WO2020054180A1 - Automated analyzer - Google Patents

Automated analyzer Download PDF

Info

Publication number
WO2020054180A1
WO2020054180A1 PCT/JP2019/025683 JP2019025683W WO2020054180A1 WO 2020054180 A1 WO2020054180 A1 WO 2020054180A1 JP 2019025683 W JP2019025683 W JP 2019025683W WO 2020054180 A1 WO2020054180 A1 WO 2020054180A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
automatic analyzer
analysis
external structural
cover member
Prior art date
Application number
PCT/JP2019/025683
Other languages
French (fr)
Japanese (ja)
Inventor
武 瀬戸丸
三島 弘之
元 末成
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2020546710A priority Critical patent/JP7062781B2/en
Priority to CN201980055847.0A priority patent/CN112654870B/en
Publication of WO2020054180A1 publication Critical patent/WO2020054180A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to the technology of an automatic analyzer for clinical testing, and relates to a device configuration method and an external structure.
  • Conventional automatic analyzers include a single system and a module assembly system (sometimes described as a combination system or a composite system) as the system configuration system of the entire system.
  • the simplex system is a system in which an automatic analyzer is configured by a single module or a main body.
  • components such as a control unit, an operation unit, an analysis unit, and a sample transport unit are integrally mounted on one module or main body.
  • the combination method is a method in which an automatic analyzer is configured by combining and assembling a plurality of modules.
  • the automatic analyzer of the combination system is composed of, for example, a combination of an operation module and one or more analysis modules, and an automatic analysis function is realized by connecting and operating the modules.
  • the operation module includes, for example, a control unit and an operation unit.
  • the analysis module includes, for example, a biochemical analysis module equipped with an analysis unit having a biochemical analysis function, an immune analysis module equipped with an analysis unit having an immune analysis function, and the like.
  • combination type automatic analyzers There are various types of combination type automatic analyzers according to the combination of modules.
  • the automatic analyzer has different specifications and models depending on the types of analysis items, the number of samples that can be simultaneously analyzed, and the like.
  • Patent Document 1 JP-A-2018-21931 (Patent Document 1) is cited.
  • Patent Literature 1 describes that as an example of a sample transport method, an urgent sample rack can be measured promptly while suppressing an increase in apparatus complexity and apparatus cost.
  • Patent Literature 1 describes a configuration example of a combination-type automatic analyzer. In this configuration example, a first analyzer and a second analyzer are arranged adjacent to each other along the transport line.
  • the automatic analyzer is equipped with external structural components such as covers in addition to the main modules.
  • the external structural component is attached to the module so that the module is not exposed, and constitutes the external appearance of the device.
  • Examples of the external structural component include a side cover, a front cover, and an upper cover.
  • a side cover is attached to the side of the outermost module.
  • the configuration of the external structural components not only affects the external appearance, but also affects the ease of operation during a clinical inspection operation, a maintenance operation, and the like by the user.
  • the conventional automatic analyzer has a plurality of different appearance structural parts for one apparatus according to each system and each type of apparatus configuration.
  • Each appearance structural component has a design including a unique shape, size, color, material, and the like.
  • the single-system and combination-type automatic analyzers require a plurality of different external structural components according to a plurality of specifications, types, and modules. When viewed as a whole, including multiple automated analyzers, operators need to handle many types and numbers of exterior structural components. For example, in the case of a side cover in each type of automatic analyzer of the combination system, at least four or more types of side covers different depending on the left and right sides of each module are required.
  • An object of the present invention is to reduce the cost and logistics burden associated with handling a plurality of external structural components required for various types of device configurations according to a single system or a module assembly system with respect to the technology of an automatic analyzer for clinical testing. It is an object of the present invention to provide a technique capable of improving the workability of use and maintenance of an automatic analyzer.
  • a typical embodiment of the present invention is an automatic analyzer for a clinical test, having the following configuration.
  • An automatic analyzer is an automatic analyzer for clinical tests constituted by a single module, wherein the module is a module from a plurality of types of modules that differ depending on at least one of a specification and an analysis type.
  • a selected module having a cover member that can be attached to and detached from a side surface of each of the plurality of types of modules with respect to a front surface of the module, wherein the cover member has a mounting component on a back surface of the cover body.
  • a first cover member having a mounting portion for mounting the mounting component on a side surface of each of the modules, wherein the cover member is mountable on a right side surface with respect to a front surface of each of the modules;
  • a second cover member attachable to a left side surface of the front surface of each module.
  • the mounting portion is provided at a position of the right side surface of each module corresponding to the position of the mounting component, and the left side of each module corresponding to the position of the mounting component of the second cover member.
  • the mounting portion is provided at the position of the side surface of the.
  • An automatic analyzer is an automatic analyzer for a clinical test configured by a combination of a plurality of modules, wherein the plurality of modules are different in a plurality depending on at least one of a specification and an analysis type. It is a plurality of modules selected from the types of modules, having a cover member that can be attached and detached to the side of the front of each of the plurality of types of modules, the cover member, the back surface of the cover body A first cover having a mounting part for mounting the mounting part on a side surface of each module, and the cover member being mountable on a right side surface with respect to a front surface of each module. A second cover member attachable to a left side surface of the module with respect to a front surface of the module.
  • the module wherein the mounting portion is provided at a position of the right side surface of each module corresponding to the position of the mounting component of the cover member, and the module is configured to correspond to the position of the mounting component of the second cover member.
  • the mounting portion is provided at a position on the left side surface of the mounting member.
  • an automatic analyzer for clinical testing it is possible to handle a plurality of external structural components required in various device configurations according to a single system or a module assembly system. Related costs and logistics burden can be reduced, and workability such as use and maintenance of the automatic analyzer can be improved.
  • FIG. 4 is a diagram illustrating a method of sharing appearance structural components in the automatic analyzer according to the embodiment.
  • FIG. 2 is a diagram illustrating a basic configuration of a biochemical analysis unit in the automatic analyzer according to the embodiment.
  • FIG. 3 is a diagram illustrating a basic configuration of an immune analyzer in the automatic analyzer according to the embodiment.
  • FIG. 2 is a diagram illustrating a first configuration example of a first type of a combination system in the automatic analyzer according to the embodiment;
  • FIG. 3 is a diagram illustrating a second configuration example of the first type of the combination type in the automatic analyzer according to the embodiment.
  • FIG. 2 is a perspective view showing a detailed configuration example of an external structural component in the automatic analyzer according to the embodiment.
  • FIG. 4 is a diagram illustrating a relationship between left and right external structural components in the case of a detailed configuration example of external structural components in the automatic analyzer according to the embodiment.
  • FIG. 5 is a perspective view showing a state of the presence or absence of a hem cover in a state in which an external structural component is mounted on a mounting portion on a side surface of an operation module in the automatic analyzer according to the embodiment.
  • FIG. 3 is a diagram illustrating an arrangement relationship between a side cover and an upper cover of an analysis module in the automatic analyzer according to the embodiment; It is a figure showing the example of composition of the attaching part of the appearance structural parts in the automatic analyzer of the modification of an embodiment.
  • FIG. 13 is a diagram illustrating a positional relationship between a mounting portion on a side surface of each module and a mounting component of an external structural component in an automatic analyzer according to a modification of the embodiment. It is a figure which shows the example of a structure of the external structure structural component in the 1st type and 2nd type of a single system in the automatic analyzer of a comparative example.
  • FIG. 28 and FIG. 29 show configuration examples of external structural components in an automatic analyzer according to a comparative example with respect to the embodiment.
  • FIG. 28 shows an outline of the configuration of the upper surface (XY plane) in a single-unit automatic analyzer.
  • FIG. 28A shows a case of the automatic analyzer 91A for biochemical analysis as the first type.
  • FIG. 28B shows a case of an automatic analyzer 91B for immunoassay as the second type.
  • the automatic analyzer 91A mainly includes an analysis module 90A for biochemical analysis.
  • the automatic analyzer 91A has, as the appearance structural component 93, appearance structural components 93-1 and 93-2, which are side covers attached to the side surface (YZ plane) of the analysis module 90A.
  • the right exterior structure component 93-1 is attached to the right side surface s1 of the analysis module 90A
  • the left exterior structure component 93-2 is attached to the left side surface s2 of the analysis module 90A.
  • These two external structural components 93-1 and 93-2 are different components having different specific shapes and the like, and are also denoted by symbols A and B in order to clearly show the difference in type.
  • the first-type automatic analyzer 91A and the second-type automatic analyzer 91B of the simplex system of the comparative example have four types of ⁇ A, B, C, D ⁇ external structure as the external structural component 93. Parts 93-1 to 93-4 are required. When the type of a single analysis module further increases, the appearance structural parts 93 corresponding to the type are required.
  • FIG. 29 shows an outline of the configuration of the upper surface (XY plane) in the automatic analyzer of the combination system.
  • FIG. 29A shows the case of the first type automatic analyzer 91C.
  • FIG. 29B shows the case of the second type automatic analyzer 91D.
  • FIG. 29C shows the case of the third type automatic analyzer 91E.
  • the automatic analyzer 91C mainly includes an operation module 94, an analysis module 92A for biochemical analysis, and an analysis module 92B for immunoassay.
  • an analysis module 92A is arranged on the right side
  • an analysis module 92B is arranged on the left side.
  • the operation module 94 includes components such as a control unit, an operation unit, and a sample transport unit.
  • the analysis module 92A includes an analysis unit for biochemical analysis.
  • the analysis module 92B includes an analysis unit for immunological analysis.
  • the analysis unit is a part for preparing a reaction solution in which a sample and a reagent are mixed by dispensing and measuring the reaction solution using a photometer or the like, and includes a sample dispensing mechanism, a reagent dispensing mechanism, and the like.
  • the automatic analyzer 91D mainly includes an operation module 94 and an analysis module 92A for biochemical analysis.
  • the analysis module 92A is arranged on the right side in the X direction with respect to the operation module 94.
  • the automatic analyzer 91D includes, as the external structural components 93, an external structural component 93-5, which is a side cover attached to the right side s5 of the analysis module 92A, and a lateral cover attached to the left lateral s8 of the operation module 94.
  • an external structural component 93-7 is included in FIG. 29B.
  • the two external structural components 93-5 and 93-7 are components having different shapes and the like, and are also denoted by symbols E and G. Since the analysis module 92A of (A) and the analysis module 92A of (B) are the same, the external structural component 93-5 of the same type ⁇ E ⁇ can be applied.
  • the automatic analyzer 91E mainly includes an operation module 94 and an analysis module 92B for immunological analysis.
  • the analysis module 92B is disposed on the left side of the operation module 94 in the X direction.
  • the automatic analyzer 91E is an external structural component 93-6, which is a side cover attached to the left side s6 of the analysis module 92B, as the external structural component 93, and a side cover attached to the right side s7 of the operation module 94.
  • an external structural component 93-8 is an external structural component 93-6 and 93-8.
  • the two external structural components 93-6 and 93-8 are components having different shapes and the like, and are also indicated by symbols F and H. Since the analysis module 92B of (A) and the analysis module 92B of (C) are the same, the external structural component 93-6 of the same type ⁇ F ⁇ can be applied.
  • the first-type automatic analyzer 91C, the second-type automatic analyzer 91D, and the third-type automatic analyzer 91E of the combination method of the comparative example have four kinds of external structural components 93 as the appearance structural parts 93. , F, G, H ⁇ are required for the external structural parts 93 (93-5 to 93-8).
  • the four types of external structural components 93 include an external structural component 93-5 on the right side of the analysis module 92A, a left external structural component 93-6 on the left side of the analysis module 92B, an external structural component 93-8 on the right side of the operation module 4, and operation. This is the external structural component 93-7 on the left side of the module 4.
  • the automatic analyzers of the single type and the combination type require a plurality of external structural components 93 for each specification, type, and module.
  • Each module for configuring each type of automatic analyzer has a different shape, size, side and front structure, etc., according to specifications, analysis types, and implementation of functions. Therefore, a plurality of types of external structural components 93 having a specific shape or the like corresponding to them are required.
  • the business operator needs to handle many types and a corresponding number of appearance structural parts 93, and it is necessary to manufacture and manage the plurality of appearance structural parts 93. is there. This imposes a heavy burden on the cost and logistics of manufacturing and managing modules and external structural components by the business operator.
  • the external structural component 3 is a cover member that is attached to the outermost part of the module and forms an external appearance.
  • the external structural component 3 is a side cover that is attached to a side surface of the module.
  • Other external structural components include a front cover attached to the front of the module and an upper cover attached to cover the top of the module.
  • the external structural component 3 is attached so as to cover the side surface of the module so that the mechanisms and components on the side surface of the module are not exposed. Thereby, safety is ensured.
  • the external structural component 3 is designed to have a structure such as ventilation and sealing in consideration of the temperature control, heat radiation performance, and the like of the automatic analyzer 1.
  • the appearance structural parts 3 are interchangeable parts that can be attached and detached in common to a plurality of locations of the automatic analyzer 1, and have the same shape and size for each type.
  • FIG. 3 shows a first type automatic analyzer 1C.
  • the automatic analyzer 1C mainly includes an operation module 4, an analysis module 2C for biochemical analysis, and an analysis module 2D for immunoassay.
  • the analysis module 2C is a module that performs biochemical analysis including dispensing and measurement on a sample.
  • the analysis module 2D is a module that performs immunological analysis including dispensing and measurement on a sample.
  • the sample transport mechanism is shown in the case of a first configuration example (FIG. 10) described later.
  • the sample transport unit 6 is mounted on the back side of the operation module 4, the analysis module 2C, and the analysis module 2D.
  • the sample transport section 6 is a section that transports the sample rack 7 between modules.
  • a reagent disk, a reaction disk, a sample dispensing mechanism, a reagent dispensing mechanism, and the like are mounted on the analysis module 2C.
  • a reagent disk, an incubator, a sample dispensing mechanism, a reagent dispensing mechanism, and the like are mounted in the analysis module 2D.
  • the automatic analyzer 1C has the appearance structural components 41 and 42 as the side surface cover that is the appearance structural component 3.
  • the external structural component 41 is attached to the right side surface SS5 of the analysis module 2C, and the external structural component 42 is attached to the left side surface SS6 of the analysis module 2D.
  • the external structural component 41 employs the external common structural component 3e on the right side
  • the external structural component 42 employs the external common structural component 3f on the left side.
  • an external structural component 3g common to the left and right is applied to the external structural component 41 and the external structural component 42.
  • FIG. 4 shows a second type of automatic analyzer 1D.
  • the automatic analyzer 1D mainly includes an operation module 4 and an analysis module 2C for biochemical analysis.
  • an analysis module 2C is disposed on the right side of the operation module 4, for example, on the right side surface SS7 in the X direction.
  • the second type configuration corresponds to a configuration in which the analysis module 2D is separated from the first type configuration.
  • the automatic analyzer 1 ⁇ / b> D has appearance structural parts 43 and 44 as the appearance structural parts 3.
  • the right exterior structure component 43 is attached to the right side surface SS5 of the analysis module 2C.
  • On the left side surface SS8 of the operation module 4, a left external structural component 44 is attached.
  • the external structural component 43 is applied with the external common structural component 3e on the right side, and the external structural component 44 is applied with the external common structural component 3f on the left side.
  • the external structural component 43 and the external structural component 44 use the external structural component 3g common to the left and right.
  • FIG. 5 shows a third type of automatic analyzer 1E.
  • the automatic analyzer 1E mainly includes an operation module 4 and an analysis module 2D for immunological analysis.
  • an analysis module 2D is disposed on the left side of the left side surface SS8 of the operation module 4 in the X direction.
  • the third type of configuration corresponds to a configuration in which the analysis module 2C is separated from the first type of configuration.
  • the automatic analyzer 1D has appearance structural parts 45 and 46 as the appearance structural parts 3.
  • the external structural component 46 is attached to the left side surface SS6 of the analysis module 2D.
  • the external structural component 45 is attached to the right side surface SS7 of the operation module 4.
  • the external structural component 45 is the external common structural component 3e
  • the external structural component 46 is the common external structural component 3f
  • the external structural component 45 and the external structural component 46 are applied by the external structural component 3g that is common to the left and right.
  • a fourth type of automatic analyzer 1F shown in FIG. 6A has an operation module 4, an immunological analysis module 2D, and a biochemical analysis module 2C in the X direction, for example, from the left side.
  • the analysis module 2D is disposed on the right side of the right side surface SS7 of the operation module 4. Further, the analysis module 2C is disposed on the right side of the right side surface SS10 of the analysis module 2D.
  • the automatic analyzer 1 ⁇ / b> F has appearance structural parts 47 and 48 as the appearance structural parts 3.
  • the external structural component 47 is attached to the right side surface SS5 of the analysis module 2C, and the external structural component 48 is attached to the left side surface SS8 of the operation module 4. These external structural components 47 and 48 can be similarly shared.
  • 5A fifth type of automatic analyzer 1G shown in FIG. 6B includes an operation module 4, an analysis module 2C for biochemical analysis, and an analysis module 2D for immunoanalysis in the X direction, for example, from the right.
  • the analysis module 2C is disposed on the left side of the left side surface SS8 of the operation module 4. Further, the analysis module 2D is disposed on the left side of the left side surface SS9 of the analysis module 2C.
  • the automatic analyzer 1 ⁇ / b> G has appearance structural parts 49 and 50 as the appearance structural parts 3.
  • the external structural component 49 is attached to the right side surface SS7 of the operation module 4, and the external structural component 50 is attached to the left side surface SS6 of the analysis module 2D.
  • a configuration in which a plurality of analysis modules of the same type are connected is also possible.
  • a configuration in which two or more analysis modules 2C are connected in series to one side surface of the operation module 4 is possible. With this configuration, the number of samples that can be analyzed simultaneously can be increased.
  • FIG. 8 shows a basic configuration of an analysis unit, a control unit, a drive unit, and the like for biochemical analysis in the automatic analyzer 1 according to the embodiment.
  • the analysis module 2A of the automatic analyzer 1A of FIG. 1 and the analysis module 2C of the automatic analyzer 1C of FIG. 3 are configured based on the basic configuration of FIG.
  • FIG. 8 shows elements arranged near the upper surface 800 of the automatic analyzer 1 and elements such as a drive unit inside the automatic analyzer 1 which are connected to the elements.
  • the sample disk 11 is a disk-shaped sample container transport mechanism, and lays and transports a plurality of sample containers around the circumference.
  • the sample disk drive 811 is connected to the sample disk 11.
  • the sample container is a container that stores a sample such as blood.
  • the reaction disk 12 is a disk-shaped reaction vessel transport mechanism, and a plurality of reaction vessels are erected around the circumference and transported.
  • the reaction disk drive 812 is connected to the reaction disk 12.
  • the reaction container also called a cell
  • the reaction vessel is maintained at a predetermined temperature by a thermostat connected to the reaction disk 12.
  • the reagent disk 13 is a disk-shaped reagent container transport mechanism, and a plurality of reagent containers are erected and transported on the circumference.
  • the reagent disk drive 813 is connected to the reagent disk 13.
  • the reagent container contains a reagent solution corresponding to the analysis item.
  • the sample dispensing mechanism 14 is arranged near the sample disk 11 and the reaction disk 12, and is a mechanism for dispensing a sample from the sample container of the sample disk 11 to the reaction container of the reaction disk 12.
  • the sample dispensing mechanism 14 includes a movable arm, a probe, and the like.
  • the sample dispensing mechanism 14 dispenses a sample from a sample container to a reaction container according to an analysis parameter or the like of a designated test item.
  • the sample dispensing mechanism 14 moves the probe to a predetermined dispensing position on the sample disk 11 by the movable arm, and aspirates a predetermined amount of the sample from the sample container by the probe.
  • the sample dispensing mechanism 14 moves the probe to a predetermined dispensing position on the reaction disk 12 by the movable arm, and discharges the sample from the probe into the reaction container.
  • the sample dispensing mechanism driving unit 814 is connected to the sample dispensing mechanism 14.
  • the reagent dispensing mechanism 15 is arranged near the reagent disk 13 and the reaction disk 12, and is a mechanism for dispensing the reagent in the reagent container of the reagent disk 13 to the reaction container of the reaction disk 12.
  • the reagent dispensing mechanism 15 includes a movable arm, a pipette nozzle, and the like.
  • the reagent dispensing mechanism 16 dispenses a reagent solution from a reagent container to a reaction container according to an analysis parameter or the like of a designated test item.
  • the reagent dispensing mechanism 15 moves the pipette nozzle to a predetermined dispensing position on the reagent disk 12 by the movable arm, and aspirates a predetermined amount of the reagent from the target reagent container by the pipette nozzle. .
  • the reagent dispensing mechanism 15 moves the pipette nozzle to a predetermined dispensing position on the reaction disk 12 by the movable arm, and discharges the reagent from the pipette nozzle into the reaction container.
  • the reagent dispensing mechanism driving section 815 is connected to the reagent dispensing mechanism 15.
  • the stirring mechanism 18 is disposed at a position near the reaction disk 12, the reagent disk 13, and the reagent dispensing mechanism 15.
  • the stirring mechanism 18 stirs the mixed solution of the sample and the reagent in the reaction vessel to promote the reaction, and makes the reaction solution.
  • the light source 16 and the photometer 17 constitute a light detection system that is a measurement unit.
  • a light source 16 is arranged near the center of the reaction disk 12, and a photometer 17 is arranged correspondingly at a predetermined position on the outer peripheral side.
  • the photometer 17 is a multi-wavelength photometer that detects transmitted light or scattered light. According to the rotation of the reaction disk 12, the reaction vessel containing the reaction solution after stirring passes through a predetermined photometric position between the light source 16 and the photometer 17.
  • the photometer 17 performs an optical measurement on the reaction solution in the reaction vessel passing through the photometry position.
  • the measuring circuit 817 is connected to the photometer 17.
  • the measurement circuit 817 includes a Log conversion / analog / digital converter.
  • a signal (for example, an analog signal of scattered light) measured for each sample by the photometer 17 is input to the measurement circuit 817, and Log conversion and analog-to-digital conversion are performed by a Log conversion / analog-to-digital converter. Log conversion is conversion into a numerical value proportional to the amount of light. The resulting digital signal is sent from the measuring circuit 817 to the control unit 100.
  • the cleaning mechanism 19 cleans the inside of the used reaction vessel after the measurement. This allows the reaction vessel to be used repeatedly.
  • a cleaning mechanism driving unit 819 such as a cleaning water pump is connected to the cleaning mechanism 19.
  • the drive units such as the sample disk drive unit 811 are electrically connected to the control unit 100, the operation unit 110, and the like via the interface circuit 850.
  • a mechanism 802 including the mechanism such as the sample disk 11 and a driving unit such as the sample disk driving unit 811 can be mounted as an analysis module (for example, the analysis module 2C in FIG. 3).
  • the control unit 100, the storage device 103, the input device 104, the display device 105, the printer 106, the power supply unit 107, the operation unit 110, and the like are connected to the interface circuit 850 so that they can communicate with each other.
  • the parts 801 such as the control unit 100 and the operation unit 110 can be implemented as an operation module (for example, the operation module 4 in FIG. 3).
  • the control unit 100 includes at least one of the IC substrate 101 and the computer 102.
  • the control unit 100 controls the entire automatic analyzer 1 and implements an automatic analysis function.
  • the control unit 100 drives each unit such as the sample disk 11 by transmitting a control signal to each drive unit, for example.
  • the control unit 100 transmits a command control signal to each unit such as the sample dispensing mechanism driving unit 814 based on a user operation through the operation unit 110, setting information, analysis request information, and the like at the time of analysis. And controls the sample dispensing operation and the like.
  • the operation unit 110 is a part for operating the automatic analyzer 1 by a user who performs a clinical test operation.
  • the operation unit 110 may be configured by an operation panel, may be configured by the input device 104 (for example, a keyboard) or the display device 105, or may be configured by the touch panel 5 described above.
  • the operation unit 110 or the display device 105 provides a display screen such as an operation screen. The user can operate the automatic analyzer via the operation screen.
  • the operator selects a test item requested for each sample through the operation screen of the operation unit 110, sets various parameters required for analysis, and registers sample information such as a patient ID. .
  • the input information is stored in the storage device 103.
  • the operator inputs analysis request information and analysis start instruction on the operation screen.
  • the storage device 103 is configured by an internal memory or an external memory, and stores programs, setting information, and various data.
  • the storage device 103 stores, for example, various levels of display screen data, analysis parameters, analysis request information, calibration result information, analysis result information, and the like.
  • the analysis module 2D has a holder 21, an incubator 22, a reagent disk 23, a sample dispensing mechanism 24, a reagent dispensing mechanism 25, a transport mechanism 26, a washing mechanism 27, a shipper 28, a reaction detecting unit 29, and the like on the upper surface.
  • a sample rack storage section 8D is provided on the upper side near the rear surface on the upper surface.
  • a sample rack 7 transported from the sample transport section 6 (FIG. 10 or 11) is stored on the transport line.
  • the holder 21 and the transport mechanism 26 are arranged near the right side surface SS10 of the analysis module 2D, and the reagent disk 23 is arranged near the left side surface SS6.
  • the transport mechanism 26 transports the reaction container and the sample dispensing tip in the holder 21 to a predetermined position, and transports the used reaction container and the sample dispensing tip to a predetermined disposal position (corresponding disposal hole 26a). It is.
  • the transport mechanism 26 is a mechanism that can move in three axial directions of the X direction, the Y direction, and the Z direction.
  • the transport mechanism 26 grips the reaction vessels one by one from the holder 21, moves up, moves to a predetermined position of the incubator 22, and erection.
  • the transport mechanism 26 grips the sample dispensing tips one by one from the holder 21, moves up, and moves to a predetermined mounting position (corresponding buffer 26b).
  • the incubator 22 is also called a culture disk, and is a disk-shaped reaction vessel erection part. A plurality of reaction vessels 22A are erected around the circumference, and the reaction vessel 22A rotates.
  • the reagent disk 23 is a disk-shaped reagent container transport mechanism, in which a plurality of reagent bottles are laid on the circumference, and the reagent bottles rotate.
  • the reagent disk 23 includes a cylindrical cool box, and controls the temperature of the reagent bottle at a constant temperature.
  • the reagent bottle contains a plurality of reagent containers 23A.
  • the reagent container 23A contains a reagent solution corresponding to an item that can be analyzed.
  • the reagent disk 23 is covered by a cover of a cool box, and a part of the cover has an access port so that a reagent bottle and a reagent container 23A can be taken in and out.
  • the access port is constituted by an openable / closable cover or the like, has an interlock mechanism, and is locked while the reagent disk 23 is operating.
  • the sample is discharged from the chip into the reaction container. Thereafter, the sample dispensing mechanism 24 moves the nozzle over the waste hole 26a, and drops the used sample dispensing tip into the waste hole 26a. In addition, the sample dispensing mechanism 24 moves the used reaction container over the waste hole 26a and drops the used reaction container into the waste hole 26a.
  • the reagent dispensing mechanism 25 includes a pipette nozzle or the like, and dispenses the reagent in the reagent container 23A at a predetermined dispensing position of the reagent disk 23 to the reaction container 22A at a predetermined dispensing position of the incubator 22.
  • the reagent dispensing mechanism 25 moves the pipette nozzle over the target reagent container 23A, sucks the reagent from the reagent container 23A, moves the pipette nozzle over the reaction container 22A, and places the reagent in the reaction container 22A. Discharge.
  • the sample and the reagent solution are dispensed into the reaction container 22A of the incubator 22, and after a predetermined reaction time has elapsed, a reaction solution is formed.
  • the analysis module 2D sucks the reaction solution from the reaction container 22A by the shipper 28 including a nozzle, and supplies the reaction solution to the reaction detection unit 29.
  • the reaction detector 29 optically measures the reaction solution using a photometer.
  • FIG. 10A shows a configuration example of a design including the external structural component 3 on the upper surface (XY plane) of the automatic analyzer 1C of the first type of the combination system, and particularly the first configuration relating to the sample transport mechanism.
  • FIG. 10B shows a schematic configuration of the sample rack 7 and the sample container 7A.
  • the operation module 4 has a sample rack storage unit 8A at the rear of the Y direction. A plurality of sample racks 7 are stored in the sample rack storage unit 8A. The user stores the sample rack 7 in the sample rack storage unit 8A.
  • the sample rack 7 may be classified into a normal sample rack and an emergency sample rack.
  • the normal sample rack is a sample rack that stores a sample container that stores a normal sample.
  • a normal sample is a sample on which analysis and measurement are performed with normal priority and urgency.
  • the emergency sample rack is a sample rack that stores a sample container that stores an emergency sample.
  • the urgent sample is a sample that is analyzed or measured at a higher priority or urgency than a normal sample rack.
  • the sample rack storage unit 8A in the second configuration example can store a normal sample rack and an emergency sample rack.
  • FIG. 11 shows a detailed configuration of the rack rotor 200 of (A) and each part connected thereto.
  • the sample transport section 6 has a transport line 201 extending in the Y direction on the front side in the Y direction with respect to the rack rotor 200, and has a transport line 202 extending in the X direction on the right side in the X direction.
  • a transport line 203 extending in the X direction is provided on the left side in the X direction.
  • the analysis module 2C has a sample rack storage unit 8C including the transport line 202.
  • the sample rack storage unit 8C includes a sample rack retreat unit 221 and a sample identification device 220.
  • the analysis module 2D has a sample rack storage unit 8D including the transport line 203.
  • the sample rack storage unit 8D includes a sample rack retreat unit 231 and a sample identification device 230.
  • the rack rotor 200 is a column-shaped sample rack transport mechanism, and can accommodate a plurality of sample racks 7 on the circumference.
  • the rack rotor 200 has one or more rotatable slots at predetermined positions on the circumference on the upper surface.
  • the rack rotor 200 has slots 204 and 205 as two slots, and the two slots are arranged at positions on the circumference that face each other at 180 degrees.
  • the rack rotor 200 accommodates the sample rack 7 in the slot, and transports the sample rack 7 in the circumferential direction by rotating the slot.
  • the slot can also be moved to a position adjacent to one end of the transport line 201 by a rotation operation.
  • the transport line 201 is a mechanism for transporting the sample rack 7 between the sample rack storage unit 8A and the rack rotor 200.
  • the left and right transfer lines 202 and 203 of the rack rotor 200 are connected to the slots 204 and 205 of the rack rotor 200, the sample rack storage unit 8C of the analysis module 2C, and the sample rack storage unit 8D of the analysis module 2D.
  • 7 is a mechanism for transporting 7 by reciprocating operation.
  • a belt conveyor type transport mechanism is employed for the transport lines 201, 202, and 203.
  • the sample identification device 210 reads and identifies the sample rack 7 and an identification medium provided in the sample container in order to refer to the analysis request information on the sample in the sample container of the sample rack 7 transported on the transport line 201.
  • the identification medium is, for example, an RFID (radio frequency identifier) tag or a bar code label.
  • the sample rack evacuation units 221 and 231 are mechanisms for exchanging the sample rack 7 with the transport lines 202 and 203 and retracting the sample rack 7.
  • a belt conveyor capable of continuously reciprocating the sample rack 7 is provided.
  • a mold mechanism is employed.
  • the sample identification devices 220 and 230 are devices for collating the analysis request information for the sample of the sample container in the sample rack 7 carried into the transport lines 202 and 203, and are provided in the sample rack 7 and the sample container. It is a device that reads and identifies a medium.
  • the automatic analyzer 1 has a cover member, particularly a side cover, as the external structural component 3 to be shared.
  • the cover member includes a main body (cover main body) and a mounting component.
  • the right and left sides are independent, and in the case of the second common mode, both sides are left and right.
  • the plurality of cover members and the plurality of modules in each device configuration have the following configuration for commonality.
  • the cover member has a mounting part on the back surface of the cover body (a mounting part 62 in FIG. 15 and the like to be described later).
  • a mounting part for mounting the cover member is provided on a side surface of each module. It has a structure including a (cover member mounting portion) (a mounting portion 72 in FIG. 19 and the like described later).
  • a plane for example, an XZ plane shown by a dashed line in FIG. 12 described later
  • an axis for example, Consider a vertical axis or a horizontal axis.
  • the first common mode has a first cover member that can be commonly attached to the right side surface of each module, and a second cover member that can be commonly attached to the left side surface of each module.
  • a mounting portion is provided at a position on the right side of each module corresponding to the position of the mounting component of the first cover member, and a mounting portion is provided at a position on the left side of each module corresponding to the position of the mounting component of the second cover member.
  • the positions of the mounting components and the mounting portion on the right side surface may be different from the positions of the mounting components and the mounting portion on the left side surface.
  • the positions of the two or more attachment parts provided on the back surface of the cover main body are basically arbitrary positions.
  • the first cover member and the second cover member can be commonly mounted on both the right side surface and the left side surface of each module.
  • the position of the mounting part on the right side of each module and the position of the mounting part of the first cover member, and the position of the mounting part on the left side of each module and the position of the mounting part of the second cover member are relative to a reference plane. It has a relationship such as a mirror image or symmetry, and is a position corresponding to the case where the image is inverted horizontally, or a position corresponding to the case where the image is inverted vertically.
  • the mounting of the other second cover member is performed. It matches the position of the parts and the position of the mounting part on the left side of the module.
  • FIG. 7 shows the correspondence between the position of the mounting component 62 of the cover member and the position of the mounting portion 72 on each side of the module, which relates to the method of sharing the external structural component 3 (cover member).
  • the appearance design (surface shape) of the surface of the cover member is not considered.
  • the first cover member (right cover member) 3R attached to each of the plurality of module right side surfaces MR is common.
  • two or more attachment parts 62 are provided at two or more predetermined positions.
  • a mounting portion 72 is provided at a predetermined position on the right side surface MR of each module corresponding to the position of the mounting component 62.
  • FIG. 12 shows a first common use and a second common use for the single-system automatic analyzer 1 (1A, 1B).
  • FIG. 12A shows a first common system in the simplex system.
  • FIG. 12B shows a second common mode in the simplex mode.
  • FIG. 13 shows a first common mode for the automatic analyzer 1 (1C, 1D, 1E) of the combination mode.
  • FIG. 14 shows a second common mode for the automatic analyzer 1 (1C, 1D, 1E) of the combination mode.
  • 12 to 14 mainly show the schematic configuration of the upper surface (XY plane) of the module and the external structural component 3, and also show the perspective view of the external structural component 3.
  • FIG. The reference plane S0 is indicated by a dashed line.
  • the outer appearance structural part 31 on the right side of the analysis module 2A of the automatic analyzer 1A and the outer appearance structural part 33 on the right side of the analysis module 2B of the automatic analyzer 1B are constituted by the same common outer appearance structural part 3a.
  • the external appearance structural part 32 on the left side of the analysis module 2A of the automatic analyzer 1A and the external appearance structural part 34 on the left side of the analysis module 2B of the automatic analyzer 1B are constituted by the same common external appearance structural part 3b.
  • the types of the external structural components 3a and 3b are also indicated by symbols A and B.
  • an example of a position in the external structural components 3a, 3b is indicated by a point p1.
  • a point p1 at the upper right of the surface of the right exterior structure component 3a and a point p1 at the upper left of the surface of the left exterior structure component 3b are symmetrically corresponding points.
  • the left and right external structural components 3 (3a, 3b) have a left-right symmetric shape in terms of external design, but are not limited to this, and may have a left-right asymmetric shape.
  • the external structural components 3 (3a, 3b) each have a mounting component described later on the rear surface, they have a vertically asymmetric shape when viewed from the rear surface.
  • the external structural component 3 (3a, 3b) has, for example, a vertically asymmetric shape, but is not limited to the vertically asymmetric shape, and may have a vertically symmetric shape, or a left-right symmetric shape (Y direction). (A symmetrical shape before and after).
  • the external structural component 3c disposed on the right side of the module and the external structural component 3c disposed on the left side of the module have left-right symmetric shapes in the X direction.
  • Each of the external structural components 3c has a vertically symmetric shape in the Z direction.
  • the position of the attachment portion has a correspondence relationship with the reference surface S0 when it is turned upside down.
  • the type of the external structural component 3c is also indicated by a symbol C.
  • An example of the position in the external structural component 3c is indicated by a point p2.
  • a point p2 on the upper right of the surface of the external structural component 3c disposed on the right side surface of the module and a point p2 on the lower left of the surface of the external structural component 3c disposed on the left side surface of the module are the same. Is a point.
  • the external structural component 3c has a vertically symmetric shape so that it can be used even when it is turned upside down.
  • the automatic analyzer 1 has the same type of external structural component 3 (3a) shared in a plurality of locations in each type of the single-system automatic analyzer 1 (1A, 1B). , 3b, 3c).
  • the number of types of external structural components 3 can be reduced, and the cost and logistics burden can be improved.
  • the cost of a mold and the like when the external structural component 3 is manufactured by a molding method can be reduced.
  • a plurality of devices to be shared are not limited to this example and can be used.
  • the common use can be similarly applied.
  • FIG. 13 similarly shows a first common system relating to the appearance structural component 3 of the automatic analyzer 1 (1C, 1D, 1E) of the combination system, and sequentially from the top, the automatic analyzer 1C, the automatic analyzer 1D, and 3 shows a schematic configuration of the upper surface (XY plane) of the automatic analyzer 1E.
  • the position of the common operation module 4 is indicated by a dashed line (reference plane S0) based on the position.
  • the external structural components 41, 43, 45 arranged on the rightmost side and the external structural components 41, 43, 45 arranged on the rightmost side as the external structural parts 3 which are side covers.
  • Appearance structural parts 42, 44, 46 Appearance structural parts 42, 44, 46.
  • the types of the external structural components 3e and 3f are also indicated by symbols E and F.
  • an example of a position in the external structural components 3e and 3f is indicated by a point p3.
  • a point p3 at the upper right of the surface of the right external structural component 3e and a point p3 at the upper left of the surface of the left external structural component 3f are points corresponding to each other in a left-right symmetric shape.
  • the outer appearance structural parts 41 and 43 on the right side of the analysis module 1C and the outer appearance structural part 45 on the right side of the operation module 4 are shared as the outer appearance structural part 3e.
  • the external appearance structural parts 42 and 46 on the left side of the analysis module 1D and the external appearance structural part 44 on the left side of the operation module 4 are shared as the external appearance structural part 3f.
  • the first common mode has more types of external structural components 3 than the second standard mode, but has a higher degree of freedom in designing the surface of the external structural component 3.
  • FIG. 14 similarly shows a second common mode for the combination type automatic analyzer 1 (1C, 1D, 1E).
  • the automatic analyzer 1 for each type of the combination method, a corresponding effect can be obtained even when the first common method is employed, but the second common method is further employed. Thereby, the types of the external structural components 3 can be further reduced.
  • all the left and right external structural components 41 to 46 of each type are made of the same external structural component 3g of the same type.
  • only one type of external structural component 3g is required for providing the automatic analyzers 1C, 1D, and 1E.
  • the external structural component 3g disposed on the right side of the module and the external structural component 3g disposed on the left side have a symmetrical shape in the X direction.
  • Each of the external structural components 3g has a vertically symmetric shape in the Z direction.
  • the positions of the mounting parts of the external structural components 3g disposed on the right side and the positions of the mounting parts on the right side of each module, the positions of the mounting parts of the external structural parts 3g disposed on the left side and the positions of the mounting parts on the left side of each module Has a correspondence relationship with the reference plane S0 by upside down.
  • the type in the external structural component 3g is also indicated by a symbol G.
  • An example of the position in the external structural component 3g is indicated by a point p4.
  • a point p4 on the upper right of the surface of the external structural component 3g disposed on the right side and a point p4 on the lower left of the surface of the external structural component 3g disposed on the left are the corresponding points.
  • the state of the surface of the external structural component 3g disposed on the right side is the same as the surface state of the external structural component 3g disposed on the left side, by turning it 180 degrees around the axis J1 in the Y direction to flip it upside down. Become.
  • the automatic analyzer 1 has the same type of external structural component 3 common to a plurality of locations in each type of automatic analyzer 1 (1C, 1D, 1E) of the combination system. (3e, 3f, 3g) are used.
  • the number of types of external structural components 3 can be reduced, and the cost and logistics burden can be improved.
  • the common use of the external structural components 3 is applied to the automatic analyzers 1C, 1D, and 1E has been described.
  • a plurality of devices to be shared are not limited to this example and can be used.
  • the common use can be similarly applied to a case where there are a plurality of types of analysis modules 2C for biochemical analysis.
  • the cover body of the external structural component 3c (FIG. 12B) or the external structural component 3g (FIG. 14) will have a greater width from the front side to the rear side in the Y direction, as described later. It has an asymmetric shape in the Y direction when viewed from the surface.
  • the second common mode is realized by using the cover body upside down.
  • the shape of the cover main body of the external structural component 3c or the external structural component 3g is not limited to this, and is possible.
  • the cover body may have a constant width in the X direction regardless of the front side or the rear side in the Y direction.
  • the second commonality can be realized by using, for example, left-right inversion of the cover body without using upside-down inversion of the cover body.
  • FIG. 30 shows a second common mode corresponding to the above modification.
  • appearance structural parts 41 to 46 (3 g) having shapes different from those in FIG. 14 are used.
  • the case where the operation module 4 includes the rack rotor 200 is shown.
  • an external structural component 41 attached to the right side of the analytical module 2C and an external structural component 42 attached to the left side of the analytical module 2D are configured by a common external structural component 3g.
  • the external structural component 3g has a constant width in the X direction regardless of the front side or the rear side in the Y direction.
  • the cover body of the external structural component 3g has a symmetrical shape in the Y direction when the surface is viewed alone.
  • An example of the position of the surface of the cover body is indicated by a point p5, and is located at the upper right position (upper position in the Z direction and rear position in the Y direction) of the surface.
  • the external structural component 41 (3g) disposed on the right side of the automatic analyzer 1C is disposed on the left side, the external structural component 41 (3g) is rotated by 180 degrees around the axis J2 in the Z direction of the cover main body so as to be positioned with respect to the reference plane S0. By inverting left and right, it becomes the same state as the appearance structural component 42 (3g) arranged on the left side.
  • the point p5 is at the upper right position (upper position in the Z direction and front position in the Y direction) on the surface.
  • FIG. 31 shows a case where the second common mode is applied to other types of automatic analyzers 1H, 1I, and 1J in the automatic analyzer according to the modification of the embodiment.
  • the automatic analyzer 1H as a sixth type configuration, two biochemical analysis modules 2C (2C-1, 2C-2) of the same type are connected to the center operation module 4 on the left and right sides.
  • Type In this example, a case is shown in which the operation module 4 including the rack rotor 200 is combined. This type has a configuration in which the number of samples that can be simultaneously analyzed is increased by increasing the number of analysis modules of the same analysis type.
  • the biochemical analysis module 2C-1 on the right side and the biochemical analysis module 2C-2 on the left side are modules having the same mechanism and the like and the same analysis type and the same specifications.
  • An external structural component 41 attached to the right side of the biochemical analysis module 2C-1 and an external structural component 42 attached to the left side of the biochemical analysis module 2C-2 are constituted by a common external structural component 3g. You.
  • the automatic analyzer 1I has the same configuration as the automatic analyzer 1D in FIG. 14, but corresponds to a configuration in which the analysis module 2C-2 on the left side is removed from the automatic analyzer 1H.
  • the external structural component 43 on the right side of the analysis module 2C-1 and the external structural component 43 on the left side of the operation module 4 are also configured by the common external structural component 3g.
  • the automatic analyzer 1J corresponds to a configuration in which the right analysis module 2C-1 is removed from the automatic analyzer 1H.
  • the outer appearance structural part 46 on the left side of the analysis module 2C-2 and the outer appearance structural part 45 on the right side of the operation module 4 are also constituted by the shared outer appearance structural part 3g.
  • the above configuration is the case where the second common mode is applied, but the first common mode is also applicable.
  • the common method can be similarly applied.
  • the plurality of modules constituting the automatic analyzer of the combination system are a plurality of modules selected from a plurality of types of modules different depending on at least one of the specification and the analysis type, but the plurality of selected modules are: As described above, a plurality of modules of different types may be used, or a plurality of modules of the same type may be used.
  • a module of a certain analysis type may further include a plurality of types of modules in a single system or a combination system.
  • the biochemical analysis module there may be a plurality of types of biochemical analysis modules having different specifications corresponding to variations in mechanism, shape, and the like.
  • Different automatic analyzers can be configured depending on the type of analysis module selected. Also in the case where there are a plurality of types of modules having the same analysis type but different specifications and the like, a common method can be applied in the same manner as described above.
  • FIGS. 15 to 17 show detailed structural examples of the above-mentioned common exterior structure component 3, for example, the exterior structure component 3g of FIG.
  • FIG. 15 is a perspective view showing, for example, the structure of an external structural component 3g attached as the right external structural component 41 to the right side surface SS5 of the analysis module 2C of the automatic analyzer 1C of FIG.
  • FIG. 16 is a perspective view showing, for example, the structure of an external structural component 3g attached as the left external structural component 42 to the left side surface SS6 of the analysis module 2D of the automatic analyzer 1C in FIG.
  • FIG. 17 shows the structure of the attachment component 62 provided on the external structural component 3g.
  • FIG. 15 shows a perspective view of the front surface of the external structural component 3g (41), and (B) shows a perspective view of the back surface.
  • the external structural component 3g has a vertically symmetric shape with respect to a reference line C1 indicated by a dashed line when viewed from the surface.
  • the reference line C1 is located near the center of the length of the external structural component 3g in the Z direction and indicates an axis extending in the Y direction.
  • the external structural component 3g is roughly composed of a main body 61 as a cover main body and a mounting component 62.
  • the main body 61 has a substantially flat plate shape, is entirely convex outside (for example, right side) in the X direction, and has a space of a predetermined thickness in the X direction when viewed from the back.
  • the mounting component 62 is accommodated in the space.
  • the main body 61 has a shape in which the width increases from the front side to the rear side in the Y direction. This design example is intended to give an impression of the appearance when the user looks at the front from the standard position.
  • the external structural component 3g has an asymmetric shape before and after in the Y direction.
  • a concave portion 63 long in the Z direction is provided at a position near the approximate center in the Y direction.
  • the concave portion 63 is a convex portion when viewed from the back surface.
  • the main body 61 has two mounting parts 62, particularly a mounting part, at a predetermined position before and after in the Y direction at the position of the reference line C1 near the center in the Z direction in the space on the back surface.
  • Parts 62a and 62b are fixed.
  • a mounting component 62a is disposed on the front side in the Y direction, and a mounting component 62b is disposed on the rear side.
  • the two attachment parts 62a and 62b have the same shape, size, mechanism, and the like.
  • the attachment component 62 is a component for attaching the appearance structural component 3g to the side of the analysis module 2C, the analysis module 2D, or the operation module 4, which is the target module. As will be described later, each module has a configuration including a common mounting portion for mounting the external structural component 3g on the side surface.
  • the automatic analyzer 1 has a configuration in which a skirt cover described later can be attached to the external structural component 3, but a configuration without the skirt cover is also possible.
  • FIG. 16A is a perspective view of the front surface, and FIG.
  • the attachment component 62 has a fixing portion 62A which is a portion fixed to the main body 61, and an engaging portion 62B continuously extending from the fixing portion 62A.
  • FIG. 17A shows the state of the attachment component 62 corresponding to FIG. 15B in an enlarged manner.
  • the engagement portion 62B is particularly configured by a hook.
  • the hook which is the engaging portion 62B, engages with the hook receiver, which is the engaged portion, in the mounting portion on the module side (the mounting portion 72 in FIG. 17D). At the time of attachment, the hook is inserted into the hook receiving gap of the attachment portion from above and engaged with the hook.
  • Mounting of the attachment component 62 is not limited to such a hook and the like, and is possible.
  • ((B) of FIG. 17 shows a state where it is turned upside down in the Z direction with respect to (A).
  • the main body 61 of the external structural component 3g in FIG. 15 is rotated 180 degrees around the axis of the reference line C1 in the Y direction and turned upside down, or only the mounting component 62 is as shown in FIG.
  • the upper and lower sides are turned upside down, the state becomes as shown in FIG.
  • the attachment component 62 has a mechanism that can be turned upside down in the Z direction in accordance with the second common mode, that is, so that the external structural component 3g can be attached to either of the left and right side surfaces of the module. .
  • This mechanism is a mechanism for turning the attachment component 62 upside down when the main body 61 is turned upside down.
  • this mechanism is implemented as a mechanism by screwing.
  • a fixing portion 62C provided at a predetermined position of the main body 61 has a screw hole.
  • the fixing portion 62A of the attachment component 62 is fixed to the screw hole of the fixing portion 62C by screwing.
  • the engagement portion 62B is in a state of being located above the reference line C1 in the Z direction.
  • FIG. 17 shows an outline of a case where the engaging portion 62B of the attachment component 62 is rotated around the axis with respect to the fixing portion 62C to be turned upside down.
  • the fixing portion 62A and the engaging portion 62B are formed by, for example, bending a sheet metal, are fixed to the fixing portion 62C by screws, and can be removed by releasing the screws.
  • the direction of the attachment component 62 (the fixing portion 62A and the engaging portion 62B) removed from the fixing portion 62C is changed by the operator so as to be turned upside down from (A) to (B). It is fixed to 62C by screwing.
  • Such a mechanism that allows the attachment component 62 to be turned upside down is not limited to mounting by screwing.
  • a rotation mechanism capable of rotating the engagement portion 62B around the periphery may be employed.
  • FIG. 17 shows a state in which the engaging portion 62B of the mounting component 62 is engaged with the mounting portion 72 provided on the side surface 1700 of the module.
  • the mounting section 72 is an external structural component mounting section (cover member mounting section).
  • FIG. 18 shows the arrangement of the external structural components 3g arranged on the left and right sides of the module, etc., corresponding to the second common mode.
  • the external structural component 41 on the right side and the external configuration on the left side of the automatic analyzer 1C in FIG. The relationship with the structural component 42 is shown.
  • the state of the main body 61 of the external structural component 41 (3g) in FIG. 15 the state of the main body 61 of the external structural component 42 (3g) in FIG. 16 is rotated up and down by 180 degrees around the axis of the reference line C1.
  • the state of the main body 61 in FIG. 16 is rotated up and down by 180 degrees around the axis of the reference line C1.
  • a 180-degree rotation around the axis in the Z direction may be a left-right inverted state, and further, a 180-degree rotation around the axis in the X direction from that state.
  • the attachment component 62 includes a mechanism that can be turned upside down as described above.
  • FIGS. 18 (A) to (E) show the state transition in the case where the work of changing the state of the right external structural component 41 (3g) from the state of the right external structural component 41 (3g) is performed.
  • FIG. 18A schematically shows a state in which the surface of the external structural component 3g (41) arranged on the right side surface of the analysis module 2C, corresponding to FIG. 15A, is viewed.
  • (B) shows a state in which the back surface of the external structural component 3g (41) of (A) is viewed.
  • the fitting part 62 is in a correct state
  • the engaging portion 62B is at a position above the reference line C1.
  • (C) shows a state in which the main body 61 is rotated by 180 degrees around the axis in the Y direction indicated by the reference line C1 from the states of (A) and (B).
  • the attachment component 62 is in a vertically inverted state, and the engaging portion 62B is located below the reference line C1.
  • the external structural component 3g cannot be attached to the left side surface of the analysis module 2D, it is necessary to change the orientation of the attachment component 62.
  • ((D) of FIG. 18 shows a state in which the two attachment parts 62 have been changed from the state of (C) so as to be turned upside down with respect to the reference line C1.
  • (E) shows a state viewed from the surface corresponding to (D).
  • the external structural component 3g can be attached as the external structural component 42 to the left side surface of the analysis module 2D. The same relationship as described above holds when changing the appearance structural part 42 on the left side to the appearance structural part 41 on the right side.
  • FIG. 19 is a perspective view showing an example of a structure including the mounting portion 72 on the side surface of the operation module 4.
  • 19A shows an example of the structure of the operation module 4 such as the automatic analyzer 1E shown in FIG. 5 on the right side surface SS7
  • FIG. 19B shows an example of the structure of the operation module 4 on the left side surface SS8. Show.
  • the operation module 4 is roughly divided into an upper part 4A and a lower part 4B with respect to the reference line Z1 in the Z direction.
  • a partition plate 400 that partitions the upper part 4A and the lower part 4B.
  • a movable mechanism such as the above-described sample transport unit 6 (including, for example, the sample rack storage unit 8A and the rack rotor 200) is mainly mounted on the upper part 4A.
  • the non-movable mechanism such as the above-described IC substrate 101 and each driving unit (including the cleaning mechanism driving unit 819) is mainly mounted on the lower part 4B.
  • the movable mechanism has moving parts and the like exposed on the surface. In the non-movable mechanism, moving parts and the like are not exposed on the surface.
  • an operation console is provided on the front surface of the upper part 4A so as to protrude forward in the Y direction.
  • the operation console is also provided with an operation panel including a power button.
  • a front cover 410 is provided on the front surface of the lower portion 4B.
  • the front cover 410 is provided with a door that can be opened and closed (especially a one-sided door), and can be opened and closed during maintenance or the like.
  • a skirt cover 411 is provided further below the front cover 410.
  • a caster mechanism 412 and an adjuster mechanism 413 for moving and stopping the module are provided on the lower surface of the lower portion 4B.
  • FIG. 19 shows one mounting portion 72 in an enlarged manner.
  • the mounting portion 72 has a fixed portion 72A and an engaged portion 72B.
  • the fixing portion 72A is a portion fixed to the side surface of the module by screwing or the like.
  • the engaged portion 72B is a portion that extends outward from the fixing portion 72A in the Z direction and the X direction by continuous bending.
  • the engaged portion 72B is mounted as a hook receiving portion.
  • the engaged portion 72B forms a gap (in other words, a concave portion) between the engaged portion 72B and the side surface of the module.
  • FIGS. 20A and 20B show, for example, when the automatic analyzer 1E of FIG. 14 is configured, the external structural component 45 (3 g) is attached to the mounting portion 72 of the right side surface SS7 of the operation module 4 of FIG. ) Is shown.
  • (A) shows the right side surface SS7
  • (B) shows the left side surface SS8.
  • the left side of the analysis module 2C is disposed adjacent to the right side SS7 of the operation module 4, and the side surfaces are separated from each other. Connected mechanically.
  • the external structural component 3g is attached to the left side surface SS8 of the operation module 4, or the analysis module 2D is arranged adjacent to the side surface SS8.
  • FIG. 20 show, for example, a state in which the attachment component 62 of the external structural component 3g is attached to the attachment portion 72 of the left side surface SS8.
  • the engagement portion 62B of the attachment component 62 is engaged with the gap of the engaged portion 72B of the attachment portion 72 by being inserted from above and hooked.
  • the external structural component 3g is kept attached to the side surfaces of the upper part 4A and the lower part 4B of the operation module 4.
  • the engaging portion 62B of the mounting component 62 is pulled out from the engaged portion 72B of the mounting portion 72 so as to be pulled upward.
  • the engagement state is established.
  • a skirt cover 66 is further attached to the lower side of the external structural component 45 (3g), below the position in the Z direction indicated by the reference line Z4.
  • the side hem cover 66 and the front hem cover 411 cover a space of a predetermined height including the caster mechanism 412 and the adjuster mechanism 413 on the lower surface of the lower portion 4B.
  • the height of the hem cover 66 is matched with the height of the hem cover 411 on the front surface.
  • the upper side in the Z direction of the external structural component 3g is attached to the side surface of the operation module 4, and is located above the height position indicated by the reference line Z3 on the upper surface of the upper portion 4A. May be in a partially exposed state. This is designed in consideration of the height of each module and the relationship with the upper cover described later.
  • openings are provided on the left and right side surfaces (SS7, SS8) of the operation module 4 so that the left and right side portions of the rack rotor 200 can be seen.
  • Other implementations in this regard are also possible.
  • FIG. 32 shows an implementation example of the operation module 4 in the modification.
  • (A) shows the outline of the upper surface of the operation module 4 and the like.
  • (B) shows an outline of a side surface of the operation module 4 in a perspective view.
  • a rack rotor cover 280 that can be attached to and detached from an opening corresponding to the side surface of the rack rotor 200 is provided on at least one of the left and right side surfaces of the operation module 4, in this example, both side surfaces (SS 7 and SS 8). Is provided.
  • the business operator introduces the automatic analyzer in a state where the rack rotor cover 280 is attached to the side surface of the operation module 4.
  • the rack rotor cover 280 When connecting the analysis module 2C or the like to the side surface of the operation module 4, the rack rotor cover 280 is removed.
  • the rack rotor cover 280 In the example of (A), the rack rotor cover 280 is removed from the right side surface SS7 of the operation module 4, and the analysis module 2C is connected.
  • the rack rotor cover 280 is attached as it is.
  • the external structural component 3 can be attached to and detached from the side surface of the operation module 4 to which the rack rotor cover 280 is attached.
  • the external appearance structural component 3g that is shared as the external structural component 44 can be attached to the left side surface SS8.
  • the positions of the mounting portions 72 and the corresponding mounting components 62 are positions other than the region of the rack rotor cover 280.
  • a special cover may be provided in an opening corresponding to a mechanism such as a disk on the side surface of various analysis modules.
  • FIG. 21 shows a structural example related to the attachment of the external structural component 3g on the side surface in the case of the analysis module 2C, for example, the right side surface SS5.
  • the partition plate 500 is provided at a height position in the Z direction indicated by the reference line Z5 in the Z direction.
  • the analysis module 2C roughly has an upper part 2Ca and a lower part 2Cb above and below the partition plate 500.
  • the upper part 2Ca has a reagent disk 13 and the like as a movable mechanism, and a part of the reagent disk 13 is visible on the side surface SS5. Substrates, components, and the like are visible in the lower portion 2Cb.
  • the mounting portion 72 (72c, 72d) of the analysis module 2C is composed of the same components as the mounting portion 72 (72a, 72b) of the operation module 4, and their height positions (reference lines Z2, Z6) are Schematically the same.
  • a front cover 510 is provided on the front surface of the analysis module 2C in the Y direction.
  • the front cover 510 is provided with a door that can be opened and closed (particularly a double door).
  • a hem cover 511 is provided below the front cover 510. At the time of maintenance of the analysis module 2C, an operator can open and close the door of the front cover 510 to perform maintenance work on components in the analysis module 2C.
  • the external structural component 3g can be attached as the external structural component 41 or the external structural component 43 to the right side surface SS5 of the analysis module 2C.
  • the left side surface SS7 (FIG. 3) of the analysis module 2C is arranged adjacent to the right side surface SS7 of the operation module 4, and is mechanically connected to each other.
  • the upper cover 520 is attached above the height position indicated by the reference line Z7 on the upper surface of the upper portion 2Ca of the analysis module 2C.
  • the upper cover 520 has a raised shape that covers components such as the reagent disk 13 and the sample dispensing mechanism 14 (FIG. 8) on the upper surface of the upper portion 2Ca and a space including them.
  • the upper cover 520 includes an opening / closing cover 520A.
  • the opening / closing cover 520A can be opened / closed in the Y direction according to a user operation, and has an interlock mechanism.
  • a hem cover (not shown) can be attached to the lower portion 2Cb below the height position indicated by the reference line Z8. Thereby, the caster mechanism 512, the adjuster mechanism 513, and the like disposed on the lower surface of the lower portion 2Cb are hidden, and the appearance can be further adjusted.
  • the analysis module 2D also has the same configuration as the analysis module 2C with respect to the configuration including the mounting portion 72 for the external structural component 3g. Also, in the case where the first common mode of FIG. 13 is applied, a configuration including the module-side mounting portion 72 similar to the above can be applied to the common external structural components 3e and 3f. Also, in the case of the simplex system shown in FIG. 12, the same configuration as described above can be applied to the shared external structural components 3a, 3b or 3c.
  • the operation module 4 the analysis module 2C, and the analysis module 2D, which are the modules constituting the automatic analyzer 1C and the like, include the mounting portion 72 for mounting the shared external structural component 3g. Having.
  • the mounting part 72 of each module is also commonly used as the same structure.
  • the upper and lower partition plates are provided at positions substantially close in the Z direction.
  • the height position of the reference line Z1 of the partition plate 400 of the operation module 4 in FIG. 19 and the height position of the reference line Z5 of the partition plate 500 of the analysis module 2C in FIG. 21 are substantially the same.
  • the movable mechanism is mainly mounted on the upper part of the module, and the non-movable mechanism is mainly mounted on the lower part. It is not desirable to provide the mounting portion 72 near the upper movable mechanism (for example, the rack rotor 200 in FIG. 19). Alternatively, a space or the like is required near the upper movable mechanism, and it may be difficult to provide the mounting portion 72.
  • the mounting portion 72 is provided at a lower position near the partition plate on the lower side surface of the module, for example, at the position of the reference line Z2 in FIG. 19 or the reference line Z6 in FIG. Is provided.
  • the external appearance structural component 3g of the second common system can be attached to the side surface of any type of module through the attaching portion 72 and the attaching component 62.
  • the same external structural component 3g can be attached to either the right side or the left side of the module through the attachment part 72 and the attachment part 62 through a right-left inversion or upside-down inversion relationship as shown in FIG.
  • the mounting portions are not located close to the top, bottom, left, and right sides and edges but are located closer to the inside than the sides of each module. 72 and a mounting part 62 are arranged.
  • the external structural component 3g is mounted on the side surface of the module, the mounting portion 72 and the mounting component 62 are hidden and cannot be seen. Therefore, in the embodiment, the external appearance of the device can be further improved in terms of external design.
  • FIG. 22 shows a structural example of the skirt cover 66 particularly in the external structural component 3g.
  • the external structural component 3g has a configuration in which the hem cover 66 can be attached and detached.
  • FIG. 22 is a perspective view showing, for example, the back surface of the right external structural component 41 (3g) attached to the right side surface SS5 (FIG. 3) of the analysis module 2C of the automatic analyzer 1C of FIG.
  • the external structural component 3g in FIG. 22 has a structure in which the hem cover 66 can be attached to and removed from the upper and lower sides of the main body 61.
  • FIG. 22 shows a state in which the hem cover 66 is attached to the lower side of the main body 61, corresponding to the case of the external structural component 3g attached to the right side surface of the module.
  • this external structural component 3g is attached to the left side surface of the module
  • the hem cover 66 is removed, the main body 61 is turned upside down, and the hem cover 66 is attached to a new lower side in that state. Is attached.
  • the upper side (indicated by the reference line C5) and the lower side (indicated by the reference line C6) of the main body 61 of the external structural component 3g in the Z direction are located at predetermined positions in the Y direction, for example, two front and rear positions.
  • Two screw hole components 64 are provided.
  • a generally rectangular plate-shaped hem cover 66 having a size corresponding to the lower side is disposed below the lower side of the main body 61.
  • the height of the hem cover 66 is adjusted to the height of the space between the lower surface of the module and the installation floor, and is also adjusted to the height of the hem cover of the front cover.
  • the hem cover 66 is attached to the lower side of the lower side of the main body 61 via a hem cover attaching portion 65.
  • a hem cover mounting portion 65 is fixed to a screw hole component 64 of the main body 61 by screwing.
  • the hem cover attaching portion 65 is, for example, a generally rectangular plate-shaped component.
  • the hem cover 66 is fixed to the hem cover mounting portion 65 by screwing.
  • the attachment and detachment of the hem cover 66 to and from the main body 61 are structured so that work can be performed from the back surface or the front surface of the external structural component 3.
  • the screw hole component 64 has a screw hole also exposed on the surface. The operator can attach and remove the hem cover 66 from the front side of the main body 61 by screwing.
  • the hem cover attaching portion 65 may be a portion integrated with the main body 61 or a portion integrated with the hem cover 66.
  • the means for attaching the hem cover 66 is not limited to screwing, and is applicable.
  • a mechanism that can bend or rotate the hem cover 66 toward the front side with respect to the main body 61 around the lower side may be provided.
  • FIG. 23 shows the arrangement relationship of the external structural components 3g including the skirt cover 66 of FIG. 22 arranged on the left and right sides of the module, corresponding to the second common mode.
  • FIG. 23A shows the front surface of the external structural component 3g arranged on the right side surface of the module
  • FIG. 23B shows the rear surface.
  • 5A and 5B show a state in which a hem cover 66 is attached to the lower side of the main body 61.
  • FIG. The upper side is the side where the point p4 is located, and the lower side is the side where the point p4 is not located.
  • the engagement portion 62B is located above the reference line C1.
  • (C) shows a state where the hem cover 66 is removed from the state of (B).
  • (D) shows the rear surface in a state where the main body 61 is turned upside down by rotating the main body 61 around the axis in the Y direction by 180 degrees to arrange the module on the left side surface of the module from the state of (C).
  • the attachment part 62 is also in a state of being turned upside down.
  • (E) shows a state in which the attachment part 62 is turned upside down from the state of (D) and the engagement part 62B is turned upward.
  • (E) shows a state where the hem cover 66 is attached to the side where the point p4, which is the new lower side of the main body 61, is located.
  • (F) shows the state of the surface corresponding to (E).
  • the hem cover 66 has a symmetric shape in the Y direction when viewed from the surface alone, and has a constant width before and after in the Y direction unlike the main body 61.
  • an asymmetric shape in the Y direction may be employed.
  • FIG. 24 is a perspective view showing a case where the external structural component 3g with the hem cover 66 is attached to the left side surface SS8 of the operation module 4.
  • A shows a state where the main body 61 and the hem cover 66 are attached.
  • B shows a state where the main body 61 is attached and the hem cover 66 is removed. In the state (B), the caster mechanism 412 and the adjuster mechanism 413 on the lower surface of the operation module 4 can be accessed.
  • the hem cover 66 is provided on the external structural component 3 for the following reasons.
  • the exterior structural component 3 is formed as a single component by an integral molding method including the portion covered with the hem cover, the second common mode cannot be realized.
  • the skirt portion of the external structural component disposed on the right side of the module when disposed on the left side of the module, comes to the upper side due to upside down. Therefore, in the embodiment, as shown in FIG. 22, a configuration is provided in which a skirt cover 66 is provided which can be attached to and detached from the upper and lower sides of the main body 61 of the external structural component 3g. As a result, the advantage of the presence of the skirt cover 66 is realized while achieving the second commonality.
  • the hem cover 66 can be removed while the main body 61 remains attached.
  • the hem cover 66 can be opened to the front side. This allows the operator to access the bottom of the module.
  • the caster mechanism 412, the adjuster mechanism 413, and the like on the lower surface of the lower portion 4B of the operation module 4 can be accessed.
  • the worker can adjust, for example, the horizontal position and height of the apparatus while the main body 61 of the external structural component 3g is attached. As described above, there is an advantage of easiness of work such as installation and maintenance of the apparatus.
  • the operator may provide both a configuration in which the external structural component 3 is only the main body 61 and the hem cover 66 is not attached, and a configuration in which the hem cover 66 is attached to the main body 61 as the type of the automatic analyzer 1. It is possible.
  • FIG. 25 schematically shows, for example, the relationship between the external structural component 3g (41), which is a side cover, and the upper cover 520 in the analysis module 2C of the automatic analyzer 1C by using the front surface (XY plane).
  • the right side surface SS5 of the analysis module 2C there is a space 2500 in which a skirt cover 66 and the like are provided from the installation surface SF0 to the upper position of the reference line Z8.
  • a mounting portion 72 is provided at a position corresponding to the reference line Z6 near the center in the Z direction.
  • the external structural component 3g is mounted by the mounting component 62 engaging with the mounting portion 72.
  • a part of the external structural component 3g is protruded above the upper surface SF1 of the upper portion 2Ca of the analysis module 2C.
  • the part protruding upward is indicated by a portion 2501.
  • the portion 2501 extends from the reference line Z7 to a height position indicated by the reference line Z9.
  • the above-described upper cover 520 is provided above the upper surface SF1 of the analysis module 2C.
  • the end of the upper cover 520 in the X direction is inside the position of the side surface SS1 and inside the upper part 2501 of the external structural component 3g.
  • the X-direction end of the upper cover 520 and the upper end portion 2501 of the external structural component 3g are arranged so as to overlap in the X-direction.
  • the upper end of the external structural component 3g may be up to the position of the reference line Z7 on the upper surface SF1. Further, the upper end of the external structural component 3g may be configured to extend to a position below the upper surface SF1. Further, as a modified example, there are a plurality of modules having different heights, and when the same external structural component 3 is attached to the side surface of each module, the range covering each side surface may be different. For example, when the analysis module 2C, 2D has a lower height position than the operation module 4, the external structural component 3g is at the same height position on the side surface of the operation module 4, and the side surface of the analysis module 2C, 2D. In this case, the external structural component 3g is at a height position above the upper surface.
  • the external structural component 3 (3e, 3f) in the first common system includes the main body 61 and a portion corresponding to the space 2500 of the skirt cover by one molding method or the like. It may be configured as a part.
  • the same external structural component 3 can be applied to a plurality of locations in various device configurations of a single system or a module assembly system.
  • the number of types of external appearance structural parts 3 can be reduced. Thereby, costs and logistics burdens such as manufacturing and management related to handling of a plurality of external structural components 3 required in various device configurations according to the single system or the module assembly system can be reduced. This also makes it easier to use and maintain the automatic analyzer.
  • the single system and the combination system are separate and common, and have the respective external structural components 3.
  • the size differs between the external structural component 31 of FIG. 1 and the external structural component 41 of FIG.
  • the present invention is not limited to this, and it is also possible to use the appearance structural component 3 that is shared between the single system and the combination system.
  • means such as screwing and hooks are applied to the configuration of the mounting part 62 of the external structural component 3 and the mounting part 72 on the module side, but the present invention is not limited to this.
  • a configuration using an elastic member without using a screw may be used, or a configuration using a slide-type fitting or the like may be used.
  • a configuration in which a projection (in other words, a projection) is provided on the module side and a corresponding hole (in other words, a recess) is provided on the appearance structural component 3 side may be adopted.
  • a configuration in which a projection is provided on the external structural component 3 side and a corresponding hole is provided on the module side is also possible.
  • FIG. 27A shows an external structural component 3g (41) attached to the right side surface SS5 of the analysis module 2C, for example, and FIG. 27B shows an external structural component 3g attached to the left side surface SS6 of the analysis module 2D.
  • the external structural component 3g (42) is shown.
  • the center position z1 in the Z direction in the main body 61 is indicated by a dashed line.
  • the side surface SS5 of the analysis module 2C for example, there is a partition plate above the position z1, and in the side surface SS6 of the analysis module 2D, there is a partition plate below the position z1.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is an automated analyzer for clinical testing that makes it possible to reduce the costs, and the like, associated with the handling of a plurality of exterior structural components necessary for various device configurations corresponding to a single-module method or module-assembly method. This automated analyzer (1) is configured from a single module or a combination of a plurality of modules. Each module is selected from a plurality of types of modules varying by specifications and/or analysis types. Each module may be, for example, a biological analysis module (for example, analysis module 2C) or an immunity analysis module (for example, analysis module 2D). The automated analyzer (1) has a universalized cover member (for example, exterior structural component 3g) that can be attached to and removed from a lateral surface of any of the plurality of modules. Each of the lateral surfaces of the modules has an attachment part at a position corresponding to the position of an attachment component of the cover member.

