WO2020054168A1 - Asphalt composition and asphalt mixture - Google Patents

Asphalt composition and asphalt mixture Download PDF

Info

Publication number
WO2020054168A1
WO2020054168A1 PCT/JP2019/024285 JP2019024285W WO2020054168A1 WO 2020054168 A1 WO2020054168 A1 WO 2020054168A1 JP 2019024285 W JP2019024285 W JP 2019024285W WO 2020054168 A1 WO2020054168 A1 WO 2020054168A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
silane
coupling agent
containing coupling
peeling
Prior art date
Application number
PCT/JP2019/024285
Other languages
French (fr)
Japanese (ja)
Inventor
悦樵 呉
健太郎 野口
彰 瀬尾
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2020546704A priority Critical patent/JPWO2020054168A1/en
Publication of WO2020054168A1 publication Critical patent/WO2020054168A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/22Binder incorporated in hot state, e.g. heated bitumen

Definitions

  • the present invention relates to an asphalt composition and an asphalt mixture which improve water resistance by suppressing asphalt peeling.
  • asphalt peeling phenomenon in which rainwater or groundwater penetrates between the asphalt and the aggregate and the asphalt coated on the surface of the aggregate peels, has come to be mentioned.
  • the asphalt peeling phenomenon occurs, the function of bonding the aggregates is reduced, and there is a possibility that cracks and damage such as potholes are likely to occur.
  • Resin acids such as dimer acid and rosin and saturated fatty acids such as stearic acid, palmitic acid and myristic acid, and unsaturated acids such as oleic acid, linoleic acid and ricilenoic acid
  • Patent Documents 1 and 2 Methods of suppressing asphalt peeling by mixing fatty acids such as fatty acids with asphalt as a peeling inhibitor have been studied (Patent Documents 1 and 2).
  • anti-stripping agents such as resin acids and fatty acids are expensive, even if they are added in excess of a certain amount, they do not provide sufficient anti-stripping effects, especially for acidic rocks such as granite. Therefore, a technique for suppressing asphalt separation of these rocks is also required.
  • an object of the present disclosure is to provide a technology for improving water resistance by suppressing asphalt peeling.
  • the silane-containing coupling agent includes at least an asphalt base oil and a silane-containing coupling agent, the silane-containing coupling agent has a styrene-butadiene structure, and a content of the silane-containing coupling agent.
  • the present inventors have conducted intensive studies on the component compositions of the asphalt composition and the asphalt mixture and the content thereof. As a result, it has been newly found that a specific silane-containing coupling agent is added in order to improve water resistance by suppressing asphalt peeling, thereby completing the present invention.
  • a specific silane-containing coupling agent is added in order to improve water resistance by suppressing asphalt peeling, thereby completing the present invention.
  • the peel resistance described below indicates the adhesiveness between the aggregate and asphalt, and indicates that as the peel resistance increases, asphalt is less likely to be peeled from the aggregate. .
  • the asphalt composition in the present embodiment contains at least an asphalt base oil and a silane-containing coupling agent, and the silane-containing coupling agent has a styrene-butadiene structure. Further, the asphalt composition of the present invention may contain a styrene-butadiene-styrene copolymer (hereinafter, referred to as SBS). Suitable contents and properties of each component composition are as follows.
  • Asphalt base oil 90.0% by weight or more and 98.5% by weight or less
  • SBS 7.0% by weight or less
  • Silane-containing coupling agent 1.5% by weight or more and 3.0% by weight or less
  • Peeling rate average of upper and lower surfaces Less than 40%
  • Asphalt base oil for example, asphalt such as solvent asphalt such as straight asphalt and asphalt from which propane is removed, asphalt such as blown asphalt and semi-blown asphalt, or a combination thereof is appropriately used. Further, the asphalt base oil more preferably further contains an aromatic heavy mineral oil.
  • the content of the asphalt base oil with respect to the entire asphalt composition in the present embodiment is determined by the content of the silane-containing coupling agent and the content of the SBS, and is 90.0% by weight or more and 98.5% by weight or less. Is preferred.
  • straight asphalt As the straight asphalt, asphalt specified in JIS K 2207 or a mixture thereof can be used. In this embodiment, this straight asphalt can be used from a penetration grade of 40 to 60 to an equivalent of 200 to 300.
  • Solvent deasphalted asphalt corresponds to a residue obtained by extracting solvent deasphalted oil (high-viscosity lubricating oil fraction) from vacuum distillation residue (see "New Petroleum Dictionary", edited by The Japan Petroleum Institute, 1982, p.308). .
  • solvent deasphalted oil high-viscosity lubricating oil fraction
  • propane-leaved asphalt when propane or propane and butane are used as a solvent, it is called as propane-leaved asphalt.
  • the blown asphalt is, for example, asphalt specified in JIS K2207.
  • the aromatic heavy mineral oil is a solvent-extracted oil obtained by removing a vacuum distillation residue of crude oil with propane or the like, and further solvent extraction using a polar solvent such as furfural.
  • a solvent-extracted oil for obtaining bright stock (heavy lubricating oil), that is, an extract can be used.
  • the role of the extract is to increase the solubility of the thermoplastic elastomer in the asphalt and to prevent the occurrence of separation in storage stability. Is also required to be added. Further, when an extract is added more than necessary with respect to the amount of the thermoplastic elastomer, the elastic modulus of the asphalt composition decreases.
  • the content of the extract with respect to the entire asphalt composition in the present embodiment includes a penetration degree, a softening point, a storage stability, a complex elastic modulus indicating strength, a dynamic stability (DS) in a wheel tracking test, and a low-temperature property. Is determined in consideration of the bending work amount and bending stiffness.
  • the content of the extract with respect to the entire asphalt composition is preferably set to 2.0% by weight or more and 8.0% by weight or less, but the extract is contained. This is not particularly essential and may not be contained.
  • SBS is a thermoplastic elastomer added as a reinforcement.
  • the performance of SBS can be estimated mainly from its molecular weight and styrene content.
  • the styrene content is the weight% of styrene contained in SBS.
  • SBS molecular weight of SBS, which is industrially easily available, is considered to be 120,000 or more and 250,000 or less.
  • SBS has a styrene content of 25.0% by weight or more and 35.0% by weight or less, preferably 27.0% by weight or more and 33.0% by weight or less of the entire SBS.
  • SBSs having different molecular weights and styrene contents are available, and the molecular weights of these SBSs are from 80,000 to 90,000. Further, the styrene content is 25.0% by weight or more and 50.0% by weight or less of the whole SBS.
  • the asphalt composition of the present embodiment it is not particularly essential that SBS is contained, and may not be contained.
  • the asphalt composition of the present embodiment is required. It is preferable that the content of SBS with respect to the whole product is 7.0% by weight or less. By setting the content of SBS to 7.0% by weight or less, it is possible to maintain the asphalt continuous phase, and it is possible to improve the water resistance of the dense particle mixture having excellent water barrier properties.
  • the SBS content in the entire asphalt composition of the present embodiment exceeds 7.0% by weight. By doing so, it is possible to produce an asphalt composition having high drainage or water permeability by causing the phase transition of SBS while solving the above-mentioned problems.
  • only one type of SBS may be mixed, or two or more types of SBS having a specific molecular structure may be selected and mixed. It is preferable to mix only one type of SBS, since the complexity of selecting and mixing two or more types of SBS can be eliminated, and the manufacturing labor can be reduced.
  • silane-containing coupling agent As the silane-containing coupling agent suitably used in the asphalt composition and the asphalt mixture of the present embodiment, for example, a silane-containing coupling agent represented by the following chemical formula (1) can be used.
  • the silane-containing coupling agent suitably used in the present embodiment has one organic functional group and three hydrolyzable groups bonded to silicon.
  • the organic functional group in the silane-containing coupling agent consists of a styrene-butadiene structure and an ethylene structure.
  • the styrene-butadiene structure is composed of a butadiene polymer having a degree of polymerization a and a styrene polymer having a degree of polymerization c (a and c are arbitrary positive numbers).
  • the ethylene structure has an ethylene polymer of degree of polymerization b bonded to silicon (b is any positive number).
  • R in the above chemical formula (1) represents a hydrolyzable group.
  • the hydrolyzable group is, for example, a methoxy group or an ethoxy group.
  • the silane-containing coupling agent having the above-described structure has a styrene-butadiene structure, so that it has a high affinity for asphalt, and has a hydrolyzable group, so that it has a bonding force with an aggregate portion. Is high. Therefore, by adding the silane-containing coupling agent to the asphalt composition in the present embodiment, it becomes possible to improve the adhesion between the aggregate and the asphalt.
  • the silane-containing coupling agent suitably used in the present embodiment preferably has the following properties.
  • the viscosity at 25 ° C. is preferably 7,000 (mPa ⁇ sec) or more, more preferably about 7,500 (mPa ⁇ sec) or more and about 21,000 (mPa ⁇ sec).
  • the nonvolatile content at a heating temperature of 105 ° C. and a heating time of 3 hours is more than 98%.
  • the number average molecular weight calculated in terms of styrene is preferably from 7,000 to 25,000, more preferably from about 9,000 to 9,500.
  • the content of the silane-containing coupling agent with respect to the entire asphalt composition of the present embodiment is from 1.5% by weight to 3.0% by weight. Thereby, the peel resistance can be improved. For this reason, the water resistance performance can be improved by suppressing the separation of asphalt.
  • the content of the silane-containing coupling agent is less than 1.5% by weight, the peel resistance cannot be increased.
  • the content of the silane-containing coupling agent is more than 3.0% by weight, it cannot be mixed as an asphalt composition. For this reason, the content of the silane-containing coupling agent is set to 1.5% by weight or more and 3.0% by weight or less.
  • flash point of silane-containing coupling agent affects the safety during heating during production or storage. Since the silane-containing coupling agent suitably used in the present embodiment is added to asphalt base oil having a high temperature of, for example, 180 ° C. or more, it is preferable to use one having a flash point of 250 ° C. or more. When the flash point of the silane-containing coupling agent is 250 ° C. or higher, safety during heating during production or storage can be further improved.
  • the flash point of the silane-containing coupling agent is measured, for example, by a method specified by JIS K 2207 “Petroleum asphalt-flash point test”.
  • the average peeling rate of the upper and lower surfaces is less than 40%. This makes it possible to obtain desired peel resistance. On the other hand, when the average peeling rate of the upper and lower surfaces is 40% or more, a desired peeling resistance cannot be obtained.
  • the average peeling rate of the upper and lower surfaces is determined by a test method (boiling water peeling test, also referred to as a boiling water peeling test) specified in ASTM D3625 “Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water”. This is calculated from the average of the peeling area ratio of the upper surface and the peeling area ratio of the lower surface of the test specimen tested based on the boiling water peeling test.
  • the asphalt composition of the present embodiment measured the rate of change in mass when the specimen was heated to 163 ° C. in air for 5 hours, and the rate of change between the mass before heating and the mass after heating was measured. It is configured to be 1% or less. Preferably, it is configured to be 0.3% or less. More preferably, it is configured to be 0.03% or less.
  • the change in evaporation mass is measured, for example, by a method specified by JIS K 2207 “Petroleum asphalt-evaporation test”.
  • the asphalt composition composed of the above-mentioned component composition is prepared by mixing (mixing) at least an aggregate and as an asphalt mixture, for example, paving on a predetermined base surface of a road pavement.
  • mixing mixing
  • asphalt mixture for example, paving on a predetermined base surface of a road pavement.
  • Asphalt base oil generation step S101
  • the extract is mixed with the straight asphalt supplied to a predetermined mixing place, and is stirred for a predetermined time by a stirrer (also referred to as a mixing device) at a rotation speed of, for example, 140 ° C. or more and 2000 rpm or more and 4000 rpm or less. It is mixed to produce an asphalt base oil as an asphalt base material (S101).
  • a stirrer also referred to as a mixing device
  • Silane-containing coupling agent addition step S102
  • a predetermined amount of a silane-containing coupling agent, or both of SBS and a silane-containing coupling agent is added to the above-mentioned asphalt base oil, and, for example, at 180 ° C. or higher and 2000 rpm or more and 4000 rpm or less with a stirring device.
