WO2020054068A1 - Method for operating liquefied natural gas receiving equipment - Google Patents

Method for operating liquefied natural gas receiving equipment Download PDF

Info

Publication number
WO2020054068A1
WO2020054068A1 PCT/JP2018/034255 JP2018034255W WO2020054068A1 WO 2020054068 A1 WO2020054068 A1 WO 2020054068A1 JP 2018034255 W JP2018034255 W JP 2018034255W WO 2020054068 A1 WO2020054068 A1 WO 2020054068A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
liquefied natural
gas
storage tank
period
Prior art date
Application number
PCT/JP2018/034255
Other languages
French (fr)
Japanese (ja)
Inventor
浩二郎 倉田
高橋 真二
篤志 神谷
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to PCT/JP2018/034255 priority Critical patent/WO2020054068A1/en
Priority to JP2018560924A priority patent/JP6503521B1/en
Priority to EP18933604.3A priority patent/EP3851730A4/en
Priority to KR1020217005583A priority patent/KR20210058819A/en
Publication of WO2020054068A1 publication Critical patent/WO2020054068A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/068Distribution pipeline networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground

Definitions

  • the present invention relates to a method of operating a liquefied natural gas receiving facility for receiving liquefied natural gas (Liquefied: LNG), storing it in a storage tank, vaporizing the LNG and shipping the product gas.
  • liquefied natural gas Liquefied: LNG
  • DR Demand Response
  • DR for reducing power demand
  • a customer who does not have a private power generation facility or a storage battery or has insufficient capacity has to reduce power demand.
  • a factory may need to perform production adjustment, and it is difficult to participate in the DR mechanism unless it is certain that the merits of performing DR will exceed the disadvantages caused by production adjustment.
  • Patent Literature 1 discloses a demand response system that outputs a power supply and demand adjustment command signal directly from a power company side to an electric device control device that controls the operation of electric devices on the consumer side and performs DR. Is described. However, it is difficult for an external power company to directly participate in a demand response system that directly controls the operation of an electric device for a customer who needs to perform operations such as ensuring safety when operating the electric device.
  • Patent Document 2 also discloses that BOG (Boil Off Gas: LNG) mixed with liquefied natural gas vaporized by a vaporizer by controlling the load of a BOG compressor in accordance with the required heat quantity of a gas consuming destination. A technique for adjusting the amount of LNG vaporized in the tank is described. On the other hand, Patent Document 2 does not describe a technique related to DR.
  • BOG Bit Off Gas: LNG
  • the present invention has been made under such a background, and provides a technology corresponding to demand response (DR) while maintaining stable operation of a liquefied natural gas receiving facility.
  • DR demand response
  • the method for operating the liquefied natural gas receiving facility of the present invention is a method for operating the liquefied natural gas receiving facility
  • the liquefied natural gas receiving facility is a storage tank for storing liquefied natural gas received from outside, a liquefied natural gas discharged from the storage tank is vaporized, and a vaporizer for shipping in a gas state
  • An electric motor-driven gas compressor for boosting the boil-off gas generated in the storage tank and mixing it with the natural gas vaporized by the vaporizer, Receiving a request for power consumption reduction including information related to the reduction period, or assuming that it is received, a study start step to start studying power consumption reduction, and the internal pressure of the storage tank when the gas compression unit is stopped
  • the change of the gas compression unit is predicted based on a comparison result between the reduction period and the stoppage period of the gas compression unit. And determining whether or not to stop the vehicle.
  • the method of operating the liquefied natural gas receiving facility may have the following features.
  • the vaporizer is a normal operation vaporizer for vaporizing liquefied natural gas using seawater supplied from a seawater pump driven by an electric motor, and a liquefied natural gas using the heat of combustion of the natural gas as a heat source.
  • the change in the internal pressure is determined based on a change in the gas phase volume caused by the discharge of the liquefied natural gas from the storage tank and a boil-off gas amount generated in the storage tank. To predict. The amount of boil-off gas generated in the storage tank is determined based on the amount of heat input to the storage tank.
  • a period during which the predicted value of the change in the internal pressure of the storage tank is less than the upper limit of the operating pressure provided in the storage tank is defined as the stoppable period.
  • a continuation determination step of making a determination that gives priority to continuing operation of the gas compression unit is included.
  • the method includes a pressure setting step and a pressure lowering step of reducing the internal pressure of the storage tank to the target pressure. After the pressure lowering step, the stop possibility determination step is performed again.
  • the present invention calculates a stoppable period of the gas compression unit for extracting boil-off gas from the liquefied natural gas storage tank, and determines whether to stop the gas compression unit based on the calculated result.
  • Demand response can be performed without hindering the response.
  • Fig. 1 shows an example of the relationship between participants in a DR transaction.
  • the power transmission and distribution companies 11 and the like include general power transmission and distribution companies such as regional power companies. If a DR contract is made to the power transmission and distribution company 11, a reward may be obtained, but if a request for DR from the power transmission and distribution company 11 cannot be met, a penalty may need to be paid.
  • the resource aggregator 12 adjusts the demand and supply of the DR collectively for the plurality of consumers 13 to distribute rewards and reduce the risk of penalty payment. Examples of the contents of the supply and demand adjustment include selection of a customer 13 that can respond to a DR request from the power transmission and distribution company 11 and assignment of a response period.
  • DR includes “up DR” for increasing power demand and “down DR” for reducing power demand.
  • up DR When the amount of power generated from renewable energy is large and the power demand needs to be increased, a request for an “up DR” is issued.
  • the power demand in the jurisdiction of the power transmission and distribution company 11 is tight, a request for “down DR” is issued.
  • the company of the LNG receiving facility 2 of this example constitutes one of the customers 13 among the participants of the above-mentioned DR transaction.
  • the power transmission and distribution company 11 requests the resource aggregator 12 for a “down DR” including information on the reduction amount and the reduction period (reduction request).
  • the resource aggregator 12 adjusts the supply and demand of the plurality of customers 13 (customers A, B, and LNG receiving facilities 2) in accordance with each reducible amount in order to reduce power consumption corresponding to the reduction request. .
  • the power transmission and distribution company 11 can obtain the effect of reducing the power load in response to the reduction request.
  • the LNG receiving facility 2 shown in FIG. 1 has a function of receiving and storing LNG from the outside, vaporizing the stored LNG, and shipping it to the demand destination 3.
  • This LNG receiving facility 2 has a facility configuration that can be applied to DR in comparison with a customer 13 such as a factory or the like that requires production adjustment when performing “down DR” (hereinafter referred to as “DR”).
  • DR down DR
  • the LNG receiving facility 2 includes an LNG tank 21 for storing LNG, LNG pumps 211 and 22 for delivering LNG from the LNG tank 21 to discharge gas to the demand destination 3, and an LNG vaporizing gas for vaporizing LNG. It is provided with a vaporizer (ORV 231 and SMV 232 to be described later) to be brought into a state, and a calorie adjusting unit 26 for adding a liquefied petroleum gas (LPG: Liquefied Petroleum Gas) to the vaporized gas to obtain a product gas.
  • LPG Liquefied Petroleum Gas
  • the LNG tank 21 is a storage tank that stores, for example, LNG received from the LNG tanker 4 in a liquid state cooled to about ⁇ 162 ° C., and its type (above-ground tank, underground tank, underground tank, etc.) and There is no particular limitation on the capacity.
  • FIG. 2 shows an example of a ground-type tank in which the upper surface of a cylindrical side wall is covered with a dome-shaped roof.
  • the LNG stored in the LNG tank 21 is sent to the vaporizers 231 and 232 via the LNG pump 211 provided in the LNG tank 21 and the delivery pump 22 for increasing pressure.
  • the LNG receiving facility 2 of this example includes an ORV (Open Rack Vaporizer) 231 that is a vaporizer that vaporizes LNG by using seawater (SW) supplied from a seawater pump (not shown) driven by an electric motor as a heat source.
  • An SMV (Submerged-combustion @ Vaporizer) 232 which is a vaporizer for vaporizing LNG using the heat of combustion of natural gas as a heat source, can be used by switching.
  • LNG is vaporized using the ORV 231 during normal operation, and the SMV 232 is in a standby state for emergency operation such as when a power failure occurs.
  • a plurality of ORVs 231 and SMVs 232 are provided.
  • an intermediate fluid such as propane or the like, which is heated using seawater, and an intermediate fluid such as IFV (Intermediate Fluid Vaporizer) that vaporizes LNG may be used as a vaporizer for normal operation.
  • Seawater is also supplied to the IFV using a seawater pump driven by an electric motor.
  • the calorie adjusting unit 26 mixes LPG for calorific value adjustment with the vaporized gas, and ships a product gas having a calorific value required by the customer 3.
  • LPG butane or propane
  • LPG tank 25 is sent to the calorie adjusting unit 26 in a liquid state via the LPG pump 251.
  • This LPG is vaporized by the heat adjusting unit 26 using a heat medium, and is mixed with the vaporized gas sent from the ORV 231 side to become a product gas.
  • the product gas whose heat amount has been adjusted by the heat amount adjusting unit 26 is delivered to the demand destination 3.
  • the LNG tank 21 for storing LNG, part of the LNG is vaporized due to heat input from the outside or the like, and BOG is generated.