Description

自動分析装置Automatic analyzer
 本発明は、臨床検査用の自動分析装置の技術に関し、装置構成方式や外観構造に関する。 (4) The present invention relates to the technology of an automatic analyzer for clinical testing, and relates to a device configuration method and an external structure.
 臨床検査用の自動分析装置は、検体の成分を自動的に分析する機能を備える。自動分析は、定性および定量の分析である。この分析は、複数の種類の分析が存在する。分析の種類は、生化学分析、免疫分析、等が挙げられる。例えば、生化学分析は、血液等の検体について酵素等の成分を光学的に測定する分析である。自動分析装置は、分析の種類に応じて異なる必要な機構や部品を備える。 The automatic analyzer for clinical tests has a function to automatically analyze the components of the sample. Automated analysis is a qualitative and quantitative analysis. There are several types of this analysis. Examples of the type of analysis include biochemical analysis and immunoassay. For example, biochemical analysis is an analysis in which components such as enzymes are optically measured for a sample such as blood. The automatic analyzer has different necessary mechanisms and components depending on the type of analysis.
 従来の自動分析装置は、システム全体の装置構成方式として、単体方式やモジュール・アセンブリ方式(組合せ方式や複合型と記載する場合がある)がある。単体方式は、単一のモジュールまたは本体によって自動分析装置が構成される方式である。単体方式の自動分析装置は、1つのモジュールまたは本体に、制御部、操作部、分析部、検体搬送部等の各構成要素が統合的に実装されている。 Conventional automatic analyzers include a single system and a module assembly system (sometimes described as a combination system or a composite system) as the system configuration system of the entire system. The simplex system is a system in which an automatic analyzer is configured by a single module or a main body. In a single-unit automatic analyzer, components such as a control unit, an operation unit, an analysis unit, and a sample transport unit are integrally mounted on one module or main body.
 組合せ方式は、複数のモジュールの組合せ、集合によって自動分析装置が構成される方式である。組合せ方式の自動分析装置は、例えば、操作モジュールと、1つ以上の分析モジュールとの組合せで構成され、各モジュールが接続されて連携動作することで、自動分析機能が実現される。操作モジュールは、例えば、制御部および操作部が実装されている。分析モジュールは、例えば、生化学分析機能を持つ分析部を実装した生化学分析モジュールや、免疫分析機能を持つ分析部を実装した免疫分析モジュール等がある。組合せ方式の自動分析装置は、モジュールの組合せに応じた各タイプがある。また、自動分析装置は、分析項目の種類や同時分析可能な検体の数等に応じて、仕様や型式が異なる。 The combination method is a method in which an automatic analyzer is configured by combining and assembling a plurality of modules. The automatic analyzer of the combination system is composed of, for example, a combination of an operation module and one or more analysis modules, and an automatic analysis function is realized by connecting and operating the modules. The operation module includes, for example, a control unit and an operation unit. The analysis module includes, for example, a biochemical analysis module equipped with an analysis unit having a biochemical analysis function, an immune analysis module equipped with an analysis unit having an immune analysis function, and the like. There are various types of combination type automatic analyzers according to the combination of modules. In addition, the automatic analyzer has different specifications and models depending on the types of analysis items, the number of samples that can be simultaneously analyzed, and the like.
 上記自動分析装置に係わる先行技術例として、特開2018-21931号公報(特許文献1)が挙げられる。特許文献1には、検体搬送方法として、装置の複雑化や装置コストの上昇を抑制しつつ、緊急検体ラックを早急に測定できる旨が記載されている。特許文献1には、組合せ方式の自動分析装置の構成例が記載されている。この構成例では、搬送ラインに沿って隣接して配置された第1分析部および第2分析部を有する。 先行 As a prior art example relating to the automatic analyzer, JP-A-2018-21931 (Patent Document 1) is cited. Patent Literature 1 describes that as an example of a sample transport method, an urgent sample rack can be measured promptly while suppressing an increase in apparatus complexity and apparatus cost. Patent Literature 1 describes a configuration example of a combination-type automatic analyzer. In this configuration example, a first analyzer and a second analyzer are arranged adjacent to each other along the transport line.
特開2018-21931号公報JP 2018-21931 A
 自動分析装置は、主要なモジュールの他に、カバー等の外観構造部品を備える。外観構造部品は、モジュールが露出しないようにモジュールに対し取り付けられ、装置の外観を構成する。外観構造部品として、例えば、側面カバー、前面カバー、上部カバー等がある。例えば、最も外側に配置されるモジュールの側面には側面カバーが取り付けられる。外観構造部品の構成は、外観に影響するのみならず、利用者による臨床検査作業や保守等の作業の際にも作業のしやすさ等に影響する。 The automatic analyzer is equipped with external structural components such as covers in addition to the main modules. The external structural component is attached to the module so that the module is not exposed, and constitutes the external appearance of the device. Examples of the external structural component include a side cover, a front cover, and an upper cover. For example, a side cover is attached to the side of the outermost module. The configuration of the external structural components not only affects the external appearance, but also affects the ease of operation during a clinical inspection operation, a maintenance operation, and the like by the user.
 従来の自動分析装置は、各方式、各タイプの装置構成に応じて、1台の装置に対し、複数の異なる外観構造部品を有する。各外観構造部品は、固有の形状、サイズ、色、材質等を含むデザインを有する。単体方式および組合せ方式の自動分析装置は、複数の各々の仕様やタイプやモジュールに応じて、異なる複数の外観構造部品が必要である。複数の自動分析装置を含む全体でみると、事業者は、多くの種類および数の外観構造部品を取り扱う必要がある。例えば、組合せ方式の各タイプの自動分析装置における側面カバーの場合、各モジュールの左右の側面に応じて異なる少なくとも4種類以上の側面カバーが必要である。 The conventional automatic analyzer has a plurality of different appearance structural parts for one apparatus according to each system and each type of apparatus configuration. Each appearance structural component has a design including a unique shape, size, color, material, and the like. The single-system and combination-type automatic analyzers require a plurality of different external structural components according to a plurality of specifications, types, and modules. When viewed as a whole, including multiple automated analyzers, operators need to handle many types and numbers of exterior structural components. For example, in the case of a side cover in each type of automatic analyzer of the combination system, at least four or more types of side covers different depending on the left and right sides of each module are required.
 そのため、事業者による自動分析装置の製造から販売、設置や移動、保守等を含むサイクルにおいて、それらの複数の外観構造部品の製造や管理等が必要である。これは、製造や管理のコストやロジスティクス等において大きな負担となる。 Therefore, in a cycle including manufacturing, selling, installing, moving, and maintaining an automatic analyzer by a business operator, it is necessary to manufacture and manage a plurality of these external structural components. This imposes a heavy burden on manufacturing and management costs and logistics.
 本発明の目的は、臨床検査用の自動分析装置の技術に関して、単体方式やモジュール・アセンブリ方式に応じた各種の装置構成において必要な複数の外観構造部品の取り扱いに係わるコストやロジスティクスの負担を低減でき、自動分析装置の利用や保守等の作業容易性を高めることができる技術を提供することである。 An object of the present invention is to reduce the cost and logistics burden associated with handling a plurality of external structural components required for various types of device configurations according to a single system or a module assembly system with respect to the technology of an automatic analyzer for clinical testing. It is an object of the present invention to provide a technique capable of improving the workability of use and maintenance of an automatic analyzer.
 本発明のうち代表的な実施の形態は、臨床検査用の自動分析装置であって、以下に示す構成を有することを特徴とする。 の う ち A typical embodiment of the present invention is an automatic analyzer for a clinical test, having the following configuration.
 一実施の形態の自動分析装置は、単体のモジュールによって構成される臨床検査用の自動分析装置であって、前記モジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される1つのモジュールであり、前記複数の種類のモジュールの各モジュールの前面に対する側面に取り付けおよび取り外しが可能であるカバー部材を有し、前記カバー部材は、カバー本体の裏面に、取付部品を有し、前記各モジュールの側面には、前記取付部品を取り付けるための取付部を有し、前記カバー部材は、前記各モジュールの前面に対する右側の側面に取り付け可能である第1カバー部材と、前記各モジュールの前面に対する左側の側面に取り付け可能である第2カバー部材と、を有し、前記第1カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記右側の側面の位置に前記取付部が設けられ、前記第2カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記左側の側面の位置に前記取付部が設けられている。 An automatic analyzer according to an embodiment is an automatic analyzer for clinical tests constituted by a single module, wherein the module is a module from a plurality of types of modules that differ depending on at least one of a specification and an analysis type. A selected module, having a cover member that can be attached to and detached from a side surface of each of the plurality of types of modules with respect to a front surface of the module, wherein the cover member has a mounting component on a back surface of the cover body. A first cover member having a mounting portion for mounting the mounting component on a side surface of each of the modules, wherein the cover member is mountable on a right side surface with respect to a front surface of each of the modules; A second cover member attachable to a left side surface of the front surface of each module. The mounting portion is provided at a position of the right side surface of each module corresponding to the position of the mounting component, and the left side of each module corresponding to the position of the mounting component of the second cover member. The mounting portion is provided at the position of the side surface of the.
 一実施の形態の自動分析装置は、複数のモジュールの組合せによって構成される臨床検査用の自動分析装置であって、前記複数のモジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される複数のモジュールであり、前記複数の種類のモジュールの各モジュールの前面に対する側面に取り付けおよび取り外しが可能であるカバー部材を有し、前記カバー部材は、カバー本体の裏面に、取付部品を有し、前記各モジュールの側面には、前記取付部品を取り付けるための取付部を有し、前記カバー部材は、前記各モジュールの前面に対する右側の側面に取り付け可能である第1カバー部材と、前記各モジュールの前面に対する左側の側面に取り付け可能である第2カバー部材と、を有し、前記第1カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記右側の側面の位置に前記取付部が設けられ、前記第2カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記左側の側面の位置に前記取付部が設けられている。 An automatic analyzer according to one embodiment is an automatic analyzer for a clinical test configured by a combination of a plurality of modules, wherein the plurality of modules are different in a plurality depending on at least one of a specification and an analysis type. It is a plurality of modules selected from the types of modules, having a cover member that can be attached and detached to the side of the front of each of the plurality of types of modules, the cover member, the back surface of the cover body A first cover having a mounting part for mounting the mounting part on a side surface of each module, and the cover member being mountable on a right side surface with respect to a front surface of each module. A second cover member attachable to a left side surface of the module with respect to a front surface of the module. The module, wherein the mounting portion is provided at a position of the right side surface of each module corresponding to the position of the mounting component of the cover member, and the module is configured to correspond to the position of the mounting component of the second cover member. The mounting portion is provided at a position on the left side surface of the mounting member.
 本発明のうち代表的な実施の形態によれば、臨床検査用の自動分析装置の技術に関して、単体方式やモジュール・アセンブリ方式に応じた各種の装置構成において必要な複数の外観構造部品の取り扱いに係わるコストやロジスティクスの負担を低減でき、自動分析装置の利用や保守等の作業容易性を高めることができる。 According to a representative embodiment of the present invention, regarding the technology of an automatic analyzer for clinical testing, it is possible to handle a plurality of external structural components required in various device configurations according to a single system or a module assembly system. Related costs and logistics burden can be reduced, and workability such as use and maintenance of the automatic analyzer can be improved.
本発明の実施の形態の自動分析装置として、単体方式の第1タイプの装置構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a single-type first-type device configuration as an automatic analyzer according to an embodiment of the present invention. 本発明の実施の形態の自動分析装置として、単体方式の第2タイプの装置構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a second type of unitary system as an automatic analyzer according to an embodiment of the present invention. 本発明の実施の形態の自動分析装置として、組合せ方式の第1タイプの装置構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a combination type first type apparatus as an automatic analyzer according to an embodiment of the present invention. 本発明の実施の形態の自動分析装置として、組合せ方式の第2タイプの装置構成を示す図である。FIG. 2 is a diagram showing a configuration of a combination type second type apparatus as an automatic analyzer according to an embodiment of the present invention. 本発明の実施の形態の自動分析装置として、組合せ方式の第3タイプの装置構成を示す図である。It is a figure which shows the 3rd type apparatus structure of a combination system as an automatic analyzer of embodiment of this invention. 実施の形態の変形例の自動分析装置として、組合せ方式の第4タイプ、第5タイプの装置構成を示す図である。It is a figure which shows the 4th type and 5th type apparatus structure of a combination system as an automatic analyzer of the modification of embodiment. 実施の形態の自動分析装置で、外観構造部品の共通化方式について示す図である。FIG. 4 is a diagram illustrating a method of sharing appearance structural components in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、生化学分析部の基本構成を示す図である。FIG. 2 is a diagram illustrating a basic configuration of a biochemical analysis unit in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、免疫分析部の基本構成を示す図である。FIG. 3 is a diagram illustrating a basic configuration of an immune analyzer in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、組合せ方式の第1タイプの第1構成例を示す図である。FIG. 2 is a diagram illustrating a first configuration example of a first type of a combination system in the automatic analyzer according to the embodiment; 実施の形態の自動分析装置で、組合せ方式の第1タイプの第2構成例を示す図である。FIG. 3 is a diagram illustrating a second configuration example of the first type of the combination type in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、単体方式に関する外観構造部品の第1共通化および第2共通化の方式について示す図である。FIG. 3 is a diagram illustrating a first commonization method and a second commonization method of appearance structural components related to a single system in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、組合せ方式に関する外観構造部品の第1共通化の方式について示す図である。FIG. 4 is a diagram illustrating a first common use method of appearance structural components related to a combination method in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、組合せ方式に関する外観構造部品の第2共通化の方式について示す図である。FIG. 4 is a diagram illustrating a second common use method of appearance structural components regarding a combination method in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、右側の外観構造部品の構成を示す斜視図である。It is a perspective view showing composition of an external appearance structural part on the right in an automatic analyzer of an embodiment. 実施の形態の自動分析装置で、左側の外観構造部品の構成を示す斜視図である。FIG. 2 is a perspective view illustrating a configuration of a left external structural component in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、外観構造部品の取付部品の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a mounting component of an external structural component in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、第2共通化の場合の左右の外観構造部品の関係を示す図である。It is a figure which shows the relationship of the external appearance structural parts on the case of 2nd commonality in the automatic analyzer of embodiment. 実施の形態の自動分析装置で、操作モジュールの側面の取付部の構成例を示す斜視図である。FIG. 3 is a perspective view illustrating a configuration example of a mounting portion on a side surface of the operation module in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、操作モジュールの側面の取付部に外観構造部品を取り付けた状態を示す斜視図である。It is a perspective view showing the state where external appearance structural parts were attached to the attachment part of the side of the operation module in the automatic analyzer of an embodiment. 実施の形態の自動分析装置で、分析モジュールの側面の取付部の構成例を示す斜視図である。FIG. 3 is a perspective view illustrating a configuration example of a mounting portion on a side surface of an analysis module in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、外観構造部品の詳細構成例を示す斜視図である。FIG. 2 is a perspective view showing a detailed configuration example of an external structural component in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、外観構造部品の詳細構成例の場合の、左右の外観構造部品の関係を示す図である。FIG. 4 is a diagram illustrating a relationship between left and right external structural components in the case of a detailed configuration example of external structural components in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、操作モジュールの側面の取付部に外観構造部品を取り付けた状態における、裾カバーの有無の状態を示す斜視図である。FIG. 5 is a perspective view showing a state of the presence or absence of a hem cover in a state in which an external structural component is mounted on a mounting portion on a side surface of an operation module in the automatic analyzer according to the embodiment. 実施の形態の自動分析装置で、分析モジュールの側面カバーと上部カバーとの配置関係等を示す図である。FIG. 3 is a diagram illustrating an arrangement relationship between a side cover and an upper cover of an analysis module in the automatic analyzer according to the embodiment; 実施の形態の変形例の自動分析装置における、外観構造部品の取付部品の構成例を示す図である。It is a figure showing the example of composition of the attaching part of the appearance structural parts in the automatic analyzer of the modification of an embodiment. 実施の形態の変形例の自動分析装置における、各モジュールの側面の取付部および外観構造部品の取付部品の配置関係について示す図である。FIG. 13 is a diagram illustrating a positional relationship between a mounting portion on a side surface of each module and a mounting component of an external structural component in an automatic analyzer according to a modification of the embodiment. 比較例の自動分析装置における、単体方式の第1タイプおよび第2タイプにおける外観構造部品の構成例を示す図である。It is a figure which shows the example of a structure of the external structure structural component in the 1st type and 2nd type of a single system in the automatic analyzer of a comparative example. 比較例の自動分析装置における、組合せ方式の第1タイプ、第2タイプ、および第3タイプにおける外観構造部品の構成例を示す図である。It is a figure which shows the example of a structure of the external structure structural component in the 1st type, 2nd type, and 3rd type of a combination system in the automatic analyzer of a comparative example. 実施の形態の変形例の自動分析装置における、組合せ方式の自動分析装置に関する他の外観構造部品の第2共通化方式の例を示す図である。It is a figure which shows the example of the 2nd standardization system of other external structural components regarding the automatic analyzer of a combination system in the automatic analyzer of the modification of embodiment. 実施の形態の変形例の自動分析装置における、組合せ方式の他のタイプの自動分析装置に関して外観構造部品の第2共通化方式を適用した場合を示す図である。FIG. 14 is a diagram showing a case where a second common method of appearance structural components is applied to another type of automatic analyzer of the combination type in the automatic analyzer of a modification of the embodiment. 実施の形態の変形例の自動分析装置における、操作モジュールの構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of an operation module in an automatic analyzer according to a modification of the embodiment.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、繰り返しの説明は省略する。なお、説明上、X方向、Y方向、Z方向を用いる。X方向およびY方向は、水平面を構成する2つの方向であり、X方向は、装置の前面に対する左右方向や幅方向に対応し、Y方向は、装置の前後方向や奥行き方向に対応する。Z方向は、鉛直方向であり、装置の上下方向、高さ方向に対応する。装置の前面は、利用者が標準的な利用位置で正対する面である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for describing the embodiments, the same portions are denoted by the same reference numerals in principle, and repeated description will be omitted. In the description, the X direction, the Y direction, and the Z direction are used. The X direction and the Y direction are two directions constituting a horizontal plane. The X direction corresponds to the left-right direction and the width direction with respect to the front surface of the device, and the Y direction corresponds to the front-rear direction and the depth direction of the device. The Z direction is a vertical direction, and corresponds to the vertical direction and the height direction of the device. The front of the device is the surface that the user faces directly at the standard usage position.
 [課題等]
 前提技術や課題等について補足説明する。図28および図29は、実施の形態に対する比較例の自動分析装置における外観構造部品の構成例を示す。図28は、単体方式の自動分析装置における上面(X-Y面)の構成概要を示す。図28の(A)は、第1タイプとして生化学分析用の自動分析装置91Aの場合を示す。図28の(B)は、第2タイプとして免疫分析用の自動分析装置91Bの場合を示す。
[Issues, etc.]
Supplementary explanation of the prerequisite technologies and issues will be given. FIG. 28 and FIG. 29 show configuration examples of external structural components in an automatic analyzer according to a comparative example with respect to the embodiment. FIG. 28 shows an outline of the configuration of the upper surface (XY plane) in a single-unit automatic analyzer. FIG. 28A shows a case of the automatic analyzer 91A for biochemical analysis as the first type. FIG. 28B shows a case of an automatic analyzer 91B for immunoassay as the second type.
 図28の(A)で、自動分析装置91Aは、主に、生化学分析用の分析モジュール90Aで構成されている。分析モジュール90Aは、制御部、操作部、分析部(特に生化学分析部)、検体搬送部等の構成要素が統合的に実装されている。自動分析装置91Aは、外観構造部品93として、分析モジュール90Aの側面(Y-Z面)に取り付けられる側面カバーである外観構造部品93-1,93-2を有する。分析モジュール90Aの右側の側面s1に、右側の外観構造部品93-1が取り付けられ、分析モジュール90Aの左側の側面s2に、左側の外観構造部品93-2が取り付けられている。これらの2つの外観構造部品93-1,93-2は、異なる固有の形状等を持つ異なる部品であり、種類の違いをわかりやすく示すために、記号A,Bでも示す。 で In FIG. 28A, the automatic analyzer 91A mainly includes an analysis module 90A for biochemical analysis. In the analysis module 90A, components such as a control unit, an operation unit, an analysis unit (particularly, a biochemical analysis unit), and a sample transport unit are integrally mounted. The automatic analyzer 91A has, as the appearance structural component 93, appearance structural components 93-1 and 93-2, which are side covers attached to the side surface (YZ plane) of the analysis module 90A. The right exterior structure component 93-1 is attached to the right side surface s1 of the analysis module 90A, and the left exterior structure component 93-2 is attached to the left side surface s2 of the analysis module 90A. These two external structural components 93-1 and 93-2 are different components having different specific shapes and the like, and are also denoted by symbols A and B in order to clearly show the difference in type.
 図28の(B)で、自動分析装置91Bは、主に、免疫分析用の分析モジュール90Bで構成されている。分析モジュール90Bは、制御部、操作部、分析部(特に免疫分析部)、検体搬送部等の構成要素が統合的に実装されている。自動分析装置91Bは、外観構造部品93として、分析モジュール90Bの側面に取り付けられる側面カバーである外観構造部品93-3,93-4を有する。分析モジュール90Bの右側の側面s3に、右側の外観構造部品93-3が取り付けられ、分析モジュール90Bの左側の側面s4に、左側の外観構造部品93-4が取り付けられている。これらの2つの外観構造部品93-3,93-4は、異なる固有の形状等を持つ異なる部品であり、わかりやすく示すために、記号C,Dでも示す。 で In FIG. 28B, the automatic analyzer 91B mainly comprises an analysis module 90B for immunological analysis. In the analysis module 90B, components such as a control unit, an operation unit, an analysis unit (particularly, an immune analysis unit), and a sample transport unit are integrally mounted. The automatic analyzer 91B has, as the appearance structural component 93, appearance structural components 93-3 and 93-4, which are side covers attached to the side surfaces of the analysis module 90B. The right exterior structure component 93-3 is attached to the right side surface s3 of the analysis module 90B, and the left exterior structure component 93-4 is attached to the left side surface s4 of the analysis module 90B. These two external structural components 93-3 and 93-4 are different components having different specific shapes and the like, and are also denoted by symbols C and D for easy understanding.
 上記のように、比較例の単体方式の第1タイプの自動分析装置91Aおよび第2タイプの自動分析装置91Bは、外観構造部品93として、4種類{A,B,C,D}の外観構造部品93-1~93-4が必要である。単体の分析モジュールの種類がさらに増える場合には、その種類に応じた外観構造部品93が必要である。 As described above, the first-type automatic analyzer 91A and the second-type automatic analyzer 91B of the simplex system of the comparative example have four types of {A, B, C, D} external structure as the external structural component 93. Parts 93-1 to 93-4 are required. When the type of a single analysis module further increases, the appearance structural parts 93 corresponding to the type are required.
 図29は、組合せ方式の自動分析装置における上面(X-Y面)の構成概要を示す。図29の(A)は、第1タイプの自動分析装置91Cの場合を示す。図29の(B)は、第2タイプの自動分析装置91Dの場合を示す。図29の(C)は、第3タイプの自動分析装置91Eの場合を示す。 FIG. 29 shows an outline of the configuration of the upper surface (XY plane) in the automatic analyzer of the combination system. FIG. 29A shows the case of the first type automatic analyzer 91C. FIG. 29B shows the case of the second type automatic analyzer 91D. FIG. 29C shows the case of the third type automatic analyzer 91E.
 図29の(A)で、自動分析装置91Cは、主に、操作モジュール94と、生化学分析用の分析モジュール92Aと、免疫分析用の分析モジュール92Bとで構成されている。X方向で中央に配置された操作モジュール94に対し、右側に分析モジュール92A、左側に分析モジュール92Bが配置されている。 29A, the automatic analyzer 91C mainly includes an operation module 94, an analysis module 92A for biochemical analysis, and an analysis module 92B for immunoassay. With respect to the operation module 94 arranged at the center in the X direction, an analysis module 92A is arranged on the right side, and an analysis module 92B is arranged on the left side.
 操作モジュール94は、制御部、操作部、検体搬送部等の構成要素が実装されている。分析モジュール92Aは、生化学分析用の分析部が実装されている。分析モジュール92Bは、免疫分析用の分析部が実装されている。分析部は、分注によって検体と試薬とを混合した反応液を作成し、光度計等を用いて反応液を測定する部分であり、検体分注機構や試薬分注機構等を備える。 The operation module 94 includes components such as a control unit, an operation unit, and a sample transport unit. The analysis module 92A includes an analysis unit for biochemical analysis. The analysis module 92B includes an analysis unit for immunological analysis. The analysis unit is a part for preparing a reaction solution in which a sample and a reagent are mixed by dispensing and measuring the reaction solution using a photometer or the like, and includes a sample dispensing mechanism, a reagent dispensing mechanism, and the like.
 自動分析装置91Cは、外観構造部品93として、分析モジュール92Aの右側の側面s5に取り付けられる側面カバーである外観構造部品93-5と、分析モジュール92Bの左側の側面s6に取り付けられる側面カバーである外観構造部品93-6とを有する。2つの外観構造部品93-5,93-6は、形状等が異なる部品であり、記号E,Fでも示す。 The automatic analyzer 91C is an external structural component 93-5, which is a side cover attached to the right side s5 of the analysis module 92A, as the external structural component 93, and a side cover attached to the left side s6 of the analysis module 92B. And an external structural component 93-6. The two external structural components 93-5 and 93-6 are components having different shapes and the like, and are also indicated by symbols E and F.
 図29の(B)で、自動分析装置91Dは、主に、操作モジュール94と、生化学分析用の分析モジュール92Aとで構成されている。操作モジュール94に対し、X方向で右側に分析モジュール92Aが配置されている。自動分析装置91Dは、外観構造部品93として、分析モジュール92Aの右側の側面s5に取り付けられる側面カバーである外観構造部品93-5と、操作モジュール94の左側の側面s8に取り付けられる側面カバーである外観構造部品93-7とを有する。2つの外観構造部品93-5,93-7は、形状等が異なる部品であり、記号E,Gでも示す。なお、(A)の分析モジュール92Aと(B)の分析モジュール92Aとは同じであるから、同じ種類{E}の外観構造部品93-5が適用できる。 In FIG. 29B, the automatic analyzer 91D mainly includes an operation module 94 and an analysis module 92A for biochemical analysis. The analysis module 92A is arranged on the right side in the X direction with respect to the operation module 94. The automatic analyzer 91D includes, as the external structural components 93, an external structural component 93-5, which is a side cover attached to the right side s5 of the analysis module 92A, and a lateral cover attached to the left lateral s8 of the operation module 94. And an external structural component 93-7. The two external structural components 93-5 and 93-7 are components having different shapes and the like, and are also denoted by symbols E and G. Since the analysis module 92A of (A) and the analysis module 92A of (B) are the same, the external structural component 93-5 of the same type {E} can be applied.
 図29の(C)で、自動分析装置91Eは、主に、操作モジュール94と、免疫分析用の分析モジュール92Bとで構成されている。操作モジュール94に対し、X方向で左側に分析モジュール92Bが配置されている。自動分析装置91Eは、外観構造部品93として、分析モジュール92Bの左側の側面s6に取り付けられる側面カバーである外観構造部品93-6と、操作モジュール94の右側の側面s7に取り付けられる側面カバーである外観構造部品93-8とを有する。2つの外観構造部品93-6,93-8は、形状等が異なる部品であり、記号F,Hでも示す。なお、(A)の分析モジュール92Bと(C)の分析モジュール92Bとは同じであるから、同じ種類{F}の外観構造部品93-6が適用できる。 In FIG. 29C, the automatic analyzer 91E mainly includes an operation module 94 and an analysis module 92B for immunological analysis. The analysis module 92B is disposed on the left side of the operation module 94 in the X direction. The automatic analyzer 91E is an external structural component 93-6, which is a side cover attached to the left side s6 of the analysis module 92B, as the external structural component 93, and a side cover attached to the right side s7 of the operation module 94. And an external structural component 93-8. The two external structural components 93-6 and 93-8 are components having different shapes and the like, and are also indicated by symbols F and H. Since the analysis module 92B of (A) and the analysis module 92B of (C) are the same, the external structural component 93-6 of the same type {F} can be applied.
 上記のように、比較例の組合せ方式の第1タイプの自動分析装置91C、第2タイプの自動分析装置91D、および第3タイプの自動分析装置91Eは、外観構造部品93として、4種類{E,F,G,H}の外観構造部品93(93-5~93-8)が必要である。4種類の外観構造部品93は、分析モジュール92Aの右側の外観構造部品93-5、分析モジュール92Bの左側の外観構造部品93-6、操作モジュール4の右側の外観構造部品93-8、および操作モジュール4の左側の外観構造部品93-7である。組合せ可能なモジュールの種類がさらに増える場合には、その種類に応じて必要な外観構造部品93の種類が増える。 As described above, the first-type automatic analyzer 91C, the second-type automatic analyzer 91D, and the third-type automatic analyzer 91E of the combination method of the comparative example have four kinds of external structural components 93 as the appearance structural parts 93. , F, G, H} are required for the external structural parts 93 (93-5 to 93-8). The four types of external structural components 93 include an external structural component 93-5 on the right side of the analysis module 92A, a left external structural component 93-6 on the left side of the analysis module 92B, an external structural component 93-8 on the right side of the operation module 4, and operation. This is the external structural component 93-7 on the left side of the module 4. When the types of modules that can be combined further increase, the types of necessary external structural components 93 increase according to the types.
 上記のように、単体方式および組合せ方式の自動分析装置は、仕様やタイプ毎、モジュール毎に、複数の外観構造部品93が必要である。各タイプの自動分析装置を構成するための各モジュールは、仕様や分析種類、および機能の実装に応じて、形状やサイズ、側面や前面の構造等が異なる。そのため、それらに応じた固有の形状等を持つ複数の種類の外観構造部品93が必要となる。複数の自動分析装置を含む全体でみると、事業者は、多くの種類および対応する数の外観構造部品93を取り扱う必要があり、それらの複数の外観構造部品93の製造や管理等が必要である。これは、事業者によるモジュールおよび外観構造部品の製造や管理のコストやロジスティクス等において大きな負担となる。利用者の環境に新たに自動分析装置を設置する場合や、自動分析装置の構成を変更する場合や、自動分析装置を撤去する場合等には、事業者や利用者による保守作業が必要である。その保守作業の際にも、多くの外観構造部品を区別して扱わなければならないので、作業者の負担が大きい。 As described above, the automatic analyzers of the single type and the combination type require a plurality of external structural components 93 for each specification, type, and module. Each module for configuring each type of automatic analyzer has a different shape, size, side and front structure, etc., according to specifications, analysis types, and implementation of functions. Therefore, a plurality of types of external structural components 93 having a specific shape or the like corresponding to them are required. When viewed as a whole including a plurality of automatic analyzers, the business operator needs to handle many types and a corresponding number of appearance structural parts 93, and it is necessary to manufacture and manage the plurality of appearance structural parts 93. is there. This imposes a heavy burden on the cost and logistics of manufacturing and managing modules and external structural components by the business operator. When installing a new automatic analyzer in the user's environment, changing the configuration of the automatic analyzer, removing the automatic analyzer, etc., maintenance work by the operator or the user is required. . Even during the maintenance work, many external structural components must be handled separately, which imposes a heavy burden on the operator.
 また、組合せ方式の自動分析装置では、組合せに応じた複数のタイプの装置構成が可能であり、利用者のニーズに応じてタイプの選択や変更が可能である。しかしながら、各タイプの装置構成に応じて、不要となる外観構造部品が生じる場合や、新たに必要となる外観構造部品が生じる場合がある。これらの場合にも、その外観構造部品に関する管理のコストやロジスティクスにおいて負担が生じる。例えば、図29の(B)の第2タイプの自動分析装置91Dから、図29の(A)の第1タイプの自動分析装置91Cに変更される場合、操作モジュール94の一方の側面s8に取り付けられていた外観構造部品93-7が不要となり、追加で接続された分析モジュール92Bの一方の側面s6に新たに取り付ける外観構造部品93-6が必要となる。 In addition, in the combination type automatic analyzer, a plurality of types of device configurations can be configured according to the combination, and the type can be selected or changed according to the needs of the user. However, depending on the configuration of each type of device, unnecessary external structural components may be generated, or new external structural components may be required. In these cases as well, a burden is imposed on management costs and logistics for the external structural components. For example, when the automatic analyzer 91D of the second type shown in FIG. 29B is changed to the automatic analyzer 91C of the first type shown in FIG. 29A, it is attached to one side s8 of the operation module 94. The external structural component 93-7 that has been used is unnecessary, and the external structural component 93-6 that is newly attached to one side s6 of the additionally connected analysis module 92B is required.
 (実施の形態)
 図1~図32を用いて、本発明の実施の形態の自動分析装置について説明する。実施の形態の自動分析装置は、単体方式の各タイプの自動分析装置と、モジュール・アセンブリ方式の各タイプの自動分析装置とを有する。これらの各タイプの自動分析装置は、モジュールや外観構造部品の選択や組合せに応じて構成される。単体方式の各タイプの自動分析装置を構成するモジュールまたは本体は、事業者が提供する仕様、分析種類の少なくともいずれかに応じて異なる単体方式用の複数の種類のモジュールまたは本体から選択される1つのモジュールまたは本体である。組合せ方式の各タイプの自動分析装置を構成する複数のモジュールは、事業者が提供する仕様、分析種類の少なくともいずれかに応じて異なる組合せ方式用の複数の種類のモジュールから選択される複数のモジュールである。各タイプの自動分析装置は、複数個の外観構造部品として少なくとも側面カバーが取り付けられる。実施の形態における各タイプの自動分析装置は、複数の箇所に取り付けられる複数個の外観構造部品について、共通化の仕組みを有する。各タイプの自動分析装置は、複数の箇所の外観構造部品が、共通化された少ない種類の外観構造部品を用いて構成される。事業者は、共通化された外観構造部品を用いて、各タイプの自動分析装置における好適な外観を容易に構成できる。各タイプの自動分析装置を含む全体は、外観構造部品とモジュール側の構造とを含め、共通化方式として設計されている。これにより、事業者および利用者は、複数の各タイプの自動分析装置に関して、少ない種類の外観構造部品を扱えばよく、製造や管理のコストやロジスティクスの負担が低減される。
(Embodiment)
An automatic analyzer according to an embodiment of the present invention will be described with reference to FIGS. The automatic analyzer according to the embodiment has an automatic analyzer of each type of a single type and an automatic analyzer of each type of a module assembly type. These types of automatic analyzers are configured according to the selection and combination of modules and external structural components. A module or a main body constituting each type of automatic analyzer of the single system is selected from a plurality of types or modules of the single system which are different depending on at least one of specifications and analysis types provided by the business operator. One module or body. A plurality of modules constituting each type of automatic analyzer of the combination method are a plurality of modules selected from a plurality of types of modules for different combination methods according to at least one of the specifications and analysis types provided by the provider. It is. In each type of automatic analyzer, at least a side cover is attached as a plurality of external structural components. Each type of automatic analyzer according to the embodiment has a common mechanism for a plurality of external structural components attached to a plurality of locations. In each type of automatic analyzer, appearance structural components at a plurality of locations are configured by using a small number of common types of appearance structural components. The business operator can easily configure a suitable external appearance in each type of automatic analyzer using the common external appearance structural parts. The whole including each type of automatic analyzer is designed as a common system including the appearance structural parts and the structure on the module side. Thus, the business operator and the user only need to handle a small number of types of external structural components with respect to the plurality of types of automatic analyzers, thereby reducing manufacturing and management costs and logistics loads.
 [自動分析装置(1)-単体方式]
 図1および図2は、実施の形態の単体方式の自動分析装置1の概要の斜視図を示す。図1は、単体方式の第1タイプとして生化学分析用の自動分析装置1Aを示す。図2は、単体方式の第2タイプとして、免疫分析用の自動分析装置1Bを示す。なお、図1等では、わかりやすいように、モジュールと外観構造部品3との間に隙間を設けて図示しているが、実装例では隙間無く配置可能である。また、図1等では、上部カバー等の図示を省略している。
[Automatic analyzer (1)-Single system]
FIG. 1 and FIG. 2 are schematic perspective views of a single-unit automatic analyzer 1 according to an embodiment. FIG. 1 shows an automatic analyzer 1A for biochemical analysis as a first type of the simplex system. FIG. 2 shows an automatic analyzer 1B for immunoassay as a second type of the simplex system. In FIG. 1 and the like, a gap is provided between the module and the external structural component 3 for easy understanding, but in the mounting example, the module can be arranged without a gap. In FIG. 1 and the like, illustration of an upper cover and the like is omitted.
 図1で、自動分析装置1Aは、主に、生化学分析用の分析モジュール2Aで構成されている。分析モジュール2Aには、制御部、操作部、生化学分析機能を持つ分析部、検体搬送部、等の各構成要素が実装されている。分析モジュール2AのX方向の右側の側面SS1および左側の側面SS2には、外観構造部品3が取り付けられている。外観構造部品3は、右側の外観構造部品31と、左側の外観構造部品32とがある。後述の第1共通化方式の場合には、外観構造部品31は、右側共通の外観構造部品3aが適用され、外観構造部品32は、左側共通の外観構造部品3bが適用される。後述の第2共通化方式の場合には、外観構造部品31および外観構造部品32は、左右共通の外観構造部品3cが適用される。 で In FIG. 1, the automatic analyzer 1A mainly includes an analysis module 2A for biochemical analysis. Each component such as a control unit, an operation unit, an analysis unit having a biochemical analysis function, a sample transport unit, and the like is mounted on the analysis module 2A. The external structural component 3 is attached to the right side surface SS1 and the left side surface SS2 in the X direction of the analysis module 2A. The external structural components 3 include an external structural component 31 on the right and an external structural component 32 on the left. In the case of a first common method described later, the external structural component 31 is applied with the external common structural component 3a on the right side, and the external structural component 32 is applied with the external common structural component 3b on the left side. In the case of the second common method described later, the external structural component 31 and the external structural component 32 use the external structural component 3c common to the left and right.
 図2で、自動分析装置1Bは、主に、免疫分析用の分析モジュール2Bで構成されている。分析モジュール2Bには、制御部、操作部、免疫分析機能を持つ分析部、検体搬送部、等の各構成要素が実装されている。分析モジュール2BのX方向の右側の側面SS3および左側の側面SS4には、外観構造部品3が取り付けられている。外観構造部品3は、右側の外観構造部品33と、左側の外観構造部品34とがある。後述の第1共通化方式の場合には、外観構造部品33は、右側共通の外観構造部品3aが適用され、外観構造部品34は、左側共通の外観構造部品3bが適用される。後述の第2共通化方式の場合には、外観構造部品33および外観構造部品34は、左右共通の外観構造部品3cが適用される。 In FIG. 2, the automatic analyzer 1B mainly includes an analysis module 2B for immunological analysis. Each component such as a control unit, an operation unit, an analysis unit having an immune analysis function, and a sample transport unit is mounted on the analysis module 2B. The external structural component 3 is attached to the right side surface SS3 and the left side surface SS4 in the X direction of the analysis module 2B. The external structural component 3 includes a right external structural component 33 and a left external structural component 34. In the case of the first common method described later, the external structural component 33 is applied with the external common structural component 3a on the right side, and the external structural component 34 is applied with the external common structural component 3b on the left side. In the case of the later-described second common mode, the external structural component 33 is applied to the external structural component 33 and the external structural component 34 that are common to the left and right.
