolyacid is preferably selected from silicomolybdic acid, silicotungstic acid, phosphomolybdic acid, and phosphotungstic acid.
 イソポリ酸の具体例として、パラタングステン酸、メタタングステン酸等に例示されるイソポリタングステン酸、パラモリブデン酸、メタモリブデン酸等に例示されるイソポリモリブデン酸、メタポリバナジウム酸、イソポリバナジウム酸等が挙げられる。中でも、重合活性の観点から、イソポリタングステン酸であることが好ましい。 Specific examples of isopolyacids include isopolytungstic acid exemplified by paratungstic acid, metatungstic acid, etc., isopolymolybdic acid exemplified by paramolybdic acid, metamolybdic acid, etc., metapolyvanadic acid, and isopolyvanadic acid. And the like. Among them, isopolytungstic acid is preferred from the viewpoint of polymerization activity.
 ≪ルイス酸≫
 ルイス酸としては、例えば、ホウ素、スズ、チタン、リン、ヒ素及びアンチモンのハロゲン化物が挙げられ、具体的には三フッ化ホウ素、四塩化スズ、四塩化チタン、五フッ化リン、五塩化リン、五フッ化アンチモン及びその錯化合物又は塩が挙げられる。
≪Lewis acid≫
Examples of the Lewis acid include halides of boron, tin, titanium, phosphorus, arsenic and antimony, and specifically, boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride , Antimony pentafluoride and its complex compounds or salts.
 重合触媒の量は特に限定されるものでないが、全モノマーの合計に対して0.1ppm以上50ppm以下であることが好ましく、0.1ppm以上30ppm以下であることがより好ましい。特に好ましくは0.1ppm以上10ppm以下である。(以下、単位のppmはすべて質量基準である。) 量 The amount of the polymerization catalyst is not particularly limited, but is preferably 0.1 ppm or more and 50 ppm or less, more preferably 0.1 ppm or more and 30 ppm or less based on the total of all monomers. Especially preferably, it is 0.1 ppm or more and 10 ppm or less. (Hereinafter, all ppm in units are based on mass.)
 本発明のポリアセタール共重合体の製造においては、上記成分の他に分子量を調整する成分を併用し、末端基量を調整することができる。分子量を調整する成分としては、不安定末端を形成することのない連鎖移動剤、即ち、メチラール、モノメトキシメチラール、ジメトキシメチラール等のアルコキシ基を有する化合物が例示される。 In the production of the polyacetal copolymer of the present invention, the amount of the terminal group can be adjusted by using a component for adjusting the molecular weight in addition to the above components. Examples of the component for adjusting the molecular weight include a chain transfer agent that does not form an unstable terminal, that is, a compound having an alkoxy group such as methylal, monomethoxymethylal, and dimethoxymethylal.
 本発明のポリアセタール共重合体の重合方法は、特に限定されるものではない。製造するにあたり、重合装置も特に限定されるものではなく、公知の装置が使用され、バッチ式、連続式等、いずれの方法も可能である。また、重合温度は65℃以上135℃以下に保つことが好ましい。
 カチオン重合触媒は、重合に影響のない不活性な溶剤で希釈して使用することが好ましい。
The polymerization method of the polyacetal copolymer of the present invention is not particularly limited. In the production, the polymerization apparatus is not particularly limited, and a known apparatus is used, and any method such as a batch method and a continuous method can be used. Further, the polymerization temperature is preferably maintained at 65 ° C or more and 135 ° C or less.
The cationic polymerization catalyst is preferably used after being diluted with an inert solvent which does not affect the polymerization.
 重合後の重合触媒の失活は従来公知の方法で行うことができる。例えば、重合反応後、重合機より排出される生成反応物、重合機中の反応生成物に塩基性化合物又はその水溶液等を加えて行うこともできる。
 重合触媒を中和し失活するための塩基性化合物は、特に限定されるものでない。重合及び失活の後、必要に応じて更に、洗浄、未反応モノマーの分離回収、乾燥等を従来公知の方法にて行う。
Deactivation of the polymerization catalyst after the polymerization can be carried out by a conventionally known method. For example, after the polymerization reaction, the reaction can be carried out by adding a basic compound or an aqueous solution thereof to a reaction product discharged from the polymerization machine or a reaction product in the polymerization machine.
The basic compound for neutralizing and deactivating the polymerization catalyst is not particularly limited. After polymerization and deactivation, if necessary, washing, separation and recovery of unreacted monomers, drying, etc. are performed by a conventionally known method.
