WO2020053924A1 - Air conditioning management server device, air conditioning management program, and air conditioning management method - Google Patents

Air conditioning management server device, air conditioning management program, and air conditioning management method Download PDF

Info

Publication number
WO2020053924A1
WO2020053924A1 PCT/JP2018/033402 JP2018033402W WO2020053924A1 WO 2020053924 A1 WO2020053924 A1 WO 2020053924A1 JP 2018033402 W JP2018033402 W JP 2018033402W WO 2020053924 A1 WO2020053924 A1 WO 2020053924A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
air
conditioning
pattern
trial
Prior art date
Application number
PCT/JP2018/033402
Other languages
French (fr)
Japanese (ja)
Inventor
小坂 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019508999A priority Critical patent/JP6522269B1/en
Priority to PCT/JP2018/033402 priority patent/WO2020053924A1/en
Priority to TW108129793A priority patent/TW202020377A/en
Publication of WO2020053924A1 publication Critical patent/WO2020053924A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to an air conditioning management server device, an air conditioning management program, and an air conditioning management method for managing air conditioning in a facility.
  • the conventional method has the following problems.
  • air conditioning adjustment such as which air conditioner is adjusted and how, is different depending on the shape of the facility and the air-conditioning target such as a person, an object, or a flora and fauna. Therefore, it is necessary to train and maintain air conditioning adjustment workers in the facility.
  • An object of the present invention is to suppress unevenness of the air conditioning environment of a facility by automatically adjusting an air conditioning method by an air conditioner in the air conditioning of the facility.
  • the air-conditioning management server device of the present invention comprises: Acquiring a plurality of pieces of environment information indicating the measurement results of the sensors from a plurality of sensors that measure the air conditioning environment of a facility in which a plurality of air conditioners are installed and acquiring a plurality of pieces of environment information associated with the identifiers of the sensors, A monitoring unit that extracts the identifier associated with the environmental information that does not match a preset air conditioning environment condition; By the simulation of the air conditioning environment of the facility, an extraction control unit that extracts the air conditioner that affects the measurement result of the extracted sensor, Using the extracted air conditioning capacity information of the air conditioner, a trial air conditioning pattern generation unit that generates a plurality of trial air conditioning patterns indicating an operable state of the air conditioner, The air conditioner sequentially executes the plurality of trial air conditioning patterns, and when there is the trial air conditioning pattern that satisfies the air conditioning environment condition, stores the trial air conditioning pattern that satisfies the air conditioning environment condition as an effective air conditioning pattern in a
  • a trial execution control unit When the storage device has a plurality of effective air conditioning patterns, a plurality of effective air conditioning pattern combinations indicating an execution order of the plurality of effective air conditioning patterns are generated, and the air conditioner executes the plurality of effective air conditioning patterns in order.
  • a control unit Is provided.
  • the air-conditioning management server device of the present invention automatically adjusts the air-conditioning method for the air conditioner, so that it is possible to suppress unevenness in the air-conditioning environment of the facility.
  • FIG. 3 is a diagram of the first embodiment and is a configuration diagram of an air conditioning system. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 3 is a diagram of the first embodiment and is a hardware configuration diagram of the management server device.
  • FIG. 5 is a diagram of the first embodiment and shows information transmitted from the terminal device to the management server device.
  • FIG. 7 is a diagram of the first embodiment and is a sequence diagram illustrating functions of the management server.
  • 5 is a flowchart of the operation of the air conditioning system in the first embodiment.
  • FIG. 3 is a diagram of the first embodiment, showing a schematic arrangement of an air conditioner and an environment sensor. 5 is a flowchart of the first embodiment, showing an operation of an effective air conditioning pattern generation phase.
  • FIG. 3 is a diagram of the first embodiment and is a configuration diagram of an air conditioning system. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 3 is a diagram of the first embodiment and is a hardware configuration diagram of the management server
  • FIG. 4 is a diagram of the first embodiment, showing three fields of an air conditioning system database.
  • 5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase.
  • 5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase.
  • 5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase.
  • FIG. 6 is a diagram of the first embodiment and shows a determination method by an air conditioning pattern control unit.
  • FIG. 7 is a diagram of the first embodiment and shows a modification of the management server device.
  • FIG. 6 is a diagram of a facility according to the second embodiment.
  • FIG. 10 is a diagram of the second embodiment, and is a configuration diagram of an air conditioning management server device.
  • FIG. 9 is a flowchart of the effective air conditioning pattern generation phase in the second embodiment.
  • 9 is a flowchart of the effective air conditioning pattern generation phase in the second embodiment.
  • FIG. 14 is a diagram of the third embodiment and is a configuration diagram of an air conditioning system.
  • FIG. 10 is a diagram of the third embodiment and is a configuration diagram of a plant factory.
  • FIG. 10 is a diagram of the hardware configuration of the air conditioning management server device according to the third embodiment.
  • 13 is a flowchart of the operation of the air conditioning system according to the third embodiment.
  • 17 is a flowchart of the effective air conditioning pattern generation phase in the third embodiment. 17 is a flowchart of the effective air conditioning pattern generation phase in the third embodiment.
  • 17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment.
  • 17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment.
  • 17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment.
  • FIG. 1 is a configuration diagram of a site-adaptive air conditioning system 100 according to the first embodiment.
  • the air conditioning system 100 includes a facility 20 connected to a network 40, an air conditioning management server device 10, and a terminal device 30.
  • the air conditioning management server device 10 is hereinafter referred to as a management server 10.
  • the facility device 200 connects to the network 40.
  • the terminal device 30 is a terminal device used by an air conditioning manager of the facility 20.
  • As the terminal device 30, a personal computer, a smartphone, and a dedicated terminal device are assumed.
  • FIG. 2 is a configuration diagram of the facility 20 in FIG.
  • the facility 20 includes a plurality of air conditioners 22, a plurality of environment sensors 23, and a facility device 200.
  • the air conditioners 22-1 and 22-2 are described.
  • the environmental sensors 23 are distinguished, they are expressed as an environmental sensor 23-1 and an environmental sensor 23-2.
  • the facility device 200 includes an air conditioning control unit 211 and a communication control unit 212.
  • the environment sensor 23 is installed inside the facility 20.
  • the environment sensor 23 measures environmental conditions such as temperature, humidity, air volume, and carbon dioxide concentration, and transmits the measurement result to the air-conditioning control unit 211 as environment information 23a (described later, FIG. 5).
  • the environment sensor 23 also transmits the identifier of the environment sensor 23.
  • the environment information 23a and the identifier of the environment sensor 23 may be described as 23a and IDs, and the environment information 23a and the identifier of the environment sensor 23-k may be described as 23a (k) and IDs (k).
  • the environment information 23a and the identifier of the environment sensor 23-1 are shown as 23a (1) (IDs (1)). The same applies to other environment sensors.
  • the air conditioner 22 is a device such as an indoor unit or a blower of the air conditioner, and performs air conditioning in the facility 20.
  • the air-conditioning control unit 211 periodically transmits the environment information 23a received from the environment sensor 23 and the air-conditioning information 22a indicating the operation state of each air conditioner 22 to the management server 10 via the communication control unit 212.
  • the air conditioner 22 transmits the air conditioning information 22a to the air conditioning control unit 211.
  • the air conditioner 22 also transmits an identifier of the air conditioner 22.
  • the operation state indicated by the air conditioner 22 air conditioning information 22a is information on the air conditioner 22, such as a set temperature, an air volume, and a wind direction, but is not limited thereto.
  • the air conditioning control unit 211 controls the plurality of air conditioners 22 based on the air conditioning control information 10a transmitted from the management server 10.
  • the communication control unit 212 controls communication via the network 40.
  • the air conditioning control information 10a is information transmitted from the air conditioning pattern control unit 15 to control the air conditioner 22.
  • FIG. 3 shows a hardware configuration of the management server 10 in FIG.
  • the management server 10 includes an air conditioning model database 17, an air conditioning condition database 18, and an air conditioning method database 19 as databases.
  • the air-conditioning model database 17, the air-conditioning condition database 18, and the air-conditioning method database 19 are hereinafter referred to as an air-conditioning model DB 17, an air-conditioning condition DB 18, and an air-conditioning method DB 19.
  • the management server 10 is a computer.
  • the management server 10 includes a processor 81 and other hardware such as a main storage device 82, an auxiliary storage device 83, a communication interface 84, and an input / output interface 85.
  • the processor 81 is connected to other hardware via a signal line 86, and controls the other hardware.
  • the management server 10 includes a communication control unit 11, a registration unit 12, a monitoring unit 13, a simulator unit 14, an air conditioning pattern control unit 15, and a trial air conditioning pattern generation unit 16 as functional elements.
  • the air conditioning pattern control unit 15 is an extraction control unit, a trial execution control unit, and an effective execution control unit.
  • the processor 81 is a device that executes an air conditioning management program.
  • the air conditioning management program is a program that implements the functions of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16.
  • the processor 81 is an IC (Integrated Circuit) that performs processing of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16.
  • Specific examples of the processor 81 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the main storage device 82 is a storage device for temporarily storing data. Specific examples of the main storage device 82 are an SRAM (Static Random Access Memory) and a DRAM (Dynamic Random Access Memory). The main storage device 82 holds the calculation result of the processor 81.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the auxiliary storage device 83 is a storage device for storing data.
  • a specific example of the auxiliary storage device 83 is an HDD (Hard ⁇ Disk ⁇ Drive).
  • the auxiliary storage device 83 includes an SD (registered trademark) memory card, a CF (CompactFlash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Versatile Disk). It may be a portable recording medium.
  • the auxiliary storage device 83 stores an air conditioning management program.
  • the auxiliary storage device 83 stores an air conditioning model DB 17, an air conditioning condition DB 18, and an air conditioning method DB 19.
  • the air-conditioning model DB 17, the air-conditioning condition DB 18, and the air-conditioning method DB 19 are stored in a device different from the management server 10, and the management server 10 uses the air-conditioning model DB 17,
  • the DB 18 and the air conditioning system DB 19 may be referred to.
  • the communication interface 84 is a device for the processor 81 to communicate with another device such as the facility device 200.
  • the communication interface 84 is a device such as a communication board.
  • the input / output interface 85 inputs data to the management server 10 and outputs data from the management server 10. Examples of the input / output interface 50 include an input port and an output port.
  • the air conditioning management program is loaded from the auxiliary storage device 83 to the main storage device 82, read from the main storage device 82 to the processor 81, and executed by the processor 81.
  • the main storage device 82 stores not only an air conditioning management program but also an OS (Operating @ System).
  • the processor 81 executes the air conditioning management program while executing the OS.
  • the management server 10 may include a plurality of processors instead of the processor 81. These processors share execution of the air conditioning management program. Each processor is a device that executes an air conditioning management program, like the processor 81.
  • Data, information, signal values, and variable values used, processed, or output by the air-conditioning management program are stored in the main storage device 82, the auxiliary storage device 83, a register in the processor 81, or a cache memory.
  • the air-conditioning management program sets the “units” of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air-conditioning pattern control unit 15, and the trial air-conditioning pattern generation unit 16 to “processing”, “procedure”, or “procedure”.
  • This is a program that causes a computer to execute each process, each procedure, or each process read as “process”.
  • the air conditioning management method is a method performed by the management server 10 as a computer executing an air conditioning management program.
  • the air-conditioning management program may be provided by being stored in a computer-readable recording medium, or may be provided as a program product.
  • FIG. 4 shows information transmitted from the terminal device 30 to the management server 10.
  • FIG. 4 shows the registration unit 12, the air conditioning model DB 17, the air conditioning condition DB 18, and the air conditioning method DB 19 in the management server 10.
  • FIG. 5 is a sequence diagram illustrating functions of the management server 10. In FIG. 5, the registration unit 12 is omitted.
  • the communication control unit 11 controls communication between the management server 10 and another device.
  • the communication control unit 11 communicates with another device such as the facility device 200 using the communication interface 84.
  • the registration unit 12 registers the registration information transmitted from the terminal device 30 in the air conditioning model DB 17, the air conditioning condition DB 18, and the air conditioning method DB 19.
  • the registration information is information transmitted from the terminal device 30 to register with the management server 10. Examples of the registration information include a facility mode 51, an adjustment range 52, a phase air conditioning condition 53, and a basic air conditioning pattern 54, which will be described later.
  • the monitoring unit 13 monitors environment information 23a transmitted from the environment sensor 23.
  • the environment information 23a and the identifier of the environment sensor 23-1 are shown as 23a (1) (IDs (1)). The same applies to other environment sensors.
  • the environment information 23a and the identifier of the environment sensor 23 are transmitted from the environment sensor 23 to the management server 10.
  • the monitoring unit 13 monitors whether the value indicated by the environment information 23a deviates from the phase air-conditioning condition 53 registered in the air-conditioning condition DB 18. If there is an environment sensor 23 that transmits environment information 23a that deviates from the phase air-conditioning condition 53, the monitoring unit 13 sets a set of the identifier of the environment sensor 23 and the environment information 23a until the deviation of the environment information 23a is resolved.
  • the monitoring unit 13 monitors whether there is an environment sensor 23 in which the value indicated by the environment information 23a enters the caution temperature zone under the phase air-conditioning condition 53. Since the environment information 23a has the identifier of the environment sensor 23, the environment sensor 23 can be specified.
  • the caution temperature zone is a temperature zone indicated by a range between an upper limit value and a lower limit value.
  • the registration unit 12 monitors the identifier of the environment sensor 23 and the environment information 23a until the value of the environment information 23a is out of the range of the caution temperature zone. Is periodically transmitted to the air-conditioning pattern control unit 15.
  • the simulator unit 14 executes an air conditioning simulation based on the data of the air conditioning model DB 17.
  • the air-conditioning pattern control unit 15 which is the extraction control unit, the trial execution control unit, and the execution control unit, performs the following processing.
  • the air conditioning pattern control unit 15 uses the simulator unit 14 to specify a group of air conditioners that affect the environment sensor 23.
  • the air-conditioning pattern control unit 15 generates an air-conditioning pattern group of the specified air conditioner group (a group of a combination pattern of the settings of the air volume, temperature, and wind direction for each air conditioner).
  • the air conditioning pattern group is a group of a combination pattern of the settings of the air volume, temperature, and wind direction for each air conditioner.
  • the air-conditioning pattern control unit 15 executes each of the generated air-conditioning patterns, and stores, in the air-conditioning method DB 19, an air-conditioning pattern that satisfies the phase air-conditioning condition 53 for a certain period of time.
  • the air conditioning pattern control unit 15 performs air conditioning of the facility 20 by combining the air conditioning patterns registered in the air conditioning system DB 19.
  • the air-conditioning pattern control unit 15 searches for a combination of air-conditioning patterns that satisfies the phase air-conditioning condition 53.
  • the air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns hit as a result of the search in the air-conditioning method DB 19. (6) If there is an unachieved area of the phase air-conditioning condition 53, the air-conditioning pattern control unit 15 sends the environment information 23a of the unachieved area and the unachieved area to the terminal device 30.
  • the trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern for a specified group of air conditioners using the specifications of the air conditioners registered in the air conditioning model DB 17.
  • the trial air conditioning pattern is an air conditioning pattern indicating a state in which the air conditioner can operate.
  • facility design CAD data necessary for air-conditioning simulation of the facility 20 is stored.
  • Facility design CAD data necessary for the air conditioning simulation of the facility 20 and the arrangement of the installed air conditioners 22 are included in the facility form 51.
  • the specifications of the air conditioner are included in the adjustment range 52.
  • the air conditioning model DB 17 is a DB of an air conditioning environment model of the facility 20.
  • the adjustment range 52 is air conditioning capacity information.
  • the air-conditioning condition DB 18 stores a phase air-conditioning condition 53 for each use phase 55 of the facility 20 registered from the terminal device 30.
  • the air conditioning system DB 19 is a DB of the optimal air conditioning system for each use phase 55.
  • the air conditioning method DB 19 includes an effective air conditioning pattern field 191, a caution environment sensor ID field 192, and an effective air conditioning pattern combination field 193.
  • an effective air-conditioning method for each use phase 55 is registered.
  • an environment sensor ID that may deviate from a required environment condition is registered.
  • an effective air conditioning pattern combination field 193 an appropriate combination of the effective air conditioning patterns is registered.
  • FIG. 6 is a flowchart showing the operation of the air conditioning system 100.
  • FIG. 7 shows a schematic arrangement of the air conditioner 22 and the environment sensor 23.
  • the operation flow of the air conditioning system 100 will be described with reference to FIGS.
  • the operation of the management server 10 in the air conditioning system 100 corresponds to an air conditioning management method.
  • the procedure of the air conditioning management method corresponds to the procedure of the air conditioning management program.
  • Step S401 is an initial registration phase P10.
  • the air conditioning manager of the facility 20 uses the terminal device 30 to send the following facility form 51, adjustment range 52, phase air conditioning condition 53, The air conditioning pattern 54 is registered.
  • the facility form 51 indicates the form of the facility.
  • a specific example of the facility mode 51 is CAD information.
  • the adjustment range 52 indicates the adjustable range of the wind power, the temperature, and the fin angle with respect to the air conditioner 22.
  • the phase air-conditioning condition 53 is an air-conditioning condition for each use phase 55.
  • phase air-conditioning condition 53 includes conditions such as a temperature of 12 ° C., an allowable temperature range of ⁇ 3 ° C., a humidity of 30%, an allowable humidity range of ⁇ 10%, and a wind speed of 1 m or less.
  • the basic air conditioning pattern 54 is a basic air conditioning pattern that does not depend on the use phase 55.
  • a specific example of the basic air-conditioning pattern 54 is a case where the wind power, temperature, and fin angle of each air conditioner 22 are set to default values.
  • the facility form 51 and the adjustment range 52 are stored in the air conditioning model DB 17.
  • the phase air condition 53 is stored in the air condition DB 18.
  • the basic air conditioning pattern 54 is stored in the air conditioning method DB 19 as an air conditioning pattern common to all use phases.
  • Step S402 As shown in FIG. 6, after the completion of the initial registration phase P10, in step S402, the air conditioning manager registers the use phase 55 using the terminal device 30.
  • the use phase 55 is stored in the registration unit 12 of the management server 10.
  • Step S403 is the air conditioning method search phase P20.
  • the management server 10 shifts to an air conditioning method search phase P20.
  • Step S404> When a state in which the deviation of the phase air-conditioning condition 53 cannot be resolved occurs in the air-conditioning method search phase P20, the management server 10 proceeds to an effective air-conditioning pattern generation phase P30 of step S405 to search for an appropriate air-conditioning pattern. If an appropriate air-conditioning pattern has been found, the management server 10 returns to the air-conditioning method search phase P20 in step S403.
  • the monitoring unit 13 checks the contents of the environment information 23a periodically transmitted from the environment sensor group of the facility 20. When a deviation from the phase air-conditioning condition 53 occurs, the monitoring unit 13 sends the IDs (k) of the deviating environment sensor 23-k and the environmental information 23a (k) to the air-conditioning pattern control unit 15 until the deviation is resolved. The transmission is continuously performed (step S11 in FIG. 5).
  • the IDs (k) of the deviated environment sensor 23-k and the environment information 23a (k) are hereinafter referred to as “deviation information 231”. In FIG.
  • the deviation information 231 is 23a (1) (IDs (1)) and 23a (2) (IDs (2)).
  • the monitoring unit 13 compares the IDs (k) of the environment sensor 23-k and the environment information 23a (k) with the temperature indicated by the environment information 23a (k). Until it is out of the range, it is continuously transmitted to the air-conditioning pattern control unit 15.
  • FIG. 8 shows the operation of the effective air conditioning pattern generation phase P30 performed by the air conditioning pattern control unit 15.
  • FIG. 9 shows each field of the air conditioning system DB 19 in a system.
  • FIG. 10, FIG. 11 and FIG. 12 show the operation of the air conditioning system search phase P20.
  • step S11 the air-conditioning pattern control unit 15 is notified by the monitoring unit 13 of the IDs (k) of the environment sensor 23-k that has deviated from the phase air-conditioning condition 53 and the environment information 23a (k).
  • the monitoring unit 13 notifies the air conditioning pattern control unit 15 of 23a (1) (IDs (1)) and 23a (2) (IDs (2)).
  • step S12 when receiving the IDs (1) and IDs (2) from the monitoring unit 13, the air-conditioning pattern control unit 15 converts the facility form 51, which is an environment model of the facility 20 stored in the air-conditioning model DB 17, into a simulator form. Input to the unit 14.
  • step S501 the air-conditioning pattern control unit 15 extracts a plurality of air conditioners 22 that affect the environment sensor 23-1 and the environment sensor 23-2 notified from the monitoring unit 13 by causing the simulator unit 14 to simulate.
  • FIG. 7 shows an example in which the air conditioners 22-1, 22-2, and 22-3 are extracted.
  • the air conditioner 22-1 affects the environment sensor 23-1 of IDs (1)
  • the air conditioner 22-2 and the air conditioner affect the environment sensor 23-2 of IDs (2). 22-3 indicates the effect.
  • the air conditioners 22-1, 22-2, and 22-3 extracted by the simulation will be referred to as AC1, AC2, and AC3.
  • the identifier of the air conditioner 22-k is denoted as ID A (k).
  • ID A (k) the air conditioning pattern control unit 15 indicates that AC1 affects the environment sensor 23-1 of IDs (1), and AC2 and AC3 affect the environment sensor 23-2 of IDs (2). Know that.
  • step S13 the air-conditioning pattern control unit 15 outputs ID A (1), ID A (2), and ID A (3), which are the identifiers of AC1, AC2, and AC3 extracted by the simulation, to the trial air-conditioning pattern generation unit.
  • step S14 the trial air-conditioning pattern generation unit 16 acquires the adjustment ranges 52 of AC1, AC2, and AC3 from the air-conditioning model DB 17.
  • step S502 the trial air conditioning pattern generation unit 16 generates a trial air conditioning pattern group for air conditioning based on the adjustment range 52 of AC1, AC2, and AC3, and transmits the trial air conditioning pattern group to the air conditioning pattern control unit 15. .
  • AC1, AC2, and AC3 can adjust three of wind power, temperature, and fin angle. It is assumed that all the air conditioners can adjust the wind power in three steps, the temperature in two steps, and the fin angle in two steps.
  • AC1 (wind, temperature, fin angle) is (X1, Y1, Z1)
  • the (wind power, temperature, fin angle) of AC3 is (X3, Y3, Z3).
  • Each of X1 to X3 is of three types.
  • Each of Y1 to Y3 is of two types.
  • Each of Z1 to Z3 is of two types.
  • (X2, Y2, Z2) and (X3, Y3, Z3) are respectively 12 types.
  • (X1, Y1, Z1) of AC1 are described as AC1 ⁇ 1> to AC1 ⁇ 12>.
  • Twelve types of (X2, Y2, Z2) of AC2 are described as AC2 ⁇ 1> to AC2 ⁇ 12>.
  • Twelve types of (X3, Y3, Z3) of AC3 are described as AC3 ⁇ 1> to AC3 ⁇ 12>.
  • the trial air conditioning pattern group is a set of trial air conditioning patterns.
  • the trial air conditioning pattern is an element of the trial air conditioning pattern group, When only one unit operates, each of 36 types In the case of two units operation, each of 432 types, And 2196 cases in the case of three-unit operation.
  • step S503 the air conditioning pattern control unit 15 instructs the air conditioning control unit 211 of the facility 20 to execute the first trial air conditioning pattern in the trial air conditioning pattern group sent from the trial air conditioning pattern generation unit 16.
  • the air conditioning pattern control unit 15 starts from a trial air conditioning pattern that operates only one air conditioner, and if there is no suitable trial air conditioning pattern, trials that operate two air conditioners. An air conditioning pattern is implemented, and if there is no suitable trial air conditioning pattern, a trial air conditioning pattern for operating three air conditioners is executed.
  • FIG. 13 shows a determination method by the air-conditioning pattern control unit 15. As shown in FIG. 13, the time T10 from the start of the execution of the trial air-conditioning pattern to the stop of the reception of the deviation information 231 is a value equal to or less than the specified time T1, and the time T20 of the stop of the reception of the deviation information 231 continues. Is greater than or equal to the specified time T2, the air conditioning pattern control unit 15 determines that the trial air conditioning pattern is valid.
  • the air-conditioning pattern control unit 15 registers the trial air-conditioning pattern being implemented in the effective air-conditioning pattern field 191 of the air-conditioning method DB 19 (step S505).
  • the management server 10 shifts to a registered air conditioning application phase (Step S506).
  • the air-conditioning pattern control unit 15 executes the next trial air-conditioning pattern when the notification from the monitoring unit 13 does not stop within the specified time T1 after the trial air-conditioning pattern is executed, and when the next trial air-conditioning pattern exists (step S509). ). After the transmission of the deviation information 231 is stopped, if the transmission of the deviation information 231 from the monitoring unit 13 is started within the specified time T2 after the stop of the transmission of the deviation information 231, if the next trial air conditioning pattern exists, the next trial air conditioning pattern (Step S509).
  • the air-conditioning pattern control unit 15 executes all the trial air-conditioning patterns included in the trial air-conditioning pattern transmitted from the trial air-conditioning pattern generation unit 16, and if there is no next trial air-conditioning pattern (NO in step S508), Is performed.
  • the air-conditioning pattern control unit 15 stores the trial air-conditioning pattern with the smallest number of deviation sensors among the executed trial air-conditioning patterns and the IDs of the deviation sensors of the trial air-conditioning pattern in the effective air-conditioning pattern field 191 of the air-conditioning method DB 19, respectively. Is registered in the caution environment sensor ID field 192 of the air conditioning system DB 19 (step S507).
  • the process proceeds to the optimal air conditioning system search phase P20 (Step S506).
  • FIGS. 10 to 12 show the operation flow of the air conditioning system search phase P20.
