WO2020050552A1 - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
WO2020050552A1
WO2020050552A1 PCT/KR2019/011124 KR2019011124W WO2020050552A1 WO 2020050552 A1 WO2020050552 A1 WO 2020050552A1 KR 2019011124 W KR2019011124 W KR 2019011124W WO 2020050552 A1 WO2020050552 A1 WO 2020050552A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
condensate
heat exchange
odor
exchange system
Prior art date
Application number
PCT/KR2019/011124
Other languages
French (fr)
Korean (ko)
Inventor
이서진
홍상현
김지현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020050552A1 publication Critical patent/WO2020050552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/16Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of parallelly-movable plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat exchange system configured to reduce fine dust and odor contained in air by using condensate generated during a heat exchange process.
  • the heat exchange system refers to a device that uses heat exchange as a basic mechanism.
  • Devices such as air conditioners, refrigerators, dehumidifiers, etc. are all included in the scope of the heat exchange system because they produce the desired results through heat exchange.
  • the heat exchange systems are configured to suck air from the outside using a fan, and then discharge the air to the outside after heat exchange.
  • the air conditioner when operated in cooling, it is formed to suck outside hot air, cool through heat exchange, and discharge cold air.
  • a heat exchanger is a typical device adopted for the heat exchange system. If the heat exchanger is operated continuously, moisture will form on the surface of the heat exchanger. For example, when a heat exchanger is used as an evaporator of an air conditioner, when the air conditioner is cooled, the temperature of the evaporator is lower than room temperature. Accordingly, condensed water is formed on the surface of the evaporator.
  • Patent Document No. 1999-019513 (1999.03.15.) which is a prior art document, discloses a configuration in which condensate is converted into ozone water and injected into a heat exchanger. Using the configuration of the patent document, germs and the like in the heat exchanger can be sterilized by sterilizing power using ozone.
  • Air quality refers to evaluating various components contained in air and comparing them to normal levels.
  • air quality refers to the basic components constituting the air and contaminants contained in the air in addition to the basic components, and is used for quality determination of the air environment.
  • Air quality standards vary by country. In general, the concentration of fine dust (PM10), ultrafine dust (PM2.5), ozone (O 3 ), nitrogen dioxide (NO 2 ), nitrogen monoxide (CO), sulfur dioxide (SO 2 ) contained in the air Therefore, the air quality is judged as good, normal, bad, or very bad.
  • the air discharged from the heat exchange system can be directly supplied to a human living environment. It is not preferable that the air discharged from the heat exchange system contains substances that degrade air quality, such as fine dust or ultrafine dust, or contains odor-causing components.
  • An object of the present invention is to provide a heat exchange system configured to improve air quality of air directly supplied to a human living environment and reduce odor.
  • the present invention is to provide a configuration that can be used to improve air quality and reduce odor of condensate generated in a heat exchange system.
  • An object of the present invention is to control the flow rate and flow rate of air through adjusting the area and direction of the air flow path, and to propose a heat exchange system having a configuration capable of improving air quality improvement effect and odor reduction effect.
  • the present invention is to propose a heat exchange system configured to reduce the area wasted without participating in heat exchange in the process of controlling the flow rate and flow rate of the air.
  • An object of the present invention is to propose a heat exchange system of a configuration that imparts antibacterial and odor removal functions to surfaces of components that have the opportunity to contact moisture.
  • the heat exchange system controls the flow of air by using a blind formed to be able to adjust the position and direction, and occurs in the heat exchange process of the heat exchanger Fine dust / ultrafine dust and odor-causing substances are adsorbed using a condensate spray device that is formed to spray the condensate to the blind.
  • the heat exchange system may include: a fan configured to suck air through an air intake port and discharge air through the air outlet port; A heat exchanger installed between the fan and the air outlet to heat or cool the air to be discharged by the fan; And a water collecting tank installed below the heat exchanger to collect condensate generated during the heat exchange process of the heat exchanger.
  • the blind is installed between the air intake and the fan so as to contact the air sucked by the fan.
  • the condensate spraying device receives the condensate collected in the collection tank.
  • the water collecting tank is installed under the blind, and the blind extends toward the water collecting tank to guide the condensate sprayed from the condensate spraying device to be re-collected into the water collecting tank.
  • the blind the rail extending in a direction crossing the flow direction of the air by the fan; A plurality of slats extending in a direction toward the water collecting tank and moving along the rail or rotating on the rail; And a driving unit formed to adjust the position and angle of the slat.
  • the slat is formed in a plate or mesh structure.
  • the heat exchange system further includes an air sensor installed between the air intake and the blind so as to measure the quality of air or the concentration of odor-causing substances sucked into the air intake by the fan, and the driving unit is the air sensor It works on the basis of the air quality or concentration of odor-causing substances measured at.
  • the plurality of slats are moved to a position to increase the contact area with the air sucked through the air intake.
  • An air flow path is formed between each of the plurality of slats to pass air sucked from the air intake port, and when the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are It is rotated in a direction to narrow the air passage.
  • the degree of light narrowing of the air passage is adjusted so as to be inversely proportional to the quality of the air measured by the air sensor or the concentration of the odor-causing substance exceeding the standard.
  • the plurality of slats are rotated at different angles, and the air flow path is adjusted to gradually widen or gradually narrower from being arranged at one end of the plurality of slats to being arranged at the other end.
  • the plurality of slats are rotated in a direction such that a relative angle to the extending direction of the rail is within a range of 30 to 150 °. .
  • the relative angle is adjusted to be inversely proportional to the degree of air quality or the concentration of the odor-causing substance measured by the air sensor, and the relative angle in the range of the obtuse angle is the air sensor.
  • the air quality or the concentration of odor-causing substances to be measured is adjusted to be proportional to the degree exceeding the above standard.
  • the plurality of slats are rotated to have relative angles to the extending direction of the rails with different values, and the relative angles gradually increase or gradually increase from being disposed at one end of the plurality of slats to being disposed at the other end. It is adjusted to be small.
  • the condensate spray device is formed to spray condensate from the upper side of the blind toward the blind, and the condensate spray device comprises: a condensate pipe connected to the water collection tank and the condensate spray device to form a condensate supply flow path; A nozzle formed to spray the condensate supplied through the condensate pipe with the blinds; And a pump installed on the condensate pipe and formed to supply condensate supplied from the water collection tank to the nozzle through the condensate pipe.
  • the heat exchange system further includes a drain pipe that is branched from the pump to discharge the condensate to the outside and extends to the outside of the heat exchange system, and which of the condensate pipe and the drain pipe supplies condensate through control of the pump Is decided.
  • the heat exchange system further includes a microbial sensor formed to measure the microbial concentration of the condensate collected in the water collection tank, and the pump is operated based on the microbial concentration measured by the microbial sensor.
  • the pump operates only when the microbial concentration measured by the microbial sensor is less than the reference value.
  • the plurality of slats reciprocate within a predetermined rotation range every predetermined time.
  • the plurality of slats are sequentially moved with a time difference from being arranged at one end to being arranged at the other end.
  • a hydrophilic coating containing a transition metal oxide is formed on at least one surface of the heat exchanger, the water collecting tank, and the blind, and the transition metal oxide is tungsten (W), molybdenum (Mo), zirconium. (Zirconium, Zr).
  • the hydrophilic coating includes at least one hydrophilic polymer selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacetic acid, and polyvinylpyrrolidone.
  • the air condensate is sprayed to adsorb fine dust / ultrafine dust and odor-causing substances, so that the air quality of the air directly supplied to the human living environment can be improved and the odor is reduced. can do.
  • the air flow direction, flow rate, and flow rate are changed by using the blinds, and condensate is sprayed on the blinds to adsorb fine dust / ultrafine dust and odor-causing substances, thereby improving air quality and reducing odor. Can be obtained.
  • the present invention is based on the concentration of air quality and odor-causing substances detected by the air sensor, and the concentration of microorganisms in the condensate detected by the microbial sensor to control pumps, blinds, and the like. Therefore, it is possible to expect an effective air quality improvement and an odor-inducing substance reduction effect according to the air quality and the concentration of the odor-causing substance, and efficient power management can be achieved.
  • the present invention by using a hydrophilic coating containing a transition metal oxide, it is possible to impart antibacterial and odor removal functions to the surface in contact with the condensate.
  • the present invention can solve the problem of the dead zone of the heat exchanger through driving control of the blind.
  • FIG. 1 is an exploded perspective view showing an air conditioner as an example of a heat exchange system proposed in the present invention.
  • FIG. 2 is a perspective view showing the blind shown in FIG. 1.
  • FIG. 3 is a perspective view showing a condensate spraying apparatus shown in FIG. 1.
  • FIG. 4 is a flow chart of a method for reducing fine dust / fine dust and odor using condensate.
  • 5 is a state diagram of the operation of the blinds and condensate spray when the air quality or odor condition is good.
  • FIG. 6 is a state diagram of the operation of the blinds and condensate spray when the air quality or odor condition is normal.
  • FIG. 7 is an operation state diagram of the blind and the condensate spraying device when the air quality or the odor state is bad / very bad.
  • 9 is another operating state of the blinds and the condensate spraying device that operates to suppress the occurrence of dead zones in the heat exchanger when the air quality or the odor state is moderate to very poor.
  • the heat exchange system refers to a device that uses heat exchange as a basic mechanism.
  • the heat exchange system is equipped with a heat exchanger.
  • the heat exchanger is likely to contact moisture through a heat exchange process. For example, when the heat exchanger exchanges heat with air, condensation water is generated on the surface of the heat exchanger.
  • 1 shows an air conditioner as an example of such a heat exchange system.
  • FIG. 1 is an exploded perspective view showing an air conditioner 100 as an example of a heat exchange system proposed in the present invention.
  • the casings 111 and 112 form the appearance of the air conditioner 100.
  • the casings 111 and 112 are formed with air inlets 112a and air outlets 111a that open in opposite directions.
  • the air intake 112a is formed on the back of the air conditioner 100
  • the air outlet 111a is formed on the front of the air conditioner 100.
  • the casings 111 and 112 may include a first casing 111 disposed in the front and a second casing 112 disposed in the rear.
  • the air discharge port 111a is formed in the first casing 111
  • the air suction port 112a is formed in the second casing 112.
  • the first casing 111 and the second casing 112 are coupled to each other to form an installation space for components such as a fan 120 or a heat exchanger 130 therein.
  • Fan 120 is installed inside the casing (111, 112).
  • the fan 120 is formed to suck air through the air inlet 112a and discharge air through the air outlet 111a. If the air inlet 112a and the air outlet 111a are formed at positions facing each other, the fan 120 may be configured as an axial fan that generates wind in the axial direction. However, it is not necessarily limited to this, and the fan 120 may be configured as a centrifugal fan. In this case, a structure for guiding the wind generated by the fan 120 to the air outlet 111a may be additionally installed inside the air conditioner 100.
  • the fan 120 may be installed in plural.
  • the plurality of fans 120 may be installed to overlap each other on the flow path of the air, or may be installed side by side. 1 shows two fans 120 installed side by side vertically. The number, size, and air volume of the fan 120 may vary depending on the design or cooling capacity of the air conditioner 100.
  • the heat exchanger 130 is installed between the fan 120 and the air outlet 111a to heat or cool the air to be discharged to the air outlet 111a by the fan 120. Since the air outlet 111a is installed in front of the fan 120, the heat exchanger 130 is installed at a position corresponding to the rear of the air outlet 111a and a position corresponding to the front of the fan 120. If based on the flow of air, the heat exchanger 130 is installed on the downstream side of the fan 120.
  • the heat exchanger 130 When the air conditioner 100 is cooled, the heat exchanger 130 operates as an evaporator. Therefore, the refrigerant flowing inside the heat exchanger 130 is evaporated by receiving heat from the air in the evaporator. Air transfers heat to the refrigerant through the evaporator and is cooled.
  • the water collecting tank 140 is formed to collect condensed water.
  • the water collecting tank 140 is installed under the heat exchanger 130 to collect condensate generated during the heat exchange process of the heat exchanger 130.
  • the conventional air conditioner 100 is not provided with a water collecting tank 140, or even if a water collecting tank 140 is provided, it is only used to temporarily store condensed water to discharge condensed water.
  • the air quality of air to be supplied to the user is improved and the odor is reduced by using condensate generated during the heat exchange process of the heat exchanger 130.
  • the air quality improvement and the odor reduction effect are achieved by the blind 150 and the condensate spray device 160.
  • the blind 150 is installed between the air intake 112a and the fan 120 so as to contact the air sucked into the fan 120.
  • air existing outside the air conditioner 100 is sucked through the air intake 112a. Therefore, if the blind 150 is disposed between the fan 120 and the air intake 112a, it may be in contact with air sucked through the air intake 112a.
  • the blind 150 is formed to be able to adjust its position and direction. This will be described with reference to FIG. 2.
  • FIG. 2 is a perspective view of the blind 150 shown in FIG. 1.
  • the blind 150 includes rails 151 and 152, a plurality of slats 153, and a driving unit 155.
  • the rails 151 and 152 extend in a direction crossing the flow direction of the air by the fan 120.
  • the air intake 112a is formed on the back of the air conditioner 100
  • the air outlet 111a is formed on the front of the air conditioner 100
  • the flow direction of air is the air conditioner It can be said to be a front-to-back direction from the rear of the (100) to the front.
  • the rails 151 and 152 extend in the left and right directions to intersect in the front-rear direction. Since the concept of intersecting is not limited to the concept of orthogonal, the rails 151 and 152 may not necessarily be orthogonal to the front-rear direction.
  • the rails 151 and 152 form a movement path of the slat 153, which will be described later.
  • the rails 151 and 152 may be installed on at least one of the upper side or the lower side of the slat 153.
  • the slats 153 are provided in plural. Each slat 153 extends in the direction toward the water collecting tank 140. Since the blind 150 is installed on the upper side of the water collecting tank 140, the slat 153 may extend downward toward the water collecting tank 140. When the slat 153 is extended in the direction toward the water collecting tank 140, the condensed water sprayed on the slat 153 may fall back to the water collecting tank 140 by its own weight and be collected again.
  • the plurality of slats 153 are formed to move along the rails 151 and 152 or to rotate within a movement path formed by the rails 151 and 152. At least one of the top and bottom of each slat 153 may be equipped with a carrier 154, which is movably and rotatably inserted into rails 151 and 152. Since the slat 153 and the carrier 154 are integrally moved, the slat 153 can be moved and rotated on the rails 151 and 152 by the carrier 154.
  • Each slat 153 may be formed in a plate or mesh structure.
  • the slat 153 When the slat 153 is formed of a plate or mesh structure extending in the vertical direction, it affects the flow direction, flow rate, and flow rate of the air sucked into the air intake 112a.
  • the slat 153 When the slat 153 is formed in a plate or mesh structure, it provides a large surface area, thereby increasing the adsorption effect of fine dust / ultrafine dust and odor-causing substances by condensate spraying.
  • each slat 153 When each slat 153 is arranged to face the same direction as the intake direction of air, there is little influence on the flow direction, flow rate, and flow rate of air.
  • the slats 153 are arranged inclined with respect to the intake direction of air, the air particles sucked into the air intake 112a collide with the slats 153, and the air flow paths formed between the plurality of slats 153 are formed. Will pass. Accordingly, the flow direction, flow rate, and flow rate of air are affected by the direction or area of the air flow path formed between the plurality of slats 153.
  • the direction or area of the air passage is determined by the separation distance between the slats 153 and the inclination angle of the slats 153.
  • the inclination angle of the slat 153 may be described based on the relative angle to the rails 151 and 152 or the air flow direction (suction direction).
  • the rails 151 and 152 extend along a direction crossing with respect to the flow direction of air, and preferably, the flow direction of the air and the extending direction of the rails 151 and 152 are orthogonal to each other. Accordingly, the inclination angle of the slat 153 may be described as how inclined the slats 153 are arranged with respect to the rails 151 and 152, or how inclined the slats 153 are arranged with respect to the flow direction of air. For example, even with the same inclination angle, the description of the inclination angle of the slat 153 may vary according to the standard.
  • the driving unit 155 is formed to adjust the position and angle of the slat 153.
  • the driving unit 155 may be configured as a motor that generates driving force.
  • the motor may be connected to each carrier 154 by a chain (not shown) or the like, and the driving force generated by the motor is transmitted to the carrier 154 through the chain.
  • Each slat 153 may be moved or rotated by this driving force.
  • the vertical type blind 150 in which the slat 153 extends in the vertical direction is described as an example, but the present invention is a horizontal type blind in which the slat 153 extends in the horizontal direction ( 150) is also applicable.
  • the condensate spraying device 160 is formed to receive the condensate collected in the water collecting tank 140 and spray it toward the blind 150.
  • the condensate spray device 160 will be described with reference to FIG. 3.
  • FIG. 3 is a perspective view of the condensate spray device 160 shown in FIG. 1.
  • the condensate spray device 160 is formed to spray condensate from the upper side of the blind 150 toward the blind 150 downward.
  • the condensate spray device 160 includes condensate pipes 161a, 161b, and 161c, a nozzle 162, and a pump 163.
  • the condensate pipes 161a, 161b, and 161c are connected to the water collecting tank 140 and the condensate spraying device 160 to form a supply flow path of the condensate supplied to the nozzle 162.
  • the nozzle 162 for spraying condensate into the blind 150 is installed at a higher position than the blind 150, and the water collecting tank 140 is installed at a lower position than the blind 150. Accordingly, at least a portion of the condensate pipes 161a, 161b, and 161c extend upward from the height of the water collecting tank 140 to the height of the nozzle 162.
  • the nozzle 162 is formed to spray condensate toward the blind 150 at a position higher than the blind 150.
  • the nozzle 162 receives condensate through the condensate pipes 161a, 161b, and 161c.
  • the nozzle 162 sprays the condensate supplied through the condensate pipes 161a, 161b, and 161c to the blind 150.