  • the LNG tank 21 is connected to a BOG compressor 24 which is a gas compression unit for extracting BOG.
  • the BOG compressor 24 of this example is driven by an electric motor (not shown).
  • the BOG compressor 24 is, for example, a multi-stage BOG compressor having three compression stages as shown in FIG. 2, and is configured to reduce the BOG of about 12 to 22 kPaG (the suction side pressure of the first compression stage) to 2 to 22 kPaG. The pressure is increased to about 7.5 MPaG (pressure on the discharge side of the final compression stage).
  • the boosted BOG merges with the LNG vaporized by the vaporizer (ORV231 or SMV232), and is calorie-adjusted, and then delivered to the demand destination 3 as a product gas.
  • the power consumption of about several megawatts can be reduced by stopping the BOG compressor 24. Even if the BOG compressor 24 is stopped, the LNG pumps 211 and 22 are not affected, and the LNG supply can be continued. Further, by stopping the ORV 231, power consumption of about several hundred kilowatts can be reduced.
  • the ORV 231 is stopped, if the SMV 232 is operated, the LNG can be continuously vaporized. From these viewpoints, it can be said that the LNG receiving facility 2 is a customer 13 having an applicable facility configuration when participating in the DR transaction.
  • the LNG receiving facility 2 LNG is received from the LNG tanker 4 once to several times a month.
  • the amount of BOG generated in the LNG tank 21 increases to several times the normal time, for example, to about four times. It may be difficult to stop the BOG compressor 24 during a period in which a large amount of BOG occurs. Therefore, by predicting a change in the internal pressure of the LNG tank 21 when the BOG compressor 24 is stopped and specifying the period during which the BOG compressor 24 can be stopped, the DR operation can be performed without hindering the stable operation of the LNG receiving facility 2. It can be determined whether or not the operation can be performed.
  • the heat input to the LNG tank 21 from the outside is Qtank [J / h]
  • the heat input from the LNG pump 211 is Qpump [ J / h] and the amount of heat input from other equipment as Qetc [J / h]
  • the amount of BOG generated per unit time in the LNG tank 21 Wbog [kg / h] is expressed by the following equation (Equation 3). (Where ⁇ is the latent heat of vaporization of LNG [J / kg]).
  • the pressure in the LNG tank 21 at time t1 is p1 [kPaG]
  • the pressure at time t2 is p2 [kPaG]
  • the BOG densities at each pressure are ⁇ 1 and ⁇ 2 [kg / m 3 ], respectively.
  • the LNG tank 21 in the LNG tank 21 during the period is determined based on only the change in the liquid level of the LNG in the LNG tank 21 at each time of the liquid level t1 and t2. You can know the pressure change.
  • the calculation of the stop period using (Equation 5) is based on the pressure change in the LNG tank 21. It is done based on.
  • the LNG tank 24 is operated under the condition that the BOG compressor 24 is stopped. It is possible to specify a possible stop period (t2 ⁇ t1) for maintaining the pressure in the pressure 21 below the upper limit of the operating pressure. As described above, the change (L2-L1) in the liquid level of LNG during the stoppable period can be predicted from (Equation 1). In the LNG receiving facility 2 of the present example, it is possible to determine whether to perform the DR based on the calculation result of the stoppable period of the BOG compressor 24 described above.
  • the LNG receiving facility 2 operates the LNG pumps 211 and 22, the ORV 231, the BOG compressor 24, and the like during normal operation, and ships the product gas at the required heat quantity and flow rate to the demand destination 3 ( P11).
  • the operation data I12: the discharge flow rate F, the liquid level L1 of the LNG in the LNG tank 21, and the heat input Qtank
  • the external temperature and the amount of heat supplied from a heater are continuously obtained.
  • the LNG receiving facility 2 expects to receive a DR execution (reduction in power consumption) request based on a change in outside temperature, a power supply / demand forecast announced by the power transmission and distribution company 11, and the like. Examination of reduction can be started (examination start step). In this case, based on the acquired operation data and the prediction of the temperature change (prediction of Qtank), the equations (3, 5) are calculated and the pressure in the LNG tank 21 from the time when the DR is predicted to be performed is calculated. A change is predicted (P13). Then, the possible stop time of the BOG compressor 24 is calculated based on the pressure change (P14).
  • the above calculation may be performed offline by an operator using a computer, or may be automatically calculated using an operation management system of the LNG receiving facility 2 such as a DCS (Distributed Control System).
  • the prediction of the pressure change in the LNG tank 21 and the calculation of the stoppable time of the BOG compressor 24 correspond to the stoppable period calculation step of this example.
  • the number of currently operating ORVs 231 and SMV 232 and the power consumption of the seawater pump are calculated (P21).
  • the resource aggregator 12 When the transmission and distribution company 11 determines that the DR is required, the resource aggregator 12 notifies the resource aggregator 12 in advance of the reduction in power consumption (I01). In FIG. 3, the description of the resource aggregator 12 is omitted. This notification includes, for example, information on the DR implementation period (reduction period) and the requested power reduction.
  • the DR execution period is compared with the previously calculated stoppage period to determine whether the BOG compressor 24 can be stopped (P15: stoppage determination step). For example, when the period during which the BOG compressor 24 can be stopped is longer than the period during which DR is performed, it can be determined that the DR can be performed. Then, upon receiving a power consumption reduction request (I02) from the resource aggregator 12 after the advance notification, it is determined that the BOG compressor 24 is actually stopped (P16), and an operation stop operation is performed (P17: gas compression). Department stop process).
  • I02 power consumption reduction request
  • the power that can be further reduced is grasped (P22). Then, for example, after adjusting with the resource aggregator 12 to the effect that power consumption can be further reduced, when the power consumption reduction request (I02) is received, the vaporizer is switched from the ORV 231 to the SMV 232 (P23: vaporizer). Switching step).
  • an operation adjustment for reducing the pressure in the LNG tank 21 may be performed.
  • the contents of the operation adjustment include increasing the mixing ratio of BOG to the product gas to increase the amount of BOG extracted from the LNG tank 21 or requesting the demand destination 3 to increase the amount of the product gas received.
  • the LNG liquid level is decreased by increasing the LNG supply amount, and the like.
  • the operation is performed such that the target pressure becomes lower than the pressure of the LNG tank 21 at the time of making the determination.
  • the target pressure at the time of performing the adjustment is calculated (P31: target pressure setting step).
  • the target pressure is set to a target pressure at which the stoppage time of the BOG compressor 24 calculated by the above-described method is longer than the DR execution period.
  • the operation adjustment is performed (P33: pressure reduction step). Then, the internal pressure change of the LNG tank 21 is predicted (P13), the stoppage possible period of the BOG compressor 24 is calculated (P14), and the stoppage determination is performed again (P15). If the internal pressure of the LNG tank 21 has reached the target pressure due to the operation adjustment, it is possible to determine that the BOG compressor 24 can be stopped. Therefore, the resource aggregator 12 requests a reduction in power consumption (I02). In response to this, it is determined that the BOG compressor 24 should be stopped (P16), and an operation stop operation is executed (P17).
  • the operation adjustment described above may be performed.
  • the determination of whether or not the BOG compressor 24 can be stopped may be omitted, and a determination may be made that gives priority to continuing the operation of the BOG compressor 24 (continuation determination step).
  • the LNG tanker 4 is scheduled to receive LNG on Saturdays, Sundays, and public holidays, where it is unlikely that a request for DR will be issued. Overlapping periods may be avoided.
  • the stoppage period of the BOG compressor 24 for extracting BOG from the LNG tank 21 is calculated, and whether or not the BOG compressor 24 can be stopped is determined based on the calculated result. Therefore, the DR can be determined without hindering the stable operation of the LNG receiving facility 2. Can be implemented.
  • the prediction of the change in the internal pressure of the LNG tank 21 (P13) and the calculation of the period during which the BOG compressor 24 can be stopped (P14) are performed in advance.
  • the BOG compressor 24 is considered whether or not to stop in response to prior notification of the DR execution.
  • this study order may be changed as appropriate. For example, if there is a sufficient time from when the power consumption reduction request (I02) is received to when it is executed (the BOG compressor 24 is stopped), the internal pressure change of the LNG tank 21 is performed after the reduction request is received. May be calculated, the stoppage period of the BOG compressor 24 may be calculated (P13, 14: stoppage period calculation step), and the possibility of stoppage may be examined (P15: stoppage determination step).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

[Problem] To provide a technique for handling a demand response while maintaining stable operation of liquefied natural gas receiving equipment. [Solution] This liquefied natural gas receiving equipment 2 is provided with a storage tank 21 for storing liquefied natural gas, a vaporizer 231 for vaporizing liquefied natural gas that has been fed out from the storage tank and shipping same in a gaseous state, and an electric motor-driven gas compression unit 24 for pressurizing boil-off gas that has generated in the storage tank 2 and mixing same into the vaporized natural gas. In an examination start step, examination of consumed power reduction is started. In a potential stop period calculation step, a change in internal pressure of the storage tank 21 is predicted for a case where the gas compression unit 24 is stopped, and a potential stop period for the gas compression unit 24 is calculated. Thereafter, in a stop feasibility determination step, the feasibility of stopping the gas compression unit 24 is determined on the basis of a comparison result of a reduction period and the potential stop period.

