WO2020054048A1 - Fuel cell system control method and fuel cell system - Google Patents

Fuel cell system control method and fuel cell system Download PDF

Info

Publication number
WO2020054048A1
WO2020054048A1 PCT/JP2018/034142 JP2018034142W WO2020054048A1 WO 2020054048 A1 WO2020054048 A1 WO 2020054048A1 JP 2018034142 W JP2018034142 W JP 2018034142W WO 2020054048 A1 WO2020054048 A1 WO 2020054048A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
fuel cell
low
gas
temperature chamber
Prior art date
Application number
PCT/JP2018/034142
Other languages
French (fr)
Japanese (ja)
Inventor
雅士 佐藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2018/034142 priority Critical patent/WO2020054048A1/en
Publication of WO2020054048A1 publication Critical patent/WO2020054048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a control method for a fuel cell system and a fuel cell system.
  • JP2009-51712A includes a temperature sensor inside a reformer in a fuel cell stack, and adjusts a flow rate of an anode gas in accordance with a temperature inside the reformer obtained by the temperature sensor when the system is started.
  • a technique for controlling the supply of unreformed fuel by controlling the same is disclosed.
  • JP2009-51712A it is necessary to provide a temperature sensor inside the reformer.
  • a temperature sensor inside the reformer in view of the reliability and robustness of the temperature sensor. Therefore, a method is known in which a gas such as air is introduced from the upstream of the reformer, and the temperature of the gas discharged from the reformer is obtained by a temperature sensor provided on the downstream side of the reformer. According to this method, the temperature inside the reformer is substantially equal to the temperature of the gas discharged from the downstream of the reformer. The temperature can be obtained.
  • the present invention has been made to solve such a problem, and at the time of hot restart, it is necessary to estimate the temperature inside the reformer without providing a temperature sensor inside the reformer. Aim.
  • control of a fuel cell system including a fuel cell, a combustor, a reformer, and cathode gas supply means for supplying cathode gas to the fuel cell Is the way.
  • the reformer has a high-temperature chamber through which gas from the combustor flows, and a low-temperature chamber that reforms supplied fuel to anode gas and supplies the anode gas to the fuel cell. It is configured to be able to exchange heat between.
  • the control method includes: a start determination step for determining whether the start is a hot restart; and, when the start is determined to be a hot restart in the start determination step, the supply of the fluid to the low-temperature chamber is stopped.
  • FIG. 1 is a schematic configuration diagram of the fuel cell system according to the first embodiment.
  • FIG. 2 is a flowchart showing the startup control of the fuel cell system.
  • FIG. 3 is a schematic configuration diagram of the fuel cell system according to the second embodiment.
  • FIG. 4 is a flowchart showing the startup control of the fuel cell system.
  • FIG. 5 is a schematic configuration diagram of a fuel cell system according to a first modification.
  • FIG. 6 is a schematic configuration diagram of a fuel cell system according to a second modification.
  • FIG. 7 is a schematic configuration diagram of a fuel cell system according to a third modification.
  • FIG. 8 is a schematic configuration diagram of a fuel cell system according to a fourth modification.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system 100 according to the first embodiment of the present invention.
  • the fuel cell stack 10 is configured by stacking a plurality of fuel cells or fuel cell unit cells, and each fuel cell that is a power generation source is, for example, a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell). .
  • SOFC Solid Oxide Fuel Cell
  • the fuel cell stack 10 performs power generation using the anode gas supplied through the anode flow path 20 and the cathode gas supplied through the cathode flow path 30.
  • the fuel cell stack 10 is provided with a temperature sensor 11 for measuring the temperature of the stack surface.
  • the anode gas that has been reacted in the fuel cell stack 10 is discharged from the anode off-gas passage 41 as anode off-gas, and the reacted cathode gas is discharged from the cathode off-gas passage 42 as cathode off-gas.
  • the anode off-gas and the cathode off-gas undergo an oxidation catalytic reaction (combustion) in the exhaust combustor 43.
  • the high-temperature exhaust gas generated by the combustion is discharged to the outside via a cathode-side exhaust passage 44 and an anode-side exhaust passage 45 branched from the cathode-side exhaust passage 44.
  • the high temperature exhaust gas after combustion in the exhaust combustor 43 passes through the cathode side exhaust path 44 and the anode side exhaust path 45. Therefore, as described later, the temperature of the adjacent components can be increased by heat exchange.
  • the anode flow path 20 is a system that supplies fuel (for example, hydrogen) as a reducing agent gas to the anode of the fuel cell stack 10.
  • the anode flow path 20 is provided with a fuel tank 21, an evaporator 22, a superheater 23, and a reformer 24.
  • the evaporator 22, the superheater 23, and the reformer 24 each include a low-temperature chamber and a high-temperature chamber, and heat exchange using high-temperature exhaust gas flowing through the high-temperature chamber so that the temperature of the low-temperature chamber increases. It is configured.
  • the fuel tank 21 stores liquid fuel such as hydrous ethanol, and supplies the liquid fuel to the evaporator low-temperature chamber 22A of the evaporator 22.
  • the evaporator low temperature chamber 22A evaporates the liquid fuel by heating to generate a fuel gas, and supplies the generated fuel gas to the superheater low temperature chamber 23A of the superheater 23.
  • the superheater low-temperature chamber 23A further heats the fuel gas and supplies the fuel gas whose temperature has increased to the reformer low-temperature chamber 24A of the reformer 24.
  • the reformer low temperature chamber 24A generates an anode gas by reforming the fuel gas, and supplies the anode gas to the anode electrode of the fuel cell stack 10.
  • the evaporator 22 includes an adjacent evaporator low temperature chamber 22A and an evaporator high temperature chamber 22B.
  • the low-temperature evaporator chamber 22A and the high-temperature evaporator chamber 22B are isolated from each other, and are not in communication with each other.
  • the evaporator low temperature chamber 22A is a part of the anode flow path 20, and the evaporator high temperature chamber 22B is a part of the anode side exhaust passage 45.
  • the superheater 23 includes a superheater low-temperature chamber 23A and a superheater high-temperature chamber 23B which are isolated and adjacent to each other.
  • the temperature of the superheater low-temperature chamber 23A increases due to heat exchange.
  • the reformer 24 includes a reformer low-temperature chamber 24A and a reformer high-temperature chamber 24B that can exchange heat.
  • a temperature sensor 25 for measuring the temperature of the gas discharged from the low-temperature reformer chamber 24A is provided in the anode flow path 20 downstream of the low-temperature reformer chamber 24A.
  • a valve 26 is provided between the fuel tank 21 and the evaporator low-temperature chamber 22A, and the supply of fuel to the anode flow path 20 is controlled by the valve 26.
  • the anode flow path 20 is provided with a fuel branch path 27 that branches from between the fuel tank 21 and the valve 26 and is connected to the exhaust combustor 43.
  • the fuel branch passage 27 is provided with a valve 28.
  • the cathode flow path 30 is a system for supplying a cathode gas (air in this embodiment) to the cathode of the fuel cell stack 10.
  • a blower 31 and an air heat exchanger 32 are provided in the cathode channel 30.
  • the blower 31 takes in the cathode gas from outside the fuel cell system 100 and supplies the cathode gas to the air heat exchanger 32.
  • the blower 31 is an example of a cathode gas supply unit.
  • the air heat exchanger 32 includes an air heat exchanger low temperature chamber 32A and an air heat exchanger high temperature chamber 32B which are separated and adjacent to each other, like the evaporator 22 and the like.
  • the air heat exchanger low temperature chamber 32A is a part of the cathode channel 30, and the air heat exchanger high temperature chamber 32B is a part of the cathode side exhaust passage 44.
  • the temperature of the air heat exchanger low temperature chamber 32A is increased by heat exchange.
  • the cathode gas heated by the air heat exchanger high temperature chamber 32B is supplied to the cathode of the fuel cell stack 10.
  • the flow rate of the cathode gas supplied to the fuel cell stack 10 can be controlled by controlling the start / stop and the rotation speed of the blower 31.
  • the fuel cell system 100 includes a cathode branch passage 33 branched from the cathode passage 30 between the blower 31 and the air heat exchanger low-temperature chamber 32A and connected to the anode passage 20 upstream of the superheater 23. Is provided.
  • a valve 34 is provided in the cathode branch passage 33.
  • the valve 34 When the valve 34 is opened, the cathode gas flows to the reformer low temperature chamber 24A via the superheater low temperature chamber 23A.
  • the temperature Tref_low inside the reformer low temperature chamber 24A can be obtained by measuring the temperature of the exhaust gas discharged from the reformer low temperature chamber 24A by the temperature sensor 25.
  • the connection between the cathode branch passage 33 and the anode passage 20 is not limited to the upstream of the superheater 23, but may be at any position as long as it is upstream of the reformer 24. If the cathode gas flows through the reformer low temperature chamber 24A, the temperature inside the reformer low temperature chamber 24A can be obtained.
  • a temperature sensor 46 is provided downstream of the reformer high temperature chamber 24B. The temperature of the reformer high-temperature chamber 24B can be acquired by the temperature sensor 46.
  • the fuel cell system 100 includes the controller 90.
  • the controller 90 controls the valves 26, 28, 34 and the blower 31, and obtains temperatures by the temperature sensors 11, 25, 46.
  • the controller 90 controls the fuel cell system 100 by executing a stored program.
  • FIG. 2 is a flowchart showing start-up control of the fuel cell system 100. Before the start-up control, it is assumed that the valves 26 and 28 in the anode system and the valve 34 in the cathode system are closed, and the blower 31 is stopped.
  • step S1 the controller 90 accepts a start operation.
  • step S2 the controller 90 determines whether or not the start operation in step S1 corresponds to a hot restart that is a restart immediately after the end operation. Specifically, the controller 90 estimates the stack temperature Tsta inside the fuel cell stack 10 from the surface temperature of the fuel cell stack 10 measured by the temperature sensor 11.
  • the controller 90 determines that the hot restart has occurred.
  • the determination temperature Th is a lower limit temperature at which oxidation deterioration may occur at the anode electrode, and is, for example, about 400 degrees.
  • the controller 90 determines that normal startup is performed instead of hot restart.
  • the determination of hot restart may be made by another method without using the stack temperature Tsta. For example, when the fuel cell system 100 receives a restart during the stop processing, it may be determined that the restart is a hot restart. In the case where the oxidant replacement of the anode electrode is performed in order to suppress the oxidative deterioration in the stop processing of the fuel cell system 100, it may be determined that the stop processing is being performed when the replacement is not completed. In addition, when restart is received within a predetermined elapsed time after the end of the fuel cell system 100, it may be determined that hot restart has been started.
  • step S2 If it is determined that the restart is a hot restart (S2: Yes), the controller 90 performs the process of step S9 in order to control the start of the hot restart. If it is determined that it is not a hot restart (S2: No), the controller 90 performs the process of step S3 to perform normal startup control. Note that the process in step S2 is an example of a startup determination step.
  • step S3 the supply of the cathode gas to the anode of the fuel cell stack 10 is started.
  • the temperature of the fuel cell stack 10 is low, so that even if the cathode gas flows into the anode, the anode gas is not oxidized and deteriorated.
  • the controller 90 activates the blower 31 and opens the valve 34, the cathode gas taken in from the outside flows through the cathode branch passage 33 to the superheater low temperature chamber 23A and the reformer low temperature chamber 24A, It passes through the reformer low temperature chamber 24A.
  • the cathode gas is supplied to the fuel cell stack 10 via the cathode channel 30. Since the fuel cell stack 10 has not started power generation, the cathode gas is supplied to the exhaust combustor 43 via the cathode offgas flow path 42.
  • step S4 the controller 90 acquires the temperature of the exhaust gas from the low-temperature reformer chamber 24A measured by the temperature sensor 25 as the temperature Tref_low inside the low-temperature reformer chamber 24A.
  • the processing in step S4 is an example of a temperature acquisition step, and the temperature sensor 25 is an example of a second temperature sensor.
  • step S5 the controller 90 determines whether or not the temperature Tref_low is equal to or higher than the reforming temperature Tref_th at which the reforming reaction proceeds in the reformer 24. If the temperature Tref_low is equal to or higher than the reforming temperature Tref_th (S5: Yes), the controller 90 determines that the reformer 24 is capable of reforming and can supply fuel, and starts the power generation. Step S7 is performed. When the temperature Tref_low is lower than the reforming temperature Tref_th (S5: No), the controller 90 determines that the reformer 24 is not sufficiently high, and performs the process of step S6.
  • the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch 27 in step S6. .
  • the liquid fuel undergoes an oxidation catalytic reaction to generate heat. Since the blower 31 is activated in step S3 and the supply of the cathode gas to the exhaust combustor 43 has been started, high-temperature exhaust is discharged from the exhaust combustor 43.
  • step S6 the high-temperature exhaust gas discharged from the exhaust combustor 43 is used to warm up the low-temperature evaporator chamber 22A, the low-temperature superheater chamber 23A, and the low-temperature reformer chamber 24A. Will be.
  • step S7 the controller 90 opens the valve 26 and transfers the liquid fuel stored in the fuel tank 21 to the anode flow path 20. Supply.
  • the evaporator low temperature chamber 22A and the superheater low temperature chamber 23A have a high temperature similarly to the temperature Tref_low of the reformer low temperature chamber 24A. Therefore, the liquid fuel supplied from the fuel tank 21 evaporates in the evaporator low-temperature chamber 22A, is superheated in the superheater low-temperature chamber 23A, is reformed in the reformer low-temperature chamber 24A, and becomes fuel gas as anode gas. It is supplied to the anode of the battery stack 10.
  • the valve 28 may be closed to terminate the supply of the liquid fuel to the exhaust combustor 43.
  • step S8 when the controller 90 instructs the fuel cell stack 10 to start power generation, the fuel cell stack 10 supplied with the anode gas and the cathode gas starts power generation. At this stage, the supply of the cathode gas to the anode may be stopped by closing the valve 34. Step S8 is an example of a power generation start step.
  • step S9 activation control of hot restart is performed, and the controller 90 activates the blower 31 to supply the cathode gas to the cathode of the fuel cell stack 10.
  • the controller 90 activates the blower 31 to supply the cathode gas to the cathode of the fuel cell stack 10.
  • the cathode gas is supplied to the high-temperature reformer chamber 24B via the cathode-side exhaust passage 44, the cathode gas is discharged from the cathode off-gas passage 42.
  • the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B acquires the temperature of the exhaust gas from the reformer high temperature chamber 24B as the temperature Tref_high inside the reformer high temperature chamber 24B.
  • Step S9 is an example of a supply step.
  • step S10 the controller 90 estimates an estimated temperature Tref_low * of the reformer low temperature chamber 24A using the temperature Tref_high.
  • Step S10 is an example of an estimation step.
  • the controller 90 estimates the temperature Tref_high of the reformer high temperature chamber 24B acquired by the temperature sensor 46 as the estimated temperature Tref_low * of the reformer low temperature chamber 24A.
  • the controller 90 calculates the estimated temperature Tref_low * with respect to the temperature of the reformer high-temperature chamber 24B in consideration of the temperature difference determined by the heat exchange ratio between the reformer low-temperature chamber 24A and the reformer high-temperature chamber 24B. It may be estimated.