  • the nozzle 162 may be composed of a single nozzle, a dual nozzle (or twin nozzle), or the like.
  • fine dust / ultrafine dust or odor-inducing substances floating in the air are adsorbed on the water and flow down along with the slats 153 along with water.
  • the pump 163 is formed to supply condensate supplied from the water collecting tank 140 to the nozzles 162 through condensate pipes 161a, 161b, and 161c. Based on the flow of condensate, the pump 163 is installed on the downstream side of the water collecting tank 140, the condensate pipes 161a, 161b, and 161c are installed on the downstream side of the pump 163, and the nozzle 162 is the condensed water It is installed on the downstream side of the pipes 161a, 161b, and 161c.
  • the drain pipe 164 is branched from the pump 163 and extends outside the air conditioner 100.
  • the drain pipe 164 is configured to discharge condensate to the outside.
  • nozzle 162 Since the nozzle 162 is installed at a higher position than the water collecting tank 140 and the pump 163, condensate cannot be supplied to the nozzle 162 unless a force is applied by the pump 163. Therefore, if the pump 163 is not operating, the condensate is naturally drained through the drain pipe 164. Conversely, when the pump 163 is operated, condensate may be supplied to the nozzle 162 through condensate pipes 161a, 161b, and 161c.
  • whether to supply condensate to one of the condensate pipes 161a, 161b, and 161c and the drainage pipe 164 may be determined through control of the pump 163. Condensate will be sprayed from the condensate sprayer 160 if the pump 163 is operated only when condensate is supplied to the nozzle 162 through the condensate pipes 161a, 161b, 161c. Conversely, if the pump 163 is not operating, condensate will be drained through the drain pipe 164.
  • a valve (not shown) may be additionally installed in the periphery (upstream or downstream) of the pump 163 to prevent arbitrary drainage of condensate when the pump 163 is not operating.
  • the air sensor 170 and the microbial sensor 180 are used as sensors for determining the spray of condensate.
  • the air sensor 170 is formed to detect air quality or odor-causing substances contained in the air.
  • the air sensor 170 is installed between the air intake 112a and the blind 150 to measure the quality or odor of air sucked into the air intake 112a by the fan 120.
  • the air sensor 170 provides a basis for determining whether to spray the condensate from the condensate sprayer 160. Accordingly, the driving unit 155 and / or the pump 163 operate based on the air quality or the concentration of the odor-causing substance measured by the air sensor.
  • the air intake through the air intake 112a has a small amount of fine dust / ultrafine dust or a small amount of odor-causing substances
  • the need to adsorb odor-causing substances to water is low.
  • the air intake through the air intake 112a has a large amount of fine dust / ultrafine dust or a large amount of odor-causing substances
  • there is a need to adsorb the fine dust / ultrafine dust to the water through spraying of condensed water there is a high need to adsorb odor-causing substances into water. Therefore, only when the need is high, if the driving unit 155 and / or the pump 163 are operated to achieve fine dust / ultrafine dust reduction and odor-inducing substance reduction effects, efficient management can be achieved from the viewpoint of energy consumption.
  • the microbial sensor 180 is formed to measure the microbial concentration of condensate collected in the water collecting tank 140.
  • the microbial sensor 180 may be installed on the inner surface or the outer surface of the water collecting tank 140.
  • Condensate must be clean in nature in order to adsorb fine dust / fine dust or odor-causing substances using condensate, and to achieve the object of the invention.
  • the concentration of microorganisms is calculated in colony forming units (CFU). If the microbial concentration of the condensate is about 800 CFU or more, it may be unsuitable for being sprayed onto the blind 150 through the condensate spray device 160. Therefore, it is preferable to spray the condensate having a microbial concentration of less than about 800CFU on the blind 150.
  • the pump 163 operates based on the microbial concentration measured by the microbial sensor 180.
  • the pump 163 may be operated only when the microbial concentration measured by the microbial sensor 180 is less than the reference value. Whether to supply condensate to the condensate pipes 161a, 161b, 161c is controlled by the operation of the pump 163, so if the pump 163 operates based on the microbial concentration measured by the microbial sensor 180, clean condensate Only can be sprayed with the blind 150.
  • the location where the water collecting tank 140 is installed is also the lower side of the heat exchanger 130, but also the lower side of the blind 150.
  • the water collecting tank 140 is formed to a size large enough to collect the condensate falling from the heat exchanger 130 and the blind 150.
  • the vertical type blind 150 extends toward the water collecting tank 140 so that the condensed water sprayed from the condensate spraying device 160 is re-collected into the water collecting tank 140.
  • a hydrophilic coating containing a transition metal oxide may be formed on at least one surface of the heat exchanger 130, the water collecting tank 140, and the blind 150.
  • the hydrophilic coating includes a hydrophilic polymer that imparts hydrophilicity.
  • the hydrophilic polymer may include at least one selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacetic acid, and polyvinylpyrrolidone.
  • the hydrophilic coating may include metal salts such as metal sulfates.
  • the hydrophilic coating may include acid and base chemicals.
  • the hydrophilic coating contains a transition metal oxide that provides antibacterial properties.
  • the transition metal oxide reacts with moisture to give an antibacterial property to the surface of the base material and thus exhibits acidity.
  • the acidic is a concept including weak acidity (pH 5 to 6).
  • the transition metal oxide generates an acidic or weakly acidic metallic acid through a catalytic reaction with moisture, and the acidic or weakly acidic metallic acid imparts antibacterial properties to the hydrophilic coating.
  • the transition metal of the transition metal oxide may include at least one selected from the group consisting of tungsten (W), molybdenum (Mo), and zirconium (Zr). Since at least one means one or more, the transition metal of the transition metal oxide may include two or more of tungsten, molybdenum, and zirconium.
  • the reason why the hydrophilic coating has hydrophilicity is to induce the reaction of the transition metal oxide and moisture through condensation.
  • Transition metal oxides are catalysts that decompose gases such as volatile organic compounds into oxygen and carbon dioxide, and react with some odor-causing components. Therefore, it is possible to expect an effect of reducing odor from the transition metal oxide.
  • the air conditioner 100 has been described as an example of a heat exchange system.
  • the present invention can be variously applied to the heat exchange system defined in the present invention in addition to the air conditioner 100.
  • the present invention can also be applied to a refrigerator, a dehumidifier, a water purifier, and a clothing processing device using heat exchange as a basic mechanism.
  • FIG. 4 is a flow chart of a method for reducing fine dust / fine dust and odor using condensate.
  • Air quality can be measured as good / normal / bad / very bad by various factors such as fine dust / ultrafine dust.
  • concentration of the odor-causing substance may also be measured as good / medium / bad / very bad according to a predetermined standard, but is not limited thereto. It is determined whether to spray the condensate on the blind 150 according to the air quality measured by the air sensor 170 and the concentration of the odor-causing substance.
  • the control unit may be composed of an assembly composed of an element and a printed circuit board.
  • the heat exchange system When the heat exchange system is operated, air flow by the fan 120 or the like occurs, and heat exchange between air and refrigerant occurs in the heat exchanger 130. In the heat exchange process, water vapor in the air is condensed to generate condensed water, and the condensed water is collected in the water collecting tank 140.
  • the microbial sensor 180 measures the microbial concentration of the condensate collected in the water collecting tank 140 (S200). Whether the condensate is used for spraying or drained is determined according to the microbial concentration measured by the microbial sensor 180. This determination can also be made at the control of the heat exchange system.
  • step (100) If it is decided to spray the condensate on the blind 150 in step (100), and if it is determined to use the condensate for spraying in step (200), the pump 163 control, the valve control, the inclination angle control of the blind 150 It is carried out (S300).
  • Pump 163 control means to control the condensate to be used for spraying to be transferred to the nozzle 162.
  • the valve control refers to control to open and close a unidirectional valve or a multidirectional valve installed around the pump 163 so that condensate is not drained and is supplied to the nozzle 162.
  • the inclination angle control of the blind 150 is a position suitable for removing fine dust / ultrafine dust and odor-causing substances from the slats 153 of the blind 150 according to the air quality or the concentration of the odor-causing substances measured by the air sensor 170. Means to move, and rotate.
  • the specific control of the last step 300 depends on the air quality and the concentration of the odor-causing substance measured by the air sensor 170, and the specific control will be described with reference to the drawings below.
  • 5 is an operation state diagram of the blind 150 and the condensate spray device 160 when the air quality or the odor state is good.
  • the air intake through the air intake 112a has very little fine dust / ultrafine dust or very little odor-causing material.
  • the fine dust / ultrafine dust content is good and lower than the normal reference value (boundary value), or the concentration of the odor-causing substance is good and lower than the normal reference value (boundary value).
  • the slat 153 of the blind 150 is preferably arranged so as not to interfere with the flow of air.
  • the plurality of slats 153 are arranged parallel to the flow direction of the air so as not to interfere with the flow of air. Since the rails 151 and 152 extend in a direction orthogonal to the direction of rotation of the air, it can be understood that the slats 153 are arranged to be orthogonal to the extending direction of the rails 151 and 152.
  • the plurality of slats 153 may be moved to a position that minimizes the contact area with the air sucked through the air intake 112a.
  • the plurality of slats 153 may be arranged to be in close contact with at least one of one end and the other end of the rails 151 and 152.
  • condensate is not sprayed in the condensate spray device 160.
  • the air introduced through the air intake 112a is hardly affected by the blind 150 and passes through an air flow path formed between the slats 153 while maintaining the flow direction, flow rate, and flow rate.
  • FIG. 6 is a state diagram of the operation of the blind 150 and the condensate spraying device 160 when the air quality or odor condition is normal.
  • the air quality or the odor state is normal, it means that the air inhaled through the air intake 112a has a moderate level of fine dust / ultrafine dust or a moderate level of odor-causing substances.
  • the fine / ultrafine dust content is good and higher than the normal reference value (boundary value), or the concentration of the odor-causing substance is higher than the good and normal reference value (boundary value).
  • the slats 153 of the blinds 150 are arranged to influence the flow of air to some extent.
  • the plurality of slats 153 are in contact with the air sucked through the air intake 112a. It is moved to a location that increases the area. In the movement paths formed by the rails 151 and 152, the largest spread of the plurality of slats 153 at equal intervals corresponds to the maximum contact area with air.
  • the plurality of slats 153 are rotated in a direction to narrow the air flow path.
  • the air flow path means a space formed between the slats 153 and the slats 153 as described above.
  • the air flow path is narrowed. The air passage continues to narrow until a plurality of slats 153 are arranged parallel to the rails 151 and 152.
  • the degree of light narrowness (wide or narrow) of the air passage may be adjusted to be inversely proportional to the degree that the air quality or the concentration of the odor-causing substance measured by the air sensor 170 exceeds the reference value.
  • the first case in which the concentration of the air quality or the odor-causing substance measured by the air sensor 170 slightly exceeds the reference value and the second case in which the reference value is excessively exceeded may be considered.
  • the degree of exceeding the reference value is greater in the second case. Since the degree of light narrowing of the air passage is adjusted to be inversely proportional to the degree exceeding the reference value, the second case forms a smaller air passage than the first case. The narrower the air flow path, the greater the effect of the blinds 150 on the flow of air.
  • the relative angle between the slat 153 and the rails 151 and 152 may be 90 °.
  • the relative angles of the slats 153 and the rails 151 and 152 are preferably within a range of at least 60 ° or at most 120 °. .
  • the pump 163 operates only when the microbial concentration measured by the microbial sensor 180 is less than the reference value. If the microbial concentration is below the reference value, it means that the condensate is clean.
  • condensate is supplied from the water collection tank 140 to the condensate spraying device 160. And water is sprayed through the nozzle 162 to the slat 153 of the blind 150.
  • the water particles of the condensate sprayed onto the slat 153 of the blind 150 are physically adsorbed to the slat 153 together with fine / ultrafine dust or odor-causing substances.
  • the condensed water flows down by its own weight, it is collected in the water collecting tank 140. Through this process, the concentration of fine dust / ultrafine dust present in the air or the concentration of odor-causing substances may be reduced, and clean air may be discharged through the air outlet 111a.
  • FIG. 7 is an operation state diagram of the blind 150 and the condensate spraying device 160 when the air quality or the odor state corresponds to a bad / very bad condition.
  • the air quality or the odor state is bad, it means that the fine dust / ultrafine dust content is in the air inhaled through the air intake 112a, or the odor-causing material content is in the bad level.
  • the fine dust / ultrafine dust content is higher than the normal and bad reference value (boundary value), or the concentration of the odor-causing substance is higher than the normal and bad reference value (boundary value).
  • the air quality or the odor state corresponds to very bad, it means that the fine dust / ultrafine dust content is very low in the air sucked through the air intake 112a, or the odor-causing material content is very bad.
  • the fine dust / ultrafine dust content is higher than the reference value (boundary value) of bad and very bad, or the concentration of the odor-causing substance is higher than the reference value (boundary value) of bad and very bad.
  • the slats 153 of the blind 150 are arranged to have a relatively large effect on the flow of air. This is because the effect of spraying condensate can be maximized.
  • the plurality of slats 153 are in contact with the air sucked through the air intake 112a. It is moved to a position that further increases the area. In the movement paths formed by the rails 151 and 152, the largest spread of the plurality of slats 153 at equal intervals corresponds to the maximum contact area with air.
  • the plurality of slats 153 narrow the air flow path more than in the case of FIG. 6. Is rotated in one direction.
  • the relative angles of the slats 153 and the rails 151 and 152 are within a range of at least 30 ° or at most 150 °. If the relative angle is less than 30 ° or greater than 150 °, there is a possibility of excessively obstructing the flow of air.
  • the relative angle between the slats 153 and the rails 151 and 152 is adjusted according to the degree to which the air quality or the concentration of the odor-causing substance measured by the air sensor 170 exceeds the above standard.
  • the relative angle is preferably adjusted to be inversely proportional to the air quality or the concentration of the odor-causing substance exceeding the above standard.
  • the relative angle is adjusted to be proportional to the air quality or the concentration of the odor-causing substance exceeding the above standard.
  • the pump 163 operates only when the microbial concentration measured by the microbial sensor 180 is less than the reference value.
  • condensate is supplied from the water collection tank 140 to the condensate spraying device 160. And water is sprayed through the nozzle 162 to the slat 153 of the blind 150.
  • the water particles of the condensate sprayed onto the slat 153 of the blind 150 are physically adsorbed to the slat 153 together with fine / ultrafine dust or odor-causing substances.
  • the condensed water flows down by its own weight, it is collected in the water collecting tank 140.
  • the concentration of fine dust / ultrafine dust present in the air or the concentration of odor-causing substances may be reduced, and clean air may be discharged through the air outlet 111a.
  • the air passage is narrower than that of FIG. 6, the effect of the blinds 150 on the flow of air is relatively large. Accordingly, the effect of reducing fine dust / ultrafine dust by spraying of condensed water and the effect of reducing odor-causing substances are greater.
  • FIG. 8 shows an operating state of a blind 150 and a condensate spraying device 160 that are capable of suppressing the generation of dead zones in the heat exchanger 130 when the air quality or the odor state is moderate to very poor. Toda.
  • Dead zone refers to an area in the heat exchange area of the heat exchanger 130 that cannot participate in heat exchange. Dead zones are caused by at least a portion of the heat exchange area not receiving sufficient air.
  • the heat exchanger 130 generally includes a refrigerant pipe and a cooling fin.
  • the refrigerant flows in the refrigerant pipe, and the cooling fin provides a surface area for heat exchange between air and refrigerant.
  • the heat exchanger 130 is provided with a plurality of cooling fins spaced apart from each other.
  • the generation of the dead zone serves as a factor that determines the efficiency of the heat exchanger 130 and, moreover, the efficiency of the heat exchange system. In order to improve the efficiency of the heat exchanger 130 and the efficiency of the heat exchange system, it is necessary to minimize the occurrence of dead zones.
  • the slat 153 of the blind 150 is arranged to supply air to only one side of the heat exchanger 130 by controlling the inclination angle of the blind 150, an area that does not receive air from the heat exchanger 130 may occur. And this causes a dead zone to occur.
  • the plurality of slats 153 may be rotated at different angles to suppress the occurrence of dead zones in the heat exchanger 130.
  • the plurality of slats 153 may be rotated to have relative angles to the extending directions of the rails 151 and 152 at different values.
  • One of the plurality of slats 153 is referred to as the first slat, and the slats 153 disposed next to the slats are sequentially numbered from 1 to n (n is a natural number) such as 2 slats and 3 slats.
  • each slat 153 with respect to the extending direction of each rail 151 and 152 is adjusted such that it gradually increases from the 1st slat to the nth slat, or vice versa.
  • the air passages formed between the plurality of slats 153 are sequentially numbered from 1 to n-1 from one side to the other, the air passages gradually widen or gradually increase from the first air passage to the n-1 air passage. It can be adjusted to narrow.
  • FIG. 9 shows another operation of the blind 150 and the condensate spraying device 160, which operate to suppress the occurrence of a dead zone in the heat exchanger 130 when the air quality or the odor state is moderate to very poor. State is also.
  • the concept of time is introduced to the rotation of the slat 153, and the plurality of slats 153 may be periodically reciprocated within a preset angle range in accordance with a predetermined time interval. For example, if the concentration of the air quality or the odor-causing substance measured by the air sensor 170 is normal, the plurality of slats 153 are periodically rotated within a range of 60 ° to 120 °. In addition, if the concentration of the air quality or the odor-causing substance measured by the air sensor 170 is poor or very poor, the plurality of slats 153 are periodically rotated within a range of 30 ° to 150 °.
  • each of the slats 153 may not be rotated at the same time, but may be sequentially rotated with a time difference.
  • the second slat 153 is rotated after the first slat 153 is rotated, and the second slat 153 is rotated and then the third slat 153 is rotated. 153).
  • the odd-numbered slats 153 may be controlled in such a way that the even-numbered slats 153 are rotated first.
