WO2020053935A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2020053935A1
WO2020053935A1 PCT/JP2018/033460 JP2018033460W WO2020053935A1 WO 2020053935 A1 WO2020053935 A1 WO 2020053935A1 JP 2018033460 W JP2018033460 W JP 2018033460W WO 2020053935 A1 WO2020053935 A1 WO 2020053935A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
feed line
antenna device
line
power supply
Prior art date
Application number
PCT/JP2018/033460
Other languages
French (fr)
Japanese (ja)
Inventor
準 後藤
丸山 貴史
重雄 宇田川
深沢 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020546557A priority Critical patent/JP6861901B2/en
Priority to PCT/JP2018/033460 priority patent/WO2020053935A1/en
Publication of WO2020053935A1 publication Critical patent/WO2020053935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to an antenna device.
  • a central feeding portion (5) is provided between a pair of array antennas (A) (see FIG. 3 and the like in Patent Document 1). That is, the individual array antennas (A) are of the end feeding type, whereas the entire center feeding array antenna (C) is of the central feeding type.
  • the present invention has been made to solve the above-described problem, and has as its object to suppress occurrence of blocking and reduce power supply loss in an antenna device using a microstrip array antenna.
  • An antenna device is electrically connected between a first radiating element group including a plurality of first radiating elements arranged in a first direction and adjacent first radiating elements in the first radiating element group. And a second feed line electrically connected to any of the first radiating elements except for the first radiating elements disposed at both ends of the first radiating element group. It has a strip array antenna unit.
  • the present invention since the configuration is as described above, in the antenna device using the microstrip array antenna, it is possible to suppress the occurrence of the blocking and reduce the feeding loss.
  • FIG. 3 is a plan view showing a main part of the antenna device according to the first embodiment.
  • FIG. 3 is a plan view showing a main part of an antenna device for comparison with the antenna device according to the first embodiment.
  • FIG. 5 is a plan view showing a main part of another antenna device for comparison with the antenna device according to the first embodiment.
  • FIG. 9 is a plan view illustrating a main part of the antenna device according to the second embodiment.
  • FIG. 14 is an explanatory diagram showing an electromagnetic field simulation result of a radiation pattern by the antenna device according to Embodiment 2.
  • FIG. 13 is a plan view illustrating a main part of the antenna device according to the third embodiment.
  • FIG. 14 is a plan view illustrating a main part of the antenna device according to the fourth embodiment.
  • FIG. 14 is a plan view showing a main part of another antenna device according to Embodiment 4.
  • FIG. 14 is a plan view showing a main part of another antenna device according to Embodiment 4.
  • FIG. 1 is a plan view showing a main part of the antenna device according to the first embodiment.
  • the antenna device 100 according to the first embodiment will be described with reference to FIG.
  • reference numeral 1 denotes a dielectric substrate.
  • a ground conductor pattern (not shown) is provided on the back surface of the dielectric substrate 1, and a pair of conductor patterns 2 are provided on the front surface of the dielectric substrate 1.
  • first radiation element N number of radiating elements
  • first feed line 4 portion corresponding to the 3, M-number of the feed line
  • second power supply line a portion corresponding to another power supply line
  • microstrip array antenna section 9 is configured.
  • a radiating element group including the N first radiating elements 3 is referred to as a “first radiating element group”.
  • a radiating element group formed by the N second radiating elements 6 is referred to as a “second radiating element group”.
  • N first radiating elements 3 are arranged in a line, and N second radiating elements 6 are also arranged in a line. More specifically, the arrangement direction of the N first radiating elements 3 and the arrangement direction of the N second radiating elements 6 are the same as each other, and these radiating elements 3 and 6 are linear, that is, primary They are arranged in an original array.
  • the arrangement direction of these radiating elements 3 and 6 is referred to as a “first direction”. In the example shown in FIG. 1, each first radiating element 3 is rectangular, and each second radiating element 6 is also rectangular.
  • the X axis in the figure is a virtual axis along the first direction.
  • the Y axis is a virtual axis along a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1.
  • the Z axis is a virtual axis that is a direction orthogonal to the first direction and is orthogonal to the plate surface of the dielectric substrate 1. That is, the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • a virtual plane that is parallel to the X axis and the Z axis and passes through the center of each of the first radiating elements 3 and the center of each of the second radiating elements 6 is referred to as an “XZ plane”.
  • a virtual plane that is parallel to the Y axis and the Z axis and passes through the center of the microstrip array antenna unit 9 (that is, passes through the center axis A) is referred to as “YZ plane”.
  • Each first feed line 4 is provided between each two adjacent first radiating elements 3 and is electrically connected to the two first radiating elements 3.
  • the first feed line 4 1 is provided, the first feed line 4 2 between the first radiating element 3 2, 3 3 provided between the first radiating element 3 1, 3 2 is and has first feed line 4 3 is provided between the first radiating element 3 3, 3 4, the first feed line 4 4 is provided between the first radiating element 3 4, 3 5.
  • Each of the first power supply lines 4 is configured by a straight line along the first direction.
  • Each of the third feeder lines 7 is provided between two adjacent second radiating elements 6 and is electrically connected to the two second radiating elements 6.
  • a third feed line 71 is provided on the second radiating element 6 1, 6 between the two
  • a third feed line 7 2 provided between the second radiating element 6 2, 6 3 is and has third feed line 7 3 is provided between the second radiating element 6 3, 6
  • third feeding line 7 4 is provided between the second radiating element 6 4, 6 5.
  • Each of the third power supply lines 7 is configured by a linear line along the first direction.
  • first end is one or more first radiations excluding the two first radiation elements 3 arranged at both ends in the first radiation element group.
  • One of the elements 3 is electrically connected to the first radiating element 3.
  • one of the first first radiating element 3 1 2 arranged on both ends in the radiation element group, 3 of 3 except for the 5 first radiating element 3 2-3 4 the first end of the second feed line 5 is electrically connected to the number of first radiating element 3 2.
  • the second power supply line 5 is configured by a straight line that extends in a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1. That is, the second feeding line 5 extends from one first radiating element 3 (the first radiating element 3 2 in the example shown in FIG. 1) to which the second feeding line 5 is connected in a direction along the Y axis. It has a given shape. In the example shown in FIG. 1, the extension direction of the second feed line 5 to the first radiating element 3 2 is -Y direction.
  • One end of the fourth feed line 8 (hereinafter, referred to as “first end”) is provided with one or more second radiations except for the two second radiation elements 6 arranged at both ends in the second radiation element group. Any one of the elements 6 is electrically connected to the second radiating element 6.
  • first end is provided with one or more second radiations except for the two second radiation elements 6 arranged at both ends in the second radiation element group. Any one of the elements 6 is electrically connected to the second radiating element 6.
  • one of the second second radiation elements 6 1 of two disposed at opposite ends of the radiating element group, 6 of three except the 5 second radiating element 6 2-6 4 the first end of the fourth feed line 8 is electrically connected to the number of second radiating element 6 2.
  • the fourth power supply line 8 is configured by a straight line that extends in a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1. That is, the fourth feed line 8, (in the example shown in FIG. 1 the second radiating element 6 2) fourth one second radiating element 6 is a target for connection of the feed line 8 extending in the direction along the Y axis from the It has a given shape. In the example shown in FIG. 1, the stretching direction of the fourth feed line 8 to the second radiating element 6 2 is -Y direction.
  • the other end of the second feed line 5 (hereinafter referred to as "second end”.) It is electrically connected to the feeding portion 10 1.
  • Feeding unit 10 when the antenna device 100 is used to transmit antenna, and supplies high-frequency power (more specifically, an electromagnetic wave) to the second end of the second feed line 5.
  • Power supply to the second end of the second feed line 5 by the feeding unit 10 for example, those using RF (Radio Frequency) connector.
  • RF Radio Frequency
  • the other end of the fourth feed line 8 (hereinafter referred to as "second end”.) It is electrically connected to the feeding portion 10 2.
  • Feeding portion 10 2 when the antenna device 100 is used for transmitting antennas (more specifically, an electromagnetic wave) high-frequency power to the second end of the fourth feed line 8 and supplies the. Feeding by the feeding unit 10 2 for the second end of the fourth feed line 8, for example, those using a RF connector.
  • FIG. 1 it has an axial symmetrical shape with each other and the conductor pattern 2 1 and the conductor pattern 2 2. That, and five of the first radiating element 3 1-3 5 and five second radiating elements 6 1 to 6 5 are arranged in axial symmetry to each other and four first feed line 4 1 4 4 and 4 and the third feed line 7 1-7 4 are arranged axially symmetrically to one another, and a second feed line 5 and the fourth feeding line 8 is disposed axially symmetrically.
  • Sites second feed line 5 of the first radiating element 3 2 is connected (hereinafter referred to as "connecting portions".), The end of the first radiating element 3 2 in the + X side (the “right end”.) Are located in In contrast, the site where the fourth feeding line 8 in the second radiating element 6 2 is connected (hereinafter referred to as “connecting portions”.) Is, the -X side end of the second radiating element 6 2 (hereinafter " At the left end). A in the figure indicates the central axis of the axial symmetry.
  • the main part of the antenna device 100 is thus configured.
  • the operation of the antenna device 100 will be described. More specifically, a description will be given focusing on an example in which the antenna device 100 operates as a traveling wave antenna when the antenna device 100 is used as a transmission antenna.
  • the power supply unit 10 1 supplies power to the second end of the second feed line 5.
  • the supplied power can propagate in the + Y direction along the second feed line 5 is input to the first radiating element 3 2.
  • the portion of the power of the input power is radiated into space outside the antenna apparatus 100 by the first radiating element 3 2 as an electromagnetic wave.
  • another part of the power of the input power propagates in the + X direction along the first feed line 4 1, space outside the antenna device 100 as an electromagnetic wave by the first radiating element 3 1 Is radiated.
  • another part of the power of the electric power the input is propagated in the -X direction along the first feed line 4 2-4 4, the electromagnetic wave by the first radiating element 3 3 to 3 5 Is radiated to the space outside the antenna device 100.
  • the supplied power is fourth propagates in the + Y direction along the feeding line 8, is input to the second radiating element 6 2.
  • the portion of the power of the input power is radiated as a second electromagnetic wave by radiating element 6 2 in the space outside the antenna device 100.
  • the other part of the power that is the input power is propagated in the -X direction along the third feeding line 71, the antenna device 100 outside of the second electromagnetic wave by radiating element 6 1 Radiated into space.
  • another part of the power of the electric power the input is propagated to the third feeding line 7 2-7 along the 4 + X direction, as an electromagnetic wave by the second radiating element 6 3-6 5
  • the radiation is radiated to a space outside the antenna device 100.
  • each of the first radiating element 3 2-3 4 functions to supply electric power to the first radiating element 3 adjacent Things.
  • passing phase is known to vary depending on the radiation dose. Therefore, set by setting the length of each of the first feed line 4 1-4 4 to an appropriate value, i.e. the distance between the two first radiating element 3 adjacent to each other to an appropriate value it is therefore possible to excite all of the first radiating element 3 1-3 5 in phase with each other.
  • each of the second radiating element 6 2-6 together with those which function to emit electromagnetic waves to space outside the antenna device 100, performs a function of supplying electric power to the second radiating element 6 adjacent Things.
  • passing phase is known to vary depending on the radiation dose. Therefore, set by setting the length of each of the third feed line 7 1-7 4 to an appropriate value, i.e. the distance between the two second radiating elements 6 adjacent to each other to an appropriate value it is therefore possible to excite all of the second radiation element 6 1-6 5 in phase with each other.
  • the field generated in the right end portion of the first radiating element 3 2 (i.e. + X side end) direction and the left end portion of the first radiating element 3 2 of the electric field generated by (or end of the -X side) It is known that the directions are opposite to each other. More specifically, it is known that when one electric field is in the + Z direction, the other electric field is in the ⁇ Z direction.
  • generated by the second right end of the radiating element 6 2 (i.e. + end of X side) direction and a second left end of the radiating element 6 2 of the electric field generated by (or end of the -X side) It is known that the directions of the electric fields are opposite to each other. More specifically, it is known that when one electric field is in the + Z direction, the other electric field is in the ⁇ Z direction.
  • the connecting portion of the second feed line 5 of the first radiating element 3 2 is disposed at the right end portion of the first radiating element 3 2, and the second radiating element 6 connection of the fourth power supply line 8 is disposed at the left end portion of the second radiating element 6 2 in 2. Therefore, by setting the opposite phase to the feeding and the feeding by the feeding unit 10 1 by the power supply unit 10 2, i.e., by setting the phase difference between these power supply to 180 °, the first radiating element 3 it can be 2 to excite by the second radiating element 6 2 and the phase with one another.
  • FIG. 2 shows an antenna device 100 ′ for comparison with the antenna device 100 of the first embodiment.
  • the dielectric substrate 1 'ground conductor pattern on the back surface portion (not shown) is provided, the dielectric substrate 1' a pair of conductor patterns 2 1 to the surface of ', 2 2' provided Have been.
  • One conductor pattern 2 1 ′ has a portion corresponding to the five first radiating elements 3 1 ′ to 3 5 ′, a portion corresponding to the four first feeder lines 4 1 ′ to 4 4 ′, and the second It has a portion corresponding to the feed line 5 '.
  • the other conductor pattern 2 2 ′ has a portion corresponding to five second radiating elements 6 1 ′ to 6 5 ′, a portion corresponding to four third feeder lines 7 1 ′ to 7 4 ′, and a fourth portion. It has a portion corresponding to the feed line 8 '.
  • a first radiating element group is composed of five first radiating elements 3 1 ′ to 3 5 ′
  • a second radiating element group is composed of five second radiating elements 6 1 ′ to 6 5 ′.
  • the microstrip array antenna section 9 ' is configured.
  • a ' indicates an axially symmetric center axis of the microstrip array antenna section 9'.
  • the first end of the second feed line 5 ′ is electrically connected to the first radiating element 3 1 ′
  • the second end of the second feed line 5 ′ is electrically connected to the feed unit 10 1 ′.
  • the first end of the fourth feed line 8 ' is electrically connected to the second radiating element 6 1 '
  • the second end of the fourth feed line 8 ' is electrically connected to the feed unit 10 2 '.
  • Each of the second power supply line 5 ′ and the fourth power supply line 8 ′ is configured by a linear line along the first direction.
  • the feeding units 10 1 ′ and 10 2 ′ are arranged between the first radiating element 3 1 ′ and the second radiating element 6 1 ′.
  • the power supply unit 10 1 ′ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the second power supply line 5 ′.
  • the supplied power propagates in the ⁇ X direction along the second power supply line 5 ′, and is input to the first radiating element 3 1 ′.
  • the portion of the power of the input power is radiated out of the space 'antenna device 100 as an electromagnetic wave by the' first radiating element 3 1.
  • Another part of the input power propagates in the ⁇ X direction along the first feed lines 4 1 ′ to 4 4 ′, and the first radiating elements 3 2 ′ to 3
  • the electromagnetic wave is radiated to the space outside the antenna device 100 ′ by 5 ′.
  • the supplied power propagates in the + X direction along the fourth power supply line 8 ′ and is input to the second radiating element 6 1 ′.
  • Part of the input power is radiated by the second radiating element 6 1 ′ as electromagnetic waves to the space outside the antenna device 100 ′.
  • Another part of the input power propagates in the + X direction along the third power supply lines 7 1 ′ to 7 4 ′, and the second radiating elements 6 2 ′ to 6 5 And is radiated as electromagnetic waves to the space outside the antenna device 100 '.
  • the first radiating element group in the antenna device 100 ' is of the edge feeding type
  • the second radiating element group of the antenna device 100' is also of the edge feeding type.
  • the entire microstrip array antenna section 9 ' is of the central feeding type.
  • the actual power supply units 10 1 ′ and 10 2 ′ are structures having a physical size. Therefore, particularly in a high frequency band, the distance D2 (see FIG. 2) between the center of the first radiating element 3 1 ′ and the center of the second radiating element 6 1 ′ in the antenna apparatus 100 ′ is determined by It becomes larger than the distance between the first radiating element 3 first center and the second center portion of the radiating element 6 1 D1 (see FIG. 1) in the.
  • the antenna device 100 ' has a problem that the radiation characteristics are deteriorated because blocking occurs due to the large interval D2. Specifically, for example, there is a problem that the side lobe level becomes large.
  • the second feed line 5 is connected to one first radiating element 3 disposed inside the first radiating element group, and the one in the example shown in the feeding direction is non-parallel to the first direction (FIG. 1 for the first radiating element 3, the feeding direction with respect to the first radiating element 3 2 is the + Y direction, the feeding direction is a first direction Orthogonal to.).
  • the fourth feed line 8 is connected to one second radiating element 6 disposed inside the second radiating element group, and the feeding direction to the one second radiating element 6 is in the first direction. it is not parallel for (in the example shown in FIG. 1, the feeding direction with respect to the second radiating element 6 2 is the + Y direction, the feeding direction is orthogonal to the first direction.).
  • a power supply method is referred to as a “side power supply method”.
  • the lateral feeding system As shown in FIG. 1, it is possible to prevent the power supply unit 10 1, 10 2 is disposed in the first radiating element 3 1 and the second between radiating element 61. Thereby, the interval D1 can be made smaller than the interval D2, so that the occurrence of blocking can be suppressed. As a result, the radiation characteristics can be improved as compared with the antenna device 100 '. Specifically, for example, the side lobe level can be reduced.
  • Fig. 3 shows another antenna device 100 "for comparison with the antenna device 100 of the first embodiment.
  • a ground conductor pattern (not shown) is provided on the back surface of the dielectric substrate 1".
  • a pair of conductor patterns 2 1 ′′ and 2 2 ′′ is provided on the surface of the dielectric substrate 1 ′′.
  • One conductor pattern 2 1 ′′ has five first radiating elements 3 1 ′′. To 3 5 ′′, four first feed lines 4 1 ′′ to 4 4 ′′, and a portion corresponding to the second feed line 5 ′′.
  • the other conductor pattern 2 2 ′′ is a portion corresponding to the five second radiating elements 6 1 ′′ to 6 5 ′′, a portion corresponding to the four third feeding lines 7 1 ′′ to 7 4 ′′, and a fourth feeding line 8 ′′
  • the first radiating element group includes five first radiating elements 3 1 ′′ to 3 5 ′′.
