WO2020052235A1 - 一种透镜阵列的拼接结构 - Google Patents

一种透镜阵列的拼接结构 Download PDF

Info

Publication number
WO2020052235A1
WO2020052235A1 PCT/CN2019/083078 CN2019083078W WO2020052235A1 WO 2020052235 A1 WO2020052235 A1 WO 2020052235A1 CN 2019083078 W CN2019083078 W CN 2019083078W WO 2020052235 A1 WO2020052235 A1 WO 2020052235A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
led
splicing
units
led lens
Prior art date
Application number
PCT/CN2019/083078
Other languages
English (en)
French (fr)
Inventor
黄成�
Original Assignee
广州光联电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光联电子科技有限公司 filed Critical 广州光联电子科技有限公司
Publication of WO2020052235A1 publication Critical patent/WO2020052235A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to the technical field of structural design of a light source module, and more particularly, to a stitching structure of a lens array.
  • high-power LED array light sources mainly increase the number of LED chips or increase the output of a single LED chip.
  • the output of a single LED chip is maximized, only by increasing the number of LED chips Quantity to increase the output of the LED array light source.
  • the size of the related optical device LED array lens will continue to increase during the secondary optical design, and the difficulty in corresponding to the production process and the use requirements will also increase, resulting in a lens array. There are hidden dangers such as internal stress deformation and rupture during use.
  • the present invention provides a splicing structure of a lens array with simple processing technology, which can effectively buffer the internal stress between the lens arrays, and reduce the risk of lens array deformation or fracture.
  • a stitching structure of a lens array includes a lens array, characterized in that the lens array is composed of several
  • the LED lens array unit is spliced, and a splicing structure is provided between two adjacent LED lens array units, and the connection and fixing are achieved through the splicing structure.
  • the lens array is divided into a plurality of LED lens array units, and the LED lens array units are spliced through a splicing structure to form a one-piece lens array.
  • the lens array is caused by external forces or thermal expansion and contraction.
  • the stitching gap between the LED lens array units will buffer the internal stress change to a certain extent, which can better protect the entire lens array.
  • the LED lens array unit disperses the force surface, that is, the small arrays disperse the force, reducing artificial or Non-human The possibility of cracks in the LED lens array board during a collision or the like. Due to the small area of the LED lens array unit, the production process requirements are low, the difficulty is small, the production is easier, and the cost can be greatly saved.
  • the splicing structure includes detachable and non-removable splicing structures.
  • the splicing structure may be a simple disassembly clip, which can be removed and replaced, so that the entire lens array has the beneficial effects of easy assembly and easy replacement.
  • the splicing structure is an elastic structure, and the adjacent LED lens array units are connected and fixed by an elastic structure.
  • the lens array is evenly divided into a plurality of LED lens array units, and the LED lens array units are spliced by an elastic structure. Because the elastic structure has a certain elasticity, the lens array expands due to the heating of the lamp beads or The internal structure of the material is improperly formed, etc. When the internal stress occurs, the elastic structure can play a certain cushioning effect, thereby effectively avoiding internal stress deformation or cracking of the entire lens array. On the other hand, the lens array in a monolithic design has a higher density and a larger area, so the internal stress generated by the lens array due to temperature changes or improper material processing will also increase, and more It is easy to cause the entire lens array to be deformed or broken.
  • the lens array of the present utility model is formed by splicing a plurality of LED lens array units, and there is an elastic buffer between the spliced LED lens array units. When internal stress is generated, the elastic buffer effectively reduces the stress rupture in the entire lens array. And even if one of the LED lens array units is deformed and broken, the LED lens array unit can be replaced without replacing the entire lens array, thereby improving the practicability of the lens array and saving costs.