  • the air conditioning pattern control unit 15 acquires the current use phase 55 from the registration unit 12, and searches the air conditioning method DB 19 using the current use phase as a key (step S601).
  • the air conditioning pattern control unit 15 stores the air conditioning pattern combination in an internal execution pattern ring array 15R (step S603), and executes the execution pattern ring.
  • the head air-conditioning pattern of the array 15R is transmitted to the air-conditioning control unit 211 in the facility 20, and the air-conditioning control is executed (step S604).
  • the monitoring unit 13 monitors the environment information 23a sent from the facility 20, and notifies the air conditioning pattern control unit 15 when the temperature information enters the caution temperature zone.
  • the air conditioning pattern control unit 15 that has received the notification executes the next air conditioning pattern stored in the execution pattern ring array 15R (Step S606).
  • the air conditioning pattern control unit 15 continues air conditioning of the facility 20 while switching the air conditioning pattern stored in the execution pattern ring array 15R until the monitoring unit 13 notifies the deviation of the phase air conditioning condition 53.
  • the air-conditioning pattern control unit 15 performs the following processing as long as there is an unexecuted air-conditioning pattern combination in the effective air-conditioning pattern combination field 193 of the air-conditioning system DB 19. To continue.
  • the air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns that have not been executed in the execution pattern ring array 15R again (step S609), and executes the air-conditioning control of the facility 20 using the execution pattern ring array 15R.
  • the air-conditioning pattern control unit 15 performs the following processing.
  • the air-conditioning pattern control unit 15 searches the effective air-conditioning pattern field 191 of the air-conditioning system DB 19 for a trial air-conditioning pattern in which the caution environment sensor IDs is not registered (step S610).
  • the air-conditioning pattern control unit 15 executes the air-conditioning pattern (step S611), and at a timing outside the phase air-conditioning condition 53 (step S612), the deviation sensor Are registered in the caution environment sensor ID field 192 of the air conditioning system DB 19 (step S613).
  • the air conditioning pattern control unit 15 If there is no air conditioning pattern in which the caution environment sensor IDs are not registered, or if the registration of the caution environment sensor IDs in step S618 is completed, the air conditioning pattern control unit 15 is registered in the effective air conditioning pattern field 191 of the air conditioning system DB 19. A permutation and a combination of all air conditioning patterns corresponding to the current use phase 55 are generated. However, in the generated permutations and combinations of the air conditioning patterns, the permutations and combinations in which the air conditioning patterns having the same caution environment sensor IDs are consecutive, and the combinations of the registered air conditioning patterns are deleted (step S614). Next, the air conditioning pattern control unit 15 stores the generated combination of the air conditioning patterns in the internal execution pattern ring array 15R (Step S615).
  • the air conditioning pattern control unit 15 executes the next air conditioning pattern in the execution pattern ring array 15R (Steps S619 and S620).
  • the current air-conditioning pattern combination is registered at the head of the effective air-conditioning pattern field of the optimum air-conditioning method DB19. (Step S618).
  • step S621 When the air conditioning in the current execution pattern ring array 15R deviates from the phase air conditioning condition 53 (step S621), the air conditioning pattern control unit 15 stores the next combination of the generated air conditioning patterns in the execution pattern ring array 15R (step S621). (Step S626), the air conditioning from step S616 to step S621 is performed.
  • step S614 If the phase air-conditioning condition 53 is not satisfied even if all the air-conditioning pattern combinations generated in step S614 are executed, the air-conditioning pattern control unit 15 determines that the number of deviation sensors is the largest among the executed air-conditioning pattern combinations. A combination of a small number of air conditioning patterns is executed (step S623). After that, the air-conditioning pattern control unit 15 notifies the terminal device 30 of the position of the environment sensor 23 that has deviated from the phase air-conditioning condition 53 and the deviated temperature (step S624), and the process proceeds to the effective air-conditioning pattern generation phase P30. The process proceeds (step S625).
  • the air conditioning pattern control unit when there are a plurality of effective air conditioning patterns in the storage device, the air conditioning pattern control unit generates a plurality of effective air conditioning pattern combinations indicating the execution order of the plurality of effective air conditioning patterns, and stores the plurality of effective air conditioning patterns in the air conditioner. In order.
  • the management server 10 specifies an air conditioner that needs to be adjusted according to the air conditioning environment unevenness state such as the temperature of the facility 20, and performs an air conditioning pattern trial of the air conditioner. Therefore, the management server searches and accumulates an air conditioning pattern that does not deviate from the phase air conditioning condition 53, and automatically generates and accumulates an optimal combination of the accumulated air conditioning patterns. For this reason, the air-conditioning state of the facility 20 can be automatically optimized. Further, the management server 10 can quickly optimize the air conditioning even when the deviation from the phase air conditioning condition 53 occurs.
  • FIG. 14 is a diagram illustrating a configuration of the management server 10 according to a modification of the first embodiment.
  • the electronic circuit 90 in FIG. 14 includes a communication control unit 11, a registration unit 12, a monitoring unit 13, a simulator unit 14, an air conditioning pattern control unit 15, a trial air conditioning pattern generation unit 16, a main storage device 82, an auxiliary storage device 83, a communication interface It is a dedicated electronic circuit for realizing the functions of the input / output interface 84 and the input / output interface 85.
  • the electronic circuit 90 is connected to the signal line 91.
  • the electronic circuit 90 is, specifically, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the functions of the components of the management server 10 may be realized by one electronic circuit, or may be realized by being distributed to a plurality of electronic circuits. As another modification, some functions of the components of the management server 10 may be realized by an electronic circuit, and the remaining functions may be realized by software.
  • Each of the processor and the electronic circuit is also called a processing circuitry.
  • the functions of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16 are realized by the processing circuitry.
  • the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, the trial air conditioning pattern generation unit 16, the main storage device 82, the auxiliary storage device 83, the communication interface 84, and the input / output interface 85 May be realized by the processing circuitry.
  • Embodiment 2 FIG. The second embodiment will be described with reference to FIGS.
  • a camera that captures an image of the inside of the facility 20 is incorporated into a system to improve the accuracy of an air conditioning simulation performed to identify an air conditioner that needs to be adjusted will be described.
  • the system configuration is the same as that of FIG.
  • FIG. 15 is a configuration diagram of the facility 20 according to the second embodiment.
  • the facility 20 in addition to the configuration of the facility 20 shown in FIG. 2, the facility 20 includes one or more cameras 24 for photographing the internal state of the facility 20.
  • the air conditioning control unit 211 sends an image of the inside of the facility 20 taken by the camera 24 to the management server 10 according to an instruction from the management server 10.
  • FIG. 16 is a configuration diagram of the management server 10 according to the second embodiment.
  • the management server 10 includes a model updating unit 16A.
  • the model updating unit 16A analyzes the image sent from the facility 20 and determines a change in the physical state inside the facility 20 (for example, a new shelf has been installed or the arrangement of luggage has been changed). Then, the model updating unit 16A updates the air conditioning environment model according to the actual air conditioning environment by reflecting the determined physical change on the air conditioning environment model stored in the air conditioning model DB 17.
  • the system operation of the second embodiment is the same as that of the first embodiment except for the effective air conditioning pattern generation phase P30.
  • 17 and 18 show the operation of the effective air-conditioning pattern generation phase P30 according to the second embodiment.
  • the air-conditioning pattern control unit 15 which has been notified of the environment information 23 a and the IDs or IDs of the environment sensors 23 deviating from the environment information 23 a,
  • the control unit 211 is instructed to transmit a camera image, and a camera image is acquired (910).
  • the air-conditioning pattern control unit 15 transfers the camera image to the model updating unit 16A, and instructs the air-conditioning model DB 17 to update.
  • the model update unit 16A analyzes the camera image, determines a physical state change of the facility 20 (911), and reflects the determined physical change on the air conditioning environment model stored in the air conditioning model DB 17 (912). ).
  • the air conditioning pattern control unit 15 inputs the environment model of the facility 20 stored in the air conditioning model DB 17 to the simulator unit 14 and outputs the environmental sensor 23 or the sensor group that has deviated from the environmental condition.
  • An air conditioner group affecting air conditioning is extracted by air conditioning simulation (901).
  • the air conditioning pattern control unit 15 inputs the extracted air conditioner group to the trial air conditioning pattern generation unit 16.
  • the trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern group of the air conditioner group based on the air conditioner adjustment range 52 (wind, temperature, fin angle) from the air conditioning model DB 17 (902), It is transmitted to the air conditioning pattern control unit 15.
  • the air conditioning pattern control unit 15 instructs the air conditioning control unit 211 of the facility 20 to execute the sent trial air conditioning pattern.
  • a specified time (2 minutes, etc.) from the start of the trial air conditioning pattern the notification of the environment information 23a from the monitoring unit 13 and the IDs of the deviated environment sensor 23 is stopped, and then the monitoring unit 13 sends the ID information for a certain time (10 minutes, etc.).
  • the air-conditioning pattern control unit 15 determines that the current trial air-conditioning pattern is appropriate (904), registers the current trial air-conditioning pattern in the air-conditioning method DB 19 (905), and enters the registered air-conditioning application phase. The process is shifted (906).
  • the air-conditioning pattern control unit 15 If the notification from the monitoring unit 13 does not stop within a specified time after the trial air-conditioning pattern is performed, or if the notification from the monitoring unit 13 is started within a predetermined time after the notification is stopped, the air-conditioning pattern control unit 15 The trial air conditioning pattern is determined to be inappropriate, and the next trial air conditioning pattern is executed (909). All trial air-conditioning patterns transmitted from the trial air-conditioning pattern generation unit 16 are executed, and if there is no next trial air-conditioning pattern (908), the air-conditioning pattern control unit 15 executes the following processing.
  • the air-conditioning pattern control unit 15 stores, in the air-conditioning scheme DB 19, the air-conditioning pattern that minimizes the number of deviated environment sensors 23 and the IDs of the deviated environment sensors 23 at that time among the air-conditioning patterns executed in the current trial phase. It is registered in the effective air-conditioning pattern field 191 and the caution environment sensor ID field 192 (907). And the air-conditioning pattern control part 15 transfers to an optimal air-conditioning system search / execution phase (906).
  • the physical change in the facility 20 is determined from the camera image, and the determination result is fed back to the environment model. This has the effect of improving the accuracy of the air conditioning simulation.
  • FIG. Embodiment 3 will be described with reference to FIGS. 19 to 27.
  • Embodiment 3 is an example in which Embodiments 1 and 2 are adapted to air conditioning in a plant factory.
  • FIG. 19 is a system configuration diagram of the third embodiment.
  • the system according to the third embodiment includes a plant factory 20A connected to a network 40, a management server 10, and a terminal device 30 of the plant factory.
  • FIG. 20 is a configuration diagram of the plant factory 20A in FIG.
  • the system according to the third embodiment includes a plurality of air conditioners 22, a plurality of environment sensors 23, at least one camera 24, and a facility device 200.
  • the plurality of air conditioners 22 perform air conditioning in a plant factory such as an indoor unit of an air conditioner and a blower.
  • the plurality of environmental sensors 23 measure environmental conditions such as temperature and humidity, air volume, and carbon dioxide concentration, and transmit the measured environmental conditions to the air-conditioning control unit 211.
  • the camera 24 captures the state of growing plants, which is installed in a plant factory.
  • the facility device 200 includes an air conditioning control unit 211 and a communication control unit 212.
  • the air-conditioning control unit 211 transmits the plant growth status image, the environment information 23a from the environment sensor 23, and the air-conditioning environment information including the operating state (set temperature, air volume, wind direction, etc.) of each air conditioner to the communication control unit 212. Is periodically transmitted to the management server 10 via the.
  • the air conditioning control unit 211 controls the plurality of air conditioners 22 based on the air conditioning control information 10a transmitted from the management server 10.
  • the communication control unit 212 communicates with another device via the network 40.
  • FIG. 21 is a configuration diagram of the management server 10 in FIG.
  • the air-conditioning model DB 17 stores facility design CAD data necessary for the air-conditioning simulation of the plant factory 20A, which is registered from the terminal device 30.
  • the air-conditioning model DB 17 stores an air-conditioning environment model of a plant factory, such as the arrangement of installed air-conditioning equipment and specifications (settable ranges of air volume, wind direction, temperature, and the like).
  • the air conditioning condition DB 18 stores breeding varieties registered from the terminal device 30 and air conditioning conditions for each breeding stage.
  • the air-conditioning method DB 19 includes an effective air-conditioning pattern field 191, a caution environment sensor ID field 192, and an effective air-conditioning pattern combination field 193.
  • an effective air-conditioning method for each cultivar cultivation stage is registered.
  • the caution environment sensor ID field 192 environment sensor IDs that may deviate from required environment conditions are registered.
  • the effective air-conditioning pattern combination field 193 an appropriate combination of the effective air-conditioning patterns is registered.
  • the variety DB 19A stores the current breeding stage such as cultivars and planting for each plant factory registered from the terminal device 30.
  • the registration unit 12 stores the registration information transmitted from the terminal device 30 in the plant factory in the air conditioning model DB 17, the air conditioning condition DB 18, the air conditioning method DB 19, and the type DB 19A.
  • the monitoring unit 13 monitors the environment information 23a sent from the environment sensor 23 of the plant factory.
  • the monitoring unit 13 deviates from the air-conditioning conditions derived from the air-conditioning condition DB 18 and the variety DB 19A for each cultivar / cultivation stage, or enters an upper limit and lower limit of the phase air-conditioning condition 53 into a certain temperature zone (attention temperature zone). 23 is monitored.
  • the monitoring unit 13 periodically transmits the air conditioning pattern along with the environmental information 23a until the deviation of the IDs of the environmental sensor 23 is eliminated or the temperature returns to the appropriate temperature range from the caution temperature zone. It is sent to the control unit 15.
  • the simulator unit 14 executes an air conditioning simulation based on the data of the air conditioning model DB 17.
  • the air-conditioning pattern control unit 15 performs the following processing. (1) The air conditioning pattern control unit 15 operates the simulator unit 14 to specify an air conditioner group that has a high possibility of affecting the specific environment sensor 23. (2) The air-conditioning pattern control unit 15 operates the trial air-conditioning pattern generation unit 16 to execute the air-conditioning trial air-conditioning pattern group of the specified air conditioner group (combination pattern of setting of air volume, temperature, wind direction, etc. for each air conditioner) Group). The air-conditioning pattern control unit 15 executes the generated air-conditioning pattern, and stores an air-conditioning pattern that satisfies the phase air-conditioning condition 53 for a certain period of time in the optimal air-conditioning system DB 19.
  • the air-conditioning pattern control unit 15 performs air-conditioning by combining the air-conditioning patterns registered in the air-conditioning method DB 19, and searches for a combination of air-conditioning patterns that satisfies the phase air-conditioning condition 53. (4) The air-conditioning pattern control unit 15 stores the searched combination of the air-conditioning patterns in the air-conditioning method DB 19. (5) If there is a region where the phase air-conditioning condition 53 has not been achieved, the air-conditioning pattern control unit 15 sends the non-achieved region and the environment information 23a of the region to the terminal device 30.
  • the trial air-conditioning pattern generation unit 16 generates an air-conditioning trial air-conditioning pattern for the specified air conditioner group based on the data of the air conditioning model DB 17.
  • the model updating unit 16A analyzes the plant image sent from the plant factory, and determines the size and shape of the plant.
  • the model updating unit 16A updates the air conditioning environment model according to the actual air conditioning environment by arranging plants (objects) having the determined shape on the air conditioning environment model stored in the air conditioning model DB 17.
  • FIG. 22 is a flowchart showing the operation of the air conditioning system according to the third embodiment. Next, the operation flow of the system will be described with reference to FIG.
  • the air conditioning manager of the plant factory uses the terminal device 30 to provide the management server 10 with the facility form 51 of the plant factory and the adjustment range 52 of the air conditioning facility (wind, temperature, fin angle, etc.).
  • a basic air-conditioning pattern 54 default values such as wind, temperature, fin angle, etc. of each air conditioner
  • the facility form 51 of the plant factory and the adjustment range 52 of the air conditioning equipment registered in the management server 10 are stored in the air conditioning model DB 17.
  • the cultivars and the phase air-conditioning conditions 53 for each cultivation stage are stored in the air-conditioning condition DB 18.
  • the basic air-conditioning pattern 54 is stored in the air-conditioning system DB 19 as the basic air-conditioning pattern 54 for all cultivars / cultivation stages.
  • the air conditioning manager registers (402) the cultivar (eg, lettuce) and the breeding stage (eg, planting) using the terminal device 30.
  • the registration information is stored in the type DB 19A by the registration unit 12 of the management server 10.
  • the system shifts to an air conditioning system search phase P20 described later (403). Further, when a state in which the deviation of the phase air conditioning condition 53 cannot be resolved occurs within the air conditioning method search phase P20, the process proceeds to an effective air conditioning pattern generation phase P30 (405) described later to search for an appropriate air conditioning pattern. As soon as the air-conditioning pattern is found, the process returns to the air-conditioning method search phase P20.
  • the monitoring unit 13 checks the contents of the environment information 23a periodically sent from the plant factory, and checks the air-conditioning condition DB 18 When the deviation from the above condition occurs, the environment information 23a at that time and the IDs of the deviating environment sensor 23 are continuously transmitted to the air-conditioning pattern control unit 15 until the deviation is resolved. Similarly, when the temperature falls within the caution temperature zone (eg, within ⁇ 1 ° C. of the required temperature condition), the environment information 23a at that time and the IDs of the environment sensors 23 in the caution temperature zone are returned to the outside of the caution temperature zone. The transmission to the air conditioning pattern control unit 15 is continued.
  • the caution temperature zone eg, within ⁇ 1 ° C. of the required temperature condition
  • FIG. 23 and 24 are flowcharts showing the operation of the effective air conditioning pattern generation phase P30.
  • FIG. 25, FIG. 26, and FIG. 27 are flowcharts illustrating the operation flow of the air conditioning method search phase P20.
  • the air-conditioning pattern control unit 15 is notified from the monitoring unit 13 of the environment information 23a and the IDs or IDs of the environment sensors 23 that have deviated. In this case, the air-conditioning pattern control unit 15 instructs the air-conditioning control unit 211 of the plant factory to send a camera image (a state image of a plant), and acquires a camera image (P510).
  • the air-conditioning pattern control unit 15 transfers the camera image to the model updating unit 16A, and instructs the air-conditioning model DB 17 to update.
  • the model update unit 16A analyzes the camera image, determines the size and shape of the plant (P511), and reflects the plant (object) having the determined shape on the air conditioning environment model stored in the air conditioning environment model DB17. (P512).
  • the air-conditioning pattern control unit 15 inputs the environmental model of the plant factory stored in the air-conditioning model DB 17 to the simulator unit 14, and outputs the environmental sensor 23 or the sensor group that deviates from the environmental condition.
  • An air conditioner group affecting air conditioning is extracted by air conditioning simulation (P501).
  • the air conditioning pattern control unit 15 inputs the extracted air conditioner group to the trial air conditioning pattern generation unit 16.
  • the trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern group of the corresponding air conditioner group based on the adjustment range 52 (wind power, temperature, fin angle, etc.) of the corresponding air conditioner from the air conditioning model DB 17 (P502). Then, it transmits to the air conditioning pattern control unit 15.
  • the air conditioning pattern control unit 15 instructs the plant factory air conditioning control unit 211 (P503) to execute the sent trial air conditioning pattern.
  • the air-conditioning pattern control unit 15 determines that the current trial air-conditioning pattern is appropriate (YES in P504).
  • the current trial air-conditioning pattern is registered in the optimal air-conditioning DB (P505), and the process proceeds to the registered air-conditioning application phase (P506).
  • the air-conditioning pattern control unit 15 determines the air conditioning pattern that has been executed in the current trial phase.
  • the air-conditioning pattern that minimizes the number of deviated environment sensors 23 and the IDs of the deviated environment sensors 23 at that time are registered in the effective air-conditioning pattern field 191 and the caution environment sensor ID field 192 of the air-conditioning method DB 19, respectively (P507). Then, the process proceeds to the optimum air conditioning system search / execution phase (P506).
  • the air-conditioning pattern control unit 15 acquires the current breeding type and breeding stage from the type DB 19A, and searches the air-conditioning system DB 19 using these as keys. .
  • the air conditioning pattern control unit 15 stores the combination of the air conditioning patterns in the internal execution pattern ring array 15R (P603).
  • the air-conditioning pattern control unit 15 transmits the head air-conditioning pattern of the execution pattern ring array 15R to the air-conditioning control unit 211 in the plant factory, and executes the air-conditioning control (P604).
  • the monitoring unit 13 monitors the environmental information 23a sent from the plant factory, and notifies the air conditioning pattern control unit 15 when the temperature falls within the cautionary temperature zone.
  • the air conditioning pattern control unit 15 is stored in the execution pattern ring array 15R.
  • the next air conditioning pattern is executed (P606).
  • the air conditioning pattern control unit 15 continues the air conditioning while switching the air conditioning pattern stored in the execution pattern ring array 15R until the monitoring unit 13 notifies the deviation of the phase air conditioning condition 53.
  • the air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns in the execution pattern ring array 15R as long as there is an unexecuted air-conditioning pattern combination in the optimal air-conditioning method DB19.
  • the air conditioning control is executed by the execution pattern ring array 15R.
  • the air-conditioning pattern control unit 15 sets the caution environment in the effective air-conditioning pattern field 191 registered in the optimum air-conditioning method DB19.
  • An air conditioning pattern for which no sensor IDs are registered is searched (P610).
  • the air conditioning pattern control unit 15 executes the air conditioning pattern (P611), and when the phase air conditioning condition 53 deviates (P612), the deviated environment sensor The 23 IDs are registered in the caution environment sensor ID field 192 of the corresponding air conditioning pattern in the optimal air conditioning system DB 19 (P613).
  • the air-conditioning pattern control unit 15 corresponds to the current training stage registered in the air-conditioning method DB 19. Generate permutations / combinations of all air conditioning patterns. However, among the permutations / combinations of the generated air-conditioning patterns, the permutations / combinations in which the air-conditioning patterns having the same caution environment sensor IDs are continuous and the combination of the registered air-conditioning patterns are deleted (P614).
  • the air conditioning pattern control unit 15 stores the generated combination of the air conditioning patterns in the internal execution pattern ring array 15R (P615). Subsequently, when one of the environmental temperature sensors enters the caution temperature zone, the air conditioning pattern control unit 15 executes the next air conditioning pattern on the execution pattern ring array 15R (P619, P620). At a timing when the air-conditioning time in the current execution pattern ring arrangement has reached the phase air-conditioning condition 53 for a fixed time (P617), the air-conditioning pattern control unit 15 registers the current air-conditioning pattern combination at the top of the optimal air-conditioning method DB19. (P618).
  • the air conditioning pattern control unit 15 stores the next combination of the generated air conditioning patterns in the execution pattern ring array (P626). The air conditioning from P616 to P621 is performed.
  • the air-conditioning pattern control unit 15 determines the number of deviated environmental sensors 23 in the executed air-conditioning pattern combinations. Is executed (P623).
  • the air-conditioning pattern control unit 15 notifies the terminal device 30 of the position and the departure temperature of the environment sensor 23 that has deviated from the phase air-conditioning condition 53 (P624), and shifts to the effective air-conditioning pattern generation phase P30 (P625). ).
  • the air conditioner that needs to be adjusted according to the air condition such as the growth state of the plant in the plant factory, carbon dioxide, and uneven temperature and humidity is specified by the simulator unit. Then, by performing a trial of the air conditioning pattern of the air conditioner, an air conditioning pattern that does not deviate from the phase air conditioning condition 53 is searched and stored, and an optimal combination of the stored air conditioning patterns is automatically generated and stored. Therefore, the air-conditioning state of the entire plant factory can be automatically optimized, and even when the phase air-conditioning condition 53 deviates, an air-conditioning pattern that optimizes air-conditioning can be quickly searched and executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Human Computer Interaction (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of this invention is air conditioning of a facility wherein unevenness of an air conditioning environment of the facility is curbed by adaptive automatic adjustments to an air conditioning method by an air conditioner. In the present invention, a monitoring unit (13) acquires a plurality of items of environmental information from a plurality of environmental sensors (23) and extracts an identifier of an environmental sensor (23) associated with environmental information that does not match an air conditioning environment condition. An air conditioning pattern control unit (15) extracts, by simulation, an air conditioner (22) that affects the extracted environmental sensor (23). A trial air conditioning pattern generation unit (16) generates a plurality of trial air conditioning patterns. The air conditioning pattern control unit (15) causes the air conditioner (22) to sequentially execute the trial air conditioning patterns and stores a trial air conditioning pattern that meets the air conditioning environment condition in a storage device as a valid air conditioning pattern. The air conditioning pattern control unit (15) generates a plurality of valid air conditioning pattern combinations from a plurality of valid air conditioning patterns in the storage device and causes the air conditioner (22) to sequentially execute the plurality of valid air conditioning patterns.