 上記のようにして得られるポリアセタール共重合体は、その重量平均分子量が10000~500000(GPCによるポリメタクリル酸メチル換算)であることが好ましく、特に好ましくは20000~150000である。また、末端基については、1H-NMRにより検出されるヘミホルマール量(例えば、特開2001-11143公報記載の方法による)が0~4mol/kgであることが好ましく、特に好ましくは0~2mmol/kgである。 The weight average molecular weight of the polyacetal copolymer obtained as described above is preferably 10,000 to 500,000 (in terms of polymethyl methacrylate by GPC), and particularly preferably 20,000 to 150,000. As for the terminal group, the amount of hemiformal detected by 1 H-NMR (for example, according to the method described in JP-A-2001-11143) is preferably from 0 to 4 mol / kg, particularly preferably from 0 to 2 mmol / kg. kg.
 ヘミホルマール末端基量を上記範囲に制御するためには、重合に供するモノマー、コモノマー総量中の不純物、特に水分を20ppm以下にするのが好ましく、特に好ましくは10ppm以下である。 In order to control the amount of the hemiformal terminal group within the above range, it is preferable that impurities, particularly water, in the total amount of monomers and comonomer to be subjected to polymerization be 20 ppm or less, particularly preferably 10 ppm or less.
<その他成分>
 上記の如き本発明の樹脂組成物には、必要に応じて選択される各種安定剤を配合するのが好ましい。ここで用いられる安定剤としては、ヒンダードフェノール系化合物、窒素含有化合物、アルカリ或いはアルカリ土類金属の水酸化物、無機塩、カルボン酸塩等のいずれか1種または2種以上を挙げることができる。更に、本発明を阻害しない限り、必要に応じて、熱可塑性樹脂に対する一般的な添加剤、例えば染料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤、或いは、有機高分子材料、無機または有機の繊維状、粉体状、板状の充填剤等を1種または2種以上添加することができる。
<Other components>
It is preferable to mix various stabilizers selected as necessary in the resin composition of the present invention as described above. Examples of the stabilizer used herein include one or more of a hindered phenol compound, a nitrogen-containing compound, an alkali or alkaline earth metal hydroxide, an inorganic salt, and a carboxylate. it can. Furthermore, as long as the present invention is not impaired, if necessary, general additives for thermoplastic resins, for example, dyes, coloring agents such as pigments, lubricants, nucleating agents, release agents, antistatic agents, surfactants, Alternatively, one or more kinds of organic polymer materials, inorganic or organic fibrous, powdery, and plate-like fillers can be added.
 以下、実施例により本発明を具体的に説明するが、本発明がこれらに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
 実施例および比較例で使用した線状ポリアセタール樹脂および分岐ポリアセタール共重合体は以下の通りである。 線 The linear polyacetal resin and the branched polyacetal copolymer used in Examples and Comparative Examples are as follows.
<線状ポリアセタール樹脂(A)>
 線状ポリアセタール樹脂は、次のようにして調製した。
 二軸パドルタイプの連続式重合機にトリオキサン(TOX)96.7質量%と1,3-ジオキソラン(DO)3.3質量%とメチラール800ppmの混合物を連続的に供給し、触媒として三フッ化ホウ素20ppmを添加し重合を行った。
 重合機吐出口より排出された重合体は、直ちにトリエチルアミン1000ppm含有水溶液を加えて粉砕、攪拌処理を行うことにより触媒の失活を行い、次いで、遠心分離、乾燥を行うことにより線状ポリアセタール共重合体を得た。
<Linear polyacetal resin (A)>
The linear polyacetal resin was prepared as follows.
A mixture of 96.7% by mass of trioxane (TOX), 3.3% by mass of 1,3-dioxolane (DO) and 800 ppm of methylal was continuously supplied to a twin-screw paddle type continuous polymerization machine, and trifluoride was used as a catalyst. Polymerization was carried out by adding 20 ppm of boron.
The polymer discharged from the discharge port of the polymerization machine was immediately added with an aqueous solution containing 1000 ppm of triethylamine, pulverized and stirred to deactivate the catalyst, and then centrifuged and dried to obtain a linear polyacetal copolymer. A coalescence was obtained.
<分岐ポリアセタール共重合体(B)>
 分岐ポリアセタール共重合体は、次のようにして調製した。
 熱媒を通すことのできるジャケットと撹拌羽根を有する密閉オートクレーブ中に300gのトリオキサン(a)を入れ、さらに(b)成分として1,3-ジオキソラン(DO)または1,4-ブタンジオールホルマール(BDF)を、(c)成分として表1に示す化合物を、それぞれ表1に示した質量部の割合になるように添加した。これら内容物を撹拌し、ジャケットに80℃の温水を通して内部温度を約80℃に保った後、触媒溶液(リンタングステン酸はギ酸メチルの溶液,トリフルオロメタンスルホン酸はシクロヘキサンの溶液)を表1に示す触媒濃度(対全モノマー)になる様に加えて重合を開始した。
<Branched polyacetal copolymer (B)>
The branched polyacetal copolymer was prepared as follows.
300 g of trioxane (a) is placed in a closed autoclave having a jacket through which a heat medium can pass and a stirring blade, and 1,3-dioxolane (DO) or 1,4-butanediol formal (BDF) is further added as a component (b). ) Was added as a component (c) in the proportions shown in Table 1 in parts by mass of the compounds shown in Table 1. After stirring these contents and keeping the internal temperature at about 80 ° C. by passing warm water of 80 ° C. through the jacket, the catalyst solution (phosphotungstic acid solution of methyl formate, trifluoromethanesulfonic acid solution of cyclohexane) is shown in Table 1. Polymerization was started by adding the catalyst to the indicated catalyst concentration (relative to all monomers).