 外観構造部品3は、モジュールの最も外側に取り付けられ、外観を構成するカバー部材であり、実施の形態では特にモジュールの側面に取り付けられる側面カバーである。他の外観構造部品としては、モジュールの前面に取り付けられる前面カバーや、モジュールの上面を覆うように取り付けられる上部カバーがある。外観構造部品3は、モジュールの側面の機構や部品が露出しないように、モジュールの側面を覆うように取り付けられる。これにより、安全性が確保される。また、外観構造部品3は、自動分析装置1の温度制御、放熱性能等も考慮して、通気や密閉等の構造が設計されている。外観構造部品3は、自動分析装置1の複数の箇所に対し、共通して取り付けおよび取り外しが可能である互換性を持つ部品であり、種類毎に同一の形状やサイズ等を持つ部品である。 The external structural component 3 is a cover member that is attached to the outermost part of the module and forms an external appearance. In the embodiment, the external structural component 3 is a side cover that is attached to a side surface of the module. Other external structural components include a front cover attached to the front of the module and an upper cover attached to cover the top of the module. The external structural component 3 is attached so as to cover the side surface of the module so that the mechanisms and components on the side surface of the module are not exposed. Thereby, safety is ensured. The external structural component 3 is designed to have a structure such as ventilation and sealing in consideration of the temperature control, heat radiation performance, and the like of the automatic analyzer 1. The appearance structural parts 3 are interchangeable parts that can be attached and detached in common to a plurality of locations of the automatic analyzer 1, and have the same shape and size for each type.
 [自動分析装置(2)-モジュール・アセンブリ方式]
 図3~図5は、実施の形態の自動分析装置1である、モジュール・アセンブリ方式(組合せ方式、複合型)の自動分析装置1の概要構成の斜視図を示す。
[Automatic analyzer (2)-module assembly method]
FIG. 3 to FIG. 5 are perspective views of a schematic configuration of a module assembly type (combination type, composite type) automatic analyzer 1 which is the automatic analyzer 1 of the embodiment.
 図3は、第1タイプの自動分析装置1Cを示す。自動分析装置1Cは、主に、操作モジュール4、生化学分析用の分析モジュール2C、免疫分析用の分析モジュール2Dで構成されている。分析モジュール2Cは、検体に対し分注や測定を含む生化学分析を行うモジュールである。分析モジュール2Dは、検体に対し分注や測定を含む免疫分析を行うモジュールである。 FIG. 3 shows a first type automatic analyzer 1C. The automatic analyzer 1C mainly includes an operation module 4, an analysis module 2C for biochemical analysis, and an analysis module 2D for immunoassay. The analysis module 2C is a module that performs biochemical analysis including dispensing and measurement on a sample. The analysis module 2D is a module that performs immunological analysis including dispensing and measurement on a sample.
 第1タイプの自動分析装置1Cは、特に、X方向で中央に操作モジュール4が配置され、操作モジュール4の右側の側面SS7に対し右側に分析モジュール2Cが配置され、操作モジュール4の左側の側面SS8に対し左側に分析モジュール2Dが配置されている。 In the first type of automatic analyzer 1C, in particular, the operation module 4 is disposed at the center in the X direction, the analysis module 2C is disposed on the right side of the right side SS7 of the operation module 4, and the left side of the operation module 4 is provided. The analysis module 2D is arranged on the left side of SS8.
 操作モジュール4は、制御部、操作部、検体搬送部等の構成要素が実装されている。本例では、操作モジュール4は、特にタッチパネル5を有する。タッチパネル5は、制御部および操作部の一部を構成している。 The operation module 4 includes components such as a control unit, an operation unit, and a sample transport unit. In this example, the operation module 4 particularly has a touch panel 5. The touch panel 5 forms a part of the control unit and the operation unit.
 また、本例では、検体搬送機構に関しては、後述の第1構成例(図10)の場合を示している。この場合、操作モジュール4、分析モジュール2C、および分析モジュール2Dの背面側に、検体搬送部6が実装されている。検体搬送部6は、モジュール間で検体ラック7を搬送する部分である。 In this example, the sample transport mechanism is shown in the case of a first configuration example (FIG. 10) described later. In this case, the sample transport unit 6 is mounted on the back side of the operation module 4, the analysis module 2C, and the analysis module 2D. The sample transport section 6 is a section that transports the sample rack 7 between modules.
 分析モジュール2Cには、試薬ディスク、反応ディスク、検体分注機構、試薬分注機構等が実装されている。分析モジュール2Dには、試薬ディスク、インキュベータ、検体分注機構、試薬分注機構等が実装されている。 (4) A reagent disk, a reaction disk, a sample dispensing mechanism, a reagent dispensing mechanism, and the like are mounted on the analysis module 2C. In the analysis module 2D, a reagent disk, an incubator, a sample dispensing mechanism, a reagent dispensing mechanism, and the like are mounted.
 自動分析装置1Cは、外観構造部品3である側面カバーとして、外観構造部品41,42を有する。分析モジュール2Cの右側の側面SS5に外観構造部品41が取り付けられ、分析モジュール2Dの左側の側面SS6に外観構造部品42が取り付けられている。 The automatic analyzer 1C has the appearance structural components 41 and 42 as the side surface cover that is the appearance structural component 3. The external structural component 41 is attached to the right side surface SS5 of the analysis module 2C, and the external structural component 42 is attached to the left side surface SS6 of the analysis module 2D.
 後述の第1共通化方式の場合には、外観構造部品41は、右側共通の外観構造部品3eが適用され、外観構造部品42は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品41および外観構造部品42は、左右共通の外観構造部品3gが適用される。 In the case of the first common method described later, the external structural component 41 employs the external common structural component 3e on the right side, and the external structural component 42 employs the external common structural component 3f on the left side. In the case of the later-described second common use method, an external structural component 3g common to the left and right is applied to the external structural component 41 and the external structural component 42.
 なお、変形例の自動分析装置としては、操作モジュール4の右側に分析モジュール2Dが配置され、左側に分析モジュール2Cが配置される構成も同様に可能である。 In the automatic analyzer according to the modification, a configuration in which the analysis module 2D is disposed on the right side of the operation module 4 and the analysis module 2C is disposed on the left side is also possible.
 図4は、第2タイプの自動分析装置1Dを示す。自動分析装置1Dは、主に、操作モジュール4と、生化学分析用の分析モジュール2Cとで構成されている。第2タイプの自動分析装置1Dは、X方向で、操作モジュール4の例えば右側の側面SS7に対し、右側に分析モジュール2Cが配置されている。第2タイプの構成は、第1タイプの構成から、分析モジュール2Dを切り離した構成に相当する。自動分析装置1Dは、外観構造部品3として、外観構造部品43,44を有する。分析モジュール2Cの右側の側面SS5に、右側の外観構造部品43が取り付けられている。操作モジュール4の左側の側面SS8に、左側の外観構造部品44が取り付けられている。 FIG. 4 shows a second type of automatic analyzer 1D. The automatic analyzer 1D mainly includes an operation module 4 and an analysis module 2C for biochemical analysis. In the second type of automatic analyzer 1D, an analysis module 2C is disposed on the right side of the operation module 4, for example, on the right side surface SS7 in the X direction. The second type configuration corresponds to a configuration in which the analysis module 2D is separated from the first type configuration. The automatic analyzer 1 </ b> D has appearance structural parts 43 and 44 as the appearance structural parts 3. The right exterior structure component 43 is attached to the right side surface SS5 of the analysis module 2C. On the left side surface SS8 of the operation module 4, a left external structural component 44 is attached.
 後述の第1共通化方式の場合には、外観構造部品43は、右側共通の外観構造部品3eが適用され、外観構造部品44は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品43および外観構造部品44は、左右共通の外観構造部品3gが適用される。 (4) In the case of the first common method described later, the external structural component 43 is applied with the external common structural component 3e on the right side, and the external structural component 44 is applied with the external common structural component 3f on the left side. In the case of the second common method described below, the external structural component 43 and the external structural component 44 use the external structural component 3g common to the left and right.
 図5は、第3タイプの自動分析装置1Eを示す。自動分析装置1Eは、主に、操作モジュール4と、免疫分析用の分析モジュール2Dとで構成されている。第3タイプの自動分析装置1Eは、X方向で、操作モジュール4の左側の側面SS8に対し、左側に分析モジュール2Dが配置されている。第3タイプの構成は、第1タイプの構成から、分析モジュール2Cを切り離した構成に相当する。自動分析装置1Dは、外観構造部品3として、外観構造部品45,46を有する。分析モジュール2Dの左側の側面SS6に外観構造部品46が取り付けられている。操作モジュール4の右側の側面SS7に外観構造部品45が取り付けられている。 FIG. 5 shows a third type of automatic analyzer 1E. The automatic analyzer 1E mainly includes an operation module 4 and an analysis module 2D for immunological analysis. In the third type of automatic analyzer 1E, an analysis module 2D is disposed on the left side of the left side surface SS8 of the operation module 4 in the X direction. The third type of configuration corresponds to a configuration in which the analysis module 2C is separated from the first type of configuration. The automatic analyzer 1D has appearance structural parts 45 and 46 as the appearance structural parts 3. The external structural component 46 is attached to the left side surface SS6 of the analysis module 2D. The external structural component 45 is attached to the right side surface SS7 of the operation module 4.
 後述の第1共通化方式の場合には、外観構造部品45は、右側共通の外観構造部品3eが適用され、外観構造部品46は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品45および外観構造部品46は、左右共通の外観構造部品3gが適用する。 In the case of the first common method described later, the external structural component 45 is the external common structural component 3e, and the external structural component 46 is the common external structural component 3f. In the case of the second common method described later, the external structural component 45 and the external structural component 46 are applied by the external structural component 3g that is common to the left and right.
 図6の(A),(B)は、変形例の自動分析装置の構成として、組合せ方式における他のタイプの構成例を示す。図6の(A)は、第4タイプの自動分析装置1Fを示し、図6の(B)は、第5タイプの自動分析装置1Gを示す。このようなタイプも同様に可能である。 (A) and (B) of FIG. 6 show examples of another type of configuration in the combination method as the configuration of the automatic analyzer according to the modified example. FIG. 6A shows a fourth type of automatic analyzer 1F, and FIG. 6B shows a fifth type of automatic analyzer 1G. Such a type is likewise possible.
 図6の(A)の第4タイプの自動分析装置1Fは、X方向で、例えば左側から順に、操作モジュール4、免疫分析用の分析モジュール2D、生化学分析用の分析モジュール2Cを有する。操作モジュール4の右側の側面SS7に対し、右側に分析モジュール2Dが配置されている。さらに、分析モジュール2Dの右側の側面SS10に対し、右側に分析モジュール2Cが配置されている。自動分析装置1Fは、外観構造部品3として、外観構造部品47,48を有する。分析モジュール2Cの右側の側面SS5に外観構造部品47が取り付けられ、操作モジュール4の左側の側面SS8に外観構造部品48が取り付けられている。これらの外観構造部品47,48に関しても、同様に共通化が可能である。 自動 A fourth type of automatic analyzer 1F shown in FIG. 6A has an operation module 4, an immunological analysis module 2D, and a biochemical analysis module 2C in the X direction, for example, from the left side. The analysis module 2D is disposed on the right side of the right side surface SS7 of the operation module 4. Further, the analysis module 2C is disposed on the right side of the right side surface SS10 of the analysis module 2D. The automatic analyzer 1 </ b> F has appearance structural parts 47 and 48 as the appearance structural parts 3. The external structural component 47 is attached to the right side surface SS5 of the analysis module 2C, and the external structural component 48 is attached to the left side surface SS8 of the operation module 4. These external structural components 47 and 48 can be similarly shared.
 図6の(B)の第5タイプの自動分析装置1Gは、X方向で、例えば右側から順に、操作モジュール4、生化学分析用の分析モジュール2C、免疫分析用の分析モジュール2Dを有する。操作モジュール4の左側の側面SS8に対し、左側に分析モジュール2Cが配置されている。さらに、分析モジュール2Cの左側の側面SS9に対し、左側に分析モジュール2Dが配置されている。自動分析装置1Gは、外観構造部品3として、外観構造部品49,50を有する。操作モジュール4の右側の側面SS7に外観構造部品49が取り付けられ、分析モジュール2Dの左側の側面SS6に外観構造部品50が取り付けられている。これらの外観構造部品49,50に関しても、同様に共通化が可能である。 5A fifth type of automatic analyzer 1G shown in FIG. 6B includes an operation module 4, an analysis module 2C for biochemical analysis, and an analysis module 2D for immunoanalysis in the X direction, for example, from the right. The analysis module 2C is disposed on the left side of the left side surface SS8 of the operation module 4. Further, the analysis module 2D is disposed on the left side of the left side surface SS9 of the analysis module 2C. The automatic analyzer 1 </ b> G has appearance structural parts 49 and 50 as the appearance structural parts 3. The external structural component 49 is attached to the right side surface SS7 of the operation module 4, and the external structural component 50 is attached to the left side surface SS6 of the analysis module 2D. These external structural components 49 and 50 can be similarly shared.
 組合せ方式における変形例の自動分析装置として、複数個の同じ種類の分析モジュールを接続する構成も同様に可能である。例えば、操作モジュール4の一方の側面に対し、2つ以上の分析モジュール2Cが直列で接続される構成等が可能である。この構成の場合、同時に分析可能な検体の数を増やすことができる。 構成 As a modification of the automatic analyzer of the combination method, a configuration in which a plurality of analysis modules of the same type are connected is also possible. For example, a configuration in which two or more analysis modules 2C are connected in series to one side surface of the operation module 4 is possible. With this configuration, the number of samples that can be analyzed simultaneously can be increased.
 [自動分析装置(3)-生化学分析]
 図8は、実施の形態の自動分析装置1における、生化学分析用の分析部、制御部、および駆動部等に関する基本構成を示す。図1の自動分析装置1Aの分析モジュール2Aや、図3の自動分析装置1Cの分析モジュール2Cは、図8の基本構成に基づいて構成されている。図8では、自動分析装置1の上面800の付近に配置されている要素や、その要素に対して接続されている、自動分析装置1の内部の駆動部等の要素を示している。
[Automatic analyzer (3)-biochemical analysis]
FIG. 8 shows a basic configuration of an analysis unit, a control unit, a drive unit, and the like for biochemical analysis in the automatic analyzer 1 according to the embodiment. The analysis module 2A of the automatic analyzer 1A of FIG. 1 and the analysis module 2C of the automatic analyzer 1C of FIG. 3 are configured based on the basic configuration of FIG. FIG. 8 shows elements arranged near the upper surface 800 of the automatic analyzer 1 and elements such as a drive unit inside the automatic analyzer 1 which are connected to the elements.
 図8の自動分析装置1は、検体ディスク11、反応ディスク12、試薬ディスク13、検体分注機構14、試薬分注機構15、光源16、光度計17、撹拌機構18、洗浄機構19等を備える。 The automatic analyzer 1 of FIG. 8 includes a sample disk 11, a reaction disk 12, a reagent disk 13, a sample dispensing mechanism 14, a reagent dispensing mechanism 15, a light source 16, a photometer 17, a stirring mechanism 18, a washing mechanism 19, and the like. .
 検体ディスク11は、ディスク状の検体容器搬送機構であり、円周上、複数の検体容器を架設し、搬送する。検体ディスク11には、検体ディスク駆動部811が接続されている。検体容器は、血液等の検体を収容する容器である。 The sample disk 11 is a disk-shaped sample container transport mechanism, and lays and transports a plurality of sample containers around the circumference. The sample disk drive 811 is connected to the sample disk 11. The sample container is a container that stores a sample such as blood.
 反応ディスク12は、ディスク状の反応容器搬送機構であり、円周上、複数の反応容器を架設し、搬送する。反応ディスク12には、反応ディスク駆動部812が接続されている。反応容器(セルとも呼ばれる)は、透光性材料から構成されている。反応容器は、反応ディスク12に接続されている恒温槽によって所定の温度に維持される。 The reaction disk 12 is a disk-shaped reaction vessel transport mechanism, and a plurality of reaction vessels are erected around the circumference and transported. The reaction disk drive 812 is connected to the reaction disk 12. The reaction container (also called a cell) is made of a translucent material. The reaction vessel is maintained at a predetermined temperature by a thermostat connected to the reaction disk 12.
 試薬ディスク13は、ディスク状の試薬容器搬送機構であり、円周上、複数の試薬容器を架設し、搬送する。試薬ディスク13には、試薬ディスク駆動部813が接続されている。試薬容器には、分析項目に対応する試薬液が収容されている。 (4) The reagent disk 13 is a disk-shaped reagent container transport mechanism, and a plurality of reagent containers are erected and transported on the circumference. The reagent disk drive 813 is connected to the reagent disk 13. The reagent container contains a reagent solution corresponding to the analysis item.
 検体分注機構14は、検体ディスク11および反応ディスク12の近傍に配置され、検体ディスク11の検体容器の検体を反応ディスク12の反応容器に分注する機構である。検体分注機構14は、可動アーム、プローブ等を備える。検体分注機構14は、指定された検査項目の分析パラメータ等に従って、検体容器から反応容器へ検体を分注する。検体分注機構14は、対象の検体の分注時には、可動アームによってプローブを検体ディスク11上の所定の分注位置に移動させ、プローブによって検体容器から所定量の検体を吸入する。検体分注機構14は、可動アームによってプローブを反応ディスク12上の所定の分注位置に移動させ、プローブから検体を反応容器内に吐出する。検体分注機構14には、検体分注機構駆動部814が接続されている。 The sample dispensing mechanism 14 is arranged near the sample disk 11 and the reaction disk 12, and is a mechanism for dispensing a sample from the sample container of the sample disk 11 to the reaction container of the reaction disk 12. The sample dispensing mechanism 14 includes a movable arm, a probe, and the like. The sample dispensing mechanism 14 dispenses a sample from a sample container to a reaction container according to an analysis parameter or the like of a designated test item. When dispensing a target sample, the sample dispensing mechanism 14 moves the probe to a predetermined dispensing position on the sample disk 11 by the movable arm, and aspirates a predetermined amount of the sample from the sample container by the probe. The sample dispensing mechanism 14 moves the probe to a predetermined dispensing position on the reaction disk 12 by the movable arm, and discharges the sample from the probe into the reaction container. The sample dispensing mechanism driving unit 814 is connected to the sample dispensing mechanism 14.
 試薬分注機構15は、試薬ディスク13および反応ディスク12の近傍に配置され、試薬ディスク13の試薬容器の試薬を反応ディスク12の反応容器に分注する機構である。試薬分注機構15は、可動アーム、ピペットノズル等を備える。試薬分注機構16は、指定された検査項目の分析パラメータ等に従って、試薬容器から反応容器へ試薬液を分注する。試薬分注機構15は、対象の試薬の分注時には、可動アームによってピペットノズルを試薬ディスク12上の所定の分注位置に移動させ、ピペットノズルによって対象の試薬容器から所定量の試薬を吸入する。試薬分注機構15は、可動アームによってピペットノズルを反応ディスク12上の所定の分注位置に移動させ、ピペットノズルから試薬を反応容器内に吐出する。試薬分注機構15には、試薬分注機構駆動部815が接続されている。 The reagent dispensing mechanism 15 is arranged near the reagent disk 13 and the reaction disk 12, and is a mechanism for dispensing the reagent in the reagent container of the reagent disk 13 to the reaction container of the reaction disk 12. The reagent dispensing mechanism 15 includes a movable arm, a pipette nozzle, and the like. The reagent dispensing mechanism 16 dispenses a reagent solution from a reagent container to a reaction container according to an analysis parameter or the like of a designated test item. When dispensing the target reagent, the reagent dispensing mechanism 15 moves the pipette nozzle to a predetermined dispensing position on the reagent disk 12 by the movable arm, and aspirates a predetermined amount of the reagent from the target reagent container by the pipette nozzle. . The reagent dispensing mechanism 15 moves the pipette nozzle to a predetermined dispensing position on the reaction disk 12 by the movable arm, and discharges the reagent from the pipette nozzle into the reaction container. The reagent dispensing mechanism driving section 815 is connected to the reagent dispensing mechanism 15.
 攪拌機構18は、反応ディスク12、試薬ディスク13および試薬分注機構15の近傍の位置に配置されている。攪拌機構18は、反応容器内の検体と試薬との混合液を撹拌して反応を促進し、反応液にする。 (4) The stirring mechanism 18 is disposed at a position near the reaction disk 12, the reagent disk 13, and the reagent dispensing mechanism 15. The stirring mechanism 18 stirs the mixed solution of the sample and the reagent in the reaction vessel to promote the reaction, and makes the reaction solution.
 光源16と光度計17は、測定部である光検出系を構成している。反応ディスク12の中心付近には光源16が配置され、対応して外周側の所定の位置には光度計17が配置されている。光度計17は、透過光または散乱光を検出する多波長光度計である。反応ディスク12の回転動作に応じて、撹拌後の反応液を含む反応容器は、光源16と光度計17とで挟まれた所定の測光位置を通過する。光度計17は、その測光位置を通過する反応容器の反応液を対象として光学測定を行う。光度計17には、測定回路817が接続されている。測定回路817は、Log変換・アナログデジタル変換器を含む。光度計17によって検体毎に測定された信号(例えば散乱光のアナログ信号)は、測定回路817に入力され、Log変換・アナログデジタル変換器によってLog変換およびアナログデジタル変換が行われる。Log変換は、光量に比例した数値への変換である。測定回路817から、結果のデジタル信号が、制御部100へ送られる。 (4) The light source 16 and the photometer 17 constitute a light detection system that is a measurement unit. A light source 16 is arranged near the center of the reaction disk 12, and a photometer 17 is arranged correspondingly at a predetermined position on the outer peripheral side. The photometer 17 is a multi-wavelength photometer that detects transmitted light or scattered light. According to the rotation of the reaction disk 12, the reaction vessel containing the reaction solution after stirring passes through a predetermined photometric position between the light source 16 and the photometer 17. The photometer 17 performs an optical measurement on the reaction solution in the reaction vessel passing through the photometry position. The measuring circuit 817 is connected to the photometer 17. The measurement circuit 817 includes a Log conversion / analog / digital converter. A signal (for example, an analog signal of scattered light) measured for each sample by the photometer 17 is input to the measurement circuit 817, and Log conversion and analog-to-digital conversion are performed by a Log conversion / analog-to-digital converter. Log conversion is conversion into a numerical value proportional to the amount of light. The resulting digital signal is sent from the measuring circuit 817 to the control unit 100.
 洗浄機構19は、測定後の使用済みの反応容器の内部を洗浄する。これにより、反応容器は、繰り返しの使用が可能になる。洗浄機構19には、洗浄水ポンプ等の洗浄機構駆動部819が接続されている。 The cleaning mechanism 19 cleans the inside of the used reaction vessel after the measurement. This allows the reaction vessel to be used repeatedly. A cleaning mechanism driving unit 819 such as a cleaning water pump is connected to the cleaning mechanism 19.
 検体ディスク駆動部811等の駆動部は、インタフェース回路850を通じて、制御部100や操作部110等と電気的に接続されている。検体ディスク11等の機構や、検体ディスク駆動部811等の駆動部を含む部分802は、分析モジュール(例えば図3の分析モジュール2C)として実装可能である。 The drive units such as the sample disk drive unit 811 are electrically connected to the control unit 100, the operation unit 110, and the like via the interface circuit 850. A mechanism 802 including the mechanism such as the sample disk 11 and a driving unit such as the sample disk driving unit 811 can be mounted as an analysis module (for example, the analysis module 2C in FIG. 3).
 インタフェース回路850には、制御部100、記憶装置103、入力装置104、表示装置105、プリンタ106、電源部107、操作部110等が接続されており、相互に通信可能となっている。制御部100および操作部110等の部分801は、操作モジュール(例えば図3の操作モジュール4)として実装可能である。 The control unit 100, the storage device 103, the input device 104, the display device 105, the printer 106, the power supply unit 107, the operation unit 110, and the like are connected to the interface circuit 850 so that they can communicate with each other. The parts 801 such as the control unit 100 and the operation unit 110 can be implemented as an operation module (for example, the operation module 4 in FIG. 3).
 制御部100は、IC基板101または計算機102の少なくとも一方で構成されている。制御部100は、自動分析装置1の全体を制御し、自動分析機能を実現する。制御部100は、例えば、各駆動部へ制御信号を送信することで、検体ディスク11等の各部を駆動する。制御部100は、分析の際、操作部110を通じた利用者の操作や、設定情報、分析依頼情報等に基づいて、検体分注機構駆動部814等の各部に指令の制御信号を送ることで、検体分注動作等を制御する。 The control unit 100 includes at least one of the IC substrate 101 and the computer 102. The control unit 100 controls the entire automatic analyzer 1 and implements an automatic analysis function. The control unit 100 drives each unit such as the sample disk 11 by transmitting a control signal to each drive unit, for example. The control unit 100 transmits a command control signal to each unit such as the sample dispensing mechanism driving unit 814 based on a user operation through the operation unit 110, setting information, analysis request information, and the like at the time of analysis. And controls the sample dispensing operation and the like.
 操作部110は、臨床検査の作業を行う利用者による自動分析装置1の操作を行うための部分である。操作部110は、操作パネルで構成されてもよいし、入力装置104(例えばキーボード等)や表示装置105で構成されてもよいし、特に前述のタッチパネル5で構成されてもよい。操作部110または表示装置105は、操作画面等の表示画面を提供する。利用者は、操作画面を介して、自動分析装置の操作を行うことができる。 The operation unit 110 is a part for operating the automatic analyzer 1 by a user who performs a clinical test operation. The operation unit 110 may be configured by an operation panel, may be configured by the input device 104 (for example, a keyboard) or the display device 105, or may be configured by the touch panel 5 described above. The operation unit 110 or the display device 105 provides a display screen such as an operation screen. The user can operate the automatic analyzer via the operation screen.
 予め、操作者は、操作部110の操作画面を通じて、各検体に対して依頼されている検査項目を選択し、分析に必要な各種のパラメータを設定し、患者ID等の検体情報の登録を行う。入力された情報は記憶装置103に保存される。操作者は、操作画面に対し、分析依頼情報や分析開始指示を入力する。 In advance, the operator selects a test item requested for each sample through the operation screen of the operation unit 110, sets various parameters required for analysis, and registers sample information such as a patient ID. . The input information is stored in the storage device 103. The operator inputs analysis request information and analysis start instruction on the operation screen.
 記憶装置103は、内部メモリまたは外部メモリ等で構成され、プログラムや設定情報や各種のデータが記憶される。記憶装置103には、例えば、各種レベルの表示画面データ、分析パラメータ、分析依頼情報、キャリブレーション結果情報、分析結果情報等の情報が記憶される。 The storage device 103 is configured by an internal memory or an external memory, and stores programs, setting information, and various data. The storage device 103 stores, for example, various levels of display screen data, analysis parameters, analysis request information, calibration result information, analysis result information, and the like.
 制御部100のうち、CPU等のプログラム処理によって構成される分析処理部は、測定回路817から得たデジタル信号を用いて、指定された検査項目の分析処理を行うことで、検体の成分を分析する。その際、分析処理部は、検査項目毎に指定された分析法によって予め測定しておいた検量線に基づいて、成分の濃度データを算出する。分析処理部は、検査項目の分析処理結果情報(成分の濃度データを含む)を、記憶装置103に保存し、表示画面に表示し、プリンタ106を通じて印刷出力する。操作者は、分析結果情報を表示画面等で確認する。 An analysis processing unit of the control unit 100, which is configured by a program process such as a CPU, analyzes a component of a sample by performing analysis processing of a specified test item using a digital signal obtained from the measurement circuit 817. I do. At this time, the analysis processing unit calculates the concentration data of the components based on a calibration curve measured in advance by an analysis method specified for each test item. The analysis processing unit stores the analysis processing result information (including the concentration data of the components) of the inspection item in the storage device 103, displays the information on the display screen, and prints out the data through the printer 106. The operator checks the analysis result information on a display screen or the like.
 [自動分析装置(4)-免疫分析]
 図9は、自動分析装置1Bの免疫分析用の分析モジュール2Bや、自動分析装置1Cの分析モジュール2Dに対応する免疫分析モジュールの基本構成を示す。図9は、分析モジュール2Dの例で、上面(X-Y面)の構成例を示す。分析モジュール2Dは、生化学分析用の分析モジュール2Cとの大きな違いとしては、反応容器や検体分注用チップが使い捨てであり、そのための機構を備えている。
[Automatic analyzer (4)-immunoassay]
FIG. 9 shows a basic configuration of an immune analysis module 2B of the automatic analyzer 1B and an immune analysis module corresponding to the analysis module 2D of the automatic analyzer 1C. FIG. 9 is an example of the analysis module 2D, and shows a configuration example of the upper surface (XY plane). The major difference between the analysis module 2D and the analysis module 2C for biochemical analysis is that the reaction container and the sample dispensing tip are disposable and have a mechanism for that.
 分析モジュール2Dは、上面において、ホルダー21、インキュベータ22、試薬ディスク23、検体分注機構24、試薬分注機構25、搬送機構26、洗浄機構27、シッパー28、反応検出部29等を有する。上面における背面に近い上辺部には、検体ラック収容部8Dが設けられている。検体ラック収容部8Dでは、搬送ライン上、検体搬送部6(図10または図11)から搬送された検体ラック7が収容されている。本例では、分析モジュール2Dの右側の側面SS10の近くにホルダー21や搬送機構26が配置され、左側の側面SS6の近くに試薬ディスク23が配置されている。 The analysis module 2D has a holder 21, an incubator 22, a reagent disk 23, a sample dispensing mechanism 24, a reagent dispensing mechanism 25, a transport mechanism 26, a washing mechanism 27, a shipper 28, a reaction detecting unit 29, and the like on the upper surface. A sample rack storage section 8D is provided on the upper side near the rear surface on the upper surface. In the sample rack storage section 8D, a sample rack 7 transported from the sample transport section 6 (FIG. 10 or 11) is stored on the transport line. In this example, the holder 21 and the transport mechanism 26 are arranged near the right side surface SS10 of the analysis module 2D, and the reagent disk 23 is arranged near the left side surface SS6.
 ホルダー21毎に、複数の反応容器や複数の検体分注チップが載置されている。反応容器および検体分注用チップは、検体分注で使用された後、廃棄される。分析モジュール2Dの前面の一部には引出し21Bが設けられている。引出し21Bは、利用者の操作によってY方向で引き出し可能となっており、ホルダー21や廃棄品回収箱が収容されている。引出し21Bが閉じられた状態では、搬送機構26からホルダー21へアクセスが可能である。廃棄品回収箱は、搬送機構26の所定の廃棄位置に配置され、その廃棄位置で廃棄された反応容器や検体分注チップを収容する。 A plurality of reaction vessels and a plurality of sample dispensing tips are mounted on each holder 21. The reaction container and the sample dispensing tip are discarded after being used for sample dispensing. A drawer 21B is provided on a part of the front surface of the analysis module 2D. The drawer 21B can be pulled out in the Y direction by a user's operation, and houses the holder 21 and a waste collection box. When the drawer 21B is closed, the holder 21 can be accessed from the transport mechanism 26. The waste collection box is disposed at a predetermined disposal position of the transport mechanism 26, and accommodates the reaction container and the sample dispensing chip disposed at the disposal position.
 搬送機構26は、ホルダー21内の反応容器や検体分注チップを所定の位置へ搬送し、使用済みの反応容器や検体分注チップを所定の廃棄位置(対応する廃棄孔26a)へ搬送する機構である。搬送機構26は、X方向、Y方向、およびZ方向の3軸方向に移動可能な機構である。搬送機構26は、ホルダー21から1つずつ反応容器を把持し、上昇して、インキュベータ22の所定の位置へ移動させ、架設させる。また、搬送機構26は、ホルダー21から1つずつ検体分注チップを把持し、上昇して、所定の装着位置(対応するバッファ26b)へ移動させる。 The transport mechanism 26 transports the reaction container and the sample dispensing tip in the holder 21 to a predetermined position, and transports the used reaction container and the sample dispensing tip to a predetermined disposal position (corresponding disposal hole 26a). It is. The transport mechanism 26 is a mechanism that can move in three axial directions of the X direction, the Y direction, and the Z direction. The transport mechanism 26 grips the reaction vessels one by one from the holder 21, moves up, moves to a predetermined position of the incubator 22, and erection. In addition, the transport mechanism 26 grips the sample dispensing tips one by one from the holder 21, moves up, and moves to a predetermined mounting position (corresponding buffer 26b).
 インキュベータ22は、培養ディスクとも呼ばれ、ディスク状の反応容器架設部であり、円周上に複数の反応容器22Aが架設され、反応容器22Aの回転動作を行う。 The incubator 22 is also called a culture disk, and is a disk-shaped reaction vessel erection part. A plurality of reaction vessels 22A are erected around the circumference, and the reaction vessel 22A rotates.
 試薬ディスク23は、ディスク状の試薬容器搬送機構であり、円周上に複数の試薬ボトルが架設され、試薬ボトルの回転動作を行う。試薬ディスク23は、円筒状の保冷庫を含み、試薬ボトルを一定の温度に制御する。試薬ボトルには、複数の試薬容器23Aが収容されている。試薬容器23Aには、分析可能な項目に応じた試薬液が収容されている。試薬ディスク23は、保冷庫のカバーで覆われており、カバーの一部には、出し入れ口を有し、試薬ボトルおよび試薬容器23Aの出し入れが可能である。出し入れ口は、開閉方式のカバー等によって構成され、インターロック機構を有し、試薬ディスク23の動作中にはロック状態にされる。 (4) The reagent disk 23 is a disk-shaped reagent container transport mechanism, in which a plurality of reagent bottles are laid on the circumference, and the reagent bottles rotate. The reagent disk 23 includes a cylindrical cool box, and controls the temperature of the reagent bottle at a constant temperature. The reagent bottle contains a plurality of reagent containers 23A. The reagent container 23A contains a reagent solution corresponding to an item that can be analyzed. The reagent disk 23 is covered by a cover of a cool box, and a part of the cover has an access port so that a reagent bottle and a reagent container 23A can be taken in and out. The access port is constituted by an openable / closable cover or the like, has an interlock mechanism, and is locked while the reagent disk 23 is operating.
 検体分注機構24は、可動アームやノズル等を備える。検体分注機構24は、搬送機構26によって装着位置に搬送された検体分注チップを把持し、ノズルに装着する。検体分注機構24は、搬送機構26によって搬送された反応容器を、インキュベータ22の所定の位置に架設する。検体分注機構24は、検体ラック収容部8Cの検体容器の検体を、インキュベータ22の反応容器に分注する。検体分注機構24は、検体分注チップが装着されたノズルを検体容器の上に移動させ、検体分注チップ内に検体を吸引させ、インキュベータ22の反応容器の上へ移動させ、検体分注チップ内から検体をその反応容器内に吐出させる。その後、検体分注機構24は、ノズルを廃棄孔26aの上に移動させ、使用済みの検体分注チップを、廃棄孔26a内に落下させる。また、検体分注機構24は、使用済みの反応容器を、廃棄孔26aの上に移動させ、廃棄孔26a内に落下させる。 The sample dispensing mechanism 24 includes a movable arm, a nozzle, and the like. The sample dispensing mechanism 24 grips the sample dispensing tip transported to the mounting position by the transport mechanism 26 and mounts the sample dispensing tip on the nozzle. The sample dispensing mechanism 24 bridges the reaction container transported by the transport mechanism 26 at a predetermined position of the incubator 22. The sample dispensing mechanism 24 dispenses the sample in the sample container of the sample rack storage unit 8C to the reaction container of the incubator 22. The sample dispensing mechanism 24 moves the nozzle on which the sample dispensing tip is mounted above the sample container, aspirates the sample into the sample dispensing tip, moves the sample dispensing tip onto the reaction container of the incubator 22, and dispenses the sample. The sample is discharged from the chip into the reaction container. Thereafter, the sample dispensing mechanism 24 moves the nozzle over the waste hole 26a, and drops the used sample dispensing tip into the waste hole 26a. In addition, the sample dispensing mechanism 24 moves the used reaction container over the waste hole 26a and drops the used reaction container into the waste hole 26a.
 試薬分注機構25は、ピペットノズル等を備え、試薬ディスク23の所定の分注位置の試薬容器23Aの試薬を、インキュベータ22の所定の分注位置の反応容器22Aに分注する。試薬分注機構25は、ピペットノズルを対象の試薬容器23Aの上に移動させ、その試薬容器23Aから試薬を吸引させ、ピペットノズルを反応容器22Aの上へ移動させ、反応容器22A内に試薬を吐出させる。 (4) The reagent dispensing mechanism 25 includes a pipette nozzle or the like, and dispenses the reagent in the reagent container 23A at a predetermined dispensing position of the reagent disk 23 to the reaction container 22A at a predetermined dispensing position of the incubator 22. The reagent dispensing mechanism 25 moves the pipette nozzle over the target reagent container 23A, sucks the reagent from the reagent container 23A, moves the pipette nozzle over the reaction container 22A, and places the reagent in the reaction container 22A. Discharge.
 試薬分注機構25は、試薬撹拌機構を含む。試薬撹拌機構は、試薬の分注の直前に、対象の試薬容器の試薬液を攪拌アームによって撹拌する。攪拌後、試薬撹拌機構は、攪拌アームを、洗浄機構27の上へ移動させ、洗浄する。 The reagent dispensing mechanism 25 includes a reagent stirring mechanism. The reagent stirring mechanism stirs the reagent solution in the target reagent container by the stirring arm immediately before dispensing the reagent. After the stirring, the reagent stirring mechanism moves the stirring arm onto the washing mechanism 27 for washing.
 インキュベータ22の反応容器22A内に検体と試薬液とが分注され、所定の反応時間が経過した後、反応液が形成される。分析モジュール2Dは、ノズルを含むシッパー28によって、反応容器22Aから反応液を吸引し、反応検出部29へ供給する。反応検出部29は、光度計を用いて反応液を光学測定する。 (4) The sample and the reagent solution are dispensed into the reaction container 22A of the incubator 22, and after a predetermined reaction time has elapsed, a reaction solution is formed. The analysis module 2D sucks the reaction solution from the reaction container 22A by the shipper 28 including a nozzle, and supplies the reaction solution to the reaction detection unit 29. The reaction detector 29 optically measures the reaction solution using a photometer.
 なお、図8の分析モジュール2Cの上面800の破線の領域や、図9の分析モジュール2Dの上面900の破線の領域は、図示しない上部カバーによって覆われる。上部カバーは、例えばY方向で前後に開閉可能な機構を備える。上部カバーは、作業の安全性および分析の信頼性を確保するために、インターロック機構を有する。モジュールの動作中には、上部カバーは、インターロック機構によってロックされ閉じられた状態に保持される。モジュールの動作停止中には、上部カバーは、インターロック機構のロック解除によって、利用者が開けることができる状態となる。 The area indicated by broken lines on the upper surface 800 of the analysis module 2C in FIG. 8 and the area indicated by broken lines on the upper surface 900 of the analysis module 2D in FIG. 9 are covered by an upper cover (not shown). The upper cover includes, for example, a mechanism that can be opened and closed back and forth in the Y direction. The top cover has an interlock mechanism to ensure work safety and analytical reliability. During operation of the module, the top cover is locked and closed by the interlock mechanism. While the operation of the module is stopped, the user can open the upper cover by unlocking the interlock mechanism.
 [自動分析装置(5)-第1タイプ-検体搬送機構(1)]
 図10の(A)は、組合せ方式の第1タイプの自動分析装置1Cの上面(X-Y面)における、外観構造部品3を含むデザインの構成例を示し、特に検体搬送機構に関する第1構成例を示す。図10の(B)は、検体ラック7と検体容器7Aの概要構成を示す。
[Automatic analyzer (5)-First type-Sample transport mechanism (1)]
FIG. 10A shows a configuration example of a design including the external structural component 3 on the upper surface (XY plane) of the automatic analyzer 1C of the first type of the combination system, and particularly the first configuration relating to the sample transport mechanism. Here is an example. FIG. 10B shows a schematic configuration of the sample rack 7 and the sample container 7A.
 図10の(A)で、自動分析装置1Cは、図3と同様に、中央の操作モジュール4、右側の分析モジュール2C、左側の分析モジュール2Dを有する。操作モジュール4、分析モジュール2Cおよび分析モジュール2DのY方向の後側にある背面のZ方向の上部には、検体搬送部6が取り付けられている。検体搬送部6である検体ラック搬送モジュールは、操作モジュール4、分析モジュール2Cおよび分析モジュール2Dの間でX方向に検体ラック7を搬送する機構である。本例では、検体搬送部6には、X方向に延在する1つの搬送ラインが構成されている。その搬送ライン上に検体ラック7が載置され、X方向の左右に搬送される。 10A, the automatic analyzer 1C has a central operation module 4, a right analysis module 2C, and a left analysis module 2D, as in FIG. A sample transport unit 6 is mounted on the rear side of the operation module 4, the analysis module 2C, and the analysis module 2D in the Z direction on the rear side in the Y direction. The sample rack transport module serving as the sample transport unit 6 is a mechanism that transports the sample rack 7 in the X direction between the operation module 4, the analysis module 2C, and the analysis module 2D. In this example, one transport line extending in the X direction is configured in the sample transport section 6. The sample rack 7 is placed on the transport line and transported right and left in the X direction.
 図10の(B)のように、検体ラック7には、複数の検体容器7Aが収容されている。検体容器7Aは、検体を収容した容器である。検体は、血液、血漿、血清、尿、その他の体液等の生体試料である。 As shown in FIG. 10B, the sample rack 7 contains a plurality of sample containers 7A. The sample container 7A is a container that stores a sample. The specimen is a biological sample such as blood, plasma, serum, urine, and other body fluids.
 操作モジュール4は、例えばY方向の中央付近位置に、Z方向に立つ状態で、タッチパネル5が取り付けられている。タッチパネル5は、前述(図8)の制御部100および操作部110の一部が実装されており、操作者に対するグラフィカル・ユーザ・インタフェース(GUI)を提供する。 The operation module 4 has the touch panel 5 attached thereto, for example, at a position near the center in the Y direction while standing in the Z direction. The touch panel 5 includes a part of the control unit 100 and the operation unit 110 described above (FIG. 8), and provides a graphical user interface (GUI) to the operator.
 操作モジュール4は、Y方向の後部に、検体ラック収容部8Aを有する。検体ラック収容部8Aには、複数の検体ラック7が収容されている。利用者は、検体ラック収容部8Aに検体ラック7を収容する。 The operation module 4 has a sample rack storage unit 8A at the rear of the Y direction. A plurality of sample racks 7 are stored in the sample rack storage unit 8A. The user stores the sample rack 7 in the sample rack storage unit 8A.
 操作モジュール4は、検体ラック収容部8Aの検体ラック7を、検体搬送部6の搬送ラインへ移送する。検体搬送部6は、その検体ラック7を搬送ラインにおいて移動させ、分析の種類に応じて、分析モジュール2Cの検体ラック収容部8C、または分析モジュール2Dの検体ラック収容部8Dへ搬送させる。分析モジュール2CのY方向の後側の背面近くには、検体ラック収容部8Cが設けられている。分析モジュール2DのY方向の後側の背面近くには、検体ラック収容部8Dが設けられている。 (4) The operation module 4 transfers the sample rack 7 of the sample rack storage unit 8A to the transport line of the sample transport unit 6. The sample transport section 6 moves the sample rack 7 on the transport line, and transports the sample rack 7 to the sample rack storage section 8C of the analysis module 2C or the sample rack storage section 8D of the analysis module 2D according to the type of analysis. A sample rack storage section 8C is provided near the rear surface of the analysis module 2C on the rear side in the Y direction. A sample rack storage unit 8D is provided near the rear surface on the rear side in the Y direction of the analysis module 2D.