  • step S11 the controller 90 determines whether or not the estimated temperature Tref_low * is higher than the reforming temperature Tref_th. If the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 determines that reforming is possible, and performs the process of step S7. When the estimated temperature Tref_low * is equal to or lower than the reforming temperature Tref_th (S11: No), the controller 90 determines that the reforming is not properly performed and unreformed fuel may flow into the fuel cell stack 10. Then, the process of step S12 is performed.
  • step S12 the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch 27.
  • the liquid fuel is burned by an oxidation catalytic reaction.
  • step S9 since the blower 31 has been activated and the supply of the cathode gas has been started, high-temperature exhaust is discharged from the exhaust combustor 43.
  • high-temperature exhaust gas from the exhaust combustor 43 is supplied to the reformer high-temperature chamber 24B via the anode-side exhaust passage 45, heat exchange between the reformer high-temperature chamber 24B and the reformer low-temperature chamber 24A is performed. Thereby, the reformer low temperature chamber 24A is heated.
  • the temperature Tref_low of the reformer low temperature chamber 24A can be increased.
  • the controller 90 returns to the process of step S9.
  • step S7 the controller 90 sets the valve 28 to ON. May be closed.
  • the controller 90 causes the cathode gas to flow into the reformer low-temperature chamber 24A and acquires the temperature Tref_low by the temperature sensor 25 (S4).
  • the controller 90 calculates the temperature Tref_high of the reformer high-temperature chamber 24B obtained by the temperature sensor 46 provided downstream of the reformer high-temperature chamber 24B.
  • the estimated temperature Tref_low * of the reformer low temperature chamber 24A is estimated (S10).
  • the unreformed fuel becomes unreformed. It may flow into the anode of the fuel cell stack 10 and carbon deposition (caulking) may occur. Therefore, when the temperature Tref_low of the reformer low-temperature chamber 24A is higher than the reforming temperature Tref_th, it is necessary to control the supply of the liquid fuel to the reformer 24. Therefore, it is necessary to obtain the temperature Tref_low of the reformer low temperature chamber 24A.
  • the controller 90 supplies the cathode gas to the reformer low temperature chamber 24A (S3), and detects the temperature of the exhaust gas from the reformer low temperature chamber 24A by the temperature sensor 25 provided downstream of the reformer low temperature chamber 24A. Is measured, and the measured temperature is obtained as the temperature Tref_low inside the reformer low temperature chamber 24A.
  • the controller 90 determines that the reformer 24 is in a reformable state, and the valve 26 Is opened and fuel is supplied (S6). By doing so, it is possible to suppress the unreformed fuel from flowing into the anode of the fuel cell 10.
  • step S9 the controller 90 activates the blower 31 to flow the cathode gas through the cathode flow path 30, the cathode off-gas flow path 42, and the anode-side exhaust path 45 to the reformer high temperature. Flow to room 24B. Then, in step S10, the estimated temperature Tref_low * of the reformer low temperature chamber 24A is estimated according to the state of the reformer high temperature chamber 24B. In this way, at the time of hot restart, the temperature inside the reformer 24 can be measured without providing a temperature sensor inside the reformer 24.
  • the controller 90 may not perform reforming properly and unreformed fuel may flow into the fuel cell stack 10. Is determined, the warm-up is performed in step S12, and the temperature of the reformer low temperature chamber 24A is increased.
  • step S11 if the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 Determines that reforming is possible, opens the valve 26, supplies the liquid fuel to the reformer 24, and supplies the anode gas reformed in the reformer 24 to the fuel cell stack 10 (S7). By doing so, it is possible to prevent the unreformed fuel from flowing from the reformer 24 into the fuel cell stack 10 and to cause carbon deposition (caulking). Then, since the blower 31 has already been activated (S9) and the supply of the cathode gas has been started, the power generation of the fuel cell 10 is started according to the instruction of the controller 90 (S8).
  • step S2 when the stack temperature Tsta of the fuel cell stack 10 is equal to or higher than the determination temperature Th, the controller 90 controls the fuel cell system 100 to perform the cooling process. It is determined that the start at this timing is a hot restart.
  • the determination temperature Th a temperature at which the anode of the fuel cell 10 may be oxidized and deteriorated is used.
  • the supply of the fluid containing the cathode gas to the reformer low temperature chamber 24A is suppressed in the case of a hot restart, when the stack temperature Tsta is high and the anode electrode is likely to be oxidized and deteriorated. Therefore, the possibility that the anode electrode is oxidized and deteriorated can be reduced.
  • the controller 90 acquires the temperature Tref_high of the reformer high temperature chamber 24B by the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B.
  • the temperature of the reformer high temperature chamber 24B substantially matches the temperature of the reformer low temperature chamber 24A. Therefore, the controller 90 can estimate the temperature Tref_high of the reformer high temperature chamber 24B acquired by the temperature sensor 46 as the estimated temperature Tref_low * (S10).
  • the controller 90 sends the cathode gas to the reformer low-temperature chamber. 24A (S3).
  • the controller 90 measures the temperature of the exhaust gas from the reformer low temperature chamber 24A by the temperature sensor 25 provided downstream of the reformer low temperature chamber 24A, and acquires the measured temperature as the temperature Tref_low of the reformer low temperature chamber 24A. (S4).
  • the temperature Tref_low inside the low temperature chamber 24A of the reformer can be accurately obtained.
  • the fuel when the temperature Tref_low of the low temperature chamber 24A of the reformer is higher than the reforming temperature Tref_th (S5: Yes), the fuel can be supplied to generate the reformed gas (S7). Fuel can be prevented from flowing into the anode of the fuel cell 10.
  • the temperature is such that the anode of the fuel cell stack 10 is not oxidized and deteriorated, and the anode is not oxidized even if air flowing to the lower temperature side of the reformer flows into the anode. Therefore, the temperature of the exhaust gas from the low temperature chamber 24A of the reformer can be directly measured by the temperature sensor 25, so that the temperature Tref_low inside the low temperature chamber 24A of the reformer can be accurately obtained.
  • FIG. 3 is a schematic configuration diagram of the fuel cell system 100 according to the second embodiment. According to this figure, as compared with the fuel cell system 100 of the first embodiment shown in FIG. 1, the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B is omitted.
  • FIG. 4 is a flowchart of the startup control of the fuel cell system 100 of the present embodiment. According to this figure, steps S21 and S22 are provided instead of steps S9 and S10 as compared with the start control of the first embodiment shown in FIG. 2, and step S23 is added after step S11. If the temperature Tref_low is lower than the reforming temperature Tref_th in step S5 (S5: No), the controller 90 performs the warm-up process in step S21.
  • step S21 warm-up is performed in the hot restart activation control.
  • the controller 90 activates the blower 31 to supply the cathode gas to the fuel cell stack 10. At this time, since the fuel cell 10 has not started power generation, the cathode gas is discharged from the cathode off-gas channel 42 and supplied to the reformer high temperature chamber 24B.
  • step S21 is performed after step S3, since the blower 31 has already been activated, the activation process of the blower 31 in step S21 can be omitted.
  • the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch channel 27.
  • the liquid fuel and the cathode gas undergo an oxidation catalytic reaction to generate high-temperature combustion gas.
  • the high-temperature exhaust gas discharged from the exhaust combustor 43 is supplied to the high-temperature reformer chamber 24B via the anode-side exhaust path 45, the high-temperature exhaust gas flows between the high-temperature reformer chamber 24B and the low-temperature reformer chamber 24A.
  • the heat exchange heats the reformer low-temperature chamber 24A.
  • the evaporator low temperature chamber 22A and the superheater low temperature chamber 23A are also heated by heat exchange with the exhaust gas.
  • step S22 the controller 90 determines the estimated temperature Tref_low of the reformer low temperature chamber 24A according to the elapsed time from step S21, that is, the elapsed time after supplying the high-temperature exhaust gas to the reformer high temperature chamber 24B. * Estimate. Step S22 is an example of an estimation step.
  • the controller 90 calculates the temperature increase ⁇ T after the start-up using parameters obtained in advance through experiments and simulations. For example, the controller 90 uses the previously stored calorific value Q of the exhaust combustor 43 per unit time and the reformer heat capacity Cp during warm-up of the reformer 24 to increase as follows: The temperature ⁇ T can be determined.
  • the temperature of the reformer low-temperature chamber 24A is a predetermined drive temperature when the fuel cell system 100 is stopped, but thereafter decreases according to the elapsed time. Therefore, the controller 90 subtracts the decrease temperature according to the elapsed time after the stop of the fuel cell system 100 from the drive temperature, and adds the increase temperature ⁇ T to the stack temperature Tsta calculated in step S2, Estimate the estimated temperature Tref_low * .
  • the controller 90 may calculate the temperature increase ⁇ T with respect to the room temperature to estimate the estimated temperature Tref_low * .
  • the estimated temperature Tref_low * may be lower than the actual temperature, but it can be determined in a later step S23 whether the reforming can be performed reliably.
  • step S23 since the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 determines that reforming is possible in the reformer 24, closes the valve 28, and warms up. The machine control ends.
  • step S21 even if only the blower 31 is started and only the cathode gas is supplied to the exhaust combustor 43 without opening the valve 28, the controller 90 can estimate the estimated temperature Tref_low * .
  • the controller 90 can estimate the estimated temperature Tref_low * . For example, based on the stack temperature Tsta of the fuel cell 10 obtained from the temperature obtained by the temperature sensor 11, an exchange heat amount Q exchanged with the reformer high-temperature chamber 24B via the exhaust gas per unit time is obtained.
  • the rising temperature ⁇ T may be obtained using Q.
  • the controller 90 uses the calorific value Q per unit time of the reformer 24 stored in advance or the reformer heat capacity Cp during warm-up of the reformer 24 to calculate the elapsed time from step S21, That is, the temperature increase ⁇ T is determined according to the elapsed time from the start of warm-up when the liquid fuel is supplied via the exhaust combustor 43.
  • the controller 90 can estimate the estimated temperature Tref_low * by adding the temperature increase ⁇ T to the estimated stack temperature Tsta (S22).
  • the temperature of the anode off gas obtained by the temperature sensor 12 provided in the anode off gas flow path 41, the temperature of the cathode off gas obtained by the temperature sensor 13 provided in the cathode off gas flow path 42, and The stack temperature Tsta may be obtained using any one of the temperatures obtained by the temperature sensor provided inside the fuel cell stack 10. With this configuration, the degree of freedom in the arrangement of the temperature sensor used for measuring the fuel cell stack 10 is improved.
  • the estimated temperature Tref_low * of the reformer low temperature chamber 24A was estimated using the temperature acquired by the temperature sensor 46 provided between the reformer high temperature chamber 24B and the superheater high temperature chamber 23B. However, it is not limited to this.
  • the temperature was measured by a temperature sensor 47 provided downstream of the superheater high temperature chamber 23B and upstream of the evaporator high temperature chamber 22B, or a temperature sensor 48 provided downstream of the evaporator high temperature chamber 22B.
  • the estimated temperature Tref_low * of the reformer low-temperature chamber 24A may be estimated.
  • the controller 90 estimates the temperature of the reformer high temperature chamber 24B using the temperature acquired by the temperature sensor 47 or 48, and estimates the estimated temperature of the reformer low temperature chamber 24A.
  • the temperature may be Tref_low * .
  • the temperature sensors 47 and 48 used for estimating the estimated temperature Tref_low * are provided downstream of the reformer high-temperature chamber 24 ⁇ / b > B in the anode-side exhaust passage 45 and upstream of the junction with the cathode-side exhaust passage 44. Preferably. This is because the temperature of the anode-side exhaust passage 45 changes at the junction with the cathode-side exhaust passage 44.
  • the temperature sensors 47 and 48 used for estimating the estimated temperature Tref_low * may be provided in the anode-side exhaust passage 45 downstream of the reformer high-temperature chamber 24B.
  • the anode-side exhaust passage 45 the lower the temperature, the lower the temperature. Therefore, by providing the temperature sensor downstream, the heat resistance requirement of the temperature sensor can be reduced and the measurement error due to the high temperature state can be reduced.
  • a casing 49 that accommodates the fuel cell 10, the evaporator 22, the superheater 23, the reformer 24, and the air heat exchanger 32 in the fuel cell system 100 is shown by a dotted line.
  • the inside of the casing 49 becomes high temperature by the power generation of the fuel cell 10, but the outside of the casing 49 becomes relatively low temperature.
  • a unit 51 in which the evaporator 22, the superheater 23, and the reformer 24 are integrated may be provided. Specifically, it is configured such that a catalyst used for reforming is provided downstream of a heat-exchangeable point of the anode system in one unit.
  • the temperature of the unit high-temperature chamber 51B is measured using a temperature sensor 52 provided downstream of the unit high-temperature chamber 51B or a temperature sensor 53 provided inside the unit high-temperature chamber 51B, and the temperature is measured.
  • the estimated temperature Tref_low * corresponding to the reformer low temperature chamber 24A may be used.
  • the temperature sensors 52 and 53 are provided on the downstream side of the portion corresponding to the reformer of the unit 51, and when the gas flows through the cathode exhaust path 44, the temperature sensors 52 and 53
  • the temperature of the exhaust gas or the temperature downstream of the reformer 24 in the unit 51 can be obtained.
  • a temperature corresponding to the reformer high temperature chamber 24B in the unit high temperature chamber 51B is estimated, and the estimated temperature is estimated to correspond to the reformer low temperature chamber 24A in the unit low temperature chamber 51A. It may be Tref_low * .
  • the temperature sensor 62 provided downstream of the unit high-temperature chamber 61B and the temperature sensor 63 provided inside the unit high-temperature chamber 61B are used to form the reformer 24 integrated with the anode electrode.
  • the temperature may be estimated.
  • the temperature of the anode offgas obtained by the temperature sensor 12 provided in the anode offgas flow path 41, the temperature of the cathode offgas obtained by the temperature sensor 13 provided in the cathode offgas flow path 42, and the inside of the fuel cell stack 10 The temperature of the reformer 24 integrated with the anode can be estimated by using the temperature obtained by any of the temperature sensors provided in the above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell system control method is a method for controlling a fuel cell system provided with a fuel cell, a combustor, a reformer, and a cathode gas supply means for supplying a cathode gas to the fuel cell. The reformer has a high-temperature chamber through which a gas from the combustor flows and a low-temperature chamber for reforming a supplied fuel into an anode gas and supplying the anode gas to the fuel cell, and is configured so as to be able to perform a thermal exchange between the high-temperature chamber and the low-temperature chamber. The control method has: a start-up determination step for determining whether start-up is a hot restart or not; a supply step for, when it is determined in the start-up determination step that the start-up is the hot restart, supplying the gas from the combustor to the high-temperature chamber in a state in which the supply of a fluid to the low-temperature chamber is stopped; and an estimation step for estimating the temperature of the low-temperature chamber in accordance with the temperature of the gas flowing through the high-temperature chamber.