Description

空調管理サーバ装置、空調管理プログラム及び空調管理方法Air conditioning management server device, air conditioning management program, and air conditioning management method
 本発明は、施設の空調を管理する空調管理サーバ装置、空調管理プログラム及び空調管理方法に関する。 The present invention relates to an air conditioning management server device, an air conditioning management program, and an air conditioning management method for managing air conditioning in a facility.
 施設空調では、温湿度、二酸化炭素濃度のような空調環境のむらは、さまざまな弊害を引き起こす。
 例えば、植物工場施設における温度むらは、農産物の歩留り低下の要因となる。
そこで、従来は、施設内に複数のセンサを配置し、予め設定された温湿度のような空調条件の逸脱をセンサが検知した場合、位置と状態を施設管理者に通知することにより、施設管理者に空調環境のムラの解消を促す(特許文献1)。
In facility air conditioning, unevenness in the air conditioning environment such as temperature and humidity and carbon dioxide concentration causes various adverse effects.
For example, uneven temperature in a plant factory facility causes a decrease in yield of agricultural products.
Therefore, conventionally, a plurality of sensors are arranged in a facility, and when a sensor detects a deviation of air conditioning conditions such as a preset temperature and humidity, the position and state are notified to a facility manager, thereby enabling facility management. Prompts the user to eliminate unevenness in the air conditioning environment (Patent Document 1).
特開2004-65265号公報JP-A-2004-65265
 しかし、従来の方法には、以下の課題がある。実際に温湿度、二酸化炭素のような空調環境のムラを解消するためには、人手による空調調整を行う必要がある。しかし、どの空気調和機をどのように調整するかのような空調調整のノウハウは、施設の形状及び人、物または動植物のような空調対象によって異なる。このため、施設では、空調調整の作業者を育成、維持する必要がある。また、ある施設得られた空調ノウハウを別の形状の異なる施設に適用することは困難であった。 However, the conventional method has the following problems. In order to actually eliminate unevenness of the air conditioning environment such as temperature and humidity and carbon dioxide, it is necessary to perform air conditioning adjustment manually. However, know-how of air-conditioning adjustment, such as which air conditioner is adjusted and how, is different depending on the shape of the facility and the air-conditioning target such as a person, an object, or a flora and fauna. Therefore, it is necessary to train and maintain air conditioning adjustment workers in the facility. In addition, it was difficult to apply the air conditioning know-how obtained from a certain facility to a facility having a different shape.
 この発明は、施設の空調において、空気調和機が適応的に空調方法の自動調整を行うことにより施設の空調環境のむらを抑制することを目的とする。 An object of the present invention is to suppress unevenness of the air conditioning environment of a facility by automatically adjusting an air conditioning method by an air conditioner in the air conditioning of the facility.
 この発明の空調管理サーバ装置は、
 複数の空気調和機が設置された施設の空調環境を測定する複数のセンサから前記センサの測定結果を示すと共に前記センサの識別子が対応付けられた複数の環境情報を取得し、前記複数の環境情報のうち予め設定されている空調環境条件に合致しない前記環境情報に対応付けられた前記識別子を抽出する監視部と、
 前記施設の前記空調環境のシミュレーションにより、抽出された前記センサの測定結果に影響する前記空気調和機を抽出する抽出制御部と、
 抽出された前記空気調和機の空調能力情報を使用して、前記空気調和機の稼働可能な状態を示す複数の試行空調パターンを生成する試行空調パターン生成部と、
 前記空気調和機に前記複数の試行空調パターンを順に実行させ、前記空調環境条件を満たす前記試行空調パターンがある場合、前記空調環境条件を満たす前記試行空調パターンを記憶装置に有効空調パターンとして格納する試行実行制御部と、
 前記記憶装置に複数の有効空調パターンがある場合、複数の有効空調パターンの実行順序を示す複数の有効空調パターン組み合わせを生成し、前記空気調和機に前記複数の有効空調パターンを順に実行させる有効実行制御部と、
を備える。
The air-conditioning management server device of the present invention comprises:
Acquiring a plurality of pieces of environment information indicating the measurement results of the sensors from a plurality of sensors that measure the air conditioning environment of a facility in which a plurality of air conditioners are installed and acquiring a plurality of pieces of environment information associated with the identifiers of the sensors, A monitoring unit that extracts the identifier associated with the environmental information that does not match a preset air conditioning environment condition;
By the simulation of the air conditioning environment of the facility, an extraction control unit that extracts the air conditioner that affects the measurement result of the extracted sensor,
Using the extracted air conditioning capacity information of the air conditioner, a trial air conditioning pattern generation unit that generates a plurality of trial air conditioning patterns indicating an operable state of the air conditioner,
The air conditioner sequentially executes the plurality of trial air conditioning patterns, and when there is the trial air conditioning pattern that satisfies the air conditioning environment condition, stores the trial air conditioning pattern that satisfies the air conditioning environment condition as an effective air conditioning pattern in a storage device. A trial execution control unit;
When the storage device has a plurality of effective air conditioning patterns, a plurality of effective air conditioning pattern combinations indicating an execution order of the plurality of effective air conditioning patterns are generated, and the air conditioner executes the plurality of effective air conditioning patterns in order. A control unit;
Is provided.
 本発明の空調管理サーバ装置は、空気調和機に対して空調方法の自動調整を行うので、施設の空調環境のむらを抑制することができる。 The air-conditioning management server device of the present invention automatically adjusts the air-conditioning method for the air conditioner, so that it is possible to suppress unevenness in the air-conditioning environment of the facility.
実施の形態1の図で、空調システムの構成図。FIG. 3 is a diagram of the first embodiment and is a configuration diagram of an air conditioning system. 実施の形態1の図で、施設の構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施の形態1の図で、管理サーバ装置のハードウェア構成図。FIG. 3 is a diagram of the first embodiment and is a hardware configuration diagram of the management server device. 実施の形態1の図で、端末装置から管理サーバ装置に送信される情報を示す図。FIG. 5 is a diagram of the first embodiment and shows information transmitted from the terminal device to the management server device. 実施の形態1の図で、管理サーバの機能を示すシーケンス図。FIG. 7 is a diagram of the first embodiment and is a sequence diagram illustrating functions of the management server. 実施の形態1の図で、空調システムの動作のフローチャート。5 is a flowchart of the operation of the air conditioning system in the first embodiment. 実施の形態1の図で、空気調和機と環境センサの模式的な配置を示す図。FIG. 3 is a diagram of the first embodiment, showing a schematic arrangement of an air conditioner and an environment sensor. 実施の形態1の図で、有効空調パターン生成フェーズの動作を示すフローチャート。5 is a flowchart of the first embodiment, showing an operation of an effective air conditioning pattern generation phase. 実施の形態1の図で、空調方式データベースの3つのフィールドを示す図。FIG. 4 is a diagram of the first embodiment, showing three fields of an air conditioning system database. 実施の形態1の図で、最適空調方式探索フェーズの動作を示すフローチャート。5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase. 実施の形態1の図で、最適空調方式探索フェーズの動作を示すフローチャート。5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase. 実施の形態1の図で、最適空調方式探索フェーズの動作を示すフローチャート。5 is a flowchart of the first embodiment, showing an operation in an optimal air conditioning system search phase. 実施の形態1の図で、空調パターン制御部による判定方法を示す図。FIG. 6 is a diagram of the first embodiment and shows a determination method by an air conditioning pattern control unit. 実施の形態1の図で、管理サーバ装置の変形例を示す図。FIG. 7 is a diagram of the first embodiment and shows a modification of the management server device. 実施の形態2の図で、施設の構成図。FIG. 6 is a diagram of a facility according to the second embodiment. 実施の形態2の図で、空調管理サーバ装置の構成図。FIG. 10 is a diagram of the second embodiment, and is a configuration diagram of an air conditioning management server device. 実施の形態2の図で、有効空調パターン生成フェーズの動作を示すフローチャート。9 is a flowchart of the effective air conditioning pattern generation phase in the second embodiment. 実施の形態2の図で、有効空調パターン生成フェーズの動作を示すフローチャート。9 is a flowchart of the effective air conditioning pattern generation phase in the second embodiment. 実施の形態3の図で、空調システムの構成図。FIG. 14 is a diagram of the third embodiment and is a configuration diagram of an air conditioning system. 実施の形態3の図で、植物工場の構成図。FIG. 10 is a diagram of the third embodiment and is a configuration diagram of a plant factory. 実施の形態3の図で、空調管理サーバ装置のハードウェア構成図。FIG. 10 is a diagram of the hardware configuration of the air conditioning management server device according to the third embodiment. 実施の形態3の図で、空調システムの動作のフローチャート。13 is a flowchart of the operation of the air conditioning system according to the third embodiment. 実施の形態3の図で、有効空調パターン生成フェーズの動作を示すフローチャート。17 is a flowchart of the effective air conditioning pattern generation phase in the third embodiment. 実施の形態3の図で、有効空調パターン生成フェーズの動作を示すフローチャート。17 is a flowchart of the effective air conditioning pattern generation phase in the third embodiment. 実施の形態3の図で、最適空調方式探索フェーズの動作を示すフローチャート。17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment. 実施の形態3の図で、最適空調方式探索フェーズの動作を示すフローチャート。17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment. 実施の形態3の図で、最適空調方式探索フェーズの動作を示すフローチャート。17 is a flowchart of the operation of the optimum air conditioning system search phase in the diagram of the third embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference numerals. In the description of the embodiments, the description of the same or corresponding portions will be omitted or simplified as appropriate.
 実施の形態1.
 図1は、実施の形態1の、現場適応型の空調システム100の構成図である。空調システム100は、ネットワーク40に接続された施設20と、空調管理サーバ装置10と、端末装置30を備える。空調管理サーバ装置10は、以下、管理サーバ10という。施設20では施設装置200がネットワーク40に接続する。端末装置30は施設20の空調管理者が使用する端末装置である。端末装置30として、パーソナルコンピュータ、スマートフォン及び専用端末装置が想定される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a site-adaptive air conditioning system 100 according to the first embodiment. The air conditioning system 100 includes a facility 20 connected to a network 40, an air conditioning management server device 10, and a terminal device 30. The air conditioning management server device 10 is hereinafter referred to as a management server 10. In the facility 20, the facility device 200 connects to the network 40. The terminal device 30 is a terminal device used by an air conditioning manager of the facility 20. As the terminal device 30, a personal computer, a smartphone, and a dedicated terminal device are assumed.
 図2は、図1における施設20の構成図である。施設20は、複数の空気調和機22、複数の環境センサ23及び施設装置200を備えている。
 空気調和機22を区別する場合は、空気調和機22-1、空気調和機22-2のように表記する。また、環境センサ23を区別する場合は、環境センサ23-1、環境センサ23-2のように表記する。施設装置200は、空調制御部211及び通信制御部212を備えている。
FIG. 2 is a configuration diagram of the facility 20 in FIG. The facility 20 includes a plurality of air conditioners 22, a plurality of environment sensors 23, and a facility device 200.
When distinguishing the air conditioners 22, the air conditioners 22-1 and 22-2 are described. When the environmental sensors 23 are distinguished, they are expressed as an environmental sensor 23-1 and an environmental sensor 23-2. The facility device 200 includes an air conditioning control unit 211 and a communication control unit 212.
 環境センサ23は、施設20の内部に設置される。環境センサ23は、温度、湿度、風量、二酸化炭素濃度のような環境条件を測定し、測定結果を、後述の環境情報23a(後述する図5)として、空調制御部211に送信する。環境情報23aを送信する際には、環境センサ23は、環境センサ23の識別子も送信する。環境センサ23の環境情報23a及び識別子を23a,IDsと表記し、環境センサ23-kの環境情報23a及び識別子を、23a(k),IDs(k)と表記する場合がある。後述する図5では環境センサ23-1の環境情報23a及び識別子を、23a(1)(IDs(1))のように示している。他の環境センサも同様である。 The environment sensor 23 is installed inside the facility 20. The environment sensor 23 measures environmental conditions such as temperature, humidity, air volume, and carbon dioxide concentration, and transmits the measurement result to the air-conditioning control unit 211 as environment information 23a (described later, FIG. 5). When transmitting the environment information 23a, the environment sensor 23 also transmits the identifier of the environment sensor 23. The environment information 23a and the identifier of the environment sensor 23 may be described as 23a and IDs, and the environment information 23a and the identifier of the environment sensor 23-k may be described as 23a (k) and IDs (k). In FIG. 5, which will be described later, the environment information 23a and the identifier of the environment sensor 23-1 are shown as 23a (1) (IDs (1)). The same applies to other environment sensors.
 空気調和機22は、空気調和機の室内機または送風機のような装置であり、施設20内の空調を行う。空調制御部211は、環境センサ23から受信する環境情報23aと、各空気調和機22の稼働状態を示す空調情報22aとを、通信制御部212を介して管理サーバ10に周期的に送信する。なお、空気調和機22は空調情報22aを空調制御部211に送信する。空調情報22aを送信する際には、空気調和機22は、空気調和機22の識別子も送信する。空気調和機22空調情報22aの示す稼動状態とは、設定温度、風量及び風向のような空気調和機22の情報であるが、これらに限定されない。空調制御部211は、管理サーバ10から送信される空調制御情報10aを基に、複数の空気調和機22の制御を行う。通信制御部212は、ネットワーク40を介する通信を制御する。空調制御情報10aは、空気調和機22を制御するために空調パターン制御部15から送信される情報である。 The air conditioner 22 is a device such as an indoor unit or a blower of the air conditioner, and performs air conditioning in the facility 20. The air-conditioning control unit 211 periodically transmits the environment information 23a received from the environment sensor 23 and the air-conditioning information 22a indicating the operation state of each air conditioner 22 to the management server 10 via the communication control unit 212. Note that the air conditioner 22 transmits the air conditioning information 22a to the air conditioning control unit 211. When transmitting the air conditioning information 22a, the air conditioner 22 also transmits an identifier of the air conditioner 22. The operation state indicated by the air conditioner 22 air conditioning information 22a is information on the air conditioner 22, such as a set temperature, an air volume, and a wind direction, but is not limited thereto. The air conditioning control unit 211 controls the plurality of air conditioners 22 based on the air conditioning control information 10a transmitted from the management server 10. The communication control unit 212 controls communication via the network 40. The air conditioning control information 10a is information transmitted from the air conditioning pattern control unit 15 to control the air conditioner 22.
 図3は、図1における管理サーバ10のハードウェア構成を示す。管理サーバ10はデータベースとして、空調モデルデータベース17、空調条件データベース18及び空調方式データベース19を備えている。空調モデルデータベース17、空調条件データベース18及び空調方式データベース19は、以下、空調モデルDB17、空調条件DB18及び空調方式DB19と記す。 FIG. 3 shows a hardware configuration of the management server 10 in FIG. The management server 10 includes an air conditioning model database 17, an air conditioning condition database 18, and an air conditioning method database 19 as databases. The air-conditioning model database 17, the air-conditioning condition database 18, and the air-conditioning method database 19 are hereinafter referred to as an air-conditioning model DB 17, an air-conditioning condition DB 18, and an air-conditioning method DB 19.
 管理サーバ10はコンピュータである。管理サーバ10は、プロセッサ81を備えるとともに、主記憶装置82、補助記憶装置83、通信インタフェース84および入出力インタフェース85といった他のハードウェアを備える。プロセッサ81は、信号線86を介して他のハードウェアと接続され、これら他のハードウェアを制御する。 The management server 10 is a computer. The management server 10 includes a processor 81 and other hardware such as a main storage device 82, an auxiliary storage device 83, a communication interface 84, and an input / output interface 85. The processor 81 is connected to other hardware via a signal line 86, and controls the other hardware.
 管理サーバ10は、機能要素として、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15及び試行空調パターン生成部16を備えている。
 空調パターン制御部15は、抽出制御部であり、試行実行制御部であり、有効実行制御部である。
The management server 10 includes a communication control unit 11, a registration unit 12, a monitoring unit 13, a simulator unit 14, an air conditioning pattern control unit 15, and a trial air conditioning pattern generation unit 16 as functional elements.
The air conditioning pattern control unit 15 is an extraction control unit, a trial execution control unit, and an effective execution control unit.
 プロセッサ81は、空調管理プログラムを実行する装置である。空調管理プログラムは、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15及び試行空調パターン生成部16の機能を実現するプログラムである。プロセッサ81は、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15及び試行空調パターン生成部16の処理を行うIC(Integrated Circuit)である。プロセッサ81の具体例は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 The processor 81 is a device that executes an air conditioning management program. The air conditioning management program is a program that implements the functions of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16. The processor 81 is an IC (Integrated Circuit) that performs processing of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16. Specific examples of the processor 81 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 主記憶装置82は、データを一時的に記憶する記憶装置である。主記憶装置82の具体例は、SRAM(STatic Random Access Memory)、DRAM(Dynamic Random Access Memory)である。主記憶装置82は、プロセッサ81の演算結果を保持する。 The main storage device 82 is a storage device for temporarily storing data. Specific examples of the main storage device 82 are an SRAM (Static Random Access Memory) and a DRAM (Dynamic Random Access Memory). The main storage device 82 holds the calculation result of the processor 81.
 補助記憶装置83は、データを保管する記憶装置である。補助記憶装置83の具体例は、HDD(Hard Disk Drive)である。また、補助記憶装置83は、SD(登録商標)(Secure Digital)メモリカード、CF(CompactFlash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であってもよい。補助記憶装置83は、空調管理プログラムを格納している。また、補助記憶装置83は、空調モデルDB17、空調条件DB18及び空調方式DB19を格納している。なお、空調モデルDB17、空調条件DB18及び空調方式DB19は管理サーバ10と異なる装置が記憶しており、管理サーバ10は通信インタフェース84を介して他の装置に格納されている空調モデルDB17、空調条件DB18及び空調方式DB19を参照してもよい。 The auxiliary storage device 83 is a storage device for storing data. A specific example of the auxiliary storage device 83 is an HDD (Hard \ Disk \ Drive). The auxiliary storage device 83 includes an SD (registered trademark) memory card, a CF (CompactFlash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Versatile Disk). It may be a portable recording medium. The auxiliary storage device 83 stores an air conditioning management program. The auxiliary storage device 83 stores an air conditioning model DB 17, an air conditioning condition DB 18, and an air conditioning method DB 19. The air-conditioning model DB 17, the air-conditioning condition DB 18, and the air-conditioning method DB 19 are stored in a device different from the management server 10, and the management server 10 uses the air-conditioning model DB 17, The DB 18 and the air conditioning system DB 19 may be referred to.
 通信インタフェース84は、プロセッサ81が施設装置200のような他の装置と通信するための装置である。通信インタフェース84は、通信ボードのような装置である。入出力インタフェース85は、管理サーバ10にデータを入力し、管理サーバ10からデータを出力する。入出力インタフェース50の例として、入力ポート及び出力ポートがある。 The communication interface 84 is a device for the processor 81 to communicate with another device such as the facility device 200. The communication interface 84 is a device such as a communication board. The input / output interface 85 inputs data to the management server 10 and outputs data from the management server 10. Examples of the input / output interface 50 include an input port and an output port.
 空調管理プログラムは、補助記憶装置83から主記憶装置82へロードされ、主記憶装置82からプロセッサ81に読み込まれ、プロセッサ81によって実行される。主記憶装置82には、空調管理プログラムだけでなく、OS(Operating SySTem)も記憶されている。プロセッサ81は、OSを実行しながら、空調管理プログラムを実行する。 The air conditioning management program is loaded from the auxiliary storage device 83 to the main storage device 82, read from the main storage device 82 to the processor 81, and executed by the processor 81. The main storage device 82 stores not only an air conditioning management program but also an OS (Operating @ System). The processor 81 executes the air conditioning management program while executing the OS.
 管理サーバ10は、プロセッサ81を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、空調管理プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ81と同じように、空調管理プログラムを実行する装置である。 (4) The management server 10 may include a plurality of processors instead of the processor 81. These processors share execution of the air conditioning management program. Each processor is a device that executes an air conditioning management program, like the processor 81.
 空調管理プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、主記憶装置82、補助記憶装置83、または、プロセッサ81内のレジスタあるいはキャッシュメモリに記憶される。 Data, information, signal values, and variable values used, processed, or output by the air-conditioning management program are stored in the main storage device 82, the auxiliary storage device 83, a register in the processor 81, or a cache memory.
 空調管理プログラムは、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15及び試行空調パターン生成部16の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程をコンピュータに実行させるプログラムである。また、空調管理方法は、コンピュータである管理サーバ10が空調管理プログラムを実行することにより行われる方法である。 The air-conditioning management program sets the “units” of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air-conditioning pattern control unit 15, and the trial air-conditioning pattern generation unit 16 to “processing”, “procedure”, or “procedure”. This is a program that causes a computer to execute each process, each procedure, or each process read as “process”. The air conditioning management method is a method performed by the management server 10 as a computer executing an air conditioning management program.
 空調管理プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。 (4) The air-conditioning management program may be provided by being stored in a computer-readable recording medium, or may be provided as a program product.
 以下に、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15及び試行空調パターン生成部16の機能を説明する。
 図4は、端末装置30から管理サーバ10に送信される情報を示す。図4では管理サーバ10のうち、登録部12、空調モデルDB17、空調条件DB18及び空調方式DB19を示している。
 図5は、管理サーバ10の機能を示すシーケンス図である。図5では登録部12は省略している。
Hereinafter, the functions of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16 will be described.
FIG. 4 shows information transmitted from the terminal device 30 to the management server 10. FIG. 4 shows the registration unit 12, the air conditioning model DB 17, the air conditioning condition DB 18, and the air conditioning method DB 19 in the management server 10.
FIG. 5 is a sequence diagram illustrating functions of the management server 10. In FIG. 5, the registration unit 12 is omitted.
 通信制御部11は、管理サーバ10と他の装置との通信を制御する。通信制御部11は通信インタフェース84を用いて、施設装置200のような他の装置と通信する。 (4) The communication control unit 11 controls communication between the management server 10 and another device. The communication control unit 11 communicates with another device such as the facility device 200 using the communication interface 84.
 登録部12は、端末装置30から送信される登録情報を、空調モデルDB17、空調条件DB18及び空調方式DB19に登録する。登録情報とは、管理サーバ10に登録するために端末装置30から送信される情報である。登録情報の例として、後述する施設形態51、調整範囲52、フェーズ空調条件53及び基本空調パターン54がある。 The registration unit 12 registers the registration information transmitted from the terminal device 30 in the air conditioning model DB 17, the air conditioning condition DB 18, and the air conditioning method DB 19. The registration information is information transmitted from the terminal device 30 to register with the management server 10. Examples of the registration information include a facility mode 51, an adjustment range 52, a phase air conditioning condition 53, and a basic air conditioning pattern 54, which will be described later.
 監視部13は、環境センサ23の送信する環境情報23aを監視する。図5では環境センサ23-1の環境情報23a及び識別子を、23a(1)(IDs(1))のように示している。他の環境センサも同様である。環境センサ23の環境情報23a及び識別子は、環境センサ23から管理サーバ10に送信される。
(1)監視部13は、環境情報23aの示す値が、空調条件DB18に登録されているフェーズ空調条件53を逸脱するかを監視する。
監視部13は、フェーズ空調条件53を逸脱する環境情報23aを送信する環境センサ23がある場合、環境情報23aの逸脱が解消するまで、その環境センサ23の識別子と環境情報23aとの組を、空調パターン制御部15に周期的に送信する。図5では、環境センサ23-1及び環境センサ23-2がフェーズ空調条件53を逸脱する。
(2)監視部13は、環境情報23aの示す値が、フェーズ空調条件53において、注意温度帯に入った環境センサ23があるかを監視する。環境情報23aは環境センサ23の識別子を有するので環境センサ23が特定できる。注意温度帯とは、上限値と下限値の範囲で示される温度帯である。登録部12監視部13は、環境情報23aの示す値が注意温度帯に含まれる場合、環境情報23aの値が注意温度帯の範囲外になるまで、環境センサ23の識別子と、環境情報23aとを、空調パターン制御部15に周期的に送信する。
The monitoring unit 13 monitors environment information 23a transmitted from the environment sensor 23. In FIG. 5, the environment information 23a and the identifier of the environment sensor 23-1 are shown as 23a (1) (IDs (1)). The same applies to other environment sensors. The environment information 23a and the identifier of the environment sensor 23 are transmitted from the environment sensor 23 to the management server 10.
(1) The monitoring unit 13 monitors whether the value indicated by the environment information 23a deviates from the phase air-conditioning condition 53 registered in the air-conditioning condition DB 18.
If there is an environment sensor 23 that transmits environment information 23a that deviates from the phase air-conditioning condition 53, the monitoring unit 13 sets a set of the identifier of the environment sensor 23 and the environment information 23a until the deviation of the environment information 23a is resolved. It is transmitted to the air conditioning pattern control unit 15 periodically. In FIG. 5, the environment sensor 23-1 and the environment sensor 23-2 deviate from the phase air conditioning condition 53.