 分析モジュール2Cは、検体搬送部6から、対象の検体ラック7または対象の検体容器7Aを受け取り、検体ラック収容部8C内に収容する。分析モジュール2Dは、検体搬送部6から、対象の検体ラック7または対象の検体容器7Aを受け取り、検体ラック収容部8D内に収容する。 (4) The analysis module 2C receives the target sample rack 7 or the target sample container 7A from the sample transport unit 6, and stores the sample rack 7 or the target sample container 7C in the sample rack storage unit 8C. The analysis module 2D receives the target sample rack 7 or the target sample container 7A from the sample transport unit 6, and stores the target sample rack 7 or the target sample container 7D in the sample rack storage unit 8D.
 分析モジュール2Cの検体分注機構14は、検体ラック収容部8Cの検体容器7Aから、反応ディスク12の反応容器へ、検体を分注する。分析モジュール2Cの試薬分注機構15は、試薬ディスク13の試薬容器から、反応ディスク12の反応容器へ、試薬を分注する。分析モジュール2Dの検体分注機構24は、検体ラック収容部8Dの検体容器7Aから、インキュベータ22の反応容器へ、検体を分注する。分析モジュール2Dの試薬分注機構25は、試薬ディスク23の試薬容器から、インキュベータ22の反応容器へ、試薬を分注する。 検 体 The sample dispensing mechanism 14 of the analysis module 2C dispenses a sample from the sample container 7A of the sample rack storage unit 8C to the reaction container of the reaction disk 12. The reagent dispensing mechanism 15 of the analysis module 2C dispenses a reagent from the reagent container of the reagent disk 13 to the reaction container of the reaction disk 12. The sample dispensing mechanism 24 of the analysis module 2D dispenses a sample from the sample container 7A of the sample rack storage unit 8D to the reaction container of the incubator 22. The reagent dispensing mechanism 25 of the analysis module 2D dispenses a reagent from the reagent container of the reagent disk 23 to the reaction container of the incubator 22.
 分析モジュール2C,2Dの側面には、それぞれ、外観構造部品3である側面カバーが取り付けられている。右側の分析モジュール2Cの右側の側面SS5に対し、外観構造部品41が取り付けられている。左側の分析モジュール2Dの左側の側面SS6に対し、外観構造部品42が取り付けられている。これにより、自動分析装置1Cの側面の外観が構成されている。なお、部品がわかりやすいように、モジュール側面と外観構造部品3との隙間を設けて図示しているが、実際には隙間無く配置が可能である。 側面 A side cover, which is the external structural component 3, is attached to each of the side surfaces of the analysis modules 2C and 2D. The external structural component 41 is attached to the right side surface SS5 of the right analysis module 2C. The external structural component 42 is attached to the left side surface SS6 of the left analysis module 2D. Thereby, the external appearance of the side surface of the automatic analyzer 1C is configured. Although a gap is provided between the module side surface and the external structural component 3 for easy understanding of the components, the components can be actually arranged without a gap.
 [自動分析装置(6)-第1タイプ-検体搬送機構(2)]
 図11は、組合せ方式の第1タイプの自動分析装置1Cにおける、外観構造部品3を含むデザインの構成例を示し、特に検体搬送機構に関する第2構成例を示す。第2構成例は、ラックロータ200を用いた検体搬送機構を有する。図11の(A)では概要構成を示し、(B)では特に検体搬送機構に関する詳細を示す。
[Automatic analyzer (6)-First type-Sample transport mechanism (2)]
FIG. 11 shows a configuration example of the design including the appearance structural component 3 in the first type automatic analyzer 1C of the combination system, and particularly shows a second configuration example relating to the sample transport mechanism. The second configuration example has a sample transport mechanism using the rack rotor 200. FIG. 11A shows a schematic configuration, and FIG. 11B shows details particularly regarding the sample transport mechanism.
 図11の(A)で、操作モジュール4は、Y方向の中央付近位置にタッチパネル5が設けられ、Y方向の後部には、検体搬送部6を構成するラックロータ200が実装されている。ラックロータ200に対しY方向の前側には、搬送ラインを通じて、検体ラック収容部8Aが設けられている。ラックロータ200に対し、X方向の右側には、搬送ラインを通じて、分析モジュール2Cの検体ラック収容部8Cが設けられ、X方向の左側には、搬送ラインを通じて、分析モジュール2Dの検体ラック収容部8Dが設けられている。 In FIG. 11A, the operation module 4 is provided with a touch panel 5 at a position near the center in the Y direction, and a rack rotor 200 constituting the sample transport unit 6 is mounted at the rear part in the Y direction. On the front side in the Y direction with respect to the rack rotor 200, a sample rack storage section 8A is provided through a transport line. On the right side of the rack rotor 200 in the X direction, a sample rack storage section 8C of the analysis module 2C is provided through a transport line, and on the left side in the X direction, a sample rack storage section 8D of the analysis module 2D through a transport line. Is provided.
 検体ラック7には、種類として、通常検体ラックと、緊急検体ラックとがあってもよい。通常検体ラックは、通常検体が収容された検体容器が収容されている検体ラックである。通常検体は、通常の優先度や緊急度で分析や測定が行われる検体である。緊急検体ラックは、緊急検体が収容された検体容器が収容されている検体ラックである。緊急検体は、通常検体ラックよりも高い優先度や緊急度で分析や測定が行われる検体である。第2構成例における検体ラック収容部8Aは、通常検体ラックと緊急検体ラックとが収容可能である。 The sample rack 7 may be classified into a normal sample rack and an emergency sample rack. The normal sample rack is a sample rack that stores a sample container that stores a normal sample. A normal sample is a sample on which analysis and measurement are performed with normal priority and urgency. The emergency sample rack is a sample rack that stores a sample container that stores an emergency sample. The urgent sample is a sample that is analyzed or measured at a higher priority or urgency than a normal sample rack. The sample rack storage unit 8A in the second configuration example can store a normal sample rack and an emergency sample rack.
 分析モジュール2Cの上面の破線の領域は、図示しない上部カバーによって覆われている。分析モジュール2Dの上面の破線の領域は、図示しない上部カバーによって覆われている。分析モジュール2Cの試薬ディスク13の上面の一部には、出し入れ口を覆うようにしてスライド方式のカバーが設けられている。分析モジュール2Dの試薬ディスク23の上面の一部には、出し入れ口を覆うようにしてスライド方式のカバーが設けられている。 領域 A region indicated by a broken line on the upper surface of the analysis module 2C is covered by an upper cover (not shown). The area indicated by the broken line on the upper surface of the analysis module 2D is covered by an upper cover (not shown). A slide-type cover is provided on a part of the upper surface of the reagent disk 13 of the analysis module 2C so as to cover the access port. A slide-type cover is provided on a part of the upper surface of the reagent disk 23 of the analysis module 2D so as to cover the access port.
 図11の(B)は、(A)のラックロータ200とそれに接続されている各部についての詳細構成を示す。検体搬送部6は、ラックロータ200に対し、Y方向の前側に、Y方向に延在する搬送ライン201を有し、X方向の右側に、X方向に延在する搬送ライン202を有し、X方向の左側に、X方向に延在する搬送ライン203を有する。 (B) of FIG. 11 shows a detailed configuration of the rack rotor 200 of (A) and each part connected thereto. The sample transport section 6 has a transport line 201 extending in the Y direction on the front side in the Y direction with respect to the rack rotor 200, and has a transport line 202 extending in the X direction on the right side in the X direction. A transport line 203 extending in the X direction is provided on the left side in the X direction.
 操作モジュール4は、検体ラック収容部8Aを構成する、検体ラック供給部211、検体ラック供給部212、緊急検体ラック投入部213等を有する。搬送ライン201のX方向の右側に隣接してY方向の前後には、検体ラック供給部211および検体ラック供給部212が配置されている。また、操作モジュール4は、搬送ライン201に隣接して、検体識別装置210、緊急検体ラック投入部213を有する。 The operation module 4 includes a sample rack supply unit 211, a sample rack supply unit 212, an emergency sample rack input unit 213, and the like, which constitute the sample rack storage unit 8A. A sample rack supply unit 211 and a sample rack supply unit 212 are arranged adjacent to the right side of the transport line 201 in the X direction and before and after in the Y direction. In addition, the operation module 4 includes a sample identification device 210 and an emergency sample rack insertion unit 213 adjacent to the transport line 201.
 分析モジュール2Cは、搬送ライン202を含む検体ラック収容部8Cを有する。検体ラック収容部8Cは、検体ラック退避部221、検体識別装置220を有する。分析モジュール2Dは、搬送ライン203を含む検体ラック収容部8Dを有する。検体ラック収容部8Dは、検体ラック退避部231、検体識別装置230を有する。 The analysis module 2C has a sample rack storage unit 8C including the transport line 202. The sample rack storage unit 8C includes a sample rack retreat unit 221 and a sample identification device 220. The analysis module 2D has a sample rack storage unit 8D including the transport line 203. The sample rack storage unit 8D includes a sample rack retreat unit 231 and a sample identification device 230.
 ラックロータ200は、円柱形状を有する検体ラック搬送機構であり、円周上に複数の検体ラック7を収容可能である。ラックロータ200は、上面において、円周上の所定の位置に、回転動作可能である1つ以上のスロットを有する。本例では、ラックロータ200は、2つのスロットとしてスロット204,205を有し、2つのスロットが、円周上、180度で互いに対向する位置に配置されている。ラックロータ200は、スロットに検体ラック7を収容し、スロットの回転動作によって、検体ラック7を円周方向で搬送する。スロットは、回転動作によって、搬送ライン201の一端に隣接する位置にも移動可能である。 The rack rotor 200 is a column-shaped sample rack transport mechanism, and can accommodate a plurality of sample racks 7 on the circumference. The rack rotor 200 has one or more rotatable slots at predetermined positions on the circumference on the upper surface. In this example, the rack rotor 200 has slots 204 and 205 as two slots, and the two slots are arranged at positions on the circumference that face each other at 180 degrees. The rack rotor 200 accommodates the sample rack 7 in the slot, and transports the sample rack 7 in the circumferential direction by rotating the slot. The slot can also be moved to a position adjacent to one end of the transport line 201 by a rotation operation.
 搬送ライン201は、検体ラック収容部8Aとラックロータ200との間で検体ラック7を搬送する機構である。ラックロータ200の左右の搬送ライン202,203は、ラックロータ200のスロット204,205と、分析モジュール2Cの検体ラック収容部8Cと、分析モジュール2Dの検体ラック収容部8Dとの間で、検体ラック7を往復動作によって搬送する機構である。搬送ライン201,202,203は、例えばベルトコンベヤ型の搬送機構が採用されている。 The transport line 201 is a mechanism for transporting the sample rack 7 between the sample rack storage unit 8A and the rack rotor 200. The left and right transfer lines 202 and 203 of the rack rotor 200 are connected to the slots 204 and 205 of the rack rotor 200, the sample rack storage unit 8C of the analysis module 2C, and the sample rack storage unit 8D of the analysis module 2D. 7 is a mechanism for transporting 7 by reciprocating operation. For the transport lines 201, 202, and 203, for example, a belt conveyor type transport mechanism is employed.
 搬送ライン201は、一端がラックロータ200の円周のY方向の前側の端部まで延在し、他端が操作モジュール4の前面に近い緊急検体ラック投入部213に隣接する位置まで延在している。緊急検体ラック投入部213は、利用者が緊急検体ラックを退避し、搬送ライン201へ投入する部分である。検体ラック供給部211は、利用者が複数の通常検体ラックを投入可能であり、搬送ライン201に通常検体ラックを供給する部分である。検体ラック供給部212は、搬送ライン201から検体ラックを受け取り、複数の検体ラックを収容可能な部分である。 The transport line 201 has one end extending to the front end in the Y direction of the circumference of the rack rotor 200 and the other end extending to a position adjacent to the emergency sample rack loading unit 213 near the front of the operation module 4. ing. The emergency sample rack insertion unit 213 is a part where the user retreats the emergency sample rack and inserts it into the transport line 201. The sample rack supply unit 211 is a part to which a user can input a plurality of normal sample racks and supplies the normal sample rack to the transport line 201. The sample rack supply unit 212 is a part that receives a sample rack from the transport line 201 and can accommodate a plurality of sample racks.
 検体識別装置210は、搬送ライン201上を搬送される検体ラック7の検体容器の検体に関する分析依頼情報を照会するために、検体ラック7および検体容器に設けられた識別媒体を読み取って識別する。識別媒体は、例えばRFID(radio frequency identifier)のタグやバーコードのラベルである。 (4) The sample identification device 210 reads and identifies the sample rack 7 and an identification medium provided in the sample container in order to refer to the analysis request information on the sample in the sample container of the sample rack 7 transported on the transport line 201. The identification medium is, for example, an RFID (radio frequency identifier) tag or a bar code label.
 搬送ライン202の一端は、ラックロータ200の右側の位置のスロット204と接する位置まで延在し、他端は、検体ラック退避部221と接する位置まで延在している。検体分注機構14は、搬送ライン202上の所定の分注位置で、検体ラック7の検体容器から検体の分注を行う。搬送ライン203の一端は、ラックロータ200の左側の位置のスロット205と接する位置まで延在し、他端は、検体ラック退避部231と接する位置まで延在している。検体分注機構24は、搬送ライン203上の所定の分注位置で、検体ラック7の検体容器から検体の分注を行う。 一端 One end of the transport line 202 extends to a position in contact with the slot 204 on the right side of the rack rotor 200, and the other end extends to a position in contact with the sample rack retreat unit 221. The sample dispensing mechanism 14 dispenses a sample from a sample container of the sample rack 7 at a predetermined dispensing position on the transport line 202. One end of the transport line 203 extends to a position in contact with the slot 205 on the left side of the rack rotor 200, and the other end extends to a position in contact with the sample rack retreat unit 231. The sample dispensing mechanism 24 dispenses a sample from the sample container of the sample rack 7 at a predetermined dispensing position on the transport line 203.
 検体ラック退避部221,231は、搬送ライン202,203との間で検体ラック7を授受し、検体ラック7を退避させる機構であり、例えば、検体ラック7を連続的に往復搬送可能なベルトコンベヤ型の機構が採用されている。 The sample rack evacuation units 221 and 231 are mechanisms for exchanging the sample rack 7 with the transport lines 202 and 203 and retracting the sample rack 7. For example, a belt conveyor capable of continuously reciprocating the sample rack 7 is provided. A mold mechanism is employed.
 検体識別装置220,230は、搬送ライン202,203に搬入された検体ラック7内の検体容器の検体に対する分析依頼情報を照合するための装置であり、検体ラック7および検体容器に設けられた識別媒体を読み取って識別する装置である。 The sample identification devices 220 and 230 are devices for collating the analysis request information for the sample of the sample container in the sample rack 7 carried into the transport lines 202 and 203, and are provided in the sample rack 7 and the sample container. It is a device that reads and identifies a medium.
 ラックロータ200は、前側の搬送ライン201との間で、スロットを介して検体ラック7を授受し、また、左右の搬送ライン202,203との間で、スロットを介して検体ラック7を授受する。ラックロータ200は、スロットを介して検体ラック7を回転移動させ、対象の分析モジュール2C,2Dの検体ラック収容部8C,8Dへ搬送する。ラックロータ200は、分析の種類に応じて、例えば分析モジュール2C側の搬送ライン202に検体ラック7を引き渡すためにスロットを右側の位置まで回転移動させる。搬送ライン202は、ラックロータ200の右側の位置のスロット204から検体ラック7を受け取り、分注位置へ搬送する。 The rack rotor 200 exchanges the sample rack 7 with the front transport line 201 via a slot, and exchanges the sample rack 7 with the left and right transport lines 202 and 203 via the slot. . The rack rotor 200 rotates and moves the sample rack 7 via the slot, and transports the sample rack 7 to the sample rack storage units 8C and 8D of the target analysis modules 2C and 2D. The rack rotor 200 rotates the slot to the right position, for example, to deliver the sample rack 7 to the transport line 202 on the analysis module 2C side according to the type of analysis. The transport line 202 receives the sample rack 7 from the slot 204 on the right side of the rack rotor 200 and transports the sample rack 7 to the dispensing position.
 上記検体搬送機構の第2構成例は、図4の自動分析装置1Dや図5の自動分析装置1Eの場合にも共通して適用可能である。例えば、図4の自動分析装置1Dの場合、図11の左側の分析モジュール2Dが無い構成に相当し、ラックロータ200は、前側の搬送ライン201および右側の搬送ライン202に対する搬送を行う。 (4) The second configuration example of the sample transport mechanism can be commonly applied to the automatic analyzer 1D of FIG. 4 and the automatic analyzer 1E of FIG. For example, in the case of the automatic analyzer 1D in FIG. 4, this corresponds to a configuration without the analysis module 2D on the left side in FIG.
 なお、組合せ方式におけるモジュール同士の配置は、単なる隣接配置ではなく、側面間で機械的な接続がされている。モジュール間では、一部の機構(例えば検体搬送部6)や一部の配線や配管等が共有されている。外観構造部品3を介在せずに隣接配置されるモジュール間の側面同士では、ボルト等を用いて機械的な接続がされている。例えば、操作モジュール4の右側の側面SS7と分析モジュール2Cの左側の側面SS9は、検体搬送部6を構成する機構や部品を介在しながら相互に接続されている。側面SS8と側面SS10についても同様である。 モ ジ ュ ー ル Note that the arrangement of modules in the combination method is not merely an adjacent arrangement, but is mechanically connected between side surfaces. Some of the mechanisms (for example, the sample transport unit 6) and some of the wiring and piping are shared between the modules. The side surfaces between the modules arranged adjacent to each other without the external structural component 3 are mechanically connected using bolts or the like. For example, the right side surface SS7 of the operation module 4 and the left side surface SS9 of the analysis module 2C are connected to each other while interposing mechanisms and components constituting the sample transport unit 6. The same applies to the side surface SS8 and the side surface SS10.
 [外観構造部品の共通化方式]
 実施の形態の自動分析装置1は、共通化する対象の外観構造部品3として、カバー部材、特に側面カバーを有する。カバー部材は、本体(カバー本体)と取付部品とを含む。また、各装置構成の自動分析装置の全体において、共通のカバー部材を取り付けおよび取り外しする対象となる複数のモジュール側面がある。第1共通化方式の場合は右側面と左側面とで独立であり、第2共通化方式の場合は左右両方の側面である。各装置構成における複数のカバー部材および複数のモジュールは、共通化のために以下のような構成を有する。カバー部材は、カバー本体の裏面に取付部品を有し(後述の図15等の取付部品62)、対応して、各モジュールの側面には、カバー部材(特に取付部品)を取り付けるための取付部(カバー部材取付部)を含む構造を有する(後述の図19等の取付部72)。自動分析装置の前面に対する左右方向(X方向)において、例えば中央の位置に、共通化のための基準となる面(例えば後述の図12等の一点鎖線で示すX-Z面)または軸(例えば鉛直方向の軸や水平方向の軸)等を考える。
[Common method of appearance structural parts]
The automatic analyzer 1 according to the embodiment has a cover member, particularly a side cover, as the external structural component 3 to be shared. The cover member includes a main body (cover main body) and a mounting component. In addition, in the entire automatic analyzer of each device configuration, there are a plurality of module side surfaces to which a common cover member is attached and detached. In the case of the first common mode, the right and left sides are independent, and in the case of the second common mode, both sides are left and right. The plurality of cover members and the plurality of modules in each device configuration have the following configuration for commonality. The cover member has a mounting part on the back surface of the cover body (a mounting part 62 in FIG. 15 and the like to be described later). Correspondingly, a mounting part for mounting the cover member (particularly a mounting part) is provided on a side surface of each module. It has a structure including a (cover member mounting portion) (a mounting portion 72 in FIG. 19 and the like described later). In the left-right direction (X direction) with respect to the front surface of the automatic analyzer, for example, at a center position, a plane (for example, an XZ plane shown by a dashed line in FIG. 12 described later) or an axis (for example, Consider a vertical axis or a horizontal axis).
 第1共通化方式では、各モジュールの右側面に共通して取り付け可能である第1カバー部材と、各モジュールの左側面に共通して取り付け可能である第2カバー部材とを有する。第1カバー部材の取付部品の位置に対応させた各モジュールの右側面の位置に取付部が設けられ、第2カバー部材の取付部品の位置に対応させた各モジュールの左側面の位置に取付部が設けられる。右側面での取付部品および取付部の位置と、左側面での取付部品および取付部の位置とは異なっていてもよい。カバー本体の裏面に設けられている2つ以上の取付部品の位置は、基本的には任意の位置である。 The first common mode has a first cover member that can be commonly attached to the right side surface of each module, and a second cover member that can be commonly attached to the left side surface of each module. A mounting portion is provided at a position on the right side of each module corresponding to the position of the mounting component of the first cover member, and a mounting portion is provided at a position on the left side of each module corresponding to the position of the mounting component of the second cover member. Is provided. The positions of the mounting components and the mounting portion on the right side surface may be different from the positions of the mounting components and the mounting portion on the left side surface. The positions of the two or more attachment parts provided on the back surface of the cover main body are basically arbitrary positions.
 第2共通化方式では、第1カバー部材および第2カバー部材は、各モジュールの右側面および左側面のいずれにも共通して取り付け可能である。各モジュールの右側面の取付部の位置および第1カバー部材の取付部品の位置と、各モジュールの左側面の取付部の位置および第2カバー部材の取付部品の位置とは、基準面に対し、鏡像または対称等の関係を持ち、左右反転した場合に対応する位置、または上下反転した場合に対応する位置である。例えば、一方の第1カバー部材の取付部品の位置およびモジュール右側面の取付部の位置を、鉛直方向の軸周りに180度回転させることで左右反転させた場合、他方の第2カバー部材の取付部品の位置およびモジュール左側面の取付部の位置に一致する。 で は In the second common mode, the first cover member and the second cover member can be commonly mounted on both the right side surface and the left side surface of each module. The position of the mounting part on the right side of each module and the position of the mounting part of the first cover member, and the position of the mounting part on the left side of each module and the position of the mounting part of the second cover member are relative to a reference plane. It has a relationship such as a mirror image or symmetry, and is a position corresponding to the case where the image is inverted horizontally, or a position corresponding to the case where the image is inverted vertically. For example, when the position of the mounting component on one of the first cover members and the position of the mounting portion on the right side of the module are rotated left and right by 180 degrees around a vertical axis, the mounting of the other second cover member is performed. It matches the position of the parts and the position of the mounting part on the left side of the module.
 図7は、外観構造部品3(カバー部材)の共通化方式に係わる、カバー部材の取付部品62の位置と各モジュール側面の取付部72の位置との対応関係について示す。ここでは、カバー部材の表面の外観デザイン(表面形状)については考えない。第1共通化方式の場合、例えば複数の各々のモジュール右側面MRに取り付けられる第1カバー部材(右側カバー部材)3Rが共通である。第1カバー部材3Rのカバー本体の裏面では、2つ以上の所定の位置に2つ以上の取付部品62が設けられる。取付部品62の位置に対応させて、各モジュール右側面MRの所定の位置に、取付部72が設けられる。各取付部品62および各取付部72の位置は、各モジュール側面間でカバー部材を平行移動した場合または上下反転した場合に、対応する位置関係を持つ。図7では平行移動の関係の場合を示す。同様に、複数の各々のモジュール左側面MLに取り付けられる第2カバー部材(左側カバー部材)3Lが共通である。第2カバー部材3Lの取付部品62の位置と各モジュール左側面MLの取付部72の位置とが対応関係を持つ。 FIG. 7 shows the correspondence between the position of the mounting component 62 of the cover member and the position of the mounting portion 72 on each side of the module, which relates to the method of sharing the external structural component 3 (cover member). Here, the appearance design (surface shape) of the surface of the cover member is not considered. In the case of the first common mode, for example, the first cover member (right cover member) 3R attached to each of the plurality of module right side surfaces MR is common. On the back surface of the cover body of the first cover member 3R, two or more attachment parts 62 are provided at two or more predetermined positions. A mounting portion 72 is provided at a predetermined position on the right side surface MR of each module corresponding to the position of the mounting component 62. The positions of the mounting components 62 and the mounting portions 72 have a corresponding positional relationship when the cover member is moved in parallel between the side surfaces of the modules or when the cover member is turned upside down. FIG. 7 shows a case of a parallel movement relationship. Similarly, the second cover member (left cover member) 3L attached to each of the plurality of module left side surfaces ML is common. The position of the mounting component 62 of the second cover member 3L and the position of the mounting portion 72 of each module left side surface ML have a corresponding relationship.
 第2共通化方式では、第1カバー部材3Rが取り付けられるモジュール右側面MRにおける取付部品62および取付部72の位置と、第2カバー部材3Lが取り付けられるモジュール左側面MLにおける取付部品62および取付部72の位置とは、基準面S0(Y-Z面)に対し、左右反転または上下反転の対応関係を持つ。図7では左右反転の関係の場合を示す。例えば、モジュール右側面MRおよび第1カバー部材3RにおけるY-Z面において、説明上、右上の第1象限、左上の第2象限、左下の第3象限、右下の第4象限を示す。例えば、右上の第1象限および左上の第2象限に、2つの取付部品62および2つの取付部72が配置されている。第1カバー部材3Rを、Z方向の軸周りに180度回転させることで左右反転させた場合、第1カバー部材3Rは、第2カバー部材3Lの状態と同じになる。第1カバー部材3Rの右上および左上の2つの取付部品62およびモジュール右側面MRの2つの取付部72の位置が、第2カバー部材3Lの右上および左上の2つの取付部品62およびモジュール左側面MLの2つの取付部72の位置に一致する。上記のような構成によって外観構造部品3の共通化が実現されている。 In the second common mode, the positions of the attachment components 62 and the attachment portions 72 on the module right side surface MR to which the first cover member 3R is attached, and the attachment components 62 and the attachment portions on the module left side surface ML to which the second cover member 3L is attached. The position 72 has a corresponding relationship of horizontal reversal or vertical reversal with respect to the reference plane S0 (YZ plane). FIG. 7 shows a case of a left-right inversion relationship. For example, on the YZ plane of the module right side surface MR and the first cover member 3R, for explanation, a first quadrant on the upper right, a second quadrant on the upper left, a third quadrant on the lower left, and a fourth quadrant on the lower right are shown. For example, two attachment parts 62 and two attachment parts 72 are arranged in the first quadrant on the upper right and the second quadrant on the upper left. When the first cover member 3R is turned left and right by rotating it by 180 degrees around the axis in the Z direction, the first cover member 3R becomes the same as the state of the second cover member 3L. The positions of the two upper right and upper left mounting parts 62 of the first cover member 3R and the two mounting parts 72 of the module right side MR are the two upper right and upper left mounting parts 62 of the second cover member 3L and the module left side ML. Of the two mounting portions 72. With the above-described configuration, the common use of the external structural component 3 is realized.
 [外観構造部品の共通化方式(1)]
 図12~図14等を用いて、実施の形態の単体方式および組合せ方式の複数の各タイプの自動分析装置1における、外観構造部品3の共通化の方式について説明する。図12は、単体方式の自動分析装置1(1A,1B)に関する第1共通化および第2共通化について示す。図12の(A)は、単体方式での第1共通化方式を示す。図12の(B)は、単体方式での第2共通化方式を示す。図13は、組合せ方式の自動分析装置1(1C,1D,1E)に関する第1共通化方式について示す。図14は、組合せ方式の自動分析装置1(1C,1D,1E)に関する第2共通化方式について示す。図12~図14は、主にモジュールおよび外観構造部品3の上面(X-Y面)の概要構成を示し、併せて、外観構造部品3の斜視も示している。また、基準面S0を一点鎖線で示す。
[Common method of appearance structural parts (1)]
With reference to FIGS. 12 to 14 and the like, a description will be given of a method of sharing the external structural components 3 in the plurality of types of automatic analyzers 1 of the single type and the combination type according to the embodiment. FIG. 12 shows a first common use and a second common use for the single-system automatic analyzer 1 (1A, 1B). FIG. 12A shows a first common system in the simplex system. FIG. 12B shows a second common mode in the simplex mode. FIG. 13 shows a first common mode for the automatic analyzer 1 (1C, 1D, 1E) of the combination mode. FIG. 14 shows a second common mode for the automatic analyzer 1 (1C, 1D, 1E) of the combination mode. 12 to 14 mainly show the schematic configuration of the upper surface (XY plane) of the module and the external structural component 3, and also show the perspective view of the external structural component 3. FIG. The reference plane S0 is indicated by a dashed line.
 図12の(A)で、第1共通化方式では、全モジュールの右側の側面と左側の側面とで分けて、左右毎に外観構造部品3が共通化されている。すなわち、全モジュールの側面カバーである外観構造部品3は、右側面用の第1カバー部材である外観構造部品3aと、左側面用の第2カバー部材である外観構造部品3bとの2種類のみで構成されている。右側面用の外観構造部品3aと左側面用の外観構造部品3bは、X方向で中央の基準面S0に対し左右対称形状を有する。また、外観構造部品3aおよび外観構造部品3bは、それぞれ単独でみた場合、Z方向で上下非対称形状を有する。 In FIG. 12A, in the first common mode, the external structural components 3 are shared for each of the right and left sides of each module by dividing the right side and the left side. That is, there are only two types of exterior structural components 3 that are side covers of all modules: an external structural component 3a that is a first cover member for the right side and an external structural component 3b that is a second cover member for the left side. It is composed of The external structural component 3a for the right side and the external structural component 3b for the left side have a symmetrical shape with respect to the center reference plane S0 in the X direction. Further, the external structural component 3a and the external structural component 3b have a vertically asymmetric shape in the Z direction when viewed independently.
 自動分析装置1Aの分析モジュール2Aの右側の外観構造部品31と、自動分析装置1Bの分析モジュール2Bの右側の外観構造部品33とは、共通化された同じ外観構造部品3aで構成されている。自動分析装置1Aの分析モジュール2Aの左側の外観構造部品32と、自動分析装置1Bの分析モジュール2Bの左側の外観構造部品34とは、共通化された同じ外観構造部品3bで構成されている。 The outer appearance structural part 31 on the right side of the analysis module 2A of the automatic analyzer 1A and the outer appearance structural part 33 on the right side of the analysis module 2B of the automatic analyzer 1B are constituted by the same common outer appearance structural part 3a. The external appearance structural part 32 on the left side of the analysis module 2A of the automatic analyzer 1A and the external appearance structural part 34 on the left side of the analysis module 2B of the automatic analyzer 1B are constituted by the same common external appearance structural part 3b.
 わかりやすいように、外観構造部品3a,3bにおける種類を記号A,Bでも示す。また、外観構造部品3a,3bにおける位置の例を点p1で示す。例えば、右側の外観構造部品3aにおける表面の右上の点p1と、左側の外観構造部品3bにおける表面の左上の点p1とが、左右対称で対応する点である。本実装例では、外観デザイン上、左右の外観構造部品3(3a,3b)を左右対称形状としているが、これに限らず、左右非対称形状としてもよい。また、外観構造部品3(3a,3b)は、それぞれ、背面に後述の取付部品を有するので、背面で見た場合には上下非対称形状となっている。外観構造部品3(3a,3b)は、表面のみで見た場合には、例えば上下非対称形状を有するが、上下非対称形状に限らず、上下対称形状としてもよいし、左右対称形状(Y方向の前後での対称形状)としてもよい。 (4) For simplicity, the types of the external structural components 3a and 3b are also indicated by symbols A and B. Further, an example of a position in the external structural components 3a, 3b is indicated by a point p1. For example, a point p1 at the upper right of the surface of the right exterior structure component 3a and a point p1 at the upper left of the surface of the left exterior structure component 3b are symmetrically corresponding points. In this mounting example, the left and right external structural components 3 (3a, 3b) have a left-right symmetric shape in terms of external design, but are not limited to this, and may have a left-right asymmetric shape. Further, since the external structural components 3 (3a, 3b) each have a mounting component described later on the rear surface, they have a vertically asymmetric shape when viewed from the rear surface. When viewed only from the surface, the external structural component 3 (3a, 3b) has, for example, a vertically asymmetric shape, but is not limited to the vertically asymmetric shape, and may have a vertically symmetric shape, or a left-right symmetric shape (Y direction). (A symmetrical shape before and after).
 図28の比較例では、自動分析装置91A,91Bの提供にあたって、4種類{A~D}の外観構造部品93-1~93-4が必要であった。それに対し、第1共通化方式によれば、自動分析装置1A,1Bの提供にあたって、2種類{A,B}の外観構造部品3a,3bのみで済む。 In the comparative example of FIG. 28, four types of external structural components 93-1 to 93-4 were required in providing the automatic analyzers 91A and 91B. On the other hand, according to the first common method, only two types of external structural components 3a and 3b are required for providing the automatic analyzers 1A and 1B.
 [外観構造部品の共通化方式(2)]
 図12の(B)は、さらに、第2共通化方式を示す。実施の形態の自動分析装置1は、単体方式の各タイプに関して、第1共通化方式の採用まででも相応の効果が得られるが、さらに第2共通化方式を採用する。これにより、さらに外観構造部品3の種類を低減できる。第2共通化方式では、さらに、右側の外観構造部品3aと左側の外観構造部品3bとが、共通化された同じ種類の外観構造部品3cで構成されている。自動分析装置1Aの左右の外観構造部品31,32と自動分析装置1Bの左右の外観構造部品33,34とを含むすべての外観構造部品が、共通化された同じ外観構造部品3cで構成される。モジュールの右側の側面に配置される外観構造部品3cと、モジュールの左側の側面に配置される外観構造部品3cとでは、X方向で左右対称形状を有する。外観構造部品3cは、それぞれZ方向でも上下対称形状を有する。右側に配置される外観構造部品3cの取付部品の位置および分析モジュール2Aの右側面の取付部の位置と、左側に配置される外観構造部品3cの取付部品の位置および分析モジュール2Bの右側面の取付部の位置とは、基準面S0に対し上下反転での対応関係を持つ。
[Common method of appearance structural parts (2)]
FIG. 12B further illustrates a second common mode. In the automatic analyzer 1 according to the embodiment, for each type of the simplex system, a suitable effect can be obtained up to the adoption of the first common system, but the second common system is further employed. Thereby, the types of the external structural components 3 can be further reduced. In the second common mode, the right-side external structural component 3a and the left-side external structural component 3b are further configured of the same type of external structural component 3c. All the external structural components including the left and right external structural components 31 and 32 of the automatic analyzer 1A and the left and right external structural components 33 and 34 of the automatic analyzer 1B are configured by the same common external structural component 3c. . The external structural component 3c disposed on the right side of the module and the external structural component 3c disposed on the left side of the module have left-right symmetric shapes in the X direction. Each of the external structural components 3c has a vertically symmetric shape in the Z direction. The position of the mounting part of the external structural component 3c disposed on the right side and the position of the mounting part on the right side of the analysis module 2A, the position of the mounting part of the external structural part 3c disposed on the left side and the right side of the analysis module 2B The position of the attachment portion has a correspondence relationship with the reference surface S0 when it is turned upside down.
 わかりやすいように、外観構造部品3cにおける種類を記号Cでも示す。また、外観構造部品3cにおける位置の例を点p2で示す。例えば、モジュールの右側の側面に配置される外観構造部品3cにおける表面の右上の点p2と、モジュールの左側の側面に配置される外観構造部品3cにおける表面の左下の点p2とが、対応する同じ点である。外観構造部品3cは、上下反転した状態でも使用できるように、上下対称形状となっている。 種類 For easy understanding, the type of the external structural component 3c is also indicated by a symbol C. An example of the position in the external structural component 3c is indicated by a point p2. For example, a point p2 on the upper right of the surface of the external structural component 3c disposed on the right side surface of the module and a point p2 on the lower left of the surface of the external structural component 3c disposed on the left side surface of the module are the same. Is a point. The external structural component 3c has a vertically symmetric shape so that it can be used even when it is turned upside down.
 上記のように、実施の形態の自動分析装置1は、単体方式の各タイプの自動分析装置1(1A,1B)における複数の箇所に、共通化された同一の種類の外観構造部品3(3a,3b,3c)を使用する。これにより、外観構造部品3の種類が低減でき、コストやロジスティクスの負担が改善される。例えば、外観構造部品3を成形方法によって製造する場合の金型等のコストも低減できる。なお、本例では、生化学分析用の自動分析装置1Aと免疫分析用の自動分析装置1Bとについて外観構造部品3の共通化を適用した場合を示した。共通化の対象となる複数の装置は、本例に限らず可能である。例えば、生化学分析用の複数種類の自動分析装置がある場合や、免疫分析用の複数の種類の自動分析装置がある場合にも、それぞれ同様に共通化が適用可能である。 As described above, the automatic analyzer 1 according to the embodiment has the same type of external structural component 3 (3a) shared in a plurality of locations in each type of the single-system automatic analyzer 1 (1A, 1B). , 3b, 3c). As a result, the number of types of external structural components 3 can be reduced, and the cost and logistics burden can be improved. For example, the cost of a mold and the like when the external structural component 3 is manufactured by a molding method can be reduced. Note that, in this example, a case is shown in which the common use of the external structural components 3 is applied to the automatic analyzer 1A for biochemical analysis and the automatic analyzer 1B for immunological analysis. A plurality of devices to be shared are not limited to this example and can be used. For example, when there are a plurality of types of automatic analyzers for biochemical analysis and when there are a plurality of types of automatic analyzers for immunological analysis, the common use can be similarly applied.
 [外観構造部品の共通化方式(3)]
 図13は、同様に、組合せ方式の自動分析装置1(1C,1D,1E)の外観構造部品3に関する第1共通化方式について示し、上から順に、自動分析装置1C、自動分析装置1D、および自動分析装置1Eの上面(X-Y面)の概要構成を示す。わかりやすいように、共通する操作モジュール4の位置を基準に一点鎖線(基準面S0)で示す。各タイプの自動分析装置1(1C,1D,1E)の構成では、側面カバーである外観構造部品3として、最も右側に配置されている外観構造部品41,43,45と、最も左側に配置されている外観構造部品42,44,46とを有する。
[Common method of appearance structural parts (3)]
FIG. 13 similarly shows a first common system relating to the appearance structural component 3 of the automatic analyzer 1 (1C, 1D, 1E) of the combination system, and sequentially from the top, the automatic analyzer 1C, the automatic analyzer 1D, and 3 shows a schematic configuration of the upper surface (XY plane) of the automatic analyzer 1E. For easy understanding, the position of the common operation module 4 is indicated by a dashed line (reference plane S0) based on the position. In the configuration of each type of the automatic analyzer 1 (1C, 1D, 1E), the external structural components 41, 43, 45 arranged on the rightmost side and the external structural components 41, 43, 45 arranged on the rightmost side as the external structural parts 3 which are side covers. Appearance structural parts 42, 44, 46.
 第1共通化方式では、各タイプの右側の外観構造部品41,43,45は、共通化された同じ種類の外観構造部品3eで構成されている。また、左側の外観構造部品42,44,46は、共通化された同じ種類の外観構造部品3fで構成されている。右側面用の外観構造部品3eと、左側面用の外観構造部品3fとでは、異なる形状等を有するが、X方向では左右対称形状を有し、概ね類似の形状等を有する。外観構造部品3e,3fは、それぞれ、Z方向では例えば上下非対称形状を有する。右側に配置される外観構造部品3eの取付部品の位置および各モジュール右側面の取付部の位置は、対応関係を持つ。左側に配置される外観構造部品3fの取付部品の位置および各モジュール左側面の取付部の位置は、対応関係を持つ。 In the first common method, the right external structural components 41, 43, and 45 of each type are formed of the same external structural component 3e of the same type. Further, the left exterior structure components 42, 44, 46 are formed of the same type of exterior structure component 3f that is shared. The external structural component 3e for the right side and the external structural component 3f for the left side have different shapes and the like, but have a bilaterally symmetric shape in the X direction, and have substantially similar shapes and the like. Each of the external structural components 3e and 3f has, for example, a vertically asymmetric shape in the Z direction. The position of the mounting component of the external structural component 3e arranged on the right side and the position of the mounting portion on the right side surface of each module have a corresponding relationship. The position of the attachment component of the external structural component 3f arranged on the left side and the position of the attachment portion on the left side of each module have a corresponding relationship.
 わかりやすいように、外観構造部品3e,3fにおける種類を記号E,Fでも示す。また、外観構造部品3e,3fにおける位置の例を点p3で示す。例えば、右側の外観構造部品3eにおける表面の右上の点p3と、左側の外観構造部品3fにおける表面の左上の点p3とが、左右対称形状で対応する点である。 (4) For simplicity, the types of the external structural components 3e and 3f are also indicated by symbols E and F. Further, an example of a position in the external structural components 3e and 3f is indicated by a point p3. For example, a point p3 at the upper right of the surface of the right external structural component 3e and a point p3 at the upper left of the surface of the left external structural component 3f are points corresponding to each other in a left-right symmetric shape.
 第1共通化方式では、分析モジュール1Cの右側の外観構造部品41,43と、操作モジュール4の右側の外観構造部品45とが、外観構造部品3eとして共通化されている。同様に、分析モジュール1Dの左側の外観構造部品42,46と、操作モジュール4の左側の外観構造部品44とが、外観構造部品3fとして共通化されている。 In the first common method, the outer appearance structural parts 41 and 43 on the right side of the analysis module 1C and the outer appearance structural part 45 on the right side of the operation module 4 are shared as the outer appearance structural part 3e. Similarly, the external appearance structural parts 42 and 46 on the left side of the analysis module 1D and the external appearance structural part 44 on the left side of the operation module 4 are shared as the external appearance structural part 3f.
 図29の比較例では、自動分析装置91C,91D,91Eの提供にあたって、4種類{E~H}の外観構造部品93(93-5~93-8)が必要であった。それに対し、第1共通化方式によれば、自動分析装置1C,1D,1Eの提供にあたって、2種類{E,F}の外観構造部品3e,3fのみで済む。第1共通化方式は、第2共通化方式よりも外観構造部品3の種類が多いが、外観構造部品3の表面のデザインの自由度はより高い。 In the comparative example of FIG. 29, four types of external structural components 93 (93-5 to 93-8) were required in providing the automatic analyzers 91C, 91D, and 91E. On the other hand, according to the first standardization method, in providing the automatic analyzers 1C, 1D, and 1E, only two types of external structural components 3e and 3f are required. The first common mode has more types of external structural components 3 than the second standard mode, but has a higher degree of freedom in designing the surface of the external structural component 3.
 [外観構造部品の共通化方式(4)]
 図14は、同様に、組合せ方式の自動分析装置1(1C,1D,1E)に関する第2共通化方式について示す。実施の形態の自動分析装置1は、組合せ方式の各タイプに関して、第1共通化方式の採用まででも相応の効果が得られるが、さらに第2共通化方式を採用する。これにより、さらに外観構造部品3の種類を低減できる。
[Common method of appearance structural parts (4)]