 5分後にこのオートクレーブへトリエチルアミン1000ppmを含む水300gを加えて反応を停止し、内容物を取り出して200メッシュ以下に粉砕し、アセトン洗浄及び乾燥後、分岐ポリアセタール共重合体を得た。 After 5 minutes, 300 g of water containing 1000 ppm of triethylamine was added to the autoclave to stop the reaction. The contents were taken out, pulverized to 200 mesh or less, washed with acetone and dried to obtain a branched polyacetal copolymer.
 比較として下記ジグリシジル化合物X-1(ブタンジオールジグリシジルエーテル:グリシジルエーテル基が2個のもの)を本発明の(c)成分に替えて使用したポリアセタール共重合体を重合し、比較の分岐ポリアセタール共重合体を得た。
Figure JPOXMLDOC01-appb-C000007
As a comparison, a polyacetal copolymer obtained by using the following diglycidyl compound X-1 (butanediol diglycidyl ether: one having two glycidyl ether groups) in place of the component (c) of the present invention was polymerized, and a comparative branched polyacetal copolymer was used. A polymer was obtained.
Figure JPOXMLDOC01-appb-C000007
<実施例および比較例>
 表1に示す各種成分を表1に示す割合で添加混合し、ベント付き二軸の押出機で溶融混練してペレット状の組成物を調製した。
 なお、全ての試料において、溶融混錬の際に、(A)成分と(B)成分の合計量100質量部に対して、エチレンビス(オキシエチレン)ビス[3-(5-tert―ブチル-4-ヒドロキシ-m-トリル)プロピオネート](製品名:Irganox245,BASF社製)0.35質量部、メラミン0.08質量部を添加した。
<Examples and Comparative Examples>
The various components shown in Table 1 were added and mixed at the ratio shown in Table 1, and were melt-kneaded with a vented twin-screw extruder to prepare a pellet-shaped composition.
In addition, in all the samples, at the time of melt kneading, ethylene bis (oxyethylene) bis [3- (5-tert-butyl- 4-hydroxy-m-tolyl) propionate] (product name: Irganox 245, manufactured by BASF) 0.35 parts by mass and melamine 0.08 parts by mass were added.
<評価>
 なお、実施例における特性評価項目及び評価方法は以下の通りである。結果を表1に示す。
 [引張試験]
 機械物性の代表として引張強度を測定した。厚さ 4mmのISO Type-A試験片を成形し、JIS527-1,2に準拠した引張り強度(TS)を測定した。
<Evaluation>
The characteristics evaluation items and evaluation methods in the examples are as follows. Table 1 shows the results.
[Tensile test]
Tensile strength was measured as a representative of mechanical properties. An ISO Type-A test piece having a thickness of 4 mm was formed, and the tensile strength (TS) in accordance with JIS 527-1 and 2 was measured.
 [耐ヒートエージング性(長期耐熱性)評価]
 厚さ4mmのISO Type-A試験片を成形し、ギヤーオーブン(東洋精機((株))製)中で140℃に40日保持し、ISO527―1、2に準拠した引張強度を測定し、加熱処理前の引張強度(TS)に対する保持率を求め、以下の通りに○~×に区分した。
 ×:40日後のTS保持率が80%未満
 ○:40日後のTS保持率が80%以上
[Evaluation of heat aging resistance (long-term heat resistance)]
An ISO Type-A test piece having a thickness of 4 mm was molded, kept at 140 ° C. for 40 days in a gear oven (manufactured by Toyo Seiki Co., Ltd.), and measured for tensile strength in accordance with ISO 527-1 and ISO 527-1. The retention ratio with respect to the tensile strength (TS) before the heat treatment was determined, and was classified into ○ to × as follows.
×: TS retention after 40 days is less than 80% ○: TS retention after 40 days is 80% or more
 [溶融体からのホルムアルデヒド発生量]
 5gのペレットを正確に秤量し、金属製容器中に200℃で5分間保持した後、容器内の雰囲気を蒸留水中に吸収させる。この水溶液のホルムアルデヒド量をJISK0102,29.(ホルムアルデヒドの項)に従って定量し、ペレットから発生するホルムアルデヒドガス量(ppm)を算出した。
[Amount of formaldehyde generated from the melt]
After accurately weighing 5 g of the pellet and keeping it in a metal container at 200 ° C. for 5 minutes, the atmosphere in the container is absorbed into distilled water. The amount of formaldehyde in this aqueous solution was determined according to JIS K0102, 29. The amount was determined according to (formaldehyde) and the amount of formaldehyde gas (ppm) generated from the pellet was calculated.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1から、本発明では、強度、耐ヒートエージング性(長期耐熱性)といった物性に優れ、さらにホルムアルデヒド発生抑制にも優れていることがわかる。 か ら Table 1 shows that the present invention is excellent in physical properties such as strength and heat aging resistance (long-term heat resistance), and also excellent in suppressing formaldehyde generation.