  • each of the slats 153 may not be rotated at the same angle, but may be independently rotated to have different relative angles as described in FIG.
  • the heat exchange system described above is not limited to the configuration and method of the above-described embodiments, and the above-described embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
  • the present invention can be used in industrial fields related to heat exchange systems including heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

A heat exchange system of the present invention comprises: a fan formed so as to suction air through an air suction port and discharge the air through an air discharge port; a heat exchanger provided between the fan and the air discharge port so as to heat or cool the air to be discharged by the fan; a water collecting tank provided at the lower side of the heat exchanger so as to collect condensate water generated during heat exchange of the heat exchanger; a blind provided between the air suction port and the fan so as to come in contact with the air suctioned by the fan, and formed such that the position and direction thereof can be adjusted; and a condensate water spray device formed so as to receive the condensate water collected in the water collecting tank and spray same toward the blind.

Description

열교환 시스템Heat exchange system
본 발명은 열교환 과정에서 발생하는 응축수를 이용하여 공기에 포함되어 있는 미세먼지와 냄새를 저감하도록 이루어지는 열교환 시스템에 관한 것이다.The present invention relates to a heat exchange system configured to reduce fine dust and odor contained in air by using condensate generated during a heat exchange process.
열교환 시스템이란 열교환을 기본 매커니즘으로 하는 장치를 가리킨다. 예컨대 공기 조화기(air conditioner), 냉장고, 제습기 등과 같은 장치들은 모두 열교환을 통해 목적하는 결과를 도출하기 때문에 상기 열교환 시스템의 범주에 포함된다.The heat exchange system refers to a device that uses heat exchange as a basic mechanism. Devices such as air conditioners, refrigerators, dehumidifiers, etc. are all included in the scope of the heat exchange system because they produce the desired results through heat exchange.
상기 열교환 시스템들은 팬을 이용하여 외부의 공기를 흡입하고, 열교환을 거친 후 다시 외부로 공기를 토출하도록 형성된다. 예컨대 공기 조화기가 냉방 운전하게 되면, 외부의 뜨거운 공기를 흡입하고, 열교환을 통해 냉각한 후, 차가워진 공기를 토출하도록 형성된다.The heat exchange systems are configured to suck air from the outside using a fan, and then discharge the air to the outside after heat exchange. For example, when the air conditioner is operated in cooling, it is formed to suck outside hot air, cool through heat exchange, and discharge cold air.
열교환 시스템에 대표적으로 채택되는 장치는 열교환기다. 열교환기가 지속적으로 작동되다 보면 열교환기의 표면에 수분이 맺히게 된다. 예를 들어 열교환기가 공기 조화기의 증발기로 이용되는 경우, 상기 공기 조화기가 냉방 운전되면 증발기의 온도가 상온보다 낮아지게 된다. 이에 따라 증발기의 표면에는 응축수가 맺히게 된다.A heat exchanger is a typical device adopted for the heat exchange system. If the heat exchanger is operated continuously, moisture will form on the surface of the heat exchanger. For example, when a heat exchanger is used as an evaporator of an air conditioner, when the air conditioner is cooled, the temperature of the evaporator is lower than room temperature. Accordingly, condensed water is formed on the surface of the evaporator.
선행기술문헌인 특허문헌 특1999-019513호(1999.03.15.)에는 응축수를 오존수로 바꾸어 열교환기에 분사하는 구성이 개시되어 있다. 상기 특허문헌의 구성을 이용하면, 오존을 이용한 살균력으로 열교환기의 세균 등을 살균할 수 있다.Patent Document No. 1999-019513 (1999.03.15.), Which is a prior art document, discloses a configuration in which condensate is converted into ozone water and injected into a heat exchanger. Using the configuration of the patent document, germs and the like in the heat exchanger can be sterilized by sterilizing power using ozone.
상기 특허문헌의 구성으로 열교환기의 세균 등을 살균할 수는 있으나 사람에게 공급되는 공기의 공기질에는 변함이 없다는 점에서 한계가 존재한다.Although the bacteria and the like of the heat exchanger can be sterilized with the configuration of the patent document, there is a limitation in that air quality of air supplied to a person is not changed.
공기질(air quality)란 공기 중에 함유되어 있는 각종 성분들을 평가하여 정상적인 수준과 비교하는 것을 가리킨다. 이를테면 공기질이란 공기를 구성하는 기본 성분과, 상기 기본 성분 외에 공기 중에 함유되어 있는 오염질을 총칭하는 것으로, 공기 환경의 질적 판정에 이용된다.Air quality refers to evaluating various components contained in air and comparing them to normal levels. For example, air quality refers to the basic components constituting the air and contaminants contained in the air in addition to the basic components, and is used for quality determination of the air environment.
공기질을 판정하는 기준에는 국가 별로 차이가 있다. 일반적으로 공기 중에 함유되어 있는 미세먼지(PM10), 초미세먼지(PM2.5), 오존(O 3), 이산화질소(NO 2), 일산화질소(CO), 아황산가스(SO 2) 등의 농도에 따라 좋음, 보통, 나쁨, 매우나쁨 등으로 공기질을 판정한다.Air quality standards vary by country. In general, the concentration of fine dust (PM10), ultrafine dust (PM2.5), ozone (O 3 ), nitrogen dioxide (NO 2 ), nitrogen monoxide (CO), sulfur dioxide (SO 2 ) contained in the air Therefore, the air quality is judged as good, normal, bad, or very bad.
열교환 시스템에서 토출되는 공기는 사람이 생활하는 환경으로 직접 공급될 수 있다. 상기 열교환 시스템에서 토출되는 공기에 미세먼지나, 초미세먼지 등 공기질을 저하시키는 물질이 함유되어 있거나, 냄새 유발 성분이 함유되어 있는 것은 바람직하지 않다.The air discharged from the heat exchange system can be directly supplied to a human living environment. It is not preferable that the air discharged from the heat exchange system contains substances that degrade air quality, such as fine dust or ultrafine dust, or contains odor-causing components.
본 발명의 목적은 사람이 생활하는 환경으로 직접 공급되는 공기의 공기질을 향상시키고, 냄새를 저감할 수 있는 구성의 열교환 시스템을 제공하기 위한 것이다. 특히 본 발명은 열교환 시스템에서 생성되는 응축수를 공기질 향상과 냄새 저감에 이용할 수 있는 구성을 제시하기 위한 것이다.An object of the present invention is to provide a heat exchange system configured to improve air quality of air directly supplied to a human living environment and reduce odor. In particular, the present invention is to provide a configuration that can be used to improve air quality and reduce odor of condensate generated in a heat exchange system.
본 발명의 목적은 공기 유로의 면적, 방향 조절을 통해 공기의 유량과 유속을 제어하고, 이를 통해 공기질 개선 효과와 냄새 저감 효과를 향상시킬 수 있는 구성의 열교환 시스템을 제안하기 위한 것이다. 또한, 본 발명은 공기의 유량과 유속을 제어하는 과정에서 열교환에 참여하지 못하고 낭비되는 면적을 줄일 수 있는 구성의 열교환 시스템을 제안하기 위한 것이다An object of the present invention is to control the flow rate and flow rate of air through adjusting the area and direction of the air flow path, and to propose a heat exchange system having a configuration capable of improving air quality improvement effect and odor reduction effect. In addition, the present invention is to propose a heat exchange system configured to reduce the area wasted without participating in heat exchange in the process of controlling the flow rate and flow rate of the air.
본 발명의 목적은 수분과 접촉할 기회가 있는 구성들의 표면에 항균 기능과 냄새 제거 기능을 부여하는 구성의 열교환 시스템을 제안하기 위한 것이다.An object of the present invention is to propose a heat exchange system of a configuration that imparts antibacterial and odor removal functions to surfaces of components that have the opportunity to contact moisture.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 열교환 시스템은, 위치와 방향을 조절 가능하게 형성되는 블라인드를 이용하여 공기의 유동을 제어하고, 열교환기의 열교환 과정에서 발생하는 응축수를 블라인드를 향해 분무하도록 형성되는 응축수 분무장치를 이용하여 미세먼지/초미세먼지, 냄새 유발 물질을 흡착한다.In order to achieve such an object of the present invention, the heat exchange system according to an embodiment of the present invention controls the flow of air by using a blind formed to be able to adjust the position and direction, and occurs in the heat exchange process of the heat exchanger Fine dust / ultrafine dust and odor-causing substances are adsorbed using a condensate spray device that is formed to spray the condensate to the blind.
상기 열교환 시스템은, 공기 흡입구를 통해 공기를 흡입하여 공기 토출구를 통해 공기를 토출하도록 형성되는 팬; 상기 팬에 의해 토출될 공기를 가열 또는 냉각하도록 상기 팬과 상기 공기 토출구의 사이에 설치되는 열교환기; 및 상기 열교환기의 열교환 과정에서 발생하는 응축수를 집수하도록 상기 열교환기의 하측에 설치되는 집수조를 포함한다.The heat exchange system may include: a fan configured to suck air through an air intake port and discharge air through the air outlet port; A heat exchanger installed between the fan and the air outlet to heat or cool the air to be discharged by the fan; And a water collecting tank installed below the heat exchanger to collect condensate generated during the heat exchange process of the heat exchanger.
상기 블라인드는 상기 팬에 의해 흡입되는 공기와 접촉되도록 상기 공기 흡입구와 상기 팬의 사이에 설치된다.The blind is installed between the air intake and the fan so as to contact the air sucked by the fan.
상기 응축수 분무장치는 상기 집수조에 집수된 응축수를 공급받는다.The condensate spraying device receives the condensate collected in the collection tank.
상기 집수조는 상기 블라인드의 하측에 설치되고, 상기 블라인드는 상기 응축수 분무장치에서 분무되는 응축수를 상기 집수조로 재집수되게 가이드 하도록 상기 집수조를 향해 연장된다.The water collecting tank is installed under the blind, and the blind extends toward the water collecting tank to guide the condensate sprayed from the condensate spraying device to be re-collected into the water collecting tank.
상기 블라인드는, 상기 팬에 의한 공기의 유동 방향에 교차하는 방향으로 연장되는 레일; 상기 집수조를 향하는 방향으로 연장되며, 상기 레일을 따라 이동하거나 상기 레일에서 회전하는 복수의 슬랫(slat); 및 상기 슬랫의 위치와 각도를 조절하도록 형성되는 구동부를 포함한다.The blind, the rail extending in a direction crossing the flow direction of the air by the fan; A plurality of slats extending in a direction toward the water collecting tank and moving along the rail or rotating on the rail; And a driving unit formed to adjust the position and angle of the slat.
상기 슬랫은 플레이트 또는 메쉬(mesh) 구조로 형성된다.The slat is formed in a plate or mesh structure.
상기 열교환 시스템은 상기 팬에 의해 상기 공기 흡입구로 흡입되는 공기의 질 또는 냄새 유발 물질의 농도를 측정하도록 상기 공기 흡입구와 상기 블라인드의 사이에 설치되는 에어 센서를 더 포함하고, 상기 구동부는 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도에 근거하여 작동한다.The heat exchange system further includes an air sensor installed between the air intake and the blind so as to measure the quality of air or the concentration of odor-causing substances sucked into the air intake by the fan, and the driving unit is the air sensor It works on the basis of the air quality or concentration of odor-causing substances measured at.
상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 공기 흡입구를 통해 흡입되는 공기와의 접촉 면적을 증가시키는 위치로 이동된다.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are moved to a position to increase the contact area with the air sucked through the air intake.
상기 복수의 슬랫의 사이마다 상기 공기 흡입구에서 흡입되는 공기를 통과시키는 공기 유로가 형성되며, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 공기 유로를 좁아지게 하는 방향으로 회전된다.An air flow path is formed between each of the plurality of slats to pass air sucked from the air intake port, and when the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are It is rotated in a direction to narrow the air passage.
상기 공기 유로의 광협 정도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 반비례하도록 조절된다.The degree of light narrowing of the air passage is adjusted so as to be inversely proportional to the quality of the air measured by the air sensor or the concentration of the odor-causing substance exceeding the standard.
상기 복수의 슬랫은 서로 다른 각도로 회전되고, 상기 공기 유로는 상기 복수의 슬랫 중 일 단에 배치되는 것으로부터 타 단에 배치되는 것으로 갈수록 점차 넓어지거나 점차 좁아지도록 조절된다.The plurality of slats are rotated at different angles, and the air flow path is adjusted to gradually widen or gradually narrower from being arranged at one end of the plurality of slats to being arranged at the other end.
상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 레일의 연장 방향에 대한 상대 각도를 30 내지 150°의 범위 내에 존재하게 하는 방향으로 회전된다.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are rotated in a direction such that a relative angle to the extending direction of the rail is within a range of 30 to 150 °. .
예각의 범위에서 상기 상대 각도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 반비례하도록 조절되고, 둔각의 범위에서 상기 상대 각도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 비례하도록 조절된다.In the range of the acute angle, the relative angle is adjusted to be inversely proportional to the degree of air quality or the concentration of the odor-causing substance measured by the air sensor, and the relative angle in the range of the obtuse angle is the air sensor. The air quality or the concentration of odor-causing substances to be measured is adjusted to be proportional to the degree exceeding the above standard.
상기 복수의 슬랫은 상기 레일의 연장 방향에 대한 상대 각도를 서로 다른 값으로 갖도록 회전되고, 상기 상대 각도는 상기 복수의 슬랫 중 일 단에 배치되는 것으로부터 타 단에 배치되는 것으로 갈수록 점차 커지거나 점차 작아지도록 조절된다.The plurality of slats are rotated to have relative angles to the extending direction of the rails with different values, and the relative angles gradually increase or gradually increase from being disposed at one end of the plurality of slats to being disposed at the other end. It is adjusted to be small.
상기 응축수 분무장치는 상기 블라인드의 상측에서 상기 블라인드를 향해 하측으로 응축수를 분무하도록 형성되고, 상기 응축수 분무장치는, 응축수 공급 유로를 형성하도록 상기 집수조와 상기 응축수 분무장치에 연결되는 응축수 파이프; 상기 응축수 파이프를 통해 공급되는 응축수를 상기 블라인드로 분무하도록 형성되는 노즐; 및 상기 응축수 파이프에 설치되고, 상기 집수조에서 공급되는 응축수를 상기 응축수 파이프를 통해 상기 노즐까지 공급하도록 형성되는 펌프를 포함한다.The condensate spray device is formed to spray condensate from the upper side of the blind toward the blind, and the condensate spray device comprises: a condensate pipe connected to the water collection tank and the condensate spray device to form a condensate supply flow path; A nozzle formed to spray the condensate supplied through the condensate pipe with the blinds; And a pump installed on the condensate pipe and formed to supply condensate supplied from the water collection tank to the nozzle through the condensate pipe.
상기 열교환 시스템은 응축수를 외부로 배출하도록 상기 펌프에서 분지되어 상기 열교환 시스템의 외부로 연장되는 배수 파이프를 더 포함하며, 상기 응축수 파이프와 상기 배수 파이프 중 어느 하나로 응축수를 공급할 것인지는 상기 펌프의 제어를 통해 결정된다.The heat exchange system further includes a drain pipe that is branched from the pump to discharge the condensate to the outside and extends to the outside of the heat exchange system, and which of the condensate pipe and the drain pipe supplies condensate through control of the pump Is decided.
상기 열교환 시스템은 상기 집수조에 집수된 응축수의 미생물 농도를 측정하도록 형성되는 미생물 센서를 더 포함하고, 상기 펌프는 상기 미생물 센서에서 측정되는 미생물 농도에 근거하여 작동된다.The heat exchange system further includes a microbial sensor formed to measure the microbial concentration of the condensate collected in the water collection tank, and the pump is operated based on the microbial concentration measured by the microbial sensor.
상기 미생물 센서에서 측정되는 미생물 농도가 기준값에 미달하는 경우에만 상기 펌프가 작동한다.The pump operates only when the microbial concentration measured by the microbial sensor is less than the reference value.
상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 일정 시간마다 기설정된 회전 범위 내에서 왕복 운동한다.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats reciprocate within a predetermined rotation range every predetermined time.
상기 복수의 슬랫은 일 단에 배치되는 것으로부터 타단에 배치되는 것까지 시간차를 두고 순차적으로 움직인다.The plurality of slats are sequentially moved with a time difference from being arranged at one end to being arranged at the other end.
상기 열교환기, 상기 집수조 및 상기 블라인드 중 적어도 하나의 표면에는 전이금속산화물을 함유하는 친수성 코팅이 형성되고, 상기 전이금속산화물은 전이금속은 텅스텐(tungsten, W), 몰리브덴(molybdenum, Mo), 지르코늄(Zirconium, Zr)으로 이루어진 군으로부터 선택된 적어도 하나를 포함한다.A hydrophilic coating containing a transition metal oxide is formed on at least one surface of the heat exchanger, the water collecting tank, and the blind, and the transition metal oxide is tungsten (W), molybdenum (Mo), zirconium. (Zirconium, Zr).
상기 친수성 코팅은, 폴리비닐알코올(polyvinyl alcohol), 폴리아크릴산(polyacrylic acid), 폴리아세트산(polyacetic acid), 폴리비닐피롤리돈(polyvinylpyrrolidone)으로 이루어지는 군으로부터 선택된 적어도 하나의 친수성 고분자를 포함한다.The hydrophilic coating includes at least one hydrophilic polymer selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacetic acid, and polyvinylpyrrolidone.
상기와 같은 구성의 본 발명에 의하면, 공기 응축수를 분무하여 미세먼지/초미세먼지, 냄새 유발 물질을 흡착하므로, 사람이 생활하는 환경으로 직접 공급되는 공기의 공기질을 향상시킬 수 있고, 냄새를 저감할 수 있다.According to the present invention having the above configuration, the air condensate is sprayed to adsorb fine dust / ultrafine dust and odor-causing substances, so that the air quality of the air directly supplied to the human living environment can be improved and the odor is reduced. can do.