(2) The monitoring unit 13 monitors whether there is an environment sensor 23 in which the value indicated by the environment information 23a enters the caution temperature zone under the phase air-conditioning condition 53. Since the environment information 23a has the identifier of the environment sensor 23, the environment sensor 23 can be specified. The caution temperature zone is a temperature zone indicated by a range between an upper limit value and a lower limit value. When the value indicated by the environment information 23a is included in the caution temperature zone, the registration unit 12 monitors the identifier of the environment sensor 23 and the environment information 23a until the value of the environment information 23a is out of the range of the caution temperature zone. Is periodically transmitted to the air-conditioning pattern control unit 15.
 シミュレータ部14は、空調モデルDB17のデータを基に、空調シミュレーションを実行する。 (4) The simulator unit 14 executes an air conditioning simulation based on the data of the air conditioning model DB 17.
 抽出制御部、試行実行制御部及び実行制御部である空調パターン制御部15は、以下の処理行う。
(1)空調パターン制御部15は、シミュレータ部14を使用して、環境センサ23に影響を及ぼす空気調和機群を特定する。
(2)空調パターン制御部15は、特定した空気調和機群の空調パターン群(それぞれの空気調和機毎の風量、温度、風向の設定の組合せパターンのグループ)を生成する。空調パターン群とは、空気調和機毎の風量、温度、風向の設定の組合せパターンのグループである。
(3)空調パターン制御部15は、生成したそれぞれの空調パターンを実行し、フェーズ空調条件53を一定時間満足した空調パターンを、空調方式DB19に格納する。
(4)空調パターン制御部15は、空調方式DB19に登録された空調パターンを組み合わせて施設20の空調を行う。空調パターン制御部15は、フェーズ空調条件53を満たす空調パターンの組合せを探索する。
(5)空調パターン制御部15は、探索の結果ヒットした空調パターンの組合せを、空調方式DB19に格納する。
(6)空調パターン制御部15は、フェーズ空調条件53の未達成領域がある場合、未達成領域と未達成領域の環境情報23aを、端末装置30に送付する。
The air-conditioning pattern control unit 15, which is the extraction control unit, the trial execution control unit, and the execution control unit, performs the following processing.
(1) The air conditioning pattern control unit 15 uses the simulator unit 14 to specify a group of air conditioners that affect the environment sensor 23.
(2) The air-conditioning pattern control unit 15 generates an air-conditioning pattern group of the specified air conditioner group (a group of a combination pattern of the settings of the air volume, temperature, and wind direction for each air conditioner). The air conditioning pattern group is a group of a combination pattern of the settings of the air volume, temperature, and wind direction for each air conditioner.
(3) The air-conditioning pattern control unit 15 executes each of the generated air-conditioning patterns, and stores, in the air-conditioning method DB 19, an air-conditioning pattern that satisfies the phase air-conditioning condition 53 for a certain period of time.
(4) The air conditioning pattern control unit 15 performs air conditioning of the facility 20 by combining the air conditioning patterns registered in the air conditioning system DB 19. The air-conditioning pattern control unit 15 searches for a combination of air-conditioning patterns that satisfies the phase air-conditioning condition 53.
(5) The air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns hit as a result of the search in the air-conditioning method DB 19.
(6) If there is an unachieved area of the phase air-conditioning condition 53, the air-conditioning pattern control unit 15 sends the environment information 23a of the unachieved area and the unachieved area to the terminal device 30.
 試行空調パターン生成部16は、空調モデルDB17に登録されている空気調和機のスペックを用いて、指定された空気調和機群の試行空調パターンを生成する。試行空調パターンは空気調和機の稼働可能な状態を示す空調パターンである。 The trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern for a specified group of air conditioners using the specifications of the air conditioners registered in the air conditioning model DB 17. The trial air conditioning pattern is an air conditioning pattern indicating a state in which the air conditioner can operate.
 空調モデルDB17には、端末装置30から登録される、施設20の空調シミュレーションに必要な施設設計CADデータ及び設置されている空気調和機22の配置、空気調和機のスペック(風量、風向及び温度の設定可能範囲)のような、施設20の空調環境モデルが格納される。施設20の空調シミュレーションに必要な施設設計CADデータ及び設置されている空気調和機22の配置は施設形態51に含まれる。空気調和機のスペック(風量、風向及び温度の設定可能範囲)は、調整範囲52に含まれる。空調モデルDB17は、施設20の空調環境モデルのDBである。
調整範囲52は空調能力情報である。
In the air-conditioning model DB 17, facility design CAD data necessary for air-conditioning simulation of the facility 20, the arrangement of the installed air conditioners 22, and the specifications of the air conditioners (air volume, wind direction and temperature, registered from the terminal device 30). An air-conditioning environment model of the facility 20 is stored. Facility design CAD data necessary for the air conditioning simulation of the facility 20 and the arrangement of the installed air conditioners 22 are included in the facility form 51. The specifications of the air conditioner (settable ranges of the air volume, the air direction, and the temperature) are included in the adjustment range 52. The air conditioning model DB 17 is a DB of an air conditioning environment model of the facility 20.
The adjustment range 52 is air conditioning capacity information.
 空調条件DB18には、端末装置30から登録される施設20の利用フェーズ55毎のフェーズ空調条件53が格納される。 The air-conditioning condition DB 18 stores a phase air-conditioning condition 53 for each use phase 55 of the facility 20 registered from the terminal device 30.
 空調方式DB19は、利用フェーズ55毎の最適空調方式のDBである。図9で後述するように、空調方式DB19は、有効空調パターンフィールド191と、注意環境センサIDフィールド192と、有効空調パターン組合せフィールド193とを有する。
(1)有効空調パターンフィールド191は、利用フェーズ55毎の有効な空調方式が登録される。
(2)注意環境センサIDフィールド192は、有効空調パターンフィールド191にデータが登録される際に、要求環境条件の逸脱の可能性がある環境センサIDが登録される。
(3)有効空調パターン組合せフィールド193は、有効空調パターンの適切な組合せが登録される。
The air conditioning system DB 19 is a DB of the optimal air conditioning system for each use phase 55. As described later with reference to FIG. 9, the air conditioning method DB 19 includes an effective air conditioning pattern field 191, a caution environment sensor ID field 192, and an effective air conditioning pattern combination field 193.
(1) In the effective air-conditioning pattern field 191, an effective air-conditioning method for each use phase 55 is registered.
(2) In the caution environment sensor ID field 192, when data is registered in the effective air-conditioning pattern field 191, an environment sensor ID that may deviate from a required environment condition is registered.
(3) In the effective air conditioning pattern combination field 193, an appropriate combination of the effective air conditioning patterns is registered.
***動作の説明***
 図6は、空調システム100の動作を示すフローチャートを示す。
 図7は、空気調和機22と環境センサ23の模式的な配置を示す。図6及び図7を用いて、空調システム100の動作フローを説明する。空調システム100における管理サーバ10の動作は、空調管理方法に相当する。また、空調管理方法の手順は、空調管理プログラムの手順に相当する。
*** Explanation of operation ***
FIG. 6 is a flowchart showing the operation of the air conditioning system 100.
FIG. 7 shows a schematic arrangement of the air conditioner 22 and the environment sensor 23. The operation flow of the air conditioning system 100 will be described with reference to FIGS. The operation of the management server 10 in the air conditioning system 100 corresponds to an air conditioning management method. The procedure of the air conditioning management method corresponds to the procedure of the air conditioning management program.
<ステップS401>
 ステップS401は、初期登録フェーズP10である。図4に示すように、初期登録フェーズP10において、施設20の空調管理者は、端末装置30を用いて、管理サーバ10に対し、以下の施設形態51、調整範囲52、フェーズ空調条件53及び基本空調パターン54を登録する。
(1)施設形態51は、施設の形態を示す。施設形態51の具体例は、CAD情報である。
(2)調整範囲52は、空気調和機22に関して、風力、温度及びフィン角度の、それぞれの調整可能な範囲を示す。
(3)フェーズ空調条件53は、利用フェーズ55ごとの空調条件である。
フェーズ空調条件53の具体例は、温度12℃、許容温度範囲±3℃、湿度30%、許容湿度範囲±10%、風速1m以下、のような条件である。
(4)基本空調パターン54は、利用フェーズ55に依存しない基本的な空調のパターンである。基本空調パターン54の具体例は、それぞれの空気調和機22の風力、温度、及びフィンの角度をデフォルト設定値するような場合である。
<Step S401>
Step S401 is an initial registration phase P10. As shown in FIG. 4, in the initial registration phase P10, the air conditioning manager of the facility 20 uses the terminal device 30 to send the following facility form 51, adjustment range 52, phase air conditioning condition 53, The air conditioning pattern 54 is registered.
(1) The facility form 51 indicates the form of the facility. A specific example of the facility mode 51 is CAD information.
(2) The adjustment range 52 indicates the adjustable range of the wind power, the temperature, and the fin angle with respect to the air conditioner 22.
(3) The phase air-conditioning condition 53 is an air-conditioning condition for each use phase 55.
Specific examples of the phase air-conditioning condition 53 include conditions such as a temperature of 12 ° C., an allowable temperature range of ± 3 ° C., a humidity of 30%, an allowable humidity range of ± 10%, and a wind speed of 1 m or less.
(4) The basic air conditioning pattern 54 is a basic air conditioning pattern that does not depend on the use phase 55. A specific example of the basic air-conditioning pattern 54 is a case where the wind power, temperature, and fin angle of each air conditioner 22 are set to default values.
 施設形態51と調整範囲52は、空調モデルDB17に格納される。フェーズ空調条件53は、空調条件DB18に格納される。基本空調パターン54は、全ての利用フェーズに共通な空調パターンとして、空調方式DB19に格納される。 The facility form 51 and the adjustment range 52 are stored in the air conditioning model DB 17. The phase air condition 53 is stored in the air condition DB 18. The basic air conditioning pattern 54 is stored in the air conditioning method DB 19 as an air conditioning pattern common to all use phases.
<ステップS402>
 図6に示すように、初期登録フェーズP10の完了後、ステップS402において、空調管理者は、端末装置30を用いて、利用フェーズ55を登録する。利用フェーズ55は、管理サーバ10の登録部12に格納される。
<Step S402>
As shown in FIG. 6, after the completion of the initial registration phase P10, in step S402, the air conditioning manager registers the use phase 55 using the terminal device 30. The use phase 55 is stored in the registration unit 12 of the management server 10.
<ステップS403>
 ステップS403は空調方式探索フェーズP20である。利用フェーズ55が登録された場合、管理サーバ10は、空調方式探索フェーズP20に移行する。
<Step S403>
Step S403 is the air conditioning method search phase P20. When the use phase 55 is registered, the management server 10 shifts to an air conditioning method search phase P20.
<ステップS404>
 空調方式探索フェーズP20でフェーズ空調条件53の逸脱が解消できない状態が発生した場合、適正な空調パターンを探索するために、管理サーバ10は、ステップS405の有効空調パターン生成フェーズP30に移行する。適正な空調パターンを発見した場合、管理サーバ10は、ステップS403の空調方式探索フェーズP20に戻る。
<Step S404>
When a state in which the deviation of the phase air-conditioning condition 53 cannot be resolved occurs in the air-conditioning method search phase P20, the management server 10 proceeds to an effective air-conditioning pattern generation phase P30 of step S405 to search for an appropriate air-conditioning pattern. If an appropriate air-conditioning pattern has been found, the management server 10 returns to the air-conditioning method search phase P20 in step S403.
 なお、有効空調パターン生成フェーズP30、空調方式探索フェーズP20において、監視部13は、施設20の環境センサ群から周期的に送付される環境情報23aの内容をチェックする。監視部13は、フェーズ空調条件53からの逸脱が発生した場合、逸脱した環境センサ23-kのIDs(k)と環境情報23a(k)とを、逸脱が解消するまで空調パターン制御部15に継続的に送信する(図5のステップS11)。逸脱した環境センサ23-kのIDs(k)と環境情報23a(k)とを、以下では「逸脱情報231」と呼ぶ。図5では逸脱情報231は、23a(1)(IDs(1))と23a(2)(IDs(2))である。注意温度帯に入った場合も同様に、監視部13は、環境センサ23-kのIDs(k)と環境情報23a(k)とを、環境情報23a(k)の示す温度が注意温度帯の範囲外になるまで、空調パターン制御部15に継続的に送信する。 In the effective air-conditioning pattern generation phase P30 and the air-conditioning method search phase P20, the monitoring unit 13 checks the contents of the environment information 23a periodically transmitted from the environment sensor group of the facility 20. When a deviation from the phase air-conditioning condition 53 occurs, the monitoring unit 13 sends the IDs (k) of the deviating environment sensor 23-k and the environmental information 23a (k) to the air-conditioning pattern control unit 15 until the deviation is resolved. The transmission is continuously performed (step S11 in FIG. 5). The IDs (k) of the deviated environment sensor 23-k and the environment information 23a (k) are hereinafter referred to as “deviation information 231”. In FIG. 5, the deviation information 231 is 23a (1) (IDs (1)) and 23a (2) (IDs (2)). Similarly, when entering the caution temperature zone, the monitoring unit 13 compares the IDs (k) of the environment sensor 23-k and the environment information 23a (k) with the temperature indicated by the environment information 23a (k). Until it is out of the range, it is continuously transmitted to the air-conditioning pattern control unit 15.
 図8は、空調パターン制御部15が行う有効空調パターン生成フェーズP30の動作を示す。
 図9は、方式で空調方式DB19の各フィールドを示す。
 図10、図11及び図12は、空調方式探索フェーズP20の動作を示す。
FIG. 8 shows the operation of the effective air conditioning pattern generation phase P30 performed by the air conditioning pattern control unit 15.
FIG. 9 shows each field of the air conditioning system DB 19 in a system.
FIG. 10, FIG. 11 and FIG. 12 show the operation of the air conditioning system search phase P20.
 図8及び図5を用いて、ステップS403の有効空調パターン生成フェーズP30の動作フローを説明する。 The operation flow of the effective air-conditioning pattern generation phase P30 in step S403 will be described with reference to FIGS.
<ステップS11>
 ステップS11において、空調パターン制御部15は、監視部13から、フェーズ空調条件53を逸脱した環境センサ23-kのIDs(k)と、環境情報23a(k)とを通知される。図5では、空調パターン制御部15は、監視部13から23a(1)(IDs(1))及び23a(2)(IDs(2))を通知される。
<Step S11>
In step S11, the air-conditioning pattern control unit 15 is notified by the monitoring unit 13 of the IDs (k) of the environment sensor 23-k that has deviated from the phase air-conditioning condition 53 and the environment information 23a (k). In FIG. 5, the monitoring unit 13 notifies the air conditioning pattern control unit 15 of 23a (1) (IDs (1)) and 23a (2) (IDs (2)).
<ステップS12>
 ステップS12において、空調パターン制御部15は、監視部13からIDs(1)、IDs(2)を受信した場合、空調モデルDB17に格納されている施設20の環境モデルである施設形態51を、シミュレータ部14に入力する。
<Step S12>
In step S12, when receiving the IDs (1) and IDs (2) from the monitoring unit 13, the air-conditioning pattern control unit 15 converts the facility form 51, which is an environment model of the facility 20 stored in the air-conditioning model DB 17, into a simulator form. Input to the unit 14.
<ステップS501>
 ステップS501において、空調パターン制御部15は、シミュレータ部14にシミュレーションさせることによって、監視部13から通知された環境センサ23-1及び環境センサ23-2に影響する複数の空気調和機22を抽出する。図7では、空気調和機22-1、空気調和機22-2及び空気調和機22-3が抽出された例を示している。図7では、IDs(1)の環境センサ23-1には、空気調和機22-1が影響し、IDs(2)の環境センサ23-2には、空気調和機22-2及び空気調和機22-3が影響することを示す。以下では、シミュレーションで抽出された空気調和機22-1、空気調和機22-2及び空気調和機22-3を、AC1,AC2及びAC3と表記する。空気調和機22-kの識別子をID(k)と表記する。シミュレータ部14によるシミュレーションにより、空調パターン制御部15は、IDs(1)の環境センサ23-1にはAC1が影響し、IDs(2)の環境センサ23-2には、AC2及びAC3が影響することを知る。
<Step S501>
In step S501, the air-conditioning pattern control unit 15 extracts a plurality of air conditioners 22 that affect the environment sensor 23-1 and the environment sensor 23-2 notified from the monitoring unit 13 by causing the simulator unit 14 to simulate. . FIG. 7 shows an example in which the air conditioners 22-1, 22-2, and 22-3 are extracted. In FIG. 7, the air conditioner 22-1 affects the environment sensor 23-1 of IDs (1), and the air conditioner 22-2 and the air conditioner affect the environment sensor 23-2 of IDs (2). 22-3 indicates the effect. Hereinafter, the air conditioners 22-1, 22-2, and 22-3 extracted by the simulation will be referred to as AC1, AC2, and AC3. The identifier of the air conditioner 22-k is denoted as ID A (k). According to the simulation by the simulator unit 14, the air conditioning pattern control unit 15 indicates that AC1 affects the environment sensor 23-1 of IDs (1), and AC2 and AC3 affect the environment sensor 23-2 of IDs (2). Know that.
<ステップS13>
 ステップS13において、空調パターン制御部15は、シミュレーションで抽出したAC1,AC2及びAC3のそれぞれの識別子であるID(1),ID(2)及びID(3)を、試行空調パターン生成部16に入力する。
<Step S13>
In step S13, the air-conditioning pattern control unit 15 outputs ID A (1), ID A (2), and ID A (3), which are the identifiers of AC1, AC2, and AC3 extracted by the simulation, to the trial air-conditioning pattern generation unit. Enter 16
<ステップS14、ステップS502>
 ステップS14において、試行空調パターン生成部16は、空調モデルDB17から、AC1,AC2及びAC3の調整範囲52を取得する。ステップS502において、試行空調パターン生成部16は、AC1、AC2及びAC3の調整範囲52を基に、空調のための試行空調パターン群を生成し、試行空調パターン群を空調パターン制御部15に送信する。
<Step S14, Step S502>
In step S14, the trial air-conditioning pattern generation unit 16 acquires the adjustment ranges 52 of AC1, AC2, and AC3 from the air-conditioning model DB 17. In step S502, the trial air conditioning pattern generation unit 16 generates a trial air conditioning pattern group for air conditioning based on the adjustment range 52 of AC1, AC2, and AC3, and transmits the trial air conditioning pattern group to the air conditioning pattern control unit 15. .
<試行空調パターン群>
 以下に、試行空調パターン生成部16によって生成される試行空調パターン群を説明する。
AC1、AC2及びAC3は、風力、温度、フィン角度の3つが調整可能とする。どの空気調和機も、風力は3段階、温度は2段階、フィン角度は2段に調整可能であるとする。
 AC1の(風力、温度、フィン角度)を(X1,Y1,Z1)とし、
 AC2の(風力、温度、フィン角度)を(X2,Y2,Z2)とし、
 AC3の(風力、温度、フィン角度)を(X3,Y3,Z3)とする。
 X1からX3は、いずれも、3通りである。
 Y1からY3は、いずれも、2通りである。
 Z1からZ3は、いずれも、2通りである。
 AC1については、(X1,Y1,Z1)は、3*2*2=12通りある。
 AC2及びAC3についても、同様に、(X2,Y2,Z2)、(X3,Y3,Z3)は、それぞれ12通りである。
<Trial air conditioning pattern group>
Hereinafter, a trial air conditioning pattern group generated by the trial air conditioning pattern generation unit 16 will be described.
AC1, AC2, and AC3 can adjust three of wind power, temperature, and fin angle. It is assumed that all the air conditioners can adjust the wind power in three steps, the temperature in two steps, and the fin angle in two steps.
AC1 (wind, temperature, fin angle) is (X1, Y1, Z1),
Let (X2, Y2, Z2) be (wind, temperature, fin angle) of AC2,
The (wind power, temperature, fin angle) of AC3 is (X3, Y3, Z3).
Each of X1 to X3 is of three types.
Each of Y1 to Y3 is of two types.
Each of Z1 to Z3 is of two types.
Regarding AC1, (X1, Y1, Z1) has 3 * 2 * 2 = 12 ways.
Similarly, for AC2 and AC3, (X2, Y2, Z2) and (X3, Y3, Z3) are respectively 12 types.
 AC1の(X1,Y1,Z1)の12通りを、AC1<1>からAC1<12>と記す。
AC2の(X2,Y2,Z2)の12通りを、AC2<1>からAC2<12>と記す。
 AC3の(X3,Y3,Z3)の12通りを、AC3<1>からAC3<12>と記す。
Twelve types of (X1, Y1, Z1) of AC1 are described as AC1 <1> to AC1 <12>.
Twelve types of (X2, Y2, Z2) of AC2 are described as AC2 <1> to AC2 <12>.
Twelve types of (X3, Y3, Z3) of AC3 are described as AC3 <1> to AC3 <12>.
<空気調和機のいずれか1台を動作>
 AC1からAC3のいずれか1台を動作させる場合は以下のようである。AC1の場合、AC1<1>からAC1<12>の12通りある。AC2及びAC3も12通りである。よって、3台の空気調和機のうち1台のみ動作させるパターンは、
 3×12=36通り
である。
<Operation of one of the air conditioners>
The case where one of AC1 to AC3 is operated is as follows. In the case of AC1, there are twelve AC1 <1> to AC1 <12>. AC2 and AC3 are also 12 types. Therefore, the pattern of operating only one of the three air conditioners is
3 × 12 = 36 ways.
<空気調和機のいずれか2台を動作>
 AC1からAC3のいずれか2台を動作させる場合は以下のようである。AC1からAC3のうち、いずれか2台を動作させる場合は、AC1とAC2、AC2とAC3、またはAC3とAC1の3通りある。よって、3台の空気調和機のうち2台を動作させるパターンは、12*12*3=432通りである。
<Operation of any two air conditioners>
The case where any two of AC1 to AC3 are operated is as follows. When any two of AC1 to AC3 are operated, there are three types: AC1 and AC2, AC2 and AC3, or AC3 and AC1. Therefore, there are 12 * 12 * 3 = 432 patterns for operating two of the three air conditioners.
<空気調和機3台のすべてを動作>
 3台の空気調和機の全部を動作させるときのパターンは、12*12*12=1728通りである。
<All three air conditioners operate>
There are 12 * 12 * 12 = 1728 patterns when all three air conditioners are operated.
 1台の空気調和機、2台の空気調和機または3台の空気調和機を動作させるパターンは、36+432+1728=2196通りである。
この2196通りの動作パターンが、試行空調パターン群である。
試行空調パターン群とは試行空調パターンの集合である。
試行空調パターンとは試行空調パターン群の要素であり、
1台のみ動作の場合の、36通りのそれぞれ、
2台動作の場合の、432通りのそれぞれ、
及び3台動作の場合の、2196通りのそれぞれである。
The patterns for operating one air conditioner, two air conditioners, or three air conditioners are 36 + 432 + 1728 = 2196 patterns.
These 2196 operation patterns are a trial air conditioning pattern group.
The trial air conditioning pattern group is a set of trial air conditioning patterns.
The trial air conditioning pattern is an element of the trial air conditioning pattern group,
When only one unit operates, each of 36 types
In the case of two units operation, each of 432 types,
And 2196 cases in the case of three-unit operation.
<ステップS503>
 ステップS503において、空調パターン制御部15は、試行空調パターン生成部16から送付された試行空調パターン群のうち最初の試行空調パターンの実行を、施設20側の空調制御部211に指示する。
<Step S503>
In step S503, the air conditioning pattern control unit 15 instructs the air conditioning control unit 211 of the facility 20 to execute the first trial air conditioning pattern in the trial air conditioning pattern group sent from the trial air conditioning pattern generation unit 16.
 空調パターン制御部15は、試行空調を実施する場合、1台の空気調和機だけを動作させる試行空調パターンから開始し、適合する試行空調パターンがなければ、2台の空気調和機を動作させる試行空調パターンを実施し、適合する試行空調パターンがなければ3台の空気調和機を動作させる試行空調パターンを実行する。 When performing trial air conditioning, the air conditioning pattern control unit 15 starts from a trial air conditioning pattern that operates only one air conditioner, and if there is no suitable trial air conditioning pattern, trials that operate two air conditioners. An air conditioning pattern is implemented, and if there is no suitable trial air conditioning pattern, a trial air conditioning pattern for operating three air conditioners is executed.
 空調パターン制御部15は、規定時間T1内に逸脱情報231の受信が停止し、かつ、監視部13から逸脱情報231を規定期間T2受信しない場合、実施している試行空調パターンが有効であると判断する(ステップS504でYES)。
 図13は、空調パターン制御部15による判定方法を示す。図13に示すように、試行空調パターンの実行を開始してから逸脱情報231の受信が停止するまでの時間T10が規定時間T1以下の値であり、逸脱情報231の受信停止の継続する時間T20が規定時間T2以上の値である場合に、空調パターン制御部15は試行空調パターンを有効と判定する。有効と判定した場合、空調パターン制御部15は、実施している試行空調パターンを空調方式DB19の有効空調パターンフィールド191に登録する(ステップS505)。管理サーバ10は、登録空調適用フェーズに移行する(ステップS506)。
If the reception of the deviation information 231 is stopped within the specified time T1 and the deviation information 231 is not received from the monitoring unit 13 for the specified period T2, the air conditioning pattern control unit 15 determines that the trial air conditioning pattern being implemented is valid. A determination is made (YES in step S504).
FIG. 13 shows a determination method by the air-conditioning pattern control unit 15. As shown in FIG. 13, the time T10 from the start of the execution of the trial air-conditioning pattern to the stop of the reception of the deviation information 231 is a value equal to or less than the specified time T1, and the time T20 of the stop of the reception of the deviation information 231 continues. Is greater than or equal to the specified time T2, the air conditioning pattern control unit 15 determines that the trial air conditioning pattern is valid. If determined to be valid, the air-conditioning pattern control unit 15 registers the trial air-conditioning pattern being implemented in the effective air-conditioning pattern field 191 of the air-conditioning method DB 19 (step S505). The management server 10 shifts to a registered air conditioning application phase (Step S506).
 空調パターン制御部15は、試行空調パターンの実施から規定時間T1内に監視部13からの通知が停止しない場合、次の試行空調パターンが存在する場合、次の試行空調パターンを実効する(ステップS509)。空調パターン制御部15は、逸脱情報231の送信停止後、規定時間T2内に監視部13から逸脱情報231の送信が開始された場合、次の試行空調パターンが存在する場合、次の試行空調パターンを実効する(ステップS509)。 The air-conditioning pattern control unit 15 executes the next trial air-conditioning pattern when the notification from the monitoring unit 13 does not stop within the specified time T1 after the trial air-conditioning pattern is executed, and when the next trial air-conditioning pattern exists (step S509). ). After the transmission of the deviation information 231 is stopped, if the transmission of the deviation information 231 from the monitoring unit 13 is started within the specified time T2 after the stop of the transmission of the deviation information 231, if the next trial air conditioning pattern exists, the next trial air conditioning pattern (Step S509).
 空調パターン制御部15は、試行空調パターン生成部16から送信された試行空調パターンに含まれる全ての試行空調パターンを実行し、次に行う試行空調パターンが存在しない場合(ステップS508でNO)、以下の処理を行う。空調パターン制御部15は、実行した試行空調パターンの中で逸脱センサの数が最も少ない試行空調パターンと、その試行空調パターンの逸脱センサのIDsを、それぞれ、空調方式DB19の有効空調パターンフィールド191と、空調方式DB19の注意環境センサIDフィールド192に登録する(ステップS507)。処理は、最適空調方式探索フェーズP20に移行する(ステップS506)。 The air-conditioning pattern control unit 15 executes all the trial air-conditioning patterns included in the trial air-conditioning pattern transmitted from the trial air-conditioning pattern generation unit 16, and if there is no next trial air-conditioning pattern (NO in step S508), Is performed. The air-conditioning pattern control unit 15 stores the trial air-conditioning pattern with the smallest number of deviation sensors among the executed trial air-conditioning patterns and the IDs of the deviation sensors of the trial air-conditioning pattern in the effective air-conditioning pattern field 191 of the air-conditioning method DB 19, respectively. Is registered in the caution environment sensor ID field 192 of the air conditioning system DB 19 (step S507). The process proceeds to the optimal air conditioning system search phase P20 (Step S506).