  • the mixture is stirred and mixed for a predetermined time under the condition of the number of rotations to produce an asphalt composition (S102).
  • Asphalt mixture production process S103
  • an aggregate having a predetermined particle size is added to the asphalt composition, for example, about 170 ° C., and the desired properties are obtained by mixing at a predetermined rotation speed.
  • An asphalt mixture is manufactured (S103). This step is not required when selling and shipping in the state of asphalt composition.
  • the asphalt mixture in the present embodiment at least an aggregate is mixed with the asphalt composition composed of the above-described component composition.
  • the peel resistance can be improved.
  • the water resistance performance can be improved by suppressing the separation of asphalt.
  • the viscosity at 180 ° C. was measured under the conditions of JPI-5S-54-99 “Viscosity test method using asphalt-rotational viscometer” at a measurement temperature of 180 ° C., a used spindle SC4-21, and a spindle rotation speed of 20 rpm. .
  • Peel resistance was examined based on the boiling water peel test.
  • a specimen was used in which an asphalt composition having the composition shown in Table 1 and a hard sandstone aggregate of 9.5 mm or more and 13.2 mm or less were mixed in the following procedure.
  • 5.5 g ⁇ 0.5 g of each asphalt composition heated at 180 ° C. for 1 hour was added to 100 g ⁇ 0.5 g of the hard sandstone aggregate washed and dried, and stirred for about 1 minute. Then, it was produced.
  • ten specimens were selected from the produced specimens, and the selected specimens were introduced into 100 ml of a 1.0 (mol / l) aqueous sodium carbonate solution.
  • the specimen was heated on a hot plate, heated to 90 ° C. for 1 minute, cooled, and then the peeling area ratio of the specimen was measured.
  • the peeling area ratio of the specimen is measured in the boiling water peeling test described in the above ASTM No. D3625, but in this study, the peeling area ratio of the upper surface of the specimen and the peeling of the lower surface of the specimen are measured. The area ratio and were measured.
  • the average of the peeling area ratio of the upper and lower surfaces was calculated from the average of the measured peeling area ratio of the upper surface and the peeling area ratio of the lower surface of the specimen, and the peeling resistance was determined.
  • the asphalt used in Comparative Examples 1 to 10 and Examples 1 to 6 has typical properties of a penetration of 67 (1/10 mm), a softening point of 48.0 ° C., and a density of 1,036 kg at 15 ° C. / M 3 .
  • SBS used in Comparative Examples 1 to 10 and Examples 1 to 4 has a molecular weight of about 150,000 (g / mol) and a styrene content of 30% by weight based on the entire SBS.
  • the rosin used in Comparative Examples 3 and 5 is a disproportionated gum rosin having an acid value of 156 (mg KOH / g: JIS K0070) and a softening point of 77.0 ° C (JIS K2207).
  • the dimer acid used in Comparative Examples 4 and 6 is a dimerized tall oil fatty acid having 36 carbon atoms and an acid value of 190 to 210 (mg KOH / g: JIS K0070).
  • the silane-containing coupling agent D used in Comparative Example 7, Comparative Example 9, Example 1, Example 2, and Example 3 has a styrene-butadiene structure.
  • the silane-containing coupling agent D has a viscosity at 25 ° C. of 21,000 (mPa ⁇ s), a number average molecular weight calculated in terms of styrene of 9,000, and a non-volatile content at a heating temperature of 105 ° C. and a heating time of 3 hours. Is over 98%.
  • the hydrolyzable group in the silane-containing coupling agent D is a methoxy group.
  • the flash point of the silane-containing coupling agent D is 250 ° C. or higher.
  • the evaporation mass change rate of the asphalt composition when the silane-containing coupling agent D was added was measured under the conditions described in detail in the present embodiment (one in which the state of being heated to 163 ° C. in air was maintained for 5 hours). As a result, it increased by 0.0168% as compared with the asphalt composition before heating. This is presumably because the non-volatile content of the silane-containing coupling agent D was high, and the mass increased by the amount of the oxide generated by bonding with oxygen by heating.
  • the silane-containing coupling agent E used in Comparative Example 8, Comparative Example 10, Example 4, Example 5, or Example 6 has a styrene-butadiene structure.
  • the silane-containing coupling agent E has a viscosity at 25 ° C. of 7,500 (mPa ⁇ s), a number average molecular weight calculated in terms of styrene of 9,500, and a non-volatile content at a heating temperature of 105 ° C. and a heating time of 3 hours. Is over 98%.
  • the hydrolyzable group in the silane-containing coupling agent E is an ethoxy group.
  • the flash point of the silane-containing coupling agent E is 250 ° C. or higher.
  • the evaporation mass change rate of the asphalt composition when the silane-containing coupling agent E was added was measured under the conditions described in detail in the present embodiment (the state where the composition was heated to 163 ° C. in air for 5 hours). As a result, it increased by 0.0162% as compared with the asphalt composition before heating. This is probably because the non-volatile content of the silane-containing coupling agent E was high, and the mass increased by the amount of the oxide generated by bonding with oxygen by heating.
  • Comparative Example 1 the peeling resistance was determined without using rosin, a dimer acid, a silane-containing coupling agent or the like as a peeling preventive.
  • the specimen of Comparative Example 1 had an average peeling rate of the upper and lower surfaces of 90%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, when the anti-stripping agent and the silane-containing coupling agent are not used as in Comparative Example 1, the desired peeling resistance of the asphalt composition cannot be obtained.
  • Comparative Example 2 the viscosity of the asphalt composition was increased by increasing the amount of SBS added without using a silane-containing coupling agent as a peeling inhibitor, and the peeling resistance was determined.
  • the specimen of Comparative Example 2 had a higher viscosity than Comparative Example 1, the average peeling rate of the upper and lower surfaces was 87.5%, and the average peeling rate of the upper and lower surfaces was 40%, which is a quality evaluation standard. That's all. Therefore, a desired peel resistance of the asphalt composition cannot be obtained only by increasing the viscosity of the asphalt composition as in Comparative Example 2.
  • Comparative Example 3 rosin was added as an anti-peeling agent, and peel resistance was determined.
  • the specimen of Comparative Example 3 had an average peeling rate of the upper and lower surfaces of 55%, which was significantly improved as compared with Comparative Examples 1 and 2. % Or more.
  • the anti-peeling agent based on resin acid is added as in Comparative Example 3, the desired anti-peeling resistance of the asphalt composition cannot be obtained.
  • Comparative Example 4 dimer acid was added as a peeling inhibitor, and peel resistance was determined.
  • the specimen of Comparative Example 4 had an average peeling rate of the upper and lower surfaces of 47.5%, which was improved as compared with Comparative Examples 1, 2, and 3. The rate average became 40% or more. For this reason, when the anti-stripping agent based on dimer acid is added as in Comparative Example 4, the desired anti-stripping resistance of the asphalt composition cannot be obtained.
  • Comparative Example 5 peel resistance was determined by increasing the amount of rosin added compared to Comparative Example 3. As a result, the test piece of Comparative Example 5 had an average peeling rate of the upper and lower surfaces of 45%, which was improved as compared with each of Comparative Examples 1 to 4. 40% or more. Therefore, by controlling the amount of rosin added as in Comparative Example 5, the desired peel resistance of the asphalt composition cannot be obtained.
  • Comparative Example 6 the peel resistance was determined by increasing the amount of dimer acid added compared to Comparative Example 4. As a result, the test piece of Comparative Example 6 had an average peeling rate of the upper and lower surfaces of 47.5%, which was improved as compared with each of Comparative Examples 1 to 4. The rate average became 40% or more. Therefore, by controlling the amount of dimer acid added as in Comparative Example 6, the desired peel resistance of the asphalt composition cannot be obtained.
  • Comparative Example 7 peel resistance was determined by adding 0.5% by weight of a silane-containing coupling agent D as a peel preventing agent.
  • the specimen of Comparative Example 7 had an average peeling rate of the upper and lower surfaces of 40%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, even when the silane-containing coupling agent D is added as in Comparative Example 7, if the amount is small, the desired peel resistance of the asphalt composition cannot be obtained.
  • Comparative Example 8 peel resistance was determined by adding 0.5% by weight of a silane-containing coupling agent E as a peel preventing agent.
  • the test piece of Comparative Example 8 had an average peeling rate of the upper and lower surfaces of 50%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, even when the silane-containing coupling agent E is added as in Comparative Example 8, if the amount is small, the desired peel resistance of the asphalt composition cannot be obtained.
  • Comparative Example 9 the peel resistance was determined by adding 4.0% by weight of a silane-containing coupling agent D as a peel preventing agent.
  • a silane-containing coupling agent D as a peel preventing agent.
  • the test specimen of Comparative Example 9 did not mix the asphalt base oil, the aromatic heavy mineral oil, and the SBS with the silane-containing coupling agent, and could not produce an asphalt composition.
  • the silane-containing coupling agent D is added as in Comparative Example 9, if the amount of addition is large, the asphalt composition itself cannot be generated. You cannot achieve your goals.
  • Comparative Example 10 4.0% by weight of a silane-containing coupling agent E was added as a peeling inhibitor, and peeling resistance was determined.
  • the test specimen of Comparative Example 10 did not mix the asphalt base oil, the aromatic heavy mineral oil, and the SBS with the silane-containing coupling agent, and could not produce an asphalt composition. Therefore, as in Comparative Example 10, even when the silane-containing coupling agent E is added, if the amount of the silane-containing coupling agent E is large, the asphalt composition itself cannot be generated. You cannot achieve your goals.
  • Examples 1 to 6 the blending of the asphalt base oil, SBS, and the silane-containing coupling agent is within the range of the component composition specified in the above-described embodiment. Therefore, in Examples 1 to 6, the average peeling rate of the upper and lower surfaces was less than 40%, and it was confirmed that desired peeling resistance could be obtained. In Examples 1 to 6, the viscosity at 180 ° C. is 216 mPa ⁇ sec or more and 284 mPa ⁇ sec or less. For this reason, it is possible to ensure safety at the time of heating during manufacturing, storage, and the like.
  • Example 1 Specifically, in Example 1, 1.5% by weight of a silane-containing coupling agent D was added as a peeling inhibitor, and peeling resistance was determined. As a result, the specimen of Example 1 has an average peeling rate of 17.5% on the upper and lower surfaces, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10.
  • Example 2 the addition amount of the silane-containing coupling agent D was 3.0% by weight, which was larger than the addition amount of the silane-containing coupling agent D in Example 1. As a result, it was confirmed that in Example 2, the average peeling rate of the upper and lower surfaces was 5%, and the peeling resistance was significantly improved as compared with Comparative Examples 1 to 10.
  • Example 3 In Example 3, 1.5% by weight of a silane-containing coupling agent E was added as an anti-peeling agent, and the peeling resistance was determined. As a result, the specimen of Example 3 has an average peeling rate of 25% on the upper and lower surfaces, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10.
  • Example 4 the addition amount of the silane-containing coupling agent E was 3.0% by weight, which was larger than the addition amount of the silane-containing coupling agent E in Example 3. As a result, it was confirmed that in Example 5, the average peeling rate of the upper and lower surfaces was 2.5%, and the peeling resistance could be significantly improved as compared with Comparative Examples 1 to 10.
  • Example 5 peel resistance was determined by adding 2.0% by weight of a silane-containing coupling agent D as a peel preventive without adding SBS. As a result, the test piece of Example 5 has an average peel rate of 7.5% on the upper and lower surfaces, which indicates that the peel resistance is improved as compared with Comparative Examples 1 to 10. Thus, in the present invention, even if SBS is not contained, it can be confirmed that the peel resistance is improved as compared with Comparative Examples 1 to 10.
  • Example 6 2.0% by weight of a silane-containing coupling agent E was added as an anti-peeling agent without adding SBS, and the peeling resistance was determined. As a result, the test piece of Example 6 has an average peeling rate of the upper and lower surfaces of 5%, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10. Thus, in the present invention, even if SBS is not contained, it can be confirmed that the peel resistance is improved as compared with Comparative Examples 1 to 10.