  • the lens array is formed by splicing six LED lens array units in an equilateral triangle shape to form a regular hexagon shape, and the LED lens array units are spliced by an elastic structure.
  • the LED lens array is equally divided into 6 LED lens array units, and the 6 LED lens array units are spliced by an elastic structure. Because the elastic structure has elasticity, there is an elastic buffer between the spliced LED lens array units, thereby reducing It reduces the risk of stress deformation or cracking in the entire lens array; and is divided into 6 LE D lens array units, each of which has the same shape, which is convenient for processing and assembly, and also reduces process difficulty.
  • the lens array is formed by splicing two LED lens array units having an isosceles trapezoid shape. Forming a regular hexagonal shape, the LED lens array units are symmetrically arranged, and splicing is performed by an elastic structure.
  • the LED lens array is divided into two LED lens array units, and the two LED lens array units are spliced using an elastic structure, that is, the two independent LED lens array units are spliced into a regular six sides in a symmetrical arrangement above and below or left and right. shape.
  • the elastic structure is elastic, there is an elastic buffer between the spliced LED lens array units, thereby reducing the risk of stress deformation or cracking in the entire lens array; the structure of the splicing of two LED lens array units is simple, easy to splice, and reducing the overall Under the premise of the risk of stress deformation or cracking in the lens array, it is also convenient for industrialization.
  • the elastic structure is a high temperature resistant silicon glue, and the small lens arrays are bonded and spliced by the high temperature resistant silicon glue to form an integrally formed lens array.
  • the high-temperature resistant silicon glue is soft and elastic, which can make the LED lens array units have elastic buffering after splicing, thereby effectively reducing the risk of stress deformation or cracking in the entire LED lens array.
  • the high-temperature resistant silicon glue has a small effect on the gap between the LED lens array units after splicing, which can effectively ensure that the size of the LED lens array after splicing is basically equal to the size of the original whole lens array, ensuring the lighting effect of the light source.
  • the splicing method of the present invention is not limited to high temperature resistant silicon glue bonding splicing, other elastic splicing methods are also within the protection scope of the present invention.
  • each adjacent three lenses on the LED lens array unit are arranged in an equilateral triangle manner.
  • Each of the three lenses of the LED lens array unit is arranged in an equilateral triangle, while ensuring the lighting effect of the entire lens array, it can also make the light source emit more uniform, and ensure that adjacent LED lamp beads, phase There is a certain gap between adjacent lenses, which is conducive to heat dissipation, and also reduces the risk of stress deformation or cracking in the entire lens array.
  • each corner of the LED lens array unit is a rounded corner.
  • Each corner of the LED lens array unit is a rounded corner, and the design of the rounded corners can effectively prevent the edge of the lens array from being sharpened and injure others by mistake; the design of the rounded corners on the LED lens array unit having an equilateral triangle design It also enables each LED lens array unit to be spliced regardless of sequence and angle.
  • a regular hexagonal optical center is formed with a vacancy.
  • the lamp beads near the optical center of the regular hexagon can provide sufficient brightness for the optical center of the lens array, so the design of the vacant space does not affect the original brightness of the lens array. It can cause impact, and the design of the vacant space can also design a different or the same LED lamp beads separately to show different lighting effects and improve the practicability of the entire light source module.
  • the lens array is arranged in a matrix, and the lens array is formed by splicing a plurality of LED lens array units arranged in a matrix, and the LED lens array units are spliced by a splicing structure. .
  • the arrangement of the lens array is not limited to a matrix arrangement, nor is it limited to a regular hexagon arrangement.
  • each LED chip is correspondingly provided with a small lens and a lens to collimate the light emitted by the LED.