Claims (3)

  1.  線状ポリアセタール樹脂(A)100質量部に対して
    トリオキサン(a)、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(b)、および1分子中にエポキシ基を2個以上有しエポキシ基以外は炭化水素からなるポリエポキシ化合物(c)を共重合して得られる分岐ポリアセタール共重合体(B)を0.1~100質量部を混合して得られるポリアセタール樹脂組成物。
    Trioxane (a), cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in its ring (b), and two or more epoxy groups in one molecule per 100 parts by mass of linear polyacetal resin (A) A polyacetal resin composition obtained by mixing 0.1 to 100 parts by mass of a branched polyacetal copolymer (B) obtained by copolymerizing a polyepoxy compound (c) comprising a hydrocarbon other than an epoxy group.
  2.  前記ポリエポキシ化合物(c)が下記式で表されるポリエポキシ化合物である請求項1記載のポリアセタール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Pは0~20の整数を表す。
    2. The polyacetal resin composition according to claim 1, wherein the polyepoxy compound (c) is a polyepoxy compound represented by the following formula.
    Figure JPOXMLDOC01-appb-C000001
    P represents an integer of 0 to 20.
  3.  前記分岐ポリアセタール共重合体(B)がプロトン酸を重合触媒とした重合体である請求項1または2に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1 or 2, wherein the branched polyacetal copolymer (B) is a polymer using a protonic acid as a polymerization catalyst.
PCT/JP2019/033278 2018-09-12 2019-08-26 Polyacetal resin composition WO2020054374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980043804.0A CN112469779B (en) 2018-09-12 2019-08-26 Polyacetal resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170615 2018-09-12
JP2018170615A JP7210194B2 (en) 2018-09-12 2018-09-12 Polyacetal resin composition