Abstract

[Problem] To provide a technology which improves water resistance performance by suppressing the peeling of asphalt. [Solution] The disclosed asphalt composition at least contains an asphalt base oil and a silane-containing coupling agent, and is characterized in that the silane-containing coupling agent has a styrene-butadiene structure, and the content of the silane-containing coupling agent is 1.5-3.0 wt%, inclusive. In addition, the disclosed asphalt mixture is characterized by having at least an aggregate mixed into said asphalt composition.

Description

アスファルト組成物およびアスファルト合材Asphalt composition and asphalt mixture
 本発明は、アスファルトの剥離を抑制することで耐水性能を向上させるアスファルト組成物およびアスファルト合材に関する。 The present invention relates to an asphalt composition and an asphalt mixture which improve water resistance by suppressing asphalt peeling.
 近年、アスファルト舗装の損傷の主たる要因として、アスファルトと骨材との間に雨水や地下水等が浸透して骨材の表面に被覆されたアスファルトが剥離する、アスファルトの剥離現象が挙げられるようになった。このようなアスファルトの剥離現象が生じることにより、骨材同士を接着する機能が低下し、ひび割れやポットホール等の損傷が生じ易くなる可能性がある。 In recent years, as a main cause of damage to asphalt pavement, asphalt peeling phenomenon, in which rainwater or groundwater penetrates between the asphalt and the aggregate and the asphalt coated on the surface of the aggregate peels, has come to be mentioned. Was. When the asphalt peeling phenomenon occurs, the function of bonding the aggregates is reduced, and there is a possibility that cracks and damage such as potholes are likely to occur.
 このようなアスファルトの剥離現象が生じてしまうことに対し、ダイマー酸やロジンなどの樹脂酸やステアリン酸、パルミチン酸、ミリスチン酸などの飽和脂肪酸や、オレイン酸、リノール酸、リシレノン酸などの不飽和脂肪酸といった脂肪酸などを剥離防止剤としてアスファルトに混合することでアスファルトの剥離を抑制する方法が検討されてきた(特許文献1、2)。しかし、樹脂酸や脂肪酸などの剥離防止剤は高価であるにもかかわらず、一定の量を超えて添加しても、特に花崗岩などの酸性岩に対しては十分な剥離防止効果が得られないため、これらの岩石に対しても、アスファルトの剥離を抑制する技術が求められている。 Resin acids such as dimer acid and rosin and saturated fatty acids such as stearic acid, palmitic acid and myristic acid, and unsaturated acids such as oleic acid, linoleic acid and ricilenoic acid Methods of suppressing asphalt peeling by mixing fatty acids such as fatty acids with asphalt as a peeling inhibitor have been studied (Patent Documents 1 and 2). However, despite the fact that anti-stripping agents such as resin acids and fatty acids are expensive, even if they are added in excess of a certain amount, they do not provide sufficient anti-stripping effects, especially for acidic rocks such as granite. Therefore, a technique for suppressing asphalt separation of these rocks is also required.
特開2016-121320号公報JP 2016-121320 A 特開2015-143340号公報JP-A-2015-143340
 そこで、本開示は上述した点に鑑みて案出されたものであり、その目的とするところは、アスファルトの剥離を抑制することで耐水性能を向上させる技術を提供することにある。 Therefore, the present disclosure has been devised in view of the above points, and an object of the present disclosure is to provide a technology for improving water resistance by suppressing asphalt peeling.
 本開示の一態様によれば、アスファルト基油と、シラン含有カップリング剤と、を少なくとも含み、上記シラン含有カップリング剤は、スチレン-ブタジエン構造を有し、上記シラン含有カップリング剤の含有量は、1.5重量%以上、3.0重量%以下であることを特徴とする技術を提供することができる。 According to one embodiment of the present disclosure, the silane-containing coupling agent includes at least an asphalt base oil and a silane-containing coupling agent, the silane-containing coupling agent has a styrene-butadiene structure, and a content of the silane-containing coupling agent. Can provide a technique characterized by being 1.5% by weight or more and 3.0% by weight or less.
 本開示によれば、アスファルトの剥離を抑制することで耐水性能を向上させる技術を提供することができる。 According to the present disclosure, it is possible to provide a technology for improving water resistance by suppressing asphalt peeling.
本実施形態において好適に用いられるアスファルト組成物およびアスファルト合材の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of the asphalt composition and the asphalt mixture suitably used in this embodiment.
 上述したように、本発明者らはアスファルト組成物およびアスファルト合材の成分組成並びにその含有率について鋭意検討を行った。その結果、アスファルトの剥離を抑制することで耐水性能を向上させるために特定のシラン含有カップリング剤を添加することを新たに見出し、本発明を完成させるに至った。以下、本実施形態におけるアスファルト組成物およびアスファルト合材の実施の形態について詳細に説明する。 As described above, the present inventors have conducted intensive studies on the component compositions of the asphalt composition and the asphalt mixture and the content thereof. As a result, it has been newly found that a specific silane-containing coupling agent is added in order to improve water resistance by suppressing asphalt peeling, thereby completing the present invention. Hereinafter, embodiments of the asphalt composition and the asphalt mixture according to the present embodiment will be described in detail.
 なお、以下に記載される剥離抵抗性とは、骨材とアスファルトの接着性を示すものであり、剥離抵抗性が高くなることによって、骨材からアスファルトが剥離され難くなることを示すものである。 The peel resistance described below indicates the adhesiveness between the aggregate and asphalt, and indicates that as the peel resistance increases, asphalt is less likely to be peeled from the aggregate. .
 本実施形態におけるアスファルト組成物は、少なくともアスファルト基油と、シラン含有カップリング剤のそれぞれを含み、上記シラン含有カップリング剤は、スチレン-ブタジエン構造を有する。また、本発明におけるアスファルト組成物は、スチレン-ブタジエン-スチレン共重合体(以下、SBSという。)を含んでいてもよい。各成分組成の好適な含有量および性状は以下の通りである。 ア ス The asphalt composition in the present embodiment contains at least an asphalt base oil and a silane-containing coupling agent, and the silane-containing coupling agent has a styrene-butadiene structure. Further, the asphalt composition of the present invention may contain a styrene-butadiene-styrene copolymer (hereinafter, referred to as SBS). Suitable contents and properties of each component composition are as follows.
 アスファルト基油:90.0重量%以上、98.5重量%以下
 SBS:7.0重量%以下
 シラン含有カップリング剤:1.5重量%以上、3.0重量%以下
 上下面の剥離率平均:40%未満
Asphalt base oil: 90.0% by weight or more and 98.5% by weight or less SBS: 7.0% by weight or less Silane-containing coupling agent: 1.5% by weight or more and 3.0% by weight or less Peeling rate average of upper and lower surfaces : Less than 40%
 以下、各成分組成の詳細並びにその含有量を限定した理由について説明をする。 Hereinafter, the details of each component composition and the reason for limiting the content will be described.
(アスファルト基油)
 アスファルト基油は、例えばストレートアスファルト、プロパン脱れきアスファルト等の溶剤脱れきアスファルト、ブローンアスファルト、セミブローンアスファルト等のアスファルトがそれぞれ、または、組み合わせて適宜用いられる。また、アスファルト基油は、更に芳香族系重質鉱油が含まれることがより好ましい。
(Asphalt base oil)
As the asphalt base oil, for example, asphalt such as solvent asphalt such as straight asphalt and asphalt from which propane is removed, asphalt such as blown asphalt and semi-blown asphalt, or a combination thereof is appropriately used. Further, the asphalt base oil more preferably further contains an aromatic heavy mineral oil.
 本実施形態におけるアスファルト組成物全体に対するアスファルト基油の含有量は、シラン含有カップリング剤の含有量とSBSの含有量とによって定められ、90.0重量%以上、98.5重量%以下であることが好ましい。 The content of the asphalt base oil with respect to the entire asphalt composition in the present embodiment is determined by the content of the silane-containing coupling agent and the content of the SBS, and is 90.0% by weight or more and 98.5% by weight or less. Is preferred.
(ストレートアスファルト)
 ストレートアスファルトは、JIS K 2207に定められるアスファルト又はこれらの混合物を使用することができる。本実施形態においてこのストレートアスファルトは針入度グレード40~60から200~300相当品まで使用することができる。
(Straight asphalt)
As the straight asphalt, asphalt specified in JIS K 2207 or a mixture thereof can be used. In this embodiment, this straight asphalt can be used from a penetration grade of 40 to 60 to an equivalent of 200 to 300.
(溶剤脱れきアスファルト)
 溶剤脱れきアスファルトは、減圧蒸留残油から溶剤脱れき油(高粘度潤滑油留分)を抽出した残渣分に相当する(「新石油辞典」,石油学会編,1982年,p.308 参照)。特に溶剤としてプロパン、またはプロパンとブタンを用いた場合に、プロパン脱れきアスファルトと呼ぶ。
(Solvent asphalt)
Solvent deasphalted asphalt corresponds to a residue obtained by extracting solvent deasphalted oil (high-viscosity lubricating oil fraction) from vacuum distillation residue (see "New Petroleum Dictionary", edited by The Japan Petroleum Institute, 1982, p.308). . In particular, when propane or propane and butane are used as a solvent, it is called as propane-leaved asphalt.
(ブローンアスファルト)
 ブローンアスファルトは、例えば、JIS K 2207に定められるアスファルトである。
(Blown asphalt)
The blown asphalt is, for example, asphalt specified in JIS K2207.
(セミブローンアスファルト)
 セミブローンアスファルトは、例えば、「アスファルト舗装要綱」,社団法人日本道路協会発行,平成9年1月13日,p.51,表-3.3.4に定められるセミブローンアスファルトである。
(Semi-blown asphalt)
Semi-blown asphalt is described in, for example, "Asphalt Pavement Outlines", published by the Japan Road Association, January 13, 1997, p. 51, semi-blown asphalt as defined in Table 3.3.4.
(芳香族系重質鉱油)
 本実施形態におけるアスファルト組成物において、芳香族系重質鉱油は、原油の減圧蒸留残油をプロパン等により脱れきして得られた溶剤脱れき油を、更にフルフラール等の極性溶剤を用いて溶剤抽出することにより、ブライトストック(重質潤滑油)を得る際の溶剤抽出油、すなわち、エキストラクトが使用できる。特に本実施形態においては、芳香族重質鉱油としてエキストラクトを添加することが好ましい。
(Aromatic heavy mineral oil)
In the asphalt composition according to the present embodiment, the aromatic heavy mineral oil is a solvent-extracted oil obtained by removing a vacuum distillation residue of crude oil with propane or the like, and further solvent extraction using a polar solvent such as furfural. By doing so, a solvent-extracted oil for obtaining bright stock (heavy lubricating oil), that is, an extract can be used. Particularly, in the present embodiment, it is preferable to add an extract as an aromatic heavy mineral oil.
 本実施形態におけるアスファルト組成物において、エキストラクトの役割は、熱可塑性エラストマーのアスファルトへの溶解性を高め、貯蔵安定性において分離の発生を防ぐもので、熱可塑性エラストマーの添加量が多いとエキストラクトの必要な添加量も増加する。また、熱可塑性エラストマーの添加量に対して必要以上のエキストラクトを添加するとアスファルト組成物の弾性率が低下する。 In the asphalt composition of the present embodiment, the role of the extract is to increase the solubility of the thermoplastic elastomer in the asphalt and to prevent the occurrence of separation in storage stability. Is also required to be added. Further, when an extract is added more than necessary with respect to the amount of the thermoplastic elastomer, the elastic modulus of the asphalt composition decreases.
 本実施形態におけるアスファルト組成物全体に対するエキストラクトの含有量は、針入度、軟化点、貯蔵安定性、強度を示す複素弾性率とホイールトラッキング試験における動的安定度(DS)、及び、低温性状を示す曲げ仕事量と曲げスティフネスを考慮して決められる。本実施形態で検討した範囲では、アスファルト組成物全体に対するエキストラクトの含有量は、2.0重量%以上8.0重量%以下とされていることが好ましいが、当該エキストラクトが含有されていることは特段必須にはならず、含有されていなくてもよい。 The content of the extract with respect to the entire asphalt composition in the present embodiment includes a penetration degree, a softening point, a storage stability, a complex elastic modulus indicating strength, a dynamic stability (DS) in a wheel tracking test, and a low-temperature property. Is determined in consideration of the bending work amount and bending stiffness. In the range studied in the present embodiment, the content of the extract with respect to the entire asphalt composition is preferably set to 2.0% by weight or more and 8.0% by weight or less, but the extract is contained. This is not particularly essential and may not be contained.
(SBS)
 SBSは、補強材として添加される熱可塑性エラストマーである。SBSの性能は、主にその分子量及びスチレン含有量から推定することができる。ここでいうスチレン含有量とは、SBS中に含まれているスチレンの重量%である。
(SBS)
SBS is a thermoplastic elastomer added as a reinforcement. The performance of SBS can be estimated mainly from its molecular weight and styrene content. Here, the styrene content is the weight% of styrene contained in SBS.