Description

液化天然ガス受入設備の運転方法Operation of liquefied natural gas receiving equipment
 本発明は、液化天然ガス(Liquefied :LNG)を受け入れて貯蔵タンクに貯蔵し、当該LNGを気化させて製品ガスの出荷を行う液化天然ガス受入設備の運転方法に関する。 << The present invention relates to a method of operating a liquefied natural gas receiving facility for receiving liquefied natural gas (Liquefied: LNG), storing it in a storage tank, vaporizing the LNG and shipping the product gas.
 再生可能エネルギーの普及に伴い、電力系統の信頼性の低下が懸念されている。その対策として、電気料金価格の設定やインセンティブの支払いにより需要家側が電力の消費パターンを変化させる電力需要の調整手法であるデマンドレスポンス(Demand Response:以降、「DR」とも記す)の導入が検討されている。 With the spread of renewable energy, there is a concern that the reliability of the power system will decrease. As a countermeasure, the introduction of demand response (Demand Response: hereinafter also referred to as “DR”), which is a method of adjusting power demand in which the consumer changes the power consumption pattern by setting electricity price and paying incentives, is being considered. ing.
 例えば工場や大型小売店などの需要家は、電力消費機器の稼働・停止を切り替えたり、保有している自家発電設備の出力を変更したりすることなどにより、電力需要の増減を行う。 
 しかしながら特に電力需要を削減するDR(「下げDR」)の実施において、自家発電設備や蓄電池などを備えない、またはその能力が十分でない需要家は、電力需要の削減を行わざるを得ない。この結果、例えば工場では生産調整を実施する必要が生じる場合もあり、DRを実施するメリットが生産調整により生じるデメリットを上回ることが確実でない限り、DRの仕組みに参加することが困難となる。
For example, consumers, such as factories and large retail stores, increase or decrease power demand by switching between operating and stopping power consuming devices and changing the output of owned power generation equipment.
However, in particular, in the implementation of DR for reducing power demand (“down DR”), a customer who does not have a private power generation facility or a storage battery or has insufficient capacity has to reduce power demand. As a result, for example, a factory may need to perform production adjustment, and it is difficult to participate in the DR mechanism unless it is certain that the merits of performing DR will exceed the disadvantages caused by production adjustment.
 ここで特許文献1には、需要家側の電気機器の動作を制御する電気機器制御装置に対して、電力会社側から直接、電力需給調整指令信号を出力して、DRを実施するデマンドレスポンスシステムが記載されている。しかしながら、電気機器を動作させるにあたり、例えば安全確保などの作業が必要な需要家においては、外部の電力会社が直接、電気機器の動作制御を行うデマンドレスポンスシステムに参加することは難しい。 Here, Patent Literature 1 discloses a demand response system that outputs a power supply and demand adjustment command signal directly from a power company side to an electric device control device that controls the operation of electric devices on the consumer side and performs DR. Is described. However, it is difficult for an external power company to directly participate in a demand response system that directly controls the operation of an electric device for a customer who needs to perform operations such as ensuring safety when operating the electric device.
 また特許文献2には、ガス消費先の要求熱量に応じ、BOG圧縮機の負荷制御を行うことにより、気化器にて気化させた液化天然ガスに対して混合されるBOG(Boil Off Gas:LNGタンク内で気化したLNG成分)の量を調節する技術が記載されている。一方で、当該特許文献2には、DRに係る技術の記載はない。 Patent Document 2 also discloses that BOG (Boil Off Gas: LNG) mixed with liquefied natural gas vaporized by a vaporizer by controlling the load of a BOG compressor in accordance with the required heat quantity of a gas consuming destination. A technique for adjusting the amount of LNG vaporized in the tank is described. On the other hand, Patent Document 2 does not describe a technique related to DR.
特許第6343372号公報Japanese Patent No. 6343372 特開2018-112218号公報JP 2018-112218 A
 本発明は、このような背景の下になされたものであり、液化天然ガス受入設備の安定運転を維持しつつデマンドレスポンス(DR)に対応する技術を提供する。 The present invention has been made under such a background, and provides a technology corresponding to demand response (DR) while maintaining stable operation of a liquefied natural gas receiving facility.
 本発明の液化天然ガス受入設備の運転方法は、液化天然ガス受入設備の運転方法であって、
 前記液化天然ガス受入設備は、外部から受け入れた液化天然ガスを貯蔵する貯蔵タンクと、前記貯蔵タンクから払い出された液化天然ガスを気化させ、ガスの状態で出荷するための気化器と、前記貯蔵タンク内で発生したボイルオフガスを昇圧し、前記気化器にて気化された天然ガスに混合するための電動モータ駆動のガス圧縮部と、を備えることと、
 削減期間に係る情報を含む消費電力削減の依頼を受け取る、もしくは受け取ることを想定して、消費電力削減の検討を開始する検討開始工程と、前記ガス圧縮部を停止した場合の前記貯蔵タンクの内圧の変化を予測して、当該ガス圧縮部の停止可能期間を算出する停止可能期間算出工程と、前記削減期間と、前記ガス圧縮部の停止可能期間との比較結果に基づき、前記ガス圧縮部の停止可否を判断する停止可否判断工程と、を含むことと、を特徴とする。
The method for operating the liquefied natural gas receiving facility of the present invention is a method for operating the liquefied natural gas receiving facility,
The liquefied natural gas receiving facility is a storage tank for storing liquefied natural gas received from outside, a liquefied natural gas discharged from the storage tank is vaporized, and a vaporizer for shipping in a gas state, An electric motor-driven gas compressor for boosting the boil-off gas generated in the storage tank and mixing it with the natural gas vaporized by the vaporizer,
Receiving a request for power consumption reduction including information related to the reduction period, or assuming that it is received, a study start step to start studying power consumption reduction, and the internal pressure of the storage tank when the gas compression unit is stopped The change of the gas compression unit is predicted based on a comparison result between the reduction period and the stoppage period of the gas compression unit. And determining whether or not to stop the vehicle.
 前記液化天然ガス受入設備の運転方法は以下の特徴を備えてもよい。 
(a)前記停止可否判断工程にて、前記削減期間中にガス圧縮部を停止することが可能と判断された場合に、当該ガス圧縮部を停止するガス圧縮部停止工程を含むこと。 
(b)前記気化器は、電動モータ駆動の海水ポンプから供給された海水を熱源として液化天然ガスを気化させる通常稼働用の気化器と、前記天然ガスの燃焼熱を熱源として液化天然ガスを気化させる緊急稼働用の気化器と、を備えることと、前記ガス圧縮部停止工程の実施に加えて、前記通常稼働用の気化器を、緊急稼働用の気化器に切り替えて液化天然ガスを気化させる気化器切替工程を実施すること。 
(c)前記停止可能期間算出工程では、前記貯蔵タンクから液化天然ガスが払い出されることに伴う気相容積の変化と、当該貯蔵タンク内で発生するボイルオフガス量とに基づき、前記内圧の変化を予測すること。前記貯蔵タンク内で発生するボイルオフガス量は、当該貯蔵タンクへの入熱量に基づいて求めること。 
(d)前記停止可能期間算出工程では、前記貯蔵タンクの内圧の変化の予測値が、当該貯蔵タンクに設けられた運転圧力の上限値未満である期間を、前記停止可能期間とすること。 
(e)前記削減期間が、前記貯蔵タンクに対して外部から液化天然ガスを受け入れる期間と重なる場合には、前記ガス圧縮部の稼働を継続することを優先する判断を行う継続判断工程を含むこと。
(f)前記停止可否判断工程において判断結果が否であった場合に、消費電力削減のために、前記停止可否判断工程を実施した際の前記貯蔵タンクの圧力よりも低い目標圧力を設定する目標圧力設定工程と、前記貯蔵タンクの内圧を当該目標圧力まで低下させる圧力低下工程とを含み、前記圧力低下工程の後、前記停止可否判断工程を再実施すること。
The method of operating the liquefied natural gas receiving facility may have the following features.
(A) A gas compression unit stopping step of stopping the gas compression unit when it is determined in the stoppage determination step that the gas compression unit can be stopped during the reduction period.
(B) the vaporizer is a normal operation vaporizer for vaporizing liquefied natural gas using seawater supplied from a seawater pump driven by an electric motor, and a liquefied natural gas using the heat of combustion of the natural gas as a heat source. And a vaporizer for emergency operation to be performed, and in addition to performing the gas compression unit stopping step, switch the vaporizer for normal operation to the vaporizer for emergency operation to vaporize liquefied natural gas. Carry out a vaporizer switching process.
(C) In the stoppable period calculating step, the change in the internal pressure is determined based on a change in the gas phase volume caused by the discharge of the liquefied natural gas from the storage tank and a boil-off gas amount generated in the storage tank. To predict. The amount of boil-off gas generated in the storage tank is determined based on the amount of heat input to the storage tank.
(D) In the stoppable period calculating step, a period during which the predicted value of the change in the internal pressure of the storage tank is less than the upper limit of the operating pressure provided in the storage tank is defined as the stoppable period.