  • a beam output equivalent to parallel light will be formed. Due to the light-emitting characteristics of the LED, the output beam is not uniform. Therefore, a pair of fly-eye lenses for homogenizing light are set behind the lens array, and the light enters the fly-eye at a certain angle.
  • the lens and the fly-eye lens are provided with a lot of very small unit lenses, and the unit lenses are seamlessly spliced. Each unit lens subdivides the light beam, thereby homogenizing the light beam. When the unit lens on the fly-eye lens is small enough, the light distribution on each unit lens can be considered to be the same.
  • a condenser is set to refocus the light beam of the fly-eye unit lens to the second focal point of the entire system, so that the light intensities of all the fly-eye unit lenses are refocused and overlapped at the second focal point to achieve optical integration.
  • the width of the gap occupied by the elastic structure between the LED lens array units is less than 5 mm.
  • the utility model has the beneficial effects of simple processing technology, which can effectively buffer the internal stress between the lens arrays, disperse the external force received by the lens array, and reduce the risk of deformation or rupture of the lens array.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 3 is a system light path diagram of a light source module in the present invention.
  • FIG. 4 is a schematic structural diagram of a lens array in the prior art.
  • a stitching structure of a lens array includes a lens array, and the lens array is formed by splicing 6 LED lens array units 1, and adjacent LED lens array units 1 pass through High temperature resistant silicon glue is bonded and spliced to form a regular hexagonal lens array.
  • Each corner of the LED lens array unit 1 is a rounded corner, and each adjacent three LED lamp beads in the LED lens array unit 1 are arranged in an equilateral triangle. 6 LED lens array units 1
  • the lens center formed after splicing is provided with a vacancy A
  • the lens array in the prior art has an integral one-piece structure. Due to the large size of the one-piece lens array, the corresponding production process and use requirements will be more difficult, and it is used in lens arrays. Hidden danger of internal stress deformation and rupture in the process.
  • 6 LED lens array units 1 are spliced with a high-temperature resistant silicon glue, so that the 6 LED lens array units 1 are tightly spliced in a regular hexagon.
  • the stitching gap is smaller, so that the size of the lens array after the stitching is basically equal to the size of the original lens array, and the lighting effect of the LED light source is guaranteed. Due to the high elasticity of the high-temperature resistant silicon glue, the spliced LED lens array is elastically buffered to disperse the external force received by the lens array, thereby reducing the risk of stress deformation and cracking in the entire LED lens array from the design, and improving the stability of the lens array. .
  • each LED chip is correspondingly provided with a small lens 11 and a lens 12 to collimate the light emitted by the LED. After collimating the light emitted by each LED, a beam output corresponding to parallel light will be formed. Due to the light emitting characteristics of the LED, the output beam is not uniform. Therefore, a pair of light is arranged behind the lens array to uniformize the light.
  • Each unit lens subdivides the light beam, and then homogenizes. beam.
  • the unit lens on the fly-eye lens 3 is sufficiently small, it can be considered that the light distribution on each unit lens is the same.
  • a condenser lens 4 is set to refocus the light beams of the unit lenses to the second focal point of the entire system, so that the light intensities of all the unit lenses are refocused and overlapped at the second focal point to achieve optical integration.
  • the lens array of this embodiment is formed by splicing two LED lens array units 2 having an isosceles trapezoidal shape, and the spliced lens array has a regular hexagon shape. Shape, the splicing edges are bonded and spliced with high temperature resistant silicon glue. Because the splicing gap between the LED lens array units 2 is small, the spliced LED array light source is basically the same size as the original array light source. Due to the softness and elasticity of the high-temperature resistant silicon glue, the spliced LED lens array units 2 have an elastic buffer with each other, which reduces the risk of stress cracking in the entire LED lens array by design.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Led Device Packages (AREA)
  • Facsimile Heads (AREA)