Publications (1)

Publication Number Publication Date
WO2020054374A1 true WO2020054374A1 (en) 2020-03-19

Family

ID=69776738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033278 WO2020054374A1 (en) 2018-09-12 2019-08-26 Polyacetal resin composition

Country Status (3)

Country Link
JP (1) JP7210194B2 (en)
CN (1) CN112469779B (en)
WO (1) WO2020054374A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4419263B1 (en) * 1965-05-26 1969-08-21
JPH02113010A (en) * 1988-09-12 1990-04-25 Hoechst Celanese Corp Elastomeric acetal polymer
JP2000319342A (en) * 1999-05-13 2000-11-21 Polyplastics Co Polyoxymethylene copolymer and its production
JP2016516123A (en) * 2013-04-18 2016-06-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyoxymethylene copolymer and thermoplastic POM composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762387B2 (en) * 1999-06-23 2011-08-31 ポリプラスチックス株式会社 Polyacetal resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4419263B1 (en) * 1965-05-26 1969-08-21
JPH02113010A (en) * 1988-09-12 1990-04-25 Hoechst Celanese Corp Elastomeric acetal polymer
JP2000319342A (en) * 1999-05-13 2000-11-21 Polyplastics Co Polyoxymethylene copolymer and its production
JP2016516123A (en) * 2013-04-18 2016-06-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyoxymethylene copolymer and thermoplastic POM composition

Also Published As

Publication number Publication date
CN112469779B (en) 2023-08-08
CN112469779A (en) 2021-03-09
JP2020041078A (en) 2020-03-19
JP7210194B2 (en) 2023-01-23

Similar Documents

Publication Publication Date Title
CN112714774B (en) Polyacetal resin composition and method for producing polyacetal resin composition
JP5955424B1 (en) Method for producing polyacetal resin composition
JP7141330B2 (en) Polyacetal resin composition and method for producing polyacetal resin composition
WO2016125357A1 (en) Polyacetal resin composition
JP7210194B2 (en) Polyacetal resin composition
JP7356828B2 (en) Polyacetal resin composition and method for producing polyacetal resin composition
JP7061479B2 (en) Polyacetal copolymer and its polymerization method
JP7141329B2 (en) Polyacetal copolymer and method for producing the same
JP7129284B2 (en) Polyacetal copolymer and method for producing the same
CN113677725B (en) Polyacetal copolymer and process for producing the same
WO2023171316A1 (en) Polyacetal copolymer and method for polymerizing same
JP3933925B2 (en) Modified polyacetal resin and method for producing the same
WO2022064924A1 (en) Polyacetal copolymer and production method therefor
JP2002356603A (en) Polyacetal resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859160

Country of ref document: EP

Kind code of ref document: A1