WO2020052381A1 - 应用于屏下成像的驱动和图像获取方法、存储介质和电子设备 - Google Patents

应用于屏下成像的驱动和图像获取方法、存储介质和电子设备 Download PDF

Info

Publication number
WO2020052381A1
WO2020052381A1 PCT/CN2019/099637 CN2019099637W WO2020052381A1 WO 2020052381 A1 WO2020052381 A1 WO 2020052381A1 CN 2019099637 W CN2019099637 W CN 2019099637W WO 2020052381 A1 WO2020052381 A1 WO 2020052381A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
point light
under
driving method
display panel
Prior art date
Application number
PCT/CN2019/099637
Other languages
English (en)
French (fr)
Inventor
陈宗文
Original Assignee
上海耕岩智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811062040.3A external-priority patent/CN110896433A/zh
Priority claimed from CN201811061474.1A external-priority patent/CN110895664A/zh
Application filed by 上海耕岩智能科技有限公司 filed Critical 上海耕岩智能科技有限公司
Priority to US17/275,387 priority Critical patent/US20220130165A1/en
Publication of WO2020052381A1 publication Critical patent/WO2020052381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Definitions

  • the present invention relates to the field of under-screen imaging technology, and in particular, to a driving method and an image acquisition method, a storage medium, and an electronic device applied to under-screen imaging.
  • biometric recognition technology is playing an increasingly important role in ensuring information security.
  • fingerprint recognition has become one of the key technical means for identity recognition and device unlocking widely used in the mobile Internet field.
  • capacitive fingerprint recognition is no longer sufficient, while ultrasonic fingerprint recognition has technical maturity and cost problems.
  • Optical fingerprint recognition is expected to become the screen The mainstream technical solution for image recognition.
  • the existing optical fingerprint recognition scheme is based on the geometric optical lens imaging principle.
  • the fingerprint module used includes microlens arrays, optical space filters and other components. It has many shortcomings such as complex structure, thick module, small sensing range, high cost, etc.
  • the invention provides a driving method and an image acquisition method, a storage medium and an electronic device which are applied to imaging under a screen, so as to solve the problem that the ordinary uniform illumination light source cannot meet the requirements of the principle of total reflection imaging.
  • the driving method includes: illuminating pixels of a plurality of discrete point light source regions of the display panel, the point light source regions being arrayed and spaced with non-light emitting pixel points; obtaining pixel points through a light-transmissive cover plate through a photoelectric sensor; Reflected light; the display panel and the photoelectric sensor are placed under the light-transmissive cover.
  • the array is arranged horizontally and vertically, or the array is arranged in a ring shape.
  • the distance between two adjacent point light sources satisfies the conditions that the point light source total reflection image collected by the photoelectric sensor is non-contact and non-repeating.
  • the wavelength of the point light source is 515 nm to 700 nm.
  • the driving method further includes: assigning a matrix with the same resolution as the display panel, assigning a point light source region to a non-zero value, assigning other regions to zero, and assigning a value
  • the resulting matrix is used as RGB information to generate a display image; and sending the display image to the display panel.
  • the point light source region includes a plurality of pixel points.
  • the point light source region is a circle-like, rectangular, rhombic, or triangular shape.
  • the display panel is a liquid crystal display, an active matrix organic light emitting diode display, or a micro light emitting diode display.
  • the driving method further includes the steps of: performing the same position shift on all the point light source regions after a preset time interval; and repeating the step of lighting pixel points and the step of obtaining light.
  • repeating the step of lighting the pixel point and the step of acquiring light again include: performing the step of lighting the pixel point and the step of acquiring light for a preset number of times.
  • the preset number of times is 6 or more.
  • the position shift includes a point light source shifting in a direction of an adjacent point light source; and the distance of the position shift is an integer fraction of a distance between adjacent point light sources.
  • the array arrangement includes a transverse arrangement and a longitudinal arrangement that are perpendicular to each other; and the position shift includes a lateral shift, a longitudinal shift, or a ⁇ 45 ° direction shift.
  • the lateral offset distance is an integer fraction of the horizontal separation distance of adjacent point light source regions;
  • the vertical offset distance is an integer fraction of the vertical separation distance of adjacent point light source regions;
  • the offset distance in the direction is an integer fraction of the distance between adjacent point light source areas in that direction in that direction.
  • An embodiment of the present invention further provides an image acquisition method applied to imaging under a screen, which includes: using the driving method of the embodiment of the present invention to acquire light data; and
  • the stitching processing is performed on the light data obtained by the photoelectric sensor in the step of lighting the pixels multiple times and the multiple light obtaining steps to obtain the stitched image data.
  • An embodiment of the present invention further provides a storage medium that stores a computer program.
  • the computer program is executed by a processor, the steps of the driving method according to the embodiment of the present invention are implemented.
  • An embodiment of the present invention further provides an electronic device including a memory, a processor, and an image acquisition structure.
  • the image acquisition structure includes a light-transmitting cover plate, a display panel, and a photosensor.
  • the display panel and the photo-sensor are disposed below the light-transmitting cover.
  • the processor is connected to the display panel and the photoelectric sensor, and a computer program is stored in the memory, and the computer program implements the steps of the driving method in the embodiment of the present invention when the computer program is executed by the processor.
  • the driving method applied to imaging under the screen of the embodiment of the present invention improves the imaging efficiency by lighting a large amount of image information each time by lighting pixels of multiple point light source regions at the same time; since multiple pixel points form a point light source, The brightness of the point light source is improved, and the quality of optical image formation under the lensless screen is improved.
  • the driving method adopts a time division multiplexing technique, that is, performing the same position shift for all the point light source regions multiple times, and can obtain light data including all images under the screen, thereby improving imaging efficiency.
  • An image acquisition method applied to imaging under a screen according to an embodiment of the present invention includes acquiring light data by using the driving method of the embodiment of the present invention; and acquiring the photoelectric sensor in multiple lighting pixel steps and multiple light obtaining steps.
  • the obtained light data is processed for stitching to obtain the stitched image data, thereby obtaining complete image data and improving the efficiency of image acquisition.
  • FIG. 1 is a schematic diagram of realizing optical fingerprint imaging under a lensless screen using a total reflection imaging principle
  • FIG. 2 is a flowchart of a driving method applied to imaging under a screen according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an array of a plurality of discrete point light source regions of a display panel according to an embodiment of the present invention
  • FIG. 4 is a distribution diagram of pixels included in a point light source according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a driving method according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of an image acquisition method applied to imaging under a screen according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a distance between a point light source and fingerprint acquisition according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of offsets of point light sources in different image collections according to the present invention.
  • FIG. 9 is fingerprint image data obtained by an embodiment of the present invention.
  • O luminous point
  • O ' another luminous point
  • A contact point between the fingerprint and the transparent cover
  • O '' Projection point of O light emitting point on the photoelectric sensor
  • a ' O luminous point is at the corresponding position of the display panel
  • This embodiment provides a driving method applied to imaging under a screen.
  • This method is applied to an imaging structure under a screen.
  • the imaging structure under a screen includes a light-transmissive cover plate.
  • a display panel and a photoelectric sensor, and the display panel and the photoelectric sensor are placed below the light-transmissive cover.
  • the light-transmissive cover plate may be a single-layer plate structure or a multilayer structure.
  • the single-layer structure may be a glass cover plate or an organic light-transmitting material cover plate.
  • the single-layer cover plate may also be a cover plate with other functions. touch screen.
  • the multilayer structure may be a multilayer glass cover or a multilayer organic light-transmitting material cover or a combination of a glass cover and an organic light-transmitting material cover.
  • the photoelectric sensor is used to obtain light and perform photoelectric conversion.
  • the photoelectric sensor includes a plurality of photosensitive units, and the plurality of photosensitive units may be separately disposed below the display panel or disposed on the display panel. When the plurality of photosensitive units are disposed below the display panel, light can pass through the gap between the light sources on the display panel and enter the photoelectric sensor. When the plurality of photosensitive units are disposed on a display panel, the photosensitive units may be disposed in a light source (pixel point) gap of the display panel.
  • the sensor can be set under the screen image imaging structure for acquiring the image under the screen, such as fingerprint fingerprint print.
  • the transparent cover and the display panel need to be filled with optical glue to connect and avoid air from reflecting the light.
  • the refractive index of the optical glue should be as close to the refractive index of the transparent cover as possible to prevent light from occurring between the optical glue and the transparent cover. reflection.