특히 본 발명에 의하면 블라인드를 이용하여 공기의 유동 방향, 유속, 유량에 변화를 일으키고, 상기 블라인드에 응축수를 분무하여 미세먼지/초미세먼지, 냄새 유발 물질을 흡착하므로 효율적인 공기질 개선 및 냄새 저감 효과를 얻을 수 있다.In particular, according to the present invention, the air flow direction, flow rate, and flow rate are changed by using the blinds, and condensate is sprayed on the blinds to adsorb fine dust / ultrafine dust and odor-causing substances, thereby improving air quality and reducing odor. Can be obtained.
또한 본 발명은 에어 센서에서 감지되는 공기질과 냄새 유발 물질의 농도, 미생물 센서에서 감지되는 응축수의 미생물 농도에 근거하여 펌프, 블라인드 등의 제어가 이루어진다. 따라서, 공기질과 냄새 유발 물질의 농도에 따라 효율적인 공기질 향상과 냄새 유발 물질 저감 효과를 기대할 수 있으며, 효율적인 소비 전력 관리가 이루어질 수 있다.In addition, the present invention is based on the concentration of air quality and odor-causing substances detected by the air sensor, and the concentration of microorganisms in the condensate detected by the microbial sensor to control pumps, blinds, and the like. Therefore, it is possible to expect an effective air quality improvement and an odor-inducing substance reduction effect according to the air quality and the concentration of the odor-causing substance, and efficient power management can be achieved.
또한 본 발명은, 전이금속산화물을 함유하는 친수성 코팅을 이용하여 응축수와 접촉하는 표면에 항균 기능과 냄새 제거 기능을 부여할 수 있다.In addition, the present invention, by using a hydrophilic coating containing a transition metal oxide, it is possible to impart antibacterial and odor removal functions to the surface in contact with the condensate.
또한 본 발명은, 블라인드의 구동 제어를 통해 열교환기의 데드존 문제를 해결할 수 있다.In addition, the present invention can solve the problem of the dead zone of the heat exchanger through driving control of the blind.
도 1은 본 발명에서 제안하는 열교환 시스템의 일 예로 공기 조화기를 보인 분해 사시도다.1 is an exploded perspective view showing an air conditioner as an example of a heat exchange system proposed in the present invention.
도 2는 도 1에 도시된 블라인드를 보인 사시도다.FIG. 2 is a perspective view showing the blind shown in FIG. 1.
도 3은 도 1에 도시된 응축수 분무장치를 보인 사시도다.3 is a perspective view showing a condensate spraying apparatus shown in FIG. 1.
도 4는 응축수를 이용하여 미세먼지/초미세먼지와 냄새를 저감하는 방법의 흐름도다.4 is a flow chart of a method for reducing fine dust / fine dust and odor using condensate.
도 5는 공기질 또는 냄새 상태가 좋음에 해당될 때 블라인드와 응축수 분무장치의 작동 상태도다.5 is a state diagram of the operation of the blinds and condensate spray when the air quality or odor condition is good.
도 6은 공기질 또는 냄새 상태가 보통에 해당될 때 블라인드와 응축수 분무장치의 작동 상태도다.6 is a state diagram of the operation of the blinds and condensate spray when the air quality or odor condition is normal.
도 7은 공기질 또는 냄새 상태가 나쁨/매우나쁨에 해당될 때 블라인드와 응축수 분무장치의 작동 상태도다.7 is an operation state diagram of the blind and the condensate spraying device when the air quality or the odor state is bad / very bad.
도 8은 공기질 또는 냄새 상태가 보통 내지 매우나쁨에 해당될 때 열교환기의 데드존(dead zone) 발생을 억제할 수 있도록 작동하는 블라인드와 응축수 분무장치의 작동 상태도다.8 is an operating state of the blinds and the condensate spraying device that operates to suppress the occurrence of dead zones in the heat exchanger when the air quality or the odor state is moderate to very poor.
도 9는 공기질 또는 냄새 상태가 보통 내지 매우나쁨에 해당될 때 열교환기의 데드존(dead zone) 발생을 억제할 수 있도록 작동하는 블라인드와 응축수 분무장치의 다른 작동 상태도다.9 is another operating state of the blinds and the condensate spraying device that operates to suppress the occurrence of dead zones in the heat exchanger when the air quality or the odor state is moderate to very poor.
이하, 본 발명에 관련된 열교환 시스템에 대하여 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, the heat exchange system according to the present invention will be described in more detail with reference to the drawings.
본 명세서에서는 서로 다른 실시예라도 동일, 유사한 구성에 대해서는 동일, 유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.In the present specification, the same or similar reference numerals are assigned to the same or similar configurations in different embodiments, and the description is replaced with the first description.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but other components may exist in the middle. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The singular expression used in this specification includes the plural expression unless the context clearly indicates otherwise.
본 발명에서 열교환 시스템이란 열교환을 기본 매커니즘으로 하는 장치를 가리킨다. 상기 열교환 시스템에는 열교환기가 구비된다. 상기 열교환기는 열교환 과정을 통해 수분과 접촉할 가능성이 높다. 예컨대 열교환기가 공기와 열교환하게 되면, 열교환기의 표면에 응축수가 발생하게 된다. 도 1에는 이러한 열교환 시스템의 일 예로 공기 조화기가 도시되어 있다.In the present invention, the heat exchange system refers to a device that uses heat exchange as a basic mechanism. The heat exchange system is equipped with a heat exchanger. The heat exchanger is likely to contact moisture through a heat exchange process. For example, when the heat exchanger exchanges heat with air, condensation water is generated on the surface of the heat exchanger. 1 shows an air conditioner as an example of such a heat exchange system.
도 1은 본 발명에서 제안하는 열교환 시스템의 일 예로 공기 조화기(100)를 보인 분해 사시도다.1 is an exploded perspective view showing an air conditioner 100 as an example of a heat exchange system proposed in the present invention.
케이싱(111, 112)은 공기 조화기(100)의 외관을 형성한다. 케이싱(111, 112)에는 서로 반대 방향을 향해 개구되는 공기 흡입구(112a)와 공기 토출구(111a)가 형성된다. 예를 들어 공기 흡입구(112a)는 공기 조화기(100)의 후면에 형성되고, 공기 토출구(111a)는 공기 조화기(100)의 전면에 형성된다.The casings 111 and 112 form the appearance of the air conditioner 100. The casings 111 and 112 are formed with air inlets 112a and air outlets 111a that open in opposite directions. For example, the air intake 112a is formed on the back of the air conditioner 100, and the air outlet 111a is formed on the front of the air conditioner 100.
케이싱(111, 112)은 전방에 배치되는 제1 케이싱(111)과 후방에 배치되는 제2 케이싱(112)을 포함할 수 있다. 제1 케이싱(111)에는 상기 공기 토출구(111a)가 형성되고, 제2 케이싱(112)에는 상기 공기 흡입구(112a)가 형성된다. 제1 케이싱(111)과 제2 케이싱(112)은 서로 결합되어 그 내부에 팬(120)이나 열교환기(130) 등과 같은 부품들의 설치 공간을 형성한다.The casings 111 and 112 may include a first casing 111 disposed in the front and a second casing 112 disposed in the rear. The air discharge port 111a is formed in the first casing 111, and the air suction port 112a is formed in the second casing 112. The first casing 111 and the second casing 112 are coupled to each other to form an installation space for components such as a fan 120 or a heat exchanger 130 therein.
팬(120)은 케이싱(111, 112)의 내부에 설치된다. 팬(120)은 공기 흡입구(112a)를 통해 공기를 흡입하여 공기 토출구(111a)를 통해 공기를 토출하도록 형성된다. 공기 흡입구(112a)와 공기 토출구(111a)가 서로 마주보는 위치에 형성된다면, 팬(120)은 축 방향으로 바람을 일으키는 축류팬으로 구성될 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 팬(120)은 원심팬으로 구성되는 것도 가능하다. 이 경우 팬(120)에서 생성되는 바람을 공기 토출구(111a)로 가이드 하는 구조물이 공기 조화기(100)의 내부에 추가로 설치될 수 있다. Fan 120 is installed inside the casing (111, 112). The fan 120 is formed to suck air through the air inlet 112a and discharge air through the air outlet 111a. If the air inlet 112a and the air outlet 111a are formed at positions facing each other, the fan 120 may be configured as an axial fan that generates wind in the axial direction. However, it is not necessarily limited to this, and the fan 120 may be configured as a centrifugal fan. In this case, a structure for guiding the wind generated by the fan 120 to the air outlet 111a may be additionally installed inside the air conditioner 100.
팬(120)은 복수로 설치될 수 있다. 복수의 팬(120)은 공기의 흐름 유로 상에 서로 중첩되게 설치될 수도 있고, 나란하게 설치될 수도 있다. 도 1에는 상하로 나란하게 설치된 두 팬(120)이 도시되어 있다. 팬(120)의 수와 크기, 풍량은 공기 조화기(100)의 설계나 냉각 용량 등에 따라 달라질 수 있다.The fan 120 may be installed in plural. The plurality of fans 120 may be installed to overlap each other on the flow path of the air, or may be installed side by side. 1 shows two fans 120 installed side by side vertically. The number, size, and air volume of the fan 120 may vary depending on the design or cooling capacity of the air conditioner 100.
열교환기(130)는 팬(120)에 의해 공기 토출구(111a)로 토출될 공기를 가열 또는 냉각하도록 팬(120)과 공기 토출구(111a)의 사이에 설치된다. 공기 토출구(111a)가 팬(120)의 전방에 설치되므로, 열교환기(130)는 공기 토출구(111a)의 후방에 해당하는 위치, 팬(120)의 전방에 해당하는 위치에 설치된다. 공기의 흐름을 기준으로 한다면, 팬(120)의 하류측에 열교환기(130)가 설치된다.The heat exchanger 130 is installed between the fan 120 and the air outlet 111a to heat or cool the air to be discharged to the air outlet 111a by the fan 120. Since the air outlet 111a is installed in front of the fan 120, the heat exchanger 130 is installed at a position corresponding to the rear of the air outlet 111a and a position corresponding to the front of the fan 120. If based on the flow of air, the heat exchanger 130 is installed on the downstream side of the fan 120.
공기 조화기(100)가 냉방 운전하는 경우 열교환기(130)는 증발기로 작동한다. 따라서 열교환기(130)의 내부를 흐르는 냉매는 증발기에서 공기로부터 열을 전달받아 증발하게 된다. 공기는 증발기를 통해 냉매에 열을 전달하고 냉각된다.When the air conditioner 100 is cooled, the heat exchanger 130 operates as an evaporator. Therefore, the refrigerant flowing inside the heat exchanger 130 is evaporated by receiving heat from the air in the evaporator. Air transfers heat to the refrigerant through the evaporator and is cooled.
열교환기(130)와의 열교환에 의해 공기가 냉각되면, 공기에 함유될 수 있는 포화수증기량도 감소하게 된다. 포화수증기량을 넘는 양의 수분은 응축되어 응축수가 된다. 응축수의 생성량이 많아지면, 응축수가 물방울을 형성하게 되고, 물방울은 자중에 의해 낙하하게 된다.When air is cooled by heat exchange with the heat exchanger 130, the amount of saturated water vapor that may be contained in the air is also reduced. Moisture in an amount exceeding the saturated water vapor amount becomes condensed water. When the amount of condensate generated increases, condensate forms water droplets, and the water droplets fall by their own weight.
집수조(140)는 응축수를 집수하도록 형성된다. 집수조(140)는 열교환기(130)의 열교환 과정에서 발생하는 응축수를 집수하도록 열교환기(130)의 하측에 설치된다. 종래의 공기 조화기(100)는 집수조(140)를 구비하지 않거나, 집수조(140)를 구비하더라도 응축수를 배출하기 위해 임시적으로 응축수를 보관하는 용도로 이용될 뿐이었다.The water collecting tank 140 is formed to collect condensed water. The water collecting tank 140 is installed under the heat exchanger 130 to collect condensate generated during the heat exchange process of the heat exchanger 130. The conventional air conditioner 100 is not provided with a water collecting tank 140, or even if a water collecting tank 140 is provided, it is only used to temporarily store condensed water to discharge condensed water.
그러나 본 발명에서는 열교환기(130)의 열교환 과정에서 발생하는 응축수를 이용하여 사용자에게 공급될 공기의 공기질을 개선하고 냄새를 저감한다. 이러한 공기질 개선과 냄새 저감 효과는 블라인드(150)와 응축수 분무장치(160)에 의해 이루어진다.However, in the present invention, the air quality of air to be supplied to the user is improved and the odor is reduced by using condensate generated during the heat exchange process of the heat exchanger 130. The air quality improvement and the odor reduction effect are achieved by the blind 150 and the condensate spray device 160.
블라인드(150)는 팬(120)에 흡입되는 공기와 접촉되도록 공기 흡입구(112a)와 팬(120)의 사이에 설치된다. 팬(120)이 작동하게 되면 공기 조화기(100)의 외부에 존재하는 공기는 공기 흡입구(112a)를 통해 흡입된다. 따라서 블라인드(150)가 팬(120)과 공기 흡입구(112a)의 사이에 배치된다면, 상기 공기 흡입구(112a)를 통해 흡입되는 공기와 접촉될 수 있다.The blind 150 is installed between the air intake 112a and the fan 120 so as to contact the air sucked into the fan 120. When the fan 120 is operated, air existing outside the air conditioner 100 is sucked through the air intake 112a. Therefore, if the blind 150 is disposed between the fan 120 and the air intake 112a, it may be in contact with air sucked through the air intake 112a.
블라인드(150)는 스스로의 위치와 방향을 조절 가능하게 형성된다. 이에 대하여는 도 2를 참조하여 설명한다.The blind 150 is formed to be able to adjust its position and direction. This will be described with reference to FIG. 2.
도 2는 도 1에 도시된 블라인드(150)를 보인 사시도다.FIG. 2 is a perspective view of the blind 150 shown in FIG. 1.
블라인드(150)는 레일(rail)(151, 152), 복수의 슬랫(slat)(153), 및 구동부(155)를 포함한다.The blind 150 includes rails 151 and 152, a plurality of slats 153, and a driving unit 155.
레일(151, 152)은 팬(120)에 의한 공기의 유동 방향에 교차하는 방향으로 연장된다. 예를 들어 도 1에서 공기 흡입구(112a)는 공기 조화기(100)의 후면에 형성되고, 공기 토출구(111a)는 공기 조화기(100)의 전면에 형성되므로, 공기의 유동 방향은 공기 조화기(100)의 후면에서 전면을 향하는 전후 방향이라고 할 수 있다. 레일(151, 152)은 전후 방향에 교차하도록 좌우 방향으로 연장된다. 교차한다는 개념은 직교한다는 개념에 한정되는 것이 아니므로, 레일(151, 152)은 반드시 전후 방향에 직교하지 않아도 무방하다.The rails 151 and 152 extend in a direction crossing the flow direction of the air by the fan 120. For example, in Figure 1, the air intake 112a is formed on the back of the air conditioner 100, and the air outlet 111a is formed on the front of the air conditioner 100, so the flow direction of air is the air conditioner It can be said to be a front-to-back direction from the rear of the (100) to the front. The rails 151 and 152 extend in the left and right directions to intersect in the front-rear direction. Since the concept of intersecting is not limited to the concept of orthogonal, the rails 151 and 152 may not necessarily be orthogonal to the front-rear direction.
레일(151, 152)은 후술하게 될 슬랫(153)의 이동 경로를 형성한다. 레일(151, 152)은 슬랫(153)의 상측 또는 하측 중 적어도 한 곳에 설치될 수 있다.The rails 151 and 152 form a movement path of the slat 153, which will be described later. The rails 151 and 152 may be installed on at least one of the upper side or the lower side of the slat 153.
슬랫(153)은 복수로 구비된다. 각 슬랫(153)은 집수조(140)를 향하는 방향으로 연장된다. 블라인드(150)가 집수조(140)의 상측에 설치되므로, 슬랫(153)은 집수조(140)를 향해 하측으로 연장될 수 있다. 슬랫(153)이 집수조(140)를 향하는 방향으로 연장되어야, 슬랫(153)에 분무된 응축수가 자중에 의해 다시 집수조(140)로 낙하되어 재집수될 수 있다.The slats 153 are provided in plural. Each slat 153 extends in the direction toward the water collecting tank 140. Since the blind 150 is installed on the upper side of the water collecting tank 140, the slat 153 may extend downward toward the water collecting tank 140. When the slat 153 is extended in the direction toward the water collecting tank 140, the condensed water sprayed on the slat 153 may fall back to the water collecting tank 140 by its own weight and be collected again.
복수의 슬랫(153)은 레일(151, 152)을 따라 이동하거나 레일(151, 152)에 의해 형성되는 이동 경로 내에서 회전하도록 형성된다. 각 슬랫(153)의 상단과 하단 중 적어도 하나에는 캐리어(154)가 장착될 수 있으며, 상기 캐리어(154)는 레일(151, 152)에 이동 및 회전 가능하게 삽입된다. 슬랫(153)과 캐리어(154)는 일체로 움직이므로, 슬랫(153)은 캐리어(154)에 의해 레일(151, 152)에서 이동 및 회전될 수 있다.The plurality of slats 153 are formed to move along the rails 151 and 152 or to rotate within a movement path formed by the rails 151 and 152. At least one of the top and bottom of each slat 153 may be equipped with a carrier 154, which is movably and rotatably inserted into rails 151 and 152. Since the slat 153 and the carrier 154 are integrally moved, the slat 153 can be moved and rotated on the rails 151 and 152 by the carrier 154.