FIG. 14 similarly shows a second common mode for the combination type automatic analyzer 1 (1C, 1D, 1E). In the automatic analyzer 1 according to the embodiment, for each type of the combination method, a corresponding effect can be obtained even when the first common method is employed, but the second common method is further employed. Thereby, the types of the external structural components 3 can be further reduced.
 第2共通化方式では、各タイプにおける左右のすべての外観構造部品41~46が、共通化された同じ種類の外観構造部品3gで構成されている。第2共通化方式によれば、自動分析装置1C,1D,1Eの提供にあたって、1種類の外観構造部品3gのみで済む。モジュールの右側面に配置される外観構造部品3gと、左側面に配置される外観構造部品3gとでは、X方向で左右対称形状を有する。外観構造部品3gは、それぞれ、Z方向では上下対称形状を有する。右側に配置される外観構造部品3gの取付部品の位置および各モジュール右側面の取付部の位置と、左側に配置される外観構造部品3gの取付部品の位置および各モジュール左側面の取付部の位置とは、基準面S0に対し上下反転での対応関係を持つ。 In the second common mode, all the left and right external structural components 41 to 46 of each type are made of the same external structural component 3g of the same type. According to the second common mode, only one type of external structural component 3g is required for providing the automatic analyzers 1C, 1D, and 1E. The external structural component 3g disposed on the right side of the module and the external structural component 3g disposed on the left side have a symmetrical shape in the X direction. Each of the external structural components 3g has a vertically symmetric shape in the Z direction. The positions of the mounting parts of the external structural components 3g disposed on the right side and the positions of the mounting parts on the right side of each module, the positions of the mounting parts of the external structural parts 3g disposed on the left side and the positions of the mounting parts on the left side of each module Has a correspondence relationship with the reference plane S0 by upside down.
 わかりやすいように、外観構造部品3gにおける種類を記号Gでも示す。また、外観構造部品3gにおける位置の例を点p4で示す。例えば、右側に配置される外観構造部品3gにおける表面の右上の点p4と、左側に配置される外観構造部品3gにおける表面の左下の点p4とが、対応する点である。右側に配置された外観構造部品3gの表面の状態は、Y方向の軸J1周りに180度回転させることで上下反転させることで、左側に配置された外観構造部品3gの表面の状態と同じになる。 種類 For easy understanding, the type in the external structural component 3g is also indicated by a symbol G. An example of the position in the external structural component 3g is indicated by a point p4. For example, a point p4 on the upper right of the surface of the external structural component 3g disposed on the right side and a point p4 on the lower left of the surface of the external structural component 3g disposed on the left are the corresponding points. The state of the surface of the external structural component 3g disposed on the right side is the same as the surface state of the external structural component 3g disposed on the left side, by turning it 180 degrees around the axis J1 in the Y direction to flip it upside down. Become.
 上記のように、実施の形態の自動分析装置1は、組合せ方式の各タイプの自動分析装置1(1C,1D,1E)における複数の箇所に、共通化された同一の種類の外観構造部品3(3e,3f,3g)を使用する。これにより、外観構造部品3の種類が低減でき、コストやロジスティクスの負担が改善される。なお、本例では、自動分析装置1C,1D,1Eについて外観構造部品3の共通化を適用した場合を示した。共通化の対象となる複数の装置は、本例に限らず可能である。例えば、生化学分析用の分析モジュール2Cがさらに複数種類ある場合等にも、同様に共通化が適用可能である。 As described above, the automatic analyzer 1 according to the embodiment has the same type of external structural component 3 common to a plurality of locations in each type of automatic analyzer 1 (1C, 1D, 1E) of the combination system. (3e, 3f, 3g) are used. As a result, the number of types of external structural components 3 can be reduced, and the cost and logistics burden can be improved. In this example, the case where the common use of the external structural components 3 is applied to the automatic analyzers 1C, 1D, and 1E has been described. A plurality of devices to be shared are not limited to this example and can be used. For example, the common use can be similarly applied to a case where there are a plurality of types of analysis modules 2C for biochemical analysis.
 なお、上記実装例では、外観構造部品3c(図12の(B))または外観構造部品3g(図14)のカバー本体は、後述するが、Y方向で前側から後側に行くに従って幅が大きくなる形状を有し、表面でみた場合にY方向で非対称形状を有する。これに対応して、カバー本体の上下反転を用いて、第2共通化方式が実現されている。外観構造部品3cまたは外観構造部品3gのカバー本体の形状は、これに限らず可能である。変形例では、カバー本体は、Y方向で前側、後側によらずにX方向の幅が一定の形状としてもよい。この場合、カバー本体の上下反転を用いる必要無く、例えばカバー本体の左右反転を用いることで、第2共通化が実現できる。 In the mounting example described above, the cover body of the external structural component 3c (FIG. 12B) or the external structural component 3g (FIG. 14) will have a greater width from the front side to the rear side in the Y direction, as described later. It has an asymmetric shape in the Y direction when viewed from the surface. Correspondingly, the second common mode is realized by using the cover body upside down. The shape of the cover main body of the external structural component 3c or the external structural component 3g is not limited to this, and is possible. In a modified example, the cover body may have a constant width in the X direction regardless of the front side or the rear side in the Y direction. In this case, the second commonality can be realized by using, for example, left-right inversion of the cover body without using upside-down inversion of the cover body.
 図30は、上記変形例に対応する第2共通化方式を示す。自動分析装置1C,1D,1Eに関して、図14の場合とは異なる形状の外観構造部品41~46(3g)が用いられている。本例では、操作モジュール4は、ラックロータ200を備える場合を示す。例えば自動分析装置1Cは、分析モジュール2Cの右側面に取り付けられる外観構造部品41と、分析モジュール2Dの左側面に取り付けられる外観構造部品42とが、共通化された外観構造部品3gで構成される。この外観構造部品3gは、Y方向で前側、後側によらずにX方向の幅が一定である。この外観構造部品3gのカバー本体は、単独で表面をみた場合にY方向で対称形状を有する。カバー本体の表面の位置の例を点p5で示し、表面の右上の位置(Z方向で上側、Y方向で後側の位置)にある。自動分析装置1Cの右側に配置されている外観構造部品41(3g)は、左側に配置される場合には、カバー本体のZ方向の軸J2周りに180度回転させることで基準面S0に対し左右反転させることで、左側に配置される外観構造部品42(3g)と同じ状態となる。左側の外観構造部品42(3g)の状態では、点p5は、表面の右上の位置(Z方向で上側、Y方向で前側の位置)にある。 FIG. 30 shows a second common mode corresponding to the above modification. As for the automatic analyzers 1C, 1D, and 1E, appearance structural parts 41 to 46 (3 g) having shapes different from those in FIG. 14 are used. In this example, the case where the operation module 4 includes the rack rotor 200 is shown. For example, in the automatic analyzer 1C, an external structural component 41 attached to the right side of the analytical module 2C and an external structural component 42 attached to the left side of the analytical module 2D are configured by a common external structural component 3g. . The external structural component 3g has a constant width in the X direction regardless of the front side or the rear side in the Y direction. The cover body of the external structural component 3g has a symmetrical shape in the Y direction when the surface is viewed alone. An example of the position of the surface of the cover body is indicated by a point p5, and is located at the upper right position (upper position in the Z direction and rear position in the Y direction) of the surface. When the external structural component 41 (3g) disposed on the right side of the automatic analyzer 1C is disposed on the left side, the external structural component 41 (3g) is rotated by 180 degrees around the axis J2 in the Z direction of the cover main body so as to be positioned with respect to the reference plane S0. By inverting left and right, it becomes the same state as the appearance structural component 42 (3g) arranged on the left side. In the state of the external appearance structural component 42 (3g) on the left side, the point p5 is at the upper right position (upper position in the Z direction and front position in the Y direction) on the surface.
 [外観構造部品の共通化方式(5)]
 図31は、実施の形態の変形例の自動分析装置における、組合せ方式の他のタイプの自動分析装置1H,1I,1Jに関して第2共通化方式を適用した場合について示す。自動分析装置1Hは、第6タイプの構成として、中央の操作モジュール4に対し、左右に、同じ種類のモジュールとして2つの生化学分析の分析モジュール2C(2C-1,2C-2)が接続されているタイプである。また、本例では、ラックロータ200を備える操作モジュール4を組み合わせる場合を示している。このタイプは、同じ分析種類の分析モジュールの数を増やすことで同時分析可能な検体数を増やした構成である。右側の生化学分析モジュール2C-1と左側の生化学分析モジュール2C-2とは、同じ機構等を持つ、同じ分析種類および同じ仕様のモジュールである。生化学分析モジュール2C-1の右側面に取り付けられる外観構造部品41と、生化学分析モジュール2C-2の左側面に取り付けられる外観構造部品42とが、共通化された外観構造部品3gで構成される。
[Common method of appearance structural parts (5)]
FIG. 31 shows a case where the second common mode is applied to other types of automatic analyzers 1H, 1I, and 1J in the automatic analyzer according to the modification of the embodiment. In the automatic analyzer 1H, as a sixth type configuration, two biochemical analysis modules 2C (2C-1, 2C-2) of the same type are connected to the center operation module 4 on the left and right sides. Type. In this example, a case is shown in which the operation module 4 including the rack rotor 200 is combined. This type has a configuration in which the number of samples that can be simultaneously analyzed is increased by increasing the number of analysis modules of the same analysis type. The biochemical analysis module 2C-1 on the right side and the biochemical analysis module 2C-2 on the left side are modules having the same mechanism and the like and the same analysis type and the same specifications. An external structural component 41 attached to the right side of the biochemical analysis module 2C-1 and an external structural component 42 attached to the left side of the biochemical analysis module 2C-2 are constituted by a common external structural component 3g. You.
 また、自動分析装置1Iは、図14の自動分析装置1Dと同様の構成であるが、自動分析装置1Hから左側の分析モジュール2C-2を除いた構成に相当する。分析モジュール2C-1の右側の外観構造部品43と操作モジュール4の左側の外観構造部品43とについても、共通化された外観構造部品3gで構成される。また、自動分析装置1Jは、自動分析装置1Hから右側の分析モジュール2C-1を除いた構成に相当する。分析モジュール2C-2の左側の外観構造部品46と操作モジュール4の右側の外観構造部品45とについても、共通化された外観構造部品3gで構成される。 The automatic analyzer 1I has the same configuration as the automatic analyzer 1D in FIG. 14, but corresponds to a configuration in which the analysis module 2C-2 on the left side is removed from the automatic analyzer 1H. The external structural component 43 on the right side of the analysis module 2C-1 and the external structural component 43 on the left side of the operation module 4 are also configured by the common external structural component 3g. The automatic analyzer 1J corresponds to a configuration in which the right analysis module 2C-1 is removed from the automatic analyzer 1H. The outer appearance structural part 46 on the left side of the analysis module 2C-2 and the outer appearance structural part 45 on the right side of the operation module 4 are also constituted by the shared outer appearance structural part 3g.
 上記構成は第2共通化方式を適用した場合であるが、同様に第1共通化方式も適用可能である。また、他のタイプの自動分析装置として、操作モジュール4の左右に対し、同じ免疫分析用の分析モジュール2Dが接続される構成の場合でも、同様に共通化方式が適用可能である。組合せ方式の自動分析装置を構成する複数のモジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される複数のモジュールであるが、選択される複数のモジュールは、上記のように、異なる種類の複数個のモジュールでもよいし、同じ種類の複数個のモジュールでもよい。 The above configuration is the case where the second common mode is applied, but the first common mode is also applicable. Also, as another type of automatic analyzer, even in the case where the same analysis module 2D for immunological analysis is connected to the left and right sides of the operation module 4, the common method can be similarly applied. The plurality of modules constituting the automatic analyzer of the combination system are a plurality of modules selected from a plurality of types of modules different depending on at least one of the specification and the analysis type, but the plurality of selected modules are: As described above, a plurality of modules of different types may be used, or a plurality of modules of the same type may be used.
 [外観構造部品の共通化方式(6)]
 実施の形態の変形例の自動分析装置として、以下も可能である。変形例の自動分析装置は、単体方式や組合せ方式において、ある分析種類のモジュールは、さらに、複数の種類のモジュールが存在してもよい。例えば、生化学分析モジュールとして、機構や形状等のバリエーションに対応して仕様が異なる複数の種類の生化学分析モジュールがあってもよい。同様に、複数の種類の免疫分析モジュールがあってもよい。選択される種類の分析モジュールに応じて、異なる自動分析装置が構成可能である。そして、このように同じ分析種類のモジュールで仕様等が異なる複数の種類のモジュールがある場合にも、前述と同様に共通化方式が適用可能である。
[Common method of appearance structural parts (6)]
The following is also possible as an automatic analyzer according to a modification of the embodiment. In the automatic analyzer according to the modified example, a module of a certain analysis type may further include a plurality of types of modules in a single system or a combination system. For example, as the biochemical analysis module, there may be a plurality of types of biochemical analysis modules having different specifications corresponding to variations in mechanism, shape, and the like. Similarly, there may be multiple types of immunoassay modules. Different automatic analyzers can be configured depending on the type of analysis module selected. Also in the case where there are a plurality of types of modules having the same analysis type but different specifications and the like, a common method can be applied in the same manner as described above.
 一例として、単体方式の自動分析装置において、同じ分析種類として生化学分析用のモジュールまたは本体として、仕様が異なる複数の種類(例えば2種類)のモジュールまたは本体があるとする。例えば、第2共通化方式を適用する場合に、第1仕様のモジュールの左右の側面の外観構造部品、および第2仕様のモジュールの左右の側面の外観構造部品が、すべて共通化された外観構造部品で構成される。 As an example, it is assumed that, in a single-unit automatic analyzer, there are a plurality of types (for example, two types) of modules or main bodies having different specifications as biochemical analysis modules or main bodies as the same analysis type. For example, when the second common mode is applied, the external structural parts on the left and right sides of the module of the first specification and the external structural parts on the left and right sides of the module of the second specification are all shared. It is composed of parts.
 他の例として、組合せ方式の自動分析装置において、例えば生化学分析用の分析モジュールとして仕様が異なる例えば2種類の分析モジュールがあるとする。例えば、第3タイプの自動分析装置1Cを構成する際に、分析モジュール2Cの候補として、2種類の分析モジュール2Cがあり、それぞれの組合せが可能である。これらの構成に対し、例えば、第2共通化方式を適用する場合に、第1仕様の分析モジュール2Cの右側面の外観構造部品と第2仕様の分析モジュール2Cの右側面の外観構造部品とが、共通化された外観構造部品で構成される。同様に、免疫分析用の分析モジュール2Dとして複数の種類の分析モジュール2Dがある場合にも、共通化方式が適用可能である。 As another example, it is assumed that there are, for example, two types of analysis modules having different specifications as an analysis module for biochemical analysis in a combination type automatic analyzer. For example, when configuring the third type of automatic analyzer 1C, there are two types of analysis modules 2C as candidates for the analysis module 2C, and combinations of the two are possible. For example, when the second common mode is applied to these configurations, the appearance structural parts on the right side of the analysis module 2C of the first specification and the appearance structural parts on the right side of the analysis module 2C of the second specification are different. , Composed of common external structural components. Similarly, even when there are a plurality of types of analysis modules 2D as the analysis modules 2D for the immunological analysis, the common method can be applied.
 [外観構造部品(1)]
 図15~図17は、上記共通化された外観構造部品3、例えば図14の外観構造部品3gに関する詳しい構造例を示す。図15は、例えば、図3の自動分析装置1Cの分析モジュール2Cの右側の側面SS5に右側の外観構造部品41として取り付けられる外観構造部品3gの構造を示す斜視図である。図16は、例えば、図3の自動分析装置1Cの分析モジュール2Dの左側の側面SS6に左側の外観構造部品42として取り付けられる外観構造部品3gの構造を示す斜視図である。図17は、外観構造部品3gに備える取付部品62の構造を示す。
[Appearance structural parts (1)]
FIGS. 15 to 17 show detailed structural examples of the above-mentioned common exterior structure component 3, for example, the exterior structure component 3g of FIG. FIG. 15 is a perspective view showing, for example, the structure of an external structural component 3g attached as the right external structural component 41 to the right side surface SS5 of the analysis module 2C of the automatic analyzer 1C of FIG. FIG. 16 is a perspective view showing, for example, the structure of an external structural component 3g attached as the left external structural component 42 to the left side surface SS6 of the analysis module 2D of the automatic analyzer 1C in FIG. FIG. 17 shows the structure of the attachment component 62 provided on the external structural component 3g.
 図15の(A)は、外観構造部品3g(41)の表面の斜視を示し、(B)は、裏面の斜視を示す。図15の(A)で、外観構造部品3gは、表面をみた場合に、一点鎖線で示す基準線C1に対し、上下対称形状を有する。基準線C1は、Z方向で外観構造部品3gの長さの中心付近にあり、Y方向に延在する軸を示す。 (A) of FIG. 15 shows a perspective view of the front surface of the external structural component 3g (41), and (B) shows a perspective view of the back surface. In FIG. 15A, the external structural component 3g has a vertically symmetric shape with respect to a reference line C1 indicated by a dashed line when viewed from the surface. The reference line C1 is located near the center of the length of the external structural component 3g in the Z direction and indicates an axis extending in the Y direction.
 外観構造部品3gは、大別して、カバー本体である本体61と取付部品62とで構成されている。本体61は、概略平板形状であり、全体的にX方向の外側(例えば右側)に凸形状であり、裏面でみてX方向で所定の厚さの空間を有する。その空間に取付部品62が収まっている。本体61は、外観デザインの一例として、Y方向で前側から後側に行くに従って幅が大きくなる形状を有する。このデザイン例は、利用者が標準位置から前面をみた場合の外観の印象を意図したものである。実施の形態では、外観構造部品3gは、Y方向の前後では非対称形状を有する。また、本体61は、表面において、外観デザインの一例として、Y方向の概略中央付近の位置で、Z方向に長い凹部63が設けられている。凹部63は、裏面からみると凸部である。 The external structural component 3g is roughly composed of a main body 61 as a cover main body and a mounting component 62. The main body 61 has a substantially flat plate shape, is entirely convex outside (for example, right side) in the X direction, and has a space of a predetermined thickness in the X direction when viewed from the back. The mounting component 62 is accommodated in the space. As an example of the external design, the main body 61 has a shape in which the width increases from the front side to the rear side in the Y direction. This design example is intended to give an impression of the appearance when the user looks at the front from the standard position. In the embodiment, the external structural component 3g has an asymmetric shape before and after in the Y direction. On the surface of the main body 61, as an example of an appearance design, a concave portion 63 long in the Z direction is provided at a position near the approximate center in the Y direction. The concave portion 63 is a convex portion when viewed from the back surface.
 図15の(B)で、本体61は、裏面では、空間内に、Z方向の中央付近の基準線C1の位置において、Y方向の前後の所定の位置に、2つの取付部品62、特に取付部品62a,62bが固定されている。Y方向の前側に取付部品62a、後側に取付部品62bが配置されている。2つの取付部品62a,62bは、同じ形状や寸法や機構等を有する。 In FIG. 15 (B), the main body 61 has two mounting parts 62, particularly a mounting part, at a predetermined position before and after in the Y direction at the position of the reference line C1 near the center in the Z direction in the space on the back surface. Parts 62a and 62b are fixed. A mounting component 62a is disposed on the front side in the Y direction, and a mounting component 62b is disposed on the rear side. The two attachment parts 62a and 62b have the same shape, size, mechanism, and the like.
 取付部品62は、外観構造部品3gを、対象のモジュールである分析モジュール2Cまたは分析モジュール2Dまたは操作モジュール4の側面に対して取り付けるための部品である。後述するが、各モジュールの側面には、外観構造部品3gを取り付けるための共通化された取付部を含む構成を有する。 The attachment component 62 is a component for attaching the appearance structural component 3g to the side of the analysis module 2C, the analysis module 2D, or the operation module 4, which is the target module. As will be described later, each module has a configuration including a common mounting portion for mounting the external structural component 3g on the side surface.
 なお、本体61のZ方向の上下の辺の所定の位置には、後述の裾カバーを取り付けるためのねじ穴部品64も設けられている。実施の形態の自動分析装置1は、外観構造部品3において、後述の裾カバーを取り付け可能な構成を有するが、この裾カバーを設けない形態も可能である。 ね じ At predetermined positions on the upper and lower sides of the main body 61 in the Z direction, screw hole components 64 for attaching a hem cover described later are also provided. The automatic analyzer 1 according to the embodiment has a configuration in which a skirt cover described later can be attached to the external structural component 3, but a configuration without the skirt cover is also possible.
 図16の(A),(B)は、同様に、図15と同じ外観構造部品3gが、モジュールの左側の側面に配置される場合の状態を示す。図16の(A)は表面、(B)は裏面の斜視を示す。図15の外観構造部品3gの状態に対し、本体61の向きを変更し、かつ取付部品62の上下の状態を変更することで、図16の外観構造部品3gの状態となる。 (A) and (B) of FIG. 16 similarly show a state where the same external structural component 3g as that of FIG. 15 is arranged on the left side surface of the module. FIG. 16A is a perspective view of the front surface, and FIG. By changing the orientation of the main body 61 and changing the upper and lower states of the mounting component 62 with respect to the state of the external structural component 3g in FIG. 15, the external structural component 3g in FIG. 16 is obtained.
 図17のように、取付部品62は、本体61に固定される部分である固定部62Aと、その固定部62Aから連続的に延在している係合部62Bとを有する。図17の(A)は、図15の(B)に対応した取付部品62の状態を拡大で示す。本実装例では、係合部62Bは、特にフックで構成されている。この係合部62Bであるフックは、モジュール側の取付部(図17の(D)の取付部72)における被係合部であるフック受けに対して係合する。取り付けの際には、取付部のフック受けの隙間に対し、フックが上側から挿入されて引っ掛かった状態として係合される。取付部品62の実装は、このようなフック等に限らず可能である。 取 付 As shown in FIG. 17, the attachment component 62 has a fixing portion 62A which is a portion fixed to the main body 61, and an engaging portion 62B continuously extending from the fixing portion 62A. FIG. 17A shows the state of the attachment component 62 corresponding to FIG. 15B in an enlarged manner. In this mounting example, the engagement portion 62B is particularly configured by a hook. The hook, which is the engaging portion 62B, engages with the hook receiver, which is the engaged portion, in the mounting portion on the module side (the mounting portion 72 in FIG. 17D). At the time of attachment, the hook is inserted into the hook receiving gap of the attachment portion from above and engaged with the hook. Mounting of the attachment component 62 is not limited to such a hook and the like, and is possible.
 図17の(B)は、(A)に対し、Z方向で上下反転した状態を示す。図15の外観構造部品3gの本体61を基準線C1のY方向の軸の周りに180度回転させて上下を逆にした場合や、あるいは、取付部品62のみを図17の(C)のように回転させて上下を逆にした場合には、図17の(B)のような状態になる。 ((B) of FIG. 17 shows a state where it is turned upside down in the Z direction with respect to (A). When the main body 61 of the external structural component 3g in FIG. 15 is rotated 180 degrees around the axis of the reference line C1 in the Y direction and turned upside down, or only the mounting component 62 is as shown in FIG. When the upper and lower sides are turned upside down, the state becomes as shown in FIG.
 取付部品62は、第2共通化方式に対応して、すなわち、外観構造部品3gをモジュールの左右の側面のいずれにも取り付けが可能なように、Z方向で上下を反転できる機構を備えている。この機構は、本体61が上下反転された場合に、取付部品62を上下反転させるための機構である。この機構は、本例では、ねじ止めによる機構で実装されている。図17のように、本体61の所定の位置に設けられている固定部62Cには、ねじ穴を有する。固定部62Cのねじ穴に対し、取付部品62の固定部62Aが、ねじ止めによって固定される。その際、係合部62Bが、基準線C1に対し、Z方向で上側の位置にある状態とされる。外観構造部品3gが、モジュールの右側の側面に配置される場合、図15のような取付部品62の状態とされる。外観構造部品3gが、モジュールの左側の側面に配置される場合、図16のような取付部品62の状態とされる。 The attachment component 62 has a mechanism that can be turned upside down in the Z direction in accordance with the second common mode, that is, so that the external structural component 3g can be attached to either of the left and right side surfaces of the module. . This mechanism is a mechanism for turning the attachment component 62 upside down when the main body 61 is turned upside down. In this example, this mechanism is implemented as a mechanism by screwing. As shown in FIG. 17, a fixing portion 62C provided at a predetermined position of the main body 61 has a screw hole. The fixing portion 62A of the attachment component 62 is fixed to the screw hole of the fixing portion 62C by screwing. At this time, the engagement portion 62B is in a state of being located above the reference line C1 in the Z direction. When the external structural component 3g is arranged on the right side surface of the module, the state of the mounting component 62 as shown in FIG. 15 is obtained. When the external structural component 3g is arranged on the left side surface of the module, the state of the mounting component 62 as shown in FIG. 16 is obtained.
 図17の(C)は、取付部品62の係合部62Bを固定部62Cに対して軸周りに回転させて上下反転させる場合の概要を示す。固定部62Aおよび係合部62Bは、例えば板金を折り曲げることで形成されており、固定部62Cに対してねじ止めによって固定され、ねじ解除によって取り外しが可能となっている。固定部62Cから取り外された取付部品62(固定部62Aおよび係合部62B)は、作業者によって、(A)から(B)のように、上下を反転させるように向きを変更し、固定部62Cに対してねじ止めによって固定される。このような取付部品62の上下反転ができる機構は、ねじ止めによる実装に限らず可能であり、例えば、ねじ止めを用いずに、(C)のイメージのように固定部62CのX方向の軸周りに係合部62Bを回転可能である回転機構を採用してもよい。 (C) of FIG. 17 shows an outline of a case where the engaging portion 62B of the attachment component 62 is rotated around the axis with respect to the fixing portion 62C to be turned upside down. The fixing portion 62A and the engaging portion 62B are formed by, for example, bending a sheet metal, are fixed to the fixing portion 62C by screws, and can be removed by releasing the screws. The direction of the attachment component 62 (the fixing portion 62A and the engaging portion 62B) removed from the fixing portion 62C is changed by the operator so as to be turned upside down from (A) to (B). It is fixed to 62C by screwing. Such a mechanism that allows the attachment component 62 to be turned upside down is not limited to mounting by screwing. For example, without using screwing, the X-axis of the fixing portion 62C as shown in the image of FIG. A rotation mechanism capable of rotating the engagement portion 62B around the periphery may be employed.
 図17の(D)は、モジュールの側面1700に設けられた取付部72に対し、取付部品62の係合部62Bが係合された状態を示す。取付部72は、外観構造部品取付部(カバー部材取付部)である。 (D) of FIG. 17 shows a state in which the engaging portion 62B of the mounting component 62 is engaged with the mounting portion 72 provided on the side surface 1700 of the module. The mounting section 72 is an external structural component mounting section (cover member mounting section).
 図18は、第2共通化方式に対応した、モジュールの左右に配置される外観構造部品3gの配置関係等を示し、例えば図14の自動分析装置1Cの右側の外観構造部品41と左側の外観構造部品42との関係を示す。図15の外観構造部品41(3g)の本体61の状態に対し、図16の外観構造部品42(3g)の本体61の状態は、基準線C1の軸周りに180度回転させて上下反転させた状態と対応している。別の捉え方では、図15の本体61の状態から、例えばZ方向の軸周りに180度回転させることで左右反転した状態とし、さらに、その状態からX方向の軸周りに180度回転させることで上下反転した状態とすること等によっても、図16の本体61の状態になる。 FIG. 18 shows the arrangement of the external structural components 3g arranged on the left and right sides of the module, etc., corresponding to the second common mode. For example, the external structural component 41 on the right side and the external configuration on the left side of the automatic analyzer 1C in FIG. The relationship with the structural component 42 is shown. In contrast to the state of the main body 61 of the external structural component 41 (3g) in FIG. 15, the state of the main body 61 of the external structural component 42 (3g) in FIG. 16 is rotated up and down by 180 degrees around the axis of the reference line C1. Corresponding to the state of In another way, from the state of the main body 61 in FIG. 15, for example, a 180-degree rotation around the axis in the Z direction may be a left-right inverted state, and further, a 180-degree rotation around the axis in the X direction from that state. The state of the main body 61 in FIG.
 上記のように外観構造部品3gの本体61を上下反転させると、それに伴い取付部品62も上下反転された状態(図17の(B)の状態)となる。この取付部品62の状態では、取付部72に係合できない。よって、モジュールの左右の側面にそれぞれ同じ外観構造部品3gを取り付け可能とするためには、その取付部品62をさらに上下反転させることで、図17の(A)の状態にする必要がある。そのため、取付部品62は、上記のように上下反転できる機構を備えている。 と When the main body 61 of the external structural component 3g is turned upside down as described above, the mounting component 62 is also turned upside down (the state shown in FIG. 17B). In the state of the attachment part 62, the attachment part 72 cannot be engaged. Therefore, in order to be able to attach the same external structural component 3g to each of the left and right side surfaces of the module, it is necessary to further invert the attachment component 62 up and down to obtain the state shown in FIG. Therefore, the attachment component 62 includes a mechanism that can be turned upside down as described above.
 図18の(A)~(E)は、仮に、右側の外観構造部品41(3g)の状態から、左側の外観構造部品41(3g)の状態に変更する作業を行う場合における状態の遷移を示す。図18の(A)は、図15の(A)に対応した、分析モジュール2Cの右側の側面に配置される外観構造部品3g(41)の表面をみた状態の概略を示す。(B)は、(A)の外観構造部品3g(41)の裏面をみた状態を示す。(A),(B)の状態では、取付部品62は、正しい状態として、係合部62Bが基準線C1よりも上側の位置にある。(C)は、(A),(B)の状態から、本体61を基準線C1で示すY方向の軸周りに180度回転させた状態を示す。この状態では、取付部品62は、上下反転した状態となっており、係合部62Bが基準線C1よりも下側の位置にある。この状態では、分析モジュール2Dの左側の側面に外観構造部品3gを取り付けることができないので、取付部品62の向きを変更する必要がある。 FIGS. 18 (A) to (E) show the state transition in the case where the work of changing the state of the right external structural component 41 (3g) from the state of the right external structural component 41 (3g) is performed. Show. FIG. 18A schematically shows a state in which the surface of the external structural component 3g (41) arranged on the right side surface of the analysis module 2C, corresponding to FIG. 15A, is viewed. (B) shows a state in which the back surface of the external structural component 3g (41) of (A) is viewed. In the states (A) and (B), the fitting part 62 is in a correct state, and the engaging portion 62B is at a position above the reference line C1. (C) shows a state in which the main body 61 is rotated by 180 degrees around the axis in the Y direction indicated by the reference line C1 from the states of (A) and (B). In this state, the attachment component 62 is in a vertically inverted state, and the engaging portion 62B is located below the reference line C1. In this state, since the external structural component 3g cannot be attached to the left side surface of the analysis module 2D, it is necessary to change the orientation of the attachment component 62.
 図18の(D)は、(C)の状態から、2つの取付部品62を、基準線C1に対し上下反転させるように、向きを変更して取り付けた状態を示す。(E)は、(D)に対応して表面からみた状態を示す。(E)の状態で、分析モジュール2Dの左側の側面に、この外観構造部品3gを外観構造部品42として取り付けることができる。左側の外観構造部品42から右側の外観構造部品41へ変更する場合にも、上記と同様の関係が成立する。 ((D) of FIG. 18 shows a state in which the two attachment parts 62 have been changed from the state of (C) so as to be turned upside down with respect to the reference line C1. (E) shows a state viewed from the surface corresponding to (D). In the state (E), the external structural component 3g can be attached as the external structural component 42 to the left side surface of the analysis module 2D. The same relationship as described above holds when changing the appearance structural part 42 on the left side to the appearance structural part 41 on the right side.
 [モジュール側の取付部(1)]
 図19~図21は、自動分析装置1の各モジュールの側面における、共通の外観構造部品3gの取り付けに係わる構造例を示す。
[Mounting part on module side (1)]
19 to 21 show structural examples related to the attachment of the common external structural component 3g on the side surface of each module of the automatic analyzer 1. FIG.
 図19は、操作モジュール4の側面における取付部72を含む構造例を示す斜視図である。図19の(A)は、例えば図5の自動分析装置1E等の操作モジュール4の右側の側面SS7における構造例を示し、(B)は、その操作モジュール4の左側の側面SS8における構造例を示す。 FIG. 19 is a perspective view showing an example of a structure including the mounting portion 72 on the side surface of the operation module 4. 19A shows an example of the structure of the operation module 4 such as the automatic analyzer 1E shown in FIG. 5 on the right side surface SS7, and FIG. 19B shows an example of the structure of the operation module 4 on the left side surface SS8. Show.
 操作モジュール4は、大別して、Z方向で、基準線Z1に対し、上部4Aと下部4Bとを有する。基準線Z1の位置には、上部4Aと下部4Bとを仕切る仕切り板400を有する。上部4Aには、主に、前述の検体搬送部6(例えば検体ラック収容部8Aやラックロータ200を含む)等の可動機構が実装されている。下部4Bには、主に、前述のIC基板101や各駆動部(洗浄機構駆動部819等を含む)等の非可動機構が実装されている。上部4Aでは、側面SS8において、開口部からラックロータ200の一部が見えている。可動機構は、動く部品等が表面に露出している。非可動機構は、動く部品等が表面に露出していない。 The operation module 4 is roughly divided into an upper part 4A and a lower part 4B with respect to the reference line Z1 in the Z direction. At the position of the reference line Z1, there is a partition plate 400 that partitions the upper part 4A and the lower part 4B. A movable mechanism such as the above-described sample transport unit 6 (including, for example, the sample rack storage unit 8A and the rack rotor 200) is mainly mounted on the upper part 4A. The non-movable mechanism such as the above-described IC substrate 101 and each driving unit (including the cleaning mechanism driving unit 819) is mainly mounted on the lower part 4B. In the upper part 4A, a part of the rack rotor 200 is visible from the opening in the side surface SS8. The movable mechanism has moving parts and the like exposed on the surface. In the non-movable mechanism, moving parts and the like are not exposed on the surface.
 なお、本実装例では、上部4Aの前面には、Y方向の前側に張り出すように操作台が設けられている。操作台には電源ボタンを含む操作パネル等も設けられている。下部4Bの前面には、前面カバー410が設けられている。前面カバー410には、開閉可能な扉(特に片開き扉)が設けられており、保守等の際に開閉が可能である。前面カバー410のさらに下側には裾カバー411が設けられている。下部4Bの下面には、モジュールの移動や静止のためのキャスター機構412やアジャスター機構413等が設けられている。 In this mounting example, an operation console is provided on the front surface of the upper part 4A so as to protrude forward in the Y direction. The operation console is also provided with an operation panel including a power button. A front cover 410 is provided on the front surface of the lower portion 4B. The front cover 410 is provided with a door that can be opened and closed (especially a one-sided door), and can be opened and closed during maintenance or the like. A skirt cover 411 is provided further below the front cover 410. A caster mechanism 412 and an adjuster mechanism 413 for moving and stopping the module are provided on the lower surface of the lower portion 4B.
 下部4Bにおける右側の側面SS7において、機構を構成する基板や部品等が露出している。基準線Z1に位置する仕切り板400に対し、下側の基準線Z2の位置には、Y方向で前後の2つの所定の位置に、2つの取付部72、特に取付部72a,72bが設けられている。同様に、(B)の左側の側面SS8においても、側面SS7と対応する同様の位置に、2つの取付部72(72a,72b)が設けられている。 (4) On the right side surface SS7 of the lower portion 4B, the boards and components constituting the mechanism are exposed. At the position of the lower reference line Z2 with respect to the partition plate 400 located at the reference line Z1, two attachment portions 72, particularly attachment portions 72a and 72b, are provided at two predetermined positions before and after in the Y direction. ing. Similarly, in the left side surface SS8 of (B), two mounting portions 72 (72a, 72b) are provided at similar positions corresponding to the side surface SS7.
 図19の(C)は、1つの取付部72を拡大で示す。取付部72は、固定部72Aと被係合部72Bとを有する。固定部72Aは、モジュールの側面に対し、ねじ止め等によって固定されている部分である。被係合部72Bは、その固定部72Aから連続して折り曲げによってZ方向の上側およびX方向の外側に出ている部分である。被係合部72Bは、本例では、フック受け部として実装されている。被係合部72Bは、モジュールの側面との間に、隙間(言い換えると凹部)を形成している。 (C) of FIG. 19 shows one mounting portion 72 in an enlarged manner. The mounting portion 72 has a fixed portion 72A and an engaged portion 72B. The fixing portion 72A is a portion fixed to the side surface of the module by screwing or the like. The engaged portion 72B is a portion that extends outward from the fixing portion 72A in the Z direction and the X direction by continuous bending. In the present example, the engaged portion 72B is mounted as a hook receiving portion. The engaged portion 72B forms a gap (in other words, a concave portion) between the engaged portion 72B and the side surface of the module.
 図20の(A),(B)は、例えば図14の自動分析装置1Eを構成する場合に、図19の操作モジュール4の右側の側面SS7の取付部72に対し、外観構造部品45(3g)を取り付けた状態を示す。(A)は右側の側面SS7、(B)は左側の側面SS8を示す。なお、例えば図14の自動分析装置1Cや自動分析装置1Dを構成する場合には、操作モジュール4の右側の側面SS7に対し、分析モジュール2Cの左側の側面が隣接して配置され、側面同士で機械的に接続される。同様に、操作モジュール4の左側の側面SS8に対しては、外観構造部品3gが取り付けられるか、分析モジュール2Dが隣接して配置される。 FIGS. 20A and 20B show, for example, when the automatic analyzer 1E of FIG. 14 is configured, the external structural component 45 (3 g) is attached to the mounting portion 72 of the right side surface SS7 of the operation module 4 of FIG. ) Is shown. (A) shows the right side surface SS7, and (B) shows the left side surface SS8. For example, when configuring the automatic analyzer 1C or the automatic analyzer 1D of FIG. 14, the left side of the analysis module 2C is disposed adjacent to the right side SS7 of the operation module 4, and the side surfaces are separated from each other. Connected mechanically. Similarly, the external structural component 3g is attached to the left side surface SS8 of the operation module 4, or the analysis module 2D is arranged adjacent to the side surface SS8.
 図20の(C)および(D)は、例えば左側の側面SS8の取付部72に対し、外観構造部品3gのうちの取付部品62が取り付けられた状態を拡大で示す。図示のように、取付部品62のうちの係合部62Bが、取付部72の被係合部72Bの隙間に対し、上側から挿入され引っ掛けられるようにして係合した状態である。これにより、外観構造部品3gは、操作モジュール4の上部4Aおよび下部4Bの側面に対し、取り付けられた状態が保持される。逆に、外観構造部品3gが操作モジュール4の側面から取り外される際には、取付部品62のうちの係合部62Bが、取付部72の被係合部72Bから上側に引き抜かれるようにして非係合の状態となる。 (C) and (D) of FIG. 20 show, for example, a state in which the attachment component 62 of the external structural component 3g is attached to the attachment portion 72 of the left side surface SS8. As shown in the drawing, the engagement portion 62B of the attachment component 62 is engaged with the gap of the engaged portion 72B of the attachment portion 72 by being inserted from above and hooked. As a result, the external structural component 3g is kept attached to the side surfaces of the upper part 4A and the lower part 4B of the operation module 4. Conversely, when the external structural component 3g is removed from the side surface of the operation module 4, the engaging portion 62B of the mounting component 62 is pulled out from the engaged portion 72B of the mounting portion 72 so as to be pulled upward. The engagement state is established.
 また、図20の状態では、外観構造部品45(3g)の下側、基準線Z4で示すZ方向の位置から下側には、さらに、裾カバー66が取り付けられている。側面の裾カバー66や前面の裾カバー411によって、下部4Bの下面にあるキャスター機構412やアジャスター機構413を含む所定の高さの空間部分が隠れている。裾カバー66の高さは、前面の裾カバー411の高さと合わせられている。このように裾カバー66や裾カバー411を設ける場合、自動分析装置1の外観をより整えることができる。 In the state of FIG. 20, a skirt cover 66 is further attached to the lower side of the external structural component 45 (3g), below the position in the Z direction indicated by the reference line Z4. The side hem cover 66 and the front hem cover 411 cover a space of a predetermined height including the caster mechanism 412 and the adjuster mechanism 413 on the lower surface of the lower portion 4B. The height of the hem cover 66 is matched with the height of the hem cover 411 on the front surface. When the skirt cover 66 and the skirt cover 411 are provided as described above, the appearance of the automatic analyzer 1 can be further improved.
 なお、図20の実装例のように、外観構造部品3gのZ方向の上辺部は、操作モジュール4の側面に取り付けられた状態で、上部4Aの上面の基準線Z3で示す高さ位置から上側に一部が出た状態となってもよい。これは、各モジュールの高さや、後述の上部カバーとの関係を考慮して設計されている。 In addition, as in the mounting example of FIG. 20, the upper side in the Z direction of the external structural component 3g is attached to the side surface of the operation module 4, and is located above the height position indicated by the reference line Z3 on the upper surface of the upper portion 4A. May be in a partially exposed state. This is designed in consideration of the height of each module and the relationship with the upper cover described later.
 また、図19の操作モジュール4の実装例では、操作モジュール4の左右の側面(SS7,SS8)において、ラックロータ200の左右の側面の部分がみえるように、開口部が設けられている。これに関する他の実装例として以下も可能である。 In addition, in the mounting example of the operation module 4 in FIG. 19, openings are provided on the left and right side surfaces (SS7, SS8) of the operation module 4 so that the left and right side portions of the rack rotor 200 can be seen. Other implementations in this regard are also possible.