  • a second radiating element group is constituted by the five second radiating elements 6 1 ′′ to 6 5 ′′.
  • the microstrip array antenna section 9 ′′ is formed.
  • a ′′ in the figure indicates an axially symmetric center axis of the microstrip array antenna unit 9 ′′.
  • a first end of the second feed line 5 ′′ is electrically connected to the first radiating element 3 1 ′′, and a second end of the second feed line 5 ′′ is electrically connected to the feed unit 10 1 ′′.
  • the power supply unit 10 1 ′′ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the second power supply line 5 ′′.
  • the supplied power propagates along the second feed line 5 ′′ and is input to the first radiating element 3 1 ′′.
  • Part of the input power is radiated to the space outside the antenna device 100 ′′ as electromagnetic waves by the first radiating element 3 1 ′′.
  • Another part of the input power propagates in the -X direction along the first feed lines 4 1 ′′ to 4 4 ′′, and the first radiating elements 3 2 ′′ to 3 ′ 5 "radiates as electromagnetic waves to the space outside the antenna device 100".
  • the first end of the fourth feed line 8 " is electrically connected to the second radiating element 6 1 ", and the second end of the fourth feed line 8 “is electrically connected to the feed unit 10 2 ".
  • the power supply unit 10 2 ′′ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the fourth power supply line 8 ′′.
  • the supplied power propagates along the fourth power supply line 8 ′′ and is input to the second radiating element 6 1 ′′. Part of the input power is radiated by the second radiating element 6 1 ′′ as electromagnetic waves to the space outside the antenna device 100 ′′.
  • Another part of the input power propagates in the + X direction along the third power supply lines 7 1 ′′ to 7 4 ′′, and the second radiating elements 6 2 ′′ to 6 5 As a result, electromagnetic waves are radiated as electromagnetic waves into a space outside the antenna device 100 ''.
  • each of the second feed line 5 ′′ and the fourth feed line 8 ′′ is constituted by a substantially crank-shaped line. That is, the second feed line 5 ′′ and the fourth feed line 8 "has a plurality of bent portions, whereby the feeding portions 10 1 " and 10 2 "are arranged between the first radiating element 3 1 " and the second radiating element 6 1 ".
  • the distance D3 (see FIG. 3) between the center of the first radiating element 3 1 ′′ and the center of the second radiating element 6 1 ′′ is compared with the distance D2 (see FIG. 2). As a result, the occurrence of blocking can be suppressed.
  • the antenna device 100 has a problem in that the feed loss increases due to the plurality of bent portions provided on each of the second feed line 5" and the fourth feed line 8 ".
  • the antenna device 100 of the first embodiment employs the side feeding method as described above.
  • the feeding portion 10 1 can be prevented from being disposed in the first radiating element 3 1 and the second between radiating element 61.
  • a fourth feed line 8 straight it is possible to use a fourth feed line 8 straight, to prevent the power supply unit 10 2 is disposed in the first radiating element 3 1 and the second between radiating element 61.
  • the antenna device 100 may operate as a standing wave antenna.
  • the antenna device 100 may be used for a receiving antenna.
  • connection portion of the second feed line 5 in one first radiating element 3 (the first radiating element 3 2 in the example shown in FIG. 1) to which the second feed line 5 is connected is the one first radiating element 3.
  • One of the second radiating elements 6 (in the example shown in FIG. 1, the second radiating element 6 2 ) which is arranged at the right end of the one radiating element 3 and to which the fourth feed line 8 is connected.
  • the connection part of the four feed lines 8 may be arranged at the right end of the one second radiating element 6.
  • the connection part of the second feed line 5 in the one first radiating element 3 is disposed at the left end of the one first radiating element 3 and the one second radiating element 6 May be arranged at the left end of the one second radiating element 6.
  • the first one the of The radiating element 3 and the one second radiating element 6 can be excited in the same phase.
  • the antenna device 100 may have a ground conductor plate instead of the ground conductor pattern, and may have a pair of conductor plates instead of the pair of conductor patterns 2.
  • One of the conductive plates of the pair of conductor plates are those having the same shape as the conductor pattern 2 1
  • other conductor plate of the pair of conductor plates are those having the same shape as the conductor pattern 2 2 is there.
  • a spacer may be provided between the ground conductor plate and the pair of conductor plates instead of the dielectric substrate 1.
  • each first radiating element 3 is not limited to a rectangular shape.
  • Each first radiating element 3 may have, for example, an elliptical shape or a polygonal shape.
  • the shape of each second radiating element 6 is not limited to a rectangular shape.
  • Each of the second radiating elements 6 may have, for example, an elliptical shape or a polygonal shape.
  • each of the first radiating elements 3 is provided with a pair of notches, and each of the second radiating elements 6 is provided with a pair of notches. It may operate as an antenna.
  • the antenna device 100 may operate as a circularly polarized antenna because the polarizer is arranged to face the surface of the dielectric substrate 1.
  • the phases of the excitation in the N first radiating elements 3 (that is, the phases of the power supply to the N first radiating elements 3) can be individually set freely, and the excitation in the N second radiating elements 6 can be set.
  • the phase (that is, the phase of power supply to the N second radiating elements 6) may be individually settable.
  • the antenna device 100 may operate as a so-called “phased array antenna”.
  • the antenna device 100 includes the first radiating element group including the plurality of first radiating elements 3 arranged in the first direction and the first radiating element group adjacent to each other in the first radiating element group.
  • the first feeder line 4 electrically connected between the radiating elements 3 and one of the first radiating elements 3 except for the first radiating elements 3 arranged at both ends of the first radiating element group are electrically connected.
  • the arrangement of the power supply units 10 1 and 10 2 can be avoided. As a result, the occurrence of blocking can be suppressed. Further, at this time, a discontinuous portion in the feed line between the first radiating elements 3 adjacent to each other (that is, the first feed line 4) can be unnecessary, and the power supply between the second radiating elements 6 adjacent to each other can be eliminated. line (i.e., third feeding line 7) that the course of the discontinuity can be eliminated in, not in the feed line between the power supply portion 10 1 and the first radiating element 3 (i.e. the second feed line 5) the continuous portion can be eliminated, and a discontinuous portion and the feeding portion 10 2 in the feed line between the second radiating element 6 (i.e. the fourth feeding line 8) can be eliminated.
  • line i.e., third feeding line 7 that the course of the discontinuity can be eliminated in, not in the feed line between the power supply portion 10 1 and the first radiating element 3 (i.e. the second feed line 5) the continuous portion can be eliminated, and
  • the operating gain of the antenna device 100 can be increased by improving the radiation characteristics and reducing the feed loss. As a result, it is possible to efficiently radiate electromagnetic waves in the so-called “broadside direction”.
  • the microstrip array antenna unit 9 is provided between a second radiating element group including a plurality of second radiating elements 6 arranged in the first direction and the second radiating elements 6 adjacent to each other in the second radiating element group.
  • the third power supply line 7 electrically connected to the second radiating element 6 except for the second radiating elements 6 arranged at both ends of the second radiating element group.
  • a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a one-dimensional array in the microstrip array antenna section 9. Thereby, as shown in FIG. 1, a so-called “linear array antenna” can be realized.
  • the plurality of first radiating elements 3 and the plurality of second radiating elements 6 are arranged axially symmetric with each other, and the plurality of first feeding lines 4 and the plurality of The third power supply lines 7 are arranged axially symmetrically with each other, and the second power supply line 5 and the fourth power supply line 8 are axially symmetrically arranged with each other.
  • the shape of the radiation pattern by the antenna device 100 can be made substantially axially symmetric.
  • the shape of the radiation pattern on the XZ plane can be made substantially axially symmetric.
  • Each of the first power supply lines 4 is configured by a linear line along the first direction
  • each of the third power supply lines 7 is configured by a linear line along the first direction. Since these feeder lines are linear, it is possible to avoid generation of unnecessary radiation of electromagnetic waves due to discontinuous portions.
  • the second power supply line 5 is configured by a linear line along the direction orthogonal to the first direction
  • the fourth power supply line 8 is configured by a linear line along the direction orthogonal to the first direction. I have. Since these feeder lines are linear, it is possible to avoid generation of unnecessary radiation of electromagnetic waves due to discontinuous portions.
  • axial symmetry described in the claims of the present application is not limited to a completely axially symmetric mode, but includes a substantially axially symmetric mode.
  • linear described in the claims of the present application is not limited to a completely linear mode, but includes a substantially linear mode.
  • orthogonal direction described in the claims of the present application is not limited to a perfect orthogonal direction, but encompasses a substantially orthogonal direction.
  • FIG. FIG. 4 is a plan view showing a main part of the antenna device according to the second embodiment.
  • An antenna device 100a according to the second embodiment will be described with reference to FIG.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the first radiating element 3 has a recess 21 1 pair of notch-like arranged on both sides with respect to the first feed line 4 1 in the first feed line 4 first connecting portion I have.
  • First radiating element 3 2 has a recess 21 2 a pair of notch-like arranged on both sides with respect to the first feed line 4 1 in the first feed line 4 first connection portion.
  • First radiating element 3 2 includes a first feed line 4 2 of the first feed line 4 second recess 21 3 pair of notch-like arranged on both sides with respect to the connecting portion.
  • First radiating element 3 3 includes a first feed line 4 2 of the first feed line 4 2 pair of notch-like recesses 21 4 arranged on opposite sides with respect to the connecting portion.
  • First radiating element 3 3 has a recess 21 5 pair of notch-like arranged on both sides with respect to the first feed line 4 3 at the connecting portion of the first feed line 4 3.
  • First radiating element 3 4 has a first feed line 4 first feed line 4 3 recesses 21 6 pair of notch-like arranged on both sides for the connection of 3.
  • First radiating element 3 4 has a first feed line 4 4 of the first feed line 4 a pair of notch-like recesses 21 7 disposed on opposite sides with respect to 4 at a connection.
  • First radiating element 35 has a first feed line 4 4 of the first feed line 4 a pair of notch-like recesses 21 8 arranged on opposite sides with respect to 4 at a connection.
  • the second radiating element 61 has a third feed line 71 of the recess 22 1 a pair of notch-like arranged on opposite sides with respect to the third feed line 71 at the connection portion.
  • the second radiating element 6 2 comprises a third feed line 71 of the pair of notch-like recesses 22 2 disposed on opposite sides with respect to the third feed line 71 at the connection portion.
  • the second radiating element 6 2 comprises a third feed line 7 at the second connection portion third feeding line 7 2 recesses 22 3 pair of notch-like arranged on both sides against.
  • the second radiating element 6 3 has a third feed line 7 2 of the third feeding line 7 2 pair of notch-like recesses 22 4 arranged on opposite sides with respect to the connecting portion.
  • the second radiating element 6 3 has a third feed line 7 third feed line 7 recesses 22 5 of the pair of notched arranged on opposite sides with respect to 3 at a connection of the 3.
  • the second radiating element 6 4 has a third feed line 7 third feed line 7 recesses 22 6 of the pair of notched arranged on opposite sides with respect to 3 at a connection of the 3.
  • the second radiating element 6 4 has a third feed line 7 4 third feed line 7 pair of notch-like recesses 22 7 disposed on opposite sides with respect to 4 at a connection.
  • the second radiating element 6 5, and a third feed line 7 4 third feed line 7 pair of notch-like recesses 22 8 arranged on opposite sides with respect to 4 at a connection.
  • the notch-shaped concave portion 21 is formed at the connection portion of the first feed line 4 in each of the first radiating elements 3.
  • a notch-shaped concave portion 22 is formed at a connection portion of the third feed line 7 in each of the second radiation elements 6.
  • the microstrip array antenna 9a is thus configured.
  • the operation of the antenna device 100a will be described. More specifically, a description will be given focusing on an example in which the antenna device 100a operates as a traveling wave antenna when the antenna device 100a is used as a transmission antenna.
  • the power supply unit 10 1 supplies power to the second end of the second feed line 5.
  • the supplied power can propagate in the + Y direction along the second feed line 5 is input to the first radiating element 3 2.
  • the portion of the power of the input power is radiated into space outside the antenna device 100a by the first radiating element 3 2 as an electromagnetic wave.
  • the other part of the power of the input power propagates in the + X direction along the first feed line 4 1, space outside the antenna device 100a as a first electromagnetic wave by radiating element 3 1 Is radiated.
  • another part of the power of the electric power the input is propagated in the -X direction along the first feed line 4 2-4 4, the electromagnetic wave by the first radiating element 3 3 to 3 5 Is radiated to the space outside the antenna device 100a.
  • the supplied power is fourth propagates in the + Y direction along the feeding line 8, is input to the second radiating element 6 2.
  • the portion of the power of the input power is radiated into space outside the antenna device 100a as the second electromagnetic wave by radiating element 6 2.
  • the other part of the power that is the input power is propagated in the -X direction along the third feeding line 71, outside the antenna device 100a as the second electromagnetic wave by radiating element 6 1 Radiated into space.
  • another part of the power of the electric power the input is propagated to the third feeding line 7 2-7 along the 4 + X direction, as an electromagnetic wave by the second radiating element 6 3-6 5 It is radiated to the space outside the antenna device 100a.
  • a portion of the power to be radiated to the space outside the antenna device 100a as a first electromagnetic wave by radiating element 3 1 is first radiation without being radiated to the space outside the antenna device 100a as an electromagnetic wave by the element 3 1, it may be reflected by the first radiating element 3 1.
  • Some of the power of the reflected power, the first feed line 4 1, and the first radiating element 3 2 and a second feed line 5 is sequentially passed, return to the feeding section 10 1 (i.e., so-called " A reflected wave is generated.) Further, another part of the power of the reflected power, the first feed line 4 1, the first radiating element 3 2 and the first feed line 4 2 sequentially passes through the first radiating element 3 3 is radiated to the space outside the antenna device 100a as an electromagnetic wave by 1-3 5 (i.e., the so-called "unnecessary radiation wave" occurs.).
  • a portion of the power to be radiated to the space outside the antenna device 100a by the first radiating element 3 3 to 3 5 as an electromagnetic wave is, the without being radiated to the space outside the antenna device 100a as the electromagnetic wave by the first radiating element 3 3 to 3 5, it may be reflected by the first radiating element 3 3 to 3 5.
  • Some of the power of the reflected power, the first power supply line 4 2, and the first radiating element 3 2 and a second feed line 5 is sequentially passed, return to the feeding section 10 1 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the first power supply line 4 2, and the first radiating element 3 2 and the first feed line 4 1 sequentially passes through the first radiating element 3 1 As a result, it is radiated as electromagnetic waves to the space outside the antenna device 100a (that is, unnecessary radiation waves are generated).
  • the formation of the concave portion 21 in each of the first radiating elements 3 makes it possible to suppress the generation of reflected waves and unnecessary radiation waves in the first radiating element group. As a result, the power supply loss can be further reduced, and the radiation characteristics can be further improved.
  • a portion of the power to be radiated to the space outside the antenna device 100a as the second electromagnetic wave by radiating element 61 is a second radiation without being radiated to the space outside the antenna device 100a as an electromagnetic wave by an element 6 1, which may be reflected by the second radiating element 61.
  • the power of the reflected power, the third feed line 71, and a second radiating element 6 second and fourth feed lines 8 sequentially passes through, back to the feeding portion 10 2 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the third feed line 71, a second radiating element 6, second and third feed line 7 2 sequentially passes through the second radiating element 6 3 is radiated to the space outside the antenna device 100a as an electromagnetic wave by 1-6 5 (i.e., unnecessary radiation wave is generated.).
  • the concave portion 22 to the respective second radiating element 6 is not formed, a portion of the power to be radiated to the space outside the antenna device 100a by the second radiating element 6 3-6 5 as an electromagnetic wave is, the the second radiation element 6 3-6 5 without being radiated to the space outside the antenna device 100a as an electromagnetic wave, may be reflected by the second radiating element 6 3-6 5.
  • Some of the power of the reflected power, the third feed line 7 2, and the second radiating element 6 second and fourth feed lines 8 sequentially passes through, back to the feeding portion 10 2 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the third feed line 7 2, the second radiation element 6, second and third successively passes through the feed line 71, the second radiating element 6 1 As a result, electromagnetic waves are radiated to the space outside the antenna device 100a (that is, unnecessary radiation waves are generated).
  • the formation of the concave portion 22 in each of the second radiating elements 6 can suppress the generation of reflected waves and unnecessary radiation waves in the second radiating element group. As a result, the power supply loss can be further reduced, and the radiation characteristics can be further improved.
  • FIG. 5 shows an electromagnetic field simulation result of a radiation pattern by the antenna device 100a.
  • I corresponds to the main polarization in the XZ plane
  • II in the figure corresponds to the main polarization in the YZ plane.
  • the radiation pattern by the antenna device 100a has directivity in the broadside direction and has a low sidelobe level. By using the antenna device 100a of the side feeding system, such a good radiation pattern can be obtained.
  • the antenna device 100a can employ various modifications similar to those described in Embodiment 1, that is, various modifications similar to the antenna device 100.
  • the notch-shaped concave portion 21 is formed at the connection portion of the first feed line 4 in each of the first radiating elements 3, and the individual second radiating element 6, a notch-shaped concave portion 22 is formed at a connection portion of the third power supply line 7.
  • FIG. 6 is a plan view showing a main part of the antenna device according to the third embodiment.
  • Third Embodiment An antenna device 100b according to a third embodiment will be described with reference to FIG.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • a waveguide 31 is provided on the back surface of the dielectric substrate 1.
  • the waveguide 31 is constituted by a rectangular waveguide.
  • the waveguide 31 is provided so that its tube axis is orthogonal to the plate surface of the dielectric substrate 1.
  • a rectangular through-hole (hereinafter referred to as a “coupling hole”) 32 is formed at a position corresponding to the center of the waveguide 31 in the ground conductor pattern.
  • a rectangular conductor pattern 33 is provided at a position corresponding to the center of the waveguide 31 on the surface of the dielectric substrate 1. The waveguide 31, the coupling hole 32, and the conductor pattern 33 form a power supply unit 10 b.