각 슬랫(153)은 플레이트 또는 메쉬(mesh) 구조로 형성될 수 있다. 슬랫(153)이 상하 방향으로 연장되는 플레이트 또는 메쉬 구조로 형성되면, 공기 흡입구(112a)로 흡입된 공기의 유동 방향, 유량, 유속에 영향을 미치게 된다. 슬랫(153)이 플레이트 또는 메쉬 구조로 형성되면, 넓은 표면적을 제공하므로 응축수 분사에 의한 미세먼지/초미세먼지와 냄새 유발 물질의 흡착 효과가 높아진다.Each slat 153 may be formed in a plate or mesh structure. When the slat 153 is formed of a plate or mesh structure extending in the vertical direction, it affects the flow direction, flow rate, and flow rate of the air sucked into the air intake 112a. When the slat 153 is formed in a plate or mesh structure, it provides a large surface area, thereby increasing the adsorption effect of fine dust / ultrafine dust and odor-causing substances by condensate spraying.
각 슬랫(153)이 공기의 흡입 방향과 동일한 방향을 향하도록 배열되면, 공기의 유동 방향, 유량, 유속에 미치는 영향이 거의 없다. 이에 반해 슬랫(153)이 공기의 흡입 방향에 대해 경사지게 배열되면 공기 흡입구(112a)로 흡입된 공기 입자는 슬랫(153)에 충돌하게 되고, 복수의 슬랫(153)의 사이마다 형성되는 공기 유로를 통과하게 된다. 이에 따라 공기의 유동 방향, 유량, 유속은 복수의 슬랫(153) 사이마다 형성되는 공기 유로의 방향이나 면적 등에 의해 영향을 받게 된다. 그리고 상기 공기 유로의 방향이나 면적 등은 슬랫(153) 간의 이격 거리와 슬랫(153)의 경사각에 의해 결정된다.When each slat 153 is arranged to face the same direction as the intake direction of air, there is little influence on the flow direction, flow rate, and flow rate of air. On the other hand, when the slats 153 are arranged inclined with respect to the intake direction of air, the air particles sucked into the air intake 112a collide with the slats 153, and the air flow paths formed between the plurality of slats 153 are formed. Will pass. Accordingly, the flow direction, flow rate, and flow rate of air are affected by the direction or area of the air flow path formed between the plurality of slats 153. In addition, the direction or area of the air passage is determined by the separation distance between the slats 153 and the inclination angle of the slats 153.
슬랫(153)의 경사각은 레일(151, 152)에 대한 상대 각도 또는 공기의 유동 방향(흡입 방향)을 기준으로 설명될 수 있다. 레일(151, 152)은 공기의 유동 방향에 대해 교차하는 방향을 따라 연장되며, 바람직하게는 공기의 유동 방향과 레일(151, 152)의 연장 방향이 서로 직교한다. 따라서 슬랫(153)의 경사각은 레일(151, 152)에 대해 슬랫(153)이 얼마나 경사지게 배열되어 있는지, 혹은 공기의 유동 방향에 대해 슬랫(153)이 얼마나 경사지게 배열되어 있는지로 설명될 수 있다. 이를테면 동일한 경사각이라도 기준에 따라 슬랫(153)의 경사각에 대한 설명은 달라질 수 있다.The inclination angle of the slat 153 may be described based on the relative angle to the rails 151 and 152 or the air flow direction (suction direction). The rails 151 and 152 extend along a direction crossing with respect to the flow direction of air, and preferably, the flow direction of the air and the extending direction of the rails 151 and 152 are orthogonal to each other. Accordingly, the inclination angle of the slat 153 may be described as how inclined the slats 153 are arranged with respect to the rails 151 and 152, or how inclined the slats 153 are arranged with respect to the flow direction of air. For example, even with the same inclination angle, the description of the inclination angle of the slat 153 may vary according to the standard.
구동부(155)는 슬랫(153)의 위치와 각도를 조절하도록 형성된다. 구동부(155)는 구동력을 발생시키는 모터로 구성될 수 있다. 모터는 체인(미도시) 등에 의해 각각의 캐리어(154)와 연결될 수 있으며, 모터에서 생성되는 구동력이 체인을 통해 캐리어(154)로 전달된다. 이 구동력에 의해 각 슬랫(153)이 이동하거나 회전될 수 있다.The driving unit 155 is formed to adjust the position and angle of the slat 153. The driving unit 155 may be configured as a motor that generates driving force. The motor may be connected to each carrier 154 by a chain (not shown) or the like, and the driving force generated by the motor is transmitted to the carrier 154 through the chain. Each slat 153 may be moved or rotated by this driving force.
본 도면에서는 슬랫(153)이 세로 방향으로 연장되는 버티컬(vertical) 형태의 블라인드(150)를 예로 설명하였으나, 본 발명은 슬랫(153)이 가로 방향으로 연장되는 호리존탈(horizontal) 형태의 블라인드(150)도 적용 가능하다.In the drawing, the vertical type blind 150 in which the slat 153 extends in the vertical direction is described as an example, but the present invention is a horizontal type blind in which the slat 153 extends in the horizontal direction ( 150) is also applicable.
다시 도 1을 참조하면, 응축수 분무장치(160)는 집수조(140)에 집수된 응축수를 공급받아 블라인드(150)를 향해 분무하도록 형성된다. 응축수 분무장치(160)에 대하여는 도 3을 참조하여 설명한다.Referring to FIG. 1 again, the condensate spraying device 160 is formed to receive the condensate collected in the water collecting tank 140 and spray it toward the blind 150. The condensate spray device 160 will be described with reference to FIG. 3.
도 3은 도 1에 도시된 응축수 분무장치(160)를 보인 사시도다.3 is a perspective view of the condensate spray device 160 shown in FIG. 1.
응축수 분무장치(160)는 블라인드(150)의 상측에서 블라인드(150)를 향해 하측으로 응축수를 분무하도록 형성된다. 이를 위해 응축수 분무장치(160)는 응축수 파이프(161a, 161b, 161c), 노즐(162) 및 펌프(163)를 포함한다.The condensate spray device 160 is formed to spray condensate from the upper side of the blind 150 toward the blind 150 downward. To this end, the condensate spray device 160 includes condensate pipes 161a, 161b, and 161c, a nozzle 162, and a pump 163.
응축수 파이프(161a, 161b, 161c)는 노즐(162)로 공급되는 응축수의 공급 유로를 형성하도록 집수조(140)와 응축수 분무장치(160)에 연결된다. 블라인드(150)로 응축수를 분사하는 노즐(162)은 블라인드(150)보다 높은 위치에 설치되고, 집수조(140)는 블라인드(150)보다 낮은 위치에 설치된다. 따라서 응축수 파이프(161a, 161b, 161c)의 적어도 일부는 집수조(140)의 높이로부터 노즐(162)의 높이까지 상향 연장된다.The condensate pipes 161a, 161b, and 161c are connected to the water collecting tank 140 and the condensate spraying device 160 to form a supply flow path of the condensate supplied to the nozzle 162. The nozzle 162 for spraying condensate into the blind 150 is installed at a higher position than the blind 150, and the water collecting tank 140 is installed at a lower position than the blind 150. Accordingly, at least a portion of the condensate pipes 161a, 161b, and 161c extend upward from the height of the water collecting tank 140 to the height of the nozzle 162.
노즐(162)은 블라인드(150)보다 높은 위치에서 블라인드(150)를 향해 응축수를 분무하도록 형성된다. 노즐(162)은 응축수 파이프(161a, 161b, 161c)를 통해 응축수를 공급받는다. 노즐(162)은 응축수 파이프(161a, 161b, 161c)를 통해 공급받은 응축수를 블라인드(150)로 분무한다.The nozzle 162 is formed to spray condensate toward the blind 150 at a position higher than the blind 150. The nozzle 162 receives condensate through the condensate pipes 161a, 161b, and 161c. The nozzle 162 sprays the condensate supplied through the condensate pipes 161a, 161b, and 161c to the blind 150.
노즐(162)은 싱글 노즐, 듀얼 노즐(또는 트윈 노즐) 등으로 구성될 수 있다. 노즐(162)에서 마이크로 단위 크기의 물 입자가 분무되면, 공기 중에 부유하는 미세먼지/초미세먼지 또는 악취 유발 물질이 물에 흡착되어, 슬랫(153)을 따라 물과 함께 흘러 내리게 된다.The nozzle 162 may be composed of a single nozzle, a dual nozzle (or twin nozzle), or the like. When the micro-sized water particles are sprayed from the nozzle 162, fine dust / ultrafine dust or odor-inducing substances floating in the air are adsorbed on the water and flow down along with the slats 153 along with water.
다시 도 1을 참조하면, 펌프(163)는 집수조(140)에서 공급되는 응축수를 응축수 파이프(161a, 161b, 161c)를 통해 노즐(162)까지 공급하도록 형성된다. 응축수의 흐름을 기준으로, 펌프(163)는 집수조(140)의 하류측에 설치되고, 응축수 파이프(161a, 161b, 161c)는 펌프(163)의 하류측에 설치되며, 노즐(162)은 응축수 파이프(161a, 161b, 161c)의 하류측에 설치된다.Referring back to FIG. 1, the pump 163 is formed to supply condensate supplied from the water collecting tank 140 to the nozzles 162 through condensate pipes 161a, 161b, and 161c. Based on the flow of condensate, the pump 163 is installed on the downstream side of the water collecting tank 140, the condensate pipes 161a, 161b, and 161c are installed on the downstream side of the pump 163, and the nozzle 162 is the condensed water It is installed on the downstream side of the pipes 161a, 161b, and 161c.
배수 파이프(164)는 펌프(163)에서 분지되어 공기 조화기(100)의 외부로 연장된다. 배수 파이프(164)는 응축수를 외부로 배출하기 위한 구성이다.The drain pipe 164 is branched from the pump 163 and extends outside the air conditioner 100. The drain pipe 164 is configured to discharge condensate to the outside.
노즐(162)이 집수조(140)와 펌프(163)보다 높은 위치에 설치되므로, 펌프(163)에 의해 힘이 가해지지 않으면 응축수가 노즐(162)로 공급될 수 없다. 따라서 펌프(163)가 작동하지 않는다면 응축수는 배수 파이프(164)를 통해 자연 배수된다. 반대로 펌프(163)가 작동하게 되면 응축수는 응축수 파이프(161a, 161b, 161c)를 통해 노즐(162)로 공급될 수 있다.Since the nozzle 162 is installed at a higher position than the water collecting tank 140 and the pump 163, condensate cannot be supplied to the nozzle 162 unless a force is applied by the pump 163. Therefore, if the pump 163 is not operating, the condensate is naturally drained through the drain pipe 164. Conversely, when the pump 163 is operated, condensate may be supplied to the nozzle 162 through condensate pipes 161a, 161b, and 161c.
이와 같이 응축수 파이프(161a, 161b, 161c)와 배수 파이프(164) 중 어느 하나로 응축수를 공급할 것인지는 펌프(163)의 제어를 통해 결정될 수 있다. 응축수 파이프(161a, 161b, 161c)를 통해 노즐(162)로 응축수 공급이 필요한 경우에 한해 펌프(163)가 작동한다면 응축수 분무장치(160)에서 응축수가 분무될 것이다. 반대로 펌프(163)가 작동하지 않는다면 응축수는 배수 파이프(164)를 통해 배수될 것이다.As described above, whether to supply condensate to one of the condensate pipes 161a, 161b, and 161c and the drainage pipe 164 may be determined through control of the pump 163. Condensate will be sprayed from the condensate sprayer 160 if the pump 163 is operated only when condensate is supplied to the nozzle 162 through the condensate pipes 161a, 161b, 161c. Conversely, if the pump 163 is not operating, condensate will be drained through the drain pipe 164.
한편, 펌프(163)가 작동하지 않는 시점에 응축수의 임의적인 배수를 방지하기 위해 펌프(163)의 주변(상류측 또는 하류측)에 밸브(미도시)가 추가로 설치되는 것도 가능하다.Meanwhile, a valve (not shown) may be additionally installed in the periphery (upstream or downstream) of the pump 163 to prevent arbitrary drainage of condensate when the pump 163 is not operating.
본 발명에서는 응축수 분무를 결정하기 위한 센서로 에어 센서(170)와 미생물 센서(180)가 이용된다.In the present invention, the air sensor 170 and the microbial sensor 180 are used as sensors for determining the spray of condensate.
에어 센서(170)는 공기질 또는 공기에 함유된 냄새 유발 물질을 감지하도록 형성된다. 에어 센서(170)는 팬(120)에 의해 공기 흡입구(112a)로 흡입되는 공기의 질 또는 냄새를 측정하도록 공기 흡입구(112a)와 블라인드(150)의 사이에 설치된다. 에어 센서(170)는 응축수 분무장치(160)에서 응축수를 분무할지를 결정하는 근거를 제공한다. 이에 따라 구동부(155) 및/또는 펌프(163)는 에어센서에서 측정되는 공기질 또는 냄새 유발 물질의 농도에 근거하여 작동한다.The air sensor 170 is formed to detect air quality or odor-causing substances contained in the air. The air sensor 170 is installed between the air intake 112a and the blind 150 to measure the quality or odor of air sucked into the air intake 112a by the fan 120. The air sensor 170 provides a basis for determining whether to spray the condensate from the condensate sprayer 160. Accordingly, the driving unit 155 and / or the pump 163 operate based on the air quality or the concentration of the odor-causing substance measured by the air sensor.
예컨대 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 적거나, 냄새 유발 물질 함유량이 적다면, 응축수 분무를 통해 미세먼지/초미세먼지를 물에 흡착해야 할 필요성이나, 냄새 유발 물질을 물에 흡착해야 할 필요성이 낮다. 이에 반해 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 많거나, 냄새 유발 물질 함유량이 많다면, 응축수 분무를 통해 미세먼지/초미세먼지를 물에 흡착해야 할 필요성이나, 냄새 유발 물질을 물에 흡착해야 할 필요성이 높다. 따라서 이러한 필요성이 높은 경우에 한해 구동부(155) 및/또는 펌프(163)가 작동하여 미세먼지/초미세먼지 저감, 냄새 유발 물질 저감 효과를 얻으면 에너지 소비 관점에서 효율적인 관리가 이루어질 수 있다.For example, if the air intake through the air intake 112a has a small amount of fine dust / ultrafine dust or a small amount of odor-causing substances, there is a need to adsorb fine dust / ultrafine dust to water through condensate spraying. The need to adsorb odor-causing substances to water is low. On the other hand, if the air intake through the air intake 112a has a large amount of fine dust / ultrafine dust or a large amount of odor-causing substances, there is a need to adsorb the fine dust / ultrafine dust to the water through spraying of condensed water. However, there is a high need to adsorb odor-causing substances into water. Therefore, only when the need is high, if the driving unit 155 and / or the pump 163 are operated to achieve fine dust / ultrafine dust reduction and odor-inducing substance reduction effects, efficient management can be achieved from the viewpoint of energy consumption.
한편, 미생물 센서(180)는 집수조(140)에 집수된 응축수의 미생물 농도를 측정하도록 형성된다. 미생물 센서(180)는 집수조(140)의 내면이나 외면에 설치될 수 있다. 응축수를 이용하여 미세먼지/초미세먼지, 또는 냄새 유발 물질을 흡착하고, 이를 통해 발명의 목적을 달성하기 위해서는 본질적으로 응축수가 깨끗해야 한다.Meanwhile, the microbial sensor 180 is formed to measure the microbial concentration of condensate collected in the water collecting tank 140. The microbial sensor 180 may be installed on the inner surface or the outer surface of the water collecting tank 140. Condensate must be clean in nature in order to adsorb fine dust / fine dust or odor-causing substances using condensate, and to achieve the object of the invention.
미생물의 농도는 집락형성단위(Colony Forming Unit, CFU)로 산출된다. 응축수의 미생물 농도가 약 800CFU 이상이라면 응축수 분무장치(160)를 통해 블라인드(150)로 분무되기에 부적합할 수 있다. 따라서 약 800CFU 미만의 미생물 농도를 갖는 응축수를 블라인드(150)에 분무하는 것이 바람직하다.The concentration of microorganisms is calculated in colony forming units (CFU). If the microbial concentration of the condensate is about 800 CFU or more, it may be unsuitable for being sprayed onto the blind 150 through the condensate spray device 160. Therefore, it is preferable to spray the condensate having a microbial concentration of less than about 800CFU on the blind 150.
펌프(163)는 미생물 센서(180)에서 측정되는 미생물 농도에 근거하여 작동한다. 예컨대 미생물 센서(180)에서 측정되는 미생물 농도가 기준값에 미달하는 경우에만 펌프(163)가 작동할 수 있다. 응축수 파이프(161a, 161b, 161c)로 응축수를 공급할 것인지 여부는 펌프(163)의 작동에 의해 제어되므로, 펌프(163)가 미생물 센서(180)에서 측정되는 미생물 농도에 근거하여 작동한다면, 깨끗한 응축수만 블라인드(150)로 분무될 수 있다.The pump 163 operates based on the microbial concentration measured by the microbial sensor 180. For example, the pump 163 may be operated only when the microbial concentration measured by the microbial sensor 180 is less than the reference value. Whether to supply condensate to the condensate pipes 161a, 161b, 161c is controlled by the operation of the pump 163, so if the pump 163 operates based on the microbial concentration measured by the microbial sensor 180, clean condensate Only can be sprayed with the blind 150.
집수조(140)가 설치되는 위치는 열교환기(130)의 하측이기도 하지만, 블라인드(150)의 하측이기도 하다. 이를테면 집수조(140)는 열교환기(130)와 블라인드(150)에서 낙하하는 응축수를 집수하도록 충분히 큰 크기로 형성된다. 그리고 버티컬 형태의 블라인드(150)는 응축수 분무장치(160)에서 분무되는 응축수를 집수조(140)로 재집수되게 하도록 집수조(140)를 향해 연장된다.The location where the water collecting tank 140 is installed is also the lower side of the heat exchanger 130, but also the lower side of the blind 150. For example, the water collecting tank 140 is formed to a size large enough to collect the condensate falling from the heat exchanger 130 and the blind 150. In addition, the vertical type blind 150 extends toward the water collecting tank 140 so that the condensed water sprayed from the condensate spraying device 160 is re-collected into the water collecting tank 140.