 図32は、変形例における操作モジュール4の実装例を示す。(A)は操作モジュール4等の上面の概要を示す。(B)は操作モジュール4の側面の概要を斜視で示す。操作モジュール4の左右の少なくとも一方の側面、本例では両方の側面(SS7,SS8)には、ラックロータ200の側面に対応する開口部に対して取り付けおよび取り外しが可能であるラックロータカバー280が設けられている。例えば、事業者は、自動分析装置を顧客環境へ導入する際、操作モジュール4の側面にラックロータカバー280が取り付けられた状態で導入する。操作モジュール4の側面に対し、分析モジュール2C等を接続する場合には、ラックロータカバー280が取り外される。(A)の例では、操作モジュール4の右側の側面SS7ではラックロータカバー280が取り外され、分析モジュール2Cが接続されている。操作モジュール4の左側の側面SS8ではラックロータカバー280が取り付けられている。操作モジュール4の側面に分析モジュール2C等が接続されない場合には、そのままラックロータカバー280が取り付けられた状態とされる。 FIG. 32 shows an implementation example of the operation module 4 in the modification. (A) shows the outline of the upper surface of the operation module 4 and the like. (B) shows an outline of a side surface of the operation module 4 in a perspective view. A rack rotor cover 280 that can be attached to and detached from an opening corresponding to the side surface of the rack rotor 200 is provided on at least one of the left and right side surfaces of the operation module 4, in this example, both side surfaces (SS 7 and SS 8). Is provided. For example, when introducing the automatic analyzer to the customer environment, the business operator introduces the automatic analyzer in a state where the rack rotor cover 280 is attached to the side surface of the operation module 4. When connecting the analysis module 2C or the like to the side surface of the operation module 4, the rack rotor cover 280 is removed. In the example of (A), the rack rotor cover 280 is removed from the right side surface SS7 of the operation module 4, and the analysis module 2C is connected. On the left side surface SS8 of the operation module 4, a rack rotor cover 280 is attached. When the analysis module 2C or the like is not connected to the side surface of the operation module 4, the rack rotor cover 280 is attached as it is.
 さらに、ラックロータカバー280が取り付けられている操作モジュール4の側面に対し、外観構造部品3が取り付けおよび取り外し可能である。(A)の例では、左側の側面SS8に対し、外観構造部品44として共通化された外観構造部品3gが取り付け可能であることを示している。取付部72および対応する取付部品62の位置は、ラックロータカバー280の領域以外の位置とされている。同様に、各種の分析モジュールの側面においても、ディスク等の機構に対応した開口部に専用のカバーが設けられてもよい。 (4) The external structural component 3 can be attached to and detached from the side surface of the operation module 4 to which the rack rotor cover 280 is attached. In the example of (A), the external appearance structural component 3g that is shared as the external structural component 44 can be attached to the left side surface SS8. The positions of the mounting portions 72 and the corresponding mounting components 62 are positions other than the region of the rack rotor cover 280. Similarly, a special cover may be provided in an opening corresponding to a mechanism such as a disk on the side surface of various analysis modules.
 [モジュール側の取付部(2)]
 図21は、分析モジュール2Cの場合の側面、例えば右側の側面SS5における、外観構造部品3gの取り付けに係わる構造例を示す。分析モジュール2Cは、Z方向で、基準線Z5で示すZ方向の高さ位置に仕切り板500が設けられている。分析モジュール2Cは、大別して、仕切り板500に対し上下に、上部2Caと下部2Cbを有する。上部2Caには、可動機構として、試薬ディスク13等があり、側面SS5において試薬ディスク13の一部が見えている。下部2Cbには、基板や部品等が見えている。
[Mounting part on module side (2)]
FIG. 21 shows a structural example related to the attachment of the external structural component 3g on the side surface in the case of the analysis module 2C, for example, the right side surface SS5. In the analysis module 2C, the partition plate 500 is provided at a height position in the Z direction indicated by the reference line Z5 in the Z direction. The analysis module 2C roughly has an upper part 2Ca and a lower part 2Cb above and below the partition plate 500. The upper part 2Ca has a reagent disk 13 and the like as a movable mechanism, and a part of the reagent disk 13 is visible on the side surface SS5. Substrates, components, and the like are visible in the lower portion 2Cb.
 基準線Z5の位置の仕切り板500に対し、基準線Z6で示す下側の位置には、Y方向で前後の2つの所定の位置に、2つの取付部72、特に取付部72c,72dが設けられている。この分析モジュール2Cの取付部72(72c,72d)は、操作モジュール4の取付部72(72a,72b)と同様の部品で構成されており、これらの高さ位置(基準線Z2,Z6)は概略的に同じである。 At the lower position indicated by the reference line Z6 with respect to the partition plate 500 at the position of the reference line Z5, two mounting portions 72, particularly mounting portions 72c and 72d, are provided at two predetermined positions before and after in the Y direction. Have been. The mounting portion 72 (72c, 72d) of the analysis module 2C is composed of the same components as the mounting portion 72 (72a, 72b) of the operation module 4, and their height positions (reference lines Z2, Z6) are Schematically the same.
 分析モジュール2CのY方向の前面には、前面カバー510が設けられている。前面カバー510には、開閉可能な扉(特に両開き扉)が設けられている。また、前面カバー510の下側には、裾カバー511が設けられている。分析モジュール2Cの保守の際には、作業者が前面カバー510の扉を開閉して、分析モジュール2C内の構成要素の保守作業を行うことができる。 前面 A front cover 510 is provided on the front surface of the analysis module 2C in the Y direction. The front cover 510 is provided with a door that can be opened and closed (particularly a double door). A hem cover 511 is provided below the front cover 510. At the time of maintenance of the analysis module 2C, an operator can open and close the door of the front cover 510 to perform maintenance work on components in the analysis module 2C.
 例えば、図14の自動分析装置1Cや自動分析装置1Dを構成する場合、分析モジュール2Cの右側の側面SS5に対し、外観構造部品3gを、外観構造部品41や外観構造部品43として取り付けることができる。分析モジュール2Cの左側の側面SS7(図3)は、操作モジュール4の右側の側面SS7に隣接して配置され、側面同士で機械的に接続される。 For example, when configuring the automatic analyzer 1C or the automatic analyzer 1D in FIG. 14, the external structural component 3g can be attached as the external structural component 41 or the external structural component 43 to the right side surface SS5 of the analysis module 2C. . The left side surface SS7 (FIG. 3) of the analysis module 2C is arranged adjacent to the right side surface SS7 of the operation module 4, and is mechanically connected to each other.
 また、図21の状態では、分析モジュール2Cの上部2Caの上面の基準線Z7で示す高さ位置よりも上側には、上部カバー520が取り付けられている。上部カバー520は、上部2Caの上面の試薬ディスク13や検体分注機構14(図8)等の構成要素やそれらを含む空間を覆う盛り上がった形状を有する。上部カバー520は、開閉カバー520Aを含む。開閉カバー520Aは、利用者の操作に応じてY方向で開閉可能であり、インターロック機構を備えている。 In addition, in the state of FIG. 21, the upper cover 520 is attached above the height position indicated by the reference line Z7 on the upper surface of the upper portion 2Ca of the analysis module 2C. The upper cover 520 has a raised shape that covers components such as the reagent disk 13 and the sample dispensing mechanism 14 (FIG. 8) on the upper surface of the upper portion 2Ca and a space including them. The upper cover 520 includes an opening / closing cover 520A. The opening / closing cover 520A can be opened / closed in the Y direction according to a user operation, and has an interlock mechanism.
 また、分析モジュール2Cの側面SS5に取り付けられる外観構造部品3gに関しても、下部2Cbの基準線Z8で示す高さ位置から下側に、図示しない裾カバーを取り付けることが可能である。これにより、下部2Cbの下面に配置されているキャスター機構512やアジャスター機構513等を隠し、外観をより整えることができる。 裾 Also, with regard to the external structural component 3g attached to the side surface SS5 of the analysis module 2C, a hem cover (not shown) can be attached to the lower portion 2Cb below the height position indicated by the reference line Z8. Thereby, the caster mechanism 512, the adjuster mechanism 513, and the like disposed on the lower surface of the lower portion 2Cb are hidden, and the appearance can be further adjusted.
 なお、図示しないが、分析モジュール2Dについても、外観構造部品3gの取付部72を含む構成に関して、上記分析モジュール2Cと同様の構成を有する。また、図13の第1共通化方式を適用する形態の場合でも、共通化された外観構造部品3e,3fに関して、上記と同様のモジュール側の取付部72を含む構成を適用できる。また、図12の単体方式の場合でも、共通化された外観構造部品3a,3bまたは外観構造部品3cに関して、上記と同様の構成を適用できる。 Although not shown, the analysis module 2D also has the same configuration as the analysis module 2C with respect to the configuration including the mounting portion 72 for the external structural component 3g. Also, in the case where the first common mode of FIG. 13 is applied, a configuration including the module-side mounting portion 72 similar to the above can be applied to the common external structural components 3e and 3f. Also, in the case of the simplex system shown in FIG. 12, the same configuration as described above can be applied to the shared external structural components 3a, 3b or 3c.
 [モジュール側の取付部(3)]
 上記のように、自動分析装置1C等を構成する各モジュールである例えば操作モジュール4、分析モジュール2C、および分析モジュール2Dは、共通化された外観構造部品3gを取り付けるための取付部72を含む構成を有する。各モジュールの取付部72についても、概略的に同じ構造として共通化されている。
[Mounting part on module side (3)]
As described above, for example, the operation module 4, the analysis module 2C, and the analysis module 2D, which are the modules constituting the automatic analyzer 1C and the like, include the mounting portion 72 for mounting the shared external structural component 3g. Having. The mounting part 72 of each module is also commonly used as the same structure.
 各モジュールにおいて、上部と下部との仕切り板は、Z方向で概略的に近い位置に設けられている。例えば、図19の操作モジュール4の仕切り板400の基準線Z1の高さ位置と図21の分析モジュール2Cの仕切り板500の基準線Z5の高さ位置とが概略的に同じである。前述のように、モジュールの上部には主に可動機構が実装され、下部には主に非可動機構が実装されている。上部の可動機構(例えば図19のラックロータ200)の近くには、なるべく取付部72を設けたくない。あるいは、上部の可動機構の近くには空間等が必要であり、取付部72を設けることが難しい場合がある。そのため、実施の形態の自動分析装置1では、モジュールの下部の側面における仕切り板の近くの下側の位置、例えば図19の基準線Z2や図21の基準線Z6の位置に、取付部72が設けられている。これにより、いずれの種類のモジュールの側面に対しても、取付部72および取付部品62を通じて、第2共通化方式の外観構造部品3gを取り付け可能である。モジュールの右側面や左側面のいずれに対しても、取付部72および取付部品62を通じて、図18のような左右反転または上下反転の関係を通じて、同じ外観構造部品3gを取り付け可能である。 に お い て In each module, the upper and lower partition plates are provided at positions substantially close in the Z direction. For example, the height position of the reference line Z1 of the partition plate 400 of the operation module 4 in FIG. 19 and the height position of the reference line Z5 of the partition plate 500 of the analysis module 2C in FIG. 21 are substantially the same. As described above, the movable mechanism is mainly mounted on the upper part of the module, and the non-movable mechanism is mainly mounted on the lower part. It is not desirable to provide the mounting portion 72 near the upper movable mechanism (for example, the rack rotor 200 in FIG. 19). Alternatively, a space or the like is required near the upper movable mechanism, and it may be difficult to provide the mounting portion 72. Therefore, in the automatic analyzer 1 of the embodiment, the mounting portion 72 is provided at a lower position near the partition plate on the lower side surface of the module, for example, at the position of the reference line Z2 in FIG. 19 or the reference line Z6 in FIG. Is provided. Thus, the external appearance structural component 3g of the second common system can be attached to the side surface of any type of module through the attaching portion 72 and the attaching component 62. The same external structural component 3g can be attached to either the right side or the left side of the module through the attachment part 72 and the attachment part 62 through a right-left inversion or upside-down inversion relationship as shown in FIG.
 また、図15や図19のように、実施の形態における実装例では、各モジュールの側面に対し、上下左右の辺や端に近い位置ではなく、それよりも内側に寄った位置に、取付部72および取付部品62が配置されている。モジュールの側面に外観構造部品3gが取り付けられた状態では、取付部72および取付部品62が隠れて見えない状態となる。そのため、実施の形態では、外観デザイン上、装置の外観をより整えることができる。 In addition, as shown in FIG. 15 and FIG. 19, in the mounting example in the embodiment, the mounting portions are not located close to the top, bottom, left, and right sides and edges but are located closer to the inside than the sides of each module. 72 and a mounting part 62 are arranged. When the external structural component 3g is mounted on the side surface of the module, the mounting portion 72 and the mounting component 62 are hidden and cannot be seen. Therefore, in the embodiment, the external appearance of the device can be further improved in terms of external design.
 [外観構造部品(2)]
 図22は、特に外観構造部品3gにおける裾カバー66の構造例を示す。外観構造部品3gは、裾カバー66の取り付けおよび取り外しが可能な構成を有する。図22は、例えば図14の自動分析装置1Cの分析モジュール2Cの右側の側面SS5(図3)に取り付けられる右側の外観構造部品41(3g)の裏面を示す斜視図である。図16の外観構造部品3gの基本構成に対し、図22の外観構造部品3gは、本体61の上下辺に対し裾カバー66を取り付けおよび取り外しが可能な構造を有する。図22では、モジュールの右側の側面に取り付ける外観構造部品3gの場合に対応して、本体61の下辺に裾カバー66が取り付けられている状態を示している。なお、図示しないが、この外観構造部品3gが、モジュールの左側の側面に取り付けられる場合には、裾カバー66を取り外し、本体61を上下反転し、その状態での新たな下辺にその裾カバー66が取り付けられる。
[Appearance structural parts (2)]
FIG. 22 shows a structural example of the skirt cover 66 particularly in the external structural component 3g. The external structural component 3g has a configuration in which the hem cover 66 can be attached and detached. FIG. 22 is a perspective view showing, for example, the back surface of the right external structural component 41 (3g) attached to the right side surface SS5 (FIG. 3) of the analysis module 2C of the automatic analyzer 1C of FIG. In contrast to the basic configuration of the external structural component 3g in FIG. 16, the external structural component 3g in FIG. 22 has a structure in which the hem cover 66 can be attached to and removed from the upper and lower sides of the main body 61. FIG. 22 shows a state in which the hem cover 66 is attached to the lower side of the main body 61, corresponding to the case of the external structural component 3g attached to the right side surface of the module. Although not shown, when this external structural component 3g is attached to the left side surface of the module, the hem cover 66 is removed, the main body 61 is turned upside down, and the hem cover 66 is attached to a new lower side in that state. Is attached.
 図22で、外観構造部品3gの本体61におけるZ方向の上辺(基準線C5で示す)および下辺(基準線C6で示す)には、Y方向で所定の位置、例えば前後の2つの位置に、2つのねじ穴部品64が設けられている。本体61の下辺の下側には、下辺に合わせたサイズを持つ概略的に長方形板状の裾カバー66が配置されている。裾カバー66の高さは、図20の例のように、モジュールの下面と設置床との空間の高さに合わせられており、前面カバーの裾カバーの高さとも合わせられている。裾カバー66は、本体61の下辺の下側に、裾カバー取付部65を介して取り付けられている。本体61のねじ穴部品64に対し、裾カバー取付部65がねじ止めによって固定されている。裾カバー取付部65は、例えば概略的に長方形板状の部品である。裾カバー取付部65に対し、裾カバー66がねじ止めによって固定されている。 In FIG. 22, the upper side (indicated by the reference line C5) and the lower side (indicated by the reference line C6) of the main body 61 of the external structural component 3g in the Z direction are located at predetermined positions in the Y direction, for example, two front and rear positions. Two screw hole components 64 are provided. A generally rectangular plate-shaped hem cover 66 having a size corresponding to the lower side is disposed below the lower side of the main body 61. As in the example of FIG. 20, the height of the hem cover 66 is adjusted to the height of the space between the lower surface of the module and the installation floor, and is also adjusted to the height of the hem cover of the front cover. The hem cover 66 is attached to the lower side of the lower side of the main body 61 via a hem cover attaching portion 65. A hem cover mounting portion 65 is fixed to a screw hole component 64 of the main body 61 by screwing. The hem cover attaching portion 65 is, for example, a generally rectangular plate-shaped component. The hem cover 66 is fixed to the hem cover mounting portion 65 by screwing.
 また、本実装例では、本体61に対する裾カバー66の取り付けおよび取り外しは、外観構造部品3の裏面からでも、表面からでも作業が可能な構造としている。ねじ穴部品64は、ねじ穴が表面にも露出している。作業者は、本体61の表面側からねじ止めによって裾カバー66を取り付けおよび取り外しが可能である。 In addition, in the present mounting example, the attachment and detachment of the hem cover 66 to and from the main body 61 are structured so that work can be performed from the back surface or the front surface of the external structural component 3. The screw hole component 64 has a screw hole also exposed on the surface. The operator can attach and remove the hem cover 66 from the front side of the main body 61 by screwing.
 なお、変形例としては、裾カバー取付部65は、本体61と一体化された部分としてもよいし、裾カバー66と一体化された部分としてもよい。裾カバー66の取り付けの手段は、ねじ止めに限らず適用可能である。 As a modification, the hem cover attaching portion 65 may be a portion integrated with the main body 61 or a portion integrated with the hem cover 66. The means for attaching the hem cover 66 is not limited to screwing, and is applicable.
 裾カバー66に関する変形例として、本体61に対し、下辺を軸として、裾カバー66を表面側に折り曲げる、もしくは回転させることができる機構を備えてもよい。 As a modified example of the hem cover 66, a mechanism that can bend or rotate the hem cover 66 toward the front side with respect to the main body 61 around the lower side may be provided.
 図23は、第2共通化方式に対応した、モジュールの左右に配置される図22の裾カバー66を含む外観構造部品3gの配置関係等を示す。図23の(A)は、モジュールの右側の側面に配置される外観構造部品3gの表面を示し、(B)は裏面を示す。(A),(B)では、本体61の下辺に、裾カバー66が取り付けられた状態である。上辺は点p4がある側の辺とし、下辺は点p4が無い側の辺とする。取付部品62は、係合部62Bが基準線C1よりも上側にある。(C)は、(B)の状態から、裾カバー66を取り外した状態を示す。(D)は、(C)の状態から、モジュールの左側の側面に配置するために、本体61をY方向の軸周りに180度回転させることで上下反転させた状態での裏面を示す。取付部品62も上下反転した状態となっている。(E)は、(D)の状態から、取付部品62を上下反転させて係合部62Bを上側にした状態を示す。また、(E)は、本体61の新たな下辺である点p4がある側の辺に裾カバー66を取り付けた状態を示す。(F)は、(E)に対応する表面の状態を示す。 FIG. 23 shows the arrangement relationship of the external structural components 3g including the skirt cover 66 of FIG. 22 arranged on the left and right sides of the module, corresponding to the second common mode. FIG. 23A shows the front surface of the external structural component 3g arranged on the right side surface of the module, and FIG. 23B shows the rear surface. 5A and 5B show a state in which a hem cover 66 is attached to the lower side of the main body 61. FIG. The upper side is the side where the point p4 is located, and the lower side is the side where the point p4 is not located. In the attachment component 62, the engagement portion 62B is located above the reference line C1. (C) shows a state where the hem cover 66 is removed from the state of (B). (D) shows the rear surface in a state where the main body 61 is turned upside down by rotating the main body 61 around the axis in the Y direction by 180 degrees to arrange the module on the left side surface of the module from the state of (C). The attachment part 62 is also in a state of being turned upside down. (E) shows a state in which the attachment part 62 is turned upside down from the state of (D) and the engagement part 62B is turned upward. (E) shows a state where the hem cover 66 is attached to the side where the point p4, which is the new lower side of the main body 61, is located. (F) shows the state of the surface corresponding to (E).
 本実装例では、裾カバー66は、単独で表面をみた場合に、Y方向で対称形状を有し、本体61とは異なりY方向の前後で幅が一定である。裾カバー66に関する変形例としては、本体61と同様に、Y方向で非対称形状としてもよい。 で は In this mounting example, the hem cover 66 has a symmetric shape in the Y direction when viewed from the surface alone, and has a constant width before and after in the Y direction unlike the main body 61. As a modified example of the hem cover 66, similarly to the main body 61, an asymmetric shape in the Y direction may be employed.
 図24は、操作モジュール4の左側の側面SS8に対し、裾カバー66付きの外観構造部品3gが取り付けられる場合の斜視図を示す。(A)は、本体61および裾カバー66が取り付けられている状態を示す。(B)は、本体61が取り付けられ、裾カバー66が取り外されている状態を示す。(B)の状態では、操作モジュール4の下面のキャスター機構412やアジャスター機構413等にアクセスが可能である。 FIG. 24 is a perspective view showing a case where the external structural component 3g with the hem cover 66 is attached to the left side surface SS8 of the operation module 4. (A) shows a state where the main body 61 and the hem cover 66 are attached. (B) shows a state where the main body 61 is attached and the hem cover 66 is removed. In the state (B), the caster mechanism 412 and the adjuster mechanism 413 on the lower surface of the operation module 4 can be accessed.
 実施の形態の自動分析装置1では、以下のような理由もあるため、外観構造部品3に裾カバー66を設けた構成とした。まず、外観デザイン上の理由がある。自動分析装置1のモジュールの前面には、前述の図19の前面カバー410や図21の前面カバー510の例のように、外観構造部品の一種として前面カバーがある。外観デザインとして、より調和を持たせる観点からは、モジュールの前面カバーと側面カバーとで、Z方向の高さ位置等を揃えたい。ただし、その実現のために、仮に、外観構造部品3を、裾カバーで覆う部分まで含めて、一体成形方法等によって1つの部品で構成した場合、第2共通化方式は実現できない。すなわち、モジュールの左右での外観構造部品の共通化は実現できない。例えば、その場合のモジュールの右側に配置される外観構造部品の裾の部分は、モジュールの左側に配置される場合には、上下反転によって上側に来てしまう。そこで、実施の形態では、図22のように外観構造部品3gの本体61の上下辺に対して取り付けおよび取り外しが可能である裾カバー66を設けた構成とした。これにより、第2共通化を実現しつつ、裾カバー66があることによる利点も実現した。 In the automatic analyzer 1 of the embodiment, the hem cover 66 is provided on the external structural component 3 for the following reasons. First, there are reasons for the appearance design. On the front surface of the module of the automatic analyzer 1, there is a front cover as one type of external structural components, as in the above-described examples of the front cover 410 in FIG. 19 and the front cover 510 in FIG. From the viewpoint of more harmonious appearance design, it is desired that the front cover and the side cover of the module have the same height position in the Z direction. However, in order to realize this, if the exterior structural component 3 is formed as a single component by an integral molding method including the portion covered with the hem cover, the second common mode cannot be realized. That is, it is not possible to realize the common use of the external structural components on the left and right sides of the module. For example, in such a case, the skirt portion of the external structural component disposed on the right side of the module, when disposed on the left side of the module, comes to the upper side due to upside down. Therefore, in the embodiment, as shown in FIG. 22, a configuration is provided in which a skirt cover 66 is provided which can be attached to and detached from the upper and lower sides of the main body 61 of the external structural component 3g. As a result, the advantage of the presence of the skirt cover 66 is realized while achieving the second commonality.
 この構成では、モジュールの側面に対し、外観構造部品3gを取り付けた状態で、本体61については取り付けた状態のまま、裾カバー66のみを取り外すことができる。あるいは、変形例では裾カバー66を表面側に開いた状態とすることができる。これにより、作業者は、モジュールの最下部にアクセスできる。例えば、保守作業の際、図20の外観構造部品3g(45)の裾カバー66を取り外すことで、操作モジュール4の下部4Bの下面にあるキャスター機構412やアジャスター機構413等にアクセスできる。作業者は、外観構造部品3gの本体61を取り付けた状態のまま、例えば装置の水平位置や高さの調整が可能である。このように、装置の設置や保守等の作業のしやすさの利点がある。 In this configuration, with the external structural component 3g attached to the side surface of the module, only the hem cover 66 can be removed while the main body 61 remains attached. Alternatively, in a modified example, the hem cover 66 can be opened to the front side. This allows the operator to access the bottom of the module. For example, at the time of maintenance work, by removing the hem cover 66 of the external structural component 3g (45) in FIG. 20, the caster mechanism 412, the adjuster mechanism 413, and the like on the lower surface of the lower portion 4B of the operation module 4 can be accessed. The worker can adjust, for example, the horizontal position and height of the apparatus while the main body 61 of the external structural component 3g is attached. As described above, there is an advantage of easiness of work such as installation and maintenance of the apparatus.
 また、事業者は、自動分析装置1のタイプとして、外観構造部品3を本体61のみとして裾カバー66を取り付けない構成と、本体61に裾カバー66を取り付けた構成との両方を提供することも可能である。 In addition, the operator may provide both a configuration in which the external structural component 3 is only the main body 61 and the hem cover 66 is not attached, and a configuration in which the hem cover 66 is attached to the main body 61 as the type of the automatic analyzer 1. It is possible.
 [外観構造部品(3)]
 図25は、例えば自動分析装置1Cの分析モジュール2Cにおける、側面カバーである外観構造部品3g(41)と上部カバー520との関係等について、前面(X-Y面)で概略的に示す。分析モジュール2Cの右側の側面SS5において、設置面SF0から上側に基準線Z8の高さ位置までに、裾カバー66等が設けられる空間2500を有する。空間2500を除き、基準線Z8から上面SF1の基準線Z7までの領域において、Z方向で中央に近い基準線Z6に対応する位置に、取付部72が設けられている。その取付部72に対し、取付部品62が係合することで、外観構造部品3gが取り付けられている。
[Appearance structural parts (3)]
FIG. 25 schematically shows, for example, the relationship between the external structural component 3g (41), which is a side cover, and the upper cover 520 in the analysis module 2C of the automatic analyzer 1C by using the front surface (XY plane). In the right side surface SS5 of the analysis module 2C, there is a space 2500 in which a skirt cover 66 and the like are provided from the installation surface SF0 to the upper position of the reference line Z8. Except for the space 2500, in the region from the reference line Z8 to the reference line Z7 on the upper surface SF1, a mounting portion 72 is provided at a position corresponding to the reference line Z6 near the center in the Z direction. The external structural component 3g is mounted by the mounting component 62 engaging with the mounting portion 72.
 前述(図20)のように、この状態で、外観構造部品3gは、分析モジュール2Cの上部2Caの上面SF1よりも上側に一部が出ている。上側に出ている一部を部分2501で示す。部分2501は、基準線Z7から基準線Z9で示す高さ位置まで出ている。分析モジュール2Cの上面SF1よりも上側には、前述の上部カバー520が設けられている。上部カバー520のX方向の端部は、側面SS1の位置よりも内側であり、外観構造部品3gの上側の部分2501よりも内側にある。上部カバー520のX方向の端部と、外観構造部品3gの上側の端部の部分2501とがX方向で重なるようにして配置されている。 As described above (FIG. 20), in this state, a part of the external structural component 3g is protruded above the upper surface SF1 of the upper portion 2Ca of the analysis module 2C. The part protruding upward is indicated by a portion 2501. The portion 2501 extends from the reference line Z7 to a height position indicated by the reference line Z9. The above-described upper cover 520 is provided above the upper surface SF1 of the analysis module 2C. The end of the upper cover 520 in the X direction is inside the position of the side surface SS1 and inside the upper part 2501 of the external structural component 3g. The X-direction end of the upper cover 520 and the upper end portion 2501 of the external structural component 3g are arranged so as to overlap in the X-direction.
 変形例としては、外観構造部品3gの上側の端が、上面SF1の基準線Z7の位置までである構成としてもよい。また、外観構造部品3gの上側の端が、上面SF1の位置よりも下側の位置までである構成としてもよい。また、変形例として、高さが異なる複数の各モジュールがあり、各モジュールの側面に同じ外観構造部品3を取り付けた場合に、それぞれの側面をカバーする範囲が異なってもよい。例えば、操作モジュール4に対し、分析モジュール2C,2Dの方が上面の高さ位置が低い場合に、操作モジュール4の側面では外観構造部品3gが同じ高さ位置となり、分析モジュール2C,2Dの側面では外観構造部品3gが上面よりも上側の高さ位置となる。 As a modified example, the upper end of the external structural component 3g may be up to the position of the reference line Z7 on the upper surface SF1. Further, the upper end of the external structural component 3g may be configured to extend to a position below the upper surface SF1. Further, as a modified example, there are a plurality of modules having different heights, and when the same external structural component 3 is attached to the side surface of each module, the range covering each side surface may be different. For example, when the analysis module 2C, 2D has a lower height position than the operation module 4, the external structural component 3g is at the same height position on the side surface of the operation module 4, and the side surface of the analysis module 2C, 2D. In this case, the external structural component 3g is at a height position above the upper surface.
 また、他の変形例として、第1共通化方式での外観構造部品3(3e,3f)は、本体61と、裾カバーの空間2500に対応する部分とを含め、一体成形方法等による1つの部品として構成されてもよい。 Further, as another modified example, the external structural component 3 (3e, 3f) in the first common system includes the main body 61 and a portion corresponding to the space 2500 of the skirt cover by one molding method or the like. It may be configured as a part.
 [効果等]
 上記のように、実施の形態の自動分析装置によれば、単体方式やモジュール・アセンブリ方式の各種の装置構成において、複数の箇所に、共通化された同一の外観構造部品3を適用でき、必要な外観構造部品3の種類を低減できる。これにより、単体方式やモジュール・アセンブリ方式に応じた各種の装置構成において必要な複数の外観構造部品3の取り扱いに係わる、製造や管理等のコストやロジスティクスの負担を低減できる。また、これにより、自動分析装置の利用や保守等の作業のしやすさを高めることができる。
[Effects]
As described above, according to the automatic analyzer of the embodiment, the same external structural component 3 can be applied to a plurality of locations in various device configurations of a single system or a module assembly system. The number of types of external appearance structural parts 3 can be reduced. Thereby, costs and logistics burdens such as manufacturing and management related to handling of a plurality of external structural components 3 required in various device configurations according to the single system or the module assembly system can be reduced. This also makes it easier to use and maintain the automatic analyzer.
 [変形例(1)]
 他の実施の形態の自動分析装置として以下も可能である。まず、前述の実施の形態では、単体方式と組合せ方式とでは、別々の共通化であり、それぞれの外観構造部品3を有するものとした。例えば、図1の外観構造部品31と図3の外観構造部品41とではサイズも異なる。これに限らず、単体方式と組合せ方式とで共通化された外観構造部品3を用いるものとしてもよい。
[Modification (1)]
The following is also possible as an automatic analyzer of another embodiment. First, in the above-described embodiment, the single system and the combination system are separate and common, and have the respective external structural components 3. For example, the size differs between the external structural component 31 of FIG. 1 and the external structural component 41 of FIG. However, the present invention is not limited to this, and it is also possible to use the appearance structural component 3 that is shared between the single system and the combination system.
 実施の形態では、外観構造部品3の取付部品62、およびモジュール側の取付部72の構成について、ねじ止め、フック等の手段を適用したが、これに限らず適用可能である。変形例では、ねじ止めを用いずに、弾性部材を用いた構成としてもよいし、スライド方式の金具等を用いた構成としてもよい。モジュール側に突起部(言い換えると凸部)を設け、外観構造部品3側に対応する穴部(言い換えると凹部)を設けた構成としてもよい。外観構造部品3側に突起部を設け、モジュール側に対応する穴部を設けた構成としてもよい。 In the embodiment, means such as screwing and hooks are applied to the configuration of the mounting part 62 of the external structural component 3 and the mounting part 72 on the module side, but the present invention is not limited to this. In a modified example, a configuration using an elastic member without using a screw may be used, or a configuration using a slide-type fitting or the like may be used. A configuration in which a projection (in other words, a projection) is provided on the module side and a corresponding hole (in other words, a recess) is provided on the appearance structural component 3 side may be adopted. A configuration in which a projection is provided on the external structural component 3 side and a corresponding hole is provided on the module side is also possible.
 また、変形例として、側面カバーである外観構造部品3に、開閉可能な扉を設けてもよい。この場合、外観構造部品3を取り付けたままの状態で、その扉を通じて、モジュールの側面の構成要素に関する保守等のアクセスが可能である。 As a modified example, a door that can be opened and closed may be provided on the external structural component 3 that is a side cover. In this case, it is possible to access the components on the side of the module, such as maintenance, through the door of the module with the external structural component 3 attached.
 [変形例(2)]
 図26は、変形例の自動分析装置1における、第2共通化方式での外観構造部品3gの取付部品62の構成例を示す斜視図である。本体61の面において、位置L1,L2は、前述の実施の形態での取付部品62(62a,62b)の位置を示す。変形例として、本体61の上下左右の辺に近い位置に取付部品62を設けてもよい。例えば、位置L11,L12,L21,L22,L31,L32は、取付部品62を設ける位置の例を示す。例えば、Z方向で基準線C1の付近で、Y方向で左右辺に近い2つの位置L11,L12に、2つの取付部品62を設けてもよい。また、Z方向で上辺に近い位置H1に対応する2つの位置L21,L22に2つの取付部品62を設けてもよい。また、Z方向で下辺に近い位置H2に対応する2つの位置L31,L32に2つの取付部品62を設けてもよい。また、例えば上辺に近い位置L41と下辺に近い位置L42との2つの位置に2つの取付部品62を設けてもよい。上記取付部品62の位置に応じて、モジュールの側面における対応する位置に取付部72が設けられる。第2共通化方式の場合、いずれの位置の取付部品62も、前述の上下反転できる機構を備える。第1共通化方式の場合、本体61を上下反転する必要が無いので、いずれの位置の取付部品62も、上下反転できる機構を備える必要は無い。
[Modification (2)]
FIG. 26 is a perspective view showing a configuration example of the attachment component 62 of the external structural component 3g in the second common system in the automatic analyzer 1 of the modified example. On the surface of the main body 61, positions L1 and L2 indicate the positions of the attachment components 62 (62a, 62b) in the above-described embodiment. As a modification, the attachment component 62 may be provided at a position close to the upper, lower, left and right sides of the main body 61. For example, positions L11, L12, L21, L22, L31, and L32 show examples of positions where the attachment components 62 are provided. For example, two attachment parts 62 may be provided at two positions L11 and L12 near the left and right sides in the Y direction near the reference line C1 in the Z direction. Further, two attachment parts 62 may be provided at two positions L21 and L22 corresponding to the position H1 near the upper side in the Z direction. Further, two attachment parts 62 may be provided at two positions L31 and L32 corresponding to the position H2 near the lower side in the Z direction. Further, two attachment parts 62 may be provided at two positions, for example, a position L41 near the upper side and a position L42 near the lower side. Depending on the position of the mounting component 62, a mounting portion 72 is provided at a corresponding position on the side surface of the module. In the case of the second common mode, the mounting component 62 at any position is provided with the above-described mechanism that can be turned upside down. In the case of the first common method, the main body 61 does not need to be turned upside down, so that the mounting component 62 at any position does not need to have a mechanism capable of turning upside down.
 実施の形態では、カバー部材に2つの取付部品62を設け、対応してモジュール側面に2つの取付部72を設ける構成としたが、これに限らず可能である。カバー部材に3つ以上の取付部品62、対応してモジュール側面に3つ以上の取付部72が設けられる構成としてもよい。また、取り付けおよび接続の性能が確保されるのであれば、カバー部材に1つの取付部品62を設け、対応してモジュール側面に1つの取付部72を設ける構成としてもよい。 In the embodiment, the two mounting parts 62 are provided on the cover member, and the two mounting parts 72 are provided on the side surface of the module. However, the present invention is not limited to this. A configuration in which three or more mounting parts 62 are provided on the cover member, and three or more mounting parts 72 are provided on the side surface of the module correspondingly. If the performance of attachment and connection is ensured, a configuration may be adopted in which one attachment part 62 is provided on the cover member and one attachment part 72 is provided on the side surface of the module.
 他の変形例として、特に、本体61の上下左右の辺の端に露出する位置、例えば位置L11b,L12b,L41b,L42b等の位置に、取付部品62を設けてもよい。この場合の取付部品62は、それぞれの向きが異なっていてもよく、前述のフック等の手段に限らない。この変形例の場合、外観上、取付部品62が露出して見えるデザインとなる。その代わり、この変形例の場合、作業者が外観構造部品3の表面側から取付部品62の位置等を視覚的に把握しやすいので、モジュールの側面に外観構造部品3を取り付ける作業がより容易になる。 As another modified example, the attachment component 62 may be provided at a position exposed at the ends of the upper, lower, left, and right sides of the main body 61, for example, at positions such as positions L11b, L12b, L41b, and L42b. In this case, the mounting components 62 may have different directions, and are not limited to the above-described means such as hooks. In the case of this modification, the appearance is such that the mounting component 62 is exposed and visible. Instead, in the case of this modification, the worker can easily grasp the position and the like of the mounting component 62 from the front side of the external structural component 3, so that the operation of mounting the external structural component 3 on the side surface of the module is easier. Become.
 [変形例(3)]
 図27は、変形例の自動分析装置1における、各モジュールの側面(Y-Z面)の取付部72および対応する取付部品62の位置の構成例について示す。例えば、自動分析装置1Cの各モジュールである操作モジュール4、分析モジュール2C、および分析モジュール2Dにおいて、仕切り板、上部および下部等のZ方向の高さ位置や厚さが異なる構成であるとする。この場合に、この変形例では、モジュールの左側面と右側面において、取付部72および取付部品62の高さ位置を異ならせる。
[Modification (3)]
FIG. 27 shows a configuration example of the positions of the mounting parts 72 and the corresponding mounting parts 62 on the side surfaces (YZ planes) of each module in the automatic analyzer 1 of the modified example. For example, it is assumed that the operation module 4, the analysis module 2C, and the analysis module 2D, which are each module of the automatic analyzer 1C, have different configurations such as a partition plate, an upper portion, a lower portion, and the like in the Z direction in height position and thickness. In this case, in this modification, the height positions of the mounting portion 72 and the mounting component 62 are made different between the left side surface and the right side surface of the module.
 図27の(A)は、例えば分析モジュール2Cの右側の側面SS5に対して取り付けられる外観構造部品3g(41)を示し、(B)は、分析モジュール2Dの左側の側面SS6に対して取り付けられる外観構造部品3g(42)を示す。本体61におけるZ方向の中央の位置z1を一点鎖線で示す。分析モジュール2Cの側面SS5では、例えば位置z1よりも上側に仕切り板があり、分析モジュール2Dの側面SS6では、位置z1よりも下側に仕切り板があるとする。 FIG. 27A shows an external structural component 3g (41) attached to the right side surface SS5 of the analysis module 2C, for example, and FIG. 27B shows an external structural component 3g attached to the left side surface SS6 of the analysis module 2D. The external structural component 3g (42) is shown. The center position z1 in the Z direction in the main body 61 is indicated by a dashed line. In the side surface SS5 of the analysis module 2C, for example, there is a partition plate above the position z1, and in the side surface SS6 of the analysis module 2D, there is a partition plate below the position z1.
 この変形例では、右側の側面SS5では、位置z1よりも上側の位置z2に、取付部72、特に取付部72-1を設け、左側の側面SS6では、位置z1よりも下側の位置z3に、取付部72、特に取付部72-2を設ける。右側の側面SS5に外観構造部品3gを取り付ける場合、取付部品62(特に係合部)が上側の位置z2に来る状態とする。左側の側面SS6に外観構造部品3gを取り付ける場合、本体61を上下反転させて、取付部品62(特に係合部)が下側の位置z3に来る状態とする。この変形例では、取付部品62は、前述の上下反転できる機構が不要であり、例えば本体61とともに一体成形で構成されてもよい。この変形例では、取付部品62の係合部は、前述のフックでなく、他の手段、例えば突起等が採用される。取付部72の被係合部は、それに対応して、フック受け部ではなく、他の手段、例えば突起を挿入できる穴部等が採用される。操作モジュール4と分析モジュール2C,2Dとで仕切り板の高さ位置が異なる場合にも、上記と同様の構成が適用可能である。第1共通化方式を適用する場合にも上記と同様の構成が適用可能である。 In this modification, on the right side surface SS5, the mounting portion 72, particularly the mounting portion 72-1 is provided at a position z2 above the position z1, and on the left side surface SS6, at a position z3 below the position z1. , A mounting portion 72, particularly a mounting portion 72-2. When the external structural component 3g is mounted on the right side surface SS5, the mounting component 62 (particularly, the engaging portion) is brought into a state in which the mounting component 62 comes to the upper position z2. When the external structural component 3g is mounted on the left side surface SS6, the main body 61 is turned upside down so that the mounting component 62 (particularly, the engagement portion) comes to the lower position z3. In this modification, the attachment component 62 does not need the above-described mechanism capable of turning upside down, and may be configured integrally with the main body 61, for example. In this modification, the engaging portion of the attachment component 62 employs other means, such as a projection, instead of the hook described above. Corresponding to the engaged portion of the mounting portion 72, instead of the hook receiving portion, other means, for example, a hole portion into which a projection can be inserted is adopted. The same configuration as described above can be applied to the case where the height position of the partition plate differs between the operation module 4 and the analysis modules 2C and 2D. The same configuration as above can be applied when the first common mode is applied.
 他の変形例としては、各モジュールの取付部72の位置が異なる場合に、それに対応して、外観構造部品3gの取付部品62(特に係合部)の位置を作業者によって可変に調節できる機構を備えてもよい。 As another modified example, when the position of the mounting portion 72 of each module is different, the position of the mounting component 62 (particularly, the engaging portion) of the external structural component 3g can be variably adjusted by an operator correspondingly. May be provided.
 他の変形例としては、各モジュールの取付部72の位置が異なる場合に、それに対応して、外観構造部品3gに予め複数の位置に複数の取付部品62が設けられていてもよい。この場合、外観構造部品3gを取り付けるモジュールの側面に応じて、使用する取付部品62が選択される。 As another modified example, when the position of the mounting portion 72 of each module is different, a plurality of mounting components 62 may be provided in advance at a plurality of positions on the external structural component 3g in accordance with the position. In this case, the mounting component 62 to be used is selected according to the side surface of the module to which the external structural component 3g is mounted.
 以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、その要旨を逸脱しない範囲で種々変更可能である。例えば、本発明は、分析モジュールとして血液凝固分析モジュール等の他のモジュールを有する場合にも同様に適用可能である。 Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and can be variously modified without departing from the gist thereof. For example, the present invention is similarly applicable to a case where another module such as a blood coagulation analysis module is provided as an analysis module.
 1,1A,1B,1C,1D,1E…自動分析装置、2,2A,2B,2C,2D…分析モジュール、3,3a,3b,3c,3e,3f,3g,41~50…外観構造部品、4…操作モジュール,61…本体、62…取付部品、72…取付部。 1, 1A, 1B, 1C, 1D, 1E: automatic analyzer, 2, 2A, 2B, 2C, 2D: analysis module, 3, 3a, 3b, 3c, 3e, 3f, 3g, 41 to 50: external structural parts 4, operation module, 61, main body, 62, mounting part, 72, mounting part.