Description

燃料電池システムの制御方法、及び、燃料電池システムFuel cell system control method and fuel cell system
 本発明は、燃料電池システムの制御方法、及び、燃料電池システムに関するものである。 The present invention relates to a control method for a fuel cell system and a fuel cell system.
 改質器において燃料を改質してアノードガスを生成し、生成したアノードガスとカソードガスとを反応させて発電を行う燃料電池システムが知られている。このような燃料電池システムにおいては、システムの起動時などで改質器の温度が改質可能な温度まで達していない場合には、改質器において燃料の改質が十分に進行しないことがある。このような場合には、未改質の燃料が燃料電池スタックに流入してしまい、アノード側の電極において炭素が析出してしまうおそれがある。 2. Description of the Related Art There is known a fuel cell system in which a fuel is reformed in a reformer to generate anode gas, and the generated anode gas and cathode gas are reacted to generate power. In such a fuel cell system, when the temperature of the reformer has not reached the temperature at which the reformer can be reformed, for example, at the time of starting the system, the reforming of the fuel may not proceed sufficiently in the reformer. . In such a case, unreformed fuel may flow into the fuel cell stack, and carbon may be deposited on the anode side electrode.
 例えば、JP2009-51712Aには、燃料電池スタックにおいて、改質器の内部に温度センサを備え、システムの起動時に当該温度センサにより取得される改質器の内部の温度に応じてアノードガスの流量を制御することで、未改質の燃料が供給されるのを抑制する技術が開示されている。 For example, JP2009-51712A includes a temperature sensor inside a reformer in a fuel cell stack, and adjusts a flow rate of an anode gas in accordance with a temperature inside the reformer obtained by the temperature sensor when the system is started. A technique for controlling the supply of unreformed fuel by controlling the same is disclosed.
 JP2009-51712Aの技術によれば、改質器の内部に温度センサを設ける必要がある。しかしながら、温度センサの信頼性や堅牢性の点から改質器の内部に温度センサを設けるのは好ましくない。そこで、改質器の上流から空気などのガスを流入させて、改質器から排出されるガスの温度を改質器の下流側に設けた温度センサにより取得する方法が知られている。この方法によれば、改質器の内部の温度と改質器の下流から排出されるガスの温度とは略等しくなるので、改質器の外部に設けられる温度センサによって改質器の内部の温度を取得することができる。 According to JP2009-51712A, it is necessary to provide a temperature sensor inside the reformer. However, it is not preferable to provide a temperature sensor inside the reformer in view of the reliability and robustness of the temperature sensor. Therefore, a method is known in which a gas such as air is introduced from the upstream of the reformer, and the temperature of the gas discharged from the reformer is obtained by a temperature sensor provided on the downstream side of the reformer. According to this method, the temperature inside the reformer is substantially equal to the temperature of the gas discharged from the downstream of the reformer. The temperature can be obtained.
 しかしながら、システム停止直後の再起動時(ホットリスタート時)においては、燃料電池スタックが高温であるため、改質器に空気などのガスを供給してしまうと燃料電池スタックにも流入してしまい、燃料電池スタックのアノード極が酸化劣化するおそれがある。そのため、改質器の内部に温度センサを設けることなく、改質器の内部の温度を推定しなければならないという課題がある。 However, at the time of restart immediately after the system is stopped (at the time of hot restart), since the fuel cell stack is at a high temperature, if gas such as air is supplied to the reformer, it flows into the fuel cell stack. As a result, the anode of the fuel cell stack may be oxidized and deteriorated. Therefore, there is a problem that the temperature inside the reformer must be estimated without providing a temperature sensor inside the reformer.
 本発明はこのような課題を解決するために発明されたものであり、ホットリスタート時において、改質器の内部に温度センサを設けることなく、改質器の内部の温度を推定することを目的とする。 The present invention has been made to solve such a problem, and at the time of hot restart, it is necessary to estimate the temperature inside the reformer without providing a temperature sensor inside the reformer. Aim.
 本発明のある態様の燃料電池システムの制御方法によれば、燃料電池と、燃焼器と、改質器と、カソードガスを燃料電池に供給するカソードガス供給手段と、を備える燃料電池システムの制御方法である。改質器は、燃焼器からのガスが流れる高温室と、供給される燃料をアノードガスに改質し、該アノードガスを燃料電池に供給する低温室とを有し、高温室と低温室との間で熱交換可能に構成される。制御方法は、起動がホットリスタートであるか否かを判定する起動判定ステップと、起動判定ステップにおいて起動がホットリスタートであると判定される場合に、低温室への流体の供給を停止させた状態で、燃焼器からのガスを高温室に供給する供給ステップと、高温室を流れるガスの温度に応じて、低温室の推定温度を推定する推定ステップと、を有する。 According to a control method of a fuel cell system of an aspect of the present invention, control of a fuel cell system including a fuel cell, a combustor, a reformer, and cathode gas supply means for supplying cathode gas to the fuel cell Is the way. The reformer has a high-temperature chamber through which gas from the combustor flows, and a low-temperature chamber that reforms supplied fuel to anode gas and supplies the anode gas to the fuel cell. It is configured to be able to exchange heat between. The control method includes: a start determination step for determining whether the start is a hot restart; and, when the start is determined to be a hot restart in the start determination step, the supply of the fluid to the low-temperature chamber is stopped. A supply step of supplying gas from the combustor to the high-temperature chamber in a state where the gas flows through the high-temperature chamber, and an estimation step of estimating an estimated temperature of the low-temperature chamber according to the temperature of the gas flowing through the high-temperature chamber.
図1は、第1実施形態に係る燃料電池システムの概略構成図である。FIG. 1 is a schematic configuration diagram of the fuel cell system according to the first embodiment. 図2は、燃料電池システムの起動制御を示すフローチャートである。FIG. 2 is a flowchart showing the startup control of the fuel cell system. 図3は、第2実施形態に係る燃料電池システムの概略構成図である。FIG. 3 is a schematic configuration diagram of the fuel cell system according to the second embodiment. 図4は、燃料電池システムの起動制御を示すフローチャートである。FIG. 4 is a flowchart showing the startup control of the fuel cell system. 図5は、第1変形例における燃料電池システムの概略構成図である。FIG. 5 is a schematic configuration diagram of a fuel cell system according to a first modification. 図6は、第2変形例における燃料電池システムの概略構成図である。FIG. 6 is a schematic configuration diagram of a fuel cell system according to a second modification. 図7は、第3変形例における燃料電池システムの概略構成図である。FIG. 7 is a schematic configuration diagram of a fuel cell system according to a third modification. 図8は、第4変形例における燃料電池システムの概略構成図である。FIG. 8 is a schematic configuration diagram of a fuel cell system according to a fourth modification.
 以下、図面を参照して、本発明の実施形態に係る燃料電池システムについて説明する。 Hereinafter, a fuel cell system according to an embodiment of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態に係る燃料電池システム100の概略構成図である。
(1st Embodiment)
FIG. 1 is a schematic configuration diagram of a fuel cell system 100 according to the first embodiment of the present invention.
 燃料電池スタック10は、複数の燃料電池または燃料電池単位セルを積層して構成され、発電源である個々の燃料電池は、例えば、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。燃料電池スタック10は、アノード流路20を介して供給されるアノードガスと、カソード流路30を介して供給されるカソードガスとを用いて発電を行う。燃料電池スタック10には、スタック表面の温度を測定する温度センサ11が設けられている。 The fuel cell stack 10 is configured by stacking a plurality of fuel cells or fuel cell unit cells, and each fuel cell that is a power generation source is, for example, a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell). . The fuel cell stack 10 performs power generation using the anode gas supplied through the anode flow path 20 and the cathode gas supplied through the cathode flow path 30. The fuel cell stack 10 is provided with a temperature sensor 11 for measuring the temperature of the stack surface.
 燃料電池スタック10において反応済みのアノードガスは、アノードオフガス流路41からアノードオフガスとして排出され、反応済みのカソードガスは、カソードオフガス流路42からカソードオフガスとして排出される。アノードオフガスとカソードオフガスとは、排気燃焼器43において酸化触媒反応(燃焼)される。燃焼により生じる高温の排気は、カソード側排気路44、及び、カソード側排気路44から分岐するアノード側排気路45を介して、外部へ排出される。カソード側排気路44及びアノード側排気路45は、排気燃焼器43における燃焼後の高温の排気がその内部を通る。そのため、後述のように、熱交換によって隣接する構成の温度を上昇させることができる。 The anode gas that has been reacted in the fuel cell stack 10 is discharged from the anode off-gas passage 41 as anode off-gas, and the reacted cathode gas is discharged from the cathode off-gas passage 42 as cathode off-gas. The anode off-gas and the cathode off-gas undergo an oxidation catalytic reaction (combustion) in the exhaust combustor 43. The high-temperature exhaust gas generated by the combustion is discharged to the outside via a cathode-side exhaust passage 44 and an anode-side exhaust passage 45 branched from the cathode-side exhaust passage 44. The high temperature exhaust gas after combustion in the exhaust combustor 43 passes through the cathode side exhaust path 44 and the anode side exhaust path 45. Therefore, as described later, the temperature of the adjacent components can be increased by heat exchange.
 アノード流路20は、燃料電池スタック10のアノード極に還元剤ガスとしての燃料(例えば水素)を供給する系統である。アノード流路20には、燃料タンク21、蒸発器22、過熱器23、及び、改質器24が設けられている。蒸発器22、過熱器23、及び、改質器24は、それぞれ、低温室と高温室とを備え、高温室を流れる高温の排気を用いた熱交換によって、低温室の温度が上昇するように構成されている。 The anode flow path 20 is a system that supplies fuel (for example, hydrogen) as a reducing agent gas to the anode of the fuel cell stack 10. The anode flow path 20 is provided with a fuel tank 21, an evaporator 22, a superheater 23, and a reformer 24. The evaporator 22, the superheater 23, and the reformer 24 each include a low-temperature chamber and a high-temperature chamber, and heat exchange using high-temperature exhaust gas flowing through the high-temperature chamber so that the temperature of the low-temperature chamber increases. It is configured.
 燃料タンク21は、含水エタノールなどの液体燃料を蓄えており、液体燃料を蒸発器22の蒸発器低温室22Aに供給する。蒸発器低温室22Aは、液体燃料を加熱により蒸発させて燃料ガスを生成し、生成した燃料ガスを過熱器23の過熱器低温室23Aへ供給する。過熱器低温室23Aは、燃料ガスをさらに過熱し、温度が上昇した燃料ガスを改質器24の改質器低温室24Aに供給する。改質器低温室24Aは、燃料ガスに対して改質を行うことでアノードガスを生成し、アノードガスを燃料電池スタック10のアノード極に供給する。 (4) The fuel tank 21 stores liquid fuel such as hydrous ethanol, and supplies the liquid fuel to the evaporator low-temperature chamber 22A of the evaporator 22. The evaporator low temperature chamber 22A evaporates the liquid fuel by heating to generate a fuel gas, and supplies the generated fuel gas to the superheater low temperature chamber 23A of the superheater 23. The superheater low-temperature chamber 23A further heats the fuel gas and supplies the fuel gas whose temperature has increased to the reformer low-temperature chamber 24A of the reformer 24. The reformer low temperature chamber 24A generates an anode gas by reforming the fuel gas, and supplies the anode gas to the anode electrode of the fuel cell stack 10.
 詳細には、蒸発器22は、隣接する蒸発器低温室22Aと蒸発器高温室22Bとを備える。蒸発器低温室22Aと蒸発器高温室22Bとは隔離されており、両者は連通していない。蒸発器低温室22Aはアノード流路20の一部であり、蒸発器高温室22Bはアノード側排気路45の一部である。排気燃焼器43からの高温の排気が蒸発器高温室22Bを通過すると、熱交換によって蒸発器低温室22Aの温度が上昇し、蒸発器低温室22Aに供給される液体燃料が蒸発して燃料ガスが生成される。 Specifically, the evaporator 22 includes an adjacent evaporator low temperature chamber 22A and an evaporator high temperature chamber 22B. The low-temperature evaporator chamber 22A and the high-temperature evaporator chamber 22B are isolated from each other, and are not in communication with each other. The evaporator low temperature chamber 22A is a part of the anode flow path 20, and the evaporator high temperature chamber 22B is a part of the anode side exhaust passage 45. When the high-temperature exhaust gas from the exhaust combustor 43 passes through the high-temperature evaporator chamber 22B, the temperature of the low-temperature evaporator chamber 22A rises due to heat exchange, and the liquid fuel supplied to the low-temperature evaporator chamber 22A evaporates to produce fuel gas. Is generated.
 過熱器23は、隔離されて隣接する過熱器低温室23Aと過熱器高温室23Bとを備える。過熱器高温室23Bを排気燃焼器43からの高温の排気が通ると、熱交換によって過熱器低温室23Aの温度が上昇する。同様に、改質器24は、熱交換可能な、改質器低温室24Aと改質器高温室24Bとを備える。また、改質器低温室24Aよりも下流側のアノード流路20には、改質器低温室24Aから排出されるガスの温度を測定する温度センサ25が設けられている。 (4) The superheater 23 includes a superheater low-temperature chamber 23A and a superheater high-temperature chamber 23B which are isolated and adjacent to each other. When high-temperature exhaust gas from the exhaust combustor 43 passes through the superheater high-temperature chamber 23B, the temperature of the superheater low-temperature chamber 23A increases due to heat exchange. Similarly, the reformer 24 includes a reformer low-temperature chamber 24A and a reformer high-temperature chamber 24B that can exchange heat. Further, a temperature sensor 25 for measuring the temperature of the gas discharged from the low-temperature reformer chamber 24A is provided in the anode flow path 20 downstream of the low-temperature reformer chamber 24A.
 アノード流路20においては、燃料タンク21と蒸発器低温室22Aとの間に弁26が設けられており、弁26によってアノード流路20への燃料の供給が制御される。さらに、アノード流路20においては、燃料タンク21と弁26との間から分岐し排気燃焼器43へと接続される燃料分岐路27が設けられている。燃料分岐路27には弁28が設けられている。起動時などに弁28を開くことにより、排気燃焼器43に液体燃料が供給されると、液体燃料の酸化触媒反応によって燃料電池システム100の暖機を行うことができる。 In the anode flow path 20, a valve 26 is provided between the fuel tank 21 and the evaporator low-temperature chamber 22A, and the supply of fuel to the anode flow path 20 is controlled by the valve 26. Further, the anode flow path 20 is provided with a fuel branch path 27 that branches from between the fuel tank 21 and the valve 26 and is connected to the exhaust combustor 43. The fuel branch passage 27 is provided with a valve 28. When the liquid fuel is supplied to the exhaust combustor 43 by opening the valve 28 at the time of startup or the like, the fuel cell system 100 can be warmed up by an oxidation catalytic reaction of the liquid fuel.
 カソード流路30は、燃料電池スタック10のカソード極にカソードガス(本実施形態では空気)を供給する系統である。カソード流路30には、ブロワ31と、空気熱交換器32とが設けられている。 The cathode flow path 30 is a system for supplying a cathode gas (air in this embodiment) to the cathode of the fuel cell stack 10. A blower 31 and an air heat exchanger 32 are provided in the cathode channel 30.
 ブロワ31は、燃料電池システム100の外からカソードガスを取り込み、そのカソードガスを空気熱交換器32に供給する。ブロワ31は、カソードガス供給手段の一例である。 The blower 31 takes in the cathode gas from outside the fuel cell system 100 and supplies the cathode gas to the air heat exchanger 32. The blower 31 is an example of a cathode gas supply unit.
 空気熱交換器32は、蒸発器22などと同様に、隔離されて隣接する空気熱交換器低温室32Aと空気熱交換器高温室32Bとを備える。空気熱交換器低温室32Aはカソード流路30の一部であり、空気熱交換器高温室32Bはカソード側排気路44の一部である。排気燃焼器43からの高温の排気が空気熱交換器高温室32Bを通過すると、熱交換によって空気熱交換器低温室32Aの温度が上昇される。これにより、空気熱交換器高温室32Bによって昇温されたカソードガスが燃料電池スタック10のカソード極に供給される。 The air heat exchanger 32 includes an air heat exchanger low temperature chamber 32A and an air heat exchanger high temperature chamber 32B which are separated and adjacent to each other, like the evaporator 22 and the like. The air heat exchanger low temperature chamber 32A is a part of the cathode channel 30, and the air heat exchanger high temperature chamber 32B is a part of the cathode side exhaust passage 44. When the high-temperature exhaust gas from the exhaust combustor 43 passes through the air heat exchanger high temperature chamber 32B, the temperature of the air heat exchanger low temperature chamber 32A is increased by heat exchange. Thus, the cathode gas heated by the air heat exchanger high temperature chamber 32B is supplied to the cathode of the fuel cell stack 10.
 カソード流路30においては、ブロワ31の起動/停止や回転数を制御することによって燃料電池スタック10に供給されるカソードガスの流量を制御できる。さらに、燃料電池システム100には、ブロワ31と空気熱交換器低温室32Aとの間のカソード流路30から分岐し、過熱器23の上流のアノード流路20へと接続されるカソード分岐路33が設けられている。 (4) In the cathode channel 30, the flow rate of the cathode gas supplied to the fuel cell stack 10 can be controlled by controlling the start / stop and the rotation speed of the blower 31. Further, the fuel cell system 100 includes a cathode branch passage 33 branched from the cathode passage 30 between the blower 31 and the air heat exchanger low-temperature chamber 32A and connected to the anode passage 20 upstream of the superheater 23. Is provided.