(E) In a case where the reduction period overlaps with a period for receiving liquefied natural gas from the outside with respect to the storage tank, a continuation determination step of making a determination that gives priority to continuing operation of the gas compression unit is included. .
(F) a target for setting a target pressure lower than the pressure of the storage tank at the time of performing the stoppage determination step in order to reduce power consumption when the determination result is negative in the stoppage determination step. The method includes a pressure setting step and a pressure lowering step of reducing the internal pressure of the storage tank to the target pressure. After the pressure lowering step, the stop possibility determination step is performed again.
 本発明は、液化天然ガスの貯蔵タンクからボイルオフガスを抜き出すガス圧縮部の停止可能期間を算出し、その結果に基づいてガス圧縮部の停止可否を判断するので、液化天然ガス受入設備の安定稼働を妨げることなく、デマンドレスポンスを実施することができる。 The present invention calculates a stoppable period of the gas compression unit for extracting boil-off gas from the liquefied natural gas storage tank, and determines whether to stop the gas compression unit based on the calculated result. Demand response can be performed without hindering the response.
DR取引の参加者の関係を示す説明図である。It is explanatory drawing which shows the relationship of the participant of DR transaction. 実施の形態に係るLNG受入設備の構成図である。It is a lineblock diagram of an LNG receiving facility concerning an embodiment. DRに関連してLNG受入設備にて実施される項目のフローチャートである。It is a flowchart of the item implemented in LNG receiving equipment in connection with DR.
 図1は、DR取引における参加者の関係の一例を示している。送配電事業者11等には、地域電力会社などの一般送配電事業者が含まれる。送配電事業者11に対してDRの契約を行うと報酬が得られる一方、送配電事業者11からのDRの要請に応えられないと、ペナルティの支払いが必要となる場合がある。 Fig. 1 shows an example of the relationship between participants in a DR transaction. The power transmission and distribution companies 11 and the like include general power transmission and distribution companies such as regional power companies. If a DR contract is made to the power transmission and distribution company 11, a reward may be obtained, but if a request for DR from the power transmission and distribution company 11 cannot be met, a penalty may need to be paid.
 リソースアグリゲーター12は、複数の需要家13をまとめてDRの需給調整を行い、報酬の分配、ペナルティの支払いリスクの低減を図る。需給調整の内容としては、送配電事業者11からのDRの依頼に対応可能な需要家13の選択や、対応期間の割り当てなどを例示することができる。 (4) The resource aggregator 12 adjusts the demand and supply of the DR collectively for the plurality of consumers 13 to distribute rewards and reduce the risk of penalty payment. Examples of the contents of the supply and demand adjustment include selection of a customer 13 that can respond to a DR request from the power transmission and distribution company 11 and assignment of a response period.
 需要家13は、リソースアグリゲーター12との需給調整を踏まえて、各々、DRを実行する。DRには、電力需要を増加させる「上げDR」と、電力需要を削減する「下げDR」とがある。再生可能エネルギーの発電量が多く、電力需要を増加させる必要がある場合などには、「上げDR」の依頼が出される。一方、送配電事業者11の管轄区域内の電力需要が逼迫している場合などには、「下げDR」の依頼が出される。 
 本例のLNG受入設備2の事業者は、上述のDR取引の参加者のうち、需要家13の1つを構成している。
Each of the customers 13 executes the DR based on the supply and demand adjustment with the resource aggregator 12. DR includes “up DR” for increasing power demand and “down DR” for reducing power demand. When the amount of power generated from renewable energy is large and the power demand needs to be increased, a request for an “up DR” is issued. On the other hand, when the power demand in the jurisdiction of the power transmission and distribution company 11 is tight, a request for “down DR” is issued.
The company of the LNG receiving facility 2 of this example constitutes one of the customers 13 among the participants of the above-mentioned DR transaction.
 図1に示す例において、送配電事業者11がリソースアグリゲーター12に対して削減量や削減期間に係る情報を含む「下げDR」の依頼(削減依頼)をする。リソースアグリゲーター12は当該削減依頼に見合う消費電力の削減を行うため、複数の需要家13(需要家A、B、LNG受入設備2)に対して、各々の削減可能量に合わせて需給調整を行う。図1に示す例では、調整の結果、需要家A及びLNG受入設備2が「下げDR」を実行することが決定されている。そして、これらの需要家A、LNG受入設備2が電力消費量の削減を実行することにより、送配電事業者11は削減依頼に応じて電力負荷を低減の効果を得ることができる。 In the example illustrated in FIG. 1, the power transmission and distribution company 11 requests the resource aggregator 12 for a “down DR” including information on the reduction amount and the reduction period (reduction request). The resource aggregator 12 adjusts the supply and demand of the plurality of customers 13 (customers A, B, and LNG receiving facilities 2) in accordance with each reducible amount in order to reduce power consumption corresponding to the reduction request. . In the example illustrated in FIG. 1, as a result of the adjustment, it is determined that the customer A and the LNG receiving facility 2 perform “down DR”. Then, as the customer A and the LNG receiving facility 2 execute the reduction of the power consumption, the power transmission and distribution company 11 can obtain the effect of reducing the power load in response to the reduction request.
 ここで図1に示すLNG受入設備2は、外部からLNGを受け入れて貯蔵すると共に、貯蔵しているLNGを気化させて需要先3へと出荷する機能を有している。このLNG受入設備2は、「下げDR」(以下、DRと記す)を実施するにあたって生産調整が必要な工場などの需要家13と比較して、DRに適用可能な設備構成を備えているものがある。 
 以下、図2を参照しながら本例のLNG受入設備2の構成例について説明する。
Here, the LNG receiving facility 2 shown in FIG. 1 has a function of receiving and storing LNG from the outside, vaporizing the stored LNG, and shipping it to the demand destination 3. This LNG receiving facility 2 has a facility configuration that can be applied to DR in comparison with a customer 13 such as a factory or the like that requires production adjustment when performing “down DR” (hereinafter referred to as “DR”). There is.
Hereinafter, a configuration example of the LNG receiving facility 2 of the present example will be described with reference to FIG.
 LNG受入設備2は、LNGを貯蔵するLNGタンク21と、需要先3へガスを払い出すためにLNGタンク21からLNGを送出するためのLNGポンプ211、22と、LNGを気化して気化ガスの状態にする気化器(後述するORV231、SMV232)と、気化ガスに熱量調整用の液化石油ガス(LPG:Liquefied Petroleum Gas)を添加して製品ガスを得る熱量調整部26とを備えている。 The LNG receiving facility 2 includes an LNG tank 21 for storing LNG, LNG pumps 211 and 22 for delivering LNG from the LNG tank 21 to discharge gas to the demand destination 3, and an LNG vaporizing gas for vaporizing LNG. It is provided with a vaporizer (ORV 231 and SMV 232 to be described later) to be brought into a state, and a calorie adjusting unit 26 for adding a liquefied petroleum gas (LPG: Liquefied Petroleum Gas) to the vaporized gas to obtain a product gas.
 LNGタンク21は、例えばLNGタンカー4から受け入れたLNGを-162℃程度に冷却された液体の状態で貯蔵する貯蔵タンクであり、その形式(地上式タンク、地下式タンク、地中式タンクなど)や容量に特段の限定はない。図2には、円筒形状の側壁の上面をドーム状の屋根で覆った地上式タンクの例を示してある。 The LNG tank 21 is a storage tank that stores, for example, LNG received from the LNG tanker 4 in a liquid state cooled to about −162 ° C., and its type (above-ground tank, underground tank, underground tank, etc.) and There is no particular limitation on the capacity. FIG. 2 shows an example of a ground-type tank in which the upper surface of a cylindrical side wall is covered with a dome-shaped roof.
 LNGタンク21内に貯蔵されたLNGは、LNGタンク21内に配設されたLNGポンプ211、及び昇圧用の送出ポンプ22を介して気化器231、232に送液される。 L The LNG stored in the LNG tank 21 is sent to the vaporizers 231 and 232 via the LNG pump 211 provided in the LNG tank 21 and the delivery pump 22 for increasing pressure.