  • Conductor pattern 2 1 has a portion corresponding to the second feed line provided between the end portion (hereinafter referred to as "fifth feed line”.) 34 of the power supply portion 10b and the second feed line 5 . That is, one end (hereinafter, referred to as “first end”) of the fifth power supply line 34 is electrically connected to the second end of the second power supply line 5, and the other end of the fifth power supply line 34. (Hereinafter, referred to as “second end”) is electrically connected to the waveguide 31 via the conductor pattern 33 and the coupling hole 32.
  • the fifth power supply line 34 is configured by a linear line along the first direction.
  • Conductor patterns 2 2 has a portion corresponding to the feeding part 10b and the fourth feeder feeding line provided between the second end of the line 8 (hereinafter referred to as "sixth feed line”.) 35 . That is, one end (hereinafter, referred to as “first end”) of the sixth power supply line 35 is electrically connected to the second end of the fourth power supply line 8, and the other end of the sixth power supply line 35. (Hereinafter, referred to as “second end”) is electrically connected to the waveguide 31 via the conductor pattern 33 and the coupling hole 32.
  • the sixth power supply line 35 is configured by a linear line along the first direction.
  • the microstrip array antenna 9b is thus configured.
  • the power supply unit 10b is disposed on the central axis A.
  • the fifth feed line 34 and the sixth feed line 35 are arranged axially symmetric with each other. That is, the conductor pattern 2 1 and the conductor pattern 2 2 has an axial symmetrical shape.
  • the conductor pattern 33 is provided for impedance matching between the waveguide 31 and the coupling hole 32 and the fifth power supply line 34 and the sixth power supply line 35.
  • the coupling between the waveguide 31 and the fifth power supply line 34 and the sixth power supply line 35 is determined by the size of the coupling hole 32 (more specifically, the size in the direction along the X axis and the size in the direction along the Y axis). The amount can be adjusted.
  • the dimension of the conductor pattern 33 (more specifically, the dimension in the direction along the X-axis and the dimension in the direction along the Y-axis) causes the gap between the waveguide 31 and the fifth feed line 34 and the sixth feed line 35. Can be adjusted.
  • the operation of the antenna device 100b will be described. More specifically, description will be made focusing on an example in which the antenna device 100b operates as a traveling wave antenna when the antenna device 100b is used as a transmission antenna.
  • the power supply unit 10b supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the fifth power supply line 34.
  • the supplied power is propagated along the fifth feed line 34 and a second feed line 5 is input to the first radiating element 3 2.
  • the behavior of the input power is the same as that described in the first embodiment, and a description thereof will not be repeated.
  • the power supply unit 10b supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the sixth power supply line 35.
  • the supplied power is propagated along the sixth feed line 35 and the fourth feeding line 8, is input to the second radiating element 6 2.
  • the behavior of the input power is the same as that described in the first embodiment, and a description thereof will not be repeated.
  • the antenna device 100b can employ various modifications similar to those described in Embodiment 1, that is, various modifications similar to the antenna device 100.
  • the individual first radiating elements 3 in the antenna device 100b may have the same concave portions 21 as the individual first radiating elements 3 in the antenna device 100a.
  • Each of the second radiating elements 6 in the antenna device 100b may have the same concave portion 22 as each of the second radiating elements 6 in the antenna device 100a.
  • the shape of the coupling hole 32 is not limited to a rectangular shape.
  • the coupling hole 32 may have, for example, an elliptical shape or a polygonal shape.
  • the waveguide 31 may have a so-called “choke structure”. Thereby, the leakage current can be cut off.
  • the antenna device 100b of the third embodiment includes the feeder 10b using the waveguide 31, and the microstrip array antenna 9b is electrically connected between the second feeder line 5 and the feeder 10b. It has a fifth power supply line 34 connected thereto, and a sixth power supply line 35 electrically connected between the fourth power supply line 8 and the power supply unit 10b.
  • the side feeding method can be realized. As a result, the occurrence of blocking can be suppressed, and the power supply loss can be reduced.
  • the fifth power supply line 34 is configured by a linear line along the first direction
  • the sixth power supply line 35 is configured by a linear line along the first direction. Since these feed lines are linear, the number of bent portions in the feed lines between the feed unit 10b and the first radiating element 3 (that is, the second feed line 5 and the fifth feed line 34) is reduced to one. In addition, the number of bent portions in the feed line between the feed unit 10b and the second radiating element 6 (that is, the fourth feed line 8 and the sixth feed line 35) can be reduced to one. As a result, generation of unnecessary electromagnetic wave radiation due to the discontinuous portion can be suppressed as compared with the antenna device 100 ′′.
  • FIG. 7 is a plan view showing a main part of the antenna device according to the fourth embodiment.
  • FIG. 8 is a plan view showing a main part of another antenna device according to the fourth embodiment.
  • FIG. 9 is a plan view showing a main part of another antenna device according to the fourth embodiment.
  • An antenna device 100c, 100d, or 100e according to a fourth embodiment will be described with reference to FIGS.
  • an antenna device 100c has a plurality of microstrip array antenna units 9 arranged in a direction different from the first direction (hereinafter, referred to as a "second direction"). .
  • Each microstrip array antenna section 9 is the same as that described in the first embodiment.
  • a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array.
  • the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction.
  • reference numerals of respective portions in the individual conductor patterns 2 are not shown.
  • the antenna device 100d has a plurality of microstrip array antenna units 9a arranged in the second direction.
  • Each microstrip array antenna section 9a is the same as that described in the second embodiment.
  • a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array.
  • the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction.
  • the reference numerals of the respective portions, the reference numerals of the individual concave portions 21, and the reference numerals of the individual concave portions 22 in the individual conductor patterns 2 are omitted.
  • the antenna device 100e has a plurality of microstrip array antenna units 9b arranged in the second direction.
  • Each microstrip array antenna section 9b is the same as that described in the third embodiment.
  • a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array.
  • the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction.
  • the reference numerals of the respective portions in the individual conductor patterns 2 and the reference numerals of the respective portions in the individual power supply portions 10b are omitted.
  • the second direction is not limited to a direction orthogonal to the first direction.
  • the second direction may be a direction oblique to the first direction.
  • the individual microstrip array antenna units 9 in the antenna device 100c can employ various modifications similar to those described in the first embodiment.
  • the individual microstrip array antenna sections 9a in the antenna device 100d can employ various modifications similar to those described in the second embodiment.
  • each of the first radiating elements 3 may have the concave portion 21 and each of the second radiating elements 6 may have the concave portion 22.
  • the antenna device 100c includes the plurality of microstrip array antenna units 9 arranged in the second direction different from the first direction.
  • a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a two-dimensional array.
  • a so-called “planar array antenna” can be realized as shown in FIG.
  • the antenna device 100d according to the fourth embodiment includes a plurality of microstrip array antennas 9a arranged in a second direction different from the first direction.
  • the first radiating element 3 and the plurality of second radiating elements 6 are arranged in a two-dimensional array. As a result, as shown in FIG. 8, a planar array antenna can be realized.
  • the antenna device 100e includes a plurality of microstrip array antenna units 9b arranged in a second direction different from the first direction.
  • the first radiating element 3 and the plurality of second radiating elements 6 are arranged in a two-dimensional array. As a result, as shown in FIG. 9, a planar array antenna can be realized.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of an arbitrary component in each embodiment is possible within the scope of the invention. .
  • the antenna device of the present invention can be used for, for example, a radar device.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna device (100) provided with a microstrip array antenna unit (9) having: a first radiating element group including a plurality of first radiating elements (3) arranged in a first direction; first power supply lines (4) electrically connected between mutually adjacent first radiating elements (3) in the first radiating element group; and a second power supply line (5) electrically connected to any of the first radiating elements (3) excluding the first radiating elements (3) disposed at both ends of the first radiating element group.

Description

アンテナ装置Antenna device
 本発明は、アンテナ装置に関する。 The present invention relates to an antenna device.
 従来、いわゆる「マイクロストリップアレーアンテナ」を用いたアンテナ装置が開発されている(例えば、特許文献1参照。)。 Conventionally, an antenna device using a so-called “microstrip array antenna” has been developed (for example, see Patent Document 1).
特開2016-225935号公報JP 2016-225935 A
 特許文献1記載の中央給電アレーアンテナ(C)は、一対のアレーアンテナ(A)間に中央給電部(5)が設けられている(特許文献1の図3等参照)。すなわち、個々のアレーアンテナ(A)が端部給電方式であるのに対して、中央給電アレーアンテナ(C)全体は中央給電方式である。 中央 In the central feeding array antenna (C) described in Patent Document 1, a central feeding portion (5) is provided between a pair of array antennas (A) (see FIG. 3 and the like in Patent Document 1). That is, the individual array antennas (A) are of the end feeding type, whereas the entire center feeding array antenna (C) is of the central feeding type.
 特許文献1記載の中央給電アレーアンテナ(C)は、一対のアレーアンテナ(A)間に中央給電部(5)が設けられているため、いわゆる「ブロッキング」が発生する。このブロッキングにより、放射特性が低下する問題があった。具体的には、例えば、いわゆる「サイドローブ」のレベルが大きくなる問題があった。 中央 In the central feeding array antenna (C) described in Patent Document 1, so-called “blocking” occurs because the central feeding unit (5) is provided between the pair of array antennas (A). Due to this blocking, there is a problem that the radiation characteristics are reduced. Specifically, for example, there is a problem that the level of a so-called “side lobe” increases.
 また、特許文献1記載の中央給電アレーアンテナ(C)は、個々のアレーアンテナ(A)に位相調整用の複数個のクランク状の伝送線路が設けられている(特許文献1の図1等参照)。これらのクランク状の伝送線路により、給電損失が増加する問題があった。 In the central feeding array antenna (C) described in Patent Document 1, a plurality of crank-shaped transmission lines for phase adjustment are provided in each array antenna (A) (see FIG. 1 and the like in Patent Document 1). ). Due to these crank-shaped transmission lines, there has been a problem that power supply loss increases.
 本発明は、上記のような課題を解決するためになされたものであり、マイクロストリップアレーアンテナを用いたアンテナ装置において、ブロッキングの発生を抑制するとともに給電損失を低減することを目的とする。 The present invention has been made to solve the above-described problem, and has as its object to suppress occurrence of blocking and reduce power supply loss in an antenna device using a microstrip array antenna.
 本発明のアンテナ装置は、第1方向に配列された複数個の第1放射素子を含む第1放射素子群と、第1放射素子群における互いに隣接する第1放射素子間に電気的に接続された第1給電線路と、第1放射素子群における両端部に配置された第1放射素子を除くいずれかの第1放射素子に対して電気的に接続された第2給電線路と、を有するマイクロストリップアレーアンテナ部を備えるものである。 An antenna device according to the present invention is electrically connected between a first radiating element group including a plurality of first radiating elements arranged in a first direction and adjacent first radiating elements in the first radiating element group. And a second feed line electrically connected to any of the first radiating elements except for the first radiating elements disposed at both ends of the first radiating element group. It has a strip array antenna unit.
 本発明によれば、上記のように構成したので、マイクロストリップアレーアンテナを用いたアンテナ装置において、ブロッキングの発生を抑制するとともに給電損失を低減することができる。 According to the present invention, since the configuration is as described above, in the antenna device using the microstrip array antenna, it is possible to suppress the occurrence of the blocking and reduce the feeding loss.
実施の形態1に係るアンテナ装置の要部を示す平面図である。FIG. 3 is a plan view showing a main part of the antenna device according to the first embodiment. 実施の形態1に係るアンテナ装置に対する比較用のアンテナ装置の要部を示す平面図である。FIG. 3 is a plan view showing a main part of an antenna device for comparison with the antenna device according to the first embodiment. 実施の形態1に係るアンテナ装置に対する比較用の他のアンテナ装置の要部を示す平面図である。FIG. 5 is a plan view showing a main part of another antenna device for comparison with the antenna device according to the first embodiment. 実施の形態2に係るアンテナ装置の要部を示す平面図である。FIG. 9 is a plan view illustrating a main part of the antenna device according to the second embodiment. 実施の形態2に係るアンテナ装置による放射パターンの電磁界シミュレーション結果を示す説明図である。FIG. 14 is an explanatory diagram showing an electromagnetic field simulation result of a radiation pattern by the antenna device according to Embodiment 2. 実施の形態3に係るアンテナ装置の要部を示す平面図である。FIG. 13 is a plan view illustrating a main part of the antenna device according to the third embodiment. 実施の形態4に係るアンテナ装置の要部を示す平面図である。FIG. 14 is a plan view illustrating a main part of the antenna device according to the fourth embodiment. 実施の形態4に係る他のアンテナ装置の要部を示す平面図である。FIG. 14 is a plan view showing a main part of another antenna device according to Embodiment 4. 実施の形態4に係る他のアンテナ装置の要部を示す平面図である。FIG. 14 is a plan view showing a main part of another antenna device according to Embodiment 4.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係るアンテナ装置の要部を示す平面図である。図1を参照して、実施の形態1のアンテナ装置100について説明する。
Embodiment 1 FIG.
FIG. 1 is a plan view showing a main part of the antenna device according to the first embodiment. The antenna device 100 according to the first embodiment will be described with reference to FIG.
 図中、1は誘電体基板である。誘電体基板1の裏面部に接地導体パターン(不図示)が設けられており、誘電体基板1の表面部に一対の導体パターン2が設けられている。一対の導体パターン2のうちの一方の導体パターン2は、N個の放射素子(以下「第1放射素子」という。)3に対応する部位、M個の給電線路(以下「第1給電線路」という。)4に対応する部位、及び他の給電線路(以下「第2給電線路」という。)5に対応する部位を有している。一対の導体パターン2のうちの他方の導体パターン2は、N個の放射素子(以下「第2放射素子」という。)6に対応する部位、M個の給電線路(以下「第3給電線路」という。)7に対応する部位、及び他の給電線路(以下「第4給電線路」という。)8に対応する部位を有している。このようにして、マイクロストリップアレーアンテナ部9が構成されている。 In the figure, reference numeral 1 denotes a dielectric substrate. A ground conductor pattern (not shown) is provided on the back surface of the dielectric substrate 1, and a pair of conductor patterns 2 are provided on the front surface of the dielectric substrate 1. One of the conductive traces 2 1 of the pair of the conductor pattern 2, N number of radiating elements (hereinafter referred to as "first radiation element".) Portion corresponding to the 3, M-number of the feed line (hereinafter, "first feed line 4) and a portion corresponding to another power supply line (hereinafter referred to as “second power supply line”) 5. Other conductor patterns 2 2 of the pair of the conductor pattern 2, N number of radiating elements (hereinafter "second radiating element" hereinafter.) Portions corresponding to 6, M number of feed lines (hereinafter "third feed line 7) and a portion corresponding to another power supply line (hereinafter, referred to as a “fourth power supply line”) 8. Thus, the microstrip array antenna section 9 is configured.
 以下、N個の第1放射素子3による放射素子群を「第1放射素子群」という。また、N個の第2放射素子6による放射素子群を「第2放射素子群」という。 放射 Hereinafter, a radiating element group including the N first radiating elements 3 is referred to as a “first radiating element group”. A radiating element group formed by the N second radiating elements 6 is referred to as a “second radiating element group”.
 ここで、Nは3以上の任意の整数であり、図1に示す例においてはN=5である。すなわち、図1に示す例において、マイクロストリップアレーアンテナ部9は5個の第1放射素子3~3及び5個の第2放射素子6~6を有している。また、MはN-1の整数であり、図1に示す例においてはM=4である。すなわち、図1に示す例において、マイクロストリップアレーアンテナ部9は4個の第1給電線路4~4及び4個の第3給電線路7~7を有している。 Here, N is an arbitrary integer of 3 or more, and N = 5 in the example shown in FIG. That is, in the example shown in FIG. 1, a microstrip array antenna unit 9 has a first radiating element 3 1-3 5 and five second radiating element 6 1-6 5 five. Further, M is an integer of N−1, and M = 4 in the example shown in FIG. That is, in the example shown in FIG. 1, a microstrip array antenna unit 9 has a first feed line 4 1-4 4 and four third feed line 7 1-7 4 4.
 マイクロストリップアレーアンテナ部9において、N個の第1放射素子3は一列に配置されており、N個の第2放射素子6も一列に配置されている。より具体的には、N個の第1放射素子3の配列方向とN個の第2放射素子6の配列方向とが互いに同一であり、これらの放射素子3,6が直線状に、すなわち一次元アレー状に配列されている。以下、これらの放射素子3,6の配列方向を「第1方向」という。図1に示す例において、個々の第1放射素子3は矩形状であり、個々の第2放射素子6も矩形状である。 In the microstrip array antenna section 9, N first radiating elements 3 are arranged in a line, and N second radiating elements 6 are also arranged in a line. More specifically, the arrangement direction of the N first radiating elements 3 and the arrangement direction of the N second radiating elements 6 are the same as each other, and these radiating elements 3 and 6 are linear, that is, primary They are arranged in an original array. Hereinafter, the arrangement direction of these radiating elements 3 and 6 is referred to as a “first direction”. In the example shown in FIG. 1, each first radiating element 3 is rectangular, and each second radiating element 6 is also rectangular.
 図中X軸は、第1方向に沿う仮想的な軸である。図中Y軸は、第1方向に対する直交方向であって誘電体基板1の板面と平行な方向に沿う仮想的な軸である。図中Z軸は、第1方向に対する直交方向であって誘電体基板1の板面に対する直交方向に沿う仮想的な軸である。すなわち、X軸、Y軸及びZ軸は互いに直交している。 X The X axis in the figure is a virtual axis along the first direction. In the figure, the Y axis is a virtual axis along a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1. In the figure, the Z axis is a virtual axis that is a direction orthogonal to the first direction and is orthogonal to the plate surface of the dielectric substrate 1. That is, the X axis, the Y axis, and the Z axis are orthogonal to each other.
 以下、X軸及びZ軸に対して平行であり、かつ、個々の第1放射素子3の中心部及び個々の第2放射素子6の中心部を通る仮想的な平面を「XZ平面」という。また、Y軸及びZ軸に対して平行であり、かつ、マイクロストリップアレーアンテナ部9の中心部を通る(すなわち中心軸Aを通る)仮想的な平面を「YZ平面」という。 Hereinafter, a virtual plane that is parallel to the X axis and the Z axis and passes through the center of each of the first radiating elements 3 and the center of each of the second radiating elements 6 is referred to as an “XZ plane”. A virtual plane that is parallel to the Y axis and the Z axis and passes through the center of the microstrip array antenna unit 9 (that is, passes through the center axis A) is referred to as “YZ plane”.