 カソード分岐路33には弁34が設けられている。弁34が開かれると、カソードガスが、過熱器低温室23Aを介して改質器低温室24Aに流れる。これにより、温度センサ25によって改質器低温室24Aから排出される排気の温度を測定することで、改質器低温室24Aの内部の温度Tref_lowを取得することができる。 弁 A valve 34 is provided in the cathode branch passage 33. When the valve 34 is opened, the cathode gas flows to the reformer low temperature chamber 24A via the superheater low temperature chamber 23A. Thus, the temperature Tref_low inside the reformer low temperature chamber 24A can be obtained by measuring the temperature of the exhaust gas discharged from the reformer low temperature chamber 24A by the temperature sensor 25.
 カソード分岐路33とアノード流路20との接続は、過熱器23の上流に限られず、改質器24よりも上流であれば任意の位置でよい。改質器低温室24Aにカソードガスが流れれば、改質器低温室24Aの内部の温度を取得できる。また、アノード側排気路45においては、改質器高温室24Bの下流に温度センサ46が設けられている。この温度センサ46によって、改質器高温室24Bの温度を取得することができる。 The connection between the cathode branch passage 33 and the anode passage 20 is not limited to the upstream of the superheater 23, but may be at any position as long as it is upstream of the reformer 24. If the cathode gas flows through the reformer low temperature chamber 24A, the temperature inside the reformer low temperature chamber 24A can be obtained. In the anode side exhaust passage 45, a temperature sensor 46 is provided downstream of the reformer high temperature chamber 24B. The temperature of the reformer high-temperature chamber 24B can be acquired by the temperature sensor 46.
 燃料電池システム100は、コントローラ90を備えている。コントローラ90は、弁26、28、34、及び、ブロワ31の制御や、温度センサ11、25、46による温度の取得などを行う。コントローラ90は、記憶されているプログラムを実行することにより、燃料電池システム100を制御する。 The fuel cell system 100 includes the controller 90. The controller 90 controls the valves 26, 28, 34 and the blower 31, and obtains temperatures by the temperature sensors 11, 25, 46. The controller 90 controls the fuel cell system 100 by executing a stored program.
 図2は、燃料電池システム100の起動制御を示すフローチャートである。本起動制御の前において、アノード系統における弁26、28、及び、カソード系統における弁34が閉じられ、さらに、ブロワ31は停止しているものとする。 FIG. 2 is a flowchart showing start-up control of the fuel cell system 100. Before the start-up control, it is assumed that the valves 26 and 28 in the anode system and the valve 34 in the cathode system are closed, and the blower 31 is stopped.
 ステップS1において、コントローラ90は、起動操作を受け付ける。 In step S1, the controller 90 accepts a start operation.
 ステップS2において、コントローラ90は、ステップS1における起動操作が、終了操作直後の再起動であるホットリスタートに該当するか否かを判定する。具体的には、コントローラ90は、温度センサ11により測定される燃料電池スタック10の表面温度から、燃料電池スタック10の内部のスタック温度Tstaを推定する。 In step S2, the controller 90 determines whether or not the start operation in step S1 corresponds to a hot restart that is a restart immediately after the end operation. Specifically, the controller 90 estimates the stack temperature Tsta inside the fuel cell stack 10 from the surface temperature of the fuel cell stack 10 measured by the temperature sensor 11.
 そして、コントローラ90は、スタック温度Tstaがホットリスタートの判定温度Th以上である場合には、ホットリスタートであると判定する。ここで、判定温度Thは、アノード極で酸化劣化が生じるおそれのある下限温度であり、例えば400度程度であるものとする。コントローラ90は、スタック温度Tstaが判定温度Thよりも低い場合には、ホットリスタートではなく通常起動であると判定する。 {Circle around (5)} When the stack temperature Tsta is equal to or higher than the hot restart determination temperature Th, the controller 90 determines that the hot restart has occurred. Here, the determination temperature Th is a lower limit temperature at which oxidation deterioration may occur at the anode electrode, and is, for example, about 400 degrees. When the stack temperature Tsta is lower than the determination temperature Th, the controller 90 determines that normal startup is performed instead of hot restart.
 ホットリスタートの判定は、スタック温度Tstaを用いずに他の方法によりなされてもよい。例えば、燃料電池システム100が停止処理中に再始動を受け付けた場合には、ホットリスタートであると判定してもよい。燃料電池システム100の停止処理において酸化劣化を抑制するためにアノード極の酸化剤置換を行う場合には、置換が完了していない時に停止処理中であると判断してもよい。また、燃料電池システム100の終了後からの所定の経過時間内において再始動を受け付けた場合には、ホットリスタートの起動であると判定してもよい。 The determination of hot restart may be made by another method without using the stack temperature Tsta. For example, when the fuel cell system 100 receives a restart during the stop processing, it may be determined that the restart is a hot restart. In the case where the oxidant replacement of the anode electrode is performed in order to suppress the oxidative deterioration in the stop processing of the fuel cell system 100, it may be determined that the stop processing is being performed when the replacement is not completed. In addition, when restart is received within a predetermined elapsed time after the end of the fuel cell system 100, it may be determined that hot restart has been started.
 ホットリスタートであると判定された場合には(S2:Yes)、コントローラ90は、ホットリスタートの起動制御を行うために、ステップS9の処理を行う。ホットリスタートではないと判定される場合には(S2:No)、コントローラ90は、通常の起動制御を行うために、ステップS3の処理を行う。なお、ステップS2の処理は、起動判定ステップの一例である。 If it is determined that the restart is a hot restart (S2: Yes), the controller 90 performs the process of step S9 in order to control the start of the hot restart. If it is determined that it is not a hot restart (S2: No), the controller 90 performs the process of step S3 to perform normal startup control. Note that the process in step S2 is an example of a startup determination step.
 ステップS3においては、燃料電池スタック10のアノード極に、カソードガスの供給が開始される。通常起動時には燃料電池スタック10は低温であるため、アノード極にカソードガスが流入しても、アノードガスが酸化劣化することはない。 In step S3, the supply of the cathode gas to the anode of the fuel cell stack 10 is started. During normal startup, the temperature of the fuel cell stack 10 is low, so that even if the cathode gas flows into the anode, the anode gas is not oxidized and deteriorated.
 コントローラ90は、ブロワ31を起動し、弁34を開けると、外部から取り込まれるカソードガスが、カソード分岐路33を介して、過熱器低温室23A、及び、改質器低温室24Aへと流れ、改質器低温室24Aを通過する。同時に、カソードガスは、カソード流路30を介して燃料電池スタック10に供給される。燃料電池スタック10は発電を開始していないので、カソードガスは、カソードオフガス流路42を介して排気燃焼器43に供給される。 When the controller 90 activates the blower 31 and opens the valve 34, the cathode gas taken in from the outside flows through the cathode branch passage 33 to the superheater low temperature chamber 23A and the reformer low temperature chamber 24A, It passes through the reformer low temperature chamber 24A. At the same time, the cathode gas is supplied to the fuel cell stack 10 via the cathode channel 30. Since the fuel cell stack 10 has not started power generation, the cathode gas is supplied to the exhaust combustor 43 via the cathode offgas flow path 42.
 ステップS4において、コントローラ90は、温度センサ25によって測定される改質器低温室24Aからの排気の温度を、改質器低温室24Aの内部の温度Tref_lowとして取得する。なお、ステップS4の処理は、温度取得ステップの一例であり、温度センサ25は第2温度センサの一例である。 In step S4, the controller 90 acquires the temperature of the exhaust gas from the low-temperature reformer chamber 24A measured by the temperature sensor 25 as the temperature Tref_low inside the low-temperature reformer chamber 24A. The processing in step S4 is an example of a temperature acquisition step, and the temperature sensor 25 is an example of a second temperature sensor.
 ステップS5において、コントローラ90は、温度Tref_lowが、改質器24において改質反応が進行する改質温度Tref_th以上か否かを判定する。そして、温度Tref_lowが、改質温度Tref_th以上である場合には(S5:Yes)、コントローラ90は、改質器24が改質可能であり燃料を供給できると判断し、発電を開始するためにステップS7の処理を行う。温度Tref_lowが、改質温度Tref_thよりも低い場合には(S5:No)、コントローラ90は、改質器24が十分に高温ではないと判断して、ステップS6の処理を行う。 In step S5, the controller 90 determines whether or not the temperature Tref_low is equal to or higher than the reforming temperature Tref_th at which the reforming reaction proceeds in the reformer 24. If the temperature Tref_low is equal to or higher than the reforming temperature Tref_th (S5: Yes), the controller 90 determines that the reformer 24 is capable of reforming and can supply fuel, and starts the power generation. Step S7 is performed. When the temperature Tref_low is lower than the reforming temperature Tref_th (S5: No), the controller 90 determines that the reformer 24 is not sufficiently high, and performs the process of step S6.
 温度Tref_lowが、改質温度Tref_thよりも低い場合には(S5:No)、ステップS6において、コントローラ90は、弁28を開き、燃料分岐路27を介して液体燃料を排気燃焼器43に供給する。排気燃焼器43においては、液体燃料が酸化触媒反応されて発熱する。ステップS3においてブロワ31が起動され、排気燃焼器43へのカソードガスの供給が開始されているので、排気燃焼器43からは高温の排気が排出される。 If the temperature Tref_low is lower than the reforming temperature Tref_th (S5: No), the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch 27 in step S6. . In the exhaust combustor 43, the liquid fuel undergoes an oxidation catalytic reaction to generate heat. Since the blower 31 is activated in step S3 and the supply of the cathode gas to the exhaust combustor 43 has been started, high-temperature exhaust is discharged from the exhaust combustor 43.
 排気燃焼器43からの高温の排気は、アノード側排気路45を介して改質器高温室24Bに供給されると、改質器高温室24Bと改質器低温室24Aとの間の熱交換によって、改質器低温室24Aが加熱される。これにより、改質器低温室24Aの温度Tref_lowを上昇させることができる。なお、同様に、蒸発器低温室22A、及び、過熱器低温室23Aも排気との熱交換により加熱される。このように、ステップS6においては、排気燃焼器43から排出される高温の排気を用いて、蒸発器低温室22A、過熱器低温室23A、及び、改質器低温室24Aの暖機が行われることになる。 When the high-temperature exhaust gas from the exhaust combustor 43 is supplied to the high-temperature reformer chamber 24B via the anode-side exhaust path 45, heat exchange between the high-temperature reformer chamber 24B and the low-temperature reformer chamber 24A is performed. Thereby, the reformer low temperature chamber 24A is heated. Thus, the temperature Tref_low of the reformer low temperature chamber 24A can be increased. Similarly, the evaporator low temperature chamber 22A and the superheater low temperature chamber 23A are also heated by heat exchange with the exhaust gas. As described above, in step S6, the high-temperature exhaust gas discharged from the exhaust combustor 43 is used to warm up the low-temperature evaporator chamber 22A, the low-temperature superheater chamber 23A, and the low-temperature reformer chamber 24A. Will be.
 温度Tref_lowが、改質温度Tref_th以上である場合には(S5:Yes)、ステップS7において、コントローラ90は、弁26を開き、燃料タンク21に蓄えられている液体燃料をアノード流路20へと供給する。蒸発器低温室22A、及び、過熱器低温室23Aは、改質器低温室24Aの温度Tref_lowと同様に、温度が高い。そのため、燃料タンク21から供給される液体燃料は、蒸発器低温室22Aにて蒸発し、過熱器低温室23Aにて過熱され、改質器低温室24Aにて改質されて、アノードガスとして燃料電池スタック10のアノード極に供給される。なお、ステップS6の処理を経てステップS7に至る場合には、弁28を閉じて、液体燃料の排気燃焼器43への供給を終了してもよい。 When the temperature Tref_low is equal to or higher than the reforming temperature Tref_th (S5: Yes), in step S7, the controller 90 opens the valve 26 and transfers the liquid fuel stored in the fuel tank 21 to the anode flow path 20. Supply. The evaporator low temperature chamber 22A and the superheater low temperature chamber 23A have a high temperature similarly to the temperature Tref_low of the reformer low temperature chamber 24A. Therefore, the liquid fuel supplied from the fuel tank 21 evaporates in the evaporator low-temperature chamber 22A, is superheated in the superheater low-temperature chamber 23A, is reformed in the reformer low-temperature chamber 24A, and becomes fuel gas as anode gas. It is supplied to the anode of the battery stack 10. When the process proceeds to step S7 after the process of step S6, the valve 28 may be closed to terminate the supply of the liquid fuel to the exhaust combustor 43.
 さらに、ステップS8において、コントローラ90は、燃料電池スタック10に対して発電開始を指示すると、アノードガスとカソードガスとの供給を受けた燃料電池スタック10が発電を開始する。なお、この段階で、弁34を閉じて、アノード極へのカソードガスの供給を停止してもよい。ステップS8は、発電開始ステップの一例である。 (4) In step S8, when the controller 90 instructs the fuel cell stack 10 to start power generation, the fuel cell stack 10 supplied with the anode gas and the cathode gas starts power generation. At this stage, the supply of the cathode gas to the anode may be stopped by closing the valve 34. Step S8 is an example of a power generation start step.
 一方、ステップS9においては、ホットリスタートの起動制御が行われ、コントローラ90は、ブロワ31を起動させて、カソードガスを燃料電池スタック10のカソード極に供給する。この時点では燃料電池10は発電を行っていないので、カソード側排気路44を介してカソードガスが改質器高温室24Bに供給されると、カソードオフガス流路42からはカソードガスが排出される。そして、改質器高温室24Bの下流に設けられる温度センサ46は、改質器高温室24Bからの排気の温度を、改質器高温室24Bの内部の温度Tref_highとして取得する。ステップS9は、供給ステップの一例である。 On the other hand, in step S9, activation control of hot restart is performed, and the controller 90 activates the blower 31 to supply the cathode gas to the cathode of the fuel cell stack 10. At this time, since the fuel cell 10 is not generating power, when the cathode gas is supplied to the high-temperature reformer chamber 24B via the cathode-side exhaust passage 44, the cathode gas is discharged from the cathode off-gas passage 42. . And the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B acquires the temperature of the exhaust gas from the reformer high temperature chamber 24B as the temperature Tref_high inside the reformer high temperature chamber 24B. Step S9 is an example of a supply step.
 ステップS10において、コントローラ90は、温度Tref_highを用いて改質器低温室24Aの推定温度Tref_low*を推定する。ステップS10は、推定ステップの一例である。 In step S10, the controller 90 estimates an estimated temperature Tref_low * of the reformer low temperature chamber 24A using the temperature Tref_high. Step S10 is an example of an estimation step.
 ホットリスタート時においては弁26、34が閉じられているので、改質器低温室24Aには流体が流れない。そのため、改質器低温室24Aと改質器高温室24Bとの熱交換が進行せず、改質器低温室24Aの温度は、改質器高温室24Bを流れる排気の温度と略一致する。 (4) At the time of hot restart, the fluid does not flow into the low-temperature reformer chamber 24A because the valves 26 and 34 are closed. Therefore, heat exchange between the reformer low temperature chamber 24A and the reformer high temperature chamber 24B does not proceed, and the temperature of the reformer low temperature chamber 24A substantially matches the temperature of the exhaust gas flowing through the reformer high temperature chamber 24B.
 そこで、コントローラ90は、温度センサ46により取得される改質器高温室24Bの温度Tref_highを、改質器低温室24Aの推定温度Tref_low*であると推定する。なお、コントローラ90は、改質器高温室24Bの温度に対して、改質器低温室24Aと改質器高温室24Bとの熱交換比率により定まる温度差を考慮して、推定温度Tref_low*を推定してもよい。 Therefore, the controller 90 estimates the temperature Tref_high of the reformer high temperature chamber 24B acquired by the temperature sensor 46 as the estimated temperature Tref_low * of the reformer low temperature chamber 24A. The controller 90 calculates the estimated temperature Tref_low * with respect to the temperature of the reformer high-temperature chamber 24B in consideration of the temperature difference determined by the heat exchange ratio between the reformer low-temperature chamber 24A and the reformer high-temperature chamber 24B. It may be estimated.
 ステップS11において、コントローラ90は、推定温度Tref_low*が改質温度Tref_thよりも高いか否かを判定する。そして、推定温度Tref_low*が改質温度Tref_thよりも高い場合には(S11:Yes)、コントローラ90は、改質可能であると判断し、ステップS7の処理を行う。推定温度Tref_low*が改質温度Tref_th以下である場合には(S11:No)、コントローラ90は、改質が適切になされず未改質の燃料が燃料電池スタック10へ流入するおそれがあると判断し、ステップS12の処理を行う。 In step S11, the controller 90 determines whether or not the estimated temperature Tref_low * is higher than the reforming temperature Tref_th. If the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 determines that reforming is possible, and performs the process of step S7. When the estimated temperature Tref_low * is equal to or lower than the reforming temperature Tref_th (S11: No), the controller 90 determines that the reforming is not properly performed and unreformed fuel may flow into the fuel cell stack 10. Then, the process of step S12 is performed.
 ステップS12においては、コントローラ90は、弁28を開き、燃料分岐路27を介して液体燃料を排気燃焼器43に供給する。排気燃焼器43においては、液体燃料が酸化触媒反応により燃焼される。ステップS9においてブロワ31が起動されており、カソードガスの供給が開始されているので、排気燃焼器43からは高温の排気が排出される。排気燃焼器43からの高温の排気が、アノード側排気路45を介して改質器高温室24Bに供給されると、改質器高温室24Bと改質器低温室24Aとの間の熱交換によって、改質器低温室24Aが加熱される。これにより、改質器低温室24Aの温度Tref_lowを上昇させることができる。そして、コントローラ90は、次に、ステップS9の処理に戻る。 In step S12, the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch 27. In the exhaust combustor 43, the liquid fuel is burned by an oxidation catalytic reaction. In step S9, since the blower 31 has been activated and the supply of the cathode gas has been started, high-temperature exhaust is discharged from the exhaust combustor 43. When high-temperature exhaust gas from the exhaust combustor 43 is supplied to the reformer high-temperature chamber 24B via the anode-side exhaust passage 45, heat exchange between the reformer high-temperature chamber 24B and the reformer low-temperature chamber 24A is performed. Thereby, the reformer low temperature chamber 24A is heated. Thus, the temperature Tref_low of the reformer low temperature chamber 24A can be increased. Then, the controller 90 returns to the process of step S9.