Claims (11)

  1.  単体のモジュールによって構成される臨床検査用の自動分析装置であって、
     前記モジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される1つのモジュールであり、
     前記複数の種類のモジュールの各モジュールの前面に対する側面に取り付けおよび取り外しが可能であるカバー部材を有し、
     前記カバー部材は、カバー本体の裏面に、取付部品を有し、
     前記各モジュールの側面には、前記取付部品を取り付けるための取付部を有し、
     前記カバー部材は、
     前記各モジュールの前面に対する右側の側面に取り付け可能である第1カバー部材と、
     前記各モジュールの前面に対する左側の側面に取り付け可能である第2カバー部材と、
     を有し、
     前記第1カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記右側の側面の位置に前記取付部が設けられ、
     前記第2カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記左側の側面の位置に前記取付部が設けられている、
     自動分析装置。
    An automatic analyzer for clinical tests composed of a single module,
    The module is one module selected from a plurality of different types of modules according to at least one of the specification and the analysis type,
    A cover member that can be attached to and detached from a side surface of each of the plurality of types of modules with respect to a front surface of the module,
    The cover member has a mounting component on the back surface of the cover body,
    On the side surface of each of the modules, has a mounting portion for mounting the mounting component,
    The cover member,
    A first cover member attachable to a right side surface with respect to a front surface of each of the modules;
    A second cover member attachable to a left side surface with respect to a front surface of each of the modules;
    Has,
    The mounting portion is provided at a position of the right side surface of each of the modules corresponding to a position of the mounting component of the first cover member,
    The mounting portion is provided at a position on the left side surface of each module corresponding to a position of the mounting component of the second cover member.
    Automatic analyzer.
  2.  複数のモジュールの組合せによって構成される臨床検査用の自動分析装置であって、
     前記複数のモジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される複数のモジュールであり、
     前記複数の種類のモジュールの各モジュールの前面に対する側面に取り付けおよび取り外しが可能であるカバー部材を有し、
     前記カバー部材は、カバー本体の裏面に、取付部品を有し、
     前記各モジュールの側面には、前記取付部品を取り付けるための取付部を有し、
     前記カバー部材は、
     前記各モジュールの前面に対する右側の側面に取り付け可能である第1カバー部材と、
     前記各モジュールの前面に対する左側の側面に取り付け可能である第2カバー部材と、
     を有し、
     前記第1カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記右側の側面の位置に前記取付部が設けられ、
     前記第2カバー部材の前記取付部品の位置に対応させた、前記各モジュールの前記左側の側面の位置に前記取付部が設けられている、
     自動分析装置。
    An automatic analyzer for a clinical test constituted by a combination of a plurality of modules,
    The plurality of modules are a plurality of modules selected from a plurality of different types of modules according to at least one of the specification and the analysis type,
    A cover member that can be attached to and detached from a side surface of each of the plurality of types of modules with respect to a front surface of the module,
    The cover member has a mounting component on the back surface of the cover body,
    On the side surface of each of the modules, has a mounting portion for mounting the mounting component,
    The cover member,
    A first cover member attachable to a right side surface with respect to a front surface of each of the modules;
    A second cover member attachable to a left side surface with respect to a front surface of each of the modules;
    Has,
    The mounting portion is provided at a position of the right side surface of each of the modules corresponding to a position of the mounting component of the first cover member,
    The mounting portion is provided at a position on the left side surface of each module corresponding to a position of the mounting component of the second cover member.
    Automatic analyzer.
  3.  請求項1または2に記載の自動分析装置において、
     前記第1カバー部材および前記第2カバー部材は、前記各モジュールの前記右側の側面および前記左側の側面のいずれにも取り付け可能であり、
     前記各モジュールの前記右側の側面の前記取付部の位置および前記第1カバー部材の前記取付部品の位置と、前記各モジュールの前記左側の側面の前記取付部の位置および前記第2カバー部材の前記取付部品の位置とは、前記自動分析装置の前面に対する左右方向における中央の位置の基準面に対し、左右反転した場合に対応する位置、または、上下反転した場合に対応する位置である、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The first cover member and the second cover member can be attached to any of the right side surface and the left side surface of each module,
    The position of the mounting portion on the right side surface of each module and the position of the mounting component of the first cover member, the position of the mounting portion on the left side surface of each module, and the position of the second cover member The position of the attachment part is a position corresponding to the case where the left and right is inverted, or a position corresponding to the case where the top and the bottom are inverted with respect to a reference plane at a center position in the left and right direction with respect to the front surface of the automatic analyzer.
    Automatic analyzer.
  4.  請求項1または2に記載の自動分析装置において、
     前記複数の種類のモジュールは、少なくとも、生化学分析用のモジュールと、免疫分析用のモジュールとがある、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The plurality of types of modules include at least a module for biochemical analysis and a module for immunoassay,
    Automatic analyzer.
  5.  請求項1または2に記載の自動分析装置において、
     前記第1カバー部材と前記第2カバー部材は、前記自動分析装置の前面に対する左右方向において左右対称形状を有する、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The first cover member and the second cover member have a left-right symmetric shape in a left-right direction with respect to a front surface of the automatic analyzer.
    Automatic analyzer.
  6.  請求項3記載の自動分析装置において、
     前記第1カバー部材と前記第2カバー部材は、前記自動分析装置の前面に対する左右方向において左右対称形状を有し、かつ、鉛直方向において上下対称形状を有する、
     自動分析装置。
    The automatic analyzer according to claim 3,
    The first cover member and the second cover member have a symmetrical shape in the left-right direction with respect to the front surface of the automatic analyzer, and have a vertically symmetrical shape in the vertical direction.
    Automatic analyzer.
  7.  請求項1または2に記載の自動分析装置において、
     前記取付部品は、前記カバー本体に対する向きを鉛直方向で上下反転できる機構を有する、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The mounting component has a mechanism capable of reversing the direction with respect to the cover body in a vertical direction.
    Automatic analyzer.
  8.  請求項1または2に記載の自動分析装置において、
     前記カバー本体の下辺には、取り付けおよび取り外しが可能である裾カバーを有する、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    On the lower side of the cover body, having a hem cover that can be attached and detached,
    Automatic analyzer.
  9.  請求項1または2に記載の自動分析装置において、
     前記取付部品は、前記カバー本体の上下左右のいずれかの辺において露出する位置に設けられている、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The attachment component is provided at a position exposed on any of the upper, lower, left, and right sides of the cover body.
    Automatic analyzer.
  10.  請求項1または2に記載の自動分析装置において、
     前記各モジュールの側面における前記取付部の高さ位置が異なり、
     前記カバー部材は、前記カバー本体の上下反転を用いることで、前記各モジュールの側面のいずれの高さ位置の前記取付部に対しても前記取付部品が取り付け可能である、
     自動分析装置。
    The automatic analyzer according to claim 1 or 2,
    The height position of the mounting portion on the side surface of each module is different,
    The cover member, by using the cover body upside down, the mounting part can be mounted to the mounting portion at any height position of the side surface of each module,
    Automatic analyzer.
  11.  請求項2記載の自動分析装置において、
     前記複数の種類のモジュールは、少なくとも、生化学分析用の第1分析モジュールと、免疫分析用の第2分析モジュールと、制御部および操作部が実装された操作モジュールとがあり、
     前記複数のモジュールの組合せによって構成される装置構成のタイプとして、
     前記操作モジュールと前記操作モジュールの右側に配置される前記第1分析モジュールと前記操作モジュールの左側に配置される前記第2分析モジュールとの組合せによる第1タイプと、
     前記操作モジュールと前記操作モジュールの右側に配置される前記第1分析モジュールとの組合せによる第2タイプと、
     前記操作モジュールと前記操作モジュールの左側に配置される前記第2分析モジュールとの組合せによる第3タイプと、があり、
     前記第1タイプは、前記第1分析モジュールの前記右側の側面と前記第2分析モジュールの前記左側の側面とにそれぞれ前記カバー部材が取り付けられ、
     前記第2タイプは、前記第1分析モジュールの前記右側の側面と前記操作モジュールの前記左側の側面とにそれぞれ前記カバー部材が取り付けられ、
     前記第3タイプは、前記操作モジュールの前記右側の側面と前記第2分析モジュールの前記左側の側面とにそれぞれ前記カバー部材が取り付けられる、
     自動分析装置。
    The automatic analyzer according to claim 2,
    The plurality of types of modules include at least a first analysis module for biochemical analysis, a second analysis module for immunological analysis, and an operation module on which a control unit and an operation unit are mounted,
    As a device configuration type configured by a combination of the plurality of modules,
    A first type based on a combination of the operation module, the first analysis module disposed on the right side of the operation module, and the second analysis module disposed on the left side of the operation module,
    A second type of a combination of the operation module and the first analysis module disposed on the right side of the operation module;
    A third type based on a combination of the operation module and the second analysis module disposed on the left side of the operation module;
    In the first type, the cover member is attached to the right side surface of the first analysis module and the left side surface of the second analysis module, respectively.
    In the second type, the cover member is attached to the right side surface of the first analysis module and the left side surface of the operation module, respectively.
    In the third type, the cover member is attached to each of the right side surface of the operation module and the left side surface of the second analysis module.
    Automatic analyzer.
PCT/JP2019/025683 2018-09-13 2019-06-27 Automated analyzer WO2020054180A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020546710A JP7062781B2 (en) 2018-09-13 2019-06-27 Automatic analyzer
CN201980055847.0A CN112654870B (en) 2018-09-13 2019-06-27 Automatic analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171386 2018-09-13
JP2018-171386 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054180A1 true WO2020054180A1 (en) 2020-03-19