 図10から図12に空調方式探索フェーズP20の動作フローを示す。空調方式探索フェーズP20の動作フローにおいて、空調パターン制御部15は、登録部12から現在の利用フェーズ55を取得し、現在の利用フェーズをキーに、空調方式DB19を検索する(ステップS601)。有効空調パターン組合せフィールド193に、該当する空調パターンの組合せがヒットした場合、空調パターン制御部15は、その空調パターンの組合せを内部の実行パターンリング配列15Rに格納し(ステップS603)、実行パターンリング配列15Rの先頭の空調パターンを施設20内の空調制御部211に送信し、空調制御を実行する(ステップS604)。 か ら FIGS. 10 to 12 show the operation flow of the air conditioning system search phase P20. In the operation flow of the air conditioning method search phase P20, the air conditioning pattern control unit 15 acquires the current use phase 55 from the registration unit 12, and searches the air conditioning method DB 19 using the current use phase as a key (step S601). When a corresponding air conditioning pattern combination is hit in the effective air conditioning pattern combination field 193, the air conditioning pattern control unit 15 stores the air conditioning pattern combination in an internal execution pattern ring array 15R (step S603), and executes the execution pattern ring. The head air-conditioning pattern of the array 15R is transmitted to the air-conditioning control unit 211 in the facility 20, and the air-conditioning control is executed (step S604).
 監視部13は施設20から送付される環境情報23aを監視し、注意温度帯に入った場合、空調パターン制御部15に通知する。通知を受けた空調パターン制御部15は、実行パターンリング配列15Rに格納された、次の空調パターンを実行する(ステップS606)。 The monitoring unit 13 monitors the environment information 23a sent from the facility 20, and notifies the air conditioning pattern control unit 15 when the temperature information enters the caution temperature zone. The air conditioning pattern control unit 15 that has received the notification executes the next air conditioning pattern stored in the execution pattern ring array 15R (Step S606).
 空調パターン制御部15は、監視部13からフェーズ空調条件53の逸脱が通知されるまで、実行パターンリング配列15Rに格納された空調パターンを切り替えながら施設20の空調を続ける。空調パターン制御部15は、フェーズ空調条件53の逸脱が監視部13から通知された場合、空調方式DB19の有効空調パターン組合せフィールド193に未実行の空調パターンの組合せがある限り、次のように処理を継続する。つまり空調パターン制御部15は、未実行の空調パターンの組合せを、実行パターンリング配列15Rに格納しなおし(ステップS609)、実行パターンリング配列15Rを用いて施設20の空調制御を実行する。 (4) The air conditioning pattern control unit 15 continues air conditioning of the facility 20 while switching the air conditioning pattern stored in the execution pattern ring array 15R until the monitoring unit 13 notifies the deviation of the phase air conditioning condition 53. When the monitoring unit 13 notifies the deviation of the phase air-conditioning condition 53 from the monitoring unit 13, the air-conditioning pattern control unit 15 performs the following processing as long as there is an unexecuted air-conditioning pattern combination in the effective air-conditioning pattern combination field 193 of the air-conditioning system DB 19. To continue. That is, the air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns that have not been executed in the execution pattern ring array 15R again (step S609), and executes the air-conditioning control of the facility 20 using the execution pattern ring array 15R.
 空調状態がフェーズ空調条件53を逸脱(ステップS607)し、かつ、未実行の空調パターンの組合せが無い場合には(ステップS608)、空調パターン制御部15は、次のような処理を行う。
 空調パターン制御部15は、空調方式DB19の有効空調パターンフィールド191の中で、注意環境センサIDsが登録されていない試行空調パターンを検索する(ステップS610)。
 注意環境センサIDsが登録されていない空調パターンが存在する場合、空調パターン制御部15は、その空調パターンを実行し(ステップS611)、フェーズ空調条件53を逸脱したタイミングで(ステップS612)、逸脱センサのIDsを空調方式DB19の注意環境センサIDフィールド192に登録する(ステップS613)。
If the air-conditioning state deviates from the phase air-conditioning condition 53 (step S607) and there is no unexecuted air-conditioning pattern combination (step S608), the air-conditioning pattern control unit 15 performs the following processing.
The air-conditioning pattern control unit 15 searches the effective air-conditioning pattern field 191 of the air-conditioning system DB 19 for a trial air-conditioning pattern in which the caution environment sensor IDs is not registered (step S610).
If there is an air-conditioning pattern for which the caution environment sensor IDs are not registered, the air-conditioning pattern control unit 15 executes the air-conditioning pattern (step S611), and at a timing outside the phase air-conditioning condition 53 (step S612), the deviation sensor Are registered in the caution environment sensor ID field 192 of the air conditioning system DB 19 (step S613).
<有効空調パターン組合せ>
 注意環境センサIDsが登録されていない空調パターンが存在しない、もしくはステップS618での注意環境センサIDsの登録が完了した場合、空調パターン制御部15は、空調方式DB19の有効空調パターンフィールド191に登録されている現在の利用フェーズ55に対応する全ての空調パターンの順列、組合せを生成する。
 ただし、生成した空調パターンの順列、組合せの中で、注意環境センサIDsが同じ空調パターンが連続する順列、組合せ及び、登録済みの空調パターンの組合せは削除する(ステップS614)。
 次に、空調パターン制御部15は、生成した空調パターンの組合せを内部の実行パターンリング配列15Rに格納する(ステップS615)。
 続いて、空調パターン制御部15は、いずれかの環境センサ23が注意温度帯に入った場合、実行パターンリング配列15Rの次の空調パターンを実行する(ステップS619,ステップS620)。
 現在の実行パターンリング配列15Rでの空調時間が一定時間、フェーズ空調条件53を達成した(ステップS617)タイミングで、現在の空調パターンの組合せを最適空調方式DB19の有効空調パターンフィールドの先頭に登録する(ステップS618)。
<Effective air conditioning pattern combination>
If there is no air conditioning pattern in which the caution environment sensor IDs are not registered, or if the registration of the caution environment sensor IDs in step S618 is completed, the air conditioning pattern control unit 15 is registered in the effective air conditioning pattern field 191 of the air conditioning system DB 19. A permutation and a combination of all air conditioning patterns corresponding to the current use phase 55 are generated.
However, in the generated permutations and combinations of the air conditioning patterns, the permutations and combinations in which the air conditioning patterns having the same caution environment sensor IDs are consecutive, and the combinations of the registered air conditioning patterns are deleted (step S614).
Next, the air conditioning pattern control unit 15 stores the generated combination of the air conditioning patterns in the internal execution pattern ring array 15R (Step S615).
Subsequently, when any one of the environment sensors 23 enters the caution temperature zone, the air conditioning pattern control unit 15 executes the next air conditioning pattern in the execution pattern ring array 15R (Steps S619 and S620).
At the timing when the air-conditioning time in the current execution pattern ring array 15R has reached the phase air-conditioning condition 53 for a certain time (step S617), the current air-conditioning pattern combination is registered at the head of the effective air-conditioning pattern field of the optimum air-conditioning method DB19. (Step S618).
 空調パターン制御部15は、現在の実行パターンリング配列15Rでの空調がフェーズ空調条件53を逸脱した場合(ステップS621)、次の生成した空調パターンの組合せを、実行パターンリング配列15Rに格納し(ステップS626)、上記ステップS616からステップS621までの空調を行う。 When the air conditioning in the current execution pattern ring array 15R deviates from the phase air conditioning condition 53 (step S621), the air conditioning pattern control unit 15 stores the next combination of the generated air conditioning patterns in the execution pattern ring array 15R (step S621). (Step S626), the air conditioning from step S616 to step S621 is performed.
 なお、ステップS614で生成した全ての空調パターンの組合せを実行してもフェーズ空調条件53が満たせない場合、空調パターン制御部15は、実行した空調パターンの組合せの中で、逸脱センサの数が最も少ない空調パターンの組合せを実行(ステップS623)する。その後、空調パターン制御部15は、端末装置30に、フェーズ空調条件53を逸脱している環境センサ23の位置と逸脱温度を通知(ステップS624)するし、処理は、有効空調パターン生成フェーズP30に移行する(ステップS625)。 If the phase air-conditioning condition 53 is not satisfied even if all the air-conditioning pattern combinations generated in step S614 are executed, the air-conditioning pattern control unit 15 determines that the number of deviation sensors is the largest among the executed air-conditioning pattern combinations. A combination of a small number of air conditioning patterns is executed (step S623). After that, the air-conditioning pattern control unit 15 notifies the terminal device 30 of the position of the environment sensor 23 that has deviated from the phase air-conditioning condition 53 and the deviated temperature (step S624), and the process proceeds to the effective air-conditioning pattern generation phase P30. The process proceeds (step S625).
 このように空調パターン制御部は、記憶装置に複数の有効空調パターンがある場合、複数の有効空調パターンの実行順序を示す複数の有効空調パターン組み合わせを生成し、空気調和機に複数の有効空調パターンを順に実行させる。 As described above, when there are a plurality of effective air conditioning patterns in the storage device, the air conditioning pattern control unit generates a plurality of effective air conditioning pattern combinations indicating the execution order of the plurality of effective air conditioning patterns, and stores the plurality of effective air conditioning patterns in the air conditioner. In order.
 以上のように、管理サーバ10は、施設20の温度などの空調環境ムラ状態に応じて調整が必要な空気調和機を特定し、その空気調和機の空調パターンの試行を行う。よって、管理サーバは、フェーズ空調条件53を逸脱しない空調パターンを探索蓄積し、且つ蓄積した空調パターンの最適な組み合わせを自動的に生成・蓄積する。このため、施設20の空調状態を自動で適正化できる。また、管理サーバ10は、フェーズ空調条件53の逸脱が発生した場合でも、素早く空調を適正化できる。 As described above, the management server 10 specifies an air conditioner that needs to be adjusted according to the air conditioning environment unevenness state such as the temperature of the facility 20, and performs an air conditioning pattern trial of the air conditioner. Therefore, the management server searches and accumulates an air conditioning pattern that does not deviate from the phase air conditioning condition 53, and automatically generates and accumulates an optimal combination of the accumulated air conditioning patterns. For this reason, the air-conditioning state of the facility 20 can be automatically optimized. Further, the management server 10 can quickly optimize the air conditioning even when the deviation from the phase air conditioning condition 53 occurs.
 <変形例>
 実施の形態1では、管理サーバ10の機能がソフトウェアで実現されるが、変形例として、管理サーバ10の機能がハードウェアで実現されてもよい。
 図14は、実施の形態1の変形例に係る管理サーバ10の構成を示す図である。図14の電子回路90は、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15、試行空調パターン生成部16、主記憶装置82、補助記憶装置83、通信インタフェース84および入出力インタフェース85の機能を実現する専用の電子回路である。電子回路90は、信号線91に接続している。電子回路90は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。管理サーバ10の構成要素の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。別の変形例として、管理サーバ10の構成要素の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
<Modification>
In the first embodiment, the function of the management server 10 is realized by software. However, as a modification, the function of the management server 10 may be realized by hardware.
FIG. 14 is a diagram illustrating a configuration of the management server 10 according to a modification of the first embodiment. The electronic circuit 90 in FIG. 14 includes a communication control unit 11, a registration unit 12, a monitoring unit 13, a simulator unit 14, an air conditioning pattern control unit 15, a trial air conditioning pattern generation unit 16, a main storage device 82, an auxiliary storage device 83, a communication interface It is a dedicated electronic circuit for realizing the functions of the input / output interface 84 and the input / output interface 85. The electronic circuit 90 is connected to the signal line 91. The electronic circuit 90 is, specifically, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA. GA is an abbreviation for Gate Array. ASIC is an abbreviation for Application Specific Integrated Circuit. FPGA is an abbreviation for Field-Programmable Gate Array. The functions of the components of the management server 10 may be realized by one electronic circuit, or may be realized by being distributed to a plurality of electronic circuits. As another modification, some functions of the components of the management server 10 may be realized by an electronic circuit, and the remaining functions may be realized by software.
 プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。管理サーバ10において、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15、試行空調パターン生成部16の機能がプロセッシングサーキットリにより実現される。あるいは、通信制御部11、登録部12、監視部13、シミュレータ部14、空調パターン制御部15、試行空調パターン生成部16、主記憶装置82、補助記憶装置83、通信インタフェース84および入出力インタフェース85の機能がプロセッシングサーキットリにより実現されてもよい。 Each of the processor and the electronic circuit is also called a processing circuitry. In the management server 10, the functions of the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, and the trial air conditioning pattern generation unit 16 are realized by the processing circuitry. Alternatively, the communication control unit 11, the registration unit 12, the monitoring unit 13, the simulator unit 14, the air conditioning pattern control unit 15, the trial air conditioning pattern generation unit 16, the main storage device 82, the auxiliary storage device 83, the communication interface 84, and the input / output interface 85 May be realized by the processing circuitry.
 実施の形態2.
図15から図18を参照して実施の形態2を説明する。実施の形態1の中に、施設20内部を撮影するカメラをシステムに組み込むことにより、調整が必要な空気調和機を特定するために行う空調シミュレーションの精度を向上させる実施の形態を示す。
Embodiment 2 FIG.
The second embodiment will be described with reference to FIGS. In the first embodiment, an embodiment in which a camera that captures an image of the inside of the facility 20 is incorporated into a system to improve the accuracy of an air conditioning simulation performed to identify an air conditioner that needs to be adjusted will be described.
 システム構成は実施の形態1の図1と同じである。 The system configuration is the same as that of FIG.
 図15は、実施の形態2の施設20の構成図である。図2の施設20の構成に加え、実施の形態2では施設20の内部状態を撮影する1台以上のカメラ24から構成される。カメラ24で撮影された施設20内部の画像は、管理サーバ10からの指示により空調制御部211が管理サーバ10に送付する。 FIG. 15 is a configuration diagram of the facility 20 according to the second embodiment. In the second embodiment, in addition to the configuration of the facility 20 shown in FIG. 2, the facility 20 includes one or more cameras 24 for photographing the internal state of the facility 20. The air conditioning control unit 211 sends an image of the inside of the facility 20 taken by the camera 24 to the management server 10 according to an instruction from the management server 10.
 図16は、実施の形態2の管理サーバ10の構成図である。実施の形態1に加え、管理サーバ10はモデル更新部16Aを備える。モデル更新部16Aは、施設20側から送付された画像を解析し、施設20内部の物理的な状態変化(新たに棚が設置された、荷物の配置が換わった等)を判定する。そして、モデル更新部16Aは空調モデルDB17に格納されている空調環境モデル上に、判定した物理変化を反映して、空調環境モデルを現実の空調環境に即して更新する。 FIG. 16 is a configuration diagram of the management server 10 according to the second embodiment. In addition to the first embodiment, the management server 10 includes a model updating unit 16A. The model updating unit 16A analyzes the image sent from the facility 20 and determines a change in the physical state inside the facility 20 (for example, a new shelf has been installed or the arrangement of luggage has been changed). Then, the model updating unit 16A updates the air conditioning environment model according to the actual air conditioning environment by reflecting the determined physical change on the air conditioning environment model stored in the air conditioning model DB 17.
 次にシステム動作について説明する。実施の形態2のシステム動作は有効空調パターン生成フェーズP30を除き、実施の形態1と同じである。
 図17及び図18は、実施の形態2の有効空調パターン生成フェーズP30の動作を示す。
Next, the system operation will be described. The system operation of the second embodiment is the same as that of the first embodiment except for the effective air conditioning pattern generation phase P30.
17 and 18 show the operation of the effective air-conditioning pattern generation phase P30 according to the second embodiment.
 図17及び図18の有効空調パターン生成フェーズP30の動作フローにおいて、監視部13から環境情報23aと逸脱した環境センサ23のIDs又はIDs群を通知された空調パターン制御部15は、施設20の空調制御部211に対し、カメラ画像の送付を指示し、カメラ画像を取得する(910)。続いて、空調パターン制御部15はモデル更新部16Aにカメラ画像を転送し、空調モデルDB17の更新を指示する。
 モデル更新部16Aは、カメラ画像を解析し、施設20の物理的な状態変化を判定し(911)、空調モデルDB17に格納されている空調環境モデル上に、判定した物理変化を反映する(912)。
 空調モデルDB17の更新が完了し次第、空調パターン制御部15は、空調モデルDB17に格納された施設20の環境モデルをシミュレータ部14に入力し、環境条件を逸脱した環境センサ23又は、センサ群の空調に影響する空気調和機群を空調シミュレーションにより抽出する(901)。
 次に、空調パターン制御部15は、抽出した空気調和機群を試行空調パターン生成部16に入力する。
 試行空調パターン生成部16は、空調モデルDB17から該当する空気調和機の調整範囲52(風力、温度、フィンの角度)を基に該当空気調和機群の試行空調パターン群を生成(902)し、空調パターン制御部15に送信する。
 空調パターン制御部15は、送付された試行空調パターンの実行を施設20側の空調制御部211に指示する。
 試行空調パターンの開始から規定時間(2分等)内に、監視部13からの環境情報23aと逸脱した環境センサ23のIDsを通知が停止し、その後一定時間(10分等)監視部13からの通知が無い場合、空調パターン制御部15は、現在の試行空調パターンが適正であると判断し(904)、現在の試行空調パターンを空調方式DB19に登録し(905)、登録空調適用フェーズに移行する(906)。
 試行空調パターン実施から規定時間内に監視部13からの通知が停止しない、又は通知の停止後、一定時間内に監視部13からの通知が開始された場合、空調パターン制御部15は、現在の試行空調パターンは不適正と判断し、次の試行空調パターンを実効する(909)。
 試行空調パターン生成部16から送信された全ての試行空調パターンを実行し、次に行う試行空調パターンが存在しない場合(908)、空調パターン制御部15は以下の処理を実行する。
 空調パターン制御部15は、現在の試行フェーズで実行した空調パターンの中で、逸脱した環境センサ23の数が最小となる空調パターン及びその時の逸脱した環境センサ23のIDsを、それぞれ空調方式DB19の有効空調パターンフィールド191と注意環境センサIDフィールド192に登録する(907)。
そして空調パターン制御部15は、最適空調方式探索・実行フェーズに移行する(906)。
In the operation flow of the effective air-conditioning pattern generation phase P30 in FIGS. 17 and 18, the air-conditioning pattern control unit 15, which has been notified of the environment information 23 a and the IDs or IDs of the environment sensors 23 deviating from the environment information 23 a, The control unit 211 is instructed to transmit a camera image, and a camera image is acquired (910). Subsequently, the air-conditioning pattern control unit 15 transfers the camera image to the model updating unit 16A, and instructs the air-conditioning model DB 17 to update.
The model update unit 16A analyzes the camera image, determines a physical state change of the facility 20 (911), and reflects the determined physical change on the air conditioning environment model stored in the air conditioning model DB 17 (912). ).
As soon as the update of the air conditioning model DB 17 is completed, the air conditioning pattern control unit 15 inputs the environment model of the facility 20 stored in the air conditioning model DB 17 to the simulator unit 14 and outputs the environmental sensor 23 or the sensor group that has deviated from the environmental condition. An air conditioner group affecting air conditioning is extracted by air conditioning simulation (901).
Next, the air conditioning pattern control unit 15 inputs the extracted air conditioner group to the trial air conditioning pattern generation unit 16.
The trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern group of the air conditioner group based on the air conditioner adjustment range 52 (wind, temperature, fin angle) from the air conditioning model DB 17 (902), It is transmitted to the air conditioning pattern control unit 15.
The air conditioning pattern control unit 15 instructs the air conditioning control unit 211 of the facility 20 to execute the sent trial air conditioning pattern.
Within a specified time (2 minutes, etc.) from the start of the trial air conditioning pattern, the notification of the environment information 23a from the monitoring unit 13 and the IDs of the deviated environment sensor 23 is stopped, and then the monitoring unit 13 sends the ID information for a certain time (10 minutes, etc.). Is not received, the air-conditioning pattern control unit 15 determines that the current trial air-conditioning pattern is appropriate (904), registers the current trial air-conditioning pattern in the air-conditioning method DB 19 (905), and enters the registered air-conditioning application phase. The process is shifted (906).
If the notification from the monitoring unit 13 does not stop within a specified time after the trial air-conditioning pattern is performed, or if the notification from the monitoring unit 13 is started within a predetermined time after the notification is stopped, the air-conditioning pattern control unit 15 The trial air conditioning pattern is determined to be inappropriate, and the next trial air conditioning pattern is executed (909).
All trial air-conditioning patterns transmitted from the trial air-conditioning pattern generation unit 16 are executed, and if there is no next trial air-conditioning pattern (908), the air-conditioning pattern control unit 15 executes the following processing.
The air-conditioning pattern control unit 15 stores, in the air-conditioning scheme DB 19, the air-conditioning pattern that minimizes the number of deviated environment sensors 23 and the IDs of the deviated environment sensors 23 at that time among the air-conditioning patterns executed in the current trial phase. It is registered in the effective air-conditioning pattern field 191 and the caution environment sensor ID field 192 (907).
And the air-conditioning pattern control part 15 transfers to an optimal air-conditioning system search / execution phase (906).
 以上の様に、実施の形態2では、施設20内の物理変化をカメラ画像から判定し、その判定結果を環境モデルにフィードバックするので、実施の形態1に加え、有効空調パターン生成フェーズP30で実行する空調シミュレーションの精度が向上する効果ある。 As described above, in the second embodiment, the physical change in the facility 20 is determined from the camera image, and the determination result is fed back to the environment model. This has the effect of improving the accuracy of the air conditioning simulation.
 実施の形態3.
 図19から図27を参照して実施の形態3を説明する。
 実施の形態3は、実施の形態1,2を植物工場の空調に適応した例である。
 図19は、実施の形態3のシステム構成図である。
 実施の形態3のシステムは、ネットワーク40に接続された植物工場20Aと、管理サーバ10と植物工場の端末装置30から構成される。
 図20は、図19における植物工場20Aの構成図である。実施の形態3のシステムは、複数の空気調和機22、複数の環境センサ23、少なくとも1台のカメラ24及び施設装置200を備える。
 複数の空気調和機22は、エアコンの室内機や送風機等、植物工場内の空調を行う。複数の環境センサ23は、温湿度、風量、二酸化炭素濃度等の環境条件を測定し、空調制御部211に送信する。カメラ24は植物工場内に設置される、植物の育成状況を撮影する。施設装置200は空調制御部211及び通信制御部212を有する。
Embodiment 3 FIG.
Embodiment 3 will be described with reference to FIGS. 19 to 27.
Embodiment 3 is an example in which Embodiments 1 and 2 are adapted to air conditioning in a plant factory.
FIG. 19 is a system configuration diagram of the third embodiment.
The system according to the third embodiment includes a plant factory 20A connected to a network 40, a management server 10, and a terminal device 30 of the plant factory.
FIG. 20 is a configuration diagram of the plant factory 20A in FIG. The system according to the third embodiment includes a plurality of air conditioners 22, a plurality of environment sensors 23, at least one camera 24, and a facility device 200.
The plurality of air conditioners 22 perform air conditioning in a plant factory such as an indoor unit of an air conditioner and a blower. The plurality of environmental sensors 23 measure environmental conditions such as temperature and humidity, air volume, and carbon dioxide concentration, and transmit the measured environmental conditions to the air-conditioning control unit 211. The camera 24 captures the state of growing plants, which is installed in a plant factory. The facility device 200 includes an air conditioning control unit 211 and a communication control unit 212.
 空調制御部211は、植物の育成状況画像と、環境センサ23からの環境情報23aと、各空気調和機の稼働状態(設定温度、風量、風向等)からなる空調環境情報を、通信制御部212を介して管理サーバ10に周期的に送信する。また空調制御部211は、管理サーバ10から送信される空調制御情報10aを基に、複数の空気調和機22の制御を行う。通信制御部212は、ネットワーク40を介して他の装置と通信する。 The air-conditioning control unit 211 transmits the plant growth status image, the environment information 23a from the environment sensor 23, and the air-conditioning environment information including the operating state (set temperature, air volume, wind direction, etc.) of each air conditioner to the communication control unit 212. Is periodically transmitted to the management server 10 via the. The air conditioning control unit 211 controls the plurality of air conditioners 22 based on the air conditioning control information 10a transmitted from the management server 10. The communication control unit 212 communicates with another device via the network 40.
 図21は、図20における管理サーバ10の構成図である。 FIG. 21 is a configuration diagram of the management server 10 in FIG.
 空調モデルDB17は、端末装置30から登録される、植物工場20Aの空調シミュレーションに必要な施設設計CADデータを格納する。また空調モデルDB17は、設置されている空気調和機器の配置やスペック(風量、風向、温度などの設定可能範囲)などの植物工場の空調環境モデルを格納する。 The air-conditioning model DB 17 stores facility design CAD data necessary for the air-conditioning simulation of the plant factory 20A, which is registered from the terminal device 30. The air-conditioning model DB 17 stores an air-conditioning environment model of a plant factory, such as the arrangement of installed air-conditioning equipment and specifications (settable ranges of air volume, wind direction, temperature, and the like).
 空調条件DB18は、端末装置30から登録される育成品種や、その育成段階毎の空調条件を格納する。 The air conditioning condition DB 18 stores breeding varieties registered from the terminal device 30 and air conditioning conditions for each breeding stage.
 空調方式DB19は、有効空調パターンフィールド191と注意環境センサIDフィールド192と有効空調パターン組合せフィールド193とを備える。有効空調パターンフィールド191には、栽培品種の育成段階毎の有効な空調方式が登録される。注意環境センサIDフィールド192には、要求環境条件の逸脱の可能性がある環境センサIDsが登録される。有効空調パターン組合せフィールド193には、有効空調パターンの適切な組合せが登録される。 The air-conditioning method DB 19 includes an effective air-conditioning pattern field 191, a caution environment sensor ID field 192, and an effective air-conditioning pattern combination field 193. In the effective air-conditioning pattern field 191, an effective air-conditioning method for each cultivar cultivation stage is registered. In the caution environment sensor ID field 192, environment sensor IDs that may deviate from required environment conditions are registered. In the effective air-conditioning pattern combination field 193, an appropriate combination of the effective air-conditioning patterns is registered.