 個々の第1給電線路4は、互いに隣接する各2個の第1放射素子3間に設けられており、当該2個の第1放射素子3と電気的に接続されている。図1に示す例においては、第1放射素子3,3間に第1給電線路4が設けられており、第1放射素子3,3間に第1給電線路4が設けられており、第1放射素子3,3間に第1給電線路4が設けられており、第1放射素子3,3間に第1給電線路4が設けられている。個々の第1給電線路4は、第1方向に沿う直線状の線路により構成されている。 Each first feed line 4 is provided between each two adjacent first radiating elements 3 and is electrically connected to the two first radiating elements 3. In the example shown in FIG. 1, the first feed line 4 1 is provided, the first feed line 4 2 between the first radiating element 3 2, 3 3 provided between the first radiating element 3 1, 3 2 is and has first feed line 4 3 is provided between the first radiating element 3 3, 3 4, the first feed line 4 4 is provided between the first radiating element 3 4, 3 5. Each of the first power supply lines 4 is configured by a straight line along the first direction.
 個々の第3給電線路7は、互いに隣接する各2個の第2放射素子6間に設けられており、当該2個の第2放射素子6と電気的に接続されている。図1に示す例においては、第2放射素子6,6間に第3給電線路7が設けられており、第2放射素子6,6間に第3給電線路7が設けられており、第2放射素子6,6間に第3給電線路7が設けられており、第2放射素子6,6間に第3給電線路7が設けられている。個々の第3給電線路7は、第1方向に沿う直線状の線路により構成されている。 Each of the third feeder lines 7 is provided between two adjacent second radiating elements 6 and is electrically connected to the two second radiating elements 6. In the example shown in FIG. 1, a third feed line 71 is provided on the second radiating element 6 1, 6 between the two, a third feed line 7 2 provided between the second radiating element 6 2, 6 3 is and has third feed line 7 3 is provided between the second radiating element 6 3, 6 4, third feeding line 7 4 is provided between the second radiating element 6 4, 6 5. Each of the third power supply lines 7 is configured by a linear line along the first direction.
 第2給電線路5の一端部(以下「第1端部」という。)は、第1放射素子群における両端部に配置された2個の第1放射素子3を除く1個以上の第1放射素子3のうちのいずれか1個の第1放射素子3と電気的に接続されている。図1に示す例においては、第1放射素子群における両端部に配置された2個の第1放射素子3,3を除く3個の第1放射素子3~3のうちの1個の第1放射素子3に対して第2給電線路5の第1端部が電気的に接続されている。 One end of the second feed line 5 (hereinafter, referred to as “first end”) is one or more first radiations excluding the two first radiation elements 3 arranged at both ends in the first radiation element group. One of the elements 3 is electrically connected to the first radiating element 3. In the example shown in FIG. 1, one of the first first radiating element 3 1 2 arranged on both ends in the radiation element group, 3 of 3 except for the 5 first radiating element 3 2-3 4 the first end of the second feed line 5 is electrically connected to the number of first radiating element 3 2.
 第2給電線路5は、第1方向に対する直交方向であって誘電体基板1の板面と平行な方向に沿う直線状の線路により構成されている。すなわち、第2給電線路5は、第2給電線路5の接続対象である1個の第1放射素子3(図1に示す例においては第1放射素子3)からY軸に沿う方向に延伸された形状を有している。図1に示す例において、第1放射素子3に対する第2給電線路5の延伸方向は-Y方向である。 The second power supply line 5 is configured by a straight line that extends in a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1. That is, the second feeding line 5 extends from one first radiating element 3 (the first radiating element 3 2 in the example shown in FIG. 1) to which the second feeding line 5 is connected in a direction along the Y axis. It has a given shape. In the example shown in FIG. 1, the extension direction of the second feed line 5 to the first radiating element 3 2 is -Y direction.
 第4給電線路8の一端部(以下「第1端部」という。)は、第2放射素子群における両端部に配置された2個の第2放射素子6を除く1個以上の第2放射素子6のうちのいずれか1個の第2放射素子6と電気的に接続されている。図1に示す例においては、第2放射素子群における両端部に配置された2個の第2放射素子6,6を除く3個の第2放射素子6~6のうちの1個の第2放射素子6に対して第4給電線路8の第1端部が電気的に接続されている。 One end of the fourth feed line 8 (hereinafter, referred to as “first end”) is provided with one or more second radiations except for the two second radiation elements 6 arranged at both ends in the second radiation element group. Any one of the elements 6 is electrically connected to the second radiating element 6. In the example shown in FIG. 1, one of the second second radiation elements 6 1 of two disposed at opposite ends of the radiating element group, 6 of three except the 5 second radiating element 6 2-6 4 the first end of the fourth feed line 8 is electrically connected to the number of second radiating element 6 2.
 第4給電線路8は、第1方向に対する直交方向であって誘電体基板1の板面と平行な方向に沿う直線状の線路により構成されている。すなわち、第4給電線路8は、第4給電線路8の接続対象である1個の第2放射素子6(図1に示す例においては第2放射素子6)からY軸に沿う方向に延伸された形状を有している。図1に示す例において、第2放射素子6に対する第4給電線路8の延伸方向は-Y方向である。 The fourth power supply line 8 is configured by a straight line that extends in a direction orthogonal to the first direction and parallel to the plate surface of the dielectric substrate 1. That is, the fourth feed line 8, (in the example shown in FIG. 1 the second radiating element 6 2) fourth one second radiating element 6 is a target for connection of the feed line 8 extending in the direction along the Y axis from the It has a given shape. In the example shown in FIG. 1, the stretching direction of the fourth feed line 8 to the second radiating element 6 2 is -Y direction.
 第2給電線路5の他端部(以下「第2端部」という。)は、給電部10と電気的に接続されている。給電部10は、アンテナ装置100が送信アンテナに用いられるとき、第2給電線路5の第2端部に高周波電力(より具体的には電磁波)を供給するものである。給電部10による第2給電線路5の第2端部に対する給電は、例えば、RF(Radio Frequency)コネクタを用いたものである。 The other end of the second feed line 5 (hereinafter referred to as "second end".) It is electrically connected to the feeding portion 10 1. Feeding unit 10 1, when the antenna device 100 is used to transmit antenna, and supplies high-frequency power (more specifically, an electromagnetic wave) to the second end of the second feed line 5. Power supply to the second end of the second feed line 5 by the feeding unit 10 1, for example, those using RF (Radio Frequency) connector.
 第4給電線路8の他端部(以下「第2端部」という。)は、給電部10と電気的に接続されている。給電部10は、アンテナ装置100が送信アンテナに用いられるとき、第4給電線路8の第2端部に高周波電力(より具体的には電磁波)を供給するものである。給電部10による第4給電線路8の第2端部に対する給電は、例えば、RFコネクタを用いたものである。 The other end of the fourth feed line 8 (hereinafter referred to as "second end".) It is electrically connected to the feeding portion 10 2. Feeding portion 10 2, when the antenna device 100 is used for transmitting antennas (more specifically, an electromagnetic wave) high-frequency power to the second end of the fourth feed line 8 and supplies the. Feeding by the feeding unit 10 2 for the second end of the fourth feed line 8, for example, those using a RF connector.
 図1に示す例において、導体パターン2と導体パターン2とは互いに軸対称な形状を有している。すなわち、5個の第1放射素子3~3と5個の第2放射素子6~6とが互いに軸対称に配置されており、かつ、4個の第1給電線路4~4と4個の第3給電線路7~7とが互いに軸対称に配置されており、かつ、第2給電線路5と第4給電線路8とが互いに軸対称に配置されている。第1放射素子3における第2給電線路5が接続されている部位(以下「接続部」という。)は、第1放射素子3における+X側の端部(以下「右端部」という。)に配置されている。これに対して、第2放射素子6における第4給電線路8が接続されている部位(以下「接続部」という。)は、第2放射素子6における-X側の端部(以下「左端部」という。)に配置されている。図中Aは、当該軸対称の中心軸を示している。 In the example shown in FIG. 1, it has an axial symmetrical shape with each other and the conductor pattern 2 1 and the conductor pattern 2 2. That, and five of the first radiating element 3 1-3 5 and five second radiating elements 6 1 to 6 5 are arranged in axial symmetry to each other and four first feed line 4 1 4 4 and 4 and the third feed line 7 1-7 4 are arranged axially symmetrically to one another, and a second feed line 5 and the fourth feeding line 8 is disposed axially symmetrically. Sites second feed line 5 of the first radiating element 3 2 is connected (hereinafter referred to as "connecting portions".), The end of the first radiating element 3 2 in the + X side (the "right end".) Are located in In contrast, the site where the fourth feeding line 8 in the second radiating element 6 2 is connected (hereinafter referred to as "connecting portions".) Is, the -X side end of the second radiating element 6 2 (hereinafter " At the left end). A in the figure indicates the central axis of the axial symmetry.
 このようにして、アンテナ装置100の要部が構成されている。 要 The main part of the antenna device 100 is thus configured.
 次に、アンテナ装置100の動作について説明する。より具体的には、アンテナ装置100が送信アンテナに用いられる場合において、アンテナ装置100が進行波型アンテナとして動作するときの例を中心に説明する。 Next, the operation of the antenna device 100 will be described. More specifically, a description will be given focusing on an example in which the antenna device 100 operates as a traveling wave antenna when the antenna device 100 is used as a transmission antenna.
 まず、給電部10が第2給電線路5の第2端部に電力を供給する。当該供給された電力は、第2給電線路5に沿うように+Y方向に伝搬して、第1放射素子3に入力される。当該入力された電力のうちの一部の電力は、第1放射素子3により電磁波としてアンテナ装置100外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第1給電線路4に沿うように+X方向に伝搬して、第1放射素子3により電磁波としてアンテナ装置100外の空間に放射される。さらに、当該入力された電力のうちの他の一部の電力は、第1給電線路4~4に沿うように-X方向に伝搬して、第1放射素子3~3により電磁波としてアンテナ装置100外の空間に放射される。 First, the power supply unit 10 1 supplies power to the second end of the second feed line 5. The supplied power can propagate in the + Y direction along the second feed line 5 is input to the first radiating element 3 2. The portion of the power of the input power is radiated into space outside the antenna apparatus 100 by the first radiating element 3 2 as an electromagnetic wave. Further, another part of the power of the input power propagates in the + X direction along the first feed line 4 1, space outside the antenna device 100 as an electromagnetic wave by the first radiating element 3 1 Is radiated. Further, another part of the power of the electric power the input is propagated in the -X direction along the first feed line 4 2-4 4, the electromagnetic wave by the first radiating element 3 3 to 3 5 Is radiated to the space outside the antenna device 100.
 同様に、給電部10が第4給電線路8の第2端部に電力を供給する。当該供給された電力は、第4給電線路8に沿うように+Y方向に伝搬して、第2放射素子6に入力される。当該入力された電力のうちの一部の電力は、第2放射素子6により電磁波としてアンテナ装置100外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第3給電線路7に沿うように-X方向に伝搬して、第2放射素子6により電磁波としてアンテナ装置100外の空間に放射される。さらに、当該入力された電力のうちの他の一部の電力は、第3給電線路7~7に沿うように+X方向に伝搬して、第2放射素子6~6により電磁波としてアンテナ装置100外の空間に放射される。 Similarly, supplies power to the feeding portion 10 2 and the second end of the fourth feed line 8. The supplied power is fourth propagates in the + Y direction along the feeding line 8, is input to the second radiating element 6 2. The portion of the power of the input power is radiated as a second electromagnetic wave by radiating element 6 2 in the space outside the antenna device 100. Also, the other part of the power that is the input power is propagated in the -X direction along the third feeding line 71, the antenna device 100 outside of the second electromagnetic wave by radiating element 6 1 Radiated into space. Further, another part of the power of the electric power the input is propagated to the third feeding line 7 2-7 along the 4 + X direction, as an electromagnetic wave by the second radiating element 6 3-6 5 The radiation is radiated to a space outside the antenna device 100.
 ここで、第1放射素子3~3の各々は、アンテナ装置100外の空間に電磁波を放射する機能を果たすものであるとともに、隣接する第1放射素子3に電力を供給する機能を果たすものである。これらの第1放射素子3~3においては、通過位相が放射量に応じて変化することが知られている。このため、第1給電線路4~4の各々の長さを適切な値に設定することにより、すなわち互いに隣接する各2個の第1放射素子3間の間隔を適切な値に設定することにより、第1放射素子3~3の全てを互いに同相にて励振させることができる。 Here, each of the first radiating element 3 2-3 4, together with those which function to emit electromagnetic waves to space outside the antenna device 100, functions to supply electric power to the first radiating element 3 adjacent Things. In the first radiating element 3 2-3 4 thereof, passing phase is known to vary depending on the radiation dose. Therefore, set by setting the length of each of the first feed line 4 1-4 4 to an appropriate value, i.e. the distance between the two first radiating element 3 adjacent to each other to an appropriate value it is therefore possible to excite all of the first radiating element 3 1-3 5 in phase with each other.
 同様に、第2放射素子6~6の各々は、アンテナ装置100外の空間に電磁波を放射する機能を果たすものであるとともに、隣接する第2放射素子6に電力を供給する機能を果たすものである。これらの第2放射素子6~6においては、通過位相が放射量に応じて変化することが知られている。このため、第3給電線路7~7の各々の長さを適切な値に設定することにより、すなわち互いに隣接する各2個の第2放射素子6間の間隔を適切な値に設定することにより、第2放射素子6~6の全てを互いに同相にて励振させることができる。 Similarly, each of the second radiating element 6 2-6 4, together with those which function to emit electromagnetic waves to space outside the antenna device 100, performs a function of supplying electric power to the second radiating element 6 adjacent Things. In the second radiating element 6 2-6 4 thereof, passing phase is known to vary depending on the radiation dose. Therefore, set by setting the length of each of the third feed line 7 1-7 4 to an appropriate value, i.e. the distance between the two second radiating elements 6 adjacent to each other to an appropriate value it is therefore possible to excite all of the second radiation element 6 1-6 5 in phase with each other.
 また、第1放射素子3の右端部(すなわち+X側の端部)にて発生する電界の向きと第1放射素子3の左端部(すなわち-X側の端部)にて発生する電界の向きとは互いに逆向きになることが知られている。より具体的には、一方の電界の向きが+Z方向であるとき、他方の電界の向きが-Z方向になることが知られている。同様に、第2放射素子6の右端部(すなわち+X側の端部)にて発生する電界の向きと第2放射素子6の左端部(すなわち-X側の端部)にて発生する電界の向きとは互いに逆向きになることが知られている。より具体的には、一方の電界の向きが+Z方向であるとき、他方の電界の向きが-Z方向になることが知られている。 The field generated in the right end portion of the first radiating element 3 2 (i.e. + X side end) direction and the left end portion of the first radiating element 3 2 of the electric field generated by (or end of the -X side) It is known that the directions are opposite to each other. More specifically, it is known that when one electric field is in the + Z direction, the other electric field is in the −Z direction. Likewise, generated by the second right end of the radiating element 6 2 (i.e. + end of X side) direction and a second left end of the radiating element 6 2 of the electric field generated by (or end of the -X side) It is known that the directions of the electric fields are opposite to each other. More specifically, it is known that when one electric field is in the + Z direction, the other electric field is in the −Z direction.
 上記のとおり、図1に示す例においては、第1放射素子3における第2給電線路5の接続部が第1放射素子3における右端部に配置されており、かつ、第2放射素子6における第4給電線路8の接続部が第2放射素子6における左端部に配置されている。このため、給電部10による給電と給電部10による給電とを互いに逆相に設定することにより、すなわち、これらの給電間の位相差を180°に設定することにより、第1放射素子3と第2放射素子6とを互いに同相にて励振させることができる。 As described above, in the example shown in FIG. 1, the connecting portion of the second feed line 5 of the first radiating element 3 2 is disposed at the right end portion of the first radiating element 3 2, and the second radiating element 6 connection of the fourth power supply line 8 is disposed at the left end portion of the second radiating element 6 2 in 2. Therefore, by setting the opposite phase to the feeding and the feeding by the feeding unit 10 1 by the power supply unit 10 2, i.e., by setting the phase difference between these power supply to 180 °, the first radiating element 3 it can be 2 to excite by the second radiating element 6 2 and the phase with one another.
 次に、アンテナ装置100の効果について説明する。 Next, effects of the antenna device 100 will be described.
 図2は、実施の形態1のアンテナ装置100に対する比較用のアンテナ装置100’を示している。図2に示す如く、誘電体基板1’の裏面部に接地導体パターン(不図示)が設けられており、誘電体基板1’の表面部に一対の導体パターン2’,2’が設けられている。一方の導体パターン2’は、5個の第1放射素子3’~3’に対応する部位、4個の第1給電線路4’~4’に対応する部位、及び第2給電線路5’に対応する部位を有している。他方の導体パターン2’は、5個の第2放射素子6’~6’に対応する部位、4個の第3給電線路7’~7’に対応する部位、及び第4給電線路8’に対応する部位を有している。5個の第1放射素子3’~3’により第1放射素子群が構成されており、5個の第2放射素子6’~6’により第2放射素子群が構成されている。このようにして、マイクロストリップアレーアンテナ部9’が構成されている。図中A’は、マイクロストリップアレーアンテナ部9’における軸対称の中心軸を示している。 FIG. 2 shows an antenna device 100 ′ for comparison with the antenna device 100 of the first embodiment. As shown in FIG. 2, the dielectric substrate 1 'ground conductor pattern on the back surface portion (not shown) is provided, the dielectric substrate 1' a pair of conductor patterns 2 1 to the surface of ', 2 2' provided Have been. One conductor pattern 2 1 ′ has a portion corresponding to the five first radiating elements 3 1 ′ to 3 5 ′, a portion corresponding to the four first feeder lines 4 1 ′ to 4 4 ′, and the second It has a portion corresponding to the feed line 5 '. The other conductor pattern 2 2 ′ has a portion corresponding to five second radiating elements 6 1 ′ to 6 5 ′, a portion corresponding to four third feeder lines 7 1 ′ to 7 4 ′, and a fourth portion. It has a portion corresponding to the feed line 8 '. A first radiating element group is composed of five first radiating elements 3 1 ′ to 3 5 ′, and a second radiating element group is composed of five second radiating elements 6 1 ′ to 6 5 ′. I have. Thus, the microstrip array antenna section 9 'is configured. In the figure, A 'indicates an axially symmetric center axis of the microstrip array antenna section 9'.