Abstract

一种透镜阵列的拼接结构,包括透镜阵列,透镜阵列由若干LED透镜阵列单元(1)拼接而成,若干LED透镜阵列单元(1)之间的拼接边缘通过弹性结构进行拼接。弹性结构在LED透镜阵列单元(1)之间占据的间隙宽度小于5mm。弹性结构为耐高温硅类胶水,若干LED透镜阵列单元(1)之间通过耐高温硅类胶水进行粘合拼接,形成一体成型的透镜阵列。该透镜阵列的拼接结构加工工艺简单,能有效缓冲透镜阵列之间的内应力,分散透镜阵列受到的外力,降低透镜阵列变形或破裂风险。

Description

发明名称:一种透镜阵列的拼接结构
技术领域
[0001] 本实用新型涉及光源模组的结构设计技术领域, 更具体地, 涉及一种透镜阵列 的拼接结构。
背景技术
[0002] 5见有技术中, 大功率的 LED阵列光源主要是通过增加 LED芯片的数量或提高单 颗 LED芯片的输出, 当单颗 LED芯片的输出达到最大化时, 只有通过增加 LED芯 片的数量来提升 LED阵列光源的输出。 但随着 LED阵列光源芯片数量的增加, 在 做二次光学设计时, 相关光学器件 LED阵列透镜的尺寸也会不断增大, 对应生产 加工的工艺以及使用要求难度也会增加, 进而造成透镜阵列在使用过程中存在 内应力变形破裂等隐患。
技术问题
[0003] 为克服现有的技术缺陷, 本实用新型提供了一种加工工艺简单、 能有效缓冲透 镜阵列之间的内应力, 降低透镜阵列变形或破裂风险的透镜阵列的拼接结构。 问题的解决方案
技术解决方案
[0004] 为实现本实用新型的目的, 采用以下技术方案予以实现:
[0005] 一种透镜阵列的拼接结构, 包括透镜阵列, 其特征在于, 所述透镜阵列由若干
LED透镜阵列单元拼接而成, 相邻两个 LED透镜阵列单元之间设有拼接结构, 并 通过拼接结构实现连接固定。
[0006] 本实用新型中, 将透镜阵列平分成若干 LED透镜阵列单元, 各 LED透镜阵列单 元之间通过拼接结构拼接, 形成一片式的透镜阵列, 在透镜阵列由于外力或热 胀冷缩等原因造成内应力变化时, LED透镜阵列单元之间的拼接缝隙会对内应力 的变化起到一定的缓冲作用, 进而可以更好地保护整片透镜阵列。
[0007] 另一方面, 在运输或碰撞测试时, 整片 LED透镜阵列受力面积大, 容易出现裂 纹, LED透镜阵列单元分散了受力面, 即各小阵列分散受力, 降低了人为或非人 为碰撞等过程中 LED透镜阵列板出现裂纹的可能性。 LED透镜阵列单元由于面积 小, 生产的工艺要求低, 难度小, 进而更容易生产, 也能大大节省成本。 所述 拼接结构包括可拆卸和不可拆卸的拼接结构, 例如, 所述拼接结构可以是简易 的拆装卡扣, 可拆卸更换, 使整个透镜阵列具有易组装、 易更换的有益效果。
[0008] 进一步地, 所述拼接结构为弹性结构, 所述相邻 LED透镜阵列单元之间通过弹 性结构实现连接固定。
[0009] 本实用新型中, 将透镜阵列平分成若干 LED透镜阵列单元, 且 LED透镜阵列单 元之间通过弹性结构拼接而成, 由于弹性结构具有一定的弹性, 在透镜阵列由 于灯珠发热膨胀或材料内部加工成型不当等原因, 产生内应力时, 弹性结构能 起到一定的缓冲作用, 进而有效避免整片透镜阵列发生内应力变形或破裂。 另 一方面, 呈整体一片式设计的透镜阵列本身的密度比较大, 面积比较大, 那么 在透镜阵列由于温度的变化或材料加工成型不当时, 所产生的内应力也随之增 大, 进而更容易造成整片透镜阵列发生变形或破裂; 而一旦呈整体一片式的透 镜阵列发生变形或破裂, 那么影响的将是整个光源模组的灯光效果, 若后续透 镜阵列无法维修恢复原状, 那么只能重新更换一整片新的透镜阵列, 进而造成 购置成本增加和使用不便性。 而本实用新型的透镜阵列由于是由若干 LED透镜阵 列单元拼接而成, 拼接后的 LED透镜阵列单元之间存在弹性缓冲, 在产生内应力 时, 弹性缓冲有效减低了整片透镜阵列内应力破裂的风险; 且即使有其中一片 L ED透镜阵列单元发生变形破裂, 也可只替换该片 LED透镜阵列单元, 而无需更 换整片透镜阵列, 进而提高透镜阵列的实用性, 节省成本。