열교환기(130), 집수조(140), 블라인드(150) 중 적어도 하나의 표면에는 전이금속산화물을 함유하는 친수성 코팅이 형성될 수 있다.A hydrophilic coating containing a transition metal oxide may be formed on at least one surface of the heat exchanger 130, the water collecting tank 140, and the blind 150.
친수성 코팅은 친수성을 부여하는 친수성 고분자를 포함한다. 상기 친수성 고분자는 폴리비닐알코올(polyvinyl alcohol), 폴리아크릴산(polyacrylic acid), 폴리아세트산(polyacetic acid), 폴리비닐피롤리돈(polyvinylpyrrolidone)으로 이루어지는 군으로부터 선택된 적어도 하나를 포함할 수 있다.The hydrophilic coating includes a hydrophilic polymer that imparts hydrophilicity. The hydrophilic polymer may include at least one selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacetic acid, and polyvinylpyrrolidone.
친수성 코팅에는 금속 황산염 등의 금속염(metallic salt)이 포함될 수 있다. 또한 친수성 코팅에는 산과 염기 화합물(acid/base chemicals)이 포함될 수 있다.The hydrophilic coating may include metal salts such as metal sulfates. In addition, the hydrophilic coating may include acid and base chemicals.
친수성 코팅에는 항균성을 제공하는 전이금속산화물이 함유되어 있다. 전이금속산화물은 모재의 표면에 항균성을 부여하도록 수분과 반응하여 산성을 나타낸다. 여기서 산성이란 약산성(pH 5 내지 6)을 포함하는 개념이다.The hydrophilic coating contains a transition metal oxide that provides antibacterial properties. The transition metal oxide reacts with moisture to give an antibacterial property to the surface of the base material and thus exhibits acidity. Here, the acidic is a concept including weak acidity (pH 5 to 6).
전이금속산화물은 수분과의 촉매 반응을 통해 산성 또는 약산성의 금속산(metallic acid)을 생성하게 되고, 상기 산성 또는 약산성의 금속산은 친수성 코팅에 항균성을 부여하게 된다.The transition metal oxide generates an acidic or weakly acidic metallic acid through a catalytic reaction with moisture, and the acidic or weakly acidic metallic acid imparts antibacterial properties to the hydrophilic coating.
전이금속산화물의 전이금속은 텅스텐(tungsten, W), 몰리브덴(molybdenum, Mo), 지르코늄(Zirconium, Zr)으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 적어도 하나란 하나 이상을 의미하므로, 전이금속산화물의 전이금속은 텅스텐, 몰리브덴, 지르코늄 중 둘 이상을 복합적으로 포함할 수 있다.The transition metal of the transition metal oxide may include at least one selected from the group consisting of tungsten (W), molybdenum (Mo), and zirconium (Zr). Since at least one means one or more, the transition metal of the transition metal oxide may include two or more of tungsten, molybdenum, and zirconium.
전이금속산화물의 촉매 반응에는 반드시 수분이 필요하다. 친수성 코팅이 친수성을 갖는 이유가 바로 응축수의 맺힘을 통해 전이금속산화물과 수분과의 반응을 유도하기 위함이다.Moisture is essential for the catalytic reaction of the transition metal oxide. The reason why the hydrophilic coating has hydrophilicity is to induce the reaction of the transition metal oxide and moisture through condensation.
전이금속산화물은 촉매제로 휘발성 유기 화합물(Volatile Organic Compounds)과 같은 기체를 산소와 이산화탄소로 분해하고, 일부 냄새 유발 성분과 반응한다. 그러므로 전이금속산화물로부터 냄새 저감 효과를 기대할 수 있다.Transition metal oxides are catalysts that decompose gases such as volatile organic compounds into oxygen and carbon dioxide, and react with some odor-causing components. Therefore, it is possible to expect an effect of reducing odor from the transition metal oxide.
본 도면에서는 공기 조화기(100)를 열교환 시스템의 일 예로 설명하였다. 그러나 본 발명은 공기 조화기(100) 외에도 본 발명에서 정의하는 열교환 시스템에 다양하게 적용될 수 있다. 예컨대 열교환을 기본 매커니즘으로 하는 냉장고, 제습기, 정수기, 의류 처리 장치 등에도 본 발명이 적용될 수 있다.In this figure, the air conditioner 100 has been described as an example of a heat exchange system. However, the present invention can be variously applied to the heat exchange system defined in the present invention in addition to the air conditioner 100. For example, the present invention can also be applied to a refrigerator, a dehumidifier, a water purifier, and a clothing processing device using heat exchange as a basic mechanism.
이하에서는 본 발명에서 제공하는 열교환 시스템의 제어방법에 대하여 설명한다.Hereinafter, a control method of a heat exchange system provided by the present invention will be described.
도 4는 응축수를 이용하여 미세먼지/초미세먼지와 냄새를 저감하는 방법의 흐름도다.4 is a flow chart of a method for reducing fine dust / fine dust and odor using condensate.
먼저 에어 센서(170)에서 공기질과 냄새 유발 물질의 농도를 측정한다(S100). 공기질은 미세먼지/초미세먼지 등 다양한 인자에 의해 좋음/보통/나쁨/매우나쁨 등으로 측정될 수 있다. 냄새 유발 물질의 농도 또한 기설정된 기준에 따라 좋음/보통/나쁨/매우나쁨 등으로 측정될 수 있으나, 반드시 이에 한정되는 것은 아니다. 에어 센서(170)에서 측정된 공기질과 냄새 유발 물질의 농도에 따라 블라인드(150)에 응축수를 분무할지 결정된다.First, the air quality of the air sensor 170 and the concentration of the odor-causing substances are measured (S100). Air quality can be measured as good / normal / bad / very bad by various factors such as fine dust / ultrafine dust. The concentration of the odor-causing substance may also be measured as good / medium / bad / very bad according to a predetermined standard, but is not limited thereto. It is determined whether to spray the condensate on the blind 150 according to the air quality measured by the air sensor 170 and the concentration of the odor-causing substance.
이러한 결정은 열교환 시스템의 제어부(미도시)에서 이루어질 수 있다. 제어부란 소자와 인쇄회로기판으로 이루어진 조립체로 구성될 수 있다.This determination can be made at a control unit (not shown) of the heat exchange system. The control unit may be composed of an assembly composed of an element and a printed circuit board.
열교환 시스템이 작동하게 되면, 팬(120) 등에 의한 공기의 유동이 발생하게 되고, 열교환기(130)에서 공기와 냉매의 열교환이 일어난다. 그리고 열교환 과정에서 공기 중의 수증기가 응축되어 응축수가 발생하게 되고, 응축수는 집수조(140)에 집수된다. 미생물 센서(180)에서는 집수조(140)에 집수된 응축수의 미생물 농도를 측정한다(S200). 미생물 센서(180)에서 측정된 미생물 농도에 따라 응축수를 분무에 이용할지, 배수 할 것인지가 결정된다. 이러한 결정 또한 열교환 시스템의 제어부에서 이루어질 수 있다.When the heat exchange system is operated, air flow by the fan 120 or the like occurs, and heat exchange between air and refrigerant occurs in the heat exchanger 130. In the heat exchange process, water vapor in the air is condensed to generate condensed water, and the condensed water is collected in the water collecting tank 140. The microbial sensor 180 measures the microbial concentration of the condensate collected in the water collecting tank 140 (S200). Whether the condensate is used for spraying or drained is determined according to the microbial concentration measured by the microbial sensor 180. This determination can also be made at the control of the heat exchange system.
앞서 (100) 단계에서 블라인드(150)에 응축수를 분무할 것으로 결정되고, (200) 단계에서 응축수를 분무에 이용할 것으로 결정된 경우, 펌프(163) 제어, 밸브 제어, 블라인드(150)의 경사각 제어를 실시한다(S300).If it is decided to spray the condensate on the blind 150 in step (100), and if it is determined to use the condensate for spraying in step (200), the pump 163 control, the valve control, the inclination angle control of the blind 150 It is carried out (S300).
펌프(163) 제어란 분무에 이용될 응축수를 노즐(162)로 이송하도록 제어하는 것을 의미한다. 밸브 제어란 펌프(163)의 주변에 설치되는 단방향 밸브 또는 다방향 밸브를 개폐하여 응축수가 배수되지 않고 노즐(162)로 공급되게끔 하는 제어를 가리킨다. 마지막으로 블라인드(150) 경사각 제어란 에어 센서(170)에서 측정된 공기질 또는 냄새 유발 물질의 농도에 따라 블라인드(150)의 슬랫(153)을 미세먼지/초미세먼지 그리고 냄새 유발 물질 제거에 적합한 위치로 이동, 및 회전시키는 것을 의미한다.Pump 163 control means to control the condensate to be used for spraying to be transferred to the nozzle 162. The valve control refers to control to open and close a unidirectional valve or a multidirectional valve installed around the pump 163 so that condensate is not drained and is supplied to the nozzle 162. Finally, the inclination angle control of the blind 150 is a position suitable for removing fine dust / ultrafine dust and odor-causing substances from the slats 153 of the blind 150 according to the air quality or the concentration of the odor-causing substances measured by the air sensor 170. Means to move, and rotate.
마지막 (300) 단계의 구체적인 제어는 에어 센서(170)에서 측정되는 공기질과 냄새 유발 물질의 농도에 따라 달라지며, 상기 구체적인 제어에 대하여 이하의 도면을 참고하여 설명한다.The specific control of the last step 300 depends on the air quality and the concentration of the odor-causing substance measured by the air sensor 170, and the specific control will be described with reference to the drawings below.
도 5는 공기질 또는 냄새 상태가 좋음에 해당될 때 블라인드(150)와 응축수 분무장치(160)의 작동 상태도다.5 is an operation state diagram of the blind 150 and the condensate spray device 160 when the air quality or the odor state is good.
공기질 또는 냄새 상태가 좋음에 해당된다는 것은, 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 매우 적거나, 냄새 유발 물질 함유량이 매우 적다는 것을 의미한다. 이 경우에는 미세먼지/초미세먼지 함유량이 좋음과 보통의 기준값(경계값)보다 낮거나, 냄새 유발 물질의 농도가 좋음과 보통의 기준값(경계값)보다 낮다.When the air quality or the odor state is good, it means that the air intake through the air intake 112a has very little fine dust / ultrafine dust or very little odor-causing material. In this case, the fine dust / ultrafine dust content is good and lower than the normal reference value (boundary value), or the concentration of the odor-causing substance is good and lower than the normal reference value (boundary value).
이 상태에서는 응축수 분무를 통해 미세먼지/초미세먼지를 물에 흡착해야 할 필요성이나, 냄새 유발 물질을 물에 흡착해야 할 필요성이 낮다. 오히려 펌프(163)의 구동과 제어, 블라인드(150)의 구동과 제어에 이용될 전력을 절약하는 것이 바람직하다. 또한 블라인드(150)의 슬랫(153)은 공기의 유동을 방해하지 않도록 배열되는 것이 바람직하다.In this state, there is a low need to adsorb fine dust / ultrafine dust to the water through spraying of condensate, but the need to adsorb odor-causing substances to water is low. Rather, it is desirable to save power to be used for driving and controlling the pump 163 and driving and controlling the blind 150. In addition, the slat 153 of the blind 150 is preferably arranged so as not to interfere with the flow of air.
복수의 슬랫(153)은 공기의 유동을 방해하지 않기 위해 공기의 유동 방향에 평행하게 배열된다. 레일(151, 152)은 공기의 윤동 방향에 직교하는 방향으로 연장되므로, 슬랫(153)은 레일(151, 152)의 연장 방향에 직교하도록 배열되는 것으로 이해될 수 있다.The plurality of slats 153 are arranged parallel to the flow direction of the air so as not to interfere with the flow of air. Since the rails 151 and 152 extend in a direction orthogonal to the direction of rotation of the air, it can be understood that the slats 153 are arranged to be orthogonal to the extending direction of the rails 151 and 152.
또한 복수의 슬랫(153)은 공기 흡입구(112a)를 통해 흡입되는 공기와의 접촉 면적을 최소화하는 위치로 이동될 수 있다. 예를 들어 복수의 슬랫(153)은 레일(151, 152)의 일 단과 타단 중 적어도 한 곳에 밀착되도록 배열될 수 있다.In addition, the plurality of slats 153 may be moved to a position that minimizes the contact area with the air sucked through the air intake 112a. For example, the plurality of slats 153 may be arranged to be in close contact with at least one of one end and the other end of the rails 151 and 152.
한편 미생물 센서(180)에서 측정되는 미생물 농도와 무관하게 응축수 분무장치(160)에서는 응축수가 분무되지 않는다.Meanwhile, regardless of the concentration of microorganisms measured by the microorganism sensor 180, condensate is not sprayed in the condensate spray device 160.
공기 흡입구(112a)를 통해 유입되는 공기는 블라인드(150)에 의한 영향을 거의 받지 않고, 유동 방향, 유량, 유속을 유지한 채 슬랫(153)들 사이마다 형성되는 공기 유로를 통과한다.The air introduced through the air intake 112a is hardly affected by the blind 150 and passes through an air flow path formed between the slats 153 while maintaining the flow direction, flow rate, and flow rate.
도 6은 공기질 또는 냄새 상태가 보통에 해당될 때 블라인드(150)와 응축수 분무장치(160)의 작동 상태도다.6 is a state diagram of the operation of the blind 150 and the condensate spraying device 160 when the air quality or odor condition is normal.
공기질 또는 냄새 상태가 보통에 해당된다는 것은, 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 보통 수준이거나, 냄새 유발 물질 함유량이 보통 수준이라는 것을 의미한다. 이 경우에는 미세먼지/초미세먼지 함유량이 좋음과 보통의 기준값(경계값)보다 높거나, 냄새 유발 물질의 농도가 좋음과 보통의 기준값(경계값)보다 높다.If the air quality or the odor state is normal, it means that the air inhaled through the air intake 112a has a moderate level of fine dust / ultrafine dust or a moderate level of odor-causing substances. In this case, the fine / ultrafine dust content is good and higher than the normal reference value (boundary value), or the concentration of the odor-causing substance is higher than the good and normal reference value (boundary value).
이 상태에서는 응축수 분무를 통해 미세먼지/초미세먼지를 물에 흡착해야 할 필요성이나, 냄새 유발 물질을 물에 흡착해야 할 필요성이 어느 정도 존재한다. 따라서 블라인드(150)의 슬랫(153)은 공기의 유동에 어느 정도 영향을 미칠 수 있도록 배열되는 것이 바람직하다.In this state, there is a need to adsorb fine dust / ultrafine dust to the water through spraying of condensate, or to some extent, the need to adsorb odor-causing substances to water. Therefore, it is preferable that the slats 153 of the blinds 150 are arranged to influence the flow of air to some extent.
에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 각각 좋음과 보통의 기준값(경계값)을 초과하면, 복수의 슬랫(153)은 공기 흡입구(112a)를 통해 흡입되는 공기와의 접촉 면적을 증가시키는 위치로 이동된다. 레일(151, 152)에 의해 형성되는 이동 경로 내에서 복수의 슬랫(153)을 등간격으로 가장 넓게 펼쳐지게 하는 것이 공기와의 접촉 면적을 최대로 증가시킬 수 있는 것에 해당한다.If the concentration of the air quality or the odor-causing substance measured by the air sensor 170 exceeds a good and a normal reference value (boundary value), the plurality of slats 153 are in contact with the air sucked through the air intake 112a. It is moved to a location that increases the area. In the movement paths formed by the rails 151 and 152, the largest spread of the plurality of slats 153 at equal intervals corresponds to the maximum contact area with air.
에어 센서(170)에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 각각 좋음과 보통의 기준값(경계값)을 초과하면, 복수의 슬랫(153)은 공기 유로를 좁아지게 하는 방향으로 회전된다. 여기서 공기 유로란 앞서 설명한 바와 같이 슬랫(153)과 슬랫(153) 사이마다 형성되는 공간을 의미한다. 복수의 슬랫(153)이 레일(151, 152)에 대하여 직교하게 배열되는 경우보다, 예각 또는 둔각을 형성하며 경사지게 배열되는 경우에, 공기 유로가 좁아진다. 공기 유로는 복수의 슬랫(153)이 레일(151, 152)과 평행하게 배열될 때까지 계속해서 좁아지게 된다.When the air quality or the concentration of the odor-causing substances measured by the air sensor 170 exceeds the good and normal reference values (boundary values), the plurality of slats 153 are rotated in a direction to narrow the air flow path. Here, the air flow path means a space formed between the slats 153 and the slats 153 as described above. When the plurality of slats 153 are arranged perpendicularly to the rails 151 and 152 to form an acute angle or an obtuse angle, the air flow path is narrowed. The air passage continues to narrow until a plurality of slats 153 are arranged parallel to the rails 151 and 152.
공기 유로의 광협(넓거나 좁음) 정도는 에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 상기 기준값을 초과하는 정도에 반비례하도록 조절될 수 있다. 예컨대 에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 상기 기준값을 미소하게 초과하는 첫 번째 경우와, 기준값을 과도하게 초과하는 두 번째 경우를 고려해 볼 수 있다. 이 경우 기준값을 초과하는 정도는 두 번째 경우가 더 크다. 공기 유로의 광협 정도는 기준값을 초과하는 정도에 반비례하도록 조절되므로, 두 번째 경우가 첫 번째 경우보다 작은 공기 유로를 형성하게 된다. 공기 유로가 좁아질수록 블라인드(150)가 공기의 유동에 미치는 영향이 커진다.The degree of light narrowness (wide or narrow) of the air passage may be adjusted to be inversely proportional to the degree that the air quality or the concentration of the odor-causing substance measured by the air sensor 170 exceeds the reference value. For example, the first case in which the concentration of the air quality or the odor-causing substance measured by the air sensor 170 slightly exceeds the reference value and the second case in which the reference value is excessively exceeded may be considered. In this case, the degree of exceeding the reference value is greater in the second case. Since the degree of light narrowing of the air passage is adjusted to be inversely proportional to the degree exceeding the reference value, the second case forms a smaller air passage than the first case. The narrower the air flow path, the greater the effect of the blinds 150 on the flow of air.