  現在、工業的に入手が容易なSBSの分子量は、12万以上25万以下とされている。SBSは、スチレン含有量がSBS全体の25.0重量%以上35.0重量%以下であり、好ましくは27.0重量%以上33.0重量%以下である。 Currently, the molecular weight of SBS, which is industrially easily available, is considered to be 120,000 or more and 250,000 or less. SBS has a styrene content of 25.0% by weight or more and 35.0% by weight or less, preferably 27.0% by weight or more and 33.0% by weight or less of the entire SBS.
  上記以外にも、分子量およびスチレン含有量の異なるSBSが入手可能で、それらのSBSの分子量は、8万以上9万以下とされている。さらにスチレン含有量がSBS全体の25.0重量%以上50.0重量%以下である。 以外 In addition to the above, SBSs having different molecular weights and styrene contents are available, and the molecular weights of these SBSs are from 80,000 to 90,000. Further, the styrene content is 25.0% by weight or more and 50.0% by weight or less of the whole SBS.
  本実施形態のアスファルト組成物全体において、SBSが含有されていることは特段必須にはならず、含有されていなくても良いが、上述した課題を解決するためには、本実施形態のアスファルト組成物全体に対するSBSの含有量を、7.0重量%以下とすることが好ましい。SBSの含有量を7.0重量%以下とすることで、アスファルト連続相を維持することが可能となり、遮水性に優れた密粒度混合物の耐水性の向上を図ることが可能となる。これに対し、舗装内部に積極的に空隙を設けた排水性もしくは透水性の高いアスファルト混合物を製造したい場合には、本実施形態のアスファルト組成物全体に対するSBSの含有量を7.0重量%超とすることで、上述した課題を解決しつつ、SBSの相転移を生じさせることで、高い排水性または透水性を有したアスファルト組成物を製造することが可能となる。 In the entire asphalt composition of the present embodiment, it is not particularly essential that SBS is contained, and may not be contained. However, in order to solve the above-described problem, the asphalt composition of the present embodiment is required. It is preferable that the content of SBS with respect to the whole product is 7.0% by weight or less. By setting the content of SBS to 7.0% by weight or less, it is possible to maintain the asphalt continuous phase, and it is possible to improve the water resistance of the dense particle mixture having excellent water barrier properties. On the other hand, when it is desired to produce a highly drainable or water-permeable asphalt mixture in which voids are actively provided inside the pavement, the SBS content in the entire asphalt composition of the present embodiment exceeds 7.0% by weight. By doing so, it is possible to produce an asphalt composition having high drainage or water permeability by causing the phase transition of SBS while solving the above-mentioned problems.
 本実施形態においては、1種類のSBSのみを混合するようにしてもよいし、特定の分子構造を有する2種類以上のSBSを選択して混合するようにしてもよい。1種類のSBSのみを混合する場合には、2種類以上のSBSを選択して混合する煩雑さを解消することができ、製造労力の低減を図ることが可能となるため、好ましい。 In this embodiment, only one type of SBS may be mixed, or two or more types of SBS having a specific molecular structure may be selected and mixed. It is preferable to mix only one type of SBS, since the complexity of selecting and mixing two or more types of SBS can be eliminated, and the manufacturing labor can be reduced.
(シラン含有カップリング剤)
 本実施形態のアスファルト組成物およびアスファルト合材において好適に利用されるシラン含有カップリング剤は、例えば、以下の化学式(1)で表されるシラン含有カップリング剤を用いることができる。
(Silane-containing coupling agent)
As the silane-containing coupling agent suitably used in the asphalt composition and the asphalt mixture of the present embodiment, for example, a silane-containing coupling agent represented by the following chemical formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
・・・(1)
Figure JPOXMLDOC01-appb-C000001
... (1)
 本実施形態で好適に利用されるシラン含有カップリング剤は、ケイ素に結合される1つの有機官能基と3つの加水分解基とを有する。シラン含有カップリング剤における有機官能基は、スチレン-ブタジエン構造と、エチレン構造と、からなる。スチレン-ブタジエン構造は、重合度aのブタジエンポリマーと、重合度cのスチレンポリマーとからなる(a、cは任意の正数)。エチレン構造は、ケイ素に結合される重合度bのエチレンポリマーを有する(bは任意の正数)。上記の化学式(1)におけるRは、加水分解基を示す。加水分解基は、例えば、メトキシ基、エトキシ基である。 シ ラ ン The silane-containing coupling agent suitably used in the present embodiment has one organic functional group and three hydrolyzable groups bonded to silicon. The organic functional group in the silane-containing coupling agent consists of a styrene-butadiene structure and an ethylene structure. The styrene-butadiene structure is composed of a butadiene polymer having a degree of polymerization a and a styrene polymer having a degree of polymerization c (a and c are arbitrary positive numbers). The ethylene structure has an ethylene polymer of degree of polymerization b bonded to silicon (b is any positive number). R in the above chemical formula (1) represents a hydrolyzable group. The hydrolyzable group is, for example, a methoxy group or an ethoxy group.
 上述した構造を有するシラン含有カップリング剤は、スチレン-ブタジエン構造を有しているため、アスファルトとの親和性が高く、また、加水分解基を有しているため、骨材部分との結合力が高い。このため、本実施形態におけるアスファルト組成物にシラン含有カップリング剤を添加することで骨材とアスファルトとの接着性を向上させることが可能となる。 The silane-containing coupling agent having the above-described structure has a styrene-butadiene structure, so that it has a high affinity for asphalt, and has a hydrolyzable group, so that it has a bonding force with an aggregate portion. Is high. Therefore, by adding the silane-containing coupling agent to the asphalt composition in the present embodiment, it becomes possible to improve the adhesion between the aggregate and the asphalt.
 なお、本実施形態で好適に利用されるシラン含有カップリング剤は、以下のような性状を有することが好ましい。例えば、25℃における粘度が7,000(mPa・秒)以上であることが好ましく、7,500(mPa・秒)以上21,000(mPa・秒)以下程度であることがより好ましい。また、例えば、加熱温度105℃で加熱時間3時間における不揮発分が98%超であることが好ましい。さらに、例えば、スチレン換算により算出される数平均分子量が7,000以上25,000以下であることが好ましく、9,000以上9,500以下程度であることがより好ましい。 The silane-containing coupling agent suitably used in the present embodiment preferably has the following properties. For example, the viscosity at 25 ° C. is preferably 7,000 (mPa · sec) or more, more preferably about 7,500 (mPa · sec) or more and about 21,000 (mPa · sec). Further, for example, it is preferable that the nonvolatile content at a heating temperature of 105 ° C. and a heating time of 3 hours is more than 98%. Further, for example, the number average molecular weight calculated in terms of styrene is preferably from 7,000 to 25,000, more preferably from about 9,000 to 9,500.
 本実施形態のアスファルト組成物全体に対するシラン含有カップリング剤の含有量は、1.5重量%以上3.0重量%以下である。これにより、剥離抵抗性を向上させることができる。このため、アスファルトの剥離を抑制することで耐水性能を向上させることができる。一方で、シラン含有カップリング剤の含有量が1.5重量%未満の場合、剥離抵抗性を高くできない。また、シラン含有カップリング剤の含有量が3.0重量%超の場合、アスファルト組成物として混合できない。このため、シラン含有カップリング剤の含有量は、1.5重量%以上3.0重量%以下とする。 含有 The content of the silane-containing coupling agent with respect to the entire asphalt composition of the present embodiment is from 1.5% by weight to 3.0% by weight. Thereby, the peel resistance can be improved. For this reason, the water resistance performance can be improved by suppressing the separation of asphalt. On the other hand, when the content of the silane-containing coupling agent is less than 1.5% by weight, the peel resistance cannot be increased. When the content of the silane-containing coupling agent is more than 3.0% by weight, it cannot be mixed as an asphalt composition. For this reason, the content of the silane-containing coupling agent is set to 1.5% by weight or more and 3.0% by weight or less.
(シラン含有カップリング剤の引火点)
 シラン含有カップリング剤の引火点は、製造時や貯蔵時等の加熱時における安全性に影響を与える。本実施形態において好適に用いられるシラン含有カップリング剤は、例えば180℃以上の高温となるアスファルト基油に添加されるため、引火点が250℃以上となるものを利用することが好ましい。シラン含有カップリング剤の引火点が250℃以上の場合には、製造時や貯蔵時等の加熱時における安全性を更に向上させることができる。ここで、シラン含有カップリング剤の引火点は、例えば、JIS K 2207「石油アスファルト-引火点試験」により規定される方法で測定される。
(Flash point of silane-containing coupling agent)
The flash point of the silane-containing coupling agent affects the safety during heating during production or storage. Since the silane-containing coupling agent suitably used in the present embodiment is added to asphalt base oil having a high temperature of, for example, 180 ° C. or more, it is preferable to use one having a flash point of 250 ° C. or more. When the flash point of the silane-containing coupling agent is 250 ° C. or higher, safety during heating during production or storage can be further improved. Here, the flash point of the silane-containing coupling agent is measured, for example, by a method specified by JIS K 2207 “Petroleum asphalt-flash point test”.
(剥離率)
 本実施形態のアスファルト組成物は、上下面の剥離率平均が40%未満である。これにより、所望の剥離抵抗性を得ることが可能となる。一方で、上下面の剥離率平均が40%以上である場合、所望の剥離抵抗性を得ることができない。後述するが、上下面の剥離率平均は、ASTM D3625の「Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water」に規定される試験方法(沸騰水剥離試験、ボイル(Boil)試験とも称する。以下、沸騰水剥離試験と記載する)に基づいて試験された供試体の上面の剥離面積率と、下面の剥離面積率との平均により、算出される。
(Peel rate)
In the asphalt composition of the present embodiment, the average peeling rate of the upper and lower surfaces is less than 40%. This makes it possible to obtain desired peel resistance. On the other hand, when the average peeling rate of the upper and lower surfaces is 40% or more, a desired peeling resistance cannot be obtained. As will be described later, the average peeling rate of the upper and lower surfaces is determined by a test method (boiling water peeling test, also referred to as a boiling water peeling test) specified in ASTM D3625 “Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water”. This is calculated from the average of the peeling area ratio of the upper surface and the peeling area ratio of the lower surface of the test specimen tested based on the boiling water peeling test.
(蒸発質量変化率)
 本実施形態のアスファルト組成物は、供試体を空気中で163℃に加熱した状態を5時間維持した場合の質量変化率を測定したところ、加熱前の質量と加熱後の質量との変化率が1%以下となるように構成される。好ましくは、0.3%以下となるように構成される。さらに好ましくは、0.03%以下となるように構成される。蒸発質量変化は、例えば、JIS K 2207「石油アスファルト-蒸発試験」により規定される方法で測定される。
(Evaporation mass change rate)
The asphalt composition of the present embodiment measured the rate of change in mass when the specimen was heated to 163 ° C. in air for 5 hours, and the rate of change between the mass before heating and the mass after heating was measured. It is configured to be 1% or less. Preferably, it is configured to be 0.3% or less. More preferably, it is configured to be 0.03% or less. The change in evaporation mass is measured, for example, by a method specified by JIS K 2207 “Petroleum asphalt-evaporation test”.
 上述した成分組成で構成されるアスファルト組成物は、少なくとも骨材を配合(混合)し、アスファルト合材として、例えば、道路舗装の所定基面上に舗設される。ここで、上述した成分組成で構成されるアスファルト組成物の製造工程について図1を用いて説明する。 ア ス The asphalt composition composed of the above-mentioned component composition is prepared by mixing (mixing) at least an aggregate and as an asphalt mixture, for example, paving on a predetermined base surface of a road pavement. Here, a manufacturing process of the asphalt composition composed of the above-described component composition will be described with reference to FIG.
(アスファルト基油生成工程:S101)
 所定の混合場所に供給されたストレートアスファルトにエキストラクトを混合し、攪拌装置(混合装置とも称する)によって、例えば、140℃以上、2000rpm以上4000rpm以下の回転数となる条件で、所定の時間攪拌・混合され、アスファルト基材としてのアスファルト基油を生成する(S101)。
(Asphalt base oil generation step: S101)
The extract is mixed with the straight asphalt supplied to a predetermined mixing place, and is stirred for a predetermined time by a stirrer (also referred to as a mixing device) at a rotation speed of, for example, 140 ° C. or more and 2000 rpm or more and 4000 rpm or less. It is mixed to produce an asphalt base oil as an asphalt base material (S101).
(シラン含有カップリング剤添加工程:S102)
 次に、上述したアスファルト基油に対し、シラン含有カップリング剤、またはSBSとシラン含有カップリング剤の両方、を所定量添加し、攪拌装置にて、例えば、180℃以上、2000rpm以上4000rpm以下の回転数となる条件で、所定の時間攪拌・混合され、アスファルト組成物を生成する(S102)。
(Silane-containing coupling agent addition step: S102)