 ここで、第2給電線路5’の第1端部は第1放射素子3’と電気的に接続されており、第2給電線路5’の第2端部は給電部10’と電気的に接続されている。第4給電線路8’の第1端部は第2放射素子6’と電気的に接続されており、第4給電線路8’の第2端部は給電部10’と電気的に接続されている。第2給電線路5’及び第4給電線路8’の各々は、第1方向に沿う直線状の線路により構成されている。これにより、給電部10’,10’が第1放射素子3’と第2放射素子6’間に配置されている。 Here, the first end of the second feed line 5 ′ is electrically connected to the first radiating element 3 1 ′, and the second end of the second feed line 5 ′ is electrically connected to the feed unit 10 1 ′. Connected. The first end of the fourth feed line 8 'is electrically connected to the second radiating element 6 1 ', and the second end of the fourth feed line 8 'is electrically connected to the feed unit 10 2 '. Have been. Each of the second power supply line 5 ′ and the fourth power supply line 8 ′ is configured by a linear line along the first direction. Thereby, the feeding units 10 1 ′ and 10 2 ′ are arranged between the first radiating element 3 1 ′ and the second radiating element 6 1 ′.
 給電部10’は、第2給電線路5’の第2端部に高周波電力(より具体的には電磁波)を供給するものである。当該供給された電力は、第2給電線路5’に沿うように-X方向に伝搬して、第1放射素子3’に入力される。当該入力された電力のうちの一部の電力は、第1放射素子3’により電磁波としてアンテナ装置100’外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第1給電線路4’~4’に沿うように-X方向に伝搬して、第1放射素子3’~3’により電磁波としてアンテナ装置100’外の空間に放射される。 The power supply unit 10 1 ′ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the second power supply line 5 ′. The supplied power propagates in the −X direction along the second power supply line 5 ′, and is input to the first radiating element 3 1 ′. The portion of the power of the input power is radiated out of the space 'antenna device 100 as an electromagnetic wave by the' first radiating element 3 1. Another part of the input power propagates in the −X direction along the first feed lines 4 1 ′ to 4 4 ′, and the first radiating elements 3 2 ′ to 3 The electromagnetic wave is radiated to the space outside the antenna device 100 ′ by 5 ′.
 給電部10’は、第4給電線路8’の第2端部に高周波電力(より具体的には電磁波)を供給するものである。当該供給された電力は、第4給電線路8’に沿うように+X方向に伝搬して、第2放射素子6’に入力される。当該入力された電力のうちの一部の電力は、第2放射素子6’により電磁波としてアンテナ装置100’外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第3給電線路7’~7’に沿うように+X方向に伝搬して、第2放射素子6’~6’により電磁波としてアンテナ装置100’外の空間に放射される。 Feeding portion 10 2 ', fourth feeding line 8' and supplies the high-frequency power (more specifically, an electromagnetic wave) to the second end of the. The supplied power propagates in the + X direction along the fourth power supply line 8 ′ and is input to the second radiating element 6 1 ′. Part of the input power is radiated by the second radiating element 6 1 ′ as electromagnetic waves to the space outside the antenna device 100 ′. Another part of the input power propagates in the + X direction along the third power supply lines 7 1 ′ to 7 4 ′, and the second radiating elements 6 2 ′ to 6 5 And is radiated as electromagnetic waves to the space outside the antenna device 100 '.
 すなわち、アンテナ装置100’における第1放射素子群は端部給電方式であり、かつ、アンテナ装置100’における第2放射素子群も端部給電方式である。これに対して、マイクロストリップアレーアンテナ部9’全体は中央給電方式である。 That is, the first radiating element group in the antenna device 100 'is of the edge feeding type, and the second radiating element group of the antenna device 100' is also of the edge feeding type. On the other hand, the entire microstrip array antenna section 9 'is of the central feeding type.
 ここで、実際の給電部10’,10’は、物理的な大きさを有する構造物である。このため、特に高周波数帯にて、アンテナ装置100’における第1放射素子3’の中心部と第2放射素子6’の中心部との間隔D2(図2参照)が、アンテナ装置100における第1放射素子3の中心部と第2放射素子6の中心部との間隔D1(図1参照)に比して大きくなる。アンテナ装置100’は、間隔D2が大きいことによりブロッキングが発生するため、放射特性が低下する問題があった。具体的には、例えば、サイドローブレベルが大きくなる問題があった。 Here, the actual power supply units 10 1 ′ and 10 2 ′ are structures having a physical size. Therefore, particularly in a high frequency band, the distance D2 (see FIG. 2) between the center of the first radiating element 3 1 ′ and the center of the second radiating element 6 1 ′ in the antenna apparatus 100 ′ is determined by It becomes larger than the distance between the first radiating element 3 first center and the second center portion of the radiating element 6 1 D1 (see FIG. 1) in the. The antenna device 100 'has a problem that the radiation characteristics are deteriorated because blocking occurs due to the large interval D2. Specifically, for example, there is a problem that the side lobe level becomes large.
 これに対して、実施の形態1のアンテナ装置100は、第1放射素子群における内側に配置された1個の第1放射素子3に第2給電線路5が接続されており、当該1個の第1放射素子3に対する給電方向が第1方向に対して非平行である(図1に示す例においては、第1放射素子3に対する給電方向が+Y方向であり、当該給電方向が第1方向に対して直交している。)。また、第2放射素子群における内側に配置された1個の第2放射素子6に第4給電線路8が接続されており、当該1個の第2放射素子6に対する給電方向が第1方向に対して非平行である(図1に示す例においては、第2放射素子6に対する給電方向が+Y方向であり、当該給電方向が第1方向に対して直交している。)。以下、かかる給電方式を「側方給電方式」という。 On the other hand, in the antenna device 100 of the first embodiment, the second feed line 5 is connected to one first radiating element 3 disposed inside the first radiating element group, and the one in the example shown in the feeding direction is non-parallel to the first direction (FIG. 1 for the first radiating element 3, the feeding direction with respect to the first radiating element 3 2 is the + Y direction, the feeding direction is a first direction Orthogonal to.). Further, the fourth feed line 8 is connected to one second radiating element 6 disposed inside the second radiating element group, and the feeding direction to the one second radiating element 6 is in the first direction. it is not parallel for (in the example shown in FIG. 1, the feeding direction with respect to the second radiating element 6 2 is the + Y direction, the feeding direction is orthogonal to the first direction.). Hereinafter, such a power supply method is referred to as a “side power supply method”.
 側方給電方式を採用することにより、図1に示す如く、給電部10,10が第1放射素子3と第2放射素子6間に配置されるのを回避することができる。これにより、間隔D2に比して間隔D1を小さくすることができるため、ブロッキングの発生を抑制することができる。この結果、アンテナ装置100’に比して放射特性を向上することができる。具体的には、例えば、サイドローブレベルを小さくすることができる。 By employing the lateral feeding system, as shown in FIG. 1, it is possible to prevent the power supply unit 10 1, 10 2 is disposed in the first radiating element 3 1 and the second between radiating element 61. Thereby, the interval D1 can be made smaller than the interval D2, so that the occurrence of blocking can be suppressed. As a result, the radiation characteristics can be improved as compared with the antenna device 100 '. Specifically, for example, the side lobe level can be reduced.
 図3は、実施の形態1のアンテナ装置100に対する比較用の他のアンテナ装置100”を示している。図3に示す如く、誘電体基板1”の裏面部に接地導体パターン(不図示)が設けられており、誘電体基板1”の表面部に一対の導体パターン2”,2”が設けられている。一方の導体パターン2”は、5個の第1放射素子3”~3”に対応する部位、4個の第1給電線路4”~4”に対応する部位、及び第2給電線路5”に対応する部位を有している。他方の導体パターン2”は、5個の第2放射素子6”~6”に対応する部位、4個の第3給電線路7”~7”に対応する部位、及び第4給電線路8”に対応する部位を有している。5個の第1放射素子3”~3”により第1放射素子群が構成されており、5個の第2放射素子6”~6”により第2放射素子群が構成されている。このようにして、マイクロストリップアレーアンテナ部9”が構成されている。図中A”は、マイクロストリップアレーアンテナ部9”における軸対称の中心軸を示している。 Fig. 3 shows another antenna device 100 "for comparison with the antenna device 100 of the first embodiment. As shown in Fig. 3, a ground conductor pattern (not shown) is provided on the back surface of the dielectric substrate 1". A pair of conductor patterns 2 1 ″ and 2 2 ″ is provided on the surface of the dielectric substrate 1 ″. One conductor pattern 2 1 ″ has five first radiating elements 3 1 ″. To 3 5 ″, four first feed lines 4 1 ″ to 4 4 ″, and a portion corresponding to the second feed line 5 ″. The other conductor pattern 2 2 ″ is a portion corresponding to the five second radiating elements 6 1 ″ to 6 5 ″, a portion corresponding to the four third feeding lines 7 1 ″ to 7 4 ″, and a fourth feeding line 8 ″ The first radiating element group includes five first radiating elements 3 1 ″ to 3 5 ″. And a second radiating element group is constituted by the five second radiating elements 6 1 ″ to 6 5 ″. In this manner, the microstrip array antenna section 9 ″ is formed. A ″ in the figure indicates an axially symmetric center axis of the microstrip array antenna unit 9 ″.
 第2給電線路5”の第1端部は第1放射素子3”と電気的に接続されており、第2給電線路5”の第2端部は給電部10”と電気的に接続されている。給電部10”は、第2給電線路5”の第2端部に高周波電力(より具体的には電磁波)を供給するものである。当該供給された電力は、第2給電線路5”に沿うように伝搬して、第1放射素子3”に入力される。当該入力された電力のうちの一部の電力は、第1放射素子3”により電磁波としてアンテナ装置100”外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第1給電線路4”~4”に沿うように-X方向に伝搬して、第1放射素子3”~3”により電磁波としてアンテナ装置100”外の空間に放射される。 A first end of the second feed line 5 ″ is electrically connected to the first radiating element 3 1 ″, and a second end of the second feed line 5 ″ is electrically connected to the feed unit 10 1 ″. Have been. The power supply unit 10 1 ″ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the second power supply line 5 ″. The supplied power propagates along the second feed line 5 ″ and is input to the first radiating element 3 1 ″. Part of the input power is radiated to the space outside the antenna device 100 ″ as electromagnetic waves by the first radiating element 3 1 ″. Another part of the input power propagates in the -X direction along the first feed lines 4 1 ″ to 4 4 ″, and the first radiating elements 3 2 ″ to 3 ′ 5 "radiates as electromagnetic waves to the space outside the antenna device 100".
 第4給電線路8”の第1端部は第2放射素子6”と電気的に接続されており、第4給電線路8”の第2端部は給電部10”と電気的に接続されている。給電部10”は、第4給電線路8”の第2端部に高周波電力(より具体的には電磁波)を供給するものである。当該供給された電力は、第4給電線路8”に沿うように伝搬して、第2放射素子6”に入力される。当該入力された電力のうちの一部の電力は、第2放射素子6”により電磁波としてアンテナ装置100”外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第3給電線路7”~7”に沿うように+X方向に伝搬して、第2放射素子6”~6”により電磁波としてアンテナ装置100”外の空間に放射される。 The first end of the fourth feed line 8 "is electrically connected to the second radiating element 6 1 ", and the second end of the fourth feed line 8 "is electrically connected to the feed unit 10 2 ". Have been. The power supply unit 10 2 ″ supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the fourth power supply line 8 ″. The supplied power propagates along the fourth power supply line 8 ″ and is input to the second radiating element 6 1 ″. Part of the input power is radiated by the second radiating element 6 1 ″ as electromagnetic waves to the space outside the antenna device 100 ″. Another part of the input power propagates in the + X direction along the third power supply lines 7 1 ″ to 7 4 ″, and the second radiating elements 6 2 ″ to 6 5 As a result, electromagnetic waves are radiated as electromagnetic waves into a space outside the antenna device 100 ''.
 ここで、アンテナ装置100”においては、第2給電線路5”及び第4給電線路8”の各々が略クランク状の線路により構成されている。すなわち、第2給電線路5”及び第4給電線路8”の各々が複数個の折り曲げ部を有している。これにより、給電部10”,10”が第1放射素子3”と第2放射素子6”間に配置されるのを回避することができるため、第1放射素子3”の中心部と第2放射素子6”の中心部との間隔D3(図3参照)を間隔D2(図2参照)に比して小さくすることができる。この結果、ブロッキングの発生を抑制することができる。 Here, in the antenna device 100 ″, each of the second feed line 5 ″ and the fourth feed line 8 ″ is constituted by a substantially crank-shaped line. That is, the second feed line 5 ″ and the fourth feed line 8 "has a plurality of bent portions, whereby the feeding portions 10 1 " and 10 2 "are arranged between the first radiating element 3 1 " and the second radiating element 6 1 ". Can be avoided, the distance D3 (see FIG. 3) between the center of the first radiating element 3 1 ″ and the center of the second radiating element 6 1 ″ is compared with the distance D2 (see FIG. 2). As a result, the occurrence of blocking can be suppressed.
 しかしながら、一般に、マイクロストリップ線路に不連続部(折り曲げ部又は分岐部など)が設けられている場合、当該不連続部による不要な電磁波の放射が発生して、給電損失が増加することが知られている。アンテナ装置100”は、第2給電線路5”及び第4給電線路8”の各々に設けられている複数個の折り曲げ部により、給電損失が増加する問題があった。 However, in general, when a discontinuous portion (a bent portion, a branch portion, or the like) is provided in a microstrip line, unnecessary electromagnetic wave radiation is generated by the discontinuous portion, and it is known that power supply loss increases. ing. The antenna device 100 "has a problem in that the feed loss increases due to the plurality of bent portions provided on each of the second feed line 5" and the fourth feed line 8 ".
 これに対して、実施の形態1のアンテナ装置100は、上記のとおり側方給電方式を採用したものである。これにより、直線状の第2給電線路5を用いて、給電部10が第1放射素子3と第2放射素子6間に配置されるのを回避することができる。また、直線状の第4給電線路8を用いて、給電部10が第1放射素子3と第2放射素子6間に配置されるのを回避することができる。この結果、ブロッキングの発生を抑制しつつ、アンテナ装置100”に比して給電損失を低減することができる。 On the other hand, the antenna device 100 of the first embodiment employs the side feeding method as described above. Thus, by using the second power supply line 5 straight, the feeding portion 10 1 can be prevented from being disposed in the first radiating element 3 1 and the second between radiating element 61. Further, it is possible to use a fourth feed line 8 straight, to prevent the power supply unit 10 2 is disposed in the first radiating element 3 1 and the second between radiating element 61. As a result, it is possible to reduce the power supply loss as compared with the antenna device 100 ″ while suppressing the occurrence of the blocking.
 なお、アンテナ装置100は、定在波型アンテナとして動作するものであっても良い。 The antenna device 100 may operate as a standing wave antenna.
 また、アンテナ装置100は、受信アンテナに用いられるものであっても良い。 ア ン テ ナ The antenna device 100 may be used for a receiving antenna.
 また、第2給電線路5の接続対象である1個の第1放射素子3(図1に示す例においては第1放射素子3)における第2給電線路5の接続部が当該1個の第1放射素子3における右端部に配置されており、かつ、第4給電線路8の接続対象である1個の第2放射素子6(図1に示す例においては第2放射素子6)における第4給電線路8の接続部が当該1個の第2放射素子6における右端部に配置されているものであっても良い。または、当該1個の第1放射素子3における第2給電線路5の接続部が当該1個の第1放射素子3における左端部に配置されており、かつ、当該1個の第2放射素子6における第4給電線路8の接続部が当該1個の第2放射素子6における左端部に配置されているものであっても良い。この場合、給電部10による給電と給電部10による給電とを互いに同相に設定することにより、すなわち、これらの給電間の位相差を0°に設定することにより、当該1個の第1放射素子3と当該1個の第2放射素子6とを互いに同相にて励振させることができる。 Further, the connection portion of the second feed line 5 in one first radiating element 3 (the first radiating element 3 2 in the example shown in FIG. 1) to which the second feed line 5 is connected is the one first radiating element 3. One of the second radiating elements 6 (in the example shown in FIG. 1, the second radiating element 6 2 ) which is arranged at the right end of the one radiating element 3 and to which the fourth feed line 8 is connected. The connection part of the four feed lines 8 may be arranged at the right end of the one second radiating element 6. Alternatively, the connection part of the second feed line 5 in the one first radiating element 3 is disposed at the left end of the one first radiating element 3 and the one second radiating element 6 May be arranged at the left end of the one second radiating element 6. In this case, by setting the phase with each other and a power supply and the power supply by the power supply unit 10 1 by the power supply unit 10 2, i.e., by setting the phase difference between these power supply to 0 °, the first one the of The radiating element 3 and the one second radiating element 6 can be excited in the same phase.
 また、アンテナ装置100は、接地導体パターンに代えて接地導体板を有するとともに、一対の導体パターン2に代えて一対の導体板を有するものであっても良い。一対の導体板のうちの一方の導体板は導体パターン2と同様の形状を有するものであり、一対の導体板のうちの他方の導体板は導体パターン2と同様の形状を有するものである。この場合、接地導体板と一対の導体板との間に、誘電体基板1に代えてスペーサが設けられているものであっても良い。 The antenna device 100 may have a ground conductor plate instead of the ground conductor pattern, and may have a pair of conductor plates instead of the pair of conductor patterns 2. One of the conductive plates of the pair of conductor plates are those having the same shape as the conductor pattern 2 1, other conductor plate of the pair of conductor plates are those having the same shape as the conductor pattern 2 2 is there. In this case, a spacer may be provided between the ground conductor plate and the pair of conductor plates instead of the dielectric substrate 1.