만일 복수의 슬랫(153)이 공기의 흡입 방향과 평행하게 배열된다면, 복수의 슬랫(153)은 레일(151, 152)의 연장 방향에 직교하게 된다. 따라서 이때 슬랫(153)과 레일(151, 152)의 상대 각도는 90°라고 할 수 있다. 이러한 기준을 전제로 공기질 또는 냄새 유발 물질의 농도가 각각 보통 상태일 때, 슬랫(153)과 레일(151, 152)의 상대 각도는 최소 60°의 또는 최대 120°의 범위 내에 존재하는 것이 바람직하다.If the plurality of slats 153 are arranged parallel to the intake direction of air, the plurality of slats 153 are orthogonal to the extending directions of the rails 151 and 152. Therefore, the relative angle between the slat 153 and the rails 151 and 152 may be 90 °. On the premise of these criteria, when the air quality or the concentration of the odor-causing substance is in the normal state, the relative angles of the slats 153 and the rails 151 and 152 are preferably within a range of at least 60 ° or at most 120 °. .
한편 미생물 센서(180)에서 측정되는 미생물 농도가 기준값에 미달하는 경우에만 펌프(163)가 작동한다. 미생물 농도가 기준값에 미달한다는 것은 응축수가 그만큼 깨끗하다는 것을 의미한다. 펌프(163)가 작동하게 되면 응축수가 집수조(140)에서 응축수 분무장치(160)로 공급된다. 그리고 노즐(162)을 통해 물이 블라인드(150)의 슬랫(153)으로 분무된다.Meanwhile, the pump 163 operates only when the microbial concentration measured by the microbial sensor 180 is less than the reference value. If the microbial concentration is below the reference value, it means that the condensate is clean. When the pump 163 is operated, condensate is supplied from the water collection tank 140 to the condensate spraying device 160. And water is sprayed through the nozzle 162 to the slat 153 of the blind 150.
블라인드(150)의 슬랫(153)으로 분무된 응축수의 물 입자는 미세먼지/초미세먼지 또는 냄새 유발 물질과 함께 슬랫(153)에 물리적으로 흡착된다. 응축수가 자중에 의해 흘러내리면 집수조(140)에 집수된다. 이러한 과정을 통해 공기 중에 존재하는 미세먼지/초미세먼지의 농도 또는 냄새 유발 물질의 농도를 낮출 수 있고, 깨끗한 공기가 공기 토출구(111a)를 통해 토출될 수 있다.The water particles of the condensate sprayed onto the slat 153 of the blind 150 are physically adsorbed to the slat 153 together with fine / ultrafine dust or odor-causing substances. When the condensed water flows down by its own weight, it is collected in the water collecting tank 140. Through this process, the concentration of fine dust / ultrafine dust present in the air or the concentration of odor-causing substances may be reduced, and clean air may be discharged through the air outlet 111a.
도 7은 공기질 또는 냄새 상태가 나쁨/매우나쁨에 해당될 때 블라인드(150)와 응축수 분무장치(160)의 작동 상태도다.7 is an operation state diagram of the blind 150 and the condensate spraying device 160 when the air quality or the odor state corresponds to a bad / very bad condition.
공기질 또는 냄새 상태가 나쁨에 해당된다는 것은, 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 나쁨 수준이거나, 냄새 유발 물질 함유량이 나쁨 수준이라는 것을 의미한다. 이 경우에는 미세먼지/초미세먼지 함유량이 보통과 나쁨의 기준값(경계값)보다 높거나, 냄새 유발 물질의 농도가 보통과 나쁨의 기준값(경계값)보다 높다.When the air quality or the odor state is bad, it means that the fine dust / ultrafine dust content is in the air inhaled through the air intake 112a, or the odor-causing material content is in the bad level. In this case, the fine dust / ultrafine dust content is higher than the normal and bad reference value (boundary value), or the concentration of the odor-causing substance is higher than the normal and bad reference value (boundary value).
공기질 또는 냄새 상태가 매우나쁨에 해당된다는 것은, 공기 흡입구(112a)를 통해 흡입되는 공기에 미세먼지/초미세먼지 함유량이 매우나쁨 수준이거나, 냄새 유발 물질 함유량이 매우나쁨 수준이라는 것을 의미한다. 이 경우에는 미세먼지/초미세먼지 함유량이 나쁨과 매우나쁨의 기준값(경계값)보다 높거나, 냄새 유발 물질의 농도가 나쁨과 매우나쁨의 기준값(경계값)보다 높다.If the air quality or the odor state corresponds to very bad, it means that the fine dust / ultrafine dust content is very low in the air sucked through the air intake 112a, or the odor-causing material content is very bad. In this case, the fine dust / ultrafine dust content is higher than the reference value (boundary value) of bad and very bad, or the concentration of the odor-causing substance is higher than the reference value (boundary value) of bad and very bad.
이 상태에서는 응축수 분무를 통해 미세먼지/초미세먼지를 물에 흡착해야 할 필요성이나, 냄새 유발 물질을 물에 흡착해야 할 필요성이 강하게 존재한다. 따라서 블라인드(150)의 슬랫(153)은 공기의 유동에 상대적으로 많은 영향을 미칠 수 있도록 배열되는 것이 바람직하다. 그래야 응축수 분무에 의한 효과가 극대화될 수 있기 때문이다.In this state, there is a strong need to adsorb fine / ultrafine dust to water through spraying of condensate, or to adsorb odor-causing substances to water. Therefore, it is preferable that the slats 153 of the blind 150 are arranged to have a relatively large effect on the flow of air. This is because the effect of spraying condensate can be maximized.
에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 각각 보통과 나쁨의 기준값(경계값)을 초과하면, 복수의 슬랫(153)은 공기 흡입구(112a)를 통해 흡입되는 공기와의 접촉 면적을 더욱 증가시키는 위치로 이동된다. 레일(151, 152)에 의해 형성되는 이동 경로 내에서 복수의 슬랫(153)을 등간격으로 가장 넓게 펼쳐지게 하는 것이 공기와의 접촉 면적을 최대로 증가시킬 수 있는 것에 해당한다.When the concentration of the air quality or the odor-causing substance measured by the air sensor 170 exceeds the normal and bad reference values (boundary values), the plurality of slats 153 are in contact with the air sucked through the air intake 112a. It is moved to a position that further increases the area. In the movement paths formed by the rails 151 and 152, the largest spread of the plurality of slats 153 at equal intervals corresponds to the maximum contact area with air.
에어 센서(170)에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 각각 보통과 나쁨의 기준값(경계값)을 초과하면, 복수의 슬랫(153)은 도 6의 경우보다 공기 유로를 더욱 좁아지게 하는 방향으로 회전된다.When the air quality or the concentration of the odor-causing substances measured by the air sensor 170 exceeds the normal and bad reference values (boundary values), the plurality of slats 153 narrow the air flow path more than in the case of FIG. 6. Is rotated in one direction.
공기질 또는 냄새 유발 물질의 농도가 각각 나쁨 또는 매우나쁨이라면, 슬랫(153)과 레일(151, 152)의 상대 각도는 최소 30°또는 최대 150°의 범위 내에 존재하는 것이 바람직하다. 만일 상대 각도가 30°보다 작거나 150°보다 크다면 공기의 유동을 과도하게 방해할 우려가 있다.If the concentration of the air quality or the odor-causing substance is bad or very poor, respectively, it is preferable that the relative angles of the slats 153 and the rails 151 and 152 are within a range of at least 30 ° or at most 150 °. If the relative angle is less than 30 ° or greater than 150 °, there is a possibility of excessively obstructing the flow of air.
이와 같이 슬랫(153)과 레일(151, 152)의 상대 각도는 에어 센서(170)에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도 따라 조절된다. 예각의 범위에서 상대 각도는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 반비례하도록 조절되는 것이 바람직하다. 반대로 둔각의 범위에서 상대 각도는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 비례하도록 조절되는 것이 바람직하다.As such, the relative angle between the slats 153 and the rails 151 and 152 is adjusted according to the degree to which the air quality or the concentration of the odor-causing substance measured by the air sensor 170 exceeds the above standard. In the range of acute angles, the relative angle is preferably adjusted to be inversely proportional to the air quality or the concentration of the odor-causing substance exceeding the above standard. Conversely, in the range of the obtuse angle, it is preferable that the relative angle is adjusted to be proportional to the air quality or the concentration of the odor-causing substance exceeding the above standard.
한편 미생물 센서(180)에서 측정되는 미생물 농도가 기준값에 미달하는 경우에만 펌프(163)가 작동한다. 펌프(163)가 작동하게 되면 응축수가 집수조(140)에서 응축수 분무장치(160)로 공급된다. 그리고 노즐(162)을 통해 물이 블라인드(150)의 슬랫(153)으로 분무된다.Meanwhile, the pump 163 operates only when the microbial concentration measured by the microbial sensor 180 is less than the reference value. When the pump 163 is operated, condensate is supplied from the water collection tank 140 to the condensate spraying device 160. And water is sprayed through the nozzle 162 to the slat 153 of the blind 150.
블라인드(150)의 슬랫(153)으로 분무된 응축수의 물 입자는 미세먼지/초미세먼지 또는 냄새 유발 물질과 함께 슬랫(153)에 물리적으로 흡착된다. 응축수가 자중에 의해 흘러내리면 집수조(140)에 집수된다. 이러한 과정을 통해 공기 중에 존재하는 미세먼지/초미세먼지의 농도 또는 냄새 유발 물질의 농도를 낮출 수 있고, 깨끗한 공기가 공기 토출구(111a)를 통해 토출될 수 있다. 특히 공기 유로가 도 6의 경우보다 좁으므로 블라인드(150)가 공기의 유동에 미치는 영향은 상대적으로 크다. 이에 따라 응축수의 분무에 의한 미세먼지/초미세먼지 저감 효과, 냄새 유발 물질 저감 효과는 더욱 크다.The water particles of the condensate sprayed onto the slat 153 of the blind 150 are physically adsorbed to the slat 153 together with fine / ultrafine dust or odor-causing substances. When the condensed water flows down by its own weight, it is collected in the water collecting tank 140. Through this process, the concentration of fine dust / ultrafine dust present in the air or the concentration of odor-causing substances may be reduced, and clean air may be discharged through the air outlet 111a. In particular, since the air passage is narrower than that of FIG. 6, the effect of the blinds 150 on the flow of air is relatively large. Accordingly, the effect of reducing fine dust / ultrafine dust by spraying of condensed water and the effect of reducing odor-causing substances are greater.
도 8와 도 9에서는 데드존 발생을 억제할 수 있는 제어에 대하여 설명한다.8 and 9, control that can suppress the occurrence of dead zones will be described.
도 8은 공기질 또는 냄새 상태가 보통 내지 매우나쁨에 해당될 때 열교환기(130)의 데드존(dead zone) 발생을 억제할 수 있도록 작동하는 블라인드(150)와 응축수 분무장치(160)의 작동 상태도다.FIG. 8 shows an operating state of a blind 150 and a condensate spraying device 160 that are capable of suppressing the generation of dead zones in the heat exchanger 130 when the air quality or the odor state is moderate to very poor. Toda.
데드존이란 열교환기(130)의 열교환 면적 중 열교환에 참여하지 못하는 영역을 가리킨다. 데드존은 열교환 면적 중 적어도 일부가 공기를 충분히 공급받지 못함으로 인해 발생한다.Dead zone refers to an area in the heat exchange area of the heat exchanger 130 that cannot participate in heat exchange. Dead zones are caused by at least a portion of the heat exchange area not receiving sufficient air.
열교환기(130)는 일반적으로 냉매관과 냉각핀을 포함한다. 냉매관에는 냉매가 흐르고, 냉각핀은 공기와 냉매의 열교환을 위한 표면적으로 제공한다. 열교환기(130)에는 다수의 냉각핀이 서로 이격되게 구비된다.The heat exchanger 130 generally includes a refrigerant pipe and a cooling fin. The refrigerant flows in the refrigerant pipe, and the cooling fin provides a surface area for heat exchange between air and refrigerant. The heat exchanger 130 is provided with a plurality of cooling fins spaced apart from each other.
만일 다수의 냉각핀 중 일부 영역에만 공기 공급이 집중된다면, 공기를 충분히 공급받지 못하는 영역에서는 공기와 냉매 간의 열교환이 충분히 이루어지지 않는다. 이 경우 열교환이 충분하게 이루어지지 않는 영역이 데드존에 해당한다.If air supply is concentrated in only a portion of the plurality of cooling fins, heat exchange between air and refrigerant is not sufficiently performed in a region where air is not sufficiently supplied. In this case, a region in which heat exchange is insufficient is a dead zone.
데드존의 발생은 열교환기(130)의 효율, 나아가 열교환 시스템의 효율을 결정하는 요소로 작용한다. 열교환기(130)의 효율과 열교환 시스템의 효율을 향상시키기 위해서는 데드존 발생을 최소화 해야 한다.The generation of the dead zone serves as a factor that determines the efficiency of the heat exchanger 130 and, moreover, the efficiency of the heat exchange system. In order to improve the efficiency of the heat exchanger 130 and the efficiency of the heat exchange system, it is necessary to minimize the occurrence of dead zones.
블라인드(150)의 경사각 제어에 의해 블라인드(150)의 슬랫(153)이 열교환기(130)의 한 쪽으로만 공기를 공급하도록 배열된다면, 열교환기(130)에서 공기를 공급받지 못하는 영역이 발생하게 되고, 이는 데드존 발생을 유발하는 원인이 된다.If the slat 153 of the blind 150 is arranged to supply air to only one side of the heat exchanger 130 by controlling the inclination angle of the blind 150, an area that does not receive air from the heat exchanger 130 may occur. And this causes a dead zone to occur.
열교환기(130)의 데드존 발생을 억제하기 위해 복수의 슬랫(153)은 서로 다른 각도로 회전될 수 있다. 예컨대 도 8에 도시된 바와 같이 복수의 슬랫(153)은 레일(151, 152)의 연장 방향에 대한 상대 각도를 서로 다른 값으로 갖도록 회전될 수 있다. 복수의 슬랫(153) 중 일 단에 배치되는 것을 1번 슬랫이라고 하고, 그 옆에 배치되는 슬랫(153)들을 순차적으로 2번 슬랫, 3번 슬랫 등과 같이 1번부터 n(n은 자연수)번까지 순번을 매기면, 각 레일(151, 152)의 연장 방향에 대한 각 슬랫(153)의 상대 각도는 1번 슬랫으로부터 n번 슬랫으로 갈수록 점차 커지거나, 반대로 점차 작아지도록 조절되는 것이다.The plurality of slats 153 may be rotated at different angles to suppress the occurrence of dead zones in the heat exchanger 130. For example, as illustrated in FIG. 8, the plurality of slats 153 may be rotated to have relative angles to the extending directions of the rails 151 and 152 at different values. One of the plurality of slats 153 is referred to as the first slat, and the slats 153 disposed next to the slats are sequentially numbered from 1 to n (n is a natural number) such as 2 slats and 3 slats. If the sequential number is reached, the relative angle of each slat 153 with respect to the extending direction of each rail 151 and 152 is adjusted such that it gradually increases from the 1st slat to the nth slat, or vice versa.
마찬가지로 경우 복수의 슬랫(153) 사이마다 형성되는 공기 유로도 일측에서 타측으로 1번으로부터 n-1번까지 순번을 매기면, 1번 공기 유로로부터 n-1번 공기 유로로 갈수록 점차 넓어지거나, 점차 좁아지도록 조절될 수 있다.Similarly, if the air passages formed between the plurality of slats 153 are sequentially numbered from 1 to n-1 from one side to the other, the air passages gradually widen or gradually increase from the first air passage to the n-1 air passage. It can be adjusted to narrow.
도 9는 공기질 또는 냄새 상태가 보통 내지 매우나쁨에 해당될 때 열교환기(130)의 데드존(dead zone) 발생을 억제할 수 있도록 작동하는 블라인드(150)와 응축수 분무장치(160)의 다른 작동 상태도다.FIG. 9 shows another operation of the blind 150 and the condensate spraying device 160, which operate to suppress the occurrence of a dead zone in the heat exchanger 130 when the air quality or the odor state is moderate to very poor. State is also.
슬랫(153)의 회전에 시간의 개념이 도입되어, 복수의 슬랫(153)은 기설정된 시간 간격에 맞춰 기설정된 각도의 범위 내에서 주기적으로 왕복 회전될 수 있다. 예컨대 에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 보통이라면 복수의 슬랫(153)은 60° 내지 120°의 범위 내에서 주기적으로 회전된다. 그리고 에어 센서(170)에서 측정되는 공기질 또는 냄새 유발 물질의 농도가 나쁨이거나 매우나쁨이라면 복수의 슬랫(153)은 30° 내지 150°의 범위 내에서 주기적으로 회전된다.The concept of time is introduced to the rotation of the slat 153, and the plurality of slats 153 may be periodically reciprocated within a preset angle range in accordance with a predetermined time interval. For example, if the concentration of the air quality or the odor-causing substance measured by the air sensor 170 is normal, the plurality of slats 153 are periodically rotated within a range of 60 ° to 120 °. In addition, if the concentration of the air quality or the odor-causing substance measured by the air sensor 170 is poor or very poor, the plurality of slats 153 are periodically rotated within a range of 30 ° to 150 °.