Next, a predetermined amount of a silane-containing coupling agent, or both of SBS and a silane-containing coupling agent, is added to the above-mentioned asphalt base oil, and, for example, at 180 ° C. or higher and 2000 rpm or more and 4000 rpm or less with a stirring device. The mixture is stirred and mixed for a predetermined time under the condition of the number of rotations to produce an asphalt composition (S102).
(アスファルト合材製造工程:S103)
 アスファルト組成物を生成後、必要に応じて、アスファルト組成物に所定の粒径を有する骨材を少なくとも加えて、例えば、170℃程度、所定の回転数にて混合することで所望の性状を有するアスファルト合材を製造する(S103)。アスファルト組成物の状態で販売・出荷する際には、本工程は必要ない。
(Asphalt mixture production process: S103)
After the asphalt composition is generated, if necessary, at least an aggregate having a predetermined particle size is added to the asphalt composition, for example, about 170 ° C., and the desired properties are obtained by mixing at a predetermined rotation speed. An asphalt mixture is manufactured (S103). This step is not required when selling and shipping in the state of asphalt composition.
 本実施形態におけるアスファルト合材は、上述した成分組成で構成されるアスファルト組成物に少なくとも骨材が混合される。これにより、剥離抵抗性を向上させることができる。このため、アスファルトの剥離を抑制することで耐水性能を向上させることができる。 ア ス In the asphalt mixture in the present embodiment, at least an aggregate is mixed with the asphalt composition composed of the above-described component composition. Thereby, the peel resistance can be improved. For this reason, the water resistance performance can be improved by suppressing the separation of asphalt.
 以下に、上述した本実施形態を用いた場合の実施例及び比較例を挙げて具体的に説明する。 Hereinafter, specific examples will be described with reference to examples and comparative examples using the above-described embodiment.
 実施例及び比較例のアスファルト組成物について、表1に示すように、180℃における粘度を測定した。また、実施例及び比較例のアスファルト組成物について、剥離抵抗性を確認するための試験として、アスファルト組成物と骨材を混合した供試体の上下面の剥離率平均を算出した。 粘度 As shown in Table 1, the viscosity of the asphalt compositions of Examples and Comparative Examples at 180 ° C. was measured. Further, as a test for confirming the peeling resistance of the asphalt compositions of Examples and Comparative Examples, the average of the peeling rates of the upper and lower surfaces of a specimen in which the asphalt composition and the aggregate were mixed was calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 180℃における粘度は、JPI-5S-54-99「アスファルト-回転粘度計による粘度試験方法」の条件の下、測定温度180℃、使用スピンドルSC4-21、スピンドル回転数20回転/分で測定した。 The viscosity at 180 ° C. was measured under the conditions of JPI-5S-54-99 “Viscosity test method using asphalt-rotational viscometer” at a measurement temperature of 180 ° C., a used spindle SC4-21, and a spindle rotation speed of 20 rpm. .
 剥離抵抗性は、上記沸騰水剥離試験に基づいて、検討した。詳細には、本検討では、表1に示す配合のアスファルト組成物と、9.5mm以上13.2mm以下の硬質砂岩骨材と、を以下に示す手順で混合した供試体を用いた。供試体は、水洗いして乾燥させた硬質砂岩骨材100g±0.5gに対して、180℃で1時間加熱した各アスファルト組成物5.5g±0.5gを添加して、1分間程度撹拌して、作製されたものである。本検討では、作製された供試体から10個を選択し、選択した供試体を1.0(mol/l)の炭酸ナトリウム水溶液100mlに投入する。その後、本検討では、供試体をホットプレートで加熱し、90℃に達してから1分間加熱し、冷却した後、供試体の剥離面積率を測定した。ここで、上記ASTM D3625に記載されている沸騰水剥離試験では、供試体の上面の剥離面積率のみを測定するが、本検討では、供試体の上面の剥離面積率と供試体の下面の剥離面積率と、を測定した。本検討では、測定した上面の剥離面積率と供試体の下面の剥離面積率との平均により、上下面の剥離率平均を算出し、剥離抵抗性を判断した。本検討においては、上下面の剥離率平均が40%未満の場合、所望の剥離抵抗性が得られた(表1中の「○」で表記)と評価し、上下面の剥離率平均が40%以上の場合、所望の剥離抵抗性が得られていない(表1中の「×」で表記)と評価した。 Peel resistance was examined based on the boiling water peel test. In detail, in this study, a specimen was used in which an asphalt composition having the composition shown in Table 1 and a hard sandstone aggregate of 9.5 mm or more and 13.2 mm or less were mixed in the following procedure. To the test specimen, 5.5 g ± 0.5 g of each asphalt composition heated at 180 ° C. for 1 hour was added to 100 g ± 0.5 g of the hard sandstone aggregate washed and dried, and stirred for about 1 minute. Then, it was produced. In this study, ten specimens were selected from the produced specimens, and the selected specimens were introduced into 100 ml of a 1.0 (mol / l) aqueous sodium carbonate solution. Thereafter, in this study, the specimen was heated on a hot plate, heated to 90 ° C. for 1 minute, cooled, and then the peeling area ratio of the specimen was measured. Here, in the boiling water peeling test described in the above ASTM No. D3625, only the peeling area ratio of the upper surface of the specimen is measured, but in this study, the peeling area ratio of the upper surface of the specimen and the peeling of the lower surface of the specimen are measured. The area ratio and were measured. In this study, the average of the peeling area ratio of the upper and lower surfaces was calculated from the average of the measured peeling area ratio of the upper surface and the peeling area ratio of the lower surface of the specimen, and the peeling resistance was determined. In this study, when the average peel rate of the upper and lower surfaces was less than 40%, it was evaluated that the desired peel resistance was obtained (indicated by “で” in Table 1), and the average peel rate of the upper and lower surfaces was 40%. %, It was evaluated that the desired peeling resistance was not obtained (indicated by “x” in Table 1).
 以下、実施例及び比較例で使用した材料について説明する。 材料 Hereinafter, the materials used in the examples and comparative examples will be described.
 比較例1~10、実施例1~6で使用したアスファルトは、代表的な性状が、針入度が67(1/10mm)、軟化点が48.0℃、15℃における密度が1,036kg/m3である。 The asphalt used in Comparative Examples 1 to 10 and Examples 1 to 6 has typical properties of a penetration of 67 (1/10 mm), a softening point of 48.0 ° C., and a density of 1,036 kg at 15 ° C. / M 3 .
 比較例1~10、実施例1~6で使用した芳香族系重質鉱油としては、石油系溶剤抽出油やJISK6200に規定されているエキストラクトを利用した。 は As the aromatic heavy mineral oil used in Comparative Examples 1 to 10 and Examples 1 to 6, a petroleum-based solvent extracted oil or an extract specified in JIS K6200 was used.
 比較例1~10、実施例1~4で使用したSBSは、分子量が約150,000(g/mol)、スチレン含有量がSBS全体に対して30重量%である。 S The SBS used in Comparative Examples 1 to 10 and Examples 1 to 4 has a molecular weight of about 150,000 (g / mol) and a styrene content of 30% by weight based on the entire SBS.
 比較例3、5で使用したロジンは、酸価156(mgKOH/g:JIS K0070)、軟化点77.0℃(JIS K2207)の不均化ガムロジンである。 The rosin used in Comparative Examples 3 and 5 is a disproportionated gum rosin having an acid value of 156 (mg KOH / g: JIS K0070) and a softening point of 77.0 ° C (JIS K2207).
 比較例4、6で使用したダイマー酸は、炭素数36で酸価190~210(mgKOH/g:JIS K0070)のトール油脂肪酸二量体化物である。 The dimer acid used in Comparative Examples 4 and 6 is a dimerized tall oil fatty acid having 36 carbon atoms and an acid value of 190 to 210 (mg KOH / g: JIS K0070).
 比較例7、比較例9、実施例1、実施例2、実施例3で使用したシラン含有カップリング剤Dは、スチレン-ブタジエン構造を有する。シラン含有カップリング剤Dは、25℃における粘度が21,000(mPa・秒)、スチレン換算により算出される数平均分子量が9,000であり、加熱温度105℃で加熱時間3時間における不揮発分が98%超である。シラン含有カップリング剤Dにおける加水分解基は、メトキシ基である。シラン含有カップリング剤Dの引火点は250℃以上である。ここで、シラン含有カップリング剤Dを添加した場合のアスファルト組成物の蒸発質量変化率を本実施形態で詳述した条件(空気中で163℃に加熱した状態を5時間維持したもの)で測定したところ、加熱前のアスファルト組成物と比較して0.0168%増加した。これは、シラン含有カップリング剤Dの不揮発分が高く、さらに、加熱によって酸素と結合することによって生じた酸化物分だけ質量が増加したためと考えられる。 シ ラ ン The silane-containing coupling agent D used in Comparative Example 7, Comparative Example 9, Example 1, Example 2, and Example 3 has a styrene-butadiene structure. The silane-containing coupling agent D has a viscosity at 25 ° C. of 21,000 (mPa · s), a number average molecular weight calculated in terms of styrene of 9,000, and a non-volatile content at a heating temperature of 105 ° C. and a heating time of 3 hours. Is over 98%. The hydrolyzable group in the silane-containing coupling agent D is a methoxy group. The flash point of the silane-containing coupling agent D is 250 ° C. or higher. Here, the evaporation mass change rate of the asphalt composition when the silane-containing coupling agent D was added was measured under the conditions described in detail in the present embodiment (one in which the state of being heated to 163 ° C. in air was maintained for 5 hours). As a result, it increased by 0.0168% as compared with the asphalt composition before heating. This is presumably because the non-volatile content of the silane-containing coupling agent D was high, and the mass increased by the amount of the oxide generated by bonding with oxygen by heating.
 比較例8、比較例10、実施例4、実施例5、実施例6で使用したシラン含有カップリング剤Eは、スチレン-ブタジエン構造を有する。シラン含有カップリング剤Eは、25℃における粘度が7,500(mPa・秒)、スチレン換算により算出される数平均分子量が9,500であり、加熱温度105℃で加熱時間3時間における不揮発分が98%超である。シラン含有カップリング剤Eにおける加水分解基は、エトキシ基である。シラン含有カップリング剤Eの引火点は250℃以上である。ここで、シラン含有カップリング剤Eを添加した場合のアスファルト組成物の蒸発質量変化率を本実施形態で詳述した条件(空気中で163℃に加熱した状態を5時間維持したもの)で測定したところ、加熱前のアスファルト組成物と比較して0.0162%増加した。これは、シラン含有カップリング剤Eの不揮発分が高く、さらに、加熱によって酸素と結合することによって生じた酸化物分だけ質量が増加したためと考えられる。 シ ラ ン The silane-containing coupling agent E used in Comparative Example 8, Comparative Example 10, Example 4, Example 5, or Example 6 has a styrene-butadiene structure. The silane-containing coupling agent E has a viscosity at 25 ° C. of 7,500 (mPa · s), a number average molecular weight calculated in terms of styrene of 9,500, and a non-volatile content at a heating temperature of 105 ° C. and a heating time of 3 hours. Is over 98%. The hydrolyzable group in the silane-containing coupling agent E is an ethoxy group. The flash point of the silane-containing coupling agent E is 250 ° C. or higher. Here, the evaporation mass change rate of the asphalt composition when the silane-containing coupling agent E was added was measured under the conditions described in detail in the present embodiment (the state where the composition was heated to 163 ° C. in air for 5 hours). As a result, it increased by 0.0162% as compared with the asphalt composition before heating. This is probably because the non-volatile content of the silane-containing coupling agent E was high, and the mass increased by the amount of the oxide generated by bonding with oxygen by heating.
 表1に示すように、比較例1は剥離防止剤であるロジン、ダイマー酸、シラン含有カップリング剤等を使用せずに剥離抵抗性を判断した。その結果、比較例1の供試体は、上下面の剥離率平均が90%と、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例1のように剥離防止剤やシラン含有カップリング剤を利用しない場合には、アスファルト組成物における所望の剥離抵抗性を得ることができない。 よ う As shown in Table 1, in Comparative Example 1, the peeling resistance was determined without using rosin, a dimer acid, a silane-containing coupling agent or the like as a peeling preventive. As a result, the specimen of Comparative Example 1 had an average peeling rate of the upper and lower surfaces of 90%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, when the anti-stripping agent and the silane-containing coupling agent are not used as in Comparative Example 1, the desired peeling resistance of the asphalt composition cannot be obtained.
 比較例2は剥離防止剤であるシラン含有カップリング剤を使用せずに、SBSの添加量を増やすことでアスファルト組成物の粘度を増加させ、剥離抵抗性を判断した。その結果、比較例2の供試体は、比較例1よりも粘度を増加させているものの、上下面の剥離率平均が87.5%と、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例2のようにアスファルト組成物の粘度を増加させただけでは、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 2, the viscosity of the asphalt composition was increased by increasing the amount of SBS added without using a silane-containing coupling agent as a peeling inhibitor, and the peeling resistance was determined. As a result, although the specimen of Comparative Example 2 had a higher viscosity than Comparative Example 1, the average peeling rate of the upper and lower surfaces was 87.5%, and the average peeling rate of the upper and lower surfaces was 40%, which is a quality evaluation standard. That's all. Therefore, a desired peel resistance of the asphalt composition cannot be obtained only by increasing the viscosity of the asphalt composition as in Comparative Example 2.