 また、個々の第1放射素子3の形状は矩形状に限定されるものではない。個々の第1放射素子3は、例えば、楕円形状又は多角形状であっても良い。同様に、個々の第2放射素子6の形状は矩形状に限定されるものではない。個々の第2放射素子6は、例えば、楕円形状又は多角形状であっても良い。 形状 Also, the shape of each first radiating element 3 is not limited to a rectangular shape. Each first radiating element 3 may have, for example, an elliptical shape or a polygonal shape. Similarly, the shape of each second radiating element 6 is not limited to a rectangular shape. Each of the second radiating elements 6 may have, for example, an elliptical shape or a polygonal shape.
 また、個々の第1放射素子3に一対の切欠き部が設けられているとともに、個々の第2放射素子6に一対の切欠き部が設けられていることにより、アンテナ装置100が円偏波アンテナとして動作するものであっても良い。または、誘電体基板1の表面部に対してポラライザが対向配置されていることにより、アンテナ装置100が円偏波アンテナとして動作するものであっても良い。 In addition, each of the first radiating elements 3 is provided with a pair of notches, and each of the second radiating elements 6 is provided with a pair of notches. It may operate as an antenna. Alternatively, the antenna device 100 may operate as a circularly polarized antenna because the polarizer is arranged to face the surface of the dielectric substrate 1.
 また、N個の第1放射素子3における励振の位相(すなわちN個の第1放射素子3に対する給電の位相)が個別に設定自在であり、かつ、N個の第2放射素子6における励振の位相(すなわちN個の第2放射素子6に対する給電の位相)が個別に設定自在なものであっても良い。これにより、アンテナ装置100が、いわゆる「フェーズドアレーアンテナ」として動作するものであっても良い。 In addition, the phases of the excitation in the N first radiating elements 3 (that is, the phases of the power supply to the N first radiating elements 3) can be individually set freely, and the excitation in the N second radiating elements 6 can be set. The phase (that is, the phase of power supply to the N second radiating elements 6) may be individually settable. Thereby, the antenna device 100 may operate as a so-called “phased array antenna”.
 以上のように、実施の形態1のアンテナ装置100は、第1方向に配列された複数個の第1放射素子3を含む第1放射素子群と、第1放射素子群における互いに隣接する第1放射素子3間に電気的に接続された第1給電線路4と、第1放射素子群における両端部に配置された第1放射素子3を除くいずれかの第1放射素子3に対して電気的に接続された第2給電線路5と、を有するマイクロストリップアレーアンテナ部9を備える。これにより、側方給電方式を実現することができる。したがって、マイクロストリップアレーアンテナ部9が第1放射素子群と同様の他の放射素子群(すなわち第2放射素子群)を有するものであるとき、第1放射素子群と第2放射素子群間に給電部10,10が配置されるのを回避することができる。この結果、ブロッキングの発生を抑制することができる。また、このとき、互いに隣接する第1放射素子3間の給電線路(すなわち第1給電線路4)における不連続部を不要とすることができ、かつ、互いに隣接する第2放射素子6間の給電線路(すなわち第3給電線路7)における不連続部を不要とすることができるのはもちろんのこと、給電部10と第1放射素子3間の給電線路(すなわち第2給電線路5)における不連続部を不要とすることができ、かつ、給電部10と第2放射素子6間の給電線路(すなわち第4給電線路8)における不連続部を不要とすることができる。この結果、給電損失を低減することができる。さらに、このとき、放射特性の向上及び給電損失の低減により、アンテナ装置100の動作利得を増加させることができる。この結果、いわゆる「ブロードサイド方向」に対して電磁波を効率良く放射することができる。 As described above, the antenna device 100 according to the first embodiment includes the first radiating element group including the plurality of first radiating elements 3 arranged in the first direction and the first radiating element group adjacent to each other in the first radiating element group. The first feeder line 4 electrically connected between the radiating elements 3 and one of the first radiating elements 3 except for the first radiating elements 3 arranged at both ends of the first radiating element group are electrically connected. And a second feed line 5 connected to the microstrip array antenna unit 9. This makes it possible to realize a side power feeding system. Therefore, when the microstrip array antenna unit 9 has another radiating element group similar to the first radiating element group (that is, the second radiating element group), the distance between the first radiating element group and the second radiating element group is increased. The arrangement of the power supply units 10 1 and 10 2 can be avoided. As a result, the occurrence of blocking can be suppressed. Further, at this time, a discontinuous portion in the feed line between the first radiating elements 3 adjacent to each other (that is, the first feed line 4) can be unnecessary, and the power supply between the second radiating elements 6 adjacent to each other can be eliminated. line (i.e., third feeding line 7) that the course of the discontinuity can be eliminated in, not in the feed line between the power supply portion 10 1 and the first radiating element 3 (i.e. the second feed line 5) the continuous portion can be eliminated, and a discontinuous portion and the feeding portion 10 2 in the feed line between the second radiating element 6 (i.e. the fourth feeding line 8) can be eliminated. As a result, power supply loss can be reduced. Further, at this time, the operating gain of the antenna device 100 can be increased by improving the radiation characteristics and reducing the feed loss. As a result, it is possible to efficiently radiate electromagnetic waves in the so-called “broadside direction”.
 また、マイクロストリップアレーアンテナ部9は、第1方向に配列された複数個の第2放射素子6を含む第2放射素子群と、第2放射素子群における互いに隣接する第2放射素子6間に電気的に接続された第3給電線路7と、第2放射素子群における両端部に配置された第2放射素子6を除くいずれかの第2放射素子6に対して電気的に接続された第4給電線路8と、を有し、マイクロストリップアレーアンテナ部9において、複数個の第1放射素子3及び複数個の第2放射素子6が一次元アレー状に配列されている。これにより、図1に示す如く、いわゆる「リニアアレーアンテナ」を実現することができる。 Further, the microstrip array antenna unit 9 is provided between a second radiating element group including a plurality of second radiating elements 6 arranged in the first direction and the second radiating elements 6 adjacent to each other in the second radiating element group. The third power supply line 7 electrically connected to the second radiating element 6 except for the second radiating elements 6 arranged at both ends of the second radiating element group. A plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a one-dimensional array in the microstrip array antenna section 9. Thereby, as shown in FIG. 1, a so-called “linear array antenna” can be realized.
 また、マイクロストリップアレーアンテナ部9において、複数個の第1放射素子3と複数個の第2放射素子6とが互いに軸対称に配置されており、かつ、複数個の第1給電線路4と複数個の第3給電線路7とが互いに軸対称に配置されており、かつ、第2給電線路5と第4給電線路8とが互いに軸対称に配置されている。これにより、アンテナ装置100による放射パターンの形状を略軸対称にすることができる。特に、XZ平面における放射パターンの形状を略軸対称にすることができる。 Further, in the microstrip array antenna section 9, the plurality of first radiating elements 3 and the plurality of second radiating elements 6 are arranged axially symmetric with each other, and the plurality of first feeding lines 4 and the plurality of The third power supply lines 7 are arranged axially symmetrically with each other, and the second power supply line 5 and the fourth power supply line 8 are axially symmetrically arranged with each other. Thereby, the shape of the radiation pattern by the antenna device 100 can be made substantially axially symmetric. In particular, the shape of the radiation pattern on the XZ plane can be made substantially axially symmetric.
 また、個々の第1給電線路4は、第1方向に沿う直線状の線路により構成されており、個々の第3給電線路7は、第1方向に沿う直線状の線路により構成されている。これらの給電線路が直線状であることにより、不連続部による不要な電磁波の放射が生ずるのを回避することができる。 {Circle around (1)} Each of the first power supply lines 4 is configured by a linear line along the first direction, and each of the third power supply lines 7 is configured by a linear line along the first direction. Since these feeder lines are linear, it is possible to avoid generation of unnecessary radiation of electromagnetic waves due to discontinuous portions.
 また、第2給電線路5は、第1方向に対する直交方向に沿う直線状の線路により構成されており、第4給電線路8は、第1方向に対する直交方向に沿う直線状の線路により構成されている。これらの給電線路が直線状であることにより、不連続部による不要な電磁波の放射が生ずるのを回避することができる。 Further, the second power supply line 5 is configured by a linear line along the direction orthogonal to the first direction, and the fourth power supply line 8 is configured by a linear line along the direction orthogonal to the first direction. I have. Since these feeder lines are linear, it is possible to avoid generation of unnecessary radiation of electromagnetic waves due to discontinuous portions.
 なお、本願の請求の範囲に記載された「軸対称」の用語の意義は、完全に軸対称な態様に限定されるものではなく、略軸対称な態様を包含するものである。また、本願の請求の範囲に記載された「直線状」の用語の意義は、完全に直線状な態様に限定されるものではなく、略直線状な態様を包含するものである。また、本願の請求の範囲に記載された「直交方向」の用語の意義は、完全な直交方向に限定されるものではなく、略直交方向を包含するものである。 Note that the meaning of the term “axial symmetry” described in the claims of the present application is not limited to a completely axially symmetric mode, but includes a substantially axially symmetric mode. Further, the meaning of the term “linear” described in the claims of the present application is not limited to a completely linear mode, but includes a substantially linear mode. Further, the meaning of the term "orthogonal direction" described in the claims of the present application is not limited to a perfect orthogonal direction, but encompasses a substantially orthogonal direction.
実施の形態2.
 図4は、実施の形態2に係るアンテナ装置の要部を示す平面図である。図4を参照して、実施の形態2のアンテナ装置100aについて説明する。なお、図4において、図1に示す構成部材等と同様の構成部材等には同一符号を付して説明を省略する。
Embodiment 2 FIG.
FIG. 4 is a plan view showing a main part of the antenna device according to the second embodiment. An antenna device 100a according to the second embodiment will be described with reference to FIG. In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 図4に示す如く、第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。第1放射素子3は、第1給電線路4の接続部において第1給電線路4に対する両側部に配置された一対の切欠き状の凹部21を有している。 As shown in FIG. 4, the first radiating element 3 1, has a recess 21 1 pair of notch-like arranged on both sides with respect to the first feed line 4 1 in the first feed line 4 first connecting portion I have. First radiating element 3 2 has a recess 21 2 a pair of notch-like arranged on both sides with respect to the first feed line 4 1 in the first feed line 4 first connection portion. First radiating element 3 2 includes a first feed line 4 2 of the first feed line 4 second recess 21 3 pair of notch-like arranged on both sides with respect to the connecting portion. First radiating element 3 3 includes a first feed line 4 2 of the first feed line 4 2 pair of notch-like recesses 21 4 arranged on opposite sides with respect to the connecting portion. First radiating element 3 3 has a recess 21 5 pair of notch-like arranged on both sides with respect to the first feed line 4 3 at the connecting portion of the first feed line 4 3. First radiating element 3 4 has a first feed line 4 first feed line 4 3 recesses 21 6 pair of notch-like arranged on both sides for the connection of 3. First radiating element 3 4 has a first feed line 4 4 of the first feed line 4 a pair of notch-like recesses 21 7 disposed on opposite sides with respect to 4 at a connection. First radiating element 35 has a first feed line 4 4 of the first feed line 4 a pair of notch-like recesses 21 8 arranged on opposite sides with respect to 4 at a connection.
 同様に、第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。第2放射素子6は、第3給電線路7の接続部において第3給電線路7に対する両側部に配置された一対の切欠き状の凹部22を有している。 Similarly, the second radiating element 61 has a third feed line 71 of the recess 22 1 a pair of notch-like arranged on opposite sides with respect to the third feed line 71 at the connection portion. The second radiating element 6 2 comprises a third feed line 71 of the pair of notch-like recesses 22 2 disposed on opposite sides with respect to the third feed line 71 at the connection portion. The second radiating element 6 2 comprises a third feed line 7 at the second connection portion third feeding line 7 2 recesses 22 3 pair of notch-like arranged on both sides against. The second radiating element 6 3 has a third feed line 7 2 of the third feeding line 7 2 pair of notch-like recesses 22 4 arranged on opposite sides with respect to the connecting portion. The second radiating element 6 3 has a third feed line 7 third feed line 7 recesses 22 5 of the pair of notched arranged on opposite sides with respect to 3 at a connection of the 3. The second radiating element 6 4 has a third feed line 7 third feed line 7 recesses 22 6 of the pair of notched arranged on opposite sides with respect to 3 at a connection of the 3. The second radiating element 6 4 has a third feed line 7 4 third feed line 7 pair of notch-like recesses 22 7 disposed on opposite sides with respect to 4 at a connection. The second radiating element 6 5, and a third feed line 7 4 third feed line 7 pair of notch-like recesses 22 8 arranged on opposite sides with respect to 4 at a connection.
 すなわち、個々の第1放射素子3における第1給電線路4の接続部に切欠き状の凹部21が形成されている。また、個々の第2放射素子6における第3給電線路7の接続部に切欠き状の凹部22が形成されている。 That is, the notch-shaped concave portion 21 is formed at the connection portion of the first feed line 4 in each of the first radiating elements 3. In addition, a notch-shaped concave portion 22 is formed at a connection portion of the third feed line 7 in each of the second radiation elements 6.
 このようにして、マイクロストリップアレーアンテナ部9aが構成されている。 マ イ ク ロ The microstrip array antenna 9a is thus configured.
 次に、アンテナ装置100aの動作について説明する。より具体的には、アンテナ装置100aが送信アンテナに用いられる場合において、アンテナ装置100aが進行波型アンテナとして動作するときの例を中心に説明する。 Next, the operation of the antenna device 100a will be described. More specifically, a description will be given focusing on an example in which the antenna device 100a operates as a traveling wave antenna when the antenna device 100a is used as a transmission antenna.
 まず、給電部10が第2給電線路5の第2端部に電力を供給する。当該供給された電力は、第2給電線路5に沿うように+Y方向に伝搬して、第1放射素子3に入力される。当該入力された電力のうちの一部の電力は、第1放射素子3により電磁波としてアンテナ装置100a外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第1給電線路4に沿うように+X方向に伝搬して、第1放射素子3により電磁波としてアンテナ装置100a外の空間に放射される。さらに、当該入力された電力のうちの他の一部の電力は、第1給電線路4~4に沿うように-X方向に伝搬して、第1放射素子3~3により電磁波としてアンテナ装置100a外の空間に放射される。 First, the power supply unit 10 1 supplies power to the second end of the second feed line 5. The supplied power can propagate in the + Y direction along the second feed line 5 is input to the first radiating element 3 2. The portion of the power of the input power is radiated into space outside the antenna device 100a by the first radiating element 3 2 as an electromagnetic wave. Also, the other part of the power of the input power propagates in the + X direction along the first feed line 4 1, space outside the antenna device 100a as a first electromagnetic wave by radiating element 3 1 Is radiated. Further, another part of the power of the electric power the input is propagated in the -X direction along the first feed line 4 2-4 4, the electromagnetic wave by the first radiating element 3 3 to 3 5 Is radiated to the space outside the antenna device 100a.
 同様に、給電部10が第4給電線路8の第2端部に電力を供給する。当該供給された電力は、第4給電線路8に沿うように+Y方向に伝搬して、第2放射素子6に入力される。当該入力された電力のうちの一部の電力は、第2放射素子6により電磁波としてアンテナ装置100a外の空間に放射される。また、当該入力された電力のうちの他の一部の電力は、第3給電線路7に沿うように-X方向に伝搬して、第2放射素子6により電磁波としてアンテナ装置100a外の空間に放射される。さらに、当該入力された電力のうちの他の一部の電力は、第3給電線路7~7に沿うように+X方向に伝搬して、第2放射素子6~6により電磁波としてアンテナ装置100a外の空間に放射される。 Similarly, supplies power to the feeding portion 10 2 and the second end of the fourth feed line 8. The supplied power is fourth propagates in the + Y direction along the feeding line 8, is input to the second radiating element 6 2. The portion of the power of the input power is radiated into space outside the antenna device 100a as the second electromagnetic wave by radiating element 6 2. Also, the other part of the power that is the input power is propagated in the -X direction along the third feeding line 71, outside the antenna device 100a as the second electromagnetic wave by radiating element 6 1 Radiated into space. Further, another part of the power of the electric power the input is propagated to the third feeding line 7 2-7 along the 4 + X direction, as an electromagnetic wave by the second radiating element 6 3-6 5 It is radiated to the space outside the antenna device 100a.
 ここで、仮に個々の第1放射素子3に凹部21が形成されていない場合、第1放射素子3により電磁波としてアンテナ装置100a外の空間に放射されるべき電力の一部が、第1放射素子3により電磁波としてアンテナ装置100a外の空間に放射されずに、第1放射素子3により反射されることがある。当該反射された電力のうちの一部の電力は、第1給電線路4、第1放射素子3及び第2給電線路5を順次通過して、給電部10に戻る(すなわち、いわゆる「反射波」が発生する。)。また、当該反射された電力のうちの他の一部の電力は、第1給電線路4、第1放射素子3及び第1給電線路4を順次通過して、第1放射素子3~3により電磁波としてアンテナ装置100a外の空間に放射される(すなわち、いわゆる「不要放射波」が発生する。)。 Here, assuming the case where the concave portion 21 to each of the first radiation element 3 is not formed, a portion of the power to be radiated to the space outside the antenna device 100a as a first electromagnetic wave by radiating element 3 1 is first radiation without being radiated to the space outside the antenna device 100a as an electromagnetic wave by the element 3 1, it may be reflected by the first radiating element 3 1. Some of the power of the reflected power, the first feed line 4 1, and the first radiating element 3 2 and a second feed line 5 is sequentially passed, return to the feeding section 10 1 (i.e., so-called " A reflected wave is generated.) Further, another part of the power of the reflected power, the first feed line 4 1, the first radiating element 3 2 and the first feed line 4 2 sequentially passes through the first radiating element 3 3 is radiated to the space outside the antenna device 100a as an electromagnetic wave by 1-3 5 (i.e., the so-called "unnecessary radiation wave" occurs.).