한편 각각의 슬랫(153)은 모두 동시에 회전하는 것이 아니라, 시간차를 두고 순차적으로 회전될 수도 있다. 이를테면 1번 슬랫(153)이 회전하고 난 후에 2번 슬랫(153)이 회전되고, 2번 슬랫(153)이 회전하고 난 후에 3번 슬랫(153)이 회전하는 순차적인 방식으로 n번 슬랫(153)까지 제어될 수 있다. 혹은 홀수 번 슬랫(153)들이 먼저 회전하고 난 후에 짝수 번 슬랫(153)들이 회전하는 방식으로 제어되는 것도 가능하다.Meanwhile, each of the slats 153 may not be rotated at the same time, but may be sequentially rotated with a time difference. For example, the second slat 153 is rotated after the first slat 153 is rotated, and the second slat 153 is rotated and then the third slat 153 is rotated. 153). Alternatively, the odd-numbered slats 153 may be controlled in such a way that the even-numbered slats 153 are rotated first.
슬랫(153)의 회전에 시간의 개념이 도입되더라도, 각각의 슬랫(153)들은 모두 같은 각도로 회전하는 것이 아니라 도 8에서 설명한 바와 같이 서로 다른 상대 각도를 갖도록 독립적으로 회전될 수도 있다.Although the concept of time is introduced to the rotation of the slat 153, each of the slats 153 may not be rotated at the same angle, but may be independently rotated to have different relative angles as described in FIG.
이상에서 설명된 열교환 시스템은 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The heat exchange system described above is not limited to the configuration and method of the above-described embodiments, and the above-described embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
본 발명은 열교환기를 포함하는 열교환 시스템과 관련된 산업 분야에 이용될 수 있다.The present invention can be used in industrial fields related to heat exchange systems including heat exchangers.

Claims (20)

  1. 공기 흡입구를 통해 공기를 흡입하여 공기 토출구를 통해 공기를 토출하도록 형성되는 팬;A fan formed to suck air through the air intake and discharge air through the air outlet;
    상기 팬에 의해 토출될 공기를 가열 또는 냉각하도록 상기 팬과 상기 공기 토출구의 사이에 설치되는 열교환기;A heat exchanger installed between the fan and the air outlet to heat or cool the air to be discharged by the fan;
    상기 열교환기의 열교환 과정에서 발생하는 응축수를 집수하도록 상기 열교환기의 하측에 설치되는 집수조;A water collecting tank installed below the heat exchanger to collect condensate generated during the heat exchange process of the heat exchanger;
    상기 팬에 의해 흡입되는 공기와 접촉되도록 상기 공기 흡입구와 상기 팬의 사이에 설치되며, 위치와 방향을 조절 가능하게 형성되는 블라인드; 및A blind provided between the air intake and the fan so as to be in contact with the air sucked by the fan, the blind being formed to be able to adjust the position and direction; And
    상기 집수조에 집수된 응축수를 공급받아 상기 블라인드를 향해 분무하도록 형성되는 응축수 분무장치를 포함하는 열교환 시스템.A heat exchange system including a condensate spraying device configured to receive condensate collected in the water collecting tank and spray it toward the blinds.
  2. 제1항에 있어서,The method of claim 1,
    상기 집수조는 상기 블라인드의 하측에 설치되고,The water collecting tank is installed on the lower side of the blind,
    상기 블라인드는 상기 응축수 분무장치에서 분무되는 응축수를 상기 집수조로 재집수되게 가이드 하도록 상기 집수조를 향해 연장되는 것을 특징으로 하는 열교환 시스템.The blind is extended to the collecting tank to guide the condensate sprayed from the condensate spraying device to be re-collected into the collecting tank.
  3. 제1항에 있어서,The method of claim 1,
    상기 블라인드는,The blinds,
    상기 팬에 의한 공기의 유동 방향에 교차하는 방향으로 연장되는 레일;A rail extending in a direction crossing the flow direction of the air by the fan;
    상기 집수조를 향하는 방향으로 연장되며, 상기 레일을 따라 이동하거나 상기 레일에서 회전하는 복수의 슬랫(slat); 및A plurality of slats extending in a direction toward the water collecting tank and moving along the rail or rotating on the rail; And
    상기 슬랫의 위치와 각도를 조절하도록 형성되는 구동부를 포함하는 것을 특징으로 하는 열교환 시스템.And a driving unit formed to adjust the position and angle of the slat.
  4. 제3항에 있어서,According to claim 3,
    상기 슬랫은 플레이트 또는 메쉬(mesh) 구조로 형성되는 것을 특징으로 하는 열교환 시스템.The slat is a heat exchange system, characterized in that formed in a plate or mesh (mesh) structure.
  5. 제3항에 있어서,According to claim 3,
    상기 열교환 시스템은 상기 팬에 의해 상기 공기 흡입구로 흡입되는 공기의 질 또는 냄새 유발 물질의 농도를 측정하도록 상기 공기 흡입구와 상기 블라인드의 사이에 설치되는 에어 센서를 더 포함하고,The heat exchange system further includes an air sensor installed between the air intake and the blind so as to measure the quality of air or the concentration of odor-causing substances sucked into the air intake by the fan,
    상기 구동부는 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도에 근거하여 작동하는 것을 특징으로 하는 열교환 시스템.The driving unit is a heat exchange system characterized in that it operates based on the air quality or the concentration of the odor-causing substance measured by the air sensor.
  6. 제5항에 있어서,The method of claim 5,
    상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 공기 흡입구를 통해 흡입되는 공기와의 접촉 면적을 증가시키는 위치로 이동되는 것을 특징으로 하는 열교환 시스템.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are moved to a position to increase the contact area with the air sucked through the air intake port. system.
  7. 제5항에 있어서,The method of claim 5,
    상기 복수의 슬랫의 사이마다 상기 공기 흡입구에서 흡입되는 공기를 통과시키는 공기 유로가 형성되며,An air flow path is formed between each of the plurality of slats to pass air sucked from the air intake port,
    상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 공기 유로를 좁아지게 하는 방향으로 회전되는 것을 특징으로 하는 열교환 시스템.When the quality of the air or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are rotated in a direction to narrow the air passage.
  8. 제7항에 있어서,The method of claim 7,
    상기 공기 유로의 광협 정도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 반비례하도록 조절되는 것을 특징으로 하는 열교환 시스템.The degree of light narrowing of the air flow path, the heat exchange system characterized in that the air quality or the concentration of the odor-causing substance measured by the air sensor is adjusted to be inversely proportional to the degree exceeding the standard.
  9. 제7항 또는 제8항에 있어서,The method of claim 7 or 8,
    상기 복수의 슬랫은 서로 다른 각도로 회전되고,The plurality of slats are rotated at different angles,
    상기 공기 유로는 상기 복수의 슬랫 중 일 단에 배치되는 것으로부터 타 단에 배치되는 것으로 갈수록 점차 넓어지거나 점차 좁아지도록 조절되는 것을 특징으로 하는 열교환 시스템.The air flow path is a heat exchange system characterized in that it is gradually widened or gradually narrowed from being disposed at one end of the plurality of slats to being disposed at the other end.
  10. 제5항에 있어서,The method of claim 5,
    상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 상기 레일의 연장 방향에 대한 상대 각도를 30 내지 150°의 범위 내에 존재하게 하는 방향으로 회전되는 것을 특징으로 하는 열교환 시스템.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats are rotated in a direction such that a relative angle to the extending direction of the rail is within a range of 30 to 150 °. Heat exchange system, characterized in that.
  11. 제10항에 있어서,The method of claim 10,
    예각의 범위에서 상기 상대 각도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 반비례하도록 조절되고,In the range of the acute angle, the relative angle is adjusted to be inversely proportional to the degree of air quality or the concentration of the odor-causing substance measured by the air sensor exceeds the standard,
    둔각의 범위에서 상기 상대 각도는, 상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 상기 기준을 초과하는 정도에 비례하도록 조절되는 것을 특징으로 하는 열교환 시스템.The relative angle in the range of the obtuse angle, the heat exchange system characterized in that the air quality or the concentration of the odor-causing substance measured by the air sensor is adjusted in proportion to the degree exceeding the reference.
  12. 제10항 또는 제11항에 있어서,The method of claim 10 or 11,
    상기 복수의 슬랫은 상기 레일의 연장 방향에 대한 상대 각도를 서로 다른 값으로 갖도록 회전되고,The plurality of slats are rotated to have different values relative to the extending direction of the rails,
    상기 상대 각도는 상기 복수의 슬랫 중 일 단에 배치되는 것으로부터 타 단에 배치되는 것으로 갈수록 점차 커지거나 점차 작아지도록 조절되는 것을 특징으로 하는 열교환 시스템.The relative angle is adjusted so that it gradually increases or decreases gradually from being disposed at one end of the plurality of slats to being disposed at the other end.
  13. 제1항에 있어서,The method of claim 1,
    상기 응축수 분무장치는 상기 블라인드의 상측에서 상기 블라인드를 향해 하측으로 응축수를 분무하도록 형성되고,The condensate spraying device is formed to spray condensate from the upper side of the blind toward the blind side,
    상기 응축수 분무장치는,The condensate spray device,
    응축수 공급 유로를 형성하도록 상기 집수조와 상기 응축수 분무장치에 연결되는 응축수 파이프;A condensate pipe connected to the water collecting tank and the condensate spraying device to form a condensate supply flow path;
    상기 응축수 파이프를 통해 공급되는 응축수를 상기 블라인드로 분무하도록 형성되는 노즐; 및A nozzle formed to spray the condensate supplied through the condensate pipe with the blinds; And
    상기 응축수 파이프에 설치되고, 상기 집수조에서 공급되는 응축수를 상기 응축수 파이프를 통해 상기 노즐까지 공급하도록 형성되는 펌프를 포함하는 것을 특징으로 하는 열교환 시스템.And a pump installed in the condensate pipe and configured to supply condensate supplied from the water collection tank to the nozzle through the condensate pipe.
  14. 제13항에 있어서,The method of claim 13,
    상기 열교환 시스템은 응축수를 외부로 배출하도록 상기 펌프에서 분지되어 상기 열교환 시스템의 외부로 연장되는 배수 파이프를 더 포함하며,The heat exchange system further includes a drain pipe branched from the pump to discharge condensate to the outside, and extends to the outside of the heat exchange system,
    상기 응축수 파이프와 상기 배수 파이프 중 어느 하나로 응축수를 공급할 것인지는 상기 펌프의 제어를 통해 결정되는 것을 특징으로 하는 열교환 시스템.Heat exchange system, characterized in that it is determined through the control of the pump to supply the condensate to one of the condensate pipe and the drain pipe.
  15. 제13항에 있어서,The method of claim 13,
    상기 열교환 시스템은 상기 집수조에 집수된 응축수의 미생물 농도를 측정하도록 형성되는 미생물 센서를 더 포함하고,The heat exchange system further includes a microbial sensor formed to measure the microbial concentration of the condensate collected in the water collection tank,
    상기 펌프는 상기 미생물 센서에서 측정되는 미생물 농도에 근거하여 작동되는 것을 특징으로 하는 열교환 시스템.The pump is a heat exchange system, characterized in that is operated based on the microbial concentration measured by the microbial sensor.
  16. 제15항에 있어서,The method of claim 15,
    상기 미생물 센서에서 측정되는 미생물 농도가 기준값에 미달하는 경우에만 상기 펌프가 작동하는 것을 특징으로 하는 열교환 시스템.The heat exchange system, characterized in that the pump operates only when the microbial concentration measured by the microbial sensor is less than the reference value.
  17. 제5항에 있어서,The method of claim 5,
    상기 에어 센서에서 측정되는 공기의 질 또는 냄새 유발 물질의 농도가 기준을 초과하면, 상기 복수의 슬랫은 일정 시간마다 기설정된 회전 범위 내에서 왕복 운동하는 것을 특징으로 하는 열교환 시스템.When the air quality or the concentration of the odor-causing substance measured by the air sensor exceeds a standard, the plurality of slats reciprocate within a predetermined rotation range every predetermined time.
  18. 제17항에 있어서,The method of claim 17,
    상기 복수의 슬랫은 일 단에 배치되는 것으로부터 타단에 배치되는 것까지 시간차를 두고 순차적으로 움직이는 것을 특징으로 하는 열교환 시스템.The plurality of slats are heat exchange systems, characterized in that they are sequentially moved with a time difference from being arranged at one end to being arranged at the other end.
  19. 제1항에 있어서,The method of claim 1,
    상기 열교환기, 상기 집수조 및 상기 블라인드 중 적어도 하나의 표면에는 전이금속산화물을 함유하는 친수성 코팅이 형성되고,A hydrophilic coating containing a transition metal oxide is formed on at least one surface of the heat exchanger, the water collecting tank and the blind,
    상기 전이금속산화물은 전이금속은 텅스텐(tungsten, W), 몰리브덴(molybdenum, Mo), 지르코늄(Zirconium, Zr)으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 열교환 시스템.The transition metal oxide is a heat exchange system characterized in that the transition metal includes at least one selected from the group consisting of tungsten (W), molybdenum (Mo), and zirconium (Zirconium, Zr).
  20. 제19항에 있어서,The method of claim 19,
    상기 친수성 코팅은, 폴리비닐알코올(polyvinyl alcohol), 폴리아크릴산(polyacrylic acid), 폴리아세트산(polyacetic acid), 폴리비닐피롤리돈(polyvinylpyrrolidone)으로 이루어지는 군으로부터 선택된 적어도 하나의 친수성 고분자를 포함하는 것을 특징으로 하는 열교환 시스템.The hydrophilic coating, it characterized in that it comprises at least one hydrophilic polymer selected from the group consisting of polyvinyl alcohol (polyvinyl alcohol), polyacrylic acid (polyacrylic acid), polyacetic acid (polyacetic acid), polyvinylpyrrolidone (polyvinylpyrrolidone) Heat exchange system.
PCT/KR2019/011124 2018-09-07 2019-08-30 Heat exchange system WO2020050552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180107335A KR102106874B1 (en) 2018-09-07 2018-09-07 Heat exchange system
KR10-2018-0107335 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050552A1 true WO2020050552A1 (en) 2020-03-12

Family

ID=69722100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011124 WO2020050552A1 (en) 2018-09-07 2019-08-30 Heat exchange system

Country Status (2)

Country Link
KR (1) KR102106874B1 (en)
WO (1) WO2020050552A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797512A (en) * 2020-12-28 2021-05-14 珠海格力电器股份有限公司 Water collecting assembly, water receiving structure and dehumidifier
CN112957507A (en) * 2021-01-30 2021-06-15 新疆维吾尔自治区儿童医院 Operating room infection monitoring equipment and monitoring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203179A (en) * 1992-01-27 1993-08-10 Daikin Ind Ltd Air conditioner
KR20000058135A (en) * 1999-02-26 2000-09-25 알콤 닉케이 스페셜티 코팅 에쓰디엔. 비에이치디. Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
KR200249522Y1 (en) * 2001-07-05 2001-11-16 고명근 Air cleaner
KR100883071B1 (en) * 2008-06-25 2009-02-10 주식회사 신우엔지니어링 Air conditioner
KR20110057374A (en) * 2009-11-24 2011-06-01 한국에너지기술연구원 Blind windows with the faculty of automatic ventilation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990019513A (en) 1997-08-29 1999-03-15 구자홍 Sterilizer / Deodorizer of Air Conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203179A (en) * 1992-01-27 1993-08-10 Daikin Ind Ltd Air conditioner
KR20000058135A (en) * 1999-02-26 2000-09-25 알콤 닉케이 스페셜티 코팅 에쓰디엔. 비에이치디. Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
KR200249522Y1 (en) * 2001-07-05 2001-11-16 고명근 Air cleaner
KR100883071B1 (en) * 2008-06-25 2009-02-10 주식회사 신우엔지니어링 Air conditioner
KR20110057374A (en) * 2009-11-24 2011-06-01 한국에너지기술연구원 Blind windows with the faculty of automatic ventilation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797512A (en) * 2020-12-28 2021-05-14 珠海格力电器股份有限公司 Water collecting assembly, water receiving structure and dehumidifier
CN112957507A (en) * 2021-01-30 2021-06-15 新疆维吾尔自治区儿童医院 Operating room infection monitoring equipment and monitoring method

Also Published As

Publication number Publication date
KR102106874B1 (en) 2020-05-06
KR20200028765A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
KR101808116B1 (en) Air purification system
WO2020050552A1 (en) Heat exchange system
WO2018230766A1 (en) Individual control system for central cooling/heating facility
WO2011052904A2 (en) Total heat exchange-type ventilating apparatus, and method for controlling same
WO2021040262A1 (en) Improved air purification and ventilation system using plate-type total heat exchanger, and operating method therefor
KR100981722B1 (en) Air cleaning control system for a heat recovery ventilator
WO2010137867A2 (en) Ventilating apparatus, and method for controlling the ventilating apparatus
WO2022045820A1 (en) Air conditioner having six ports
EP0559733A1 (en) Dehumidifier
WO2015102247A1 (en) Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
CN206113121U (en) A fresh air dehumidification unit for reviewing humidity independent control air conditioning system
KR101231753B1 (en) Toxic gas exposure preventing apparatus for dissection practice room
WO2014058099A1 (en) Water-evaporating cold air blower
KR102327427B1 (en) All-in-one air conditioning ventilation clean system
KR20050025291A (en) Method for removing white plume using water-cooling system
WO2020189838A1 (en) Temperature control device for ventilation apparatus
WO2017175983A2 (en) Air conditioner
KR20060024742A (en) Transfering heat exchanger with purification mode
CN107883479A (en) With fresh air except the air-conditioning system of the independent temperature-humidity control of haze self-cleaning function
JPH11201511A (en) Air cleaning system
JP4798816B2 (en) Circulating clean room
CN107796066A (en) A kind of fresh air purifying method and its equipment
JPH11142067A (en) Air-cooled steam condensing apparatus and method for operating it
KR19990070053A (en) Wet air cleaner with cooling condenser
JP2001522448A (en) Air treatment device, equipment and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857718

Country of ref document: EP

Kind code of ref document: A1