 比較例3は、剥離防止剤としてロジンを添加し、剥離抵抗性を判断した。その結果、比較例3の供試体は、上下面の剥離率平均が55%と、比較例1、2に比して大きく向上しているものの、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例3のように樹脂酸による剥離防止剤を添加した場合には、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 3, rosin was added as an anti-peeling agent, and peel resistance was determined. As a result, the specimen of Comparative Example 3 had an average peeling rate of the upper and lower surfaces of 55%, which was significantly improved as compared with Comparative Examples 1 and 2. % Or more. For this reason, when the anti-peeling agent based on resin acid is added as in Comparative Example 3, the desired anti-peeling resistance of the asphalt composition cannot be obtained.
 比較例4は、剥離防止剤としてダイマー酸を添加し、剥離抵抗性を判断した。その結果、比較例4の供試体は、上下面の剥離率平均が47.5%と、比較例1、2、3に比して向上しているものの、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例4のようにダイマー酸による剥離防止剤を添加した場合には、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 4, dimer acid was added as a peeling inhibitor, and peel resistance was determined. As a result, the specimen of Comparative Example 4 had an average peeling rate of the upper and lower surfaces of 47.5%, which was improved as compared with Comparative Examples 1, 2, and 3. The rate average became 40% or more. For this reason, when the anti-stripping agent based on dimer acid is added as in Comparative Example 4, the desired anti-stripping resistance of the asphalt composition cannot be obtained.
 比較例5は、比較例3よりもロジンの添加量を増加させて剥離抵抗性を判断した。その結果、比較例5の供試体は、上下面の剥離率平均が45%と、比較例1~4のそれぞれに比して向上しているものの、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例5のようにロジンの添加量を制御することによっては、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 5, peel resistance was determined by increasing the amount of rosin added compared to Comparative Example 3. As a result, the test piece of Comparative Example 5 had an average peeling rate of the upper and lower surfaces of 45%, which was improved as compared with each of Comparative Examples 1 to 4. 40% or more. Therefore, by controlling the amount of rosin added as in Comparative Example 5, the desired peel resistance of the asphalt composition cannot be obtained.
 比較例6は、比較例4よりもダイマー酸の添加量を増加させて剥離抵抗性を判断した。その結果、比較例6の供試体は、上下面の剥離率平均が47.5%と、比較例1~4のそれぞれに比して向上しているものの、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例6のようにダイマー酸の添加量を制御することによっては、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 6, the peel resistance was determined by increasing the amount of dimer acid added compared to Comparative Example 4. As a result, the test piece of Comparative Example 6 had an average peeling rate of the upper and lower surfaces of 47.5%, which was improved as compared with each of Comparative Examples 1 to 4. The rate average became 40% or more. Therefore, by controlling the amount of dimer acid added as in Comparative Example 6, the desired peel resistance of the asphalt composition cannot be obtained.
 比較例7は、剥離防止剤としてシラン含有カップリング剤Dを0.5重量%添加して剥離抵抗性を判断した。その結果、比較例7の供試体は、上下面の剥離率平均が40%と、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例7のように、シラン含有カップリング剤Dを添加した場合であっても、その添加量が少量の場合には、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 7, peel resistance was determined by adding 0.5% by weight of a silane-containing coupling agent D as a peel preventing agent. As a result, the specimen of Comparative Example 7 had an average peeling rate of the upper and lower surfaces of 40%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, even when the silane-containing coupling agent D is added as in Comparative Example 7, if the amount is small, the desired peel resistance of the asphalt composition cannot be obtained.
 比較例8は、剥離防止剤としてシラン含有カップリング剤Eを0.5重量%添加して剥離抵抗性を判断した。その結果、比較例8の供試体は、上下面の剥離率平均が50%と、良否評価基準である上下面の剥離率平均40%以上となった。このため、比較例8のように、シラン含有カップリング剤Eを添加した場合であっても、その添加量が少量の場合には、アスファルト組成物における所望の剥離抵抗性を得ることができない。 In Comparative Example 8, peel resistance was determined by adding 0.5% by weight of a silane-containing coupling agent E as a peel preventing agent. As a result, the test piece of Comparative Example 8 had an average peeling rate of the upper and lower surfaces of 50%, and an average peeling rate of the upper and lower surfaces of 40% or more, which is a quality evaluation standard. For this reason, even when the silane-containing coupling agent E is added as in Comparative Example 8, if the amount is small, the desired peel resistance of the asphalt composition cannot be obtained.
 比較例9は、剥離防止剤としてシラン含有カップリング剤Dを4.0重量%添加して剥離抵抗性を判断した。その結果、比較例9の供試体は、アスファルト基油や芳香族系重質鉱油、並びにSBSとシラン含有カップリング剤との混合がされず、アスファルト組成物を生成することができなかった。このため、比較例9のように、シラン含有カップリング剤Dを添加した場合であっても、その添加量が多量の場合には、アスファルト組成物そのものを生成することができないため、本開示の目的を達成することができない。 In Comparative Example 9, the peel resistance was determined by adding 4.0% by weight of a silane-containing coupling agent D as a peel preventing agent. As a result, the test specimen of Comparative Example 9 did not mix the asphalt base oil, the aromatic heavy mineral oil, and the SBS with the silane-containing coupling agent, and could not produce an asphalt composition. For this reason, even when the silane-containing coupling agent D is added as in Comparative Example 9, if the amount of addition is large, the asphalt composition itself cannot be generated. You cannot achieve your goals.
 比較例10は、剥離防止剤としてシラン含有カップリング剤Eを4.0重量%添加して剥離抵抗性を判断した。その結果、比較例10の供試体は、アスファルト基油や芳香族系重質鉱油、並びにSBSとシラン含有カップリング剤との混合がされず、アスファルト組成物を生成することができなかった。このため、比較例10のように、シラン含有カップリング剤Eを添加した場合であっても、その添加量が多量の場合には、アスファルト組成物そのものを生成することができないため、本開示の目的を達成することができない。 In Comparative Example 10, 4.0% by weight of a silane-containing coupling agent E was added as a peeling inhibitor, and peeling resistance was determined. As a result, the test specimen of Comparative Example 10 did not mix the asphalt base oil, the aromatic heavy mineral oil, and the SBS with the silane-containing coupling agent, and could not produce an asphalt composition. Therefore, as in Comparative Example 10, even when the silane-containing coupling agent E is added, if the amount of the silane-containing coupling agent E is large, the asphalt composition itself cannot be generated. You cannot achieve your goals.
 これに対して、実施例1~6は、何れもアスファルト基油、SBS、シラン含有カップリング剤の配合が、上述した本実施形態において規定した成分組成の範囲内にある。このため、実施例1~6は、上下面の剥離率平均が40%未満となり、所望の剥離抵抗性を得ることが可能であることが確認できた。また、実施例1~6は、180℃における粘度が216mPa・秒以上、284mPa・秒以下である。このため、製造時や貯蔵時等の加熱時における安全性を確保することが可能となる。 On the other hand, in Examples 1 to 6, the blending of the asphalt base oil, SBS, and the silane-containing coupling agent is within the range of the component composition specified in the above-described embodiment. Therefore, in Examples 1 to 6, the average peeling rate of the upper and lower surfaces was less than 40%, and it was confirmed that desired peeling resistance could be obtained. In Examples 1 to 6, the viscosity at 180 ° C. is 216 mPa · sec or more and 284 mPa · sec or less. For this reason, it is possible to ensure safety at the time of heating during manufacturing, storage, and the like.
 具体的には、実施例1は、剥離防止剤としてシラン含有カップリング剤Dを1.5重量%添加して、剥離抵抗性を判断した。その結果、実施例1の供試体は、上下面の剥離率平均が17.5%と、比較例1~10と比して剥離抵抗性が向上していることが確認できる。 Specifically, in Example 1, 1.5% by weight of a silane-containing coupling agent D was added as a peeling inhibitor, and peeling resistance was determined. As a result, the specimen of Example 1 has an average peeling rate of 17.5% on the upper and lower surfaces, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10.
 特に、実施例2は、シラン含有カップリング剤Dの添加量を3.0重量%と実施例1におけるシラン含有カップリング剤Dの添加量よりも増加させている。これにより、実施例2は、上下面の剥離率平均が5%と、比較例1~10と比して剥離抵抗性を著しく向上させることが可能であることが確認できた。 Particularly, in Example 2, the addition amount of the silane-containing coupling agent D was 3.0% by weight, which was larger than the addition amount of the silane-containing coupling agent D in Example 1. As a result, it was confirmed that in Example 2, the average peeling rate of the upper and lower surfaces was 5%, and the peeling resistance was significantly improved as compared with Comparative Examples 1 to 10.
 また、実施例3は、剥離防止剤としてシラン含有カップリング剤Eを1.5重量%添加して、剥離抵抗性を判断した。その結果、実施例3の供試体は、上下面の剥離率平均が25%と、比較例1~10と比して剥離抵抗性が向上していることが確認できる。 3 In Example 3, 1.5% by weight of a silane-containing coupling agent E was added as an anti-peeling agent, and the peeling resistance was determined. As a result, the specimen of Example 3 has an average peeling rate of 25% on the upper and lower surfaces, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10.
 特に、実施例4は、シラン含有カップリング剤Eの添加量を3.0重量%と実施例3におけるシラン含有カップリング剤Eの添加量よりも増加させている。これにより、実施例5は、上下面の剥離率平均が2.5%と、比較例1~10と比して剥離抵抗性を著しく向上させることが可能であることが確認できた。 Particularly, in Example 4, the addition amount of the silane-containing coupling agent E was 3.0% by weight, which was larger than the addition amount of the silane-containing coupling agent E in Example 3. As a result, it was confirmed that in Example 5, the average peeling rate of the upper and lower surfaces was 2.5%, and the peeling resistance could be significantly improved as compared with Comparative Examples 1 to 10.
 実施例5は、SBSを添加せずに、剥離防止剤としてシラン含有カップリング剤Dを2.0重量%添加して、剥離抵抗性を判断した。その結果、実施例5の供試体は、上下面の剥離率平均が7.5%と、比較例1~10と比して剥離抵抗性が向上していることが確認できる。このように、本発明では、SBSが含有されていなくても、比較例1~10と比して剥離抵抗性が向上していることが確認できる。 In Example 5, peel resistance was determined by adding 2.0% by weight of a silane-containing coupling agent D as a peel preventive without adding SBS. As a result, the test piece of Example 5 has an average peel rate of 7.5% on the upper and lower surfaces, which indicates that the peel resistance is improved as compared with Comparative Examples 1 to 10. Thus, in the present invention, even if SBS is not contained, it can be confirmed that the peel resistance is improved as compared with Comparative Examples 1 to 10.
 実施例6は、SBSを添加せずに、剥離防止剤としてシラン含有カップリング剤Eを2.0重量%添加して、剥離抵抗性を判断した。その結果、実施例6の供試体は、上下面の剥離率平均が5%と、比較例1~10と比して剥離抵抗性が向上していることが確認できる。このように、本発明では、SBSが含有されていなくても、比較例1~10と比して剥離抵抗性が向上していることが確認できる。 In Example 6, 2.0% by weight of a silane-containing coupling agent E was added as an anti-peeling agent without adding SBS, and the peeling resistance was determined. As a result, the test piece of Example 6 has an average peeling rate of the upper and lower surfaces of 5%, which indicates that the peeling resistance is improved as compared with Comparative Examples 1 to 10. Thus, in the present invention, even if SBS is not contained, it can be confirmed that the peel resistance is improved as compared with Comparative Examples 1 to 10.