 品種DB19Aは、端末装置30から登録される植物工場毎の栽培品種や定植等の現在の育成段階を格納する。 (4) The variety DB 19A stores the current breeding stage such as cultivars and planting for each plant factory registered from the terminal device 30.
 登録部12は、植物工場の端末装置30から送信される登録情報を、空調モデルDB17、空調条件DB18、空調方式DB19及び品種DB19Aに格納する。 The registration unit 12 stores the registration information transmitted from the terminal device 30 in the plant factory in the air conditioning model DB 17, the air conditioning condition DB 18, the air conditioning method DB 19, and the type DB 19A.
 監視部13は、植物工場の環境センサ23から送付される環境情報23aを監視する。監視部13は、栽培品種/育成段階毎の空調条件DB18と品種DB19Aから導かれる空調条件を逸脱、またはフェーズ空調条件53の上限、下限の一定の温度帯(注意温度帯)に入いる環境センサ23の発生を監視する。そのような環境センサ23が発生した場合、監視部13は、環境情報23aと共に、該当する環境センサ23のIDsを逸脱の解消される又は注意温度帯から適正温度領域戻るまで、周期的に空調パターン制御部15に送付する。 The monitoring unit 13 monitors the environment information 23a sent from the environment sensor 23 of the plant factory. The monitoring unit 13 deviates from the air-conditioning conditions derived from the air-conditioning condition DB 18 and the variety DB 19A for each cultivar / cultivation stage, or enters an upper limit and lower limit of the phase air-conditioning condition 53 into a certain temperature zone (attention temperature zone). 23 is monitored. When such an environmental sensor 23 occurs, the monitoring unit 13 periodically transmits the air conditioning pattern along with the environmental information 23a until the deviation of the IDs of the environmental sensor 23 is eliminated or the temperature returns to the appropriate temperature range from the caution temperature zone. It is sent to the control unit 15.
 シミュレータ部14は、空調モデルDB17のデータを基に空調シミュレーションを実行する。 The simulator unit 14 executes an air conditioning simulation based on the data of the air conditioning model DB 17.
 空調パターン制御部15は以下の処理を実行する。
(1)空調パターン制御部15は、シミュレータ部14を操作して、特定の環境センサ23に影響を及ぼす可能性が高い空気調和機群を特定する。
(2)空調パターン制御部15は、試行空調パターン生成部16を操作して、特定した空気調和機群の空調試行空調パターン群(空気調和機毎の風量、温度、風向等の設定の組合せパターン群)を生成する。
空調パターン制御部15は、生成した空調パターンを実行し、一定時間、フェーズ空調条件53を満足した空調パターンを最適空調方式DB19に格納する。
(3)空調パターン制御部15は、空調方式DB19に登録された空調パターンを組み合わせて空調を行い、フェーズ空調条件53を満たす空調パターンの組合せを探索する。
(4)空調パターン制御部15は、探索した空調パターンの組合せを空調方式DB19に格納する。
(5)空調パターン制御部15は、フェーズ空調条件53の未達成領域がある場合、未達成領域とその領域の環境情報23aを端末装置30に送付する。
The air-conditioning pattern control unit 15 performs the following processing.
(1) The air conditioning pattern control unit 15 operates the simulator unit 14 to specify an air conditioner group that has a high possibility of affecting the specific environment sensor 23.
(2) The air-conditioning pattern control unit 15 operates the trial air-conditioning pattern generation unit 16 to execute the air-conditioning trial air-conditioning pattern group of the specified air conditioner group (combination pattern of setting of air volume, temperature, wind direction, etc. for each air conditioner) Group).
The air-conditioning pattern control unit 15 executes the generated air-conditioning pattern, and stores an air-conditioning pattern that satisfies the phase air-conditioning condition 53 for a certain period of time in the optimal air-conditioning system DB 19.
(3) The air-conditioning pattern control unit 15 performs air-conditioning by combining the air-conditioning patterns registered in the air-conditioning method DB 19, and searches for a combination of air-conditioning patterns that satisfies the phase air-conditioning condition 53.
(4) The air-conditioning pattern control unit 15 stores the searched combination of the air-conditioning patterns in the air-conditioning method DB 19.
(5) If there is a region where the phase air-conditioning condition 53 has not been achieved, the air-conditioning pattern control unit 15 sends the non-achieved region and the environment information 23a of the region to the terminal device 30.
 試行空調パターン生成部16は、空調モデルDB17のデータを基に、指定された空気調和機群の空調試行空調パターンを生成する。 (4) The trial air-conditioning pattern generation unit 16 generates an air-conditioning trial air-conditioning pattern for the specified air conditioner group based on the data of the air conditioning model DB 17.
 モデル更新部16Aは、植物工場から送付された植物の画像を解析し、植物の大きさや形状を判定する。モデル更新部16Aは、空調モデルDB17に格納されている空調環境モデル上に、判定した形状の植物(オブジェクト)を配置することにより、空調環境モデルを現実の空調環境に即して更新する。 The model updating unit 16A analyzes the plant image sent from the plant factory, and determines the size and shape of the plant. The model updating unit 16A updates the air conditioning environment model according to the actual air conditioning environment by arranging plants (objects) having the determined shape on the air conditioning environment model stored in the air conditioning model DB 17.
 図22は、実施の形態3の空調システムの動作を示すフローチャートである。次にシステムの動作フローを図22で説明する。 FIG. 22 is a flowchart showing the operation of the air conditioning system according to the third embodiment. Next, the operation flow of the system will be described with reference to FIG.
 初期登録フェーズ(401)において、植物工場の空調管理者は端末装置30をもちいて、管理サーバ10に対し、植物工場の施設形態51と空調設備の調整範囲52(風力、温度、フィンの角度等)、及び、栽培する品種や育成段階毎のフェーズ空調条件53(例:栽培品種=レタス、定植後の明期フェーズ空調条件=温度12℃、許容温度範囲±3℃、湿度30%許容湿度範囲±10%、風速:1m以下等)及び、栽培品種に依存しない基本空調パターン54(各空気調和機の風力、温度、フィンの角度等のデフォルト設定値)を登録する。 In the initial registration phase (401), the air conditioning manager of the plant factory uses the terminal device 30 to provide the management server 10 with the facility form 51 of the plant factory and the adjustment range 52 of the air conditioning facility (wind, temperature, fin angle, etc.). ) And phase air conditioning conditions 53 for each cultivar and cultivation stage (eg, cultivars = lettuce, light phase air conditioning conditions after planting = temperature 12 ° C, allowable temperature range ± 3 ° C, humidity 30% allowable humidity range ± 10%, wind speed: 1 m or less, and a basic air-conditioning pattern 54 (default values such as wind, temperature, fin angle, etc. of each air conditioner) independent of cultivars are registered.
 管理サーバ10に登録された植物工場の施設形態51と空調設備の調整範囲52は、空調モデルDB17に格納される。栽培する品種や育成段階毎のフェーズ空調条件53は、空調条件DB18に格納される。基本空調パターン54は全栽培品種/育成段階の基本空調パターン54として、空調方式DB19に格納される。 The facility form 51 of the plant factory and the adjustment range 52 of the air conditioning equipment registered in the management server 10 are stored in the air conditioning model DB 17. The cultivars and the phase air-conditioning conditions 53 for each cultivation stage are stored in the air-conditioning condition DB 18. The basic air-conditioning pattern 54 is stored in the air-conditioning system DB 19 as the basic air-conditioning pattern 54 for all cultivars / cultivation stages.
 初期登録フェーズ(401)完了後、実際の育成を開始する場合、空調管理者は、端末装置30により栽培品種(例:レタス)と育成段階(例:定植)を登録(402)する。登録情報は、管理サーバ10の登録部12により品種DB19Aに格納される。 空調 After the completion of the initial registration phase (401), when starting the actual breeding, the air conditioning manager registers (402) the cultivar (eg, lettuce) and the breeding stage (eg, planting) using the terminal device 30. The registration information is stored in the type DB 19A by the registration unit 12 of the management server 10.
 端末装置30により栽培品種、育成段階の登録が完了したタイミングで、システムは、後述する空調方式探索フェーズP20に移行する(403)。
 また、空調方式探索フェーズP20内でフェーズ空調条件53の逸脱が解消できない状態が発生した場合、適正な空調パターンを探索するため、後述する有効空調パターン生成フェーズP30(405)に移行し、適正な空調パターンを発見し次第、空調方式探索フェーズP20に戻る。
At the timing when the registration of the cultivar and the breeding stage is completed by the terminal device 30, the system shifts to an air conditioning system search phase P20 described later (403).
Further, when a state in which the deviation of the phase air conditioning condition 53 cannot be resolved occurs within the air conditioning method search phase P20, the process proceeds to an effective air conditioning pattern generation phase P30 (405) described later to search for an appropriate air conditioning pattern. As soon as the air-conditioning pattern is found, the process returns to the air-conditioning method search phase P20.
 なお、有効空調パターン生成フェーズP30(405)、空調方式探索フェーズP20(403)それぞれにおいて、監視部13は、植物工場から周期的に送付される、環境情報23aの内容をチェックし、空調条件DB18の条件からの逸脱が発生した場合、その時の環境情報23aと逸脱した環境センサ23のIDsを逸脱が解消されるまで、空調パターン制御部15に送信しつづける。
 また、注意温度帯(例:要求温度条件の±1℃内)に入った場合も同様に、その時の環境情報23aと注意温度帯にある環境センサ23のIDsを注意温度帯外に戻るまで、空調パターン制御部15に送信しつづける。
In each of the effective air-conditioning pattern generation phase P30 (405) and the air-conditioning method search phase P20 (403), the monitoring unit 13 checks the contents of the environment information 23a periodically sent from the plant factory, and checks the air-conditioning condition DB 18 When the deviation from the above condition occurs, the environment information 23a at that time and the IDs of the deviating environment sensor 23 are continuously transmitted to the air-conditioning pattern control unit 15 until the deviation is resolved.
Similarly, when the temperature falls within the caution temperature zone (eg, within ± 1 ° C. of the required temperature condition), the environment information 23a at that time and the IDs of the environment sensors 23 in the caution temperature zone are returned to the outside of the caution temperature zone. The transmission to the air conditioning pattern control unit 15 is continued.
 図23及び図24に有効空調パターン生成フェーズP30の動作を示すフローチャートである。
図25、図26及び図27は、空調方式探索フェーズP20の動作フローを示すフローチャートである。
23 and 24 are flowcharts showing the operation of the effective air conditioning pattern generation phase P30.
FIG. 25, FIG. 26, and FIG. 27 are flowcharts illustrating the operation flow of the air conditioning method search phase P20.
 図23及び図24の有効空調パターン生成フェーズP30の動作フローにおいて、空調パターン制御部15は、監視部13から環境情報23aと逸脱した環境センサ23のIDs又はIDs群を通知される。その場合、空調パターン制御部15は、植物工場の空調制御部211に対し、カメラ画像(植物の状態画像)の送付を指示し、カメラ画像を取得する(P510)。 In the operation flow of the effective air-conditioning pattern generation phase P30 in FIGS. 23 and 24, the air-conditioning pattern control unit 15 is notified from the monitoring unit 13 of the environment information 23a and the IDs or IDs of the environment sensors 23 that have deviated. In this case, the air-conditioning pattern control unit 15 instructs the air-conditioning control unit 211 of the plant factory to send a camera image (a state image of a plant), and acquires a camera image (P510).
 続いて、空調パターン制御部15は、モデル更新部16Aにカメラ画像を転送し、空調モデルDB17の更新を指示する。モデル更新部16Aは、カメラ画像を解析し、植物の大きさや形状を判定し(P511)、空調環境モデルDB17に格納されている空調環境モデル上に、判定した形状の植物(オブジェクト)を反映する(P512)。
 空調モデルDB17の更新が完了し次第、空調パターン制御部15は、空調モデルDB17に格納された植物工場の環境モデルをシミュレータ部14に入力し、環境条件を逸脱した環境センサ23又は、センサ群の空調に影響する空気調和機群を空調シミュレーションにより抽出する(P501)。
 次に、空調パターン制御部15は、抽出した空気調和機群を試行空調パターン生成部16に入力する。
 試行空調パターン生成部16は、空調モデルDB17から該当する空気調和機の調整範囲52(風力、温度、フィンの角度等)を基に、該当空気調和機群の試行空調パターン群を生成(P502)し、空調パターン制御部15に送信する。
 空調パターン制御部15は、送付された試行空調パターンの実行を植物工場の空調制御部211(P503)に指示する。
Subsequently, the air-conditioning pattern control unit 15 transfers the camera image to the model updating unit 16A, and instructs the air-conditioning model DB 17 to update. The model update unit 16A analyzes the camera image, determines the size and shape of the plant (P511), and reflects the plant (object) having the determined shape on the air conditioning environment model stored in the air conditioning environment model DB17. (P512).
As soon as the update of the air-conditioning model DB 17 is completed, the air-conditioning pattern control unit 15 inputs the environmental model of the plant factory stored in the air-conditioning model DB 17 to the simulator unit 14, and outputs the environmental sensor 23 or the sensor group that deviates from the environmental condition. An air conditioner group affecting air conditioning is extracted by air conditioning simulation (P501).
Next, the air conditioning pattern control unit 15 inputs the extracted air conditioner group to the trial air conditioning pattern generation unit 16.
The trial air-conditioning pattern generation unit 16 generates a trial air-conditioning pattern group of the corresponding air conditioner group based on the adjustment range 52 (wind power, temperature, fin angle, etc.) of the corresponding air conditioner from the air conditioning model DB 17 (P502). Then, it transmits to the air conditioning pattern control unit 15.
The air conditioning pattern control unit 15 instructs the plant factory air conditioning control unit 211 (P503) to execute the sent trial air conditioning pattern.
 試行空調パターンの開始から規定時間(2分等)内に、監視部13からの環境情報23aと逸脱した環境センサ23のIDsを通知が停止し、その後一定時間(10分等)監視部13からの通知が無い場合、空調パターン制御部15は、現在の試行空調パターンが適正であると判断する(P504でYES)。現在の試行空調パターンを最適空調DBに登録し(P505)、登録空調適用フェーズに移行する(P506)。
 試行空調パターン実施から規定時間内に監視部13からの通知が停止しない、又は通知の停止後、一定時間内に監視部13からの通知が開始された場合、空調パターン制御部15は、現在の試行空調パターンは不適正と判断し、次の試行空調パターンを実効する(P509)。
 試行空調パターン生成部16から送信された全ての試行空調パターンを実行し、次に行う試行空調パターンが存在しない場合(P508)、空調パターン制御部15は、現在の試行フェーズで実行した空調パターンの中で、逸脱した環境センサ23の数が最小となる空調パターン及びその時の逸脱した環境センサ23のIDsをそれぞれ空調方式DB19の有効空調パターンフィールド191と注意環境センサIDフィールド192に登録し(P507)、最適空調方式探索・実行フェーズに移行する(P506)。
Within a specified time (2 minutes, etc.) from the start of the trial air conditioning pattern, the notification of the environment information 23a from the monitoring unit 13 and the IDs of the deviated environment sensor 23 is stopped, and then the monitoring unit 13 sends the ID information for a certain time (10 minutes, etc.). Is not received, the air-conditioning pattern control unit 15 determines that the current trial air-conditioning pattern is appropriate (YES in P504). The current trial air-conditioning pattern is registered in the optimal air-conditioning DB (P505), and the process proceeds to the registered air-conditioning application phase (P506).
If the notification from the monitoring unit 13 does not stop within a specified time after the trial air-conditioning pattern is performed, or if the notification from the monitoring unit 13 is started within a predetermined time after the notification is stopped, the air-conditioning pattern control unit 15 The trial air conditioning pattern is determined to be inappropriate, and the next trial air conditioning pattern is executed (P509).
When all the trial air conditioning patterns transmitted from the trial air conditioning pattern generation unit 16 have been executed, and there is no trial air conditioning pattern to be performed next (P508), the air conditioning pattern control unit 15 determines the air conditioning pattern that has been executed in the current trial phase. Among them, the air-conditioning pattern that minimizes the number of deviated environment sensors 23 and the IDs of the deviated environment sensors 23 at that time are registered in the effective air-conditioning pattern field 191 and the caution environment sensor ID field 192 of the air-conditioning method DB 19, respectively (P507). Then, the process proceeds to the optimum air conditioning system search / execution phase (P506).
 図25、図26及び図27の空調方式探索フェーズP20の動作フローにおいて、空調パターン制御部15は、品種DB19Aから現在の育成品種、育成段階を取得し、これらをキーに空調方式DB19を検索する。
 有効空調パターン組合せフィールド193に該当する空調パターンの組合せがヒットした場合、空調パターン制御部15は、その空調パターンの組合せを内部の実行パターンリング配列15Rに格納する(P603)。
空調パターン制御部15は、実行パターンリング配列15Rの先頭の空調パターンを植物工場内の空調制御部211に送信し、空調制御を実行する(P604)。
In the operation flow of the air-conditioning system search phase P20 in FIGS. 25, 26, and 27, the air-conditioning pattern control unit 15 acquires the current breeding type and breeding stage from the type DB 19A, and searches the air-conditioning system DB 19 using these as keys. .
When a combination of the air conditioning patterns corresponding to the effective air conditioning pattern combination field 193 is hit, the air conditioning pattern control unit 15 stores the combination of the air conditioning patterns in the internal execution pattern ring array 15R (P603).
The air-conditioning pattern control unit 15 transmits the head air-conditioning pattern of the execution pattern ring array 15R to the air-conditioning control unit 211 in the plant factory, and executes the air-conditioning control (P604).
 監視部13は、植物工場から送付される環境情報23aを監視し、注意温度帯に入った場合、空調パターン制御部15に通知し、空調パターン制御部15は、実行パターンリング配列15Rに格納された、次の空調パターンを実行する(P606)。
 空調パターン制御部15は、監視部13からフェーズ空調条件53の逸脱が通知されるまで、実行パターンリング配列15Rに格納された空調パターンを切り替えながら空調を続ける。
 空調パターン制御部15は、フェーズ空調条件53の逸脱が通知された場合、最適空調方式DB19に未実行の空調パターンの組合せがある限り、その空調パターンの組合せを実行パターンリング配列15Rに格納しなおし(P609)、上記の実行パターンリング配列15Rによる空調制御を実行する。
 要求条件を逸脱(P607)し、かつ未実行の空調パターンの組合せが無い場合(P608)、空調パターン制御部15は、最適空調方式DB19に登録された有効空調パターンフィールド191の中で、注意環境センサIDsが登録されていない空調パターンを検索する(P610)。
The monitoring unit 13 monitors the environmental information 23a sent from the plant factory, and notifies the air conditioning pattern control unit 15 when the temperature falls within the cautionary temperature zone. The air conditioning pattern control unit 15 is stored in the execution pattern ring array 15R. In addition, the next air conditioning pattern is executed (P606).
The air conditioning pattern control unit 15 continues the air conditioning while switching the air conditioning pattern stored in the execution pattern ring array 15R until the monitoring unit 13 notifies the deviation of the phase air conditioning condition 53.
When the deviation of the phase air-conditioning condition 53 is notified, the air-conditioning pattern control unit 15 stores the combination of the air-conditioning patterns in the execution pattern ring array 15R as long as there is an unexecuted air-conditioning pattern combination in the optimal air-conditioning method DB19. (P609) The air conditioning control is executed by the execution pattern ring array 15R.
When the required condition is deviated (P607) and there is no combination of unexecuted air-conditioning patterns (P608), the air-conditioning pattern control unit 15 sets the caution environment in the effective air-conditioning pattern field 191 registered in the optimum air-conditioning method DB19. An air conditioning pattern for which no sensor IDs are registered is searched (P610).
 注意環境センサIDsが登録されていない空調パターンが存在する場合、空調パターン制御部15は、その空調パターンを実行し(P611)、フェーズ空調条件53が逸脱したタイミングで(P612)、逸脱した環境センサ23のIDsを最適空調方式DB19の該当空調パターンの注意環境センサIDフィールド192に登録する(P613)。
 注意環境センサIDsが登録されていない空調パターンが存在しない、もしくは上記注意環境センサIDsの登録が完了した場合、空調パターン制御部15は、空調方式DB19に登録されている現在の育成段階に対応する全ての空調パターンの順列・組合せを生成する。ただし、生成した空調パターンの順列・組合せの中で、注意環境センサIDsが同じ空調パターンが連続する順列・組合せ及び、登録済みの空調パターンの組合せは削除する(P614)。
If there is an air conditioning pattern for which the caution environment sensor IDs are not registered, the air conditioning pattern control unit 15 executes the air conditioning pattern (P611), and when the phase air conditioning condition 53 deviates (P612), the deviated environment sensor The 23 IDs are registered in the caution environment sensor ID field 192 of the corresponding air conditioning pattern in the optimal air conditioning system DB 19 (P613).
When there is no air-conditioning pattern in which the caution environment sensor IDs are not registered, or when the registration of the caution environment sensor IDs is completed, the air-conditioning pattern control unit 15 corresponds to the current training stage registered in the air-conditioning method DB 19. Generate permutations / combinations of all air conditioning patterns. However, among the permutations / combinations of the generated air-conditioning patterns, the permutations / combinations in which the air-conditioning patterns having the same caution environment sensor IDs are continuous and the combination of the registered air-conditioning patterns are deleted (P614).
 次に、空調パターン制御部15は、生成した空調パターンの組合せを内部の実行パターンリング配列15Rに格納する(P615)。
 続いて、空調パターン制御部15は、いずれかの環境温度センサが注意温度帯に入った場合、実行パターンリング配列15R上の次の空調パターンを実行する(P619,P620)。
 現在の実行パターンリング配列での空調時間が一定時間、フェーズ空調条件53を達成した(P617)タイミングで、空調パターン制御部15は、現在の空調パターンの組合せを最適空調方式DB19の先頭に登録する(P618)。
 現在の実行パターンリング配列での空調がフェーズ空調条件53を逸脱した場合(P621)、空調パターン制御部15は、次の生成した空調パターンの組合せを実行パターンリング配列に格納し(P626)、上記P616からP621までの空調を行う。
Next, the air conditioning pattern control unit 15 stores the generated combination of the air conditioning patterns in the internal execution pattern ring array 15R (P615).
Subsequently, when one of the environmental temperature sensors enters the caution temperature zone, the air conditioning pattern control unit 15 executes the next air conditioning pattern on the execution pattern ring array 15R (P619, P620).
At a timing when the air-conditioning time in the current execution pattern ring arrangement has reached the phase air-conditioning condition 53 for a fixed time (P617), the air-conditioning pattern control unit 15 registers the current air-conditioning pattern combination at the top of the optimal air-conditioning method DB19. (P618).
When the air conditioning in the current execution pattern ring array deviates from the phase air conditioning condition 53 (P621), the air conditioning pattern control unit 15 stores the next combination of the generated air conditioning patterns in the execution pattern ring array (P626). The air conditioning from P616 to P621 is performed.
 なお、P614で生成した全ての空調パターンの組合せを実行してもフェーズ空調条件53が満たせない場合、空調パターン制御部15は、実行した空調パターンの組合せの中で、逸脱した環境センサ23の数が最も少ない(逸脱領域が最小となる)空調パターンの組合せを実行(P623)する。 If the phase air-conditioning condition 53 is not satisfied even if all the air-conditioning pattern combinations generated in P614 are executed, the air-conditioning pattern control unit 15 determines the number of deviated environmental sensors 23 in the executed air-conditioning pattern combinations. Is executed (P623).
 その後、空調パターン制御部15は、端末装置30に、フェーズ空調条件53を逸脱している環境センサ23の位置と逸脱温度を通知(P624)すると共に、有効空調パターン生成フェーズP30に移行する(P625)。 After that, the air-conditioning pattern control unit 15 notifies the terminal device 30 of the position and the departure temperature of the environment sensor 23 that has deviated from the phase air-conditioning condition 53 (P624), and shifts to the effective air-conditioning pattern generation phase P30 (P625). ).
 以上のように、植物工場の植物の成長状態や二酸化炭素、温湿度ムラなどの空調状態に応じて調整が必要な空気調和機をシミュレータ部により特定する。
 そして、その空気調和機の空調パターンの試行を行うことにより、フェーズ空調条件53を逸脱しない空調パターンを探索・蓄積し、且つ蓄積した空調パターンの最適な組み合わせを自動的に生成・蓄積する。
 よって、植物工場全体の空調状態を自動で適正化すると共に、フェーズ空調条件53の逸脱が発生した場合でも、素早く空調を適正化する空調パターンを探索・実行できる。
As described above, the air conditioner that needs to be adjusted according to the air condition such as the growth state of the plant in the plant factory, carbon dioxide, and uneven temperature and humidity is specified by the simulator unit.
Then, by performing a trial of the air conditioning pattern of the air conditioner, an air conditioning pattern that does not deviate from the phase air conditioning condition 53 is searched and stored, and an optimal combination of the stored air conditioning patterns is automatically generated and stored.
Therefore, the air-conditioning state of the entire plant factory can be automatically optimized, and even when the phase air-conditioning condition 53 deviates, an air-conditioning pattern that optimizes air-conditioning can be quickly searched and executed.
 10 管理サーバ、11 通信制御部、12 登録部、13 監視部、14 シミュレータ部、15 空調パターン制御部、16 試行空調パターン生成部、16A モデル更新部、17 空調モデルDB、18 空調条件DB、19 空調方式DB、19A 品種DB、20 施設、20A 植物工場、22 空気調和機、23 環境センサ、22a 空調情報、23 環境センサ、23a 環境情報、24 カメラ、30 端末装置、40 ネットワーク、51 施設形態、52 調整範囲、53 フェーズ空調条件、54 基本空調パターン、55 利用フェーズ、81 プロセッサ、82 主記憶装置、83 補助記憶装置、84 通信インタフェース、85 入出力インタフェース、86 信号線、90 電子回路、91 信号線、100 空調システム、191 有効空調パターンフィールド、192 注意環境センサIDフィールド、193 有効空調パターン組合せフィールド、200 施設装置、211 空調制御部、212 通信制御部、231 逸脱情報。 10 management server, 11 communication control unit, 12 registration unit, 13 monitoring unit, 14 simulator unit, 15 air conditioning pattern control unit, 16 trial air conditioning pattern generation unit, 16A model update unit, 17 air conditioning model DB, 18 air conditioning condition DB, 19 Air conditioning system DB, 19A type DB, 20% facility, 20A plant factory, 22 air conditioner, 23 environment sensor, 22a air conditioning information, 23 environment sensor, 23a environment information, 24 camera, 30 terminal device, 40 network, 51 facility type, 52 adjustment range, 53 phase air conditioning conditions, 54 basic air conditioning pattern, 55 utilization phase, 81 processor, 82 main storage, 83 auxiliary storage, 84 communication interface, 85 input / output interface, 86 signal line, 90 electronic circuit, 91 signal , 100 air conditioning system, 191 effective conditioning pattern field 192 Note environmental sensor ID field 193 effective conditioning pattern combination field 200 facility device, 211 air conditioning control unit, 212 communication control unit, 231 the deviation information.