[0010] 进一步地, 所述透镜阵列由 6块呈等边三角形形状的 LED透镜阵列单元拼接而 成, 形成正六边形的形状, 所述 LED透镜阵列单元之间通过弹性结构进行拼接。
[0011] LED透镜阵列平分呈 6块 LED透镜阵列单元, 6块 LED透镜阵列单元之间通过弹 性结构进行拼接, 由于弹性结构具有弹性, 拼接后的 LED透镜阵列单元之间存在 弹性缓冲, 进而降低了整片透镜阵列内应力变形或破裂的风险; 且均分成 6块 LE D透镜阵列单元, 每块形状一致, 便于加工生产, 也便于组装, 降低了工艺难度
[0012] 进一步地, 所述透镜阵列由 2块呈等腰梯形形状的 LED透镜阵列单元拼接而成 , 形成正六边形的形状, 所述 LED透镜阵列单元对称设置, 且通过弹性结构进行 拼接。
[0013] LED透镜阵列平分呈 2块 LED透镜阵列单元, 使用弹性结构将 2块 LED透镜阵列 单元进行拼接, 即 2块独立的 LED透镜阵列单元以上下或左右对称排布的方式拼 接成正六边形。 由于弹性结构具有弹性, 拼接后的 LED透镜阵列单元之间存在弹 性缓冲, 进而降低了整片透镜阵列内应力变形或破裂的风险; 2块 LED透镜阵列 单元拼接的结构简单, 容易拼接, 降低整片透镜阵列内应力变形或破裂风险的 前提下, 也便于产业化。
[0014] 进一步地, 所述弹性结构为耐高温硅类胶水, 所述小透镜阵列之间通过耐高温 硅类胶水进行粘合拼接, 形成一体成型的透镜阵列。
[0015] 耐高温硅类胶水柔软且富有弹性, 能使得拼接后的 LED透镜阵列单元之间存在 弹性缓冲, 进而有效降低了整片 LED透镜阵列内应力变形或破裂的风险。 另一方 面, 耐高温硅类胶水对拼接后 LED透镜阵列单元之间的间隙影响较小, 能有效保 证拼接后的 LED透镜阵列基本等同于原整片透镜阵列的尺寸大小, 保证光源的灯 光效果。 本实用新型的拼接方式不仅限于耐高温硅类胶水粘合拼接, 其他弹性 拼接的方式也在本实用新型的保护范围之内。
[0016] 进一步地, 所述 LED透镜阵列单元上的每相邻 3个透镜之间呈等边三角形的方 式排布。
[0017] LED透镜阵列单元的每 3个透镜之间呈等边三角形排布, 在保证整片透镜阵列 的灯光效果的同时, 也能使得光源的发光更均匀, 保证相邻 LED灯珠、 相邻透镜 之间存在一定的间隙, 有利于散热, 同时也有利于降低整片透镜阵列内应力变 形或破裂的风险。
[0018] 进一步地, 所述 LED透镜阵列单元的每个角均为圆角。
[0019] LED透镜阵列单元的每个角均为圆角, 圆角的设计能有效避免透镜阵列边缘过 于尖锐化, 误伤他人; 在呈等边三角形设计的 LED透镜阵列单元上的圆角的设计 也能使得每一 LED透镜阵列单元能不分先后、 不分角度进行拼接
[0020] 进一步地, 所述透镜阵列由 6块 LED透镜阵列单元拼接后, 形成的正六边形光 学中心设有一空位。 [0021] 由于 6块 LED透镜阵列单元拼接后, 在靠近正六边形光学中心的灯珠能提供足 够的亮度供给于透镜阵列的光学中心, 因此, 空位的设计并不会对透镜阵列原 来的亮度造成影响, 且空位的设计也可单独设计一不同或相同的 LED灯珠, 来显 现不同的灯光效果, 提高整个光源模组的实用性。
[0022] 进一步地, 所述透镜阵列呈矩阵式排布, 且所述透镜阵列由若干呈矩阵式排布 的 LED透镜阵列单元拼接而成, 所述 LED透镜阵列单元之间通过拼接结构进行拼 接。
[0023] 本实用新型中, 透镜阵列的排布方式不限于矩阵式排布的方式, 也不限于呈正 六边形的排布方式。 透镜阵列的 LED发出光线后, 由于 LED的发光角度比较大, 所以每一 LED芯片都对应设有一小透镜及透镜对 LED所发出的光线进行准直, 每 一颗 LED发出的光线经准直后, 会形成相当于平行光的光束输出, 由于 LED的发 光特性, 所输出的光束并不均匀, 所以在透镜阵列之后设置了一对光线进行匀 化的复眼透镜, 光线以一定的夹角进入复眼透镜, 复眼透镜设有很多非常细小 的单元透镜, 单元透镜之间无缝拼接, 每一单元透镜对光束进行细分, 进而匀 化光束。 当复眼透镜上的单元透镜足够小时, 可以认为每一单元透镜上的光分 布是一样的。 在复眼透镜之后, 设置一聚光镜, 对复眼单元透镜的光束进行重 新聚焦于整个系统的第二焦点处, 这样所有复眼单元透镜的光强重新在第二焦 点处聚焦并重叠, 实现光学积分。