 本例のLNG受入設備2は、電動モータ駆動の海水ポンプ(不図示)から供給された海水(S.W.)を熱源としてLNGを気化させる気化器であるORV(Open Rack Vaporizer)231と、天然ガスの燃焼熱を熱源としてLNGを気化させる気化器であるSMV(Submerged-combustion Vaporizer)232とを切り替えて使用することができる。当該LNG受入設備2において、通常稼働時はORV231を用いてLNGの気化が実施され、SMV232は停電発生時などの緊急稼働用として待機状態となっている。例えばLNG受入設備2には、ORV231、SMV232が複数台ずつ設けられている。 The LNG receiving facility 2 of this example includes an ORV (Open Rack Vaporizer) 231 that is a vaporizer that vaporizes LNG by using seawater (SW) supplied from a seawater pump (not shown) driven by an electric motor as a heat source. An SMV (Submerged-combustion @ Vaporizer) 232, which is a vaporizer for vaporizing LNG using the heat of combustion of natural gas as a heat source, can be used by switching. In the LNG receiving facility 2, LNG is vaporized using the ORV 231 during normal operation, and the SMV 232 is in a standby state for emergency operation such as when a power failure occurs. For example, in the LNG receiving facility 2, a plurality of ORVs 231 and SMVs 232 are provided.
 なお、ORV231に替えて、海水を用いてプロパンなどの中間媒体を加熱し、当該中間媒体によりLNGを気化させるIFV(Intermediate Fluid Vaporizer)を通常稼働用の気化器として用いてもよい。IFVにおいても海水の供給は電動モータ駆動の海水ポンプを用いて行われる。 Instead of the ORV 231, an intermediate fluid such as propane or the like, which is heated using seawater, and an intermediate fluid such as IFV (Intermediate Fluid Vaporizer) that vaporizes LNG may be used as a vaporizer for normal operation. Seawater is also supplied to the IFV using a seawater pump driven by an electric motor.
 熱量調整部26は、気化ガスに熱量調整用のLPGを混合し、需要先3にて要求される熱量を有する製品ガスを出荷する。熱量調整部26に対しては、LPGタンク25に貯蔵されているLPG(ブタンやプロパン)が、LPGポンプ251を介して液体の状態で送出される。このLPGが熱量調整部26にて熱媒を利用して気化され、ORV231側から送出された気化ガスと混合されて製品ガスとなる。熱量調整部26で熱量調整された製品ガスは、需要先3に払い出される。 (4) The calorie adjusting unit 26 mixes LPG for calorific value adjustment with the vaporized gas, and ships a product gas having a calorific value required by the customer 3. LPG (butane or propane) stored in the LPG tank 25 is sent to the calorie adjusting unit 26 in a liquid state via the LPG pump 251. This LPG is vaporized by the heat adjusting unit 26 using a heat medium, and is mixed with the vaporized gas sent from the ORV 231 side to become a product gas. The product gas whose heat amount has been adjusted by the heat amount adjusting unit 26 is delivered to the demand destination 3.
 またLNGを貯蔵するLNGタンク21内においては、外部からの入熱などによってLNGの一部が気化し、BOGが発生する。LNGタンク21内の圧力が過大になることを防止するため、LNGタンク21にはBOGを抜き出すためのガス圧縮部であるBOG圧縮機24が接続されている。本例のBOG圧縮機24は不図示の電動モータにより駆動される。 (4) In the LNG tank 21 for storing LNG, part of the LNG is vaporized due to heat input from the outside or the like, and BOG is generated. In order to prevent the pressure in the LNG tank 21 from becoming excessive, the LNG tank 21 is connected to a BOG compressor 24 which is a gas compression unit for extracting BOG. The BOG compressor 24 of this example is driven by an electric motor (not shown).
 BOG圧縮機24は、例えば、図2のように3つの圧縮段を備える複数段式のBOG圧縮機であり、12~22kPaG程度(1段目の圧縮段の吸込側圧力)のBOGを2~7.5MPaG程度(最終圧縮段の吐出側圧力)まで昇圧する。昇圧されたBOGは、気化器(ORV231またはSMV232)にて気化されたLNGと合流し、熱量調整された後、製品ガスとして需要先3へ払い出される。 The BOG compressor 24 is, for example, a multi-stage BOG compressor having three compression stages as shown in FIG. 2, and is configured to reduce the BOG of about 12 to 22 kPaG (the suction side pressure of the first compression stage) to 2 to 22 kPaG. The pressure is increased to about 7.5 MPaG (pressure on the discharge side of the final compression stage). The boosted BOG merges with the LNG vaporized by the vaporizer (ORV231 or SMV232), and is calorie-adjusted, and then delivered to the demand destination 3 as a product gas.
 上述の構成を備えるLNG受入設備2においては、BOG圧縮機24を停止することにより、数メガワット程度の消費電力を削減することができる。BOG圧縮機24を停止しても、LNGポンプ211、22への影響はなく、LNGの送液は継続することができる。また、ORV231を停止することにより、数百キロワット程度の消費電力を削減することができる。ORV231を停止した場合は、SMV232を稼働すれば、LNGの気化を継続して実施することが可能である。 
 これらの観点で、LNG受入設備2はDR取引に参加するにあたって、適用可能な設備構成を備えた需要家13であると言える。
In the LNG receiving facility 2 having the above configuration, the power consumption of about several megawatts can be reduced by stopping the BOG compressor 24. Even if the BOG compressor 24 is stopped, the LNG pumps 211 and 22 are not affected, and the LNG supply can be continued. Further, by stopping the ORV 231, power consumption of about several hundred kilowatts can be reduced. When the ORV 231 is stopped, if the SMV 232 is operated, the LNG can be continuously vaporized.
From these viewpoints, it can be said that the LNG receiving facility 2 is a customer 13 having an applicable facility configuration when participating in the DR transaction.
 一方で、BOG圧縮機24を停止する期間が長時間に亘り、LNGタンク21内の圧力が、運転圧力の上限値を超えると、例えばフレア(不図示)へ向けてBOGが放出され、フレアにてガスが燃焼されるロスが生じる。さらにLNGタンク21内の圧力が上昇する場合には、安全弁(不図示)が作動し、余剰なBOGが大気中へと放散される。 On the other hand, when the BOG compressor 24 is stopped for a long time and the pressure in the LNG tank 21 exceeds the upper limit of the operating pressure, the BOG is released, for example, toward a flare (not shown), and the flare is released. The gas is burned and losses occur. When the pressure in the LNG tank 21 further increases, a safety valve (not shown) is operated, and excess BOG is released into the atmosphere.
 特にLNG受入設備2においては、LNGタンカー4からのLNGの受け入れが、1カ月に1回~数回程度行われる。この際にはLNGタンク21におけるBOGの発生量が通常時の数倍、例えば4倍程度にまで増大する。このように大量のBOGが発生する期間中はBOG圧縮機24を停止することが困難な場合もある。 
 そこで、BOG圧縮機24を停止した場合のLNGタンク21の内圧の変化を予測して、BOG圧縮機24の停止可能期間を特定すれば、LNG受入設備2の安定稼働を妨げることなく、DRの実施可否を判断することができる。
In particular, in the LNG receiving facility 2, LNG is received from the LNG tanker 4 once to several times a month. At this time, the amount of BOG generated in the LNG tank 21 increases to several times the normal time, for example, to about four times. It may be difficult to stop the BOG compressor 24 during a period in which a large amount of BOG occurs.
Therefore, by predicting a change in the internal pressure of the LNG tank 21 when the BOG compressor 24 is stopped and specifying the period during which the BOG compressor 24 can be stopped, the DR operation can be performed without hindering the stable operation of the LNG receiving facility 2. It can be determined whether or not the operation can be performed.
 以下、BOG圧縮機24の停止可能期間の算出法の一例を説明する。
 BOG圧縮機24の停止時刻(BOG圧縮機24内におけるBOGの蓄圧開始時刻)をt1、BOG圧縮機24の再稼働時刻(BOGの蓄圧終了時刻)をt2としたとき、BOG圧縮機24の停止期間は(t2-t1)となる。 
 LNGタンク21からのLNG払い出し流量をF[m/h]、時刻t1におけるLNGタンク21内のLNGの液位をL1[m]としたとき、時刻t2における液位L2[m]は、下記式(数1)で表される(ID[m]はLNGタンク21の内径である)。 
Figure JPOXMLDOC01-appb-M000001
 また、時刻t1におけるLNGタンク21の気相容積をV1[m]としたとき、時刻t2における気相容積V2[m]は下記式(数2)で表される。 
Figure JPOXMLDOC01-appb-M000002
Hereinafter, an example of a method of calculating the stoppable period of the BOG compressor 24 will be described.
Assuming that the stop time of the BOG compressor 24 (start time of accumulating BOG in the BOG compressor 24) is t1, and the restart time of the BOG compressor 24 (end time of accumulating BOG) is t2, the stop of the BOG compressor 24 is stopped. The period is (t2-t1).
Assuming that the discharge flow rate of LNG from the LNG tank 21 is F [m 3 / h] and the liquid level of LNG in the LNG tank 21 at time t1 is L1 [m], the liquid level L2 [m] at time t2 is This is expressed by the following equation (ID [m] is the inner diameter of the LNG tank 21).
Figure JPOXMLDOC01-appb-M000001
Further, assuming that the gas phase volume of the LNG tank 21 at time t1 is V1 [m 3 ], the gas phase volume V2 [m 3 ] at time t2 is represented by the following equation (Equation 2).
Figure JPOXMLDOC01-appb-M000002
 さらに、単位時間基準での、外気や地盤の凍結防止用のヒーター(不図示)など、外部からLNGタンク21への入熱量をQtank[J/h]、LNGポンプ211からの入熱量をQpump[J/h]、その他設備からの入熱量をQetc[J/h]としたとき、LNGタンク21内における単位時間当たりのBOGの発生量Wbog[kg/h]は下記式(数3)で表される(但し、λはLNGの蒸発潜熱[J/kg])。 