Claims (3)

  1.  複数の空気調和機が設置された施設の空調環境を測定する複数のセンサから前記センサの測定結果を示すと共に前記センサの識別子が対応付けられた複数の環境情報を取得し、前記複数の環境情報のうち予め設定されている空調環境条件に合致しない前記環境情報に対応付けられた前記識別子を抽出する監視部と、
     前記施設の前記空調環境のシミュレーションにより、抽出された前記センサの測定結果に影響する前記空気調和機を抽出する抽出制御部と、
     抽出された前記空気調和機の空調能力情報を使用して、前記空気調和機の稼働可能な状態を示す複数の試行空調パターンを生成する試行空調パターン生成部と、
     前記空気調和機に前記複数の試行空調パターンを順に実行させ、前記空調環境条件を満たす前記試行空調パターンがある場合、前記空調環境条件を満たす前記試行空調パターンを記憶装置に有効空調パターンとして格納する試行実行制御部と、
     前記記憶装置に複数の有効空調パターンがある場合、複数の有効空調パターンの実行順序を示す複数の有効空調パターン組み合わせを生成し、前記空気調和機に前記複数の有効空調パターンを順に実行させる有効実行制御部と、
    を備える空調管理サーバ装置。
    Acquiring a plurality of pieces of environment information indicating the measurement results of the sensors from a plurality of sensors that measure the air conditioning environment of a facility in which a plurality of air conditioners are installed and acquiring a plurality of pieces of environment information associated with the identifiers of the sensors, A monitoring unit that extracts the identifier associated with the environmental information that does not match a preset air conditioning environment condition;
    By the simulation of the air conditioning environment of the facility, an extraction control unit that extracts the air conditioner that affects the measurement result of the extracted sensor,
    Using the extracted air conditioning capacity information of the air conditioner, a trial air conditioning pattern generation unit that generates a plurality of trial air conditioning patterns indicating an operable state of the air conditioner,
    The air conditioner sequentially executes the plurality of trial air conditioning patterns, and when there is the trial air conditioning pattern that satisfies the air conditioning environment condition, stores the trial air conditioning pattern that satisfies the air conditioning environment condition as an effective air conditioning pattern in a storage device. A trial execution control unit;
    When the storage device has a plurality of effective air conditioning patterns, a plurality of effective air conditioning pattern combinations indicating an execution order of the plurality of effective air conditioning patterns are generated, and the air conditioner executes the plurality of effective air conditioning patterns in order. A control unit;
    Air conditioning management server device comprising:
  2.  コンピュータに、
     複数の空気調和機が設置された施設の空調環境を測定する複数のセンサから前記センサの測定結果を示すと共に前記センサの識別子が対応付けられた複数の環境情報を取得し、前記複数の環境情報のうち予め設定されている空調環境条件に合致しない前記環境情報に対応付けられた前記識別子を抽出する処理と、
     前記施設の前記空調環境のシミュレーションにより、抽出された前記センサの測定結果に影響する前記空気調和機を抽出する処理と、
     抽出された前記空気調和機の空調能力情報を使用して、前記空気調和機の稼働可能な状態を示す複数の試行空調パターンを生成する処理と、
     前記空気調和機に前記複数の試行空調パターンを順に実行させ、前記空調環境条件を満たす前記試行空調パターンがある場合、前記空調環境条件を満たす前記試行空調パターンを記憶装置に有効空調パターンとして格納する処理と、
     前記記憶装置に複数の有効空調パターンがある場合、複数の有効空調パターンの実行順序を示す複数の有効空調パターン組み合わせを生成し、前記空気調和機に前記複数の有効空調パターンを順に実行させる処理と、
    を実行させるための空調管理プログラム。
    On the computer,
    Acquiring a plurality of pieces of environment information indicating the measurement results of the sensors from a plurality of sensors that measure the air conditioning environment of a facility in which a plurality of air conditioners are installed and acquiring a plurality of pieces of environment information associated with the identifiers of the sensors, A process of extracting the identifier associated with the environment information that does not match the preset air conditioning environment condition;
    A process of extracting the air conditioner that affects the measurement result of the extracted sensor by the simulation of the air conditioning environment of the facility;
    Using the extracted air conditioning capacity information of the air conditioner, a process of generating a plurality of trial air conditioning patterns indicating the operable state of the air conditioner,
    The air conditioner sequentially executes the plurality of trial air conditioning patterns, and when there is the trial air conditioning pattern that satisfies the air conditioning environment condition, stores the trial air conditioning pattern that satisfies the air conditioning environment condition as an effective air conditioning pattern in a storage device. Processing,
    When the storage device has a plurality of effective air conditioning patterns, a process of generating a plurality of effective air conditioning pattern combinations indicating an execution order of the plurality of effective air conditioning patterns, and causing the air conditioner to execute the plurality of effective air conditioning patterns in order. ,
    Air-conditioning management program to make it run.
  3.  コンピュータが、
     複数の空気調和機が設置された施設の空調環境を測定する複数のセンサから前記センサの測定結果を示すと共に前記センサの識別子が対応付けられた複数の環境情報を取得し、前記複数の環境情報のうち予め設定されている空調環境条件に合致しない前記環境情報に対応付けられた前記識別子を抽出し、
     前記施設の前記空調環境のシミュレーションにより、抽出された前記センサの測定結果に影響する前記空気調和機を抽出し、
     抽出された前記空気調和機の空調能力情報を使用して、前記空気調和機の稼働可能な状態を示す複数の試行空調パターンを生成し、
     前記空気調和機に前記複数の試行空調パターンを順に実行させ、前記空調環境条件を満たす前記試行空調パターンがある場合、前記空調環境条件を満たす前記試行空調パターンを記憶装置に有効空調パターンとして格納し、
     前記記憶装置に複数の有効空調パターンがある場合、複数の有効空調パターンの実行順序を示す複数の有効空調パターン組み合わせを生成し、前記空気調和機に前記複数の有効空調パターンを順に実行させる、
    空調管理方法。
    Computer
    Acquiring a plurality of pieces of environment information indicating the measurement results of the sensors from a plurality of sensors that measure the air conditioning environment of a facility in which a plurality of air conditioners are installed and acquiring a plurality of pieces of environment information associated with the identifiers of the sensors, Extracting the identifier associated with the environment information that does not match the preset air conditioning environment condition,
    By the simulation of the air conditioning environment of the facility, to extract the air conditioner affecting the measurement result of the extracted sensor,
    Using the extracted air conditioning capacity information of the air conditioner, to generate a plurality of trial air conditioning patterns indicating the operable state of the air conditioner,
    The air conditioner sequentially executes the plurality of trial air conditioning patterns, and when there is the trial air conditioning pattern that satisfies the air conditioning environment condition, stores the trial air conditioning pattern that satisfies the air conditioning environment condition as an effective air conditioning pattern in a storage device. ,
    When the storage device has a plurality of effective air conditioning patterns, a plurality of effective air conditioning pattern combinations indicating the execution order of the plurality of effective air conditioning patterns are generated, and the air conditioner sequentially executes the plurality of effective air conditioning patterns.
    Air conditioning management method.
PCT/JP2018/033402 2018-09-10 2018-09-10 Air conditioning management server device, air conditioning management program, and air conditioning management method WO2020053924A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019508999A JP6522269B1 (en) 2018-09-10 2018-09-10 Air conditioning management server device, air conditioning management program, and air conditioning management method
PCT/JP2018/033402 WO2020053924A1 (en) 2018-09-10 2018-09-10 Air conditioning management server device, air conditioning management program, and air conditioning management method
TW108129793A TW202020377A (en) 2018-09-10 2019-08-21 Air conditioning management server device, air conditioning management program, and air conditioning management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033402 WO2020053924A1 (en) 2018-09-10 2018-09-10 Air conditioning management server device, air conditioning management program, and air conditioning management method