[0024] 进一步地, 所述弹性结构在 LED透镜阵列单元之间占据的间隙宽度小于 5mm [0025] 通过限制 LED透镜阵列单元之间的拼接间隙, 能有效保证拼接后的 LED透镜阵 列尺寸基本等同于原整片透镜阵列的尺寸。
发明的有益效果
有益效果
[0026] 与现有技术比较, 本实用新型具有加工工艺简单、 能有效缓冲透镜阵列之间的 内应力, 分散透镜阵列受到的外力, 降低透镜阵列变形或破裂风险的有益效果
对附图的简要说明
附图说明 [0027] 图 1为本实用新型实施例 1的结构示意图。
[0028] 图 2为本实用新型实施例 2的结构示意图。
[0029] 图 3为本实用新型中光源模组的系统光路图。
[0030] 图 4为 5见有技术中透镜阵列的结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0031] 为使本实用新型的目的、 技术方案和优点更加清楚, 下面结合附图对本实用新 型实施方式作进一步详细地说明。
[0032] 实施例 1
[0033] 如图 1所示, 一种透镜阵列的拼接结构, 包括透镜阵列, 所述透镜阵列由 6块 LE D透镜阵列单元 1拼接而成, 所述相邻 LED透镜阵列单元 1之间通过耐高温硅类胶 水粘合拼接, 形成正六边形形状的透镜阵列。 所述 LED透镜阵列单元 1的每个角 均为圆角, 所述 LED透镜阵列单元 1内的每相邻 3颗 LED灯珠之间呈等边三角形的 方式排布。 6块 LED透镜阵列单元 1拼接后形成的透镜阵列光学中心设有一空位 A
[0034] 如图 4所示, 5见有技术中的透镜阵列为整体一片式结构, 一片式的透镜阵列由 于尺寸较大, 对应的生产加工工艺及使用要求难度也会倍增, 在透镜阵列使用 过程中容易出现内应力变形破裂的隐患。
[0035] 本实施例中, 用耐高温硅类胶水将 6块 LED透镜阵列单元 1进行拼接, 使得 6块 L ED透镜阵列单元 1呈正六边形紧密拼接, 由于耐高温硅类胶水粘合后的拼接缝隙 较小, 从而保证拼接后的透镜阵列基本等同于原整片透镜阵列的尺寸大小, 保 证 LED光源的光照效果。 由于耐高温硅类胶水富有弹性, 拼接后的 LED透镜阵列 存在弹性缓冲, 分散透镜阵列受到的外力, 进而从设计上降低了整片 LED透镜阵 列内应力变形破裂的风险, 提高透镜阵列的稳定性。
[0036] 如图 3所示, 透镜阵列的 LED发出光线后, 由于 LH)的发光角度比较大, 所以 每一 LED芯片都对应设有一小透镜 11及透镜 12对 LED所发出的光线进行准直, 每 一颗 LED发出的光线经准直后, 会形成相当于平行光的光束输出, 由于 LED的发 光特性, 所输出的光束并不均匀, 所以在透镜阵列之后设置了一对光线进行匀 化的复眼透镜 3 , 光线以一定的夹角进入复眼透镜 3 , 复眼透镜 3设有很多非常细 小的单元透镜, 单元透镜之间无缝拼接, 每一单元透镜对光束进行细分, 进而 匀化光束。 当复眼透镜 3上的单元透镜足够小时, 可以认为每一单元透镜上的光 分布是一样的。 在复眼透镜 3之后, 设置一聚光镜 4, 对单元透镜的光束进行重 新聚焦于整个系统的第二焦点处, 这样所有单元透镜的光强重新在第二焦点处 聚焦并重叠, 实现光学积分。
发明实施例
本发明的实施方式
[0037] 实施例 2
[0038] 本实施例与实施例 1的不同之处在于, 本实施例的透镜阵列是通过两块呈等腰 梯形形状的LED透镜阵列单元 2拼接而成, 拼接后的透镜阵列呈正六边形形状, 拼接边缘处通过耐高温硅类胶水进行粘合拼接, 由于LED透镜阵列单元 2之间拼 接间隙较小, 拼接后的LED阵列光源基本等同于原整片阵列光源大小。 由于耐高 温硅类胶水柔软富有弹性, 拼接后的LED透镜阵列单元 2相互之间存在弹性缓冲 , 从设计上降低了整片LED透镜阵列内应力破裂的风险。