 なお、推定温度Tref_low*が改質温度Tref_thよりも高い場合であって(S11:Yes)、ステップS12の後にステップS7の処理が行われる場合には、ステップS7において、コントローラ90は、弁28を閉じてもよい。 If the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes) and the process of step S7 is performed after step S12, in step S7, the controller 90 sets the valve 28 to ON. May be closed.
 このようにして、コントローラ90は、通常起動と判定する場合には(S2:No)には、改質器低温室24Aにカソードガスを流して温度センサ25によって温度Tref_lowを取得する(S4)。一方、コントローラ90は、ホットリスタートと判定する場合には(S2:Yes)、改質器高温室24Bの下流に設けられる温度センサ46により取得される改質器高温室24Bの温度Tref_highから、改質器低温室24Aの推定温度Tref_low*を推定する(S10)。そして、温度Tref_low又は推定温度Tref_low*が改質温度Tref_thよりも高い場合には(S5:Yes、S11:Yes)、発電を開始する(S7)。このようにすることで、未改質の燃料が燃料電池10に流入するのを防ぐことができる。 In this way, when it is determined that the normal startup is performed (S2: No), the controller 90 causes the cathode gas to flow into the reformer low-temperature chamber 24A and acquires the temperature Tref_low by the temperature sensor 25 (S4). On the other hand, if it is determined that the restart is a hot restart (S2: Yes), the controller 90 calculates the temperature Tref_high of the reformer high-temperature chamber 24B obtained by the temperature sensor 46 provided downstream of the reformer high-temperature chamber 24B. The estimated temperature Tref_low * of the reformer low temperature chamber 24A is estimated (S10). When the temperature Tref_low or the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S5: Yes, S11: Yes), power generation is started (S7). By doing so, it is possible to prevent the unreformed fuel from flowing into the fuel cell 10.
 第1実施形態によれば、以下の効果を得ることができる。 According to the first embodiment, the following effects can be obtained.
 第1実施形態の燃料電池システム100の制御方法によれば、改質器低温室24Aの温度が改質温度Tref_thよりも低い場合に燃料を改質器24に供給すると、未改質の燃料が燃料電池スタック10のアノード極に流入してしまい、炭素析出(コーキング)が生じるおそれがある。そのため、改質器低温室24Aの温度Tref_lowが改質温度Tref_thよりも高い場合に、液体燃料を改質器24に供給する制御を行う必要がある。そこで、改質器低温室24Aの温度Tref_lowを取得する必要がある。 According to the control method of the fuel cell system 100 of the first embodiment, when the fuel is supplied to the reformer 24 when the temperature of the reformer low temperature chamber 24A is lower than the reforming temperature Tref_th, the unreformed fuel becomes unreformed. It may flow into the anode of the fuel cell stack 10 and carbon deposition (caulking) may occur. Therefore, when the temperature Tref_low of the reformer low-temperature chamber 24A is higher than the reforming temperature Tref_th, it is necessary to control the supply of the liquid fuel to the reformer 24. Therefore, it is necessary to obtain the temperature Tref_low of the reformer low temperature chamber 24A.
 ホットリスタートでなく通常起動であると判定される場合には(S2:No)、燃料電池10にカソードガスが流入しても酸化劣化するおそれがない。そこで、コントローラ90は、カソードガスを改質器低温室24Aに供給する(S3)と、改質器低温室24Aの下流に設けられる温度センサ25によって、改質器低温室24Aからの排気の温度を測定し、その測定温度を改質器低温室24Aの内部の温度Tref_lowとして取得する。そして、コントローラ90は、改質器低温室24Aの温度Tref_lowが改質温度Tref_thを上回る場合には(S5:Yes)、改質器24が改質可能な状態になったと判断して、弁26を開き燃料を供給する(S6)。このようにすることで、未改質の燃料が燃料電池10のアノード極に流入することを抑制できる。 (4) If it is determined that the startup is not the hot restart but the normal startup (S2: No), even if the cathode gas flows into the fuel cell 10, there is no risk of oxidative deterioration. Then, the controller 90 supplies the cathode gas to the reformer low temperature chamber 24A (S3), and detects the temperature of the exhaust gas from the reformer low temperature chamber 24A by the temperature sensor 25 provided downstream of the reformer low temperature chamber 24A. Is measured, and the measured temperature is obtained as the temperature Tref_low inside the reformer low temperature chamber 24A. When the temperature Tref_low of the reformer low temperature chamber 24A is higher than the reforming temperature Tref_th (S5: Yes), the controller 90 determines that the reformer 24 is in a reformable state, and the valve 26 Is opened and fuel is supplied (S6). By doing so, it is possible to suppress the unreformed fuel from flowing into the anode of the fuel cell 10.
 燃料電池システム100がホットリスタートであると判定される場合には(S2:Yes)、燃料電池スタック10の温度が高い。そのため、改質器低温室24Aの温度Tref_lowを取得するために、カソードガスを改質器低温室24Aに流して温度センサ25により温度を測定しようとすると、燃料電池10のアノード極にもカソードガスが流入してしまう。燃料電池スタック10の温度が高い場合には、酸化劣化のおそれがあるため、このような高温状態の燃料電池10のアノード極へカソードガスが流入するのは好ましくない。そこで、本実施形態においては、ホットリスタート時には(S2:Yes)、通常起動時のようなカソードガスの改質器低温室24Aへの供給が停止される。 (4) When it is determined that the fuel cell system 100 is a hot restart (S2: Yes), the temperature of the fuel cell stack 10 is high. Therefore, in order to obtain the temperature Tref_low of the reformer low-temperature chamber 24A, the cathode gas is caused to flow through the reformer low-temperature chamber 24A and the temperature is measured by the temperature sensor 25. Will flow in. When the temperature of the fuel cell stack 10 is high, there is a possibility that the fuel cell stack 10 is oxidized and deteriorated. Therefore, it is not preferable that the cathode gas flows into the anode of the fuel cell 10 in such a high temperature state. Therefore, in the present embodiment, at the time of the hot restart (S2: Yes), the supply of the cathode gas to the low temperature chamber 24A of the reformer as in the normal start is stopped.
 ホットリスタート時には、ステップS9において、コントローラ90は、ブロワ31を起動させて、カソードガスを、カソード流路30、カソードオフガス流路42、及び、アノード側排気路45を介して、改質器高温室24Bへと流す。そして、ステップS10においては、改質器高温室24Bの状況に応じて、改質器低温室24Aの推定温度Tref_low*を推定する。このようにすることで、ホットリスタート時において、改質器24の内部に温度センサを設けることなく、改質器24の内部の温度を測定できる。なお、推定温度Tref_low*が改質温度Tref_th以下である場合には(S11:No)、コントローラ90は、改質が適切になされず未改質の燃料が燃料電池スタック10へ流入するおそれがあると判断し、ステップS12によって暖機を行い、改質器低温室24Aの温度を上昇させる。 At the time of the hot restart, in step S9, the controller 90 activates the blower 31 to flow the cathode gas through the cathode flow path 30, the cathode off-gas flow path 42, and the anode-side exhaust path 45 to the reformer high temperature. Flow to room 24B. Then, in step S10, the estimated temperature Tref_low * of the reformer low temperature chamber 24A is estimated according to the state of the reformer high temperature chamber 24B. In this way, at the time of hot restart, the temperature inside the reformer 24 can be measured without providing a temperature sensor inside the reformer 24. If the estimated temperature Tref_low * is equal to or lower than the reforming temperature Tref_th (S11: No), the controller 90 may not perform reforming properly and unreformed fuel may flow into the fuel cell stack 10. Is determined, the warm-up is performed in step S12, and the temperature of the reformer low temperature chamber 24A is increased.
 第1実施形態の燃料電池システム100の制御方法によれば、ステップS11において、コントローラ90は、推定温度Tref_low*が、改質温度Tref_thよりも高い場合には(S11:Yes)、改質器24は改質可能であると判断して、弁26を開き液体燃料を改質器24に供給し、改質器24において改質されたアノードガスを、燃料電池スタック10に供給する(S7)。このようにすることで、改質器24から未改質の燃料が燃料電池スタック10に流入して、炭素析出(コーキング)が発生することを抑制することができる。そして、すでにブロワ31が起動されており(S9)、カソードガスの供給が開始されているため、コントローラ90の指示に応じて燃料電池10の発電が開始される(S8)。 According to the control method of the fuel cell system 100 of the first embodiment, in step S11, if the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 Determines that reforming is possible, opens the valve 26, supplies the liquid fuel to the reformer 24, and supplies the anode gas reformed in the reformer 24 to the fuel cell stack 10 (S7). By doing so, it is possible to prevent the unreformed fuel from flowing from the reformer 24 into the fuel cell stack 10 and to cause carbon deposition (caulking). Then, since the blower 31 has already been activated (S9) and the supply of the cathode gas has been started, the power generation of the fuel cell 10 is started according to the instruction of the controller 90 (S8).
 第1実施形態の燃料電池システム100の制御方法によれば、ステップS2において、コントローラ90は、燃料電池スタック10のスタック温度Tstaが判定温度Th以上である場合には、燃料電池システム100は冷却途中であり停止処理中であり、このタイミングにおける起動はホットリスタートであると判断する。この判定温度Thとして、燃料電池10のアノード極が酸化劣化するおそれがある温度を用いる。 According to the control method of the fuel cell system 100 of the first embodiment, in step S2, when the stack temperature Tsta of the fuel cell stack 10 is equal to or higher than the determination temperature Th, the controller 90 controls the fuel cell system 100 to perform the cooling process. It is determined that the start at this timing is a hot restart. As the determination temperature Th, a temperature at which the anode of the fuel cell 10 may be oxidized and deteriorated is used.
 このようにすることで、ホットリスタートであり、スタック温度Tstaが高くアノード極が酸化劣化するおそれが高い場合には、改質器低温室24Aへのカソードガスを含む流体の供給が抑制されるので、アノード極が酸化劣化するおそれを低減できる。 By doing so, the supply of the fluid containing the cathode gas to the reformer low temperature chamber 24A is suppressed in the case of a hot restart, when the stack temperature Tsta is high and the anode electrode is likely to be oxidized and deteriorated. Therefore, the possibility that the anode electrode is oxidized and deteriorated can be reduced.
 第1実施形態の燃料電池システム100の制御方法によれば、ホットリスタートであると判定される場合には(S2:Yes)、カソードガスを燃料電池10に供給することで(S9)、改質器高温室24Bにもカソードガスが流入する。そのため、コントローラ90は、改質器高温室24Bの下流に設けられる温度センサ46により改質器高温室24Bの温度Tref_highを取得する。改質器低温室24Aへの流体の流入が抑制されている場合には、改質器高温室24Bの温度と改質器低温室24Aの温度とは略一致する。そのため、コントローラ90は、温度センサ46により取得される改質器高温室24Bの温度Tref_highを、推定温度Tref_low*として推定することができる(S10)。 According to the control method of the fuel cell system 100 of the first embodiment, when it is determined that the restart is a hot restart (S2: Yes), the cathode gas is supplied to the fuel cell 10 (S9), and The cathode gas also flows into the high temperature chamber 24B. Therefore, the controller 90 acquires the temperature Tref_high of the reformer high temperature chamber 24B by the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B. When the inflow of the fluid into the reformer low temperature chamber 24A is suppressed, the temperature of the reformer high temperature chamber 24B substantially matches the temperature of the reformer low temperature chamber 24A. Therefore, the controller 90 can estimate the temperature Tref_high of the reformer high temperature chamber 24B acquired by the temperature sensor 46 as the estimated temperature Tref_low * (S10).
 第1実施形態の燃料電池システム100の制御方法によれば、ホットリスタートでなく通常起動であると判定される場合には(S2:No)、コントローラ90は、カソードガスを改質器低温室24Aに供給する(S3)。コントローラ90は、改質器低温室24Aの下流に設けられる温度センサ25によって、改質器低温室24Aからの排気の温度を測定し、その測定温度を改質器低温室24Aの温度Tref_lowとして取得する(S4)。このように、温度センサ25によって改質器低温室24Aからの排気の温度を直接測定できるので、改質器低温室24Aの内部の温度Tref_lowを精度よく取得できる。 According to the control method of the fuel cell system 100 of the first embodiment, when it is determined that the normal startup is performed instead of the hot restart (S2: No), the controller 90 sends the cathode gas to the reformer low-temperature chamber. 24A (S3). The controller 90 measures the temperature of the exhaust gas from the reformer low temperature chamber 24A by the temperature sensor 25 provided downstream of the reformer low temperature chamber 24A, and acquires the measured temperature as the temperature Tref_low of the reformer low temperature chamber 24A. (S4). As described above, since the temperature of the exhaust gas from the low temperature chamber 24A of the reformer can be directly measured by the temperature sensor 25, the temperature Tref_low inside the low temperature chamber 24A of the reformer can be accurately obtained.
 これにより、改質器低温室24Aの温度Tref_lowが改質温度Tref_thを上回る場合に(S5:Yes)、燃料を供給して改質ガスを生成することができる(S7)ので、未改質の燃料が燃料電池10のアノード極に流入するのを抑制できる。なお、ホットリスタートではない通常起動時には、燃料電池スタック10のアノード極が酸化劣化しない温度であり、改質器低温側に流す空気がアノード極に流入してもアノードが酸化されない。そのため、温度センサ25によって改質器低温室24Aからの排気の温度を直接測定できるので、改質器低温室24Aの内部の温度Tref_lowを精度よく取得できる。 Thereby, when the temperature Tref_low of the low temperature chamber 24A of the reformer is higher than the reforming temperature Tref_th (S5: Yes), the fuel can be supplied to generate the reformed gas (S7). Fuel can be prevented from flowing into the anode of the fuel cell 10. At the time of normal startup that is not a hot restart, the temperature is such that the anode of the fuel cell stack 10 is not oxidized and deteriorated, and the anode is not oxidized even if air flowing to the lower temperature side of the reformer flows into the anode. Therefore, the temperature of the exhaust gas from the low temperature chamber 24A of the reformer can be directly measured by the temperature sensor 25, so that the temperature Tref_low inside the low temperature chamber 24A of the reformer can be accurately obtained.
 (第2実施形態)
 第1実施形態においては、ホットリスタート時に改質器高温室24Bにガスを流し、改質器高温室24Bの温度Tref_highから推定温度Tref_low*を推定する例について説明した。第2実施形態においては、ホットリスタート時において暖機を行わせるために排気燃焼器43に燃料を供給させた後の経過時間に応じて推定温度Tref_low*を推定する例について説明する。
(2nd Embodiment)
In the first embodiment, an example has been described in which a gas is flowed into the reformer high-temperature chamber 24B at the time of hot restart, and the estimated temperature Tref_low * is estimated from the temperature Tref_high of the reformer high-temperature chamber 24B. In the second embodiment, an example will be described in which the estimated temperature Tref_low * is estimated according to the elapsed time after the fuel is supplied to the exhaust combustor 43 in order to perform warm-up at the time of hot restart.
 図3は、第2実施形態の燃料電池システム100の概略構成図である。この図によれば、図1に示される第1実施形態の燃料電池システム100と比較すると、改質器高温室24Bの下流に設けられる温度センサ46が省略されている。 FIG. 3 is a schematic configuration diagram of the fuel cell system 100 according to the second embodiment. According to this figure, as compared with the fuel cell system 100 of the first embodiment shown in FIG. 1, the temperature sensor 46 provided downstream of the reformer high temperature chamber 24B is omitted.
 図4は、本実施形態の燃料電池システム100の起動制御のフローチャートである。この図によれば、図2に示される第1実施形態の起動制御と比較すると、ステップS9、S10に替えてステップS21、S22が設けられ、ステップS11の後にステップS23が追加されている。また、ステップS5において、温度Tref_lowが改質温度Tref_thよりも低い場合には(S5:No)、コントローラ90は、ステップS21の暖機処理を行う。 FIG. 4 is a flowchart of the startup control of the fuel cell system 100 of the present embodiment. According to this figure, steps S21 and S22 are provided instead of steps S9 and S10 as compared with the start control of the first embodiment shown in FIG. 2, and step S23 is added after step S11. If the temperature Tref_low is lower than the reforming temperature Tref_th in step S5 (S5: No), the controller 90 performs the warm-up process in step S21.
 なお、以下において、第1実施形態における符号と同じ符号が付された構成、制御については、同一のものであるとして、説明を省略する。 In the following, the configurations and controls denoted by the same reference numerals as those in the first embodiment are the same and will not be described.
 ステップS21においては、ホットリスタートの起動制御において暖機が行われる。ステップS21では、まず、コントローラ90は、ブロワ31を起動して、カソードガスを燃料電池スタック10に供給する。この時点では燃料電池10は発電を開始していないので、カソードオフガス流路42からはカソードガスが排出され、改質器高温室24Bに供給される。なお、ステップS3の後にステップS21の処理が行われる場合には、すでにブロワ31が起動されているので、ステップS21におけるブロワ31の起動処理を省略できる。 に お い て In step S21, warm-up is performed in the hot restart activation control. In step S21, first, the controller 90 activates the blower 31 to supply the cathode gas to the fuel cell stack 10. At this time, since the fuel cell 10 has not started power generation, the cathode gas is discharged from the cathode off-gas channel 42 and supplied to the reformer high temperature chamber 24B. When the process of step S21 is performed after step S3, since the blower 31 has already been activated, the activation process of the blower 31 in step S21 can be omitted.