Claims (3)

  1.  アスファルト基油と、
     シラン含有カップリング剤と、を少なくとも含み、
     上記シラン含有カップリング剤は、スチレン-ブタジエン構造を有し、
     上記シラン含有カップリング剤の含有量は、1.5重量%以上、3.0重量%以下であること、
     を特徴とするアスファルト組成物。
    Asphalt base oil,
    And at least a silane-containing coupling agent,
    The silane-containing coupling agent has a styrene-butadiene structure,
    The content of the silane-containing coupling agent is not less than 1.5% by weight and not more than 3.0% by weight;
    An asphalt composition characterized by the following.
  2.  上記アスファルト組成物は、蒸発質量変化率が1%以下である請求項1に記載のアスファルト組成物。 The asphalt composition according to claim 1, wherein the asphalt composition has an evaporation mass change rate of 1% or less.
  3.  請求項1または請求項2に記載のアスファルト組成物に少なくとも骨材を混合したこと、
     を特徴とするアスファルト合材。
    A mixture of at least an aggregate with the asphalt composition according to claim 1 or 2,
    Asphalt mixture characterized by the following.
PCT/JP2019/024285 2018-09-10 2019-06-19 Asphalt composition and asphalt mixture WO2020054168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546704A JPWO2020054168A1 (en) 2018-09-10 2019-06-19 Asphalt composition and asphalt mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018169043 2018-09-10
JP2018-169043 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054168A1 true WO2020054168A1 (en) 2020-03-19