 また、仮に個々の第1放射素子3に凹部21が形成されていない場合、第1放射素子3~3により電磁波としてアンテナ装置100a外の空間に放射されるべき電力の一部が、第1放射素子3~3により電磁波としてアンテナ装置100a外の空間に放射されずに、第1放射素子3~3により反射されることがある。当該反射された電力のうちの一部の電力は、第1給電線路4、第1放射素子3及び第2給電線路5を順次通過して、給電部10に戻る(すなわち、反射波が発生する。)。また、当該反射された電力のうちの他の一部の電力は、第1給電線路4、第1放射素子3及び第1給電線路4を順次通過して、第1放射素子3により電磁波としてアンテナ装置100a外の空間に放射される(すなわち、不要放射波が発生する。)。 Further, if the case where the concave portion 21 to each of the first radiation element 3 is not formed, a portion of the power to be radiated to the space outside the antenna device 100a by the first radiating element 3 3 to 3 5 as an electromagnetic wave is, the without being radiated to the space outside the antenna device 100a as the electromagnetic wave by the first radiating element 3 3 to 3 5, it may be reflected by the first radiating element 3 3 to 3 5. Some of the power of the reflected power, the first power supply line 4 2, and the first radiating element 3 2 and a second feed line 5 is sequentially passed, return to the feeding section 10 1 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the first power supply line 4 2, and the first radiating element 3 2 and the first feed line 4 1 sequentially passes through the first radiating element 3 1 As a result, it is radiated as electromagnetic waves to the space outside the antenna device 100a (that is, unnecessary radiation waves are generated).
 これに対して、個々の第1放射素子3に凹部21が形成されていることにより、第1放射素子群における反射波及び不要放射波の発生を抑制することができる。この結果、給電損失を更に低減することができるとともに、放射特性を更に向上することができる。 On the other hand, the formation of the concave portion 21 in each of the first radiating elements 3 makes it possible to suppress the generation of reflected waves and unnecessary radiation waves in the first radiating element group. As a result, the power supply loss can be further reduced, and the radiation characteristics can be further improved.
 同様に、仮に個々の第2放射素子6に凹部22が形成されていない場合、第2放射素子6により電磁波としてアンテナ装置100a外の空間に放射されるべき電力の一部が、第2放射素子6により電磁波としてアンテナ装置100a外の空間に放射されずに、第2放射素子6により反射されることがある。当該反射された電力のうちの一部の電力は、第3給電線路7、第2放射素子6及び第4給電線路8を順次通過して、給電部10に戻る(すなわち、反射波が発生する。)。また、当該反射された電力のうちの他の一部の電力は、第3給電線路7、第2放射素子6及び第3給電線路7を順次通過して、第2放射素子6~6により電磁波としてアンテナ装置100a外の空間に放射される(すなわち、不要放射波が発生する。)。 Similarly, if the case where the concave portion 22 to the respective second radiating element 6 is not formed, a portion of the power to be radiated to the space outside the antenna device 100a as the second electromagnetic wave by radiating element 61 is a second radiation without being radiated to the space outside the antenna device 100a as an electromagnetic wave by an element 6 1, which may be reflected by the second radiating element 61. Some of the power of the reflected power, the third feed line 71, and a second radiating element 6 second and fourth feed lines 8 sequentially passes through, back to the feeding portion 10 2 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the third feed line 71, a second radiating element 6, second and third feed line 7 2 sequentially passes through the second radiating element 6 3 is radiated to the space outside the antenna device 100a as an electromagnetic wave by 1-6 5 (i.e., unnecessary radiation wave is generated.).
 また、仮に個々の第2放射素子6に凹部22が形成されていない場合、第2放射素子6~6により電磁波としてアンテナ装置100a外の空間に放射されるべき電力の一部が、第2放射素子6~6により電磁波としてアンテナ装置100a外の空間に放射されずに、第2放射素子6~6により反射されることがある。当該反射された電力のうちの一部の電力は、第3給電線路7、第2放射素子6及び第4給電線路8を順次通過して、給電部10に戻る(すなわち、反射波が発生する。)。また、当該反射された電力のうちの他の一部の電力は、第3給電線路7、第2放射素子6及び第3給電線路7を順次通過して、第2放射素子6により電磁波としてアンテナ装置100a外の空間に放射される(すなわち、不要放射波が発生する。)。 Further, if the case where the concave portion 22 to the respective second radiating element 6 is not formed, a portion of the power to be radiated to the space outside the antenna device 100a by the second radiating element 6 3-6 5 as an electromagnetic wave is, the the second radiation element 6 3-6 5 without being radiated to the space outside the antenna device 100a as an electromagnetic wave, may be reflected by the second radiating element 6 3-6 5. Some of the power of the reflected power, the third feed line 7 2, and the second radiating element 6 second and fourth feed lines 8 sequentially passes through, back to the feeding portion 10 2 (i.e., the reflected wave Occurs.) Further, another part of the power of the reflected power, the third feed line 7 2, the second radiation element 6, second and third successively passes through the feed line 71, the second radiating element 6 1 As a result, electromagnetic waves are radiated to the space outside the antenna device 100a (that is, unnecessary radiation waves are generated).
 これに対して、個々の第2放射素子6に凹部22が形成されていることにより、第2放射素子群における反射波及び不要放射波の発生を抑制することができる。この結果、給電損失を更に低減することができるとともに、放射特性を更に向上することができる。 On the other hand, the formation of the concave portion 22 in each of the second radiating elements 6 can suppress the generation of reflected waves and unnecessary radiation waves in the second radiating element group. As a result, the power supply loss can be further reduced, and the radiation characteristics can be further improved.
 次に、アンテナ装置100aの効果について説明する。 Next, the effects of the antenna device 100a will be described.
 図5は、アンテナ装置100aによる放射パターンの電磁界シミュレーション結果を示している。図中IはXZ平面における主偏波に対応しており、図中IIはYZ平面における主偏波に対応している。また、図5におけるθ=0°は、図4における+Z方向に対応している。図5に示す如く、アンテナ装置100aによる放射パターンは、ブロードサイド方向に対する指向性を有しており、かつ、サイドローブレベルが小さいものである。側方給電方式のアンテナ装置100aを用いることにより、かかる良好な放射パターンを得ることができる。 FIG. 5 shows an electromagnetic field simulation result of a radiation pattern by the antenna device 100a. In the figure, I corresponds to the main polarization in the XZ plane, and II in the figure corresponds to the main polarization in the YZ plane. Also, θ = 0 ° in FIG. 5 corresponds to the + Z direction in FIG. As shown in FIG. 5, the radiation pattern by the antenna device 100a has directivity in the broadside direction and has a low sidelobe level. By using the antenna device 100a of the side feeding system, such a good radiation pattern can be obtained.
 なお、アンテナ装置100aは、実施の形態1にて説明したものと同様の種々の変形例、すなわちアンテナ装置100と同様の種々の変形例を採用することができる。 Note that the antenna device 100a can employ various modifications similar to those described in Embodiment 1, that is, various modifications similar to the antenna device 100.
 以上のように、実施の形態2のアンテナ装置100aは、個々の第1放射素子3における第1給電線路4の接続部に切欠き状の凹部21が形成されており、個々の第2放射素子6における第3給電線路7の接続部に切欠き状の凹部22が形成されている。これにより、各放射素子群における反射波及び不要放射波の発生を抑制することができる。この結果、給電損失を更に低減することができるとともに、放射特性を更に向上することができる。 As described above, in the antenna device 100a of the second embodiment, the notch-shaped concave portion 21 is formed at the connection portion of the first feed line 4 in each of the first radiating elements 3, and the individual second radiating element 6, a notch-shaped concave portion 22 is formed at a connection portion of the third power supply line 7. Thereby, generation of reflected waves and unnecessary radiation waves in each radiation element group can be suppressed. As a result, the power supply loss can be further reduced, and the radiation characteristics can be further improved.
実施の形態3.
 図6は、実施の形態3に係るアンテナ装置の要部を示す平面図である。図6を参照して、実施の形態3のアンテナ装置100bについて説明する。なお、図6において、図1に示す構成部材等と同様の構成部材等には同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 6 is a plan view showing a main part of the antenna device according to the third embodiment. Third Embodiment An antenna device 100b according to a third embodiment will be described with reference to FIG. In FIG. 6, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 図6に示す如く、誘電体基板1の裏面部に導波管31が設けられている。図6に示す例において、導波管31は方形導波管により構成されている。導波管31は、その管軸が誘電体基板1の板面に対して直交する向きに設けられている。 導 波 As shown in FIG. 6, a waveguide 31 is provided on the back surface of the dielectric substrate 1. In the example shown in FIG. 6, the waveguide 31 is constituted by a rectangular waveguide. The waveguide 31 is provided so that its tube axis is orthogonal to the plate surface of the dielectric substrate 1.
 接地導体パターンにおける導波管31の中央部に対応する位置に、矩形状の貫通孔(以下「結合孔」という。)32が穿たれている。また、誘電体基板1の表面部における導波管31の中央部に対応する位置に、矩形状の導体パターン33が設けられている。導波管31、結合孔32及び導体パターン33により、給電部10bが構成されている。 (4) A rectangular through-hole (hereinafter referred to as a “coupling hole”) 32 is formed at a position corresponding to the center of the waveguide 31 in the ground conductor pattern. A rectangular conductor pattern 33 is provided at a position corresponding to the center of the waveguide 31 on the surface of the dielectric substrate 1. The waveguide 31, the coupling hole 32, and the conductor pattern 33 form a power supply unit 10 b.
 導体パターン2は、給電部10bと第2給電線路5の第2端部との間に設けられた給電線路(以下「第5給電線路」という。)34に対応する部位を有している。すなわち、第5給電線路34の一端部(以下「第1端部」という。)は第2給電線路5の第2端部と電気的に接続されており、第5給電線路34の他端部(以下「第2端部」という。)は導体パターン33及び結合孔32を介して導波管31と電気的に接続されている。第5給電線路34は、第1方向に沿う直線状の線路により構成されている。 Conductor pattern 2 1 has a portion corresponding to the second feed line provided between the end portion (hereinafter referred to as "fifth feed line".) 34 of the power supply portion 10b and the second feed line 5 . That is, one end (hereinafter, referred to as “first end”) of the fifth power supply line 34 is electrically connected to the second end of the second power supply line 5, and the other end of the fifth power supply line 34. (Hereinafter, referred to as “second end”) is electrically connected to the waveguide 31 via the conductor pattern 33 and the coupling hole 32. The fifth power supply line 34 is configured by a linear line along the first direction.
 導体パターン2は、給電部10bと第4給電線路8の第2端部との間に設けられた給電線路(以下「第6給電線路」という。)35に対応する部位を有している。すなわち、第6給電線路35の一端部(以下「第1端部」という。)は第4給電線路8の第2端部と電気的に接続されており、第6給電線路35の他端部(以下「第2端部」という。)は導体パターン33及び結合孔32を介して導波管31と電気的に接続されている。第6給電線路35は、第1方向に沿う直線状の線路により構成されている。 Conductor patterns 2 2 has a portion corresponding to the feeding part 10b and the fourth feeder feeding line provided between the second end of the line 8 (hereinafter referred to as "sixth feed line".) 35 . That is, one end (hereinafter, referred to as “first end”) of the sixth power supply line 35 is electrically connected to the second end of the fourth power supply line 8, and the other end of the sixth power supply line 35. (Hereinafter, referred to as “second end”) is electrically connected to the waveguide 31 via the conductor pattern 33 and the coupling hole 32. The sixth power supply line 35 is configured by a linear line along the first direction.
 このようにして、マイクロストリップアレーアンテナ部9bが構成されている。 マ イ ク ロ The microstrip array antenna 9b is thus configured.
 図6に示す例において、給電部10bは中心軸A上に配置されている。これにより、マイクロストリップアレーアンテナ部9bにおいて、第5給電線路34と第6給電線路35とが互いに軸対称に配置されている。すなわち、導体パターン2と導体パターン2とが互いに軸対称な形状を有している。 In the example shown in FIG. 6, the power supply unit 10b is disposed on the central axis A. Thus, in the microstrip array antenna section 9b, the fifth feed line 34 and the sixth feed line 35 are arranged axially symmetric with each other. That is, the conductor pattern 2 1 and the conductor pattern 2 2 has an axial symmetrical shape.
 導体パターン33は、導波管31及び結合孔32と第5給電線路34及び第6給電線路35との間のインピーダンス整合を取るために設けられたものである。結合孔32の寸法(より具体的にはX軸に沿う方向に対する寸法及びY軸に沿う方向に対する寸法)により、導波管31と第5給電線路34及び第6給電線路35との間の結合量を調整することができる。また、導体パターン33の寸法(より具体的にはX軸に沿う方向に対する寸法及びY軸に沿う方向に対する寸法)により、導波管31と第5給電線路34及び第6給電線路35との間の結合量を調整することができる。 The conductor pattern 33 is provided for impedance matching between the waveguide 31 and the coupling hole 32 and the fifth power supply line 34 and the sixth power supply line 35. The coupling between the waveguide 31 and the fifth power supply line 34 and the sixth power supply line 35 is determined by the size of the coupling hole 32 (more specifically, the size in the direction along the X axis and the size in the direction along the Y axis). The amount can be adjusted. The dimension of the conductor pattern 33 (more specifically, the dimension in the direction along the X-axis and the dimension in the direction along the Y-axis) causes the gap between the waveguide 31 and the fifth feed line 34 and the sixth feed line 35. Can be adjusted.
 次に、アンテナ装置100bの動作について説明する。より具体的には、アンテナ装置100bが送信アンテナに用いられる場合において、アンテナ装置100bが進行波型アンテナとして動作するときの例を中心に説明する。 Next, the operation of the antenna device 100b will be described. More specifically, description will be made focusing on an example in which the antenna device 100b operates as a traveling wave antenna when the antenna device 100b is used as a transmission antenna.
 まず、給電部10bが第5給電線路34の第2端部に高周波電力(より具体的には電磁波)を供給する。当該供給された電力は、第5給電線路34及び第2給電線路5に沿うように伝搬して、第1放射素子3に入力される。当該入力された電力の振る舞いは実施の形態1にて説明したものと同様であるため、再度の説明は省略する。 First, the power supply unit 10b supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the fifth power supply line 34. The supplied power is propagated along the fifth feed line 34 and a second feed line 5 is input to the first radiating element 3 2. The behavior of the input power is the same as that described in the first embodiment, and a description thereof will not be repeated.
 また、給電部10bが第6給電線路35の第2端部に高周波電力(より具体的には電磁波)を供給する。当該供給された電力は、第6給電線路35及び第4給電線路8に沿うように伝搬して、第2放射素子6に入力される。当該入力された電力の振る舞いは実施の形態1にて説明したものと同様であるため、再度の説明は省略する。 Further, the power supply unit 10b supplies high-frequency power (more specifically, electromagnetic waves) to the second end of the sixth power supply line 35. The supplied power is propagated along the sixth feed line 35 and the fourth feeding line 8, is input to the second radiating element 6 2. The behavior of the input power is the same as that described in the first embodiment, and a description thereof will not be repeated.
 なお、アンテナ装置100bは、実施の形態1にて説明したものと同様の種々の変形例、すなわちアンテナ装置100と同様の種々の変形例を採用することができる。 Note that the antenna device 100b can employ various modifications similar to those described in Embodiment 1, that is, various modifications similar to the antenna device 100.
 また、アンテナ装置100bにおける個々の第1放射素子3は、アンテナ装置100aにおける個々の第1放射素子3と同様の凹部21を有するものであっても良い。アンテナ装置100bにおける個々の第2放射素子6は、アンテナ装置100aにおける個々の第2放射素子6と同様の凹部22を有するものであっても良い。 {Circle around (1)} The individual first radiating elements 3 in the antenna device 100b may have the same concave portions 21 as the individual first radiating elements 3 in the antenna device 100a. Each of the second radiating elements 6 in the antenna device 100b may have the same concave portion 22 as each of the second radiating elements 6 in the antenna device 100a.
 また、結合孔32の形状は矩形状に限定されるものではない。結合孔32は、例えば、楕円形状又は多角形状であっても良い。 形状 Also, the shape of the coupling hole 32 is not limited to a rectangular shape. The coupling hole 32 may have, for example, an elliptical shape or a polygonal shape.
 また、誘電体基板1の裏面部と導波管31との間に間隙が形成されている場合、漏えい電流が発生する。この場合、導波管31は、いわゆる「チョーク構造」を有するものであっても良い。これにより、漏えい電流を遮断することができる。 (4) When a gap is formed between the back surface of the dielectric substrate 1 and the waveguide 31, a leakage current is generated. In this case, the waveguide 31 may have a so-called “choke structure”. Thereby, the leakage current can be cut off.
 以上のように、実施の形態3のアンテナ装置100bは、導波管31を用いた給電部10bを備え、マイクロストリップアレーアンテナ部9bは、第2給電線路5と給電部10b間に電気的に接続された第5給電線路34と、第4給電線路8と給電部10b間に電気的に接続された第6給電線路35と、を有する。これにより、実施の形態1のアンテナ装置100と同様に、側方給電方式を実現することができる。この結果、ブロッキングの発生を抑制することができるとともに、給電損失を低減することができる。 As described above, the antenna device 100b of the third embodiment includes the feeder 10b using the waveguide 31, and the microstrip array antenna 9b is electrically connected between the second feeder line 5 and the feeder 10b. It has a fifth power supply line 34 connected thereto, and a sixth power supply line 35 electrically connected between the fourth power supply line 8 and the power supply unit 10b. Thereby, similarly to the antenna device 100 of the first embodiment, the side feeding method can be realized. As a result, the occurrence of blocking can be suppressed, and the power supply loss can be reduced.
 また、第5給電線路34は、第1方向に沿う直線状の線路により構成されており、第6給電線路35は、第1方向に沿う直線状の線路により構成されている。これらの給電線路が直線状であることにより、給電部10bと第1放射素子3間の給電線路(すなわち第2給電線路5及び第5給電線路34)における折り曲げ部の個数を1個に低減することができるとともに、給電部10bと第2放射素子6間の給電線路(すなわち第4給電線路8及び第6給電線路35)における折り曲げ部の個数を1個に低減することができる。この結果、アンテナ装置100”に比して、不連続部による不要な電磁波の放射の発生を抑制することができる。 {Circle around (5)} The fifth power supply line 34 is configured by a linear line along the first direction, and the sixth power supply line 35 is configured by a linear line along the first direction. Since these feed lines are linear, the number of bent portions in the feed lines between the feed unit 10b and the first radiating element 3 (that is, the second feed line 5 and the fifth feed line 34) is reduced to one. In addition, the number of bent portions in the feed line between the feed unit 10b and the second radiating element 6 (that is, the fourth feed line 8 and the sixth feed line 35) can be reduced to one. As a result, generation of unnecessary electromagnetic wave radiation due to the discontinuous portion can be suppressed as compared with the antenna device 100 ″.