 さらに、コントローラ90は、弁28を開き、燃料分岐路27を介して液体燃料を排気燃焼器43に供給する。排気燃焼器43においては、液体燃料とカソードガスとが酸化触媒反応されて高温の燃焼ガスが生成される。 Furthermore, the controller 90 opens the valve 28 and supplies the liquid fuel to the exhaust combustor 43 via the fuel branch channel 27. In the exhaust combustor 43, the liquid fuel and the cathode gas undergo an oxidation catalytic reaction to generate high-temperature combustion gas.
 排気燃焼器43から排出される高温の排気は、アノード側排気路45を介して改質器高温室24Bに供給されると、改質器高温室24Bと改質器低温室24Aとの間の熱交換によって、改質器低温室24Aが加熱される。なお、同様に、蒸発器低温室22A、及び、過熱器低温室23Aも排気との熱交換により加熱される。 When the high-temperature exhaust gas discharged from the exhaust combustor 43 is supplied to the high-temperature reformer chamber 24B via the anode-side exhaust path 45, the high-temperature exhaust gas flows between the high-temperature reformer chamber 24B and the low-temperature reformer chamber 24A. The heat exchange heats the reformer low-temperature chamber 24A. Similarly, the evaporator low temperature chamber 22A and the superheater low temperature chamber 23A are also heated by heat exchange with the exhaust gas.
 ステップS22においては、コントローラ90は、ステップS21からの経過時間、すなわち、改質器高温室24Bに高温の排気を供給してからの経過時間に応じて、改質器低温室24Aの推定温度Tref_low*を推定する。ステップS22は、推定ステップの一例である。 In step S22, the controller 90 determines the estimated temperature Tref_low of the reformer low temperature chamber 24A according to the elapsed time from step S21, that is, the elapsed time after supplying the high-temperature exhaust gas to the reformer high temperature chamber 24B. * Estimate. Step S22 is an example of an estimation step.
 コントローラ90は、予め実験やシミュレーションにより求められたパラメータを用いて起動後の上昇温度ΔTを算出する。例えば、コントローラ90は、予め記憶している排気燃焼器43の単位時間あたりの発熱量Q、及び、改質器24の暖機中の改質器熱容量Cpを用いて、次式のように上昇温度ΔTを求めることができる。 The controller 90 calculates the temperature increase ΔT after the start-up using parameters obtained in advance through experiments and simulations. For example, the controller 90 uses the previously stored calorific value Q of the exhaust combustor 43 per unit time and the reformer heat capacity Cp during warm-up of the reformer 24 to increase as follows: The temperature ΔT can be determined.
 上昇温度ΔT=発熱量Q×時間t/改質器熱容量Cp
 改質器低温室24Aの温度は、燃料電池システム100の停止時においては所定の駆動温度であるが、その後、経過時間に応じて減少する。そのため、コントローラ90は、駆動温度に対して、燃料電池システム100の停止後の経過時間に応じた減少温度を減じるとともに、ステップS2により算出されたスタック温度Tstaに対して上昇温度ΔTを加えて、推定温度Tref_low*を推定する。
Rise temperature ΔT = calorific value Q × time t / reformer heat capacity Cp
The temperature of the reformer low-temperature chamber 24A is a predetermined drive temperature when the fuel cell system 100 is stopped, but thereafter decreases according to the elapsed time. Therefore, the controller 90 subtracts the decrease temperature according to the elapsed time after the stop of the fuel cell system 100 from the drive temperature, and adds the increase temperature ΔT to the stack temperature Tsta calculated in step S2, Estimate the estimated temperature Tref_low * .
 他の方法として、コントローラ90は、室温に対して上昇温度ΔTを算出して推定温度Tref_low*を推定してもよい。この場合には、推定温度Tref_low*は実際よりも低い温度になる可能性はあるが、後のステップS23において確実に改質できるかを判定することができる。 As another method, the controller 90 may calculate the temperature increase ΔT with respect to the room temperature to estimate the estimated temperature Tref_low * . In this case, the estimated temperature Tref_low * may be lower than the actual temperature, but it can be determined in a later step S23 whether the reforming can be performed reliably.
 ステップS23においては、推定温度Tref_low*が改質温度Tref_thよりも高いため(S11:Yes)、コントローラ90は、改質器24にて改質可能になったと判断し、弁28を閉じて、暖機制御を終了する。 In step S23, since the estimated temperature Tref_low * is higher than the reforming temperature Tref_th (S11: Yes), the controller 90 determines that reforming is possible in the reformer 24, closes the valve 28, and warms up. The machine control ends.
 なお、本実施形態においてはステップS21において、弁28を開き、排気燃焼器43における暖機を開始する例について説明したが、これに限らない。ステップS21において、弁28を開かずに、ブロワ31の起動のみを行いカソードガスだけを排気燃焼器43に供給しても、コントローラ90は、推定温度Tref_low*を推定することができる。例えば、温度センサ11の取得温度により求められる燃料電池10のスタック温度Tstaに基づいて、単位時間あたりに排気を介して改質器高温室24Bに熱交換される交換熱量Qを求め、その交換熱量Qを用いて、上昇温度ΔTを求めてもよい。 In the present embodiment, the example in which the valve 28 is opened and the warm-up of the exhaust combustor 43 is started in step S21 has been described, but the invention is not limited to this. In step S21, even if only the blower 31 is started and only the cathode gas is supplied to the exhaust combustor 43 without opening the valve 28, the controller 90 can estimate the estimated temperature Tref_low * . For example, based on the stack temperature Tsta of the fuel cell 10 obtained from the temperature obtained by the temperature sensor 11, an exchange heat amount Q exchanged with the reformer high-temperature chamber 24B via the exhaust gas per unit time is obtained. The rising temperature ΔT may be obtained using Q.
 第2実施形態によれば、以下の効果を得ることができる。 According to the second embodiment, the following effects can be obtained.
 第2実施形態の燃料電池システム100の制御方法によれば、排気燃焼器43に液体燃料が供給されて発熱反応が進行して高温の燃焼ガスが生成されると、排気燃焼器43からの高温の排気は、改質器高温室24Bに流入する(S21)。すると、コントローラ90は、予め記憶している改質器24の単位時間あたりの発熱量Qや、改質器24の暖機中の改質器熱容量Cpを用いて、ステップS21からの経過時間、すなわち、液体燃料を排気燃焼器43を介して供給した暖機開始からの経過時間に応じて、上昇温度ΔTを求める。コントローラ90は、推定されたスタック温度Tstaに上昇温度ΔTを加えることで、推定温度Tref_low*を推定することができる(S22)。 According to the control method of the fuel cell system 100 of the second embodiment, when liquid fuel is supplied to the exhaust combustor 43 and an exothermic reaction proceeds to generate high-temperature combustion gas, the high-temperature Exhaust gas flows into the reformer high-temperature chamber 24B (S21). Then, the controller 90 uses the calorific value Q per unit time of the reformer 24 stored in advance or the reformer heat capacity Cp during warm-up of the reformer 24 to calculate the elapsed time from step S21, That is, the temperature increase ΔT is determined according to the elapsed time from the start of warm-up when the liquid fuel is supplied via the exhaust combustor 43. The controller 90 can estimate the estimated temperature Tref_low * by adding the temperature increase ΔT to the estimated stack temperature Tsta (S22).
 (第1変形例)
 第1及び第2実施形態においては、燃料電池スタック10の温度として、温度センサ11により取得される燃料電池スタック10の表面の温度を用いる例について説明したが、これに限られない。
(First Modification)
In the first and second embodiments, an example in which the temperature of the surface of the fuel cell stack 10 obtained by the temperature sensor 11 is used as the temperature of the fuel cell stack 10 has been described, but the present invention is not limited to this.
 図5に示されるように、アノードオフガス流路41に設けられる温度センサ12により取得されるアノードオフガスの温度、カソードオフガス流路42に設けられる温度センサ13により取得されるカソードオフガスの温度、及び、燃料電池スタック10の内部に設けられる温度センサにより取得される温度のいずれかを用いて、スタック温度Tstaを求めてもよい。このように構成されることで、燃料電池スタック10の測定に用いる温度センサの配置の自由度が向上する。 As shown in FIG. 5, the temperature of the anode off gas obtained by the temperature sensor 12 provided in the anode off gas flow path 41, the temperature of the cathode off gas obtained by the temperature sensor 13 provided in the cathode off gas flow path 42, and The stack temperature Tsta may be obtained using any one of the temperatures obtained by the temperature sensor provided inside the fuel cell stack 10. With this configuration, the degree of freedom in the arrangement of the temperature sensor used for measuring the fuel cell stack 10 is improved.
 (第2変形例)
 第1実施形態においては、改質器高温室24Bと過熱器高温室23Bとの間に設けた温度センサ46により取得した温度を用いて、改質器低温室24Aの推定温度Tref_low*を推定したがこれに限らない。
(Second Modification)
In the first embodiment, the estimated temperature Tref_low * of the reformer low temperature chamber 24A was estimated using the temperature acquired by the temperature sensor 46 provided between the reformer high temperature chamber 24B and the superheater high temperature chamber 23B. However, it is not limited to this.
 図6に示されるように、過熱器高温室23Bの下流かつ蒸発器高温室22Bの上流側に設けられる温度センサ47、または、蒸発器高温室22Bの下流側に設けられる温度センサ48により測定した温度を用いて、改質器低温室24Aの推定温度Tref_low*推定してもよい。 As shown in FIG. 6, the temperature was measured by a temperature sensor 47 provided downstream of the superheater high temperature chamber 23B and upstream of the evaporator high temperature chamber 22B, or a temperature sensor 48 provided downstream of the evaporator high temperature chamber 22B. Using the temperature, the estimated temperature Tref_low * of the reformer low-temperature chamber 24A may be estimated.
 アノード流路20にガスが流れていな場合には、蒸発器22、過熱器23、及び、改質器24において熱交換は活発ではない。そのため、カソード側排気路44に設けられる改質器高温室24B、過熱器高温室23B、及び、蒸発器高温室22Bの温度は、緩やかに低下するような温度分布となる。 (4) When gas is not flowing through the anode channel 20, heat exchange is not active in the evaporator 22, the superheater 23, and the reformer 24. Therefore, the temperatures of the reformer high-temperature chamber 24B, the superheater high-temperature chamber 23B, and the evaporator high-temperature chamber 22B provided in the cathode-side exhaust passage 44 have a temperature distribution that gradually decreases.
 コントローラ90は、この温度分布を利用することで、温度センサ47又は48で取得した温度を用いて改質器高温室24Bの温度を推定し、その推定した温度を改質器低温室24Aの推定温度Tref_low*とすることができる。 By using this temperature distribution, the controller 90 estimates the temperature of the reformer high temperature chamber 24B using the temperature acquired by the temperature sensor 47 or 48, and estimates the estimated temperature of the reformer low temperature chamber 24A. The temperature may be Tref_low * .
 なお、推定温度Tref_low*の推定に用いる温度センサ47、48は、アノード側排気路45における改質器高温室24Bの下流であって、カソード側排気路44との合流点よりも上流側に設けられるのが好ましい。これは、カソード側排気路44との合流点においてアノード側排気路45の温度が変化してしまうためである。 The temperature sensors 47 and 48 used for estimating the estimated temperature Tref_low * are provided downstream of the reformer high-temperature chamber 24 </ b > B in the anode-side exhaust passage 45 and upstream of the junction with the cathode-side exhaust passage 44. Preferably. This is because the temperature of the anode-side exhaust passage 45 changes at the junction with the cathode-side exhaust passage 44.
 このような第2変形例によれば、推定温度Tref_low*の推定に用いる温度センサ47、48は、アノード側排気路45において改質器高温室24Bの下流に設けられればよい。アノード側排気路45においては下流側であるほど温度が低いため、温度センサを下流に設けることで、温度センサの耐熱要求を低くできるとともに、高温状態に起因する測定誤差を小さくできる。 According to such a second modification, the temperature sensors 47 and 48 used for estimating the estimated temperature Tref_low * may be provided in the anode-side exhaust passage 45 downstream of the reformer high-temperature chamber 24B. In the anode-side exhaust passage 45, the lower the temperature, the lower the temperature. Therefore, by providing the temperature sensor downstream, the heat resistance requirement of the temperature sensor can be reduced and the measurement error due to the high temperature state can be reduced.
 なお、図中には、点線で、燃料電池システム100において燃料電池10、蒸発器22、過熱器23、改質器24、及び、空気熱交換器32を収容する筐体49が示されている。このような筐体49の内部は、燃料電池10の発電によって高温になるが、筐体49の外部は比較的低温となる。温度センサ48を筐体49の外に設けることで、温度センサ48の配置の自由度や、耐久性などを向上させることができる。 Note that, in the figure, a casing 49 that accommodates the fuel cell 10, the evaporator 22, the superheater 23, the reformer 24, and the air heat exchanger 32 in the fuel cell system 100 is shown by a dotted line. . The inside of the casing 49 becomes high temperature by the power generation of the fuel cell 10, but the outside of the casing 49 becomes relatively low temperature. By providing the temperature sensor 48 outside the housing 49, the degree of freedom in arranging the temperature sensor 48, the durability, and the like can be improved.
 (第3変形例)
 第1及び第2実施形態においては、蒸発器22、過熱器23、及び、改質器24がそれぞれ別に構成される例について説明したが、これに限らない。
(Third Modification)
In the first and second embodiments, an example has been described in which the evaporator 22, the superheater 23, and the reformer 24 are separately configured, but the present invention is not limited to this.
 図7に示されるように、蒸発器22、過熱器23、及び、改質器24が一体となったユニット51が設けられるように構成されてもよい。具体的には、1つのユニットの中においてアノード系統の熱交換可能な箇所の下流側に改質に用いる触媒が設けられるように構成される。このような場合には、ユニット高温室51Bの下流に設けられる温度センサ52や、ユニット高温室51Bの内部に設けられる温度センサ53を用いて、ユニット高温室51Bの温度を測定し、その温度を改質器低温室24Aに相当する推定温度Tref_low*としてもよい。 As shown in FIG. 7, a unit 51 in which the evaporator 22, the superheater 23, and the reformer 24 are integrated may be provided. Specifically, it is configured such that a catalyst used for reforming is provided downstream of a heat-exchangeable point of the anode system in one unit. In such a case, the temperature of the unit high-temperature chamber 51B is measured using a temperature sensor 52 provided downstream of the unit high-temperature chamber 51B or a temperature sensor 53 provided inside the unit high-temperature chamber 51B, and the temperature is measured. The estimated temperature Tref_low * corresponding to the reformer low temperature chamber 24A may be used.
 温度センサ52、53は、ユニット51の改質器に相当する部分よりも下流側に設けられていれば、カソード側排気路44にガスが流れる場合には、温度センサ52、53によってユニット51の排気、又は、ユニット51における改質器24よりも下流の温度を取得することができる。このように取得された温度を用いて、ユニット高温室51Bにおける改質器高温室24Bに相当する温度を推定して、その温度をユニット低温室51Aにおける改質器低温室24Aに相当する推定温度Tref_low*としてもよい。 If the temperature sensors 52 and 53 are provided on the downstream side of the portion corresponding to the reformer of the unit 51, and when the gas flows through the cathode exhaust path 44, the temperature sensors 52 and 53 The temperature of the exhaust gas or the temperature downstream of the reformer 24 in the unit 51 can be obtained. Using the temperature thus obtained, a temperature corresponding to the reformer high temperature chamber 24B in the unit high temperature chamber 51B is estimated, and the estimated temperature is estimated to correspond to the reformer low temperature chamber 24A in the unit low temperature chamber 51A. It may be Tref_low * .
 (第4変形例)
 第4変形例においては、図8に示されるように、蒸発器22と過熱器23とが一体となったユニット61が設けられるとともに、改質器24と燃料電池10のアノード極とが一体となって構成される例について説明する。
(Fourth modification)
In the fourth modification, as shown in FIG. 8, a unit 61 in which the evaporator 22 and the superheater 23 are integrated is provided, and the reformer 24 and the anode of the fuel cell 10 are integrated. An example will be described.
 第3変形例と同様に、ユニット高温室61Bの下流に設けられる温度センサ62や、ユニット高温室61Bの内部に設けられる温度センサ63を用いて、アノード極と一体となった改質器24の温度を推定してもよい。 Similarly to the third modified example, the temperature sensor 62 provided downstream of the unit high-temperature chamber 61B and the temperature sensor 63 provided inside the unit high-temperature chamber 61B are used to form the reformer 24 integrated with the anode electrode. The temperature may be estimated.
 さらに、アノードオフガス流路41に設けられる温度センサ12により取得されるアノードオフガスの温度、カソードオフガス流路42に設けられる温度センサ13により取得されるカソードオフガスの温度、及び、燃料電池スタック10の内部に設けられる温度センサのいずれかにより取得される温度を用いても、アノード極と一体となった改質器24の温度を推定することができる。 Further, the temperature of the anode offgas obtained by the temperature sensor 12 provided in the anode offgas flow path 41, the temperature of the cathode offgas obtained by the temperature sensor 13 provided in the cathode offgas flow path 42, and the inside of the fuel cell stack 10 The temperature of the reformer 24 integrated with the anode can be estimated by using the temperature obtained by any of the temperature sensors provided in the above.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。 As described above, the embodiment of the present invention has been described. However, the above embodiment is only a part of an application example of the present invention, and the technical scope of the present invention is not limited to the specific configuration of the above embodiment. Absent. The above embodiments can be combined as appropriate.