Figure JPOXMLDOC01-appb-M000003
Further, the heat input to the LNG tank 21 from the outside, such as a heater (not shown) for preventing freezing of the outside air and the ground, is Qtank [J / h], and the heat input from the LNG pump 211 is Qpump [ J / h] and the amount of heat input from other equipment as Qetc [J / h], the amount of BOG generated per unit time in the LNG tank 21 Wbog [kg / h] is expressed by the following equation (Equation 3). (Where λ is the latent heat of vaporization of LNG [J / kg]).
Figure JPOXMLDOC01-appb-M000003
 さらにまた、時刻t1におけるLNGタンク21内の圧力をp1[kPaG]、時刻t2における圧力をp2[kPaG]とし、各圧力におけるBOGの密度を各々ρ1、ρ2[kg/m]とする。 
 LNGタンク21内の温度が一定であり、且つLNGタンク21からBOGが抜き出されない場合、停止期間(t2-t1)中にLNGタンク21内で発生するBOG量と、LNGタンク21の気相側の容積変化とに基づきマスバランスを取ると、下記式(数4)が得られる。 
Figure JPOXMLDOC01-appb-M000004
 そして、(数1、2)の関係から(数4)よりV1、V2を消去して整理すると、下記式(数5)が得られる。
Figure JPOXMLDOC01-appb-M000005
Furthermore, the pressure in the LNG tank 21 at time t1 is p1 [kPaG], the pressure at time t2 is p2 [kPaG], and the BOG densities at each pressure are ρ1 and ρ2 [kg / m 3 ], respectively.
When the temperature in the LNG tank 21 is constant and BOG is not extracted from the LNG tank 21, the amount of BOG generated in the LNG tank 21 during the stop period (t2-t1) and the gas phase side of the LNG tank 21 The following equation (Equation 4) is obtained by taking a mass balance based on the volume change of
Figure JPOXMLDOC01-appb-M000004
Then, when V1 and V2 are deleted and rearranged from (Equation 4) from the relation of (Equation 1 and 2), the following equation (Equation 5) is obtained.
Figure JPOXMLDOC01-appb-M000005
 LNGタンク21は、液面計を備えているので、液面のt1、t2の各時刻におけるLNGタンク21内のLNGの液面高さの変化のみに基づいて、当該期間におけるLNGタンク21内の圧力変化を知ることができる。既述のようにBOGの密度ρ1、ρ2は、各時刻の圧力p1、p2に応じて一意に決定されるので、(数5)を利用した停止期間の計算は、LNGタンク21内の圧力変化に基づいて行われている。 Since the LNG tank 21 is provided with a liquid level gauge, the LNG tank 21 in the LNG tank 21 during the period is determined based on only the change in the liquid level of the LNG in the LNG tank 21 at each time of the liquid level t1 and t2. You can know the pressure change. As described above, since the BOG densities ρ1 and ρ2 are uniquely determined according to the pressures p1 and p2 at each time, the calculation of the stop period using (Equation 5) is based on the pressure change in the LNG tank 21. It is done based on.
 そこで、時刻t2におけるLNGタンク21の圧力p2(その際のBOGの密度ρ2)として、LNGタンク21の運転圧力の上限値を設定することにより、BOG圧縮機24を停止した条件下で、LNGタンク21内の圧力を運転圧力の上限値未満に維持するための停止可能期間(t2-t1)を特定することができる。なお、既述のように、当該停止可能期間中のLNGの液位の変化(L2-L1)は(数1)より予測できる。 
 本例のLNG受入設備2においては、上述のBOG圧縮機24の停止可能期間の算出結果に基づいて、DRの実施判断を行うことができる。
Therefore, by setting the upper limit value of the operating pressure of the LNG tank 21 as the pressure p2 of the LNG tank 21 at the time t2 (the density ρ2 of the BOG at that time), the LNG tank 24 is operated under the condition that the BOG compressor 24 is stopped. It is possible to specify a possible stop period (t2−t1) for maintaining the pressure in the pressure 21 below the upper limit of the operating pressure. As described above, the change (L2-L1) in the liquid level of LNG during the stoppable period can be predicted from (Equation 1).
In the LNG receiving facility 2 of the present example, it is possible to determine whether to perform the DR based on the calculation result of the stoppable period of the BOG compressor 24 described above.
 以下、図3を参照しながらLNG受入設備2にてDRを実施する際の具体的な内容について説明する。 
 LNG受入設備2は、通常の運転時においてはLNGポンプ211、22、ORV231、BOG圧縮機24などを稼働させて、需要先3に対して要求された熱量及び流量にて製品ガスを出荷する(P11)。このとき、上述の(数1~5)を用いた停止可能期間の計算に必要な運転データ(I12:払い出し流量FやLNGタンク21内のLNGの液位L1、入熱量Qtankを算出するための外気温や不図示のヒーターからの供給熱量など)を継続的に取得する。
Hereinafter, with reference to FIG. 3, specific contents when performing DR in the LNG receiving facility 2 will be described.
The LNG receiving facility 2 operates the LNG pumps 211 and 22, the ORV 231, the BOG compressor 24, and the like during normal operation, and ships the product gas at the required heat quantity and flow rate to the demand destination 3 ( P11). At this time, the operation data (I12: the discharge flow rate F, the liquid level L1 of the LNG in the LNG tank 21, and the heat input Qtank) necessary for calculating the stoppable period using the above (Equations 1 to 5). The external temperature and the amount of heat supplied from a heater (not shown) are continuously obtained.
 さらにLNG受入設備2では、外気温の変化や、送配電事業者11が発表する電力の需給予測などに基づいて、DRの実施(消費電力の削減)依頼を受け取ることを予想して、消費電力削減の検討を開始することができる(検討開始工程)。 
 この場合には、取得した運転データと、気温変化の予測(Qtankの予測)などに基づき、(数3、5)の計算を行いDRの実施が予想される時刻からのLNGタンク21内の圧力変化を予測する(P13)。そして、当該圧力変化に基づき、BOG圧縮機24の停止可能時間を算出しておく(P14)。
Further, the LNG receiving facility 2 expects to receive a DR execution (reduction in power consumption) request based on a change in outside temperature, a power supply / demand forecast announced by the power transmission and distribution company 11, and the like. Examination of reduction can be started (examination start step).
In this case, based on the acquired operation data and the prediction of the temperature change (prediction of Qtank), the equations (3, 5) are calculated and the pressure in the LNG tank 21 from the time when the DR is predicted to be performed is calculated. A change is predicted (P13). Then, the possible stop time of the BOG compressor 24 is calculated based on the pressure change (P14).
 上述の計算は、オペレータがコンピューターを用いてオフラインで実施してもよいし、DCS(Distributed Control System)などのLNG受入設備2の運転管理システムを用いて自動的に算出してもよい。これらLNGタンク21内の圧力変化の予測や、BOG圧縮機24の停止可能時間の算出は、本例の停止可能期間算出工程に相当する。
 さらに、気化器に関しては、現在稼働しているORV231、SMV232の台数や海水ポンプの電力消費を算出しておく(P21)。
The above calculation may be performed offline by an operator using a computer, or may be automatically calculated using an operation management system of the LNG receiving facility 2 such as a DCS (Distributed Control System). The prediction of the pressure change in the LNG tank 21 and the calculation of the stoppable time of the BOG compressor 24 correspond to the stoppable period calculation step of this example.
Furthermore, regarding the vaporizer, the number of currently operating ORVs 231 and SMV 232 and the power consumption of the seawater pump are calculated (P21).
 そして送配電事業者11側にてDRの実施が必要になると判断されると、リソースアグリゲーター12から消費電力の削減に係る事前の連絡がなされる(I01)。なお、図3においてはリソースアグリゲーター12の記載を省略してある。この連絡には、例えばDRの実施期間(削減期間)や要請された削減電力に係る情報が含まれている。 {Circle around (4)} When the transmission and distribution company 11 determines that the DR is required, the resource aggregator 12 notifies the resource aggregator 12 in advance of the reduction in power consumption (I01). In FIG. 3, the description of the resource aggregator 12 is omitted. This notification includes, for example, information on the DR implementation period (reduction period) and the requested power reduction.
 上記事前連絡を受け取ったら、DRの実施期間と、先に計算した停止可能期間とを比較し、BOG圧縮機24の停止の可否を検討する(P15:停止可否判断工程)。例えばBOG圧縮機24の停止可能期間がDRの実施期間よりも長い場合に、当該DRの実施が可能であると判断できる。 
 そして、事前連絡の後、リソースアグリゲーター12から消費電力の削減依頼(I02)を受けたら、実際にBOG圧縮機24を停止する判断を行い(P16)、運転停止操作を実行する(P17:ガス圧縮部停止工程)。
When the advance notification is received, the DR execution period is compared with the previously calculated stoppage period to determine whether the BOG compressor 24 can be stopped (P15: stoppage determination step). For example, when the period during which the BOG compressor 24 can be stopped is longer than the period during which DR is performed, it can be determined that the DR can be performed.