Family

ID=69777097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024285 WO2020054168A1 (en) 2018-09-10 2019-06-19 Asphalt composition and asphalt mixture

Country Status (2)

Country Link
JP (1) JPWO2020054168A1 (en)
WO (1) WO2020054168A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123834A1 (en) * 2004-06-18 2005-12-29 Kraton Jsr Elastomers K.K. Block copolymer composition for asphalt modification, process for producing the same, and asphalt composition
WO2006046472A1 (en) * 2004-10-25 2006-05-04 Kaneka Corporation Curable composition
JP2011518244A (en) * 2008-04-17 2011-06-23 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Block copolymer and polymer modified bitumen binder composition for use in roadbed asphalt paving applications
WO2015182649A1 (en) * 2014-05-29 2015-12-03 旭化成ケミカルズ株式会社 Asphalt composition
JP2016121320A (en) * 2014-12-25 2016-07-07 昭和シェル石油株式会社 Asphalt composition
JP2016135847A (en) * 2014-12-19 2016-07-28 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニーThe Goodyear Tire & Rubber Company Functionalized elastomer
CN106673533A (en) * 2017-02-22 2017-05-17 北京城建九混凝土有限公司 Concrete and preparation method thereof
CN106830802A (en) * 2017-02-22 2017-06-13 北京城建九混凝土有限公司 Concrete and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123834A1 (en) * 2004-06-18 2005-12-29 Kraton Jsr Elastomers K.K. Block copolymer composition for asphalt modification, process for producing the same, and asphalt composition
WO2006046472A1 (en) * 2004-10-25 2006-05-04 Kaneka Corporation Curable composition
JP2011518244A (en) * 2008-04-17 2011-06-23 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Block copolymer and polymer modified bitumen binder composition for use in roadbed asphalt paving applications
WO2015182649A1 (en) * 2014-05-29 2015-12-03 旭化成ケミカルズ株式会社 Asphalt composition
JP2016135847A (en) * 2014-12-19 2016-07-28 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニーThe Goodyear Tire & Rubber Company Functionalized elastomer
JP2016121320A (en) * 2014-12-25 2016-07-07 昭和シェル石油株式会社 Asphalt composition
CN106673533A (en) * 2017-02-22 2017-05-17 北京城建九混凝土有限公司 Concrete and preparation method thereof
CN106830802A (en) * 2017-02-22 2017-06-13 北京城建九混凝土有限公司 Concrete and preparation method thereof

Also Published As

Publication number Publication date
JPWO2020054168A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
CA2327872C (en) Asphalt compositions and method of preparation
JP6236014B2 (en) Recovery of recovered asphalt
JP6228593B2 (en) Recovery of recovered asphalt
JP6613247B2 (en) Asphalt binder composition and method for making and using it
MX2012009341A (en) Polymer-modified asphalt with a crosslinking agent and methods of preparing.
WO2009071653A1 (en) Binder composition and asphalt mixture
JP6683855B2 (en) Asphalt composition
RU2743756C1 (en) Stable bituminous emulsions, methods of their formation and composite structures formed from these emulsions
WO2008063931A2 (en) Bituminous emulsions
JP6918772B2 (en) Epoxy functionalized ethylene copolymer asphalt reaction product
JP2018021185A (en) Rejuvenation of reclaimed asphalt
JP6823046B2 (en) Modified asphalt using phosphorous acid
CN111479891A (en) Asphalt composition and method of use
WO2020054166A1 (en) Asphalt composition and asphalt mixture
JP4051098B2 (en) Paving binder composition
JP2019137718A (en) Modified asphalt composition, modified asphalt mixture and production methods thereof
WO2020054168A1 (en) Asphalt composition and asphalt mixture
WO2020054167A1 (en) Asphalt composition and asphalt mixture
JP6545059B2 (en) Polymer modified asphalt composition
WO2016102314A1 (en) Oligoterpenes as rejuvenating agent in asphalt
JP2021183691A (en) Block copolymers and polymer modified bitumen therefrom
JP4183306B2 (en) Colored pavement binder composition
CN114929769A (en) Bituminous composition comprising a thermosetting reactive compound
JP5424704B2 (en) Styrene-butadiene composition
JP2001172469A (en) Colorable binder composition and colorable binder composition for pavement comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859069

Country of ref document: EP

Kind code of ref document: A1