  • the principle of total reflection imaging is that when the finger is in contact with the light-transmissive cover during imaging, due to the air in the fingerprint depression, light with an incident angle exceeding the critical angle of total reflection will form total reflection, the photoelectric sensor will collect bright light, and the fingerprint will be convex. Contact with the upper surface of the light-transmissive cover plate, the light will not have total reflection, and the photoelectric sensor will collect darker light, so that the fingerprint image can be distinguished.
  • fingerprints are acquired, a point A on the cover glass pressed by a finger is imaged at point B on the sensor surface. According to the total reflection condition, the light emitted by a single light emitting point O on the display panel is just right. suit one's needs.
  • point A on the glass cover will have two imaging points B and B' on the sensor surface, which will produce a blurred image. From the perspective of optical imaging, the occurrence of two image points needs to be avoided as much as possible, so the ideal light source for imaging purposes under the screen should be a point light source.
  • a plurality of pixel points are first merged together to form a composite point light source whose overall brightness meets imaging requirements.
  • the finger is illuminated by multiple discrete synthetic point light sources in parallel to meet the requirements of fast under-screen image imaging.
  • step S201 illuminates a pixel step: lighting pixels of a plurality of discrete point light source regions of the display panel. Non-light emitting pixels are arranged in an array and spaced apart, and the point light source region includes a plurality of pixels, and preferably the plurality of pixels have the same color.
  • step S202 The light obtaining step: obtaining the light that is totally reflected by the pixels through the light-transmitting cover through the photoelectric sensor; the display panel and the photo-sensor are placed under the light-transmitting cover.
  • multiple discrete point light source areas can illuminate multiple areas on the light-transmissive cover, and then the light that has been totally reflected by the upper surface of the light-transmissive cover can be obtained by the photoelectric sensor, so that it can be obtained. Images to multiple areas improve image acquisition efficiency. At the same time, the point light source area contains multiple pixels, which meets the lighting brightness requirements of imaging, and can realize the collection of images on the transparent cover.
  • the array of point light sources in this embodiment has a variety of arrangements, and the uniform arrangement is preferred, that is, the distance between the two point light sources is equal, so that the image reflected by each point light source is the same, which is convenient for subsequent images. deal with.
  • the specific form of the arrangement may be a horizontal arrangement and a vertical arrangement, or the array arrangement may be a ring arrangement.
  • Horizontal arrangement and vertical arrangement that is, a plurality of point light sources constitute a plurality of parallel horizontal rows and a plurality of parallel vertical rows.
  • the white point is a point light source
  • the horizontal row and the vertical row are perpendicular to each other, and of course, there may be a certain angle (such as 60 °) in some embodiments.
  • the circular arrangement may be that the point light source is located on a circle whose radius is increased in sequence with the center of the screen as the center.
  • the distance between point light sources is determined by the imaging quality. This distance is determined by the distance between the light source and the upper surface of the light-transmissive cover plate. These two distances are proportional. In order to avoid overlap between imaging, the distance between two adjacent point light sources meets the condition that the point light source total reflection image collected by the photoelectric sensor is not in contact and does not repeat. Preferably, the distance between the point light sources may be a minimum value under the condition that the total reflection images of two adjacent point light sources are not in contact and are not repeated.
  • This minimum value can be obtained through multiple manual experiments, such as obtaining a total reflection image of a point light source at different point light source intervals, and then viewing the minimum value of the point light source distance when the reflected image meets the conditions of non-contact and non-repetition. This minimum value can then be set in advance on the memory in which the method is run.
  • the distance between point light sources will be affected by the hardware parameters of imaging structures such as display panels, photoelectric sensors, and light-transmissive covers. In actual applications, the hardware parameters of a product's screen will generally not change. For these specific screens, The method of manual multiple experiments is more direct and convenient.
  • the distance between the point light sources can also be relatively close, so that in a single light acquisition, the total reflection image of a single point light source will overlap, and the overlapped part will be removed during image processing, which will increase Workload per image processing.
  • the present invention combines multiple pixels to form a composite point light source whose overall brightness meets imaging requirements, that is, the brightness of a point light source must meet the requirements that can be obtained by a photoelectric sensor.
  • the pixel brightness of the display panel is in inverse linear relationship.
  • the shape of the point light source will also affect the imaging quality, and the shape of the point light source may be rectangular, diamond, or triangular.
  • the point light source region is a quasi-circular shape. Since each pixel is actually a square, the combination of multiple pixels cannot form a standard circle, it can only be a circle-like.
  • the circle-like pixels can be determined to draw a circle with a certain pixel as the center.
  • the pixels in the circle can be all circle-like pixels.
  • the pixels on the circumference can be set to a preset area ratio. If the ratio of the area of a pixel in a circle to the total area of a pixel is greater than a preset area ratio, the pixel is regarded as a circular pixel of a point light source type.
  • the size of the circle determines the light intensity of the point light source and whether the photoelectric sensor can obtain higher quality images. If the circle is too small, the area of the point light source is too small, which will cause insufficient light. The circle is too large, and the area of the point light source is too large. It will also affect the imaging quality. Different display panels also have different light source intensities, and the size of the point light source area of different display panels will also be different.
  • the size of the point light source area can also be obtained by manual multiple experiments.
  • the point light source area can be sequentially lit from small to large. After the image data is obtained by the photoelectric sensor, it is manually selected. The smallest point light source area that satisfies the imaging quality.
  • the number of pixels can be a rectangle with a side length of 2-15 pixels.
  • the preferred size and shape of an actual point light source is shown in FIG. 4 (each grid represents a pixel, and the light source position is shown in white).
  • the middle is a rectangle of 7pixel * 7pixel. There are three pixel protrusions on one side in the middle, which can achieve better imaging quality.
  • the preferred light source has a wavelength of 515nm to 700nm, that is, green (515nm-560nm), red (610nm-700nm), or any combination of these two colors with other colors. Such colors are most suitable for photoelectric sensors. Sensitive, which is beneficial to the light acquisition of the photoelectric sensor.
  • the display panel can be used not only as a light source to emit light, but also as a display image.
  • the display panel includes a liquid crystal display (LCD), an active matrix organic light emitting diode (AMOLED) display, or a micro-LED display, all of which scan and drive a single unit with a thin film transistor (TFT) structure.
  • Pixels can achieve single driving of pixels, that is, driving of point light sources and array display, and light can enter the photoelectric sensor after passing through the gap of the pixels.
  • the point light source array structure in this embodiment can be generated in multiple ways.
  • the drawing software can be used for drawing and then displayed by the display panel.
  • this method Drawing is inefficient.
  • the method shown in FIG. 5 may be adopted: before the step S503 illuminating pixels, the image acquisition method applied to the imaging under the screen further includes: step S501, assigning a matrix with the same resolution as the display panel, and assigning a point light source area It is a non-zero value, the other areas are assigned a value of zero, and the assigned matrix is used as the RGB information to generate a display image; step S502 sends the display image to the display panel.
  • steps S503 and S504 which are the same as steps S201 and S202 are executed.
  • an active matrix organic light emitting diode (AMOLED) display screen (1920 ⁇ 1080 pixels) is taken as an example to describe the generation method of the point light source array structure.
  • AMOLED active matrix organic light emitting diode
  • the process of designing a light source topology using a programming language is actually assigning a 1920 * 1080 matrix (a matrix with 1920 rows and 1080 columns, all data is 0), which will require The lighted position is assigned a non-zero number (such as 255), otherwise it is assigned a value of 0, and then this matrix is used as the RGB information of the 8-bit image. ) Generate a new image.
  • the structure of the generated point light source array is shown in FIG. 3.
  • White is a point light source area, and white is only for illustration. Actually, it can be green or red.
  • steps S501 and S502 the required point light source array structure can be efficiently generated, so that fast point light source driving can be realized.
  • the fingerprint of point A' directly above the point light source O cannot be fully realized because the incident angle of light is smaller than the critical angle Reflection imaging will result in the absence of fingerprint images.
  • a single imaging cannot perform seamless scanning on the full fingerprint.
  • Traditional fingerprint scanning mainly uses the same part of the corresponding stitching method to connect small pieces of fingerprint information. This method cannot solve the phenomenon that some areas of the image are enlarged.
  • the existing scanning mode "progressive scanning” and “interlaced scanning” are used, Only one line or one column of information can be collected at a time, and the collected information is very limited.
  • step S506 repeats lighting the pixel point step S503 and the light obtaining step S504 again until the acquisition satisfies the complete Fingerprint images required for fingerprint stitching, and then denoising and stitching these fingerprint images can obtain a complete fingerprint image.