Then, upon receiving a power consumption reduction request (I02) from the resource aggregator 12 after the advance notification, it is determined that the BOG compressor 24 is actually stopped (P16), and an operation stop operation is performed (P17: gas compression). Department stop process).
 また、ORV231、SMV232の稼働状況(通常稼働時においてはORV231の全数が稼働)の把握結果に基づき、さらに削減可能な電力を把握する(P22)。そして、例えばさらに消費電力を削減可能な旨、リソースアグリゲーター12との調整を行った後、消費電力の削減依頼(I02)を受けたらORV231からSMV232への気化器の切り替えを行う(P23:気化器切替工程)。 (4) Further, based on the result of grasping the operation status of the ORVs 231 and SMV232 (all the ORVs 231 operate during normal operation), the power that can be further reduced is grasped (P22). Then, for example, after adjusting with the resource aggregator 12 to the effect that power consumption can be further reduced, when the power consumption reduction request (I02) is received, the vaporizer is switched from the ORV 231 to the SMV 232 (P23: vaporizer). Switching step).
 一方で、事前通知を受けてBOG圧縮機24の停止の可否を検討(P15)した結果、例えばBOG圧縮機24の停止可能期間がDRの実施期間よりも短いことが判明した場合には、リソースアグリゲーター12からの依頼に見合う停止可能期間を確保することができないと判断される。 On the other hand, as a result of examining whether or not the BOG compressor 24 can be stopped after receiving the advance notice (P15), for example, when it is found that the stoppage period of the BOG compressor 24 is shorter than the DR execution period, It is determined that a stoppable period appropriate for the request from the aggregator 12 cannot be secured.
 このとき、事前通知を受けてから、実際の消費電力削減依頼を受けるまでの時間に余裕がある場合には、LNGタンク21内の圧力を低下させる運転調整を行ってもよい。運転調整の内容としては、製品ガスへのBOGの混合割合を増加させて、LNGタンク21からのBOGの抜き出し量を増やすことや、需要先3に依頼して製品ガスの受け入れ量を増やしてもらい、LNGの送液量を増加させてLNGの液位を低下させることなどを例示することができる。 At this time, if there is enough time between receiving the advance notification and receiving the actual power consumption reduction request, an operation adjustment for reducing the pressure in the LNG tank 21 may be performed. The contents of the operation adjustment include increasing the mixing ratio of BOG to the product gas to increase the amount of BOG extracted from the LNG tank 21 or requesting the demand destination 3 to increase the amount of the product gas received. , The LNG liquid level is decreased by increasing the LNG supply amount, and the like.
 そこで、停止可否検討の段階(P15)で、BOG圧縮機24の停止が困難であると判断されたら、当該判断を行った際のLNGタンク21の圧力よりも低い目標圧力となるように、運転調整実施時の目標圧力を算出する(P31:目標圧力設定工程)。目標圧圧力は、既述の手法により算出されるBOG圧縮機24の停止可能時間が、DRの実施期間よりも長くなる目標圧力に設定する。 Therefore, if it is determined that the stop of the BOG compressor 24 is difficult at the stage of determining whether or not to stop (P15), the operation is performed such that the target pressure becomes lower than the pressure of the LNG tank 21 at the time of making the determination. The target pressure at the time of performing the adjustment is calculated (P31: target pressure setting step). The target pressure is set to a target pressure at which the stoppage time of the BOG compressor 24 calculated by the above-described method is longer than the DR execution period.
 しかる後、LNGタンク21の内圧を目標圧力まで低下させる運転調整が実施可能と判断したら(P32)、当該運転調整を行う(P33:圧力低下工程)。そして、LNGタンク21の内圧変化の予測(P13)、BOG圧縮機24の停止可能期間の算出(P14)を行い、停止可否検討を再実施する(P15)。運転調整によって、LNGタンク21の内圧が目標圧力に到達している場合は、BOG圧縮機24の停止が可能と判断できる状態となっているので、リソースアグリゲーター12から消費電力の削減依頼(I02)を受けたら、BOG圧縮機24を停止する判断を行い(P16)、運転停止操作を実行する(P17)。 After that, when it is determined that the operation adjustment for reducing the internal pressure of the LNG tank 21 to the target pressure can be performed (P32), the operation adjustment is performed (P33: pressure reduction step). Then, the internal pressure change of the LNG tank 21 is predicted (P13), the stoppage possible period of the BOG compressor 24 is calculated (P14), and the stoppage determination is performed again (P15). If the internal pressure of the LNG tank 21 has reached the target pressure due to the operation adjustment, it is possible to determine that the BOG compressor 24 can be stopped. Therefore, the resource aggregator 12 requests a reduction in power consumption (I02). In response to this, it is determined that the BOG compressor 24 should be stopped (P16), and an operation stop operation is executed (P17).
 一方で既述のように、BOGの発生量が通常時の数倍にもなる、LNGタンカー4からのLNG受け入れ期間と、DRの実施期間が重なる場合には既述の運転調整を行ってもBOG圧縮機24の停止を行うことができない可能性が高い。そこでこの場合には、BOG圧縮機24の停止可否の検討を省略して、BOG圧縮機24の稼働を継続することを優先する判断を行ってもよい(継続判断工程)。 
 なお、DRの実施依頼が出される可能性の小さい、土曜日や日曜日、祝日にLNGの受け入れが行われるように、LNGタンカー4の配船スケジュールを調整することにより、LNGの受け入れ期間とDRの実施期間の重複を避けてもよい。
On the other hand, as described above, when the amount of BOG generated is several times as large as the normal time, and the LNG receiving period from the LNG tanker 4 and the DR execution period overlap, the operation adjustment described above may be performed. There is a high possibility that the BOG compressor 24 cannot be stopped. Therefore, in this case, the determination of whether or not the BOG compressor 24 can be stopped may be omitted, and a determination may be made that gives priority to continuing the operation of the BOG compressor 24 (continuation determination step).
The LNG tanker 4 is scheduled to receive LNG on Saturdays, Sundays, and public holidays, where it is unlikely that a request for DR will be issued. Overlapping periods may be avoided.
 本実施の形態に係るLNG受入設備2の運転方法によれば、以下の効果がある。LNGタンク21からBOGを抜き出すBOG圧縮機24の停止可能期間を算出し、その結果に基づいてBOG圧縮機24の停止可否を判断するので、LNG受入設備2の安定稼働を妨げることなく、DRを実施することができる。 According to the method of operating the LNG receiving facility 2 according to the present embodiment, the following effects are obtained. The stoppage period of the BOG compressor 24 for extracting BOG from the LNG tank 21 is calculated, and whether or not the BOG compressor 24 can be stopped is determined based on the calculated result. Therefore, the DR can be determined without hindering the stable operation of the LNG receiving facility 2. Can be implemented.
 ここで、図3を用いて説明した例では、DRの実施を予想して、LNGタンク21の内圧変化の予測(P13)、BOG圧縮機24の停止可能期間の算出(P14)を予め実施し、DR実施の事前連絡を受けて、BOG圧縮機24の停止の可否を検討する例を示している。 
 但し、この検討順序は、適宜、変更してもよい。例えば消費電力の削減依頼(I02)を受けてからこれを実行する(BOG圧縮機24を停止)までに十分な時間がある場合には、当該削減依頼を受けてから、LNGタンク21の内圧変化の予測、及びBOG圧縮機24の停止可能期間の算出(P13、14:停止可能期間算出工程)、停止の可否の検討(P15:停止可否判断工程)を行ってもよい。
Here, in the example described with reference to FIG. 3, in anticipation of the execution of DR, the prediction of the change in the internal pressure of the LNG tank 21 (P13) and the calculation of the period during which the BOG compressor 24 can be stopped (P14) are performed in advance. In this example, the BOG compressor 24 is considered whether or not to stop in response to prior notification of the DR execution.
However, this study order may be changed as appropriate. For example, if there is a sufficient time from when the power consumption reduction request (I02) is received to when it is executed (the BOG compressor 24 is stopped), the internal pressure change of the LNG tank 21 is performed after the reduction request is received. May be calculated, the stoppage period of the BOG compressor 24 may be calculated (P13, 14: stoppage period calculation step), and the possibility of stoppage may be examined (P15: stoppage determination step).
11    送配電事業者
12    リソースアグリゲーター
13    需要家
2     LNG受入設備
21    LNGタンク
211、22LNGポンプ
231   オープンラック気化器(ORV)
232   サブマージドコンバスション式気化器(SMV)
24    BOG圧縮機
3     需要先