Claims (8)

  1.  アノードガスとカソードガスとを反応させて発電する燃料電池と、
     発電中の前記燃料電池から排出されるアノードオフガス及びカソードオフガスを酸化触媒反応可能に構成される燃焼器と、
     前記燃焼器からのガスが流れる高温室と、供給される燃料を前記アノードガスに改質し、該アノードガスを前記燃料電池に供給する低温室とを有し、前記高温室と前記低温室との間で熱交換可能に構成される改質器と、
     前記カソードガスを前記燃料電池に供給するカソードガス供給手段と、を備える燃料電池システムの制御方法であって、
     前記燃料電池システムが起動される時に、前記起動がホットリスタートであるか否かを判定する起動判定ステップと、
     前記起動判定ステップにおいて前記起動が前記ホットリスタートであると判定される場合に、前記低温室への流体の供給を停止させた状態で、前記燃焼器からのガスを前記高温室に供給する供給ステップと、
     前記高温室を流れるガスの温度に応じて、前記低温室の推定温度を推定する推定ステップと、を有する燃料電池システムの制御方法。
    A fuel cell that generates electricity by reacting anode gas and cathode gas;
    A combustor configured to allow an anode offgas and a cathode offgas discharged from the fuel cell during power generation to undergo an oxidation catalytic reaction,
    A high-temperature chamber through which gas from the combustor flows, and a low-temperature chamber that reforms supplied fuel to the anode gas and supplies the anode gas to the fuel cell; the high-temperature chamber and the low-temperature chamber; A reformer configured to allow heat exchange between
    A cathode gas supply means for supplying the cathode gas to the fuel cell, a control method of a fuel cell system comprising:
    When the fuel cell system is started, a start determination step of determining whether the start is a hot restart,
    When the startup is determined to be the hot restart in the startup determination step, supply of gas from the combustor to the high-temperature chamber in a state in which supply of fluid to the low-temperature chamber is stopped. Steps and
    An estimation step of estimating the estimated temperature of the low-temperature chamber according to the temperature of the gas flowing through the high-temperature chamber.
  2.  請求項1に記載の燃料電池システムの制御方法であって、
     前記推定ステップにおいて推定される前記推定温度が、前記改質器において前記燃料を改質可能な下限温度よりも高い場合に、前記低温室へ前記燃料を供給して前記低温室で改質された前記アノードガスを前記燃料電池に供給するとともに、前記カソードガスを前記燃料電池に供給することで、前記燃料電池の発電を開始する、発電開始ステップを、さらに有する燃料電池システムの制御方法。
    It is a control method of the fuel cell system of Claim 1, Comprising:
    When the estimated temperature estimated in the estimation step is higher than a lower limit temperature at which the fuel can be reformed in the reformer, the fuel is supplied to the low temperature chamber and reformed in the low temperature chamber. A control method for a fuel cell system, further comprising a power generation start step of starting power generation of the fuel cell by supplying the anode gas to the fuel cell and supplying the cathode gas to the fuel cell.
  3.  請求項1または2に記載の燃料電池システムの制御方法であって、
     前記起動判定ステップにおいて、前記起動される時における前記燃料電池の温度が、アノード極の酸化劣化する下限温度を超える場合に、前記起動は前記ホットリスタートであると判定する、燃料電池システムの制御方法。
    It is a control method of the fuel cell system of Claim 1 or 2, Comprising:
    Controlling the fuel cell system to determine that the startup is the hot restart when the temperature of the fuel cell at the time of startup exceeds the lower limit temperature at which the anode electrode is oxidized and degraded in the startup determination step; Method.
  4.  請求項1から3のいずれか1項に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、前記高温室の下流に第1温度センサをさらに有し、
     前記推定ステップにおいて、前記第1温度センサにより取得される前記高温室から排出される前記カソードガスの温度に応じて、前記推定温度を推定する、燃料電池システムの制御方法。
    It is a control method of the fuel cell system as described in any one of Claims 1 to 3, Comprising:
    The fuel cell system further includes a first temperature sensor downstream of the high temperature chamber,
    A control method for a fuel cell system, wherein in the estimating step, the estimated temperature is estimated according to a temperature of the cathode gas discharged from the high temperature chamber acquired by the first temperature sensor.
  5.  請求項4に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、
     前記改質器の上流に設けられる液体燃料を蒸発させて燃料ガスを生成する蒸発器、及び、燃料ガスをさらに過熱する過熱器のうちの少なくとも一方と、を備え、
     前記蒸発器、及び、前記過熱器は、前記燃焼器からの排気が流れる高温側の部位と、該高温側の部位と熱交換可能な低温側の部位とを有し、
     前記第1温度センサは、前記蒸発器の高温側の部位、及び、前記過熱器の高温側の部位の少なくともいずれか一方に対して下流側に設けられる、燃料電池システムの制御方法。
    It is a control method of the fuel cell system of Claim 4, Comprising:
    The fuel cell system,
    An evaporator that evaporates liquid fuel provided upstream of the reformer to generate a fuel gas, and at least one of a superheater that further heats the fuel gas,
    The evaporator, and the superheater has a high-temperature part where exhaust gas from the combustor flows, and a low-temperature part that can exchange heat with the high-temperature part,
    The control method of a fuel cell system, wherein the first temperature sensor is provided downstream of at least one of a high-temperature portion of the evaporator and a high-temperature portion of the superheater.
  6.  請求項1から3のいずれか1項に記載の燃料電池システムの制御方法であって、
     前記供給ステップにおいて、さらに、前記燃焼器に前記燃料を供給して酸化触媒反応を行わせることで、前記燃焼器から前記高温室へ高温の前記ガスを排出させ、
     前記推定ステップにおいて、前記供給ステップの後の経過時間に基づいて、前記推定温度を推定する、燃料電池システムの制御方法。
    It is a control method of the fuel cell system as described in any one of Claims 1 to 3, Comprising:
    In the supplying step, further, by supplying the fuel to the combustor to cause an oxidation catalytic reaction, the high-temperature gas is discharged from the combustor to the high-temperature chamber,
    A control method for a fuel cell system, wherein in the estimating step, the estimated temperature is estimated based on an elapsed time after the supplying step.
  7.  請求項1から6のいずれか1項に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、前記低温室の下流に第2温度センサをさらに有し、
     前記起動判定ステップにおいて前記起動が前記ホットリスタートでないと判定される場合には、前記低温室へ前記カソードガスを供給して、前記第2温度センサによって前記低温室の温度を取得する温度取得ステップを、さらに有する、燃料電池システムの制御方法。
    It is a control method of the fuel cell system as described in any one of Claim 1 to 6, Comprising:
    The fuel cell system further includes a second temperature sensor downstream of the low-temperature chamber,
    A temperature obtaining step of supplying the cathode gas to the low-temperature chamber and obtaining the temperature of the low-temperature chamber by the second temperature sensor when the startup is determined not to be the hot restart in the startup determining step; A control method for a fuel cell system, further comprising:
  8.  アノードガスとカソードガスとを反応させて発電する燃料電池と、
     発電中の前記燃料電池から排出されるアノードオフガス及びカソードオフガスを酸化触媒反応可能に構成される燃焼器と、
     前記燃焼器からのガスが流れる高温室と、供給される燃料を前記アノードガスに改質し、該アノードガスを前記燃料電池に供給する低温室とを有し、前記高温室と前記低温室との間で熱交換可能に構成される改質器と、
     前記カソードガスを前記燃料電池に供給するカソードガス供給手段と、
     前記低温室の前段に設けられる弁と、
     前記高温室の前段に設けられるブロワと、
     前記弁と、前記ブロワとを制御可能に構成される制御部と、を備える燃料電池システムであって、
     前記制御部は、
      前記燃料電池システムが起動される時に、前記起動がホットリスタートであるか否かを判定し、
      前記起動が前記ホットリスタートであると判定される場合に、前記弁を閉じて前記低温室への流体の供給を停止させた状態で、前記ブロワを起動して前記高温室へとガスを供給し、
      前記高温室を流れるガスの温度に応じて、前記低温室の推定温度を推定する、燃料電池システム。
    A fuel cell that generates electricity by reacting anode gas and cathode gas;
    A combustor configured to allow an anode offgas and a cathode offgas discharged from the fuel cell during power generation to undergo an oxidation catalytic reaction,
    A high-temperature chamber through which gas from the combustor flows, and a low-temperature chamber that reforms supplied fuel to the anode gas and supplies the anode gas to the fuel cell; the high-temperature chamber and the low-temperature chamber; A reformer configured to allow heat exchange between
    Cathode gas supply means for supplying the cathode gas to the fuel cell;
    A valve provided in the preceding stage of the low-temperature chamber,
    A blower provided before the high-temperature chamber,
    A fuel cell system including the valve and a control unit configured to control the blower,
    The control unit includes:
    When the fuel cell system is started, it is determined whether the start is a hot restart,
    When the activation is determined to be the hot restart, the blower is activated to supply gas to the high-temperature chamber while the valve is closed and the supply of fluid to the low-temperature chamber is stopped. And
    A fuel cell system for estimating an estimated temperature of the low-temperature chamber according to a temperature of a gas flowing through the high-temperature chamber.
PCT/JP2018/034142 2018-09-14 2018-09-14 Fuel cell system control method and fuel cell system WO2020054048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034142 WO2020054048A1 (en) 2018-09-14 2018-09-14 Fuel cell system control method and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034142 WO2020054048A1 (en) 2018-09-14 2018-09-14 Fuel cell system control method and fuel cell system