Claims

权利要求书
[权利要求 1] 一种透镜阵列的拼接结构, 包括透镜阵列, 其特征在于, 所述透镜阵 列由若干 LED透镜阵列单元拼接而成, 每一 LED透镜阵列单元由若干 透镜一体成型而成; 相邻两个 LED透镜阵列单元之间设有拼接结构, 并通过拼接结构实现连接固定。
[权利要求 2] 根据权利要求 1所述的一种透镜阵列的拼接结构, 其特征在于, 所述 拼接结构为弹性结构, 所述相邻 LED透镜阵列单元之间通过弹性结构 实现连接固定。
[权利要求 3] 根据权利要求 2所述的一种透镜阵列的拼接结构, 其特征在于, 所述 透镜阵列由 6块呈等边三角形形状的 LED透镜阵列单元拼接而成, 形 成正六边形的形状, 所述相邻 LED透镜阵列单元之间通过弹性结构进 行拼接。
[权利要求 4] 根据权利要求 2所述的一种透镜阵列的拼接结构, 其特征在于, 所述 透镜阵列由 2块呈等腰梯形形状的 LED透镜阵列单元拼接而成, 形成 正六边形的形状, 所述 LED透镜阵列单元对称设置, 且通过弹性结构 进行拼接。
[权利要求 5] 根据权利要求 2~4任一项所述的一种透镜阵列的拼接结构, 其特征在 于, 所述弹性结构为耐高温硅类胶水, 所述小透镜阵列之间通过耐高 温硅类胶水进行粘合拼接, 形成一体成型的透镜阵列。
[权利要求 6] 根据权利要求 1~4任一项所述的一种透镜阵列的拼接结构, 其特征在 于, 所述 LED透镜阵列单元上的每相邻 3个透镜之间呈等边三角形的 方式排布。
[权利要求 7] 根据权利要求 3或 4所述的一种透镜阵列的拼接结构, 其特征在于, 所 述 LED透镜阵列单元的每个角均为圆角。
[权利要求 8] 根据权利要求 3所述的一种透镜阵列的拼接结构, 其特征在于, 所述 透镜阵列由 6块 LED透镜阵列单元拼接后, 形成的正六边形光学中心 设有一空位。
[权利要求 9] 根据权利要求 1所述的一种透镜阵列的拼接结构, 其特征在于, 所述 透镜阵列呈矩阵式排布, 且所述透镜阵列由若干呈矩阵式排布的 LED 透镜阵列单元拼接而成, 所述 LED透镜阵列单元之间通过拼接结构进 行拼接。
[权利要求 10] 根据权利要求 1所述的一种透镜阵列的拼接结构, 其特征在于, 所述 拼接结构在 LED透镜阵列单元之间占据的宽度小于 5mm。
PCT/CN2019/083078 2018-09-12 2019-04-17 一种透镜阵列的拼接结构 WO2020052235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821489585.8 2018-09-12
CN201821489585.8U CN209101217U (zh) 2018-09-12 2018-09-12 一种具有拼接结构的透镜阵列