 
11 Power transmission and distribution company 12 Resource aggregator 13 Customer 2 LNG receiving facility 21 LNG tank 211, 22LNG pump 231 Open rack vaporizer (ORV)
232 Submerged combination vaporizer (SMV)
24 BOG compressor 3 Demand destination

Claims (8)

  1.  液化天然ガス受入設備の運転方法であって、
     前記液化天然ガス受入設備は、外部から受け入れた液化天然ガスを貯蔵する貯蔵タンクと、前記貯蔵タンクから払い出された液化天然ガスを気化させ、ガスの状態で出荷するための気化器と、前記貯蔵タンク内で発生したボイルオフガスを昇圧し、前記気化器にて気化された天然ガスに混合するための電動モータ駆動のガス圧縮部と、を備えることと、
     削減期間に係る情報を含む消費電力削減の依頼を受け取る、もしくは受け取ることを想定して、消費電力削減の検討を開始する検討開始工程と、前記ガス圧縮部を停止した場合の前記貯蔵タンクの内圧の変化を予測して、当該ガス圧縮部の停止可能期間を算出する停止可能期間算出工程と、前記削減期間と、前記ガス圧縮部の停止可能期間との比較結果に基づき、前記ガス圧縮部の停止可否を判断する停止可否判断工程と、を含むことと、を特徴とする液化天然ガス受入設備の運転方法。
    A method of operating a liquefied natural gas receiving facility,
    The liquefied natural gas receiving facility is a storage tank for storing liquefied natural gas received from outside, a liquefied natural gas discharged from the storage tank is vaporized, and a vaporizer for shipping in a gas state, An electric motor-driven gas compressor for boosting the boil-off gas generated in the storage tank and mixing it with the natural gas vaporized by the vaporizer,
    Receiving a request for power consumption reduction including information related to the reduction period, or assuming that it is received, a study start step to start studying power consumption reduction, and the internal pressure of the storage tank when the gas compression unit is stopped The change of the gas compression unit is predicted based on a comparison result between the reduction period and the stoppage period of the gas compression unit. A method of operating a liquefied natural gas receiving facility, comprising: a step of determining whether to stop the vehicle.
  2.  前記停止可否判断工程にて、前記削減期間中にガス圧縮部を停止することが可能と判断された場合に、当該ガス圧縮部を停止するガス圧縮部停止工程を含むことを特徴とする請求項1に記載の液化天然ガス受入設備の運転方法。 The gas compression unit stopping step of stopping the gas compression unit when it is determined that the gas compression unit can be stopped during the reduction period in the stop possibility determination step. 2. The method for operating the liquefied natural gas receiving facility according to 1.
  3.  前記気化器は、電動モータ駆動の海水ポンプから供給された海水を熱源として液化天然ガスを気化させる通常稼働用の気化器と、前記天然ガスの燃焼熱を熱源として液化天然ガスを気化させる緊急稼働用の気化器と、を備えることと、
     前記ガス圧縮部停止工程の実施に加えて、前記通常稼働用の気化器を、緊急稼働用の気化器に切り替えて液化天然ガスを気化させる気化器切替工程を実施することと、を特徴とする請求項2に記載の液化天然ガス受入設備の運転方法。
    The vaporizer is a vaporizer for normal operation of vaporizing liquefied natural gas using seawater supplied from a seawater pump driven by an electric motor as a heat source, and an emergency operation for vaporizing liquefied natural gas using the heat of combustion of the natural gas as a heat source. And a vaporizer for
    In addition to performing the gas compression unit stopping step, performing a vaporizer switching step of vaporizing the liquefied natural gas by switching the vaporizer for normal operation to the vaporizer for emergency operation. A method for operating the liquefied natural gas receiving facility according to claim 2.
  4.  前記停止可能期間算出工程では、前記貯蔵タンクから液化天然ガスが払い出されることに伴う気相容積の変化と、当該貯蔵タンク内で発生するボイルオフガス量とに基づき、前記内圧の変化を予測することを特徴とする請求項1に記載の液化天然ガス受入設備の運転方法。 In the stoppable period calculating step, the change in the internal pressure is predicted based on a change in the gas phase volume caused by liquefied natural gas being discharged from the storage tank and a boil-off gas amount generated in the storage tank. The method for operating a liquefied natural gas receiving facility according to claim 1, wherein:
  5.  前記貯蔵タンク内で発生するボイルオフガス量は、当該貯蔵タンクへの入熱量に基づいて求めることを特徴とする請求項4に記載の液化天然ガス受入設備の運転方法。 The method according to claim 4, wherein the amount of boil-off gas generated in the storage tank is obtained based on an amount of heat input to the storage tank.
  6.  前記停止可能期間算出工程では、前記貯蔵タンクの内圧の変化の予測値が、当該貯蔵タンクに設けられた運転圧力の上限値未満である期間を、前記停止可能期間とすることを特徴とする請求項1に記載の液化天然ガス受入設備の運転方法。 The said stop possible period calculation process WHEREIN: The period in which the predicted value of the change of the internal pressure of the said storage tank is less than the upper limit of the operating pressure provided in the said storage tank is made into the said stop possible period. Item 4. An operation method of the liquefied natural gas receiving facility according to Item 1.
  7.  前記削減期間が、前記貯蔵タンクに対して外部から液化天然ガスを受け入れる期間と重なる場合には、前記ガス圧縮部の稼働を継続することを優先する判断を行う継続判断工程を含むことを特徴とする請求項1に記載の液化天然ガス受入設備の運転方法。 When the reduction period overlaps a period for receiving liquefied natural gas from the outside with respect to the storage tank, a continuation determination step of performing a determination that gives priority to continuing operation of the gas compression unit is included. The method for operating a liquefied natural gas receiving facility according to claim 1.
  8.  前記停止可否判断工程において判断結果が否であった場合に、消費電力削減のために、前記停止可否判断工程を実施した際の前記貯蔵タンクの圧力よりも低い目標圧力を設定する目標圧力設定工程と、前記貯蔵タンクの内圧を当該目標圧力まで低下させる圧力低下工程とを含み、前記圧力低下工程の後、前記停止可否判断工程を再実施することを特徴とする請求項1に記載の液化天然ガス受入設備の運転方法。
     
    A target pressure setting step of setting a target pressure lower than the pressure of the storage tank at the time of performing the stop possibility determination step, in order to reduce power consumption, when the determination result is negative in the stop possibility determination step. 2. The liquefied natural plant according to claim 1, further comprising: a pressure reduction step of reducing the internal pressure of the storage tank to the target pressure, wherein after the pressure reduction step, the stoppage determination step is performed again. How to operate gas receiving equipment.
PCT/JP2018/034255 2018-09-14 2018-09-14 Method for operating liquefied natural gas receiving equipment WO2020054068A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/034255 WO2020054068A1 (en) 2018-09-14 2018-09-14 Method for operating liquefied natural gas receiving equipment
JP2018560924A JP6503521B1 (en) 2018-09-14 2018-09-14 Operation method of liquefied natural gas receiving facility
EP18933604.3A EP3851730A4 (en) 2018-09-14 2018-09-14 Method for operating liquefied natural gas receiving equipment
KR1020217005583A KR20210058819A (en) 2018-09-14 2018-09-14 How to operate liquefied natural gas import facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034255 WO2020054068A1 (en) 2018-09-14 2018-09-14 Method for operating liquefied natural gas receiving equipment

Publications (1)

Publication Number Publication Date
WO2020054068A1 true WO2020054068A1 (en) 2020-03-19

Family

ID=66166629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034255 WO2020054068A1 (en) 2018-09-14 2018-09-14 Method for operating liquefied natural gas receiving equipment

Country Status (4)

Country Link
EP (1) EP3851730A4 (en)
JP (1) JP6503521B1 (en)
KR (1) KR20210058819A (en)
WO (1) WO2020054068A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117044028A (en) 2021-05-06 2023-11-10 株式会社Lg新能源 Bus bar assembly, battery pack including the same, and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343372B2 (en) 1979-04-26 1988-08-30 Mitsui Toatsu Chemicals
JP2010154617A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Underpower replenishing system of operating non-utility power generation facility
JP2010246306A (en) * 2009-04-08 2010-10-28 Ntt Facilities Inc Device, method and system for controlling power supply
JP2016177399A (en) * 2015-03-19 2016-10-06 株式会社日立製作所 Power generation unit management system and power generation unit management method
JP2018112218A (en) 2017-01-10 2018-07-19 株式会社Ihi BOG compressor load control device of LNG storage facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343372B2 (en) 1979-04-26 1988-08-30 Mitsui Toatsu Chemicals
JP2010154617A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Underpower replenishing system of operating non-utility power generation facility
JP2010246306A (en) * 2009-04-08 2010-10-28 Ntt Facilities Inc Device, method and system for controlling power supply
JP2016177399A (en) * 2015-03-19 2016-10-06 株式会社日立製作所 Power generation unit management system and power generation unit management method
JP2018112218A (en) 2017-01-10 2018-07-19 株式会社Ihi BOG compressor load control device of LNG storage facility

Also Published As

Publication number Publication date
EP3851730A4 (en) 2021-09-22
EP3851730A1 (en) 2021-07-21
JPWO2020054068A1 (en) 2020-10-22
JP6503521B1 (en) 2019-04-17
KR20210058819A (en) 2021-05-24

Similar Documents

Publication Publication Date Title
Mayer et al. Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen
US10814734B2 (en) Fast charging system for electric vehicles
US10214821B2 (en) Electrolyser and energy system
KR101346235B1 (en) Sea water heating apparatus and it used lng regasification system
EP1691127B1 (en) Method for delivering cryogenic fluid, in liquid or in gas phase, to a network of receiving fuel stations
Richardson et al. Low-cost, transportable hydrogen fueling station for early market adoption of fuel cell electric vehicles
JP2014111984A (en) Hydrogen station
WO2020054068A1 (en) Method for operating liquefied natural gas receiving equipment
DK201970036A1 (en) Large-scale hydrogen refueling station
JP2011033051A (en) Storage facility for low-temperature liquefied gas
JP2003106498A (en) Bog re-liquefaction and recovery system for lng tank
JP5295298B2 (en) Method for suppressing boil-off gas in liquefied gas storage equipment
JP2020160723A (en) System and method for management control
KR20180001623A (en) Liquefied gas regasification system
JP2019049862A (en) Plant control device and plant control method
JPH0566485B2 (en)
US9162865B2 (en) Self contained bio fuel trans load with heating apparatus for rail care offloading and distribution
JP2013152029A (en) Method of controlling boil-off gas in liquefied gas storage facility
DK181394B1 (en) Self-supplied hydrogen tube trailer
KR101903400B1 (en) Gas turbine generating apparatus and surplus bog handling method of the same
JP2022189784A (en) Ultra-high pressure hydrogen gas production system and ultra-high pressure hydrogen gas production method
Hermeling LNG Applications
WO2018078715A1 (en) Liquefied natural gas storage facility
JP2020133871A (en) Fuel gas supply system and fuel gas supply method
JP2002334138A (en) Method for optimally operating gas supply

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560924

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018933604

Country of ref document: EP

Effective date: 20210414