  • an embodiment of the present invention further provides an image acquisition method applied to imaging under a screen.
  • the image acquisition method includes the following steps: Step S601 illuminating pixels of a plurality of discrete point light source regions of a display panel, and the point light source regions are arranged in an array with non-light emitting pixel points spaced apart.
  • Step S602 Obtain the light that is totally reflected by the pixel through the light-transmissive cover through the photoelectric sensor, and the display panel and the photo-sensor are placed under the light-transmissive cover; Step S603, after a preset time interval, for all the point light source areas After performing the same position shift, the step of lighting pixels and the step of obtaining light are repeated; after performing the above steps a predetermined number of times in step S604, the image data is obtained by stitching according to the light data obtained by the photoelectric sensor. By lighting multiple point light source areas at the same time, a large amount of image information can be obtained each time, and then through multiple position shifts, light data containing all the images on the screen can be obtained, and finally the images corresponding to the light data are stitched. The process obtains complete image data, as shown in Figure 9.
  • step S604 image stitching must be implemented, and the image data of the light rays collected each time must be pre-processed.
  • the acquired image data is scaled to remove invalid image data.
  • the effective image areas of the collected light data can be stitched together to obtain complete image data.
  • the same parts of the image area are usually overlapped together to achieve the extension of different parts of the image area until Get the entire image.
  • the step of executing the preset number of times is generally to determine whether the preset number of times has been reached after the end of each step, and it is generally placed before the position shift, as shown in step S614 of FIG. 6 to avoid unnecessary position shift.
  • the position shift is to obtain missing image information.
  • the distance of each position shift must be equal.
  • the preferred offset direction is that the point light source is shifted toward the direction of the adjacent point light source; the distance of the position shift is an integer fraction of the distance between adjacent point light sources. For example, the distance between the center of the point light source can be shifted by one-third or one-eighth at a time. In this way, the image data between the point light sources can be obtained at equal intervals, and the same algorithm can be used for image stitching, which is more efficient to process.
  • the array of point light sources in this embodiment has a variety of arrangements, and the uniform arrangement is preferred, that is, the distance between the two point light sources is equal, so that the image reflected by each point light source is the same, which is convenient for subsequent images. deal with.
  • the specific form of the arrangement may be a horizontal arrangement and a vertical arrangement, or the array arrangement may be a circular arrangement.
  • Horizontal arrangement means that a plurality of point light sources constitute a plurality of parallel horizontal rows and a plurality of parallel vertical rows.
  • the gray point is a point light source.
  • the horizontal row and the vertical row are perpendicular to each other. Of course, in some embodiments, there may be a certain angle (such as 60 °).
  • the circular arrangement may be that the point light source is located on a circle whose radius is increased in sequence with the center of the screen as the center.
  • the gray in the image is for illustration only.
  • the preferred wavelength of the light source is 515nm to 700nm, or the color is green (515nm-560nm), red (610nm-700nm) or any combination of these two colors with any other color. This color is most sensitive to the photoelectric sensor, which is beneficial to the light acquisition of the photoelectric sensor.
  • the array arrangement includes a horizontal arrangement and a vertical arrangement that are perpendicular to each other, and the position shift includes a lateral shift, a longitudinal shift, or a ⁇ 45 ° direction shift;
  • the offset distance is an integer fraction of the horizontal separation distance of adjacent point light source regions;
  • the vertical offset distance is an integer fraction of the vertical separation distance of adjacent point light source regions;
  • the ⁇ 45 ° directional offset distance is Adjacent point light source regions in the direction are spaced at an integer fraction of the distance in that direction.
  • the offset can be a single lateral offset, a longitudinal offset, or a ⁇ 45 ° direction offset, or a combination of these offsets.
  • the total number of light acquisitions is the number of horizontal light acquisitions times the number of vertical light acquisitions.
  • the position of the fingerprint information collected by the point light source array at one time is shown in Fig. 7. 1 is the point light source, and 2 is the acquired fingerprint image.
  • the fingerprint collected in one image is not complete and requires multiple different position information Can be combined into a complete fingerprint.
  • the current display panel and photoelectric sensor on the market generally need to collect more than 6 times, and can obtain a more complete screen image.
  • the scanning mode is designed to use the first picture as the initial position, and move it one-eighth the dot distance to the right and lower (point distance refers to the distance between every two point light sources, and the distance is based on the system hardware (Parameter determination).
  • the initial position is shifted to the right by one-third of the pitch, and it is further shifted down to the right by seven-eighths of the pitch, to obtain the second eight images, and then shifted to the right by three One point distance, and then repeat to the bottom right to complete the last eight image acquisition.
  • the point light source collected each time is offset from the last acquisition, where 1 is the point light source center of the first image acquisition, 1 'is the point light source center of the image acquisition after the offset, 1 '' Is the point light source center of the image acquisition after the offset is again.
  • multiple combined scanning modes such as horizontal, vertical, and oblique are adopted to adapt to the lensless imaging position.
  • the position of the center point of each small area is detected and enlarged into a complete image, as shown in FIG. 9.
  • the point light source region includes a plurality of pixels, and preferably, the colors of the plurality of pixels are consistent.
  • the photoelectric sensor can obtain the light data reflected by the point light source.
  • the shape of the point light source will also affect the imaging quality.
  • the point light source area is a circle. Since each pixel is actually a square, the combination of multiple pixels cannot form a standard circle, it can only be a circle-like.
  • the circle-like pixels can be determined to draw a circle with a certain pixel as the center.
  • the pixels in the circle can be all circle-like pixels.
  • the pixels on the circumference can be set to a preset area ratio.
  • the pixel is regarded as a circular pixel of a point light source type.
  • the size of the circle determines the light intensity of the point light source and whether the photoelectric sensor can obtain higher quality images. If the circle is too small, the area of the point light source is too small, which will cause insufficient light. The circle is too large, and the area of the point light source is too large. It will also affect the imaging quality. Different display panels also have different light source intensities, and the size of the point light source area of different display panels will also be different. For a specific image imaging acquisition structure, the size of the point light source area can also be obtained by manual multiple experiments. The point light source area can be sequentially lit from small to large. After the image data is obtained by the photoelectric sensor, it is manually selected. The smallest point light source area that satisfies the imaging quality.
  • the distance between point light sources is determined by the imaging quality. This distance is determined by the distance between the light source and the upper surface of the light-transmissive cover plate. These two distances are proportional. In order to avoid overlap between imaging, the distance between two adjacent point light sources meets the condition that the point light source total reflection image collected by the photoelectric sensor is not in contact and does not repeat. Take the Samsung Galaxy Round mobile phone's organic light emitting diode (AMOLED) display, Taiwan Innolux TFT X-ray sensor, and a system with a light-transmissive cover thickness of about 0.7mm as an example. The array structure parameters of the point light source array are determined to be every two. The distance between point light sources is 80 pixels wide (the actual distance is about 5.26mm for the display used by the system), as shown in Figure 7.
  • AMOLED organic light emitting diode
  • the present invention also provides a storage medium that stores a computer program that implements the steps of the above method when the computer program is executed by a processor.
  • the storage medium in this embodiment may be a storage medium provided in an electronic device, and the electronic device may read the content of the storage medium and achieve the effect of the present invention.
  • the storage medium may also be a separate storage medium.
  • the electronic device can read the content in the storage medium and implement the method steps of the present invention. In this way, the method of the embodiment of the present invention can be run on an image acquisition structure, and the driving of the light source and the acquisition of the image under the screen are achieved.
  • the invention provides an electronic device including a memory, a processor, and an image acquisition structure.
  • the image acquisition structure includes a light-transmissive cover, a display panel, and a photoelectric sensor.
  • the display panel and the photo-sensor are disposed below the light-transmissive cover, and the processor and the display panel.
  • a computer program is stored in the memory, and when the computer program is executed by a processor, the steps of the method according to any one of the foregoing are implemented.
  • the electronic device of this embodiment forms a point light source by using multiple pixels to increase the brightness of the point light source and improve the quality of optical image imaging under a lensless screen. At the same time, there are multiple point light sources for image imaging, which also improves imaging efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)