実施の形態4.
 図7は、実施の形態4に係るアンテナ装置の要部を示す平面図である。図8は、実施の形態4に係る他のアンテナ装置の要部を示す平面図である。図9は、実施の形態4に係る他のアンテナ装置の要部を示す平面図である。図7~図9を参照して、実施の形態4のアンテナ装置100c,100d,100eについて説明する。
Embodiment 4 FIG.
FIG. 7 is a plan view showing a main part of the antenna device according to the fourth embodiment. FIG. 8 is a plan view showing a main part of another antenna device according to the fourth embodiment. FIG. 9 is a plan view showing a main part of another antenna device according to the fourth embodiment. Fourth Embodiment An antenna device 100c, 100d, or 100e according to a fourth embodiment will be described with reference to FIGS.
 図7に示す如く、実施の形態4のアンテナ装置100cは、第1方向と異なる方向(以下「第2方向」という。)に配列された複数個のマイクロストリップアレーアンテナ部9を有するものである。個々のマイクロストリップアレーアンテナ部9は、実施の形態1にて説明したものと同様である。当該複数個のマイクロストリップアレーアンテナ部9において、複数個の第1放射素子3及び複数個の第2放射素子6が平面状に、すなわち二次元アレー状に配列されている。図7に示す例において、第2方向はY軸に沿う方向、すなわち第1方向に対する直交方向に設定されている。図7において、個々の導体パターン2における各部位の符号は図示を省略している。 As shown in FIG. 7, an antenna device 100c according to the fourth embodiment has a plurality of microstrip array antenna units 9 arranged in a direction different from the first direction (hereinafter, referred to as a "second direction"). . Each microstrip array antenna section 9 is the same as that described in the first embodiment. In the plurality of microstrip array antenna sections 9, a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array. In the example shown in FIG. 7, the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction. In FIG. 7, reference numerals of respective portions in the individual conductor patterns 2 are not shown.
 または、図8に示す如く、実施の形態4のアンテナ装置100dは、第2方向に配列された複数個のマイクロストリップアレーアンテナ部9aを有するものである。個々のマイクロストリップアレーアンテナ部9aは、実施の形態2にて説明したものと同様である。当該複数個のマイクロストリップアレーアンテナ部9aにおいて、複数個の第1放射素子3及び複数個の第2放射素子6が平面状に、すなわち二次元アレー状に配列されている。図8に示す例において、第2方向はY軸に沿う方向、すなわち第1方向に対する直交方向に設定されている。図8において、個々の導体パターン2における各部位の符号、個々の凹部21の符号及び個々の凹部22の符号は図示を省略している。 Alternatively, as shown in FIG. 8, the antenna device 100d according to the fourth embodiment has a plurality of microstrip array antenna units 9a arranged in the second direction. Each microstrip array antenna section 9a is the same as that described in the second embodiment. In the plurality of microstrip array antenna sections 9a, a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array. In the example shown in FIG. 8, the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction. In FIG. 8, the reference numerals of the respective portions, the reference numerals of the individual concave portions 21, and the reference numerals of the individual concave portions 22 in the individual conductor patterns 2 are omitted.
 または、図9に示す如く、実施の形態4のアンテナ装置100eは、第2方向に配列された複数個のマイクロストリップアレーアンテナ部9bを有するものである。個々のマイクロストリップアレーアンテナ部9bは、実施の形態3にて説明したものと同様である。当該複数個のマイクロストリップアレーアンテナ部9bにおいて、複数個の第1放射素子3及び複数個の第2放射素子6が平面状に、すなわち二次元アレー状に配列されている。図9に示す例において、第2方向はY軸に沿う方向、すなわち第1方向に対する直交方向に設定されている。図9において、個々の導体パターン2における各部位の符号及び個々の給電部10bにおける各部位の符号は図示を省略している。 Or, as shown in FIG. 9, the antenna device 100e according to the fourth embodiment has a plurality of microstrip array antenna units 9b arranged in the second direction. Each microstrip array antenna section 9b is the same as that described in the third embodiment. In the plurality of microstrip array antenna sections 9b, a plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a plane, that is, in a two-dimensional array. In the example shown in FIG. 9, the second direction is set to a direction along the Y axis, that is, a direction orthogonal to the first direction. In FIG. 9, the reference numerals of the respective portions in the individual conductor patterns 2 and the reference numerals of the respective portions in the individual power supply portions 10b are omitted.
 なお、第2方向は第1方向に対する直交方向に限定されるものではない。第2方向は、第1方向に対する斜めの方向であっても良い。 The second direction is not limited to a direction orthogonal to the first direction. The second direction may be a direction oblique to the first direction.
 また、アンテナ装置100cにおける個々のマイクロストリップアレーアンテナ部9は、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 The individual microstrip array antenna units 9 in the antenna device 100c can employ various modifications similar to those described in the first embodiment.
 また、アンテナ装置100dにおける個々のマイクロストリップアレーアンテナ部9aは、実施の形態2にて説明したものと同様の種々の変形例を採用することができる。 The individual microstrip array antenna sections 9a in the antenna device 100d can employ various modifications similar to those described in the second embodiment.
 また、アンテナ装置100eにおける個々のマイクロストリップアレーアンテナ部9bは、実施の形態3にて説明したものと同様の種々の変形例を採用することができる。例えば、アンテナ装置100eにおいて、個々の第1放射素子3が凹部21を有するものであっても良く、個々の第2放射素子6が凹部22を有するものであっても良い。 The individual microstrip array antenna portions 9b in the antenna device 100e can employ various modifications similar to those described in the third embodiment. For example, in the antenna device 100e, each of the first radiating elements 3 may have the concave portion 21 and each of the second radiating elements 6 may have the concave portion 22.
 また、アンテナ装置100eにおける個々の給電部10bは、実施の形態3にて説明したものと同様の種々の変形例を採用することができる。 給 電 Various modifications similar to those described in the third embodiment can be employed for the individual power supply units 10b in the antenna device 100e.
 以上のように、実施の形態4のアンテナ装置100cは、第1方向と異なる第2方向に配列された複数個のマイクロストリップアレーアンテナ部9を備え、複数個のマイクロストリップアレーアンテナ部9において、複数個の第1放射素子3及び複数個の第2放射素子6が二次元アレー状に配列されている。これにより、図7に示す如く、いわゆる「平面アレーアンテナ」を実現することができる。 As described above, the antenna device 100c according to the fourth embodiment includes the plurality of microstrip array antenna units 9 arranged in the second direction different from the first direction. A plurality of first radiating elements 3 and a plurality of second radiating elements 6 are arranged in a two-dimensional array. As a result, a so-called “planar array antenna” can be realized as shown in FIG.
 また、実施の形態4のアンテナ装置100dは、第1方向と異なる第2方向に配列された複数個のマイクロストリップアレーアンテナ部9aを備え、複数個のマイクロストリップアレーアンテナ部9aにおいて、複数個の第1放射素子3及び複数個の第2放射素子6が二次元アレー状に配列されている。これにより、図8に示す如く、平面アレーアンテナを実現することができる。 The antenna device 100d according to the fourth embodiment includes a plurality of microstrip array antennas 9a arranged in a second direction different from the first direction. The first radiating element 3 and the plurality of second radiating elements 6 are arranged in a two-dimensional array. As a result, as shown in FIG. 8, a planar array antenna can be realized.
 また、実施の形態4のアンテナ装置100eは、第1方向と異なる第2方向に配列された複数個のマイクロストリップアレーアンテナ部9bを備え、複数個のマイクロストリップアレーアンテナ部9bにおいて、複数個の第1放射素子3及び複数個の第2放射素子6が二次元アレー状に配列されている。これにより、図9に示す如く、平面アレーアンテナを実現することができる。 Further, the antenna device 100e according to the fourth embodiment includes a plurality of microstrip array antenna units 9b arranged in a second direction different from the first direction. The first radiating element 3 and the plurality of second radiating elements 6 are arranged in a two-dimensional array. As a result, as shown in FIG. 9, a planar array antenna can be realized.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of an arbitrary component in each embodiment is possible within the scope of the invention. .
 本発明のアンテナ装置は、例えば、レーダ装置に用いることができる。 ア ン テ ナ The antenna device of the present invention can be used for, for example, a radar device.
 1 誘電体基板、2 導体パターン、3 放射素子(第1放射素子)、4 給電線路(第1給電線路)、5 給電線路(第2給電線路)、6 放射素子(第2放射素子)、7 給電線路(第3給電線路)、8 給電線路(第4給電線路)、9,9a,9b マイクロストリップアレーアンテナ部、10,10b 給電部、21 凹部、22 凹部、31 導波管、32 結合孔、33 導体パターン、34 給電線路(第5給電線路)、35 給電線路(第6給電線路)、100,100a,100b,100c,100d,100e アンテナ装置。 1 dielectric substrate, 2 conductor pattern, 3 radiation element (first radiation element), 4 radiation line (first radiation line), 5 radiation line (second radiation line), 6 radiation element (second radiation element), 7 Feed line (third feed line), 8 ° feed line (fourth feed line), 9, 9a, 9b microstrip array antenna section, 10, 10b feed section, 21 concave section, 22 concave section, 31 waveguide, 32 coupling hole , 33 ° conductor pattern, 34 ° feed line (fifth feed line), 35 ° feed line (sixth feed line), 100, 100a, 100b, 100c, 100d, 100e antenna device.

Claims (9)

  1.  第1方向に配列された複数個の第1放射素子を含む第1放射素子群と、前記第1放射素子群における互いに隣接する前記第1放射素子間に電気的に接続された第1給電線路と、前記第1放射素子群における両端部に配置された前記第1放射素子を除くいずれかの前記第1放射素子に対して電気的に接続された第2給電線路と、を有するマイクロストリップアレーアンテナ部を備えるアンテナ装置。 A first radiating element group including a plurality of first radiating elements arranged in a first direction, and a first feed line electrically connected between the adjacent first radiating elements in the first radiating element group And a second feed line electrically connected to any of the first radiating elements except for the first radiating elements disposed at both ends of the first radiating element group. An antenna device including an antenna unit.
  2.  前記マイクロストリップアレーアンテナ部は、前記第1方向に配列された複数個の第2放射素子を含む第2放射素子群と、前記第2放射素子群における互いに隣接する前記第2放射素子間に電気的に接続された第3給電線路と、前記第2放射素子群における両端部に配置された前記第2放射素子を除くいずれかの前記第2放射素子に対して電気的に接続された第4給電線路と、を有し、
     前記マイクロストリップアレーアンテナ部において、複数個の前記第1放射素子及び複数個の前記第2放射素子が一次元アレー状に配列されている
     ことを特徴とする請求項1記載のアンテナ装置。
    The microstrip array antenna unit is configured to electrically connect a second radiating element group including a plurality of second radiating elements arranged in the first direction and a second radiating element adjacent to each other in the second radiating element group. And a fourth feed line electrically connected to any of the second radiating elements except for the second radiating elements disposed at both ends of the second radiating element group. And a feed line,
    The antenna device according to claim 1, wherein a plurality of the first radiating elements and a plurality of the second radiating elements are arranged in a one-dimensional array in the microstrip array antenna unit.
  3.  前記マイクロストリップアレーアンテナ部において、複数個の前記第1放射素子と複数個の前記第2放射素子とが互いに軸対称に配置されており、かつ、複数個の前記第1給電線路と複数個の前記第3給電線路とが互いに軸対称に配置されており、かつ、前記第2給電線路と前記第4給電線路とが互いに軸対称に配置されていることを特徴とする請求項2記載のアンテナ装置。 In the microstrip array antenna section, a plurality of the first radiating elements and a plurality of the second radiating elements are arranged axially symmetric with each other, and a plurality of the first feed lines and a plurality of the first feed lines are arranged. 3. The antenna according to claim 2, wherein the third power supply line and the fourth power supply line are disposed axially symmetrically with respect to each other, and the second power supply line and the fourth power supply line are disposed axially symmetrically with each other. 4. apparatus.
  4.  導波管を用いた給電部を備え、
     前記マイクロストリップアレーアンテナ部は、前記第2給電線路と前記給電部間に電気的に接続された第5給電線路と、前記第4給電線路と前記給電部間に電気的に接続された第6給電線路と、を有する
     ことを特徴とする請求項2記載のアンテナ装置。
    A power supply unit using a waveguide is provided,
    The microstrip array antenna unit includes a fifth feed line electrically connected between the second feed line and the feed unit, and a sixth feed line electrically connected between the fourth feed line and the feed unit. The antenna device according to claim 2, further comprising: a feed line.
  5.  個々の前記第1給電線路は、前記第1方向に沿う直線状の線路により構成されており、
     個々の前記第3給電線路は、前記第1方向に沿う直線状の線路により構成されている
     ことを特徴とする請求項2記載のアンテナ装置。
    Each of the first power supply lines is configured by a linear line along the first direction,
    The antenna device according to claim 2, wherein each of the third feeder lines is configured by a straight line along the first direction.
  6.  前記第2給電線路は、前記第1方向に対する直交方向に沿う直線状の線路により構成されており、
     前記第4給電線路は、前記第1方向に対する直交方向に沿う直線状の線路により構成されている
     ことを特徴とする請求項2記載のアンテナ装置。
    The second power supply line is configured by a straight line along a direction orthogonal to the first direction,
    The antenna device according to claim 2, wherein the fourth feed line is configured by a straight line extending along a direction orthogonal to the first direction.
  7.  前記第5給電線路は、前記第1方向に沿う直線状の線路により構成されており、
     前記第6給電線路は、前記第1方向に沿う直線状の線路により構成されている
     ことを特徴とする請求項4記載のアンテナ装置。
    The fifth power supply line is configured by a linear line along the first direction,
    The antenna device according to claim 4, wherein the sixth feed line is configured by a linear line along the first direction.
  8.  個々の前記第1放射素子における前記第1給電線路の接続部に切欠き状の凹部が形成されており、
     個々の前記第2放射素子における前記第3給電線路の接続部に切欠き状の凹部が形成されている
     ことを特徴とする請求項2記載のアンテナ装置。
    A notch-like concave portion is formed at a connection portion of the first feed line in each of the first radiation elements;
    The antenna device according to claim 2, wherein a notch-shaped concave portion is formed at a connection portion of each of the second radiating elements to the third feed line.
  9.  前記第1方向と異なる第2方向に配列された複数個の前記マイクロストリップアレーアンテナ部を備え、
     複数個の前記マイクロストリップアレーアンテナ部において、複数個の前記第1放射素子及び複数個の前記第2放射素子が二次元アレー状に配列されている
     ことを特徴とする請求項2から請求項8のうちのいずれか1項記載のアンテナ装置。
    A plurality of the microstrip array antenna units arranged in a second direction different from the first direction;
    9. The plurality of microstrip array antenna sections, wherein a plurality of the first radiating elements and a plurality of the second radiating elements are arranged in a two-dimensional array. The antenna device according to claim 1.
PCT/JP2018/033460 2018-09-10 2018-09-10 Antenna device WO2020053935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020546557A JP6861901B2 (en) 2018-09-10 2018-09-10 Antenna device
PCT/JP2018/033460 WO2020053935A1 (en) 2018-09-10 2018-09-10 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033460 WO2020053935A1 (en) 2018-09-10 2018-09-10 Antenna device

Publications (1)

Publication Number Publication Date
WO2020053935A1 true WO2020053935A1 (en) 2020-03-19

Family

ID=69776650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033460 WO2020053935A1 (en) 2018-09-10 2018-09-10 Antenna device

Country Status (2)

Country Link
JP (1) JP6861901B2 (en)
WO (1) WO2020053935A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251833A (en) * 1998-02-27 1999-09-17 Toyota Central Res & Dev Lab Inc Microstrip antenna element and mcirostrip array antenna
JP2007318348A (en) * 2006-05-24 2007-12-06 Japan Radio Co Ltd Antenna unit and antenna system
JP2011055419A (en) * 2009-09-04 2011-03-17 Japan Radio Co Ltd Strongly-coupled element array antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995277A (en) * 1975-10-20 1976-11-30 Minnesota Mining And Manufacturing Company Microstrip antenna
JPH10190351A (en) * 1996-12-25 1998-07-21 Mitsubishi Electric Corp Milli wave plane antenna
US9755311B2 (en) * 2012-05-29 2017-09-05 Samsung Electronics Co., Ltd. Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251833A (en) * 1998-02-27 1999-09-17 Toyota Central Res & Dev Lab Inc Microstrip antenna element and mcirostrip array antenna
JP2007318348A (en) * 2006-05-24 2007-12-06 Japan Radio Co Ltd Antenna unit and antenna system
JP2011055419A (en) * 2009-09-04 2011-03-17 Japan Radio Co Ltd Strongly-coupled element array antenna

Also Published As

Publication number Publication date
JPWO2020053935A1 (en) 2021-02-15
JP6861901B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
CN107210533B (en) Waveguide slot array antenna
JP5259184B2 (en) Multi-port patch antenna
US8193990B2 (en) Microstrip array antenna
US9972900B2 (en) Distributor and planar antenna
WO2014119141A1 (en) Antenna device
US11437734B2 (en) Antenna device and array antenna
WO2018077408A1 (en) Compact dual-band mimo antenna
JP2003318648A (en) Slotted array antenna and slotted array antenna device
JPH0685520A (en) Print antenna
JP2011254220A (en) Waveguide slot array antenna
JP2008244520A (en) Planar array antenna
JP2019047238A (en) Array antenna
JP2002043837A (en) Transmitter/receiver for electromagnetic waves fed from array manufactured by microstrip technique
US20140055312A1 (en) Systems and methods for a dual polarization feed
JP2008054080A (en) Circularly polarized patch antenna
WO2020053935A1 (en) Antenna device
WO2022270031A1 (en) Patch array antenna, antenna device, and radar device
JP2012049991A (en) Progressive wave exciting antenna
JP2010226165A (en) Array antenna device
JP2008113314A (en) Slot antenna device
JP7162540B2 (en) Waveguide-to-transmission line converter, waveguide slot antenna, and waveguide slot array antenna
JPH0722833A (en) Crossing-slot microwave antenna
WO2018179148A1 (en) Antenna device
JP7106042B2 (en) antenna device
JP2024027756A (en) antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933254

Country of ref document: EP

Kind code of ref document: A1