Publications (1)

Publication Number Publication Date
WO2020053924A1 true WO2020053924A1 (en) 2020-03-19

Family

ID=66655714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033402 WO2020053924A1 (en) 2018-09-10 2018-09-10 Air conditioning management server device, air conditioning management program, and air conditioning management method

Country Status (3)

Country Link
JP (1) JP6522269B1 (en)
TW (1) TW202020377A (en)
WO (1) WO2020053924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020194602A1 (en) * 2019-03-27 2021-09-13 三菱電機株式会社 Risk calculation device, risk calculation program and risk calculation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392394B2 (en) * 2019-10-31 2023-12-06 株式会社富士通ゼネラル Air conditioning system and air conditioner
JP7484243B2 (en) 2020-03-10 2024-05-16 株式会社大林組 Cultivation facility design support system, cultivation facility air conditioning system, cultivation facility design support method, and cultivation facility design support program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171071A (en) * 1998-12-09 2000-06-23 Taisei Corp Air conditioning control method
JP2011112258A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Air conditioning control device
JP2013204932A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd System and method for controlling air conditioning
JP2014183553A (en) * 2013-03-21 2014-09-29 Toshiba Corp Device, method and program for estimating probability of presence in room
JP2014185825A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Temperature estimation device and temperature estimation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171071A (en) * 1998-12-09 2000-06-23 Taisei Corp Air conditioning control method
JP2011112258A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Air conditioning control device
JP2013204932A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd System and method for controlling air conditioning
JP2014183553A (en) * 2013-03-21 2014-09-29 Toshiba Corp Device, method and program for estimating probability of presence in room
JP2014185825A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Temperature estimation device and temperature estimation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020194602A1 (en) * 2019-03-27 2021-09-13 三菱電機株式会社 Risk calculation device, risk calculation program and risk calculation method
JP6995243B2 (en) 2019-03-27 2022-02-04 三菱電機株式会社 Risk calculator, risk calculator and risk calculator

Also Published As

Publication number Publication date
JPWO2020053924A1 (en) 2020-10-22
TW202020377A (en) 2020-06-01
JP6522269B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2020053924A1 (en) Air conditioning management server device, air conditioning management program, and air conditioning management method
US10935939B2 (en) Machine learning device, servo control apparatus, servo control system, and machine learning method
US10534354B2 (en) Device maintenance apparatus, device maintenance system, device maintenance method, device maintenance program, and storage medium
JP2008033856A (en) Server device and program
TW202018727A (en) Ensemble learning predicting method and system
JP2018048750A (en) Air conditioning control device, air conditioning control method, and air conditioning control program
CN115529987A (en) Air port regulating and controlling method, device, equipment and storage medium for crop facility
JPWO2016151779A1 (en) Information processing apparatus and management apparatus
JP2010020358A (en) Device management apparatus
JP2021012475A (en) Apparatus and method for information processing and program
US20200379452A1 (en) Plant operating condition setting support system, learning device, and operating condition setting support device
CN113836782A (en) Calculation system, calculation method and gas delivery device
JP4393146B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
CN113613144B (en) Temperature compensation method, device, playing equipment and readable storage medium
WO2014054467A1 (en) Information processing system, information processing device, and terminal device
US11959812B2 (en) Automated programmable dehumidifier
JP7302633B2 (en) Setting system, setting device, setting method and setting program
US11422914B2 (en) Metadata generation apparatus, metadata generation method, and program
US20230135737A1 (en) Model adjustment method, model adjustment system and non- transitory computer readable medium
CN118011778A (en) Temperature self-adaptive regulation and control method of insect protein fresh-keeping system
AU2020200484B2 (en) Mapping a loop object to a feedback loop
JP5117434B2 (en) Control device maintenance device
JP7203374B2 (en) Equipment control device, learning device, equipment control method, learning device production method, and program
WO2023282917A1 (en) Automated programmable dehumidifier
JP6528869B1 (en) Session control apparatus, session control method and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019508999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933127

Country of ref document: EP

Kind code of ref document: A1