Family

ID=69776775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025683 WO2020054180A1 (en) 2018-09-13 2019-06-27 Automated analyzer

Country Status (3)

Country Link
JP (1) JP7062781B2 (en)
CN (1) CN112654870B (en)
WO (1) WO2020054180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965049A (en) * 1986-07-11 1990-10-23 Beckman Instruments, Inc. Modular analyzer system
JPH10282109A (en) * 1997-04-11 1998-10-23 Hitachi Ltd Automatic analysis device of blood
JP2002277476A (en) * 2002-02-04 2002-09-25 Hitachi Ltd Automatic analysis apparatus
US20090117004A1 (en) * 2007-11-06 2009-05-07 Abbott Laboratories System for automatically loading immunoassay analyzer
WO2011040203A1 (en) * 2009-09-30 2011-04-07 株式会社日立ハイテクノロジーズ Automated specimen processing system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3292765B2 (en) * 1993-07-30 2002-06-17 株式会社千代田製作所 Microscope specimen staining method and apparatus
JP2009103501A (en) * 2007-10-22 2009-05-14 Fujifilm Corp Hybridization method and cover member for microarray
CN104698162B (en) * 2015-03-30 2016-05-18 哈尔滨工业大学(威海) A kind of combined reagent box

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965049A (en) * 1986-07-11 1990-10-23 Beckman Instruments, Inc. Modular analyzer system
JPH10282109A (en) * 1997-04-11 1998-10-23 Hitachi Ltd Automatic analysis device of blood
JP2002277476A (en) * 2002-02-04 2002-09-25 Hitachi Ltd Automatic analysis apparatus
US20090117004A1 (en) * 2007-11-06 2009-05-07 Abbott Laboratories System for automatically loading immunoassay analyzer
WO2011040203A1 (en) * 2009-09-30 2011-04-07 株式会社日立ハイテクノロジーズ Automated specimen processing system

Also Published As

Publication number Publication date
CN112654870B (en) 2024-02-06
JPWO2020054180A1 (en) 2021-10-21
CN112654870A (en) 2021-04-13
JP7062781B2 (en) 2022-05-06

Similar Documents

Publication Publication Date Title
CN108139390B (en) Integrated consumable data management system and platform
EP3267203B1 (en) Sample analyzer
US9261523B2 (en) Systems and methods for managing inventories of reagents
CA2650259C (en) Capped-closure for a container
US5635364A (en) Assay verification control for an automated analytical system
EP0746769B1 (en) Automated continuous and random access analytical method
EP1873531B1 (en) Sample analyzer
JP6768163B2 (en) Automatic analyzer
JP6873295B2 (en) Automatic analyzer
JP2015508177A5 (en)
JP2003083992A (en) Transport unit and automatic analysis apparatus having the same
JP7075923B2 (en) Automatic analyzer
JP6634222B2 (en) In vitro diagnostic analysis method and system
AU2004201311A1 (en) Test element holder with a probe guide for an analyzer
WO2020054180A1 (en) Automated analyzer
US20230228777A1 (en) Automatic analyzer
Davis et al. Automated laboratory analyzers analyzed
AU3935093A (en) Automated continuous and random access analytical system and components thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860331

Country of ref document: EP

Kind code of ref document: A1