Publications (1)

Publication Number Publication Date
WO2020052235A1 true WO2020052235A1 (zh) 2020-03-19

Family

ID=67152450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083078 WO2020052235A1 (zh) 2018-09-12 2019-04-17 一种透镜阵列的拼接结构

Country Status (2)

Country Link
CN (1) CN209101217U (zh)
WO (1) WO2020052235A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249979A1 (en) * 2020-06-11 2021-12-16 Signify Holding B.V. Lens plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815272B (zh) * 2019-11-18 2023-10-10 深圳市绎立锐光科技开发有限公司 光源系统和发光设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852036U (zh) * 2010-10-28 2011-06-01 西安鼎元神光光电科技有限公司 Led透镜模组
CN204026227U (zh) * 2014-07-15 2014-12-17 上海源明照明科技有限公司 一种带组合式透镜的led模块
CN204026531U (zh) * 2014-06-16 2014-12-17 黄利强 一种led透镜装置
CN206148083U (zh) * 2016-08-31 2017-05-03 广州沣雷交通科技有限公司 一种显示屏模组
CN207486718U (zh) * 2017-12-14 2018-06-12 赣州光联电子科技有限公司 一种led准直聚光组件
CN207584685U (zh) * 2017-12-15 2018-07-06 深圳市汉辉光电有限公司 光学透镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852036U (zh) * 2010-10-28 2011-06-01 西安鼎元神光光电科技有限公司 Led透镜模组
CN204026531U (zh) * 2014-06-16 2014-12-17 黄利强 一种led透镜装置
CN204026227U (zh) * 2014-07-15 2014-12-17 上海源明照明科技有限公司 一种带组合式透镜的led模块
CN206148083U (zh) * 2016-08-31 2017-05-03 广州沣雷交通科技有限公司 一种显示屏模组
CN207486718U (zh) * 2017-12-14 2018-06-12 赣州光联电子科技有限公司 一种led准直聚光组件
CN207584685U (zh) * 2017-12-15 2018-07-06 深圳市汉辉光电有限公司 光学透镜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249979A1 (en) * 2020-06-11 2021-12-16 Signify Holding B.V. Lens plate

Also Published As

Publication number Publication date
CN209101217U (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN202274376U (zh) 液晶显示背光模组及液晶显示器
TWI572821B (zh) 具有再利用功能之發光二極體陣列照明系統
WO2020052235A1 (zh) 一种透镜阵列的拼接结构
US20120328278A1 (en) Condenser lens, lamp and camera
US9711690B2 (en) LED and LED packaging method thereof
TW200536147A (en) Light-collecting illumination system
CN103511987A (zh) 光控制镜片及其光源装置
RU2010110809A (ru) Источник света для проектора
WO2020211411A1 (zh) 一种带场镜的舞台led光源的光学系统
JP2012529670A (ja) 高い制御出力を備えたフラットパネル光学ディスプレイシステム
CN101881413A (zh) 照明装置
TWI287687B (en) Light source projection device
WO2014040325A1 (zh) 侧入式led背光模组、液晶显示装置及反射片的固定方法
TWI506346B (zh) 散熱光學透鏡與使用該散熱光學透鏡的背光模組
CN112346271A (zh) 一种hud背光照明系统
WO2021258524A1 (zh) 一种多尺寸光固化3d打印机拼接光源
WO2013189116A1 (zh) 直下式的背光模块及包括其的液晶显示器
CN112241084A (zh) 一种具有方向性的薄型液晶显示器背光照明系统
TWI572952B (zh) 發光二極體元件及應用該發光二極體元件的背光模組
CN209804177U (zh) 一种节能型MicroLED显示模组
TWI360628B (en) Illuminating apparatus
US20120075594A1 (en) Projection apparatus and illumination system
CN104251461A (zh) 透镜及具有该透镜的光源模组
US8985827B2 (en) Backlight module having optical fibers
US20110216555A1 (en) Led device for backlight module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859624

Country of ref document: EP

Kind code of ref document: A1