Abstract

本发明公开一种应用于屏下成像的驱动和图像获取方法、存储介质和电子设备。其中驱动方法包括:点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵列排列且间隔有不发光像素点;通过光电传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光电传感器置于所述透光盖板的下方。与现有技术相比,本发明的驱动方法通过同时点亮多个点光源区域的像素点,每次可以获取大量的图像信息,提高了成像效率;由于多个像素点形成一个点光源,提高了点光源的亮度,提升了无透镜屏下光学图像成像的质量。

Description

应用于屏下成像的驱动和图像获取方法、存储介质和电子设备 技术领域
本发明涉及屏下成像技术领域,尤其涉及一种应用于屏下成像的驱动方法和图像获取方法、存储介质和电子设备。
背景技术
随着信息科技的发展,生物特征识别技术在保障信息安全的方面发挥着越来越重要的作用,其中指纹识别已经成为移动互联网领域广泛应用的身份识别、设备解锁的关键技术手段之一。在电子设备的屏占比越来越大的趋势下,传统的电容式指纹识别已经不能满足需求,而超声波指纹识别则存在技术成熟度和成本等方面的问题,光学指纹识别是有望成为屏下图像识别的主流技术方案。
现有的光学指纹识别方案是基于几何光学透镜成像原理,所用的指纹模组包含微透镜阵列、光学空间滤光器等元件,存在结构复杂、模块厚、感测范围小、成本高等诸多缺点。
发明内容
本发明提供一种应用于屏下成像的驱动方法和图像获取方法、存储介质和电子设备,以解决普通的均匀照明光源无法满足全反射成像原理的需要的问题。
所述驱动方法包括:点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域为阵列排列且间隔有不发光像素点;通过光电传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光电传感器置于所述透光盖板的下方。
可选地,所述阵列排列为横向排列与纵向排列、或者所述阵列排列为环 状排列。
可选地,相邻两个点光源的间距满足光电传感器采集到的点光源全反射图像不接触、不重复的条件。
可选地,所述点光源的波长为515nm到700nm。
可选地,在点亮像素点前,所述驱动方法还包括:对与所述显示面板分辨率相同的矩阵进行赋值,将点光源区域赋值为非零值,其他区域赋值为零,将赋值后的矩阵作为RGB信息生成显示图像;发送所述显示图像到所述显示面板。
可选地,所述点光源区域包含有多个像素点。
可选地,所述点光源区域为类圆形、矩形、菱形、或三角形。
可选地,所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
可选地,所述驱动方法还包括步骤:间隔预设时间后,对全部点光源区域进行相同的位置偏移;再次重复点亮像素点步骤和光线获取步骤。
可选地,再次重复点亮像素点步骤和光线获取步骤包括:执行预设次数的所述点亮像素点步骤和所述光线获取步骤。
可选地,所述预设次数为6次以上。
可选地,所述位置偏移包括点光源往相邻点光源方向偏移;所述位置偏移的距离为相邻点光源间隔距离的整数分之一。
可选地,所述阵列排列包括相互垂直的横向排列和纵向排列;所述位置偏移包括横向偏移、纵向偏移或±45°方向偏移。
可选地,所述横向偏移距离为相邻点光源区域横向间隔距离的整数分之一;所述纵向偏移距离为相邻点光源区域纵向间隔距离的整数分之一;所述±45°方向偏移距离为该方向上相邻点光源区域在该方向间隔距离的整数分之一。
本发明实施例还提供一种应用于屏下成像的图像获取方法,包括:采用 本发明实施例的驱动方法获取光线数据;以及
对所述光电传感器在多次点亮像素点步骤和多次光线获取步骤中获取到的光线数据进行拼接处理,获取拼接后的图像数据。
本发明实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例的驱动方法的步骤。
本发明实施例还提供一种电子设备,包括存储器、处理器、图像获取结构,图像获取结构包括透光盖板、显示面板和光电传感器,显示面板和光电传感器设置在透光盖板的下方,处理器与显示面板和光电传感器连接,所述存储器上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例的驱动方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例的应用于屏下成像的驱动方法通过同时点亮多个点光源区域的像素点,每次可以获取大量的图像信息,提高了成像效率;由于多个像素点形成一个点光源,提高了点光源的亮度,提升了无透镜屏下光学图像成像的质量。
进一步地,所述驱动方法通过时分复用技术,即对全部点光源区域进行多次相同的位置偏移,可以获取到包含有全部屏下图像的光线数据,提高了成像效率。
本发明实施例的应用于屏下成像的图像获取方法,包括采用本发明实施例的驱动方法获取光线数据;以及对所述光电传感器在多次点亮像素点步骤和多次光线获取步骤中获取到的光线数据进行拼接处理,获取拼接后的图像数据,从而获取到完整的图像数据,提高了图像获取效率。
附图说明
图1为利用全反射成像原理实现无透镜屏下光学指纹成像的示意图;
图2为本发明一个实施例的应用于屏下成像的驱动方法的流程图;
图3为本发明一个实施例的显示面板的多个分立的点光源区域的阵列示意图;
图4为本发明一种实施例的点光源包含的像素点的分布图;
图5为本发明另一个实施例的驱动方法的流程图;
图6为本发明一个实施例的应用于屏下成像的图像获取方法的流程图;
图7为本发明一种实施例的点光源间距和指纹获取示意图;
图8为本发明不同次图像采集的点光源偏移的示意图;
图9为本发明一实施例获取到的指纹图像数据。
附图标记说明:
O:发光点,O':另一发光点,A:指纹与透光盖板接触点,
O'':O发光点在光电传感器的投影点;
A':O发光点在显示面板对应位置;
B、B':成像点;
1、1'、1'':点光源;
2、指纹图像。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
请参阅图1到图5,本实施例提供一种应用于屏下成像的驱动方法,本方法应用在屏下图像成像结构上,如图1所示,屏下图像成像结构包括透光盖板、显示面板和光电传感器,所述显示面板、光电传感器置于所述透光盖板的下方。其中,透光盖板可以是单层板结构或者多层结构,单层结构可以是玻璃盖板或者有机透光材质盖板,单层盖板也可以是具有其他功能的盖板,如可以是触摸屏。多层结构可以是多层玻璃盖板或者多层有机透光材质盖板或 者是玻璃盖板与有机透光材质盖板的结合。光电传感器用于获取光线,并进行光电转换,所述光电传感器包括有多个感光单元,所述多个感光单元可以单独设置在显示面板的下方或者设置在显示面板上。当所述多个感光单元设置在显示面板下方时,光线可以穿过显示面板上光源之间的间隙进入到光电传感器中。当所述多个感光单元设置在显示面板上时,所述感光单元可以设置在显示面板的光源(像素点)间隙中。传感器可以设置在屏下图像成像结构用于获取屏下图像,如可以获取指纹掌纹等。透光盖板与显示面板需要填充光学胶进行连接以及避免空气影响光线的反射,光学胶的折射率应该尽量接近透光盖板的折射率,避免光线在光学胶与透光盖板间发生全反射。
全反射成像原理是,成像时手指与透光盖板接触,指纹凹陷处由于有空气,入射角超过全反射临界角的光线会在形成全反射,光电传感器会采集到明亮光线,而指纹凸出与透光盖板上表面接触,光线不会产生全反射,则光电传感器会采集到较暗光线,从而可以区分出指纹图像。在进行指纹获取的时候,要将手指按压的玻璃盖板(Cover glass)上某一点A成像到传感器表面上的B点,根据全反射条件,显示面板上的单个发光点O所发射的光线正好满足需要。如果O点附近另有一个发光点O',玻璃盖板上的A点将在传感器表面上有两个成像点B和B',这样就会产生模糊的图像。从光学成像的清晰度上看,出现两个像点的情况是需要尽量避免的,所以,满足屏下图像成像目的的理想光源应该是点光源。
但是,在实际应用中有许多限制条件必须考虑,其中包括(1)现有的显示面板的单个像素点的亮度通常都无法达到成像要求。(2)屏下空间非常小,单个点光源照明的范围也很小,这样对于大面积的图像采集,采集的速度就十分慢。
本实施例首先将多个像素点合并在一起,形成一个总体亮度满足成像要求的合成点光源。同时通过多个分立的合成点光源并行照亮手指,才能满足快速屏下图像成像的要求。
则在实现显示面板驱动的时候,驱动方法包括如下步骤,如图2所示,步骤S201点亮像素点步骤:点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵列排列且间隔有不发光像素点,所述点光源区域包含有多个像素点,优选地多个像素点的颜色一致。步骤S202光线获取步骤:通过光电传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光电传感器置于所述透光盖板的下方。本实施例中,多个分立的点光源区域可以对透光盖板上多个区域进行照亮,而后经过透光盖板的上表面全反射后的光线可以被光电传感器获取到,这样可以获取到多个区域的图像,提高了图像获取效率。同时点光源区域包含有多个像素点,满足成像的照明亮度要求,可以实现对透光盖板上图像的采集。
本实施例中的点光源的阵列排列有多种排列方式,优选的为均匀排列,即点光源两两之间的距离都相等,这样每个点光源反射后的图像都相同,方便后续的图像处理。排列的具体形式可以为横向排列与纵向排列、或者所述阵列排列为环状排列。横向排列和纵向排列即多个点光源构成多个平行的横排和多个平行的纵排。如图3所示,其中白色点即为点光源,优选地,横排与纵排之间互相垂直,当然在某些实施例中可以有一定夹角(如60°等)。环状排列可以是点光源处在以屏幕中心为圆心的半径依次增大的圆形上。
点光源的间距决定于成像质量,此间距由光源与透光盖板上表面的间距决定,这两个间距成正比。为了避免成像之间的重叠,相邻两个点光源的间距满足光电传感器采集到的点光源全反射图像不接触、不重复的条件。优选地,点光源的间距可以是在相邻两个点光源的全反射图像不接触、不重复的条件下取最小值。这个最小值可以通过人工多次试验获取,如在不同的点光源的间距下获取点光源全反射图像,而后查看到反射图像满足不接触、不重复的条件中点光源间距的最小值。而后这个最小值可以预先设置在运行本方法的存储器上。点光源的间距在实际中会受到显示面板、光电传感器、透光盖板等成像结构硬件参数的影响,在实际应用中,一个产品的屏幕硬件参数 一般不会改变,对于这些特定的屏幕,采用人工多次试验获取的方式更为直接和方便。在某些实施例中,点光源的间距也可以相对较近,这样在一次的光线获取中,单个点光源全反射图像就会产生重叠,则图像处理的时候还要去除重叠部分,则会增加每次图像处理的工作量。
正如上文所述,本发明将多个像素点合并在一起,形成一个总体亮度满足成像要求的合成点光源,即点光源的亮度要满足能被光电传感器获取到的要求,像素点个数与显示面板的像素点亮度成线性反比的关系。同时,点光源的外形也会影响成像质量,所述点光源的外形可以为矩形、菱形、或三角形等。优选地,所述点光源区域为类圆形。由于实际上,每个像素都是方形,多个像素的组合没办法形成一个标准的圆形,只能是接近圆形的类圆形。类圆形的像素点确定可以以某个像素点为中心画圆,圆内的像素点可以全部作为类圆形的像素点,圆周上的像素点可以设定一个预设面积占比值,如果圆周像素点在圆内的面积占像素点总面积的比大于预设面积占比值,则将该像素点作为点光源类圆形的像素点。圆的大小决定了点光源的光线强度以及光电传感器是否能够获取到较高质量的图像,圆太小,则点光源区域太小,就会产生光线不足,圆太大,点光源区域太大,又会影响成像质量。不同的显示面板同样也会有不同的光源强度,则不同的显示面板的点光源区域大小也会不同。对于某一种特定的图像成像获取结构,点光源区域大小同样可以采用人工多次试验的方式获取,点光源区域可以由小到大依次点亮,而后光电传感器获取到图像数据后,人工筛选出满足成像质量的最小点光源区域。
在现有的显示面板下,像素点个数可以是边长为2-15像素点的矩形。在某些实施例中,优选的一种实际点光源的尺寸和形状如附图4所示(每一网格代表一个像素,光源位置以白色显示),中间为7pixel*7pixel的矩形,矩形每一边中间有三个pixel的突出,可以实现较好的成像质量。
优选的光源的波长为515nm到700nm,即为绿色(515nm-560nm)、红色(610nm-700nm)或这两种颜色之间与其他颜色的任意颜色的组合,这样的 颜色对于光电传感器来说最敏感,有利于光电传感器的光线获取。
显示面板不仅可以作为光源进行发光,还可以作为显示图像。显示面板包括液晶显示屏(LCD)、有源阵列式有机发光二极管(AMOLED)显示屏或微发光二极管(micro-LED)显示屏,这些都是以薄膜电晶管(TFT)结构扫描并驱动单一像素,可以实现对像素点的单一驱动,即可以实现点光源的驱动和阵列显示,同时光线可以透过像素点的间隙后进入到光电传感器中。
本实施例中的点光源阵列结构可以有多种生成方式,如可以采用绘图软件实现绘制后,再由显示面板进行显示,但由于点阵的精度要求高,且点的数量较多,此方法绘制效率低下。或者可以采用如图5的方式:所述应用于屏下成像的图像获取方法在步骤S503点亮像素点前还包括:步骤S501对与显示面板分辨率相同的矩阵进行赋值,将点光源区域赋值为非零值,其他区域赋值为零,将赋值后的矩阵作为RGB信息生成显示图像;步骤S502发送显示图像到显示面板。而后再执行与步骤S201和步骤S202相同的步骤S503和步骤S504。本实施例以有源阵列式有机发光二极管(AMOLED)显示屏(1920×1080像素)为例,说明点光源阵列结构生成方式。以此参数使用编程语言设计光源拓扑结构,使用编程语言设计光源拓扑结构的过程实际就是对一个1920*1080的矩阵(行数1920、列数1080,数据全为0的矩阵)进行赋值,将需要点亮的位置赋值为非零数(如255),否则赋值为0,然后将此矩阵作为8bit图像的RGB信息(在8bit图像的RGB信息里,数据0代表黑色,数据255代表满饱和度颜色)生成新的图像。生成的点光源阵列结构如附图3所示,白色为点光源区域,白色仅为图示说明,实际可以为绿色或者红色等。通过步骤S501和步骤S502,可以高效地生成所需要的点光源阵列结构,从而可以实现快速的点光源驱动。
继续参考图1,如果要将手指按压的玻璃盖板(Cover glass)上某一点A成像到传感器表面上的B点,根据全反射条件,发光层上的发光点O所发射的光线正好满足需要。因为屏下空间非常小,单个点光源照明的范围也很小, 必须使用多个分立的点光源并行照亮手指,才能满足快速屏下指纹成像的要求。然而,每一个点光源O都会在正下方传感器上O''位置形成一个像(非全反射成像),而点光源O正上方A'点的指纹却因为光线入射角小于临界角,无法实现全反射成像,就会产生指纹图像的缺失。虽然有多个像素点形成一个点光源,同时照明指纹,单次成像还是无法对全指纹实施无缝扫描。传统指纹扫描主要利用相同部分对应拼接方法连接小块指纹信息,这种方法无法解决存在图像中部分区域放大的现象,同时如果采用现有扫描模式“逐行扫描”和“隔行扫描”方法,每次只能采集一行或一列的信息,采集的信息十分局限,这些都无法满足基于点光源阵列的快速采集完整图片的要求。如果采用过于密集的多个点光源阵列,彼此互补,可以实现全指纹的扫描,但是各个点光源阵列照明得到的指纹图像会产生重叠,后续处理十分困难。为了避免重叠,本申请的点光源间距满足图像不重叠的条件。但是这样又会有部分指纹图像缺失。为了获取到完整的指纹图像,本发明使用时分复用技术,实现指纹图像全覆盖。
具体地,如图5所示,步骤S505间隔预设时间后,对全部点光源区域进行相同的位置偏移;步骤S506再次重复点亮像素点步骤S503和光线获取步骤S504,直到获取到满足完整指纹拼接要求的指纹图像,而后对这些指纹图像进行去噪、拼接,就可以获取到完整的指纹图像。
为了实现图像全覆盖,本发明实施例还提供一种应用于屏下成像的图像获取方法。如图6所示,所述图像获取方法包括如下步骤:步骤S601点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域之间为阵列排列且间隔有不发光像素点;步骤S602通过光电传感器获取像素点经过透光盖板全反射的光线,所述显示面板、光电传感器置于所述透光盖板的下方;步骤S603间隔预设时间后,对全部点光源区域进行相同的位置偏移后,重复进行点亮像素点步骤和获取光线步骤;步骤S604执行完预设次数的上述步骤后,根据光电传感器获取到的光线数据拼接获取图像数据。通过同时点亮多个点 光源区域,每次可以获取大量的图像信息,而后通过多次的位置偏移,可以获取到包含有全部屏下图像的光线数据,最后对光线数据对应的图像进行拼接处理获取到完整的图像数据,如图9所示。
在实际应用中,步骤S604中要实现图像的拼接,还要对每次采集到的光线的图像数据进行预处理,对获取到的图像数据进行缩放处理,去除无效的图像数据,获取到每次采集到的光线数据的有效图像区域,将这些有效图像区域拼接就可以得到完整的图像数据,拼接时一般是根据图像区域的相同的部分重叠在一起,从而实现图像区域的不同部分的延伸,直到获得整幅图像。以及执行预设次数的步骤一般是在每次步骤结束后判断是否达到预设的次数,一般要放在位置偏移前,如图6的步骤S614所示,避免进行无用的位置偏移。
位置偏移是为了获取到缺失的图像信息。为了方便后续的图像拼接,每次位置偏移的距离要相等。且优选的偏移方向为点光源往相邻点光源方向偏移;所述位置偏移的距离为相邻点光源间隔距离的整数分之一。如每次可以偏移三分之一或者八分之一的点光源中心的间距。这样可以等间距地获取到点光源之间的图像数据,图像拼接的算法可以采用相同的算法,处理起来效率更高。
本实施例中的点光源的阵列排列有多种排列方式,优选的为均匀排列,即点光源两两之间的距离都相等,这样每个点光源反射后的图像都相同,方便后续的图像处理。排列的具体形式可以为横向排列与纵向排列或者所述阵列排列为环状排列。横向排列即多个点光源构成多个平行的横排和多个平行的纵排。如图3所示,其中灰色点即为点光源,优选地,横排与纵排之间互相垂直,当然在某些实施例中可以有一定夹角(如60°等)。环状排列可以是点光源处在以屏幕中心为圆心的半径依次增大的圆形上。图像中的灰色仅作为说明,优选的光源的波长为515nm到700nm,或者是颜色为绿色(515nm-560nm)、红色(610nm-700nm)或这两种颜色之间与其他颜色的任意 颜色的组合,这样的颜色对于光电传感器来说最敏感,有利于光电传感器的光线获取。
在优选实施例中,如图3所示,所述阵列排列包括相互垂直的横向排列和纵向排列,所述位置偏移包括横向偏移、纵向偏移或±45°方向偏移;所述横向偏移距离为相邻点光源区域横向间隔距离的整数分之一;所述纵向偏移距离为相邻点光源区域纵向间隔距离的整数分之一;所述±45°方向偏移距离为该方向上相邻点光源区域在该方向间隔距离的整数分之一。偏移可以是单独的横向偏移、纵向偏移或者±45°方向偏移,也可以是这几种偏移的组合。总的光线获取次数为横向的光线获取次数乘以纵向的光线获取次数。位置偏移的次数多,则光线获取的次数越多,则采集到的图像信息就越多,但是采集的时间就越长。为了节省时间,需要在满足整幅图像拼接的前提下尽可能减少位置偏移次数。这就要求每次光线获取时所采集的图像信息更多,这个与显示面板的亮度参数、透光盖板厚度、传感器感光度等参数有关。点光源阵列一次采集到的指纹信息在缩放后位置如图7所示,1是点光源,2是获取到的指纹图像,可以看到一次图像采集的指纹并不完全,需要多次不同位置信息才能组合成一张完整的指纹。当前的市面上显示面板和光电传感器一般要采集6次以上,可以获取到较为完整的屏下图像。以采取24张图为例,将扫描模式设计为以第一张为初始位置,向右下移动八分之一点距(点距指每两个点光源之间的距离,该距离根据系统硬件参数确定),共平移七次后,初始位置向右移动三分之一点距,继续向右下移动七次八分之一点距,获取第二个八张图像,继续向右移动三分之一点距,再向右下重复完成最后八张图像采集。如图8所示,每次采集的点光源与上次采集都有偏移,其中,1为第一次图像采集的点光源中心,1'为偏移后的图像采集的点光源中心,1''为再一次偏移后的图像采集的点光源中心。这样通过采用横、竖、斜等多种组合扫描模式,适应无透镜成像位置;多次扫描后,侦测每个小区域中心点位置并放大拼接成一副完整图像,如图9所示。
为了满足光线采集的亮度要求,点光源区域包含有多个像素点,优选地多个像素点的颜色一致。通过多个像素点的亮度叠加,光电传感器可以获取到点光源反射的光线数据。同时,点光源的外形也会影响成像质量,优选地,所述点光源区域为类圆形。由于实际上,每个像素都是方形,多个像素的组合没办法形成一个标准的圆形,只能是接近圆形的类圆形。类圆形的像素点确定可以以某个像素点为中心画圆,圆内的像素点可以全部作为类圆形的像素点,圆周上的像素点可以设定一个预设面积占比值,如果圆周像素点在圆内的面积占像素点总面积的比大于预设面积占比值,则将该像素点作为点光源类圆形的像素点。圆的大小决定了点光源的光线强度以及光电传感器是否能够获取到较高质量的图像,圆太小,则点光源区域太小,就会产生光线不足,圆太大,点光源区域太大,又会影响成像质量。不同的显示面板同样也会有不同的光源强度,则不同的显示面板的点光源区域大小也会不同。对于某一种特定的图像成像获取结构,点光源区域大小同样可以采用人工多次试验的方式获取,点光源区域可以由小到大依次点亮,而后光电传感器获取到图像数据后,人工筛选出满足成像质量的最小点光源区域。
点光源的间距决定于成像质量,此间距由光源与透光盖板上表面的间距决定,这两个间距成正比。为了避免成像之间的重叠,相邻两个点光源的间距满足光电传感器采集到的点光源全反射图像不接触、不重复的条件。以三星Galaxy Round手机的有机发光二极管(AMOLED)显示屏、台湾群创TFT X光用传感器、透光盖板厚度约为0.7mm的系统为例,确定点光源阵列的阵列结构参数为每两个点光源之间距离为80像素宽度(针对系统所用显示屏,实际距离约为5.26mm),如图7所示。
本发明还提供存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述方法的步骤。本实施例的存储介质可以是设置在电子设备中的存储介质,电子设备可以读取存储介质的内容并实现本发明的效果。存储介质还可以是单独的存储介质,将该存储介质与电子设备连接, 电子设备就可以读取存储介质里的内容并实现本发明的方法步骤。这样就可以在具有图像获取结构上运行本发明实施例的方法,实现光源的驱动和屏下图像成像的获取。
本发明提供电子设备,包括存储器、处理器、图像获取结构,图像获取结构包括透光盖板、显示面板和光电传感器,显示面板和光电传感器设置在透光盖板的下方,处理器与显示面板和光电传感器连接,所述存储器上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任意一项所述方法的步骤。本实施例的电子设备通过多个像素点形成一个点光源,提高点光源的亮度,提升无透镜屏下光学图像成像的质量,同时有多个点光源用于图像成像,也提高了成像效率。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (17)

  1. 一种应用于屏下成像的驱动方法,其特征在于,包括:
    点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域为阵列排列且间隔有不发光像素点;
    通过光电传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光电传感器置于所述透光盖板的下方。
  2. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于:所述阵列排列为横向排列与纵向排列、或者所述阵列排列为环状排列。
  3. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于:相邻两个点光源的间距满足光电传感器采集到的点光源全反射图像不接触、不重复的条件。
  4. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于:所述点光源的波长为515nm到700nm。
  5. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于,在点亮像素点前,所述驱动方法还包括:
    对与所述显示面板分辨率相同的矩阵进行赋值,将点光源区域赋值为非零值,其他区域赋值为零,将赋值后的矩阵作为RGB信息生成显示图像;
    发送所述显示图像到所述显示面板。
  6. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于:所述点光源区域包含有多个像素点。
  7. 根据权利要求1或6所述的应用于屏下成像的驱动方法,其特征在于:所述点光源区域为类圆形、矩形、菱形、或三角形。
  8. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于:所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
  9. 根据权利要求1所述的应用于屏下成像的驱动方法,其特征在于,还包括步骤:
    间隔预设时间后,对全部点光源区域进行相同的位置偏移;
    再次重复点亮像素点步骤和光线获取步骤。
  10. 根据权利要求9所述的应用于屏下成像的驱动方法,其特征在于,再次重复点亮像素点步骤和光线获取步骤包括:
    执行预设次数的所述点亮像素点步骤和所述光线获取步骤。
  11. 根据权利要求10所述的应用于屏下成像的驱动方法,其特征在于:所述预设次数为6次以上。
  12. 根据权利要求9所述的应用于屏下成像的驱动方法,其特征在于:
    所述位置偏移包括点光源往相邻点光源方向偏移;
    所述位置偏移的距离为相邻点光源间隔距离的整数分之一。
  13. 根据权利要求9所述的应用于屏下成像的驱动方法,其特征在于:
    所述阵列排列包括相互垂直的横向排列和纵向排列;
    所述位置偏移包括横向偏移、纵向偏移或±45°方向偏移。
  14. 根据权利要求13所述的应用于屏下成像的驱动方法,其特征在于:
    所述横向偏移距离为相邻点光源区域横向间隔距离的整数分之一;
    所述纵向偏移距离为相邻点光源区域纵向间隔距离的整数分之一;
    所述±45°方向偏移距离为该方向上相邻点光源区域在该方向间隔距离的整数分之一。
  15. 一种应用于屏下成像的图像获取方法,其特征在于,包括:
    采用如权利要求9至14任一项所述的驱动方法获取光线数据;以及
    对所述光电传感器在多次点亮像素点步骤和多次光线获取步骤中获取到的光线数据进行拼接处理,获取拼接后的图像数据。
  16. 一种存储介质,其特征在于:所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1到14任意一项所述的驱动方法的步骤。
  17. 一种电子设备,其特征在于:包括存储器、处理器、图像获取结构, 图像获取结构包括透光盖板、显示面板和光电传感器,显示面板和光电传感器设置在透光盖板的下方,处理器与显示面板和光电传感器连接,所述存储器上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1到14任意一项所述的驱动方法的步骤。
PCT/CN2019/099637 2018-09-12 2019-08-07 应用于屏下成像的驱动和图像获取方法、存储介质和电子设备 WO2020052381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/275,387 US20220130165A1 (en) 2018-09-12 2019-08-07 Driving and image acquisition method applied to under-screen imaging, storage medium, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811061474.1 2018-09-12
CN201811062040.3A CN110896433A (zh) 2018-09-12 2018-09-12 一种应用于屏下图像成像的光源驱动方法、存储介质和电子设备
CN201811061474.1A CN110895664A (zh) 2018-09-12 2018-09-12 一种用于无透镜成像的图像扫描方法、存储介质和电子设备
CN201811062040.3 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020052381A1 true WO2020052381A1 (zh) 2020-03-19

Family

ID=69776922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099637 WO2020052381A1 (zh) 2018-09-12 2019-08-07 应用于屏下成像的驱动和图像获取方法、存储介质和电子设备

Country Status (3)

Country Link
US (1) US20220130165A1 (zh)
TW (1) TWI749354B (zh)
WO (1) WO2020052381A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9311519B2 (en) * 2013-03-26 2016-04-12 Samsung Electronics Co., Ltd. Fingerprint recognition method and electronic device thereof
CN107092892A (zh) * 2017-04-27 2017-08-25 上海天马微电子有限公司 一种显示面板及显示装置
CN206757648U (zh) * 2016-11-03 2017-12-15 深圳信炜科技有限公司 生物识别装置和电子装置
CN107748874A (zh) * 2017-11-01 2018-03-02 京东方科技集团股份有限公司 全屏指纹识别oled模组、指纹识别方法及显示装置
CN107832752A (zh) * 2017-12-15 2018-03-23 京东方科技集团股份有限公司 指纹识别面板、全屏指纹识别方法及显示装置
CN107958145A (zh) * 2016-11-03 2018-04-24 深圳信炜科技有限公司 显示装置和电子装置
CN108021854A (zh) * 2016-11-03 2018-05-11 深圳信炜科技有限公司 生物识别装置和电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10437974B2 (en) * 2015-06-18 2019-10-08 Shenzhen GOODIX Technology Co., Ltd. Optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
WO2016205832A1 (en) * 2015-06-18 2016-12-22 Shenzhen Huiding Technology Co., Ltd. Multifunction fingerprint sensor having optical sensing capability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9311519B2 (en) * 2013-03-26 2016-04-12 Samsung Electronics Co., Ltd. Fingerprint recognition method and electronic device thereof
CN206757648U (zh) * 2016-11-03 2017-12-15 深圳信炜科技有限公司 生物识别装置和电子装置
CN107958145A (zh) * 2016-11-03 2018-04-24 深圳信炜科技有限公司 显示装置和电子装置
CN108021854A (zh) * 2016-11-03 2018-05-11 深圳信炜科技有限公司 生物识别装置和电子装置
CN107092892A (zh) * 2017-04-27 2017-08-25 上海天马微电子有限公司 一种显示面板及显示装置
CN107748874A (zh) * 2017-11-01 2018-03-02 京东方科技集团股份有限公司 全屏指纹识别oled模组、指纹识别方法及显示装置
CN107832752A (zh) * 2017-12-15 2018-03-23 京东方科技集团股份有限公司 指纹识别面板、全屏指纹识别方法及显示装置

Also Published As

Publication number Publication date
TW202030636A (zh) 2020-08-16
US20220130165A1 (en) 2022-04-28
TWI749354B (zh) 2021-12-11

Similar Documents

Publication Publication Date Title
CN109598248B (zh) 纹路识别装置的操作方法以及纹路识别装置
WO2017206558A1 (zh) 显示装置及其指纹识别方法
US11237672B2 (en) Apparatus integrated with display panel for TOF 3D spatial positioning
US11056028B2 (en) Method for detecting luminance uniformity of screen, storage medium, and electronic device
US10937355B2 (en) Display substrate with photoelectric sensor having regions connected with each other, display panel and display device
TWI719728B (zh) 指紋採集方法及裝置
US11132527B2 (en) Photo-sensing detection apparatus, display apparatus, method of fingerprint detection, and method of operating display apparatus
TWI759662B (zh) 螢幕下圖像獲取結構及電子設備
CN103348306B (zh) 交互式显示设备以及交互式显示设备中的方法
TWI784212B (zh) 一種應用於屏下圖像成像的拓撲架構光源驅動方法、儲存介質和電子設備
WO2020052381A1 (zh) 应用于屏下成像的驱动和图像获取方法、存储介质和电子设备
TWI804646B (zh) 一種用於屏下成像的座標變換方法、存儲介質及電子設備
TWI728394B (zh) 自動搜索顯示螢幕厚度參數的方法、存儲介質及電子設備
TWI821326B (zh) 一種屏下圖像獲取結構及電子設備
WO2021051276A1 (en) Photo-sensing detection apparatus, display apparatus, method of fingerprint detection, and method of operating display apparatus
CN110896433A (zh) 一种应用于屏下图像成像的光源驱动方法、存储介质和电子设备
CN110895664A (zh) 一种用于无透镜成像的图像扫描方法、存储介质和电子设备
TWI811540B (zh) 圖像採集方法、裝置、存儲媒體,及電子設備
CN117115868A (zh) 屏下指纹采集装置及其调节方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859465

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 12.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19859465

Country of ref document: EP

Kind code of ref document: A1