Publications (1)

Publication Number Publication Date
WO2020054048A1 true WO2020054048A1 (en) 2020-03-19

Family

ID=69778499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034142 WO2020054048A1 (en) 2018-09-14 2018-09-14 Fuel cell system control method and fuel cell system

Country Status (1)

Country Link
WO (1) WO2020054048A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163024A (en) * 2001-11-26 2003-06-06 Nissan Motor Co Ltd Reform type fuel cell system
JP2014010944A (en) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd Fuel cell system
WO2017104213A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system and control method for fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163024A (en) * 2001-11-26 2003-06-06 Nissan Motor Co Ltd Reform type fuel cell system
JP2014010944A (en) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd Fuel cell system
WO2017104213A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system and control method for fuel cell system

Similar Documents

Publication Publication Date Title
JP6627888B2 (en) Solid oxide fuel cell system and method of controlling solid oxide fuel cell system
JP4045755B2 (en) Fuel cell system
JP3921910B2 (en) Fuel cell system
JP4854848B2 (en) Control method of heat treatment system
KR100502870B1 (en) Fuel cell system and its startup control
US11695130B2 (en) Fuel cell system and fuel cell system control method
KR102168486B1 (en) System and method for fuel cell stack temperature control
US10763526B2 (en) System and method for fuel cell stack temperature control
JPWO2018029829A1 (en) Fuel cell system and control method of fuel cell system
WO2020054048A1 (en) Fuel cell system control method and fuel cell system
US10622650B2 (en) System and method for fuel cell stack temperature control
EP3664204B1 (en) Fuel cell system and method for controlling fuel cell system
JP6500997B2 (en) Fuel cell system and control method thereof
JP7323065B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
JP7087341B2 (en) Fuel cell system and fuel cell system control method
JP7120323B2 (en) Combustion system and method of controlling combustion system
US11024863B2 (en) Fuel cell system control method and fuel cell system
JP2012252945A (en) Fuel cell system
JP5659868B2 (en) Fuel cell system
JP7110859B2 (en) FUEL CELL SYSTEM AND METHOD OF OPERATION OF FUEL CELL SYSTEM
JP6981089B2 (en) Fuel cell system and control method of fuel cell system
JP2003272681A (en) Fuel cell system
JP2021048096A (en) Fuel cell system and operational method of them
CN112204785A (en) Fuel cell system and method for operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP