WO2020050522A1 - Method and system for correcting brightness of led display - Google Patents

Method and system for correcting brightness of led display Download PDF

Info

Publication number
WO2020050522A1
WO2020050522A1 PCT/KR2019/010555 KR2019010555W WO2020050522A1 WO 2020050522 A1 WO2020050522 A1 WO 2020050522A1 KR 2019010555 W KR2019010555 W KR 2019010555W WO 2020050522 A1 WO2020050522 A1 WO 2020050522A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
correction
luminance
pixel data
reference value
Prior art date
Application number
PCT/KR2019/010555
Other languages
French (fr)
Korean (ko)
Inventor
노희경
엄용인
홍성민
방정호
Original Assignee
주식회사 루멘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180106895A external-priority patent/KR20200028610A/en
Priority claimed from KR1020180160651A external-priority patent/KR20200072738A/en
Priority claimed from KR1020190005326A external-priority patent/KR20200088696A/en
Application filed by 주식회사 루멘스 filed Critical 주식회사 루멘스
Publication of WO2020050522A1 publication Critical patent/WO2020050522A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits

Definitions

  • the present invention relates to a method and a system for correcting luminance of an LED display, and specifically, to a technique for correcting a luminance deviation occurring for each position in an LED display and viewing a clear image from various angles of the LED display.
  • the present invention relates to a technique for improving the expressiveness, uniformity of the LED display and the overall display quality.
  • the present invention relates to an LED display driver IC and a method for adjusting luminance of an LED display using the same, and specifically, improving the display quality by improving the luminance expression of the LED display device and reducing the flicker phenomenon in the LED display device. It is related to the technology.
  • the display device market is mainly composed of LCDs and OLEDs. Recently, LED display devices that implement full-color by allowing a plurality of LED chips to form one pixel are continuously being developed. Many micro LED display devices have been developed to increase the resolution by making the size of an LED chip within a pixel within a few hundred micrometers or 100 micrometers.
  • the LED chips constituting one pixel in the LED display are classified according to characteristics such as luminosity and applied to the LED display, but there is a problem in that a luminance difference is displayed at specific locations when displaying an image.
  • a solution to solve the problem is required in the art.
  • the maximum luminance-related light information (for convenience, referred to as a 'maximum luminance value') is measured for each LED of each pixel using an optical measurement device, and the maximum luminance values of the measured LEDs are compared, and these maximum luminance values are compared. Among them, the minimum value is extracted. Then, based on the extracted minimum value, the maximum luminance values are adjusted to have the minimum value. For example, when this process is performed for red LEDs in pixels, the maximum luminance values of the red LEDs are adjusted to have the minimum value. That is, the maximum luminance values of the red LEDs are adjusted to have the extracted minimum value as the new maximum luminance value. The same is true for green LEDs and blue LEDs.
  • the maximum luminance values are set to the minimum value based on the extracted minimum value. Since there is only a process, since the correction of an area or a middle area having a low gray level in the LEDs in the pixels is not performed, there is a limit in improving the overall image quality of the LED display. Therefore, a method for solving this limitation is required in the art.
  • LED display devices are continuously being used for indoor and outdoor electronic displays and digital signage. Furthermore, as the development of micro LEDs is accelerated, high-resolution full-color LED displays are being produced in various sizes.
  • FIG. 26 is a view schematically showing a drive IC 20 for driving LEDs in pixels arranged in a matrix on the display unit 10 in a general LED display device.
  • a drive IC 20 for driving LEDs in pixels arranged in a matrix on the display unit 10 in a general LED display device.
  • FIG. 26 only one driver IC 20 and the display unit 10 connected thereto are briefly illustrated.
  • a gray scale clock signal GCLK a data clock signal DCLK
  • a latch enable signal LE corresponding to an input image source, that is, an input image signal.
  • an optimized control signal for adjusting the current flow and luminance of the LEDs in each pixel is applied.
  • a circuit unit (currently referred to as a switching element) is provided for current sinking for each column of pixels, and a pulse width modulation (PWM) signal is generally used as a control signal.
  • PWM pulse width modulation
  • the luminance of each of the LEDs in the pixel is adjusted such that the pulse width modulated signal corresponds to the gray level of the input image signal.
  • the driver IC uses LEDs generated by pulse width modulation (PWM) to generate the LEDs in the pixels. It was also configured to control the current flowing through it, and it was sufficient to adjust the luminance corresponding to the input video signal. That is, as illustrated in FIG. 28, for an input image signal S s in a low grayscale region of less than 30%, corresponding to a gradation of the input image signal S s , a duty ratio corresponding thereto ) Using a pulse width modulation signal C s (for example, the leftmost pulse width modulation signal among the square waves in FIG. 3, and only one period, that is, one pulse width) is used.
  • PWM pulse width modulation
  • Modulation signal (Cs) (e.g., among the square waves of Figure 28, the rightmost pulse width modulation signal, Uses will only illustrated my pulse width).
  • the pulse width modulation signal C s is generated by the pulse width modulation signal generation unit 12 to always correspond to the input image signal S s regardless of what gradation region the input image signal S s belongs to.
  • the driver IC 20 side the luminance of the LEDs in each pixel is adjusted.
  • this conventional method of controlling the LEDs using only the pulse width modulation signal has a limitation in color expression through fine adjustment of the luminance of the LEDs. That is, when controlling the luminance of the LEDs depending only on the pulse width modulation signal method, as can be seen from the gamma curve ( ⁇ curve) shown in Figure 29, generally, R, G, B input (x axis, pulse width The slope of the output luminance value (corresponding to the modulated signal) (y-axis) follows a gamma curve ( ⁇ ) that is relatively very small in the low gradation region and relatively large in the high gradation region, particularly in the low gradation region. The increase in the output luminance value according to the increase of the R, B, and B inputs has a very small characteristic.
  • the problem to be solved by the present invention is to obtain the pixel data for each location at different locations in order to solve the problem that the viewer cannot watch the optimal uniform image by showing the difference in luminance for each viewing position of the LED display.
  • a new LED display luminance correction method and system after determining a star reference value, determining correction factors for each location for each of the pixels, and combining these correction factors at a predetermined ratio to apply to all pixels of the LED display. Is to do.
  • a problem to be solved by the present invention is a process for adjusting the maximum luminance values to the minimum value based on the extracted minimum value after extracting the minimum value among the maximum luminance values, which is a conventional method in the correction for improving the image quality of the LED display.
  • an improved method of correcting the low-gradation region or the middle region of the LEDs in the pixels can be achieved. It is to provide a method and system for correcting luminance of an LED display.
  • a problem to be solved by the present invention is to provide an LED display driver IC capable of improving expression in a low gradation region of LEDs arranged in a matrix in an LED display device and an LED display luminance control method using the same. .
  • a problem to be solved by the present invention is to provide an LED display driver IC capable of reducing flicker in a low gradation region and an LED display luminance control method using the same.
  • the problem to be solved by the present invention is an LED display driver IC capable of improving the image quality of an LED display device by improving expression power in a low gray level region and a high dynamic range (HDR) and an LED using the same. It is to provide a method for adjusting the display brightness.
  • the first LED, the second LED and the third LED is a plurality of pixels formed by a single pixel array of the LED display luminance correction method, (a) the Obtaining pixel data for each location at different locations in front of the LED display; (b) determining a reference value for each location in each pixel data for each location obtained in step (a); (c) determining correction coefficients for each of the pixels based on a reference value for each position determined in step (b); And (d) combining the correction factors for each position determined in step (c) at a predetermined ratio and applying them to all pixels of the LED display.
  • the system includes: a pixel data unit that acquires pixel data for each position of the LED display at different positions including the right, center, and left sides of the front of the LED display; A reference value setting unit for determining a reference value for each location from the pixel data for each location obtained from the pixel data unit; A correction coefficient setting unit for determining a correction coefficient for each location for each of the plurality of pixels according to a reference value for each location acquired by the reference value setting unit; And a luminance correction unit that combines the correction factors for each position obtained by the correction factor setting unit at a predetermined ratio and applies them to a plurality of pixels.
  • a luminance correction system of an LED display in which a plurality of pixels in which at least a first LED, a second LED, and a third LED are formed as one pixel is arrayed is located at the left side of the front of the LED display.
  • Luminance values of the first LED, the second LED and the third LED for each of the first reference value, the second reference value, and the third reference value by measuring the luminance values of the first LED, the second LED, and the third LED A first correction coefficient, a second correction coefficient and a third correction coefficient that form a ratio of values; Measure the luminance values of the first LED, the second LED, and the third LED in the center of the front of the LED display, and measure the luminance values of the fourth reference value, the fifth reference value, and the sixth reference value, respectively.
  • a luminance correction method for an LED display including a plurality of pixels arranged in a matrix is a maximum luminance value of a high gray level area of each of the LEDs in the pixels.
  • first correction coefficients for maximum luminance values of the high gradation region in the first correction data based on a first minimum value, which is a minimum value among the maximum luminance values of the high gradation region within, and the second correction data
  • a second correction system for maximum luminance values of the low grayscale region in the second correction data based on a second minimum value that is a minimum value among the maximum luminance values of the low grayscale region within
  • generating numbers and normalizing the luminance of each of the LEDs in the pixels based on the first correction coefficients and the second correction coefficients.
  • a luminance correction system for correcting a luminance of an LED display including a plurality of pixels arranged in a matrix includes: maximum luminance values of a high gradation region for each of the LEDs in the pixels And a light measurement unit for generating correction data by measuring the maximum luminance values of the low-grayscale region, and comparing the maximum luminance values of the high-grayscale region within the correction data, which is the minimum value among the maximum luminance values of the high-grayscale region.
  • a minimum value extracting unit for extracting a first minimum value and comparing a maximum luminance value of the low gradation region in the correction data to extract a second minimum value, which is a minimum value among the maximum luminance values of the low gradation region, and the first value First correction coefficients are generated for each of the maximum luminance values of the high grayscale region in the correction data based on a minimum value, and the second maximum Based on a value, a correction coefficient generation unit that generates second correction coefficients for each of the maximum luminance values of the low grayscale region in the correction data, and based on the first correction coefficients and the second correction coefficients. And a normalizing unit that normalizes the luminance of each of the LEDs in the pixels.
  • an LED display driver IC for adjusting the luminance of LEDs in an LED display corresponding to an input image signal includes a control unit for determining a gray level of the input image signal, and the control unit In accordance with the control of the pulse width modulation signal generating unit for generating a pulse width modulation signal corresponding to the gradation of the input image signal, and the pulse amplitude for generating a pulse amplitude modulation (PAM) signal corresponding to the gradation of the input image signal
  • a merge signal generator including a modulated signal generator and a pulse width modulated signal generated by the pulse width modulated signal generator and a pulse amplitude modulated signal generated by the pulse amplitude modulated signal generator to generate a merged signal.
  • the pulse amplitude modulation signal generator performs pulse amplitude modulation on the pulse width modulation signal to perform the merge signal.
  • the generation, or subjected to the PWM signal generator the pulse width modulation on the pulse amplitude modulation signal is characterized in that the generating of the remaining signal.
  • a method of adjusting the luminance of LEDs in an LED display with an LED display driver IC corresponding to an input image signal includes: determining, by a control unit, a gray level of the input image signal; , Generating a pulse width modulation (PWM) signal corresponding to the gradation of the input image signal depending on the determination of the control unit, and pulse amplitude modulation corresponding to the gradation of the input image signal depending on the determination of the control unit ( PAM) generating a signal, merging the pulse width modulated signal and the pulse amplitude modulated signal to generate a merge signal, and adjusting the luminance of the LEDs with the merge signal.
  • PWM pulse width modulation
  • PAM pulse amplitude modulation
  • the present invention obtains pixel data for each location at different locations, determines a reference value for each location, determines correction factors for each location for each pixel, and combines these correction factors at a predetermined ratio to combine pixels of the LED display.
  • the present invention is not limited to the region having the maximum luminance value of the LEDs in the pixels of the LED display, and an improved method of luminance correction method and system capable of performing luminance correction even for a region or a region having a low gradation. By providing, it has the effect of improving the overall image quality, uniformity, and expression of the LED display.
  • the present invention in particular, compared to the characteristics of the low grayscale region, that is, compared to the middle grayscale region or the high grayscale region, since the users of the LED display tend to perceive the luminance difference between pixels more prominently, in the low grayscale region , The effect of reducing the luminance difference through correction is large.
  • the present invention provides an improved LED display driver IC and a method for adjusting the brightness of the LED display using the same, thereby improving the expression power in the low gradation region of the LED display device and flickering in the low gradation region. It can be reduced, and it has an effect of improving the image quality of the LED display device by improving expression power in a low gray level region and a high dynamic range (HDR).
  • HDR high dynamic range
  • FIG. 1 is a view for explaining a process of acquiring pixel data for each location by arranging a camera (meter) at different locations P1, P2, and P3 for correction according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating an example of pixel data ML_pxd measured at a first position (left position, P1),
  • FIG. 3 is a diagram illustrating an example of pixel data MC_pxd measured at a second position (central position, P2),
  • FIG. 4 is a diagram illustrating an example of pixel data MR_pxd measured at a third position (right position, P3),
  • FIG. 5 to 7 are views showing a specific example of the pixel data measured at the first position (left position, P1), FIG. 5 is data for the red LED R at the first position, and FIG. 6 is the first Data for the green LED (G) at position 1, and FIG. 7 is data for the blue LED (B) at position 1,
  • FIG. 8 to 10 are views showing a specific example of the pixel data obtained at the second position (center position, P1), FIG. 8 is data for the red LED R at the second position, and FIG. 9 is the second Data for the green LED (G) at the 2 position, Figure 10 is data for the blue LED (B) at the second position,
  • FIG. 11 to 13 are views showing a specific example of the pixel data obtained at the third position (right position, P3), FIG. 11 is data for the red LED R at the third position, and FIG. 12 is the first Data for the green LED (G) at position 3, and FIG. 13 is data for the blue LED (B) at position 3,
  • FIG. 14 is a view showing an example of a table for applying the correction coefficients computed based on the reference values for each position to each of the LEDs of the pixels,
  • FIG. 15 is a view showing final pixel data (F_pxd) in a state in which the correction coefficients of FIG. 14 are applied to the LEDs of each pixel,
  • FIG. 16 is a view for explaining the luminance correction system 100 of the LED display according to an embodiment of the present invention.
  • FIG. 17 is a block diagram illustrating a luminance correction method and a luminance correction system according to an embodiment of the present invention
  • FIG. 18 is a view for explaining a process of measuring the luminance of each LED of the pixels with the light measuring unit 120 in the luminance correction method and system according to an embodiment of the present invention
  • 19 is a view for explaining a conventional luminance correction method compared to the present invention.
  • 20 is a view for explaining a process of detecting a first minimum value and a second minimum value from the correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention
  • 21 is a view for explaining a process of detecting a first minimum value, a second minimum value, and an intermediate value from correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention
  • the third minimum value and the fourth minimum value are the minimum values of the maximum luminance values in each by dividing the grayscale region into the first grayscale region and the second grayscale region,
  • FIG. 23 is a block diagram summarizing a luminance correction method according to an embodiment of the present invention.
  • FIG. 24 is a view for explaining a process of normalizing the entire region of the LEDs with the first correction coefficients and the second correction coefficients generated in FIG. 20,
  • FIG. 25 is a diagram for explaining a process of normalizing the entire region of the LEDs with the first correction coefficients, the second correction coefficients, and the third correction coefficients generated in FIG. 21,
  • 26 is a block diagram of a drive IC 20 for driving LEDs in pixels arranged in a matrix on the display unit 10 in a general LED display device,
  • PWM pulse width modulation
  • 28 is a block diagram for explaining a relationship between a general input image signal, a pulse width modulated signal generator and a driver IC,
  • 29 is an example of a gamma curve ( ⁇ curve) of the output luminance for the R, G, and B input signals,
  • FIG. 30 is a basic block diagram of an LED driver IC 100 according to the present invention.
  • FIG. 31 is a block diagram of an LED driver IC according to an embodiment of the present invention.
  • FIG. 32 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 31,
  • FIG. 33 is a block diagram of an LED driver IC according to another embodiment of the present invention.
  • FIG. 34 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 33,
  • 35 is a block diagram of an LED driver IC according to another embodiment of the present invention.
  • FIG. 36 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a low gray level region in the embodiment of FIG. 35,
  • FIG. 37 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a high gray level region in the embodiment of FIG. 35,
  • FIG. 38 is a view for explaining a process of generating a merge signal applied when the input image signal is in a low grayscale region or a high grayscale region in the embodiment of FIG. 35;
  • 39 is a gamma curve for showing the disadvantages of a conventional method of controlling luminance with only a pulse width modulated signal
  • FIG. 40 is a view showing the characteristics of the present invention using the merge signal of the pulse amplitude modulation signal and the pulse amplitude modulation signal,
  • 41 is a view showing examples of a merge signal (a signal generated by merging of a pulse width modulated signal and a pulse width modulated signal) according to an embodiment of the present invention for gray scale.
  • ML_pxd, MC_pxd and MR_pxd are pixel data for each position, specifically, ML_pxd is pixel data measured at a first position (left position, P1), and LR (i, j), LG (i, j) included in ML_pxd ), LB (i, j) are pixel data measured at the first position, and LRij, LGij, and LBij are luminance values in the pixel data.
  • MC_pxd is the pixel data measured at the second position (center position, P2), CR (i, j), CG (i, j), and CB (i, j) included in MC_pxd are pixel data, and CRij , CGij and LBij are luminance values in the pixel data measured at the second position.
  • MR_pxd is pixel data measured at a third position (right position, P3), and RR (i, j), RG (i, j), and RB (i, j) included in MR_pxd are pixel data, and RRij , RGij and RBij are luminance values in the pixel data measured at the third position.
  • i is a natural number from 1 to m
  • j is a natural number from 1 to n.
  • LR (i, j) is the first pixel data
  • LRij is the luminance value in the first pixel data
  • LG (i, j) is the second pixel data
  • LGij is the luminance value in the second pixel data
  • LB (i, j) is the third pixel data
  • LBij is the luminance value in the third pixel data
  • CR (i, j) is the fourth pixel data
  • CRij is the luminance value in the fourth pixel data
  • CG ( i, j) is the fifth pixel data
  • CGij is the luminance value in the fifth pixel data
  • CB (i, j) is the sixth pixel data
  • CBij is the luminance value in the sixth pixel data
  • RR (i, j) Is the seventh pixel data
  • RRij is the luminance value in the seventh pixel data
  • RG (i, j) is the eighth pixel data
  • RGij is the lumina
  • the first to ninth pixel data are defined for each of the pixels. That is, the first to ninth pixel data are all present in the pixel data for one pixel.
  • the pixel data of the first pixel that is, the (1,1) pixel includes first pixel data LR (1,1), second pixel data LG (1,1), and third pixel data LB ( 1,1)), 4th pixel data (CR (1,1)), 5th pixel data (CG (1,1)), 6th pixel data (CB (1,1)), 7th pixel data ( RR (1,1)), eighth pixel data RG (1,1), and ninth pixel data BB (1,1).
  • the pixel data of (m, n) pixels includes first pixel data LR (1,1), second pixel data LG (1,1), and third pixel data LB ( 1,1)), 4th pixel data (CR (1,1)), 5th pixel data (CG (1,1)), 6th pixel data (CB (1,1)), 7th pixel data ( RR (1,1)), eighth pixel data RG (1,
  • ref_LR, ref_LG, ref_LB, ref_CR, ref_CG, ref_CB, ref_RR, ref_RG, ref_RB are reference values for each location, specifically, ref_LR is a first reference value, ref_LG is a second reference value, refLB is a third reference value, ref_CR is the fourth reference value, ref_CG is the fifth reference value, ref_CB is the sixth reference value, ref_RR is the seventh reference value, ref_RG is the eighth reference value, and ref_RB is the ninth reference value.
  • CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB are position-specific correction coefficients, specifically, CC_LR is a first correction coefficient, CC_LG is a second correction coefficient, and CC_LB is a third The correction factor, CC_CR is the fourth correction factor, CC_CG is the fifth correction factor, CC_CB is the sixth correction factor, CC_RR is the seventh correction factor, CC_RG is the eighth correction factor, and CC_RB is the ninth correction factor. to be.
  • FIG. 1 is a view for explaining a process of acquiring pixel data for each location by arranging a camera (measurement device) at different locations P1, P2, and P3 for correction according to an embodiment of the present invention
  • Is a diagram showing an example of pixel data (ML_pxd) measured at a first position (left position, P1)
  • FIG. 3 is an example of pixel data (MC_pxd) measured at a second position (central position, P2)
  • 4 is a diagram illustrating an example of pixel data MR_pxd measured at a third position (right position, P3).
  • the luminance correction method of the LED display of the present invention first, pixel data per location (ML_pxd, MC_pxd) at different positions (P1, P2, P3) in front of the LED display 10 And MR_pxd).
  • the process of acquiring the pixel data for each position (ML_pxd, MC_pxd, and MR_pxd), as shown, is a camera at the left position (P1), the center position (P2), and the right position (P3) with a certain distance from the LED display 10
  • the pixel data processing unit not shown
  • the pixel data ML_pxd measured at the left position P1 includes first pixel data LR (i, j), second pixel data LG (i, j) and third pixel data LB (i, j) )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the left position P1. The obtained data will actually appear in various colors, but for convenience, the colors are not distinguished in the drawings.
  • the pixel data ML_pxd measured at the left position P1 includes all pixel data for the pixel located at (m, n) from the pixel located at (1,1).
  • (1,1), ..., (1, n), ..., (m, 1), ..., and (m, n) are the coordinates of the pixels in the LED display, from the top left It is numbered in a matrix in order from the bottom right.
  • the data for the light emitted by the LEDs in the first pixel is the first pixel data LR (1,1), the second pixel data LG (1,1), and 3 pixel data (LB (1, 1)).
  • data for light emitted by the LEDs in the pixels of (1, n) includes first pixel data LR (1, n), second pixel data LG (1, n), and third pixel data LB (1, n)), and data for light emitted by the LEDs in the pixel of (m, n) is the first pixel data (LR (m, n)) and the second pixel data (LG (m, n)) , And the third pixel data LB (m, n).
  • the pixel data ML_pxd measured at the left position P1 is the first pixel data LR (m, n) for each pixel.
  • m and n are natural numbers of 1 or more
  • second pixel data LG (m, n)
  • m and n are natural numbers of 1 or more
  • third pixel data LB (m, n)
  • m and n are 1 or more Natural water.
  • the pixel data MC_pxd measured at a second position that is, a central position P2 is illustrated.
  • the pixel data MC_pxd measured at the central position P2 includes the fourth pixel data CR (i, j), the fifth pixel data CG (i, j), and the sixth pixel data CB (i, j) )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the central position P2. The acquired data will actually appear in various colors, but as in FIG. 2, for convenience, the colors are not distinguished in the drawings.
  • the pixel data (MC_pxd) measured at the central position (P2), as well as the pixel data (ML_pxd) measured at the previous left position (P1), is from the pixel located at (1,1) to the pixel located at (m, n). Contains all relevant pixel data.
  • the data for the light emitted by the LEDs in the pixel of the first pixel, namely (1,1), is the fourth pixel data CR (1,1), the fifth pixel data CG (1,1), and the 6 pixel data (CB (1,1)).
  • data for light emitted by the LEDs in the pixels of (1, n) includes fourth pixel data CR (1, n), fifth pixel data CG (1, n), and sixth pixel data CB (1, n)), and data for the light emitted by the LEDs in the pixel of (m, n) is the fourth pixel data (CR (m, n)) and the fifth pixel data (CG (m, n)) , And the sixth pixel data CB (m, n),
  • the pixel data MC_pxd measured at the central position P2 is the fourth pixel data CR (m, n) for each pixel.
  • m and n are natural numbers of 1 or more
  • fifth pixel data CG (m, n)
  • m and n are natural numbers of 1 or more
  • sixth pixel data CB (m, n)
  • m and n is 1 or more Natural water
  • the pixel data MR_pxd measured at the right position P3 includes seventh pixel data RR (i, j), eighth pixel data RG (i, j) and ninth pixel data RB (i, j )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the right position P3. The acquired data will actually appear in various colors, but as in FIGS. 2 and 3 described above, for convenience, the colors are not distinguished in the drawings.
  • the data for the light emitted by the LEDs in the first pixel is the seventh pixel data (RR (1,1)), the eighth pixel data (RG (1,1)), and 9 pixel data (RB (1,1)).
  • data for light emitted by the LEDs in the pixel of (1, n) includes seventh pixel data RR (1, n), eighth pixel data RG (1, n), and ninth pixel data RB (1, n)), and data for the light emitted by the LEDs in the pixel of (m, n) is the seventh pixel data (RR (m, n)) and the eighth pixel data (RG (m, n)) ,
  • And ninth pixel data RB (m, n) as described above, the pixel data MR_pxd measured at the right position P3 is the seventh pixel data RR (m, n) for each pixel.
  • m and n are natural numbers of 1 or more
  • 8th pixel data RG (m, n)
  • m and n are natural numbers of 1 or more
  • 9th pixel data RB (m, n)
  • m and n is 1 or more Natural water.
  • 5 to 13 are specific examples of pixel data measured at the first position (left position, P1), the second position (center position, P2), and the third position (right position, P3), and reference values for each position therefrom These are drawings for explaining the process of generating the correction coefficients.
  • FIGS. 5 to 7 are views showing a specific example (luminance value for each LED in each pixel) of the pixel data measured at the first position (left position, P1), and FIG. 5 is at the first position (P1)
  • Is data (luminance value) for the red LED R of FIG. 6 is data (luminance value) for the green LED G at the first position P1
  • FIG. 7 is at the first position P1 This is the data (luminance value) for the blue LED (B).
  • the luminance value in the pixel data for the first LED (red LED) in the first pixel that is, the (1,1) pixel is LR11, and the first LED (red LED) in the (1, n) pixel
  • the luminance value in the pixel data for is LR1n
  • the luminance value in the pixel data for the first LED (red LED) in (m, n) pixels is LRmn.
  • CC_LR is a first correction coefficient, and is determined depending on a reference value for each position (here, a first reference value). For example, as shown in FIG.
  • the first correction coefficient (CC_LR) of the (1,1) pixel is LRm4 / LR11
  • the first correction coefficient (CC_LR) of the (1,2) pixel is LRm4 / LR12
  • the (1, n) pixel The first correction coefficient (CC_LR) of is LRm4 / LR1n
  • the first correction coefficient (CC_LR) of the (m, n) pixel is LRm4 / LRmn.
  • the first reference value (ref_LR) is determined from the pixel data related to the first LED, that is, the luminance values of the first LEDs in the first pixel data.
  • a first correction coefficient (CC_LR) for the first LED in each pixel is determined by the first reference value.
  • the luminance value in the pixel data for the second LED (green LED) in the first pixel that is, the (1,1) pixel is LG11
  • the second LED (green LED) in the (1, n) pixel The luminance value in the pixel data for is LG1n
  • the luminance value in the pixel data for the second LED (green LED) in (m, n) pixels is LGmn.
  • CC_LG is a second correction coefficient, and is determined depending on a reference value for each position (here, a second reference value). For example, as illustrated in FIG.
  • the second correction coefficient (CC_LG) of the (1,1) pixel is LGm-13 / LG11
  • the second correction coefficient (CC_LG) of the (1,2) pixel is LGm-13 / LG12
  • the second correction coefficient (CC_LG) of the pixel is LGm-13 / LG1n
  • the second correction coefficient (CC_LG) of the (m, n) pixel is LGm-13 / LGmn.
  • the second reference value ref_LG is determined from the pixel data related to the second LED among the pixel data measured at the first position (left position, P1), that is, the luminance values of the second LEDs in the second pixel data.
  • the second correction value CC_LG for the second LED in each pixel is determined by the second reference value.
  • the luminance value in the pixel data for the third LED (blue LED) in the first pixel that is, the (1,1) pixel is LB11
  • the third LED (blue LED) in the (1, n) pixel The luminance value in the pixel data for is LB1n
  • the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is LBmn.
  • CC_LB is a third correction coefficient, and is determined depending on a reference value for each position (here, a third reference value). For example, as illustrated in FIG.
  • the third correction factor (CC_LB) of the (1,1) pixel is LBm-21 / LB11
  • the third correction factor (CC_LB) of the (1,2) pixel is LBm-21 / LB12
  • the third correction coefficient (CC_LB) of the pixel is LBm-21 / LB1n
  • the third correction coefficient (CC_LB) of the (m, n) pixel is LBm-21 / LBmn.
  • the third reference value ref_LB is determined from the pixel data of the third LED among the pixel data measured at the first position (left position, P1), that is, the luminance value for each of the third LEDs in the third pixel data.
  • the third correction value CC_LB for the third LED in each pixel is determined by the third reference value.
  • FIG. 8 to 10 are views showing a specific example of the pixel data obtained at the second position (central position, P2), FIG. 8 is data for the red LED R at the second position, and FIG. 9 is the second Data for the green LED (G) at the 2 position, and FIG. 10 is data for the blue LED (B) at the second position.
  • the luminance value in the pixel data for the first LED (red LED) in the first pixel that is, the (1,1) pixel is CR11, and the first LED (red LED) in the (1, n) pixel
  • the luminance value in the pixel data for is CR1n
  • the luminance value in the pixel data for the first LED (red LED) in (m, n) pixels is CRmn.
  • CC_CR is a fourth correction coefficient, and is determined depending on a reference value for each position (here, a fourth reference value). For example, as illustrated in FIG.
  • the fourth correction coefficient (CC_CR) of the (1,1) pixel is CRm-1n-1 / CR11
  • the fourth correction coefficient (CC_CR) of the (1,2) pixel is CRm-1n-1 / CR12 Is
  • the fourth correction coefficient (CC_CR) of the (1, n) pixel is CRm-1n-1 / CR1n
  • the fourth correction coefficient (CC_CR) of the (m, n) pixel is CRm-1n-1 / CRmn .
  • the fourth reference value (ref_CR ) Is determined, and a fourth correction coefficient (CC_CR) for the first LED (red LED) in each pixel is determined by the fourth reference value.
  • the luminance value in the pixel data for the second LED (green LED) in the first pixel is CG11
  • the second LED (green LED) in the (1, n) pixel The luminance value in the pixel data for is CG1n
  • the luminance value in the pixel data for the first LED (green LED) in (m, n) pixels is CGmn.
  • CC_CG is a fifth correction coefficient, and is determined depending on a reference value for each position (here, a fifth reference value). For example, as shown in FIG.
  • the fifth correction coefficient (CC_CG) of (1,1) pixels is CG14 / CG11
  • the fifth correction coefficient (CC_CG) of (1,2) pixels is CG14 / CG12
  • (1, n) pixels The fifth correction coefficient of CC_CG is CG14 / CG1n
  • the fifth correction coefficient (CC_CG) of (m, n) pixels is CG14 / CGmn.
  • the fifth reference value (ref_CG )
  • a fifth correction coefficient (CC_CG) for the second LED (green LED) in each pixel is determined by the fifth reference value.
  • the luminance value in the pixel data for the third LED (blue LED) in the first pixel, (1,1) pixels is CB11
  • the third LED (blue LED) in (1, n) pixels The luminance value in the pixel data for is CB1n
  • the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is CBmn.
  • CC_CB is a sixth correction coefficient and is determined depending on a reference value for each position (here, a sixth reference value). For example, as illustrated in FIG. 10, among the luminance values in the pixel data for the third LED (blue LED), if the luminance value of the (2,4) pixel is the lowest, the sixth reference value is CB24.
  • the sixth correction coefficient (CC_CB) of the (1,1) pixel is CB24 / CB11
  • the sixth correction coefficient (CC_CB) of the (1,2) pixel is CB24 / CB12
  • the (1, n) pixel The 6th correction coefficient (CC_CB) of is CB24 / CB1n
  • the 6th correction coefficient (CC_CB) of (m, n) pixels is CB24 / CBmn.
  • the sixth reference value (ref_CB )
  • a sixth correction coefficient (CC_CB) for a third LED (blue LED) in each pixel is determined by the sixth reference value.
  • FIG. 11 to 13 are views showing a specific example of the pixel data obtained at the third position (right position, P3), FIG. 11 is data for the red LED R at the third position, and FIG. 12 is the first Data for the green LED (G) at the 3 position, and FIG. 13 is data for the blue LED (B) at the 3rd position.
  • the luminance value in the pixel data for the first LED (red LED) in the first pixel that is, the (1,1) pixel is RR11, and the first LED (red LED) in the (1, n) pixel
  • the luminance value in the pixel data for is RR1n
  • the luminance value in the pixel data for the first LED (red LED) at (m, n) pixels is RRmn.
  • CC_RR is a seventh correction coefficient, and is determined depending on a reference value for each position (here, a seventh reference value (ref_RR)). For example, as illustrated in FIG.
  • the seventh reference value is RRm-13.
  • the seventh correction coefficient (CC_RR) of the (1,1) pixel is RRm-13 / RR11
  • the seventh correction coefficient (CC_RR) of the (1,2) pixel is RRm-13 / RR12
  • the seventh correction coefficient (CC_RR) of the pixel is RRm-13 / RR1n
  • the seventh correction coefficient (CC_RR) of the (m, n) pixel is RRm-13 / RRmn.
  • the seventh reference value (ref_RR ) Is determined and a seventh correction coefficient (CC_RR) for the first LED (red LED) in each pixel is determined by the determined seventh reference value.
  • the luminance value in the pixel data for the second LED (green LED) in the first pixel that is, the (1,1) pixel is RG11
  • the second LED in the (1, n) pixel green LED
  • the luminance value in the pixel data for is RG1n
  • the luminance value in the pixel data for the second LED (green LED) in the (m, n) pixel is RGmn.
  • CC_RG is an eighth correction coefficient, and is determined depending on the reference value for each position (here, the eighth reference value ref_RG). For example, as illustrated in FIG.
  • the eighth reference value is RG2n-1.
  • the eighth correction coefficient (CC_RG) of the (1,1) pixel is RG2n-1 / RG11
  • the eighth correction coefficient (CC_RG) of the (1,2) pixel is RG2n-1 / RG12
  • the eighth correction coefficient (CC_RG) of the pixel is RG2n-1 / RG1n
  • the eighth correction coefficient (CC_RG) of the (m, n) pixel is RG2n-1 / RGmn.
  • the eighth reference value ref_RG Is determined and the eighth correction coefficient CC_RG for the second LED (green LED) in each pixel is determined by the determined eighth reference value.
  • the luminance value in the pixel data for the third LED (blue LED) in the first pixel that is, the (1,1) pixel is RB11
  • the third LED (blue LED) in the (1, n) pixel The luminance value in the pixel data for is RB1n
  • the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is RBmn.
  • CC_RB is the ninth correction coefficient, and is determined depending on the reference value for each position (here, the ninth reference value (ref_RB)). For example, as illustrated in FIG.
  • the ninth correction coefficient (CC_RB) of (1,1) pixels is RB11 / RB11
  • the ninth correction coefficient (CC_RB) of (1,2) pixels is RB11 / RB12
  • the ninth correction coefficient (CC_RB) of is RB11 / RB1n
  • the ninth correction coefficient (CC_RB) of (m, n) pixels is RB11 / RBmn.
  • the ninth reference value (ref_RB ) Is determined and the ninth correction coefficient CC_RB for the third LED (blue LED) in each pixel is determined by the determined ninth reference value.
  • the luminance correction method of the LED display of the present invention acquires pixel data for each position at different positions (P1, P2, P3: FIG. 1) in front of the LED display, and thus obtained pixel data for each position
  • the correction coefficients for each location are determined based on the determined location-specific reference value for each of the pixels (specifically, each of the red LED, green LED, and blue LED of each pixel).
  • the correction coefficients for each position are expressed as a ratio of luminance values of LEDs in each pixel to the determined reference value for each position.
  • FIG. 14 shows the correction coefficients (CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB) computed based on the location-specific reference values (the first to ninth reference values).
  • First LED (R), second LED (G), and a third LED (B)) is a diagram showing an example of a table for applying to each
  • Figure 15 is the LED of each of the pixels of the correction coefficients of Figure 14 It is a figure showing the final pixel data (F_pxd) in a state applied to the fields.
  • pixels located in a first column in the (1,1) pixel, Green LED (G), Blue LED (B), Red LED in (2,1) pixels (R), Green LED (G), Blue LED (B), ..., (m, 1) Red LED in pixels
  • the first correction factor (CC_LR) is applied to the red LED (R)
  • the second correction factor (CC_LG) is applied to the green LED (G).
  • CC_LB was applied to the blue LED (B).
  • the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB are all coefficients computed based on the pixel data measured at the first position (left position, P1).
  • the pixels located in the second column that is, the red LED (R), the green LED (G), the blue LED (B) in the (1,2) pixel, the red LED (R) in the (2,2) pixel, green LED (G), Blue LED (B), ..., (m, 2)
  • red LED (R) The fourth correction factor (CC_CR) was applied
  • the fifth correction factor (CC_CG) was applied to the green LED (G)
  • the sixth correction factor (CC_CB) was applied to the blue LED (B).
  • the fourth correction coefficient CC_CR, the fifth correction coefficient CC_CG, and the sixth correction coefficient CC_CB are all coefficients computed based on the pixel data measured at the second position (central position, P2).
  • the pixels located in the third column that is, the red LED (R) in the (1,3) pixel, the green LED (G), the blue LED (B), and the red LED (R) in the (2,3) pixel, green LED (G), Blue LED (B), ..., (m, 3)
  • red LED (R) The seventh correction factor (CC_RR) was applied
  • the eighth correction factor (CC_RG) was applied to the green LED (G)
  • the ninth correction factor (CC_RB) was applied to the blue LED (B).
  • the seventh correction coefficient CC_RR, the eighth correction coefficient CC_RG and the ninth correction coefficient CC_RB are all coefficients computed based on the pixel data measured at the third position (right position, P3).
  • the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB are applied to the pixels located in the fourth column, and the pixels located in the fifth column are the same as the first column.
  • the fourth correction coefficient (CC_CR), the fifth correction coefficient (CC_CG), and the sixth correction coefficient (CC_CB) are applied, and for the pixels located in the sixth column, the seventh correction coefficient (CC_RR), like the third column,
  • the eighth correction factor (CC_RG) and the ninth correction factor (CC_RB) were applied.
  • the final pixel data F_pxd may be expressed as shown in the example shown in FIG. 15. That is, since the first correction coefficient CC_LR in FIG. 14 was previously applied to the red LED R of the (1,1) pixel, the final pixel data F_pxd after correction may be LR11 * CC_LR, and green Since the second correction coefficient CC_LG in FIG. 14 was previously applied to the LED G, the final pixel data F_pxd after the correction may be LG11 * CC_LG, and the blue LED B may be previously described in FIG. 14. Since the third correction coefficient CC_LB is applied, the final pixel data F_pxd_ after correction may be LB11 * CC_LB. Similarly, since the seventh correction coefficient (CC_RR) in FIG.
  • the final pixel data (F_pxd) after correction may be RRmn * CC_RR, and green Since the eighth correction coefficient CC_RG in FIG. 14 was previously applied to the LED G, the final pixel data F_pxd after correction may be RGmn * CC_RG, and the blue LED B may be previously described in FIG. 14. Since the ninth correction coefficient CC_RB is applied, the final pixel data F_pxd_ after correction may be RBmn * CC_RB.
  • the present invention measures luminance using cameras located at each of the left position, the center position, and the right position, computes a correction coefficient by setting a reference value, and adjusts the luminance value by applying the same ratio to all pixels of the display. By doing so, it solves the problem of showing the difference in luminance for each viewing position of the conventional LED display, and has the effect of allowing the viewer to view the optimal uniform image through the LED display device.
  • pixel data is obtained by measuring with a camera at three locations, but pixel data measured at four or more locations may be used.
  • 16 is a view for explaining the luminance correction system 100 of the LED display 10 according to an embodiment of the present invention.
  • the luminance correction system 100 of the LED display 10 according to an embodiment of the present invention is described with reference to FIG. 16, at least a first LED (see LR in FIG. 2) and a second LED (see LG in FIG. 2) ) And the third LED (refer to LB in FIG.
  • the luminance correction system 100 of the LED display 10 of the present invention in which a plurality of pixels are formed in a horizontal direction and a vertical direction, is an LED display (10) Pixel data unit for obtaining pixel data (ML_pxd, MC_pxd, MR_pxd) for each position of the LED display 10 at different positions including the front right (P3), middle (P2), and left (P1) (110), the reference value setting unit 120 for determining the reference value for each location from the pixel data for each location (ML_pxd, MC_pxd, MR_pxd) acquired by the pixel data unit 110, obtained from the reference value setting unit 120 Recall the correction factor for each location according to the reference value for each location
  • the correction coefficient setting unit 130 for determining for each of several pixels, and the correction coefficients for each position obtained by the correction coefficient setting unit 130 are combined at a certain ratio (F_pxd in the drawing), so that all of the plurality of pixels are It includes a luminance correction unit 140 applied to.
  • At least a first LED eg, LR in FIG. 2
  • a second LED eg, LG in FIG. 2
  • a third LED for example, the luminance correction system of the LED display 10 in which a plurality of pixels in which LB of FIG.
  • the ratio of the luminance values of the first LED, the second LED and the third LED to each of the first reference value, the second reference value, and the third reference value by measuring the luminance values of the second LED and the third LED ( ratio, the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB, and the first LED in the center P2 of the front of the LED display 10, the By measuring the luminance values of the second LED and the third LED, each of the fourth reference value and the fifth group
  • the fourth correction coefficient (CC_CR), the fifth correction coefficient (CC_CG) and the sixth which form a ratio of the luminance values of the first LED, the second LED, and the third LED to the value (CC_CG) and the sixth reference value.
  • Correction coefficient (CC_CB), and the luminance values of the first LED, the second LED, and the third LED on the right (P3) of the front of the LED display 10 are measured to determine the seventh reference value and the Seventh correction coefficient (CC_RR), eighth correction coefficient (CC_RG) and ninth correction coefficient forming ratios of luminance values of the first LED, the second LED and the third LED with respect to the 8 reference values and the ninth reference values (CC_RB) and combining the first to ninth correction coefficients at the same ratio to correct luminance values of the first LED, the second LED, and the third LED in the pixels of the LED display. .
  • FIGS. 17 to 25 a luminance correction method and a luminance correction system of the present invention will be described with reference to FIGS. 17 to 25.
  • reference numerals in FIGS. 17 to 25 are limited to FIGS. 17 to 25 only. That is, the reference numerals indicated in FIGS. 1 to 16 described above are limited to FIGS. 1 to 16, and the reference numerals in FIGS. 17 to 25 described below are limited to FIGS. 17 to 25. .
  • the gray level of the image data may be divided into a low gray level area, a low gray level area, a mid gray level area, and a high gray level area, in order from a low area.
  • the high gradation region is generally an area within 80% of the maximum luminance value
  • the low gradation region is the region within 30% of the maximum luminance value of the high gradation region
  • the other regions are defined as the middle gradation region.
  • FIG. 17 is a view for explaining a luminance correction system according to an embodiment of the present invention and a luminance correction method through the same
  • FIG. 18 is a luminance correction system according to an embodiment of the present invention, to the light measurement unit 110 It is a diagram for explaining a method of measuring the luminance of the LEDs of each pixel.
  • the number of pixels (px) of the LED display is m * n
  • each of the pixels (px) includes a red LED (R), a green LED (G), and a blue LED (B) for full-color implementation. do.
  • a luminance correction system 100 for correcting luminance of a display including a plurality of pixels arranged in a matrix includes: a light measurement unit 110, It includes a minimum value extraction unit 120, a correction coefficient generation unit 130 and a normalization unit 140.
  • the light measurement unit 110 is a component for measuring the luminance of the pixels of the LED display 1, and may be, for example, a camera or other light measurement equipment.
  • the process of measuring the luminance of the pixels (px) of the LED display 1 is as follows.
  • the pixels of the LED display 1 are lit at one time, to reduce the optical interference that may occur between adjacent pixels to increase the accuracy of the correction, for example, by grouping to include 9, 16, etc. pixels .
  • the light measuring unit 110 By lighting only one pixel in a group at a time, it can be measured by the light measuring unit 110 in the absence of light interference from adjacent pixels. Therefore, when the number of pixels included in one group is 9, as shown in black in FIG. 18, the pixels that are lit are turned on by skipping two pixels in the row direction and two pixels in the column direction. The light is skipped and measured by the light measurement unit 110.
  • the three LEDs in one pixel that is, the red LED (R), the green LED (G), and the blue LED (B), respectively, are lit in this way.
  • the red LEDs (R) and the like in px44 light up at the same time to measure the luminance with the light measuring unit 110, and when the measurement is finished, repeat for the red LEDs in the next pixels.
  • the next lit pixels may be, for example, px12, px15, px18, ..., px42, px45, ..., and the like.
  • a light measuring unit is applied to the lit pixels by applying a current that causes the lit pixels to have maximum luminance values in a high gradation region. Measured by (110), and by applying a current to have a maximum luminance value in the low gradation region, the lighted pixels are measured by the light measurement unit 110.
  • the light measurement unit 110 generates correction data including the maximum luminance value in the high gradation region and the maximum luminance value in the low gradation region for each of the pixels (px).
  • the minimum value extraction unit 120 compares the maximum luminance values in the high gradation region within the correction data measured / generated by the light measurement unit 110 and extracts the first minimum value, which is the minimum value among the maximum luminance values. In addition, the minimum value extracting unit 120 compares the maximum luminance values in the low gradation region within the correction data measured / generated by the light measurement unit 110, and is the minimum value among the maximum luminance values in the low gradation region. The second minimum value is extracted.
  • the correction coefficient generation unit 130 generates first correction coefficients for each of the maximum luminance values in the high grayscale region in the correction data based on the first minimum value extracted by the minimum value extraction unit 120, and the Second correction coefficients are generated for each of the maximum luminance values in the low gradation region in the correction data based on a second minimum value.
  • normalization is performed on the entire luminance region of the corresponding LEDs. For example, normalization is performed on the entire luminance region of the red LED R in px11 based on the first and second correction coefficients for the red LED R in px11, and for the red LED R in px12. Normalization is performed on the entire luminance region of the red LED R in px12 based on the first correction coefficient and the second correction coefficient. In this way, for each of the LEDs in all pixels, normalization is performed for the entire luminance region of each of the LEDs based on the respective first correction coefficient and the second correction coefficient.
  • a region to which the first correction factor is applied and a region to which the second correction factor is applied can be divided. For example, in the entire luminance area of each of the LEDs, an area to which a first correction coefficient corresponding to each of the LEDs is applied, that is, an area covered by the first correction coefficient is covered by the top 50% of the total luminance area and a second correction coefficient. Correction can be performed by setting the region to be the lower 50% of the entire luminance region.
  • the light measurement unit 110 may further measure the maximum luminance value of the middle grayscale region, which is an intermediate region of the high grayscale region and the low grayscale region of each of the LEDs in the pixel (px). Accordingly, the maximum luminance value of the high grayscale region, the maximum luminance value of the low grayscale region, and the maximum luminance value of the grayscale region may be included in the correction data. Then, when the correction data is generated to further include the maximum luminance value of the grayscale region, the minimum value extracting unit 120 further extracts a third minimum value that is the minimum value among the maximum luminance values of the grayscale region within the correction data. In addition, the correction coefficient generation unit 130 may further generate third correction coefficients for each of the maximum luminance values of the grayscale region in the correction data based on the third minimum value.
  • the third correction coefficient is further generated, in normalizing, in the entire luminance region of each LED, the region to which the first correction factor is applied, the region to which the second correction factor is applied, and the third correction factor are set.
  • the area to be applied can be divided. For example, in the entire luminance area of each of the LEDs, an area to which the first correction coefficient corresponding to each of the LEDs is applied, that is, an area covered by the first correction coefficient is covered by the top 30% of the total luminance area and the second correction coefficient.
  • the correction may be performed by applying the region to the lower 30% of the entire luminance region and the region covered by the third correction coefficient to the remaining region.
  • the areas covered by the first correction coefficient, the second correction coefficient, and the third correction coefficient for the entire luminance area may be changed at different ratios.
  • the light measurement unit 110 may generate a plurality of intermediate luminance values for each of the LEDs of the pixels to generate correction data including them (see FIG. 22).
  • the light measurement unit 110 the minimum value extraction unit 120, by a series of processes by the correction coefficient generation unit 130 to each of the LEDs
  • the third correction coefficient is used to apply to the entire luminance region of each of the LEDs. . This will be described in more detail with reference to FIGS. 24 and 25 later.
  • the first correction coefficients, the second correction coefficients, and the third correction coefficients for each of the LEDs generated from the correction data are provided to the control unit 10, and the control unit 10 provides these first correction coefficients, By adjusting the normalization (Normalization) for each of the LEDs in the pixels using the second correction coefficients and the third correction coefficients, the brightness level of the LEDs in the pixels is adjusted. Through this process, the LED By improving the color expression power, it is possible to expect an overall image quality improvement and uniformity improvement effect.
  • FIG. 19 is a view for explaining a conventional luminance correction method compared to the present invention
  • FIG. 20 is a first from the correction data for each pixel of the LED display in the luminance correction method and system according to an embodiment of the present invention
  • a luminance correction method for an LED display including a plurality of pixels arranged in a matrix consists of a maximum luminance value of each of the high gradation regions of the LEDs R, G, and B in the pixels px.
  • first correction data including first correction data and second correction data composed of maximum luminance values of the low grayscale regions of the LEDs R, G, and B in the pixels px, the first Generating first correction coefficients for maximum luminance values of the high gradation region in the first correction data based on a first minimum value that is a minimum value among the maximum luminance values of the high gradation region in the correction data; and And generating second correction coefficients for minimum luminance values in the second correction data, based on a second minimum value, which is a minimum value among the maximum luminance values of the low grayscale region in the second correction data.
  • the conventional luminance correction method shown in FIG. 19 measures maximum luminance values in the high gradation regions for LEDs in each of the pixels by using light measuring equipment such as a camera, and maximum luminance in these high gradation regions After comparing the values and extracting the minimum value, the luminance levels of all the LEDs are corrected by normalizing the brightness level of all the LEDs to the entire luminance area based on the minimum value.
  • the conventional luminance correction method illustrated in FIG. 19 extracts a minimum value from among the maximum luminance values in the high gradation region, and then only processes the maximum luminance values to the minimum value based on the extracted minimum value. Therefore, since the correction for the low gradation region or the gradation region is not achieved in the LEDs in the pixels, it is significantly insufficient to improve the overall image quality of the LED display.
  • the first minimum value which is the minimum value among the maximum luminance values
  • the second minimum value which is the minimum value among the maximum luminance values of the low gradation region
  • the luminance of the LEDs is corrected by extracting and generating second correction coefficients for the maximum luminance values of the low grayscale region based on this, and normalizing the luminance region of each of the LEDs in the entire pixel.
  • the luminance correction method of the present invention has an effect of improving overall image quality and uniformity by correcting not only the maximum luminance value of the LEDs, but also the low gradation region. Particularly, when compared to the characteristics of the low gradation region, that is, compared to the middle gradation region or the high gradation region, users of the LED display tend to perceive the luminance difference between pixels more prominently. The effect of reducing the tea is great.
  • the step of generating the correction data includes, for each of the LEDs R, G, and B in the pixels px, the maximum luminance values of the high gradation region by the light measurement unit 110 and And measuring the maximum luminance values of the low gradation region.
  • the step of generating the correction data includes, for each of the LEDs R, G, and B in the pixels px, the maximum luminance values of the high gradation region by the light measurement unit 110 and And measuring the maximum luminance values of the low gradation region.
  • the pixels that are lit are turned on by skipping two pixels in the row direction and two pixels in the column direction.
  • the light is skipped and measured by the light measurement unit 110. That is, in FIG. 18, px11, px14, px17, ..., px41, px44, ... are lit at a time to measure the maximum luminance value and the minimum luminance value through the light measuring unit 110. . This process is repeated until measurements of the LEDs in all pixels of the LED display are made.
  • the step of generating the first correction coefficients compares the maximum luminance values of the high gradation region in the first correction data with the minimum value in the correction data measured / generated by the light measurement unit 110. Extracting the first minimum value by the extraction unit 120 and, based on the first minimum value extracted by the minimum value extraction unit 120, the correction coefficient generation unit 130 to the maximum of the high grayscale region in the first correction data It may be subdivided into steps of generating first correction coefficients for luminance values.
  • the generating of the second correction coefficients may include comparing the maximum luminance values of the low grayscale region in the second correction data to extract the second minimum value with the minimum value extraction unit 120 and the minimum value extraction unit 120. Based on the second minimum value extracted by, the correction coefficient generation unit 130 may be subdivided into a step of generating second correction coefficients for the maximum luminance values of the low grayscale region in the second correction data.
  • the first correction coefficients are values obtained by dividing the first minimum value, which is the minimum value among the maximum luminance values of the high grayscale region in the first correction data, with the maximum luminance values of the high grayscale region in the first correction data.
  • the second correction coefficients may be values obtained by dividing the second minimum value, which is the minimum value among the maximum luminance values of the low grayscale region in the second correction data, with the maximum luminance values of the low grayscale region in the second correction data.
  • red LEDs (R) in px11, px12, px13, px14, px15, px16, px17, and px18 (numbered 1, 2, 3, 4, 5, 6, 7, 8 on the X axis in FIG. 20).
  • first correction data composed of maximum luminance values of high-gradation regions of LEDs, and low-gradation regions of LEDs
  • the correction data may be generated to include the second correction data composed of the maximum luminance value of and the third correction data composed of the maximum luminance value of the middle gradation region which is an intermediate region of the high gradation region and the low gradation region of the LEDs.
  • a third minimum value which is the minimum value among the maximum luminance values of the grayscale region, is extracted from the third correction data composed of the maximum luminance values of the grayscale region, and the relay in the third correction data is based on the extracted third minimum value.
  • Third correction coefficients may be generated for the maximum luminance values of the jaw region. For example, red LEDs (R) in px11, px12, px13, px14, px15, px16, px17, and px18 (on the X axis in FIG.
  • the generating of the third correction coefficients includes: comparing the maximum luminance values of the grayscale areas in the third correction data to extract a third minimum value with the minimum value extraction unit 120, and extracting the minimum value Based on the third minimum value extracted by the unit 120, the correction coefficient generation unit 130 may be subdivided into a step of generating third correction coefficients for the minimum luminance values in the third correction data.
  • the luminance correction method according to the present invention is summarized in block diagram in FIG. 23.
  • the step of generating the first correction coefficients, the second correction coefficients and the third correction coefficients can be performed simultaneously in this order or in parallel, and finally the entirety of all pixels.
  • the correction may be completed by normalizing the entire luminance region of the LEDs.
  • the method of generating the first correction coefficients, the second correction coefficients, and the third correction coefficients is not limited to the method presented above, but can be generated in any other way.
  • the correction data is different from the above, the data corresponding to the red LED (R) of px11 in Figure 18
  • the LED 1 in FIG. 20 the data corresponding to the red LED (R) of px14 in FIG. 18 is the LED 2 in FIG. 20, the data corresponding to the red LED (R) of px17 in FIG. It can be LED 3.
  • the first correction data in the correction data is the maximum luminance of each of the red LEDs (R) in the pixels.
  • 1-1 correction data composed of values
  • 1-2 correction data composed of the maximum luminance values of each of the green LEDs (G) in pixels, and the maximum luminance values of each of the blue LEDs (B) in the pixels. It includes the first to third correction data.
  • the first minimum value is a minimum value of 1-1, which is a minimum value among maximum luminance values in the 1-1 correction data, a minimum value of 1-2, which is a minimum value among maximum luminance values in the 1-2 correction data, and 1-3 includes the first to third minimum values, which are the minimum values among the maximum luminance values in the correction data.
  • the first correction coefficients are first-first correction coefficients generated based on the first-first minimum value, first-second correction coefficients generated based on the first-second minimum value, and first-3 Contains 1-3 correction coefficients generated based on the minimum value.
  • the second correction data in the correction data is a 2-1 correction data composed of the minimum luminance value of each of the red LEDs R in the pixels, and the minimum luminance value of each of the green LEDs G in the pixels.
  • 2-2 correction data, and 2-3 correction data which are composed of the minimum luminance value of each of the blue LEDs B in the pixels.
  • the second minimum value is a minimum value of 2-1, which is a minimum value among minimum luminance values in 2-1 correction data, a minimum value of 2-2, which is a minimum value among minimum luminance values in 2-2 correction data, and a second minimum value.
  • 2-3 the minimum value of the minimum luminance value in the correction data is included.
  • the second correction coefficients are 2-1 correction coefficients generated based on the 2-1 minimum value, 2-2 correction coefficients generated based on the 2-2 minimum value, and the second 2- 3 Includes 2-3 correction factors generated based on the minimum value.
  • the third correction data is configured as the maximum luminance value of each grayscale region of the red LEDs R in the pixels.
  • 3-1 correction data, 3-2 correction data composed of the maximum luminance value of each grayscale region of the green LEDs G in pixels, and the grayscale of each of the blue LEDs B in pixels Contains 3-3 correction data composed of the maximum luminance value of the area.
  • the third minimum value is a minimum value among 3-1 minimum values, which are the minimum values among the maximum luminance values of the grayscale region in the 3-1 correction data, and a minimum value among maximum luminance values of the grayscale regions in the 3-2 correction data.
  • 3-3 minimum value, and 3-3 minimum value which is the minimum value among the maximum luminance values of the grayscale region in the 3-3 correction data.
  • the third correction coefficients, 3-1 correction coefficients generated based on the 3-1 minimum value, 3-2 correction coefficients generated based on the 3-2 minimum value, and 3-3 3-3 correction coefficients generated based on the minimum value are the third correction coefficients, 3-1 correction coefficients generated based on the 3-1 minimum value, 3-2 correction coefficients generated based on the 3-2 minimum value, and 3-3 3-3 correction coefficients generated based on the minimum value.
  • the 1-1 correction coefficients are correction coefficients corresponding to red in the high gradation region
  • the 1-2 correction coefficients are correction coefficients corresponding to green
  • the 1-3 correction coefficients correspond to blue These are correction factors.
  • the 2-1 correction coefficients are correction coefficients corresponding to red in the low grayscale region
  • the 2-2 correction coefficients are correction coefficients corresponding to green
  • the 2-3 correction coefficients are correction coefficients corresponding to blue. .
  • the normalization unit normalizes the red, green, and blue luminance values corresponding to the high gradation region by applying first correction coefficients to the luminance values in each of the high gradation regions of the red, green, and blue LEDs,
  • the red, green and blue luminance values corresponding to the low gradation region that is, the luminance values in the low gradation region of each of the red, green and blue LEDs are applied and normalized.
  • the normalization unit normalizes by applying first correction coefficients to red, green, and blue luminance values corresponding to the high gradation region, that is, luminance values in each of the high gradation regions of the red, green, and blue LEDs.
  • the red, green, and blue luminance values corresponding to the low grayscale region that is, the red, green, and blue LEDs, respectively, are normalized by applying second correction coefficients to the luminance values in the low grayscale region, and the grayscale region Red, green, and blue luminance values corresponding to, that is, red, green, and blue LEDs are normalized by applying third correction coefficients to the luminance values in each grayscale region.
  • the third minimum value and the fourth minimum value are the minimum values of the maximum luminance values in each by dividing the grayscale region into the first grayscale region and the second grayscale region.
  • the maximum luminance value of each grayscale region for each LED of the pixels is measured only once by the light measurement unit 110, but in the embodiment illustrated in FIG. 22, the grayscale region Is divided into a first grayscale region and a second grayscale region and measured in each to generate correction data to include a maximum luminance value in the first grayscale region and a maximum luminance value in the second grayscale region, After extracting the third minimum value and the fourth minimum value, the third correction coefficients and the fourth correction coefficients are generated to perform luminance correction. Further, the grayscale region may be further subdivided to measure the maximum luminance value for the LEDs in each of them, thereby generating correction data and then performing luminance correction.
  • the minimum value in the high gradation region that is, the first minimum value is the maximum luminance value in the high gradation region of LED 7 Max17
  • the first correction coefficient to be applied to the LED 1 is Max17 / Max11. Accordingly, within the luminance region covered by the first correction coefficient, the first correction coefficient (such as 140 of FIG. 17) is applied to the entire brightness step (normally related to the magnitude of the current, and thus related to the magnitude of the current). Max17 / Max11) are all multiplied.
  • the first correction coefficient to be applied to the LED 2 is Max17 / Max12
  • the first correction coefficient to be applied to the LED 3 is Max17 / Max13
  • the first correction coefficient to be applied to the LED 8 is Max17 / Max18
  • each first correction coefficient may be applied to the luminance region covered by the first correction coefficient for all the LEDs.
  • the luminance region covered by the first correction coefficient may be the upper 50% of the entire luminance region of each of the LEDs as illustrated in FIG. 24, and in this case, the luminance region covered by the second correction coefficient may be lower 50 %to be.
  • the luminance region covered by the first correction coefficient and the luminance region covered by the second correction coefficient are not limited to these ratios and may be applied at different ratios.
  • the second minimum value in the low gradation region is the maximum luminance value (Max17 ') in the low gradation region of the LED 7
  • the second correction coefficient to be applied to the LED 1 is Max17' / Max11 '. Accordingly, in the luminance region covered by the second correction coefficient, all of the second correction coefficients Max17 '/ Max11' are multiplied by the normalization unit (140 in FIG. 17) in the entire brightness step.
  • the second correction coefficient to be applied to the LED 2 is Max17 '/ Max12'
  • the second correction coefficient to be applied to the LED 3 is Max17 '/ Max13',...
  • the second correction factor to be applied to the LED 8 is Max17 '/ Max18'
  • each second correction factor can be applied to the luminance region covered by the second correction factor for all the LEDs.
  • the third correction coefficient to be applied to the LED 1 is Max16” / Max11 ”. Therefore, in the luminance region covered by the third correction coefficient, all of the third correction coefficients Max16 ”/ Max11” are multiplied by the normalization unit (140 in FIG. 17) in the entire brightness step.
  • the third correction factor to be applied to the LED 2 is Max16 ”/ Max12
  • the third correction factor to be applied to the LED 3 is Max16 ”/ Max13
  • the third correction coefficient to be applied to the LED 8 is Max16 '/ Max18 "
  • each third correction coefficient may be applied to the luminance region covered by the third correction coefficient for all the LEDs.
  • the area covered by the third correction coefficient is a grayscale area in each of the LEDs.
  • the upper 30% of the entire luminance area covers the area covered by the first correction coefficient
  • the lower 30% of the total luminance area covers the area covered by the second correction coefficient
  • the area covered by the third correction coefficient is intermediate. Although illustrated as 40% of, it may be set to any number differently.
  • the brightness correction system and method of the present invention described above may be applied to various LED displays.
  • it can be applied to a micro LED display in which one pixel is composed of micro LEDs.
  • the luminance correction method and system of the present invention can overcome the disadvantages of the conventional method of correcting luminance based on the maximum luminance value, further improving the luminance expression and uniformity of the LED, and expect the overall image improvement effect. have.
  • micro LED display 10: control PC, 100: luminance correction system, 110: light measurement unit, 120: minimum value extraction unit, 130: correction coefficient generation unit, 140: normalization unit, px: pixel.
  • FIGS. 30 to 41 the LED display driver IC of the present invention and a method for adjusting luminance of the LED display using the same will be described. It is noted that the reference numerals in FIGS. 1 to 16 or 17 to 25 are somewhat overlapped, but the reference numerals in FIGS. 30 to 41 are limited to FIGS. 30 to 41.
  • the gray level of the video signal in the following description with reference to FIGS. 30 to 41 is a low gray level in turn starting from a low region.
  • Middle gray level (mid gray level) and high gray level (high gray level) can be divided into areas, the high gray level area is an area of 80% or more of the maximum luminance value of each LED, the low gray level area is high gray level The area is less than 30% of the maximum luminance value of the area, and the other areas are defined as a grayscale area.
  • the range of the gradation region is divided for convenience of description, and is not necessarily limited to the above-described range.
  • FIG. 30 is a basic block diagram of an LED driver IC 100 according to the present invention.
  • an input video signal (S s) LED display driver IC (100) for adjusting the brightness of the presented LED display within the LED corresponding to an input image signal (S s) receiving an input the input video signal (s s), the control unit 110 to determine the gray level of the pulse width modulation in correspondence with the gradation of the input image signal (s s) in response to the control of the control unit 110 (PWM) signals and pulse amplitude
  • a merge signal generator 120 that generates a merged signal (S m ) in which a modulated (PAM) signal is merged.
  • the LED display driver IC 100 is assigned to each column of pixels arranged in a matrix in the LED display unit 200 and responds to each of the merge signals S m provided from the merge signal generator 120.
  • the LED further includes a switching circuit unit 130 that operates to emit light at an appropriate luminance.
  • the pulse amplitude modulation signal generation unit 122 performs pulse amplitude modulation (PAM) on the pulse width modulation signal to generate a merge signal S m or a pulse width modulation signal generation unit ( 121) performs a pulse width modulation on the pulse amplitude modulation signal to generate a merge signal S m .
  • PAM pulse amplitude modulation
  • the present invention is to overcome the limitations of the conventional method of adjusting the luminance of the LEDs in the LED display only by changing the duty ratio in response to the input video signal through such a configuration, as well as pulse width modulation (PWM) as well as pulse amplitude (
  • PWM pulse width modulation
  • PAM pulse amplitude modulation
  • a merge signal in which a pulse amplitude modulation (PWM) signal and a pulse amplitude modulation (PAM) signal are merged is generated, thereby expressing the expressive power, particularly in a low gray scale region.
  • PWM pulse amplitude modulation
  • PAM pulse amplitude modulation
  • FIG. 31 is a block diagram of an LED display driver IC according to an embodiment of the present invention, and the merge signal generation unit 120 of FIG. 30 generates a pulse width modulation signal corresponding to the gray level of the input image signal S s It includes a pulse width modulation signal generation unit 121 and a pulse amplitude modulation signal generation unit 122 for generating a pulse amplitude modulation signal (S w ) corresponding to the gradation of the input image signal (S s ). In the embodiment shown in FIG. 31, synchronization of signals is performed by the controller 110.
  • the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w corresponding to the gradation of the input image signal S s , and then pulses the generated pulse width modulation signal S w
  • the amplitude modulated signal generator 122 adjusts the pulse amplitude to correspond to the gradation of the input image signal Ss, thereby generating a pulse amplitude modulated merge signal S m . That is, pulse width modulation (PWM) is firstly performed by the pulse width modulation signal generation unit 121, and pulse amplitude modulation (PAM) is secondarily performed by the pulse amplitude modulation signal generation unit 122 to finally As a result, a merge signal S m is generated. In the drawing, since the merge signal S m is finally generated by the pulse amplitude modulation, the pulse amplitude modulation signal S a and the merge signal S m are displayed together.
  • PWM pulse width modulation
  • PAM pulse amplitude modulation
  • FIG. 32 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 31, (a) is an example of the pulse width modulation signal (S w ), (b) Is an example of a pulse amplitude modulation signal S a , that is, a merge signal S m as a result.
  • each of the low gradation regions (gradation regions of less than 30%), the middle gradation regions (gradation regions of 30% or more and less than 80%), and the high gradation regions (gradation regions of 80% or more)
  • Examples of the pulse width modulation signal S w of each period are shown, and an appropriate duty ratio is determined within a predetermined pulse width corresponding to the gradation of the input video signal.
  • the low grayscale region, the middle grayscale region, and the high grayscale region may be defined differently according to circumstances.
  • An example of the pulse amplitude modulation signal S a when adjusted to correspond to the gradation of is shown.
  • the control unit 110 When applied to the low gradation region, the control unit 110 from the input image signal (S s), the input receives a video signal (S s) of the grayscale input image in the determination, the control unit 110 whether or not in the low gradation region When it is determined that the gradation of the signal S s is within the low gradation region, the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w to correspond to the gradation of the input image signal S s . Subsequently, the pulse amplitude modulation signal generation unit 122 inputs the pulse amplitude of the pulse width modulation signal S w generated by the pulse width modulation signal generation unit 121 in the first form of FIG. 32 (b).
  • the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s .
  • modulated signal (S w) the generation, and pulse amplitude modulated by a pulse amplitude control in the signal generating unit 122 is not carried out, the resulting pulse width modulated by the PWM signal generation unit 121 signal (S w ) Is applied to the switching circuit 130 to control the current and luminance of the LED.
  • the control unit 110 the input image signal (S s) from the input receives a video signal (S s) is high the determination and control section 110 whether or not in the gray scale area gradation of
  • the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w to correspond to the gradation of the input image signal S s .
  • the pulse amplitude modulation signal generator 122 After generation, the pulse amplitude modulation signal generator 122 generates the pulse amplitude of the pulse width modulation signal S w generated by the pulse width modulation signal generator 121 as shown in FIG. 32 (b).
  • the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s .
  • the pulse width modulation signal S generated by the pulse width modulation signal generation unit 121 is generated by generating the modulation signal S w and not adjusting the pulse amplitude by the pulse amplitude modulation signal generation unit 122. w ) is applied to the switching circuit 130 to control the current and luminance of the LED.
  • the control unit 110 determines whether or not in the gray scale is the low gradation region and high gradation region for receiving the input video signal (S s), the input image signal (S s) Then, when the controller 110 determines that the grayscale of the input image signal S s is within the low grayscale region or the high grayscale region, the pulse width modulation signal generator 121 generates the grayscale of the input image signal S s a generating a pulse width modulated signal (S w) to correspond to the later, the pulse amplitude of the pulse amplitude modulation signal generator 122 is a pulse width modulated signal (S w) generated by the PWM signal generation unit 121 Can be adjusted to correspond to the gradation of the input video signal S s .
  • the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s
  • the pulse width modulation signal S w is generated and the pulse amplitude modulation by the pulse amplitude modulation signal generation unit 122 is not performed, so that the pulse width modulation generated by the pulse width modulation signal generation unit 121 is performed.
  • the signal S w is applied to the switching circuit 130 to control the current and luminance of the LED.
  • the merge signal generation unit 120 of FIG. 30 includes a pulse width modulation signal generation unit 121 that generates a pulse width modulation signal corresponding to the gray level of the input image signal S s , and an input image signal It includes a pulse amplitude modulation signal generation unit 122 for generating a pulse amplitude modulation signal (S w ) corresponding to the gradation of (S s ).
  • a pulse width modulation signal generation unit 121 that generates a pulse width modulation signal corresponding to the gray level of the input image signal S s
  • an input image signal It includes a pulse amplitude modulation signal generation unit 122 for generating a pulse amplitude modulation signal (S w ) corresponding to the gradation of (S s ).
  • S w pulse amplitude modulation signal
  • synchronization of the signal is performed by the controller 110.
  • a pulse amplitude modulation signal S a having an appropriate pulse amplitude corresponding to the gradation of the input image signal S s according to the clock signal CLK provided by the control unit 110
  • the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a corresponding to the gradation of the input image signal S s , and then pulses the generated pulse amplitude modulation signal S a
  • the width modulation signal generating unit 121 adjusts the pulse width and the duty ratio of the pulse to correspond to the gray level of the input video signal, thereby generating the final merge signal S m .
  • pulse amplitude modulation is primarily performed by the pulse amplitude modulation signal generation unit 122, and pulse width modulation (PWM) is performed secondarily by the pulse amplitude modulation signal generation unit 121 to finally perform As a result, a merge signal S m is generated.
  • PAM pulse amplitude modulation
  • PWM pulse width modulation
  • FIG. 34 is a view showing examples of the pulse amplitude modulation (S a ) and the pulse width modulation signal (S w , here, the final merge signal (S m )) in FIG. 33, and (a) is the pulse amplitude modulation signal (S). a ) is an example, and (b) is an example of a pulse width modulation signal S w , that is, a final merge signal S m .
  • each of the low gradation regions (gradation regions of less than 30%), the middle gradation regions (gradation regions of 30% or more and less than 80%), and the high gradation regions (gradation regions of 80% or more) shows examples of pulse amplitude modulation signal (S a) of each period.
  • the appropriate pulse amplitude is first determined to correspond to the gradation of the input image signal in each gradation region.
  • the grayscale region may be adjusted to correspond to the grayscale of the input image signal S s .
  • the control unit 110 receives the input image signal (S s), the gray level of the input image signal (S s), and determines whether or not in the low gradation region, the control unit (110 ), If it is determined that the gradation of the input image signal S s is within the low gradation region, the pulse amplitude modulation signal generation unit 122 corresponds to the gradation of the input image signal S s , so that the pulse amplitude modulation signal S a ), The pulse width modulation signal generator 121 generates a duty ratio of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generator 122 with the first in FIG. 34 (b).
  • the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region, the pulse amplitude modulation signal generation unit 122 does not control the pulse amplitude, and the pulse width modulation signal generation unit By generating the pulse width modulation signal (S w ) directly at 121 and providing it to the switching circuit unit 123 side, the current and luminance of the LEDs can be adjusted.
  • the control unit 110 the input image signal (S s) from the input receives a video signal (S s) is high the determination and control section 110 whether or not in the gray scale area gradation of
  • the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a to correspond to the gradation of the input image signal S s .
  • the pulse width modulation signal generation unit 121 inputs the duty ratio of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generation unit 122 as shown in FIG. 34 (b).
  • the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region, the pulse amplitude modulation signal generation unit 122 does not control the pulse amplitude, and the pulse width modulation signal generation unit By generating the pulse width modulation signal (S w ) directly at 121 and providing it to the switching circuit unit 123 side, the current and luminance of the LEDs can be adjusted.
  • the control section 110 When applied to both the low gradation region and high gradation region, the control section 110 whether or not in the gray scale is the low gradation region and high gradation region of the input image signal (S s), the input receives a video signal (S s) If it is determined and the control unit 110 determines that the gray level of the input image signal S s is in the low gray level region or in the high gray level region, the pulse amplitude modulation signal generation unit 122 determines whether the gray level of the input image signal S s is After generating the pulse amplitude modulation signal S a corresponding to the gradation, the duty of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generation unit 122 by the pulse amplitude modulation signal generation unit 121 The ratio may be adjusted as the third of FIG.
  • the pulse amplitude is not adjusted by the pulse amplitude modulation signal generation unit 122. Instead, the pulse width modulation signal generation unit 121 directly generates a pulse width modulation signal S w and provides it to the switching circuit unit 123 to control the current and luminance of the LEDs. Even in this embodiment, only the case where the input video signal is in the low gray level area and / or the high gray level area is illustrated, but it can also be applied to the gray level area.
  • FIG. 35 to 38 are block diagrams for explaining the LED driver IC according to another embodiment of the present invention.
  • FIG. 35 is a block diagram of the LED driver IC according to another embodiment of the present invention.
  • 36 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a low grayscale region in the embodiment of FIG. 35
  • FIG. 37 is a high grayscale region of the input image signal in the embodiment of FIG.
  • FIG. 38 is a view for explaining a process of generating a merge signal that is applied only in the case of FIG. It is a drawing for explaining.
  • the merge unit 123 generates a pulse width modulation signal S w and a pulse amplitude modulation signal generation unit generated by the pulse width modulation signal generation unit 121 according to the synchronization clock signal CLK provided from the control unit 110.
  • the pulse amplitude modulation signal (S a ) generated by (122) is merged.
  • the pulse width modulation signal ( S w ) when applied when the input image signal S s is in the low grayscale region, the pulse width modulation signal ( S w ), and for the low grayscale region, the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a , and the merge signal generation unit 123 merges these signals to switch the circuit unit ( 130) Adjusts the current and brightness of the LEDs by providing them to the side.
  • the pulse width modulation is generated by the pulse width modulation signal generation unit 121 for the remaining regions except the high grayscale region.
  • the signal S w is generated, and the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a for the high gradation region, and the merge signal generation unit 123 merges these signals for switching.
  • the circuit 130 Provided to the circuit 130, the current and luminance of the LEDs are adjusted.
  • the pulse width modulation signal generation unit 121 when applied when the input image signal S s is in the low grayscale region or in the high grayscale region, in the remaining regions (grayscale region) except the low grayscale region and the high grayscale region
  • the pulse amplitude modulation signal generation unit 122 when applied when the input image signal S s is in the low grayscale region or in the high grayscale region, in the remaining regions (grayscale region) except the low grayscale region and the high grayscale region
  • the pulse amplitude modulation signal generation unit 122 when applied when the input image signal S s is in the low grayscale region or in the high grayscale region, in the remaining regions (grayscale region) except the low grayscale region and the high grayscale region
  • S w pulse width modulation signal
  • S a pulse amplitude modulation signal
  • FIG. 39 is a gamma curve for showing the disadvantages of the conventional method of controlling the luminance of the LEDs in the LED display only with the pulse width modulation method
  • FIG. 40 is the present invention using the pulse width modulation signal and the merge signal of the pulse amplitude modulation signal. It is a drawing to show the characteristics of.
  • the merge signal S m generated by the merge signal generation unit 100 in FIG. 30 is the number of bits of the pulse width modulation signal generated by the pulse width modulation signal generation unit 121. It may be a signal having a fineness corresponding to the sum of the number of bits of the pulse amplitude modulation generated by the pulse amplitude modulation signal generation unit 122.
  • the fineness in this specification, the degree of the number of bits included in the pulse width modulation signal in the case of a pulse width modulation signal, and, in the case of a pulse amplitude modulation signal, how many bits are included in the pulse amplitude modulation signal. It is defined as a term indicating the degree of.
  • the merge signal S m has a refresh rate corresponding to the number of bits of the pulse width modulated signal. The fineness and refresh rate will be described with reference to FIG. 40 by way of example.
  • gray clock (GCLK) from 32Mhz clock time is 31.25ns, and so in order to express 2 10 31.25 * 2 10 ns, i.e. the time required 32 ⁇ s, the refresh rate is 1 / 32 ⁇ s That is, 31,250hz.
  • the LED display driver IC according to the present invention has conventionally tried to overcome the limitation in controlling the luminance of the LEDs using only the pulse width modulation signal.
  • the LED display driver IC according to the present invention can be finely adjusted as much as the number of bits by the pulse width modulation signal in addition to the number of bits by the conventional pulse width modulation signal. For example, if the number of bits by the pulse width modulation signal is 12 bits (2 12 ) and the number of bits by the pulse amplitude modulation signal is 6 bits (2 6 ), fine adjustment of 18 bits (2 18 ) is performed. It becomes possible.
  • the present invention has the advantage that the pixels can be applied to a high-resolution full-color LED display implemented with micro LEDs, and can be applied to high-speed frame products such as 3D products by implementing high-speed refresh.
  • the brightness control method of the LEDs in the LED display according to the present invention includes: (1) determining a gradation level of the input image signal by a control unit, and (2) pulse corresponding to a gradation level of the input image signal depending on the determination of the control unit. Generating a width modulated (PWM) signal, (3) generating a pulse amplitude modulated (PAM) signal corresponding to the gradation of the input image signal depending on the determination of the controller, (4) the pulse width modulated signal And merging the pulse amplitude modulation signal to generate a merge signal, and (5) adjusting the luminance of the LEDs with the merge signal.
  • steps (2) and (3) may be performed in the order of steps (2)-(3), or (3)-(2), and may be performed in parallel with each other. It might be.
  • the control unit determines whether the gray level of the input image signal is within a low gray level region, and the control unit determines that the gray level of the input image signal is within the low gray level region. If it is determined that there is, in the step of generating the pulse width modulation signal (step (2)), generating a pulse width modulation signal corresponding to the gradation of the input image signal, and then generating the pulse amplitude modulation signal ( In step (3), the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
  • the control unit determines whether the gray level of the input image signal is in a high gray level region, and the control unit determines that the gray level of the input image signal is within the high gray level region. If it is determined that there is, in the step of generating the pulse width modulation signal (step (2)), generating a pulse width modulation signal corresponding to the gradation of the input image signal, and then generating the pulse amplitude modulation signal ( In step (3), the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
  • the control unit determines whether the gray level of the input image signal is within a low gray level region and a high gray level region, and the gray level of the input image signal is determined by the control unit.
  • the step of generating the pulse width modulation signal step (1)
  • the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
  • the control unit determines whether the gray level of the input image signal is within a low gray level region, and the control unit determines that the gray level of the input image signal is the low gray level. If it is determined that the signal is within the range, in the step of generating the pulse amplitude modulation signal (step (3)), after generating a pulse amplitude modulation signal corresponding to the gray level of the input image signal, generating the pulse width modulation signal In step ((2) step), the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input image signal.
  • the control unit determines whether the gray level of the input image signal is in a high gray level region, and the control unit determines that the gray level of the input image signal is within the high gray level region. If it is determined that there is, in the step of generating the pulse amplitude modulation signal (step (3)), generating a pulse amplitude modulation signal corresponding to the gradation of the input video signal, and then generating the pulse width modulation signal ( In step (2), the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input video signal.
  • the control unit determines whether the gray level of the input image signal is within a low gray level region and a high gray level region, and the gray level of the input image signal is determined by the control unit.
  • the step of generating the pulse amplitude modulation signal step (3)
  • the step of generating a pulse width modulated signal step (2)
  • the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input image signal.
  • 100 LED driver IC
  • 110 control unit
  • 120 merge signal generation unit
  • 121 pulse width modulation signal generation unit
  • 122 pulse amplitude modulation signal generation unit
  • 123 merge unit
  • 130 switching circuit unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

Disclosed are a method and a system for correcting the brightness of an LED display having arrayed thereon a plurality of pixels in which a first LED, a second LED, and a third LED form one pixel. The method for correcting the brightness of the LED display comprises the steps of: (a) obtaining pixel data for each position at different positions in front of the LED display; (b) determining a reference value for each position at each of the pixel data for each position; (c) determining correction coefficients for each position with respect to each of the pixels on the basis of the reference value for each position; and (d) combining the correction coefficients for each position with a predetermined ratio and applying the correction coefficients to all of the pixels of the LED display.

Description

엘이디 디스플레이의 휘도 보정 방법 및 시스템Method and system for luminance correction of LED display
본 발명은 엘이디 디스플레이의 휘도 보정 방법 및 시스템에 관한 것이며, 구체적으로는, 엘이디 디스플레이에서 위치별로 발생하는 휘도 편차를 보정하여, 엘이디 디스플레이의 다양한 각도에서 선명한 영상을 시청할 수 있도록 하는 기술과 관련된다.The present invention relates to a method and a system for correcting luminance of an LED display, and specifically, to a technique for correcting a luminance deviation occurring for each position in an LED display and viewing a clear image from various angles of the LED display.
또한, 본 발명은 엘이디 디스플레이의 표현력, 균일성 및 전체적인 디스플레이의 화질 개선을 위한 기술과 관련된다.In addition, the present invention relates to a technique for improving the expressiveness, uniformity of the LED display and the overall display quality.
또한, 본 발명은 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이의 휘도 조절 방법에 관한 것이며, 구체적으로는 엘이디 디스플레이 장치에서 엘이디 디스플레이 장치의 휘도 표현력을 향상시키고 플리커 현상을 저감하여 디스플레의 화질을 전반적으로 개선하는 기술과 관련된다.In addition, the present invention relates to an LED display driver IC and a method for adjusting luminance of an LED display using the same, and specifically, improving the display quality by improving the luminance expression of the LED display device and reducing the flicker phenomenon in the LED display device. It is related to the technology.
디스플레이 장치의 시장은 LCD와 OLED가 주를 이루고 있는 상태이며, 근래 들어, 복수 개의 LED 칩들이 하나의 픽셀을 이루도록 하여 풀-컬러를 구현한 엘이디 디스플레이 장치가 계속해서 개발되고 있으며, 더 나아가, 하나의 픽셀 내의 LED 칩 크기를 수백 마이크로미터 또는 100 마이크로미터 이내가 되도록 하여 해상도를 높인 마이크로 엘이디 디스플레이 장치도 많이 개발되고 있다.The display device market is mainly composed of LCDs and OLEDs. Recently, LED display devices that implement full-color by allowing a plurality of LED chips to form one pixel are continuously being developed. Many micro LED display devices have been developed to increase the resolution by making the size of an LED chip within a pixel within a few hundred micrometers or 100 micrometers.
이러한 엘이디 디스플레이에서 디스플레이되는 화상을 시청하는 경우, 엘이디 디스플레이 장치의 중앙을 기준으로, 좌측 위치, 중앙 위치 또는 우측 위치 등과 같이 엘이디 디스플레이 장치를 시청하는 위치 별로 휘도의 차이가 있어 디스플레이 시청자가 최적의 균일한 화상을 시청하기 어려운 문제점이 있다.When viewing an image displayed on the LED display, there is a difference in luminance for each position where the LED display device is viewed, such as a left position, a center position, or a right position, based on the center of the LED display device, so that the display viewer can achieve optimal uniformity. There is a problem that it is difficult to watch an image.
즉, 엘이디 디스플레이에서 하나의 픽셀을 구성하는 엘이디 칩들은 광도 등의 특성에 따라 분류되어 엘이디 디스플레이에 적용되고 있기는 하나, 화상의 디스플레이시 특정 위치 별로 휘도의 차이를 보이게 되는 문제점이 있는데, 이러한 문제점을 해결하기 위한 방안이 당해 기술 분야에서 요구되고 있다.That is, the LED chips constituting one pixel in the LED display are classified according to characteristics such as luminosity and applied to the LED display, but there is a problem in that a luminance difference is displayed at specific locations when displaying an image. A solution to solve the problem is required in the art.
한편, 종래에는 엘이디 디스플레이의 화질을 개선하기 위해 광 측정 장비를 이용하여 픽셀들 각각의 적색, 녹색 및 청색 엘이디 별로 최대 휘도(maximum brightness)를 갖는 영역을 보정하는 방식이 사용되어 왔다. 즉, 광 측정 장비를 이용하여 픽셀들 각각의 엘이디들 별로 최대 휘도 관련 광 정보(편의상, '최대 휘도값'으로 칭함)을 측정하고, 측정된 엘이디들의 최대 휘도값들을 비교하여, 이들 최대 휘도값들 중에서 최소값을 추출한다. 그런 다음, 추출된 최소값을 기준으로, 최대 휘도값들이 모두 최소값을 갖도록 조절한다. 예컨대, 픽셀들 내 적색 엘이디들에 대하여 이 과정을 진행하게 되면, 적색 엘이디들의 최대 휘도값들이 모두 최소값을 갖도록 조절된다. 즉, 적색 엘이디들의 최대 휘도값들은 모두 추출된 최소값을 새로운 최대 휘도값으로 갖도록 조절된다. 녹색 엘이디들 및 청색 엘이디들에 대하여도 마찬가지이다.On the other hand, conventionally, in order to improve the image quality of the LED display, a method of correcting a region having maximum brightness for each red, green, and blue LED of each pixel has been used by using light measurement equipment. That is, the maximum luminance-related light information (for convenience, referred to as a 'maximum luminance value') is measured for each LED of each pixel using an optical measurement device, and the maximum luminance values of the measured LEDs are compared, and these maximum luminance values are compared. Among them, the minimum value is extracted. Then, based on the extracted minimum value, the maximum luminance values are adjusted to have the minimum value. For example, when this process is performed for red LEDs in pixels, the maximum luminance values of the red LEDs are adjusted to have the minimum value. That is, the maximum luminance values of the red LEDs are adjusted to have the extracted minimum value as the new maximum luminance value. The same is true for green LEDs and blue LEDs.
이와 같이 픽셀들 내 엘이디들에 대하여 최대 휘도를 갖는 영역만을 보정하는 방식에 있어서는, 위에서 설명한 바와 같이, 최대 휘도값들 중에서 최소값을 추출한 후, 추출된 최소값을 기준으로 최대 휘도값들을 이 최소값에 맞추는 과정만 있으므로, 픽셀들 내 엘이디들에 있어서 저계조(low gray level)를 갖는 영역이나 중간 영역에 대한 보정은 이뤄지지 않게 되므로, 엘이디 디스플레이의 전체적인 화질 개선에는 한계가 있다. 따라서, 이러한 한계를 해결할 수 있는 방안이 당해 기술 분야에서 요구된다.In this way, in the method of correcting only the area having the maximum luminance for the LEDs in the pixels, as described above, after extracting the minimum value among the maximum luminance values, the maximum luminance values are set to the minimum value based on the extracted minimum value. Since there is only a process, since the correction of an area or a middle area having a low gray level in the LEDs in the pixels is not performed, there is a limit in improving the overall image quality of the LED display. Therefore, a method for solving this limitation is required in the art.
한편, 옥내·외 전광판이나 디지털 사이니지용으로 엘이디 디스플레이 장치가 계속해서 사용되고 있으며, 더 나아가, 마이크로 엘이디의 개발이 가속화됨에 따라 고해상도의 풀컬러 엘이디 디스플레이도 다양한 크기로 제작되고 있다.On the other hand, LED display devices are continuously being used for indoor and outdoor electronic displays and digital signage. Furthermore, as the development of micro LEDs is accelerated, high-resolution full-color LED displays are being produced in various sizes.
도 26은 일반적인 엘이디 디스플레이 장치에서 디스플레이부(10)에 행렬로 배열되는 픽셀들 내 엘이디들을 구동시키기 위한 드라이브 IC(20)를 개략적으로 나타낸 도면이다. 도 26에서는 간략히 하나의 드라이버 IC(20)와 이에 연결된 디스플레이부(10)에 대하여만 도시하였다. 도 26에 도시된 바와 같이, 입력되는 영상 소스, 즉 입력 영상 신호에 대응되게, 그레이 스케일 클럭 신호(GCLK), 데이터 클럭 신호(DCLK), 래치 인에이블 신호(LE) 등의 적절한 조합을 통해, 픽셀들의 어레이에서 입력 영상 신호에 대응되는 영상을 디스플레이할 수 있도록, 각 픽셀 내 엘이디들의 전류 흐름 및 휘도를 조절하기 위한 최적화된 제어 신호가 인가된다. 드라이버 IC(20) 내에서 픽셀들의 각 컬럼별로 커런트 싱킹을 위한 회로부(본 명세서 내에서는 스위칭 소자로 칭함)가 구비되며, 통상적으로 제어 신호로서는 펄스폭변조(PWM, Pulse Width Modulation) 신호가 사용되며, 이러한 펄스폭변조 신호가 입력 영상 신호의 계조(gray level)에 대응되게 픽셀 내 엘이디들 각각의 휘도를 조절하게 된다. 입력 영상 신호의 계조에 대응되는 펄스폭변조 신호의 몇몇 예들은 도 27에 도시되어 있다.26 is a view schematically showing a drive IC 20 for driving LEDs in pixels arranged in a matrix on the display unit 10 in a general LED display device. In FIG. 26, only one driver IC 20 and the display unit 10 connected thereto are briefly illustrated. As illustrated in FIG. 26, through an appropriate combination of a gray scale clock signal GCLK, a data clock signal DCLK, and a latch enable signal LE, corresponding to an input image source, that is, an input image signal, In order to display an image corresponding to the input image signal in the array of pixels, an optimized control signal for adjusting the current flow and luminance of the LEDs in each pixel is applied. In the driver IC 20, a circuit unit (currently referred to as a switching element) is provided for current sinking for each column of pixels, and a pulse width modulation (PWM) signal is generally used as a control signal. The luminance of each of the LEDs in the pixel is adjusted such that the pulse width modulated signal corresponds to the gray level of the input image signal. Some examples of the pulse width modulated signal corresponding to the gradation of the input video signal are shown in FIG. 27.
전광판이나 디지털 사이니지와 같은 종래의 엘이디 디스플레이 장치에서는 굳이 고해상도나 더 정밀한 컬러 표현이 필요없었으므로 드라이버 IC가 펄스폭변조(PWM, Pulse Width Modulation)에 의해 생성된 신호를 이용하여 픽셀들 내 엘이디들에 흐르는 전류를 제어하도록 구성됨으로써 입력되는 영상 신호에 대응되게 휘도를 조절하는 정도로도 충분하였다. 즉, 도 28에 도시된 바와 같이, 입력 영상 신호(Ss)의 계조에 대응되게, 30% 미만의 저계조 영역에 있는 입력 영상 신호(Ss)에 대하여, 이에 대응되는 듀티비(duty ratio)를 갖는 펄스폭변조 신호(Cs)(예컨대, 도 3의 구형파들 중, 가장 좌측에 있는 펄스폭변조 신호이며, 한 주기, 즉 하나의 펄스폭(pulse width)만을 나타낸 것임)를 이용하고, 30% 이상 80% 미만의 계조 영역에 있는 입력 영상 신호(Ss)에 대하여도 이에 대응되는 듀티비(duty ratio)를 갖는 펄스폭변조 신호(Cs)(예컨대, 도 28의 구형파들 중, 중앙에 있는 펄스폭변조 신호이며, 하나의 펄스폭만을 나타낸 것임)를 이용하고, 80% 이상의 계조 영역에 대하여도 입력 영상 신호(Ss)에 대응되는 듀티비(duty ratio)를 갖는 펄스폭변조 신호(Cs)(예컨대, 도 28의 구형파들 중, 가장 우측에 있는 펄스폭변조 신호이며, 하나의 펄스폭만을 나타낸 것임)를 이용한다. 이와 같이, 입력 영상 신호(Ss)가 어떠한 계조 영역에 속하는지에 관계없이 항상 입력 영상 신호(Ss)에 대응되게 펄스폭변조 신호 생성부(12)에서 펄스폭변조 신호(Cs)를 생성하여, 드라이버 IC(20) 측으로 제공함으로써, 각 픽셀 내 엘이디들의 휘도를 조절하게 된다.In a conventional LED display device such as a billboard or digital signage, high resolution or more accurate color representation was not necessary, so the driver IC uses LEDs generated by pulse width modulation (PWM) to generate the LEDs in the pixels. It was also configured to control the current flowing through it, and it was sufficient to adjust the luminance corresponding to the input video signal. That is, as illustrated in FIG. 28, for an input image signal S s in a low grayscale region of less than 30%, corresponding to a gradation of the input image signal S s , a duty ratio corresponding thereto ) Using a pulse width modulation signal C s (for example, the leftmost pulse width modulation signal among the square waves in FIG. 3, and only one period, that is, one pulse width) is used. , A pulse width modulation signal C s having a duty ratio corresponding to the input image signal S s in the gradation region of 30% or more and less than 80% (for example, among the square waves in FIG. 28) , A pulse width modulation signal in the center, which shows only one pulse width), and a pulse width having a duty ratio corresponding to the input image signal S s even for a gradation region of 80% or more. Modulation signal (Cs) (e.g., among the square waves of Figure 28, the rightmost pulse width modulation signal, Uses will only illustrated my pulse width). As described above, the pulse width modulation signal C s is generated by the pulse width modulation signal generation unit 12 to always correspond to the input image signal S s regardless of what gradation region the input image signal S s belongs to. Thus, by providing the driver IC 20 side, the luminance of the LEDs in each pixel is adjusted.
하지만, 펄스폭변조 신호만을 이용하여 엘이디들을 제어하는 이러한 종래의 방식만으로는 엘이디들의 미세한 휘도 조절을 통한 컬러 표현에 한계가 있다. 즉, 펄스폭변조 신호 방식에만 의존하여 엘이디들의 휘도를 제어하는 경우, 도 29에 도시된 감마 곡선(γcurve)에서 알 수 있는 바와 같이, 일반적으로, R, G, B 입력(x 축, 펄스폭변조 신호에 대응함)에 대한 출력 휘도값(y축)의 기울기가 저계조 영역에서는 상대적으로 매우 작아지고, 고계조 영역에서는 상대적으로 매우 크게 되는 감마 곡선(γ)을 따르게 되므로, 특히 저계조 영역에서는 R, B, B 입력의 증가에 따른 출력 휘도값의 증가량은 매우 작게 나타나는 특성이 있다. 따라서, 출력 휘도값의 증가량이 더욱 작아지도록 하기 위해 더 세분화된 R, G, B 입력 신호를 취할 필요가 있으나, 종래의 펄스폭변조 신호만으로는 한계가 있다. 종래의 펄스폭변조 신호만으로 16 비트(bit)나 그 이상으로의 구현은 불가능하다.However, this conventional method of controlling the LEDs using only the pulse width modulation signal has a limitation in color expression through fine adjustment of the luminance of the LEDs. That is, when controlling the luminance of the LEDs depending only on the pulse width modulation signal method, as can be seen from the gamma curve (γcurve) shown in Figure 29, generally, R, G, B input (x axis, pulse width The slope of the output luminance value (corresponding to the modulated signal) (y-axis) follows a gamma curve (γ) that is relatively very small in the low gradation region and relatively large in the high gradation region, particularly in the low gradation region. The increase in the output luminance value according to the increase of the R, B, and B inputs has a very small characteristic. Therefore, in order to make the increase amount of the output luminance value smaller, it is necessary to take more detailed R, G, and B input signals, but there are limitations only with the conventional pulse width modulation signals. It is impossible to implement 16 bits or more using only a conventional pulse width modulation signal.
특히 저계조 영역에 있어서는 미세한 차이에 대하여도 사람의 눈으로 구별하는 것이 가능함에도 불구하고, 종래의 펄스폭변조 신호만을 이용하여 제어함에 있어서 상술한 바와 같이 더욱 미세하게 표현할 수 없는 한계가 있다. 동영상의 표현에 있어서는, 이러한 저계조 영역에서의 미세한 표현력이 매우 중요하게 여겨지고 있다. 또한, 펄스폭변조 신호만으로 제어함에 있어서는 저계조 영역에서 낮은 듀티비로 인해 플리커 현상이 발생하여, 화질을 저하시키는 원인이 되고 있다.In particular, in the low gradation region, although it is possible to discriminate even the minute difference with the human eye, there is a limit that cannot be expressed more finely as described above in controlling using only the conventional pulse width modulation signal. In expressing a moving picture, fine expression power in such a low gradation region is considered very important. In addition, when controlling only with a pulse width modulation signal, a flicker phenomenon occurs due to a low duty ratio in a low gradation region, causing a deterioration in image quality.
본 발명이 해결하고자 하는 과제는, 엘이디 디스플레이의 시청 위치 별로 휘도의 차이를 보이게 되어 최적의 균일한 화상을 시청자가 시청할 수 없는 문제점을 해결하고자 서로 다른 위치들에서 위치별 픽셀 데이터를 획득하고, 위치별 기준값을 결정한 후, 위치별 보정 계수들을 픽셀들 각각에 대하여 결정하고, 이러한 보정 계수들을 소정의 비율로 조합하여 엘이디 디스플레이의 픽셀들 전체에 적용하는, 새로운 엘이디 디스플레이의 휘도 보정 방법 및 시스템을 제공하는 것이다.The problem to be solved by the present invention is to obtain the pixel data for each location at different locations in order to solve the problem that the viewer cannot watch the optimal uniform image by showing the difference in luminance for each viewing position of the LED display. Provided is a new LED display luminance correction method and system, after determining a star reference value, determining correction factors for each location for each of the pixels, and combining these correction factors at a predetermined ratio to apply to all pixels of the LED display. Is to do.
또한, 본 발명이 해결하고자 하는 과제는 엘이디 디스플레이의 화질 개선을 위한 보정에 있어서, 종래의 방식인 최대 휘도값들 중에서 최소값을 추출한 후, 추출된 최소값을 기준으로 최대 휘도값들을 이 최소값에 맞추는 과정만 있음으로 인해 디스플레이의 전체적인 화질 개선이나 균일성(Uniformity) 개선이 미흡한 단점을 극복하고자, 픽셀들 내 엘이디들에 있어서 저계조를 갖는 영역이나 중간 영역에 대한 보정도 이뤄질 수 있도록 하는 개선된 방식의 엘이디 디스플레이의 휘도 보정 방법 및 시스템을 제공하는 것이다.In addition, a problem to be solved by the present invention is a process for adjusting the maximum luminance values to the minimum value based on the extracted minimum value after extracting the minimum value among the maximum luminance values, which is a conventional method in the correction for improving the image quality of the LED display. In order to overcome the shortcomings that the overall image quality improvement or uniformity improvement of the display is insufficient due to the presence of the display, an improved method of correcting the low-gradation region or the middle region of the LEDs in the pixels can be achieved. It is to provide a method and system for correcting luminance of an LED display.
또한, 본 발명이 해결하고자 하는 과제는, 엘이디 디스플레이 장치에서 행렬로 배열된 픽셀들 내 엘이디들의 저계조 영역에서 표현력을 개선할 수 있는 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이 휘도 조절 방법을 제공하는 것이다.In addition, a problem to be solved by the present invention is to provide an LED display driver IC capable of improving expression in a low gradation region of LEDs arranged in a matrix in an LED display device and an LED display luminance control method using the same. .
또한, 본 발명이 해결하고자 하는 과제는, 저계조 영역에서의 플리커(flicker) 현상을 저감할 수 있는 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이 휘도 조절 방법을 제공하는 것이다.In addition, a problem to be solved by the present invention is to provide an LED display driver IC capable of reducing flicker in a low gradation region and an LED display luminance control method using the same.
또한, 본 발명이 해결하고자 하는 과제는, 저계조(low gray level) 영역 및 HDR(High Dynamic Range)에서의 표현력을 향상시켜 엘이디 디스플레이 장치의 화질을 개선할 수 있는 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이 휘도 조절 방법을 제공하는 것이다.In addition, the problem to be solved by the present invention is an LED display driver IC capable of improving the image quality of an LED display device by improving expression power in a low gray level region and a high dynamic range (HDR) and an LED using the same. It is to provide a method for adjusting the display brightness.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따른, 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 어레이된 엘이디 디스플레이의 휘도 보정 방법은, (a) 상기 엘이디 디스플레이의 전방의 서로 다른 위치들에서 위치별 픽셀 데이터를 획득하는 단계; (b) 상기 (a)단계에서 획득된 위치별 픽셀 데이터 각각에서 위치별 기준값을 결정하는 단계; (c) 상기 (b)단계에서 결정된 위치별 기준값에 기초하여 위치별 보정 계수들을 상기 픽셀들 각각에 대하여 결정하는 단계; 및 (d) 상기 (c)단계에서 결정된 위치별 보정 계수들을 소정의 비율로 조합하여 상기 엘이디 디스플레이의 픽셀들 전체에 적용하는 단계;를 포함하는 것을 특징으로 한다.According to an aspect of the present invention for solving the above problem, the first LED, the second LED and the third LED is a plurality of pixels formed by a single pixel array of the LED display luminance correction method, (a) the Obtaining pixel data for each location at different locations in front of the LED display; (b) determining a reference value for each location in each pixel data for each location obtained in step (a); (c) determining correction coefficients for each of the pixels based on a reference value for each position determined in step (b); And (d) combining the correction factors for each position determined in step (c) at a predetermined ratio and applying them to all pixels of the LED display.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따른, 적어도 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 횡방향과 종방향으로 배열된 엘이디 디스플레이의 휘도 보정 시스템은, 상기 엘이디 디스플레이 전방의 우측, 가운데 및 좌측을 포함하는 서로 다른 위치에서 상기 엘이디 디스플레이의 위치별 픽셀 데이터를 획득하는 픽셀 데이터부; 상기 픽셀 데이터부에서 획득한 위치별 픽셀 데이터에서 각각의 위치별 기준값을 결정하는 기준값 설정부; 상기 기준값 설정부에서 획득한 각각의 위치별 기준값에 따라 위치별 보정 계수를 상기 복수 개의 픽셀들 각각에 대하여 결정하는 보정 계수 설정부; 및 상기 보정 계수 설정부에서 획득한 상기 위치별 보정 계수들을 일정 비율로 조합하여 복수 개의 픽셀들 전체에 적용하는 휘도 보정부;를 포함한다.In order to solve the above problem, according to an aspect of the present invention, at least the first LED, the second LED and the third LED, a plurality of pixels formed of one pixel, the luminance correction of the LED display arranged in the lateral and longitudinal directions The system includes: a pixel data unit that acquires pixel data for each position of the LED display at different positions including the right, center, and left sides of the front of the LED display; A reference value setting unit for determining a reference value for each location from the pixel data for each location obtained from the pixel data unit; A correction coefficient setting unit for determining a correction coefficient for each location for each of the plurality of pixels according to a reference value for each location acquired by the reference value setting unit; And a luminance correction unit that combines the correction factors for each position obtained by the correction factor setting unit at a predetermined ratio and applies them to a plurality of pixels.
본 발명의 다른 측면에 따른, 적어도 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 어레이된 엘이디 디스플레이의 휘도 보정 시스템은, 상기 엘이디 디스플레이의 전방의 좌측에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제1 기준값, 제2 기준값 및 제3 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비(ratio)를 형성한 제1 보정 계수, 제2 보정 계수 및 제3 보정 계수; 상기 엘이디 디스플레이의 전방의 가운데에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제4 기준값, 제5 기준값 및 제6 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제4 보정 계수, 제5 보정 계수 및 제6 보정 계수; 및 상기 엘이디의 디스플레이의 전방의 우측에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제7 기준값, 제8 기준값 및 제9 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제7 보정 계수, 제8 보정 계수 및 제9 보정 계수;를 포함하며, 상기 제1 내지 제8 보정 계수들을 동일한 비율로 조합하여 상기 엘이디 디스플레이의 픽셀들 내의 상기 제1 엘이디, 제2 엘이디 및 제3 엘이디의 휘도값을 보정한다.According to another aspect of the present invention, a luminance correction system of an LED display in which a plurality of pixels in which at least a first LED, a second LED, and a third LED are formed as one pixel is arrayed is located at the left side of the front of the LED display. Luminance values of the first LED, the second LED and the third LED for each of the first reference value, the second reference value, and the third reference value by measuring the luminance values of the first LED, the second LED, and the third LED A first correction coefficient, a second correction coefficient and a third correction coefficient that form a ratio of values; Measure the luminance values of the first LED, the second LED, and the third LED in the center of the front of the LED display, and measure the luminance values of the fourth reference value, the fifth reference value, and the sixth reference value, respectively. A fourth correction coefficient, a fifth correction coefficient, and a sixth correction coefficient that form a ratio of the luminance values of the two LEDs and the third LED; And the first LED for each of the seventh reference value, the eighth reference value, and the ninth reference value by measuring luminance values of the first LED, the second LED, and the third LED on the right side of the front side of the LED display. And a seventh correction coefficient, an eighth correction coefficient, and a ninth correction coefficient forming a ratio of luminance values of the second LED and the third LED, and combining the first to eighth correction coefficients at the same ratio. The luminance values of the first LED, the second LED, and the third LED in the pixels of the LED display are corrected.
본 발명의 또 다른 일 측면에 따라, 행렬로 배열된 복수 개의 픽셀들을 포함하는 엘이디 디스플레이에 대한 휘도 보정 방법은, 상기 픽셀들 내의 엘이디들 각각의 고계조(high gray level) 영역의 최대 휘도값으로 구성되는 제1 보정 데이터와 상기 픽셀들 내의 엘이디들 각각의 저계조(low gray level) 영역의 최대 휘도값으로 구성되는 제2 보정 데이터를 포함하는 보정 데이터를 생성하는 단계와, 상기 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들 중 최소값인 제1 최소값을 기준으로, 상기 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들에 대한 제1 보정 계수들을 생성하는 단계와, 상기 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들 중 최소값인 제2 최소값을 기준으로, 상기 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들에 대한 제2 보정 계수들을 생성하는 단계와, 상기 제1 보정 계수들 및 상기 제2 보정 계수들에 기초하여 상기 픽셀들 내의 엘이디들 각각의 휘도를 정규화(normalization)하는 단계;를 포함한다.According to another aspect of the present invention, a luminance correction method for an LED display including a plurality of pixels arranged in a matrix is a maximum luminance value of a high gray level area of each of the LEDs in the pixels. Generating correction data including first correction data that is configured and second correction data that is composed of a maximum luminance value of a low gray level region of each of the LEDs in the pixels; and the first correction data. Generating first correction coefficients for maximum luminance values of the high gradation region in the first correction data, based on a first minimum value, which is a minimum value among the maximum luminance values of the high gradation region within, and the second correction data A second correction system for maximum luminance values of the low grayscale region in the second correction data, based on a second minimum value that is a minimum value among the maximum luminance values of the low grayscale region within And generating numbers and normalizing the luminance of each of the LEDs in the pixels based on the first correction coefficients and the second correction coefficients.
본 발명의 또 다른 일 측면에 따라, 행렬로 배열된 복수 개의 픽셀들을 포함하는 엘이디 디스플레이의 휘도를 보정하기 위한 휘도 보정 시스템은, 상기 픽셀들 내의 엘이디들 각각에 대하여 고계조 영역의 최대 휘도값들과 저계조 영역의 최대 휘도값들을 측정하여 보정 데이터를 생성하는, 광 측정부와, 상기 보정 데이터 내에서 상기 고계조 영역의 최대 휘도값들을 비교하여 상기 고계조 영역의 최대 휘도값들 중 최소값인 제1 최소값을 추출하고, 상기 보정 데이터 내에서 상기 저계조 영역의 최대 휘도값들을 비교하여 상기 저계조 영역의 최대 휘도값들 중 최소값인 제2 최소값을 추출하는, 최소값 추출부와, 상기 제1 최소값을 기준으로 상기 보정 데이터 내의 상기 고계조 영역의 최대 휘도값들 각각에 대한 제1 보정 계수들을 생성하고, 상기 제2 최소값을 기준으로 상기 보정 데이터 내의 상기 저계조 영역의 최대 휘도값들 각각에 대한 제2 보정 계수들을 생성하는, 보정 계수 생성부와, 상기 제1 보정 계수들 및 상기 제2 보정 계수들에 기초하여 상기 픽셀들 내의 엘이디들 각각의 휘도를 정규화(normalization)하는 정규화부를 포함한다.According to another aspect of the present invention, a luminance correction system for correcting a luminance of an LED display including a plurality of pixels arranged in a matrix includes: maximum luminance values of a high gradation region for each of the LEDs in the pixels And a light measurement unit for generating correction data by measuring the maximum luminance values of the low-grayscale region, and comparing the maximum luminance values of the high-grayscale region within the correction data, which is the minimum value among the maximum luminance values of the high-grayscale region. A minimum value extracting unit for extracting a first minimum value and comparing a maximum luminance value of the low gradation region in the correction data to extract a second minimum value, which is a minimum value among the maximum luminance values of the low gradation region, and the first value First correction coefficients are generated for each of the maximum luminance values of the high grayscale region in the correction data based on a minimum value, and the second maximum Based on a value, a correction coefficient generation unit that generates second correction coefficients for each of the maximum luminance values of the low grayscale region in the correction data, and based on the first correction coefficients and the second correction coefficients. And a normalizing unit that normalizes the luminance of each of the LEDs in the pixels.
본 발명의 또 다른 일 측면에 따른, 입력 영상 신호에 대응되게 엘이디 디스플레이 내 엘이디들의 휘도를 조절하기 위한 엘이디 디스플레이 드라이버 IC는, 상기 입력 영상 신호의 계조(gray level)를 판단하는 제어부와, 상기 제어부의 제어에 따라, 상기 입력 영상 신호의 계조에 대응되게 펄스폭변조 신호를 생성하는 펄스폭변조 신호 생성부와, 상기 입력 영상 신호의 계조에 대응되게 펄스진폭변조(PAM) 신호를 생성하는 펄스진폭변조 신호 생성부를 포함하여, 상기 펄스폭변조 신호 생성부에 의해 생성된 펄스폭변조 신호와 상기 펄스진폭변조 신호 생성부에 의해 생성된 펄스진폭변조 신호가 머지된 머지 신호를 생성하는 머지 신호 생성부를 포함하고, 상기 펄스진폭변조 신호 생성부가 펄스폭변조 신호에 대하여 펄스진폭변조를 행하여 상기 머지 신호를 생성하거나, 상기 펄스폭변조 신호 생성부가 펄스진폭변조 신호에 대하여 펄스폭변조를 행하여 상기 머지 신호를 생성하는 것을 특징으로 한다.According to another aspect of the present invention, an LED display driver IC for adjusting the luminance of LEDs in an LED display corresponding to an input image signal includes a control unit for determining a gray level of the input image signal, and the control unit In accordance with the control of the pulse width modulation signal generating unit for generating a pulse width modulation signal corresponding to the gradation of the input image signal, and the pulse amplitude for generating a pulse amplitude modulation (PAM) signal corresponding to the gradation of the input image signal A merge signal generator including a modulated signal generator and a pulse width modulated signal generated by the pulse width modulated signal generator and a pulse amplitude modulated signal generated by the pulse amplitude modulated signal generator to generate a merged signal. And the pulse amplitude modulation signal generator performs pulse amplitude modulation on the pulse width modulation signal to perform the merge signal. The generation, or subjected to the PWM signal generator the pulse width modulation on the pulse amplitude modulation signal is characterized in that the generating of the remaining signal.
본 발명의 또 다른 일 측면에 따른, 입력 영상 신호에 대응되게 엘이디 디스플레이 드라이버 IC로 엘이디 디스플레이 내의 엘이디들의 휘도를 조절하는 방법은, 제어부에서 상기 입력 영상 신호의 계조(gray level)를 판단하는 단계와, 상기 제어부의 판단에 의존하여 상기 입력 영상 신호의 계조에 대응되게 펄스폭변조(PWM) 신호를 생성하는 단계와, 상기 제어부의 판단에 의존하여 상기 입력 영상 신호의 계조에 대응되게 펄스진폭변조(PAM) 신호를 생성하는 단계와, 상기 펄스폭변조 신호와 상기 펄스진폭변조 신호를 머지(merge)하여 머지 신호를 생성하는 단계와, 상기 머지 신호로 상기 엘이디들의 휘도를 조절하는 단계를 포함한다.According to another aspect of the present invention, a method of adjusting the luminance of LEDs in an LED display with an LED display driver IC corresponding to an input image signal includes: determining, by a control unit, a gray level of the input image signal; , Generating a pulse width modulation (PWM) signal corresponding to the gradation of the input image signal depending on the determination of the control unit, and pulse amplitude modulation corresponding to the gradation of the input image signal depending on the determination of the control unit ( PAM) generating a signal, merging the pulse width modulated signal and the pulse amplitude modulated signal to generate a merge signal, and adjusting the luminance of the LEDs with the merge signal.
본 발명은 서로 다른 위치들에서 위치별 픽셀 데이터를 획득하고, 위치별 기준값을 결정한 후, 위치별 보정 계수들을 픽셀들 각각에 대하여 결정하고, 이러한 보정 계수들을 소정의 비율로 조합하여 엘이디 디스플레이의 픽셀들 전체에 적용하는, 새로운 엘이디 디스플레이의 휘도 보정 방법 및 시스템을 제공함으로써, 종래 엘이디 디스플레이의 시청 위치 별로 휘도의 차이를 보이게 되는 문제점을 해결하여 엘이디 디스플레이 장치를 통해 최적의 균일한 화상을 시청자가 시청할 수 있도록 하는 효과를 갖는다.The present invention obtains pixel data for each location at different locations, determines a reference value for each location, determines correction factors for each location for each pixel, and combines these correction factors at a predetermined ratio to combine pixels of the LED display. By providing a method and system for correcting brightness of a new LED display applied to all of them, the problem of showing a difference in brightness for each viewing position of a conventional LED display is solved, so that an optimal uniform image can be viewed by the viewer through the LED display device. It has the effect of making it possible.
또한, 본 발명은 엘이디 디스플레이의 픽셀들 내 엘이디들의 최대 휘도값을 갖는 영역에 국한되지 않고 저계조를 갖는 영역이나 중간 영역에 대하여도 휘도 보정을 진행할 수 있는 개선된 방식의 휘도 보정 방법 및 시스템을 제공함으로써, 엘이디 디스플레이의 전체적인 화질 개선이나 균일성(Uniformity), 그리고 표현력을 향상시킬 수 있는 효과를 갖는다.In addition, the present invention is not limited to the region having the maximum luminance value of the LEDs in the pixels of the LED display, and an improved method of luminance correction method and system capable of performing luminance correction even for a region or a region having a low gradation. By providing, it has the effect of improving the overall image quality, uniformity, and expression of the LED display.
또한, 본 발명은, 특히 저계조 영역의 특성, 즉 중계조 영역이나 고계조 영역과 비교할 때, 엘이디 디스플레이의 사용자들이 픽셀들 간의 휘도 차이를 더욱 두드러지게 인식하는 경향이 있으므로, 저계조 영역에 있어서, 보정을 통해 휘도차를 감소시키는 효과가 크다.In addition, the present invention, in particular, compared to the characteristics of the low grayscale region, that is, compared to the middle grayscale region or the high grayscale region, since the users of the LED display tend to perceive the luminance difference between pixels more prominently, in the low grayscale region , The effect of reducing the luminance difference through correction is large.
또한, 본 발명은 개선된 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이 휘도 조절 방법을 제공함으로써, 엘이디 디스플레이 장치의 저계조 영역에서의 표현력을 향상시킬 수 있고, 저계조 영역에서의 플리커(flicker) 현상을 저감할 수 있으며, 저계조(low gray level) 영역 및 HDR(High Dynamic Range)에서의 표현력을 향상시켜 엘이디 디스플레이 장치의 화질을 개선할 수 있는 효과가 있다.In addition, the present invention provides an improved LED display driver IC and a method for adjusting the brightness of the LED display using the same, thereby improving the expression power in the low gradation region of the LED display device and flickering in the low gradation region. It can be reduced, and it has an effect of improving the image quality of the LED display device by improving expression power in a low gray level region and a high dynamic range (HDR).
도 1은 본 발명의 일 실시예에 따른 보정을 위해 서로 다른 위치들(P1, P2, P3)에 카메라(측정기)를 배치하여 위치별로 픽셀 데이터를 획득하는 과정을 설명하기 위한 도면이고,1 is a view for explaining a process of acquiring pixel data for each location by arranging a camera (meter) at different locations P1, P2, and P3 for correction according to an embodiment of the present invention,
도 2는 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터(ML_pxd)의 일 예를 나타낸 도면이고,2 is a diagram illustrating an example of pixel data ML_pxd measured at a first position (left position, P1),
도 3은 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터(MC_pxd)의 일 예를 나타낸 도면이고,3 is a diagram illustrating an example of pixel data MC_pxd measured at a second position (central position, P2),
도 4는 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터(MR_pxd)의 일 예를 나타낸 도면이고,4 is a diagram illustrating an example of pixel data MR_pxd measured at a third position (right position, P3),
도 5 내지 도 7은 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터의 구체적인 예를 나타낸 도면들로서, 도 5는 제1 위치에서의 적색 엘이디(R)에 대한 데이터이고, 도 6은 제1 위치에서의 녹색 엘이디(G)에 대한 데이터이고, 도 7은 제1 위치에서의 청색 엘이디(B)에 대한 데이터이며,5 to 7 are views showing a specific example of the pixel data measured at the first position (left position, P1), FIG. 5 is data for the red LED R at the first position, and FIG. 6 is the first Data for the green LED (G) at position 1, and FIG. 7 is data for the blue LED (B) at position 1,
도 8 내지 도 10은 제2 위치(중앙 위치, P1)에서 획득된 픽셀 데이터의 구체적인 예를 나타낸 도면들로서, 도 8은 제2 위치에서의 적색 엘이디(R)에 대한 데이터이고, 도 9은 제2 위치에서의 녹색 엘이디(G)에 대한 데이터이고, 도 10은 제2 위치에서의 청색 엘이디(B)에 대한 데이터이며,8 to 10 are views showing a specific example of the pixel data obtained at the second position (center position, P1), FIG. 8 is data for the red LED R at the second position, and FIG. 9 is the second Data for the green LED (G) at the 2 position, Figure 10 is data for the blue LED (B) at the second position,
도 11 내지 도 13은 제3 위치(우측 위치, P3)에서 획득된 픽셀 데이터의 구체적인 예를 나타낸 도면들로서, 도 11은 제3 위치에서의 적색 엘이디(R)에 대한 데이터이고, 도 12는 제3 위치에서의 녹색 엘이디(G)에 대한 데이터이고, 도 13은 제3 위치에서의 청색 엘이디(B)에 대한 데이터이며,11 to 13 are views showing a specific example of the pixel data obtained at the third position (right position, P3), FIG. 11 is data for the red LED R at the third position, and FIG. 12 is the first Data for the green LED (G) at position 3, and FIG. 13 is data for the blue LED (B) at position 3,
도 14는 위치별 기준값들을 기준으로 컴퓨팅된 보정 계수들을 픽셀들 각각의 엘이디들 각각에 적용하기 위한 테이블의 예를 나타낸 도면이고,14 is a view showing an example of a table for applying the correction coefficients computed based on the reference values for each position to each of the LEDs of the pixels,
도 15는 도 14의 보정 계수들을 픽셀들 각각의 엘이디들에 적용한 상태의 최종 픽셀 데이터(F_pxd)를 나타낸 도면이고,15 is a view showing final pixel data (F_pxd) in a state in which the correction coefficients of FIG. 14 are applied to the LEDs of each pixel,
도 16은 본 발명의 일 실시예에 따른 엘이디 디스플레이의 휘도 보정 시스템(100)을 설명하기 위한 도면이고,16 is a view for explaining the luminance correction system 100 of the LED display according to an embodiment of the present invention,
도 17은 본 발명의 일 실시예에 따른 휘도 보정 방법 및 휘도 보정 시스템을 설명하기 위한 블럭도이고,17 is a block diagram illustrating a luminance correction method and a luminance correction system according to an embodiment of the present invention,
도 18은 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서, 광 측정부(120)로 픽셀들 각각의 엘이디들의 휘도를 측정하는 과정을 설명하기 위한 도면이고,18 is a view for explaining a process of measuring the luminance of each LED of the pixels with the light measuring unit 120 in the luminance correction method and system according to an embodiment of the present invention,
도 19는 본 발명과 비교되는 종래의 휘도 보정 방법을 설명하기 위한 도면이고,19 is a view for explaining a conventional luminance correction method compared to the present invention,
도 20은 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값과 제2 최소값을 검출하는 과정을 설명하기 위한 도면이고,20 is a view for explaining a process of detecting a first minimum value and a second minimum value from the correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention,
도 21은 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값, 제2 최소값 및 중간값을 검출하는 과정을 설명하기 위한 도면이고,21 is a view for explaining a process of detecting a first minimum value, a second minimum value, and an intermediate value from correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention,
도 22는 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값, 제2 최소값, 제3 최소값 및 제4 최소값을 검출하는 과정을 설명하기 위한 도면으로서, 여기서 제3 최소값과 제4 최소값은, 중계조 영역을 제1 중계조 영역과 제2 중계조 영역으로 나누어서 각각에서의 최대 휘도값들의 최소값이고,22 illustrates a process of detecting a first minimum value, a second minimum value, a third minimum value, and a fourth minimum value from the correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention As a drawing for the purpose, the third minimum value and the fourth minimum value are the minimum values of the maximum luminance values in each by dividing the grayscale region into the first grayscale region and the second grayscale region,
도 23은 본 발명의 일 실시예에 따른 휘도 보정 방법을 요약한 블록도이고,23 is a block diagram summarizing a luminance correction method according to an embodiment of the present invention,
도 24는 도 20에서 생성된 제1 보정 계수들 및 제2 보정 계수들로 엘이디들의 전체 영역에 대하여 정규화하는 과정을 설명하기 위한 도면이고,FIG. 24 is a view for explaining a process of normalizing the entire region of the LEDs with the first correction coefficients and the second correction coefficients generated in FIG. 20,
도 25는 도 21에서 생성된 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들로 엘이디들의 전체 영역에 대하여 정규화하는 과정을 설명하기 위한 도면이고,FIG. 25 is a diagram for explaining a process of normalizing the entire region of the LEDs with the first correction coefficients, the second correction coefficients, and the third correction coefficients generated in FIG. 21,
도 26은 일반적인 엘이디 디스플레이 장치에서 디스플레이부(10)에 행렬로 배열되는 픽셀들 내 엘이디들을 구동시키기 위한 드라이브 IC(20)의 블록도이고,26 is a block diagram of a drive IC 20 for driving LEDs in pixels arranged in a matrix on the display unit 10 in a general LED display device,
도 27은 다양한 펄스폭변조(PWM) 신호의 예들이고,27 are examples of various pulse width modulation (PWM) signals,
도 28은 일반적인 입력 영상 신호, 펄스폭 변조 신호 생성부 및 드라이버 IC 간의 관계를 설명하기 위한 블록도이고,28 is a block diagram for explaining a relationship between a general input image signal, a pulse width modulated signal generator and a driver IC,
도 29는 R,G,B 입력 신호에 대한 출력 휘도의 감마 곡선(γcurve)의 일 예이고,29 is an example of a gamma curve (γcurve) of the output luminance for the R, G, and B input signals,
도 30은 본 발명에 따른 엘이디 드라이버 IC(100)의 기본 블록도이고,30 is a basic block diagram of an LED driver IC 100 according to the present invention,
도 31은 본 발명의 일 실시예에 따른 엘이디 드라이버 IC의 블록도이고,31 is a block diagram of an LED driver IC according to an embodiment of the present invention,
도 32는 도 31에서의 펄스폭변조 신호(Sw)와 펄스진폭변조 신호(Sa)의 예들을 나타낸 도면이고,32 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 31,
도 33은 본 발명의 다른 실시예에 따른 엘이디 드라이버 IC의 블록도이고,33 is a block diagram of an LED driver IC according to another embodiment of the present invention,
도 34는 도 33에서의 펄스폭변조 신호(Sw)와 펄스진폭변조 신호(Sa)의 예들을 나타낸 도면이고,34 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 33,
도 35은 본 발명의 또 다른 실시예에 따른 엘이디 드라이버 IC의 블록도이고,35 is a block diagram of an LED driver IC according to another embodiment of the present invention,
도 36은 도 35의 실시예에서 입력 영상 신호가 저계조 영역 내에 있는 경우에만 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이고,36 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a low gray level region in the embodiment of FIG. 35,
도 37는 도 35의 실시예에서 입력 영상 신호가 고계조 영역 내에 있는 경우에만 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이고,FIG. 37 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a high gray level region in the embodiment of FIG. 35,
도 38은 도 35의 실시예에서 입력 영상 신호가 저계조 영역 내에 있거나 고계조 영역 내에 있는 경우에 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이고,38 is a view for explaining a process of generating a merge signal applied when the input image signal is in a low grayscale region or a high grayscale region in the embodiment of FIG. 35;
도 39는 펄스폭변조 신호만으로 휘도를 제어하는 종래의 방식의 단점을 보여주기 위한 감마 곡선이고,39 is a gamma curve for showing the disadvantages of a conventional method of controlling luminance with only a pulse width modulated signal,
도 40은 펄스폭변조 신호와 펄스진폭변조 신호의 머지 신호를 이용하는 본 발명의 특징을 보여주기 위한 도면이고,40 is a view showing the characteristics of the present invention using the merge signal of the pulse amplitude modulation signal and the pulse amplitude modulation signal,
도 41은 그레이 스케일(gray scale)에 대한 본 발명의 일 실시예에 따른 머지 신호(펄스폭변조 신호와 펄스폭변조 신호의 머지에 의해 생성된 신호)의 예들을 나타낸 도면이다.41 is a view showing examples of a merge signal (a signal generated by merging of a pulse width modulated signal and a pulse width modulated signal) according to an embodiment of the present invention for gray scale.
본 명세서 내에서 사용되는 용어들은 이하와 같이 정의된다.Terms used in this specification are defined as follows.
ML_pxd, MC_pxd 및 MR_pxd는 위치별 픽셀 데이터로서, 구체적으로는, ML_pxd는 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터로서, ML_pxd에 포함되는 LR(i,j), LG(i,j), LB(i,j)은 제1 위치에서 측정된 픽셀 데이터이고, LRij, LGij, LBij는 픽셀 데이터 내의 휘도값이다. 그리고, MC_pxd는 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터로서, MC_pxd에 포함되는 CR(i,j), CG(i,j), CB(i,j)은 픽셀 데이터이고, CRij, CGij, LBij는 제2 위치에서 측정된 픽셀 데이터 내의 휘도값이다. 그리고, MR_pxd은 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터로서, MR_pxd에 포함되는 RR(i,j), RG(i,j), RB(i,j)는 픽셀 데이터이고, RRij, RGij, RBij는 제3 위치에서 측정된 픽셀 데이터 내의 휘도값이다. 여기서, i는 1 ~ m 까지의 자연수이고, j는 1 ~ n 까지의 자연수이다.ML_pxd, MC_pxd and MR_pxd are pixel data for each position, specifically, ML_pxd is pixel data measured at a first position (left position, P1), and LR (i, j), LG (i, j) included in ML_pxd ), LB (i, j) are pixel data measured at the first position, and LRij, LGij, and LBij are luminance values in the pixel data. And, MC_pxd is the pixel data measured at the second position (center position, P2), CR (i, j), CG (i, j), and CB (i, j) included in MC_pxd are pixel data, and CRij , CGij and LBij are luminance values in the pixel data measured at the second position. In addition, MR_pxd is pixel data measured at a third position (right position, P3), and RR (i, j), RG (i, j), and RB (i, j) included in MR_pxd are pixel data, and RRij , RGij and RBij are luminance values in the pixel data measured at the third position. Here, i is a natural number from 1 to m, j is a natural number from 1 to n.
더 구체적으로 설명하면, LR(i,j)는 제1 픽셀 데이터이고 LRij는 제1 픽셀 데이터 내의 휘도값이고, LG(i,j)는 제2 픽셀 데이터이고 LGij는 제2 픽셀 데이터 내의 휘도값이고, LB(i,j)는 제3 픽셀 데이터이고 LBij는 제3 픽셀 데이터 내의 휘도값이고, CR(i,j)은 제4 픽셀 데이터이고 CRij는 제4 픽셀 데이터 내의 휘도값이고, CG(i,j)는 제5 픽셀 데이터이고 CGij는 제5 픽셀 데이터 내의 휘도값이고, CB(i,j)는 제6 픽셀 데이터이고 CBij는 제6 픽셀 데이터 내의 휘도값이고, RR(i,j)는 제7 픽셀 데이터이고 RRij는 제7 픽셀 데이터 내의 휘도값이고, RG(i,j)는 제8 픽셀 데이터이고, RGij는 제8 픽셀 데이터 내의 휘도값이고, RB(i,j)는 제9 픽셀 데이터이고 RBij는 제9 픽셀 데이터 내의 휘도값으로 정의된다. 하나의 픽셀을 기준으로 살펴보면, 상기 제1 내지 제9 픽셀 데이터는 픽셀들 각각에 대하여 정의되는 것이다. 즉, 하나의 픽셀에 대한 픽셀 데이터에 상기 제1 내지 제9 픽셀 데이터가 모두 존재한다. 예컨대, 첫 번째 픽셀, 즉 (1,1) 픽셀의 픽셀 데이터는 제1 픽셀 데이터(LR(1,1)), 제2 픽셀 데이터(LG(1,1)), 제3 픽셀 데이터(LB(1,1)), 제4 픽셀 데이터(CR(1,1)), 제5 픽셀 데이터(CG(1,1)), 제6 픽셀 데이터(CB(1,1)), 제7 픽셀 데이터(RR(1,1)), 제8 픽셀 데이터(RG(1,1)), 제9 픽셀 데이터(BB(1,1))를 포함한다. (m,n) 픽셀의 픽셀 데이터에 대하여도 마찬가지이다.More specifically, LR (i, j) is the first pixel data, LRij is the luminance value in the first pixel data, LG (i, j) is the second pixel data, and LGij is the luminance value in the second pixel data , LB (i, j) is the third pixel data, LBij is the luminance value in the third pixel data, CR (i, j) is the fourth pixel data, CRij is the luminance value in the fourth pixel data, and CG ( i, j) is the fifth pixel data, CGij is the luminance value in the fifth pixel data, CB (i, j) is the sixth pixel data, CBij is the luminance value in the sixth pixel data, and RR (i, j) Is the seventh pixel data, RRij is the luminance value in the seventh pixel data, RG (i, j) is the eighth pixel data, RGij is the luminance value in the eighth pixel data, and RB (i, j) is the ninth pixel data. It is pixel data and RBij is defined as the luminance value in the ninth pixel data. Looking at one pixel as reference, the first to ninth pixel data are defined for each of the pixels. That is, the first to ninth pixel data are all present in the pixel data for one pixel. For example, the pixel data of the first pixel, that is, the (1,1) pixel includes first pixel data LR (1,1), second pixel data LG (1,1), and third pixel data LB ( 1,1)), 4th pixel data (CR (1,1)), 5th pixel data (CG (1,1)), 6th pixel data (CB (1,1)), 7th pixel data ( RR (1,1)), eighth pixel data RG (1,1), and ninth pixel data BB (1,1). The same applies to the pixel data of (m, n) pixels.
또한, ref_LR, ref_LG, ref_LB, ref_CR, ref_CG, ref_CB, ref_RR, ref_RG, ref_RB는 위치별 기준값들이며, 구체적으로는, ref_LR은 제1 기준값이고, ref_LG는 제2 기준값이고, refLB는 제3 기준값이고, ref_CR은 제4 기준값이고, ref_CG는 제5 기준값이고, ref_CB는 제6 기준값이고, ref_RR은 제7 기준값이고, ref_RG는 제8 기준값이고, ref_RB는 제9 기준값이다. In addition, ref_LR, ref_LG, ref_LB, ref_CR, ref_CG, ref_CB, ref_RR, ref_RG, ref_RB are reference values for each location, specifically, ref_LR is a first reference value, ref_LG is a second reference value, refLB is a third reference value, ref_CR is the fourth reference value, ref_CG is the fifth reference value, ref_CB is the sixth reference value, ref_RR is the seventh reference value, ref_RG is the eighth reference value, and ref_RB is the ninth reference value.
또한, CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB는 위치별 보정 계수들이며, 구체적으로는, CC_LR은 제1 보정 계수이고, CC_LG는 제2 보정 계수이고, CC_LB는 제3 보정 계수이고, CC_CR은 제4 보정 계수이고, CC_CG는 제5 보정 계수이고, CC_CB는 제6 보정 계수이고, CC_RR은 제7 보정 계수이고, CC_RG는 제8 보정 계수이고, CC_RB는 제9 보정 계수이다.In addition, CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB are position-specific correction coefficients, specifically, CC_LR is a first correction coefficient, CC_LG is a second correction coefficient, and CC_LB is a third The correction factor, CC_CR is the fourth correction factor, CC_CG is the fifth correction factor, CC_CB is the sixth correction factor, CC_RR is the seventh correction factor, CC_RG is the eighth correction factor, and CC_RB is the ninth correction factor. to be.
도 1은 본 발명의 일 실시예에 따라 보정을 위해 서로 다른 위치들(P1, P2, P3)에 카메라(측정기)를 배치하여 위치별로 픽셀 데이터를 획득하는 과정을 설명하기 위한 도면이고, 도 2는 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터(ML_pxd)의 일 예를 나타낸 도면이고, 도 3은 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터(MC_pxd)의 일 예를 나타낸 도면이고, 도 4는 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터(MR_pxd)의 일 예를 나타낸 도면이다.1 is a view for explaining a process of acquiring pixel data for each location by arranging a camera (measurement device) at different locations P1, P2, and P3 for correction according to an embodiment of the present invention; Is a diagram showing an example of pixel data (ML_pxd) measured at a first position (left position, P1), and FIG. 3 is an example of pixel data (MC_pxd) measured at a second position (central position, P2) 4 is a diagram illustrating an example of pixel data MR_pxd measured at a third position (right position, P3).
도 1 내지 도 4를 참조하면, 본 발명의 엘이디 디스플레이의 휘도 보정 방법은, 먼저, 엘이디 디스플레이(10)의 전방의 서로 다른 위치들(P1, P2, P3)에서 위치별 픽셀 데이터(ML_pxd, MC_pxd 및 MR_pxd)를 획득한다. 위치별 픽셀 데이터(ML_pxd, MC_pxd 및 MR_pxd)의 획득 과정은, 도시된 바와 같이, 엘이디 디스플레이(10)으로부터 일정한 거리를 두고 좌측 위치(P1), 중앙 위치(P2) 및 우측 위치(P3)에서 카메라로 촬영한 후, 픽셀 데이터 처리부(미도시)에 의해 처리되어, 위치별로, 픽셀별로 그리고 픽셀 내 엘이디별로 구분되어 저장될 수 있다(도 5 내지 도 13은 위치별, 픽셀별, 픽셀 내 엘이디별로 구분되어 저장된 예들임).1 to 4, the luminance correction method of the LED display of the present invention, first, pixel data per location (ML_pxd, MC_pxd) at different positions (P1, P2, P3) in front of the LED display 10 And MR_pxd). The process of acquiring the pixel data for each position (ML_pxd, MC_pxd, and MR_pxd), as shown, is a camera at the left position (P1), the center position (P2), and the right position (P3) with a certain distance from the LED display 10 After being photographed as, it is processed by the pixel data processing unit (not shown), and may be stored by location, pixel by pixel, and LED by pixel (see FIGS. 5 to 13 for each location, pixel, and LED within pixel). Separately stored examples).
도 2를 참조하면, 제1 위치, 즉 좌측 위치(P1)에서 측정된 픽셀 데이터(ML_pxd)의 일 예가 도시되어 있다. 좌측 위치(P1)에서 측정된 픽셀 데이터(ML_pxd)는 제1 픽셀 데이터(LR(i,j)), 제2 픽셀 데이터(LG(i,j)) 및 제3 픽셀 데이터(LB(i,j))를 포함한다. 픽셀들 내 엘이디들(R, G, B 컬러의 광을 각각 발하는 제1 내지 제3 엘이디들)은 특정 광 특성을 갖는 각각의 광을 발광할 것이므로, 좌측 위치(P1)에서 카메라에 의해 측정되어 획득된 데이터는 실제로 다양한 색으로 나타날 것이나, 편의상 도면들에서는 색을 구분하여 나타내지는 않았다.Referring to FIG. 2, an example of pixel data ML_pxd measured at a first position, that is, a left position P1, is illustrated. The pixel data ML_pxd measured at the left position P1 includes first pixel data LR (i, j), second pixel data LG (i, j) and third pixel data LB (i, j) )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the left position P1. The obtained data will actually appear in various colors, but for convenience, the colors are not distinguished in the drawings.
좌측 위치(P1)에서 측정된 픽셀 데이터(ML_pxd)는, (1,1)에 위치한 픽셀에서부터 (m,n)에 위치한 픽셀에 관한 픽셀 데이터를 모두 포함하고 있다. 여기서, (1,1), ..., (1,n), ..., (m, 1), ..., 및 (m,n)은 엘이디 디스플레이에서 픽셀들의 좌표로서, 좌측 상단에서부터 우측 하단까지 순서대로 행렬로 넘버링된 것이다.The pixel data ML_pxd measured at the left position P1 includes all pixel data for the pixel located at (m, n) from the pixel located at (1,1). Here, (1,1), ..., (1, n), ..., (m, 1), ..., and (m, n) are the coordinates of the pixels in the LED display, from the top left It is numbered in a matrix in order from the bottom right.
첫 번째 픽셀, 즉 (1,1)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제1 픽셀 데이터(LR(1,1)), 제2 픽셀 데이터(LG(1,1)), 및 제3 픽셀 데이터(LB(1,1))이다. 마찬가지로, (1,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제1 픽셀 데이터(LR(1,n), 제2 픽셀 데이터(LG(1,n), 및 제3 픽셀 데이터(LB(1,n))이며, (m,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제1 픽셀 데이터(LR(m,n)), 제2 픽셀 데이터(LG(m,n)), 및 제3 픽셀 데이터(LB(m,n))이다. 이와 같이, 좌측 위치(P1)에서 측정된 픽셀 데이터(ML_pxd)는 각각의 픽셀에 대하여, 제1 픽셀 데이터(LR(m,n), m 및 n은 1 이상의 자연수), 제2 픽셀 데이터(LG(m,n), m 및 n은 1 이상의 자연수), 및 제3 픽셀 데이터(LB(m,n), m 및 n은 1 이상의 자연수)를 포함한다.The data for the light emitted by the LEDs in the first pixel, that is, the pixel of (1,1) is the first pixel data LR (1,1), the second pixel data LG (1,1), and 3 pixel data (LB (1, 1)). Similarly, data for light emitted by the LEDs in the pixels of (1, n) includes first pixel data LR (1, n), second pixel data LG (1, n), and third pixel data LB (1, n)), and data for light emitted by the LEDs in the pixel of (m, n) is the first pixel data (LR (m, n)) and the second pixel data (LG (m, n)) , And the third pixel data LB (m, n). Thus, the pixel data ML_pxd measured at the left position P1 is the first pixel data LR (m, n) for each pixel. , m and n are natural numbers of 1 or more), second pixel data (LG (m, n), m and n are natural numbers of 1 or more), and third pixel data (LB (m, n), m and n are 1 or more Natural water).
도 3을 참조하면, 제2 위치, 즉 중앙 위치(P2)에서 측정된 픽셀 데이터(MC_pxd)의 일 예가 도시되어 있다. 중앙 위치(P2)에서 측정된 픽셀 데이터(MC_pxd)는 제4 픽셀 데이터(CR(i,j)), 제5 픽셀 데이터(CG(i,j)) 및 제6 픽셀 데이터(CB(i,j))를 포함한다. 픽셀들 내 엘이디들(R, G, B 컬러의 광을 각각 발하는 제1 내지 제3 엘이디들)은 특정 광 특성을 갖는 각각의 광을 발광할 것이므로, 중앙 위치(P2)에서 카메라에 의해 측정되어 획득된 데이터는 실제로 다양한 색으로 나타날 것이나, 도 2에서와 마찬가지로 여기서도 편의상 도면들에서는 색을 구분하여 나타내지는 않았다.Referring to FIG. 3, an example of pixel data MC_pxd measured at a second position, that is, a central position P2 is illustrated. The pixel data MC_pxd measured at the central position P2 includes the fourth pixel data CR (i, j), the fifth pixel data CG (i, j), and the sixth pixel data CB (i, j) )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the central position P2. The acquired data will actually appear in various colors, but as in FIG. 2, for convenience, the colors are not distinguished in the drawings.
중앙 위치(P2)에서 측정된 픽셀 데이터(MC_pxd)도, 앞서 좌측 위치(P1)에서 측정된 픽셀 데이터(ML_pxd)와 마찬가지로, (1,1)에 위치한 픽셀에서부터 (m,n)에 위치한 픽셀에 관한 픽셀 데이터를 모두 포함하고 있다.The pixel data (MC_pxd) measured at the central position (P2), as well as the pixel data (ML_pxd) measured at the previous left position (P1), is from the pixel located at (1,1) to the pixel located at (m, n). Contains all relevant pixel data.
첫 번째 픽셀, 즉 (1,1)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제4 픽셀 데이터(CR(1,1)), 제5 픽셀 데이터(CG(1,1)), 및 제6 픽셀 데이터(CB(1,1))이다. 마찬가지로, (1,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제4 픽셀 데이터(CR(1,n), 제5 픽셀 데이터(CG(1,n), 및 제6 픽셀 데이터(CB(1,n))이며, (m,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제4 픽셀 데이터(CR(m,n)), 제5 픽셀 데이터(CG(m,n)), 및 제6 픽셀 데이터(CB(m,n))이다. 이와 같이, 중앙 위치(P2)에서 측정된 픽셀 데이터(MC_pxd)는 각각의 픽셀에 대하여, 제4 픽셀 데이터(CR(m,n), m 및 n은 1 이상의 자연수), 제5 픽셀 데이터(CG(m,n), m 및 n은 1 이상의 자연수), 및 제6 픽셀 데이터(CB(m,n), m 및 n은 1 이상의 자연수)를 포함한다.The data for the light emitted by the LEDs in the pixel of the first pixel, namely (1,1), is the fourth pixel data CR (1,1), the fifth pixel data CG (1,1), and the 6 pixel data (CB (1,1)). Similarly, data for light emitted by the LEDs in the pixels of (1, n) includes fourth pixel data CR (1, n), fifth pixel data CG (1, n), and sixth pixel data CB (1, n)), and data for the light emitted by the LEDs in the pixel of (m, n) is the fourth pixel data (CR (m, n)) and the fifth pixel data (CG (m, n)) , And the sixth pixel data CB (m, n), Thus, the pixel data MC_pxd measured at the central position P2 is the fourth pixel data CR (m, n) for each pixel. , m and n are natural numbers of 1 or more), fifth pixel data (CG (m, n), m and n are natural numbers of 1 or more), and sixth pixel data (CB (m, n), m and n is 1 or more Natural water).
도 4를 참조하면, 제3 위치, 즉 우측 위치(P3)에서 측정된 픽셀 데이터(MR_pxd)의 일 예가 도시되어 있다. 우측 위치(P3)에서 측정된 픽셀 데이터(MR_pxd)는 제7 픽셀 데이터(RR(i,j)), 제8 픽셀 데이터(RG(i,j)) 및 제9 픽셀 데이터(RB(i,j))를 포함한다. 픽셀들 내 엘이디들(R, G, B 컬러의 광을 각각 발하는 제1 내지 제3 엘이디들)은 특정 광 특성을 갖는 각각의 광을 발광할 것이므로, 우측 위치(P3)에서 카메라에 의해 측정되어 획득된 데이터는 실제로 다양한 색으로 나타날 것이나, 앞서 설명된 도 2 및 도 3에서와 마찬가지로 여기서도 편의상 도면들에서는 색을 구분하여 나타내지는 않았다.Referring to FIG. 4, an example of pixel data MR_pxd measured at a third position, that is, a right position P3 is illustrated. The pixel data MR_pxd measured at the right position P3 includes seventh pixel data RR (i, j), eighth pixel data RG (i, j) and ninth pixel data RB (i, j )). Since the LEDs in the pixels (the first to third LEDs emitting light of R, G, and B colors respectively) will emit each light having a specific light characteristic, they are measured by the camera at the right position P3. The acquired data will actually appear in various colors, but as in FIGS. 2 and 3 described above, for convenience, the colors are not distinguished in the drawings.
우측 위치(P3)에서 측정된 픽셀 데이터(MR_pxd)도, 앞서 좌측 위치(P1) 또는 중앙 위치(P2)에서 측정된 픽셀 데이터(ML_pxd 또는 MC_pxd)와 마찬가지로, (1,1)에 위치한 픽셀에서부터 (m,n)에 위치한 픽셀에 관한 픽셀 데이터를 모두 포함하고 있다.The pixel data (MR_pxd) measured at the right position (P3), as well as the pixel data (ML_pxd or MC_pxd) measured at the previous left position (P1) or the center position (P2), starts from the pixel located at (1,1) ( m, n), and includes pixel data for each pixel.
첫 번째 픽셀, 즉 (1,1)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제7 픽셀 데이터(RR(1,1)), 제8 픽셀 데이터(RG(1,1)), 및 제9 픽셀 데이터(RB(1,1))이다. 마찬가지로, (1,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제7 픽셀 데이터(RR(1,n), 제8 픽셀 데이터(RG(1,n), 및 제9 픽셀 데이터(RB(1,n))이며, (m,n)의 픽셀 내 엘이디들이 발광하는 광에 대한 데이터는 제7 픽셀 데이터(RR(m,n)), 제8 픽셀 데이터(RG(m,n)), 및 제9 픽셀 데이터(RB(m,n))이다. 이와 같이, 우측 위치(P3)에서 측정된 픽셀 데이터(MR_pxd)는 각각의 픽셀에 대하여, 제7 픽셀 데이터(RR(m,n), m 및 n은 1 이상의 자연수), 제8 픽셀 데이터(RG(m,n), m 및 n은 1 이상의 자연수), 및 제9 픽셀 데이터(RB(m,n), m 및 n은 1 이상의 자연수)를 포함한다.The data for the light emitted by the LEDs in the first pixel, that is, the pixel of (1,1) is the seventh pixel data (RR (1,1)), the eighth pixel data (RG (1,1)), and 9 pixel data (RB (1,1)). Similarly, data for light emitted by the LEDs in the pixel of (1, n) includes seventh pixel data RR (1, n), eighth pixel data RG (1, n), and ninth pixel data RB (1, n)), and data for the light emitted by the LEDs in the pixel of (m, n) is the seventh pixel data (RR (m, n)) and the eighth pixel data (RG (m, n)) , And ninth pixel data RB (m, n), as described above, the pixel data MR_pxd measured at the right position P3 is the seventh pixel data RR (m, n) for each pixel. , m and n are natural numbers of 1 or more), 8th pixel data (RG (m, n), m and n are natural numbers of 1 or more), and 9th pixel data (RB (m, n), m and n is 1 or more Natural water).
도 5 내지 도 13은, 제1 위치(좌측 위치, P1), 제2 위치(중앙 위치, P2), 및제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터의 구체적인 예 및 이들로부터 위치별 기준값들, 보정 계수들을 만들어 내는 과정을 설명하기 위한 도면들이다.5 to 13 are specific examples of pixel data measured at the first position (left position, P1), the second position (center position, P2), and the third position (right position, P3), and reference values for each position therefrom These are drawings for explaining the process of generating the correction coefficients.
먼저, 도 5 내지 도 7은 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터의 구체적인 예(각 픽셀 내 엘이디들별 휘도값)을 나타낸 도면들로서, 도 5는 제1 위치(P1)에서의 적색 엘이디(R)에 대한 데이터(휘도값)이고, 도 6은 제1 위치(P1)에서의 녹색 엘이디(G)에 대한 데이터(휘도값)이고, 도 7은 제1 위치(P1)에서의 청색 엘이디(B)에 대한 데이터(휘도값)이다.First, FIGS. 5 to 7 are views showing a specific example (luminance value for each LED in each pixel) of the pixel data measured at the first position (left position, P1), and FIG. 5 is at the first position (P1) Is data (luminance value) for the red LED R of FIG. 6 is data (luminance value) for the green LED G at the first position P1, and FIG. 7 is at the first position P1 This is the data (luminance value) for the blue LED (B).
도 5를 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LR11이고, (1,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LR1n이고, (m,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LRmn이다. CC_LR은 제1 보정 계수로서, 위치별 기준값(여기서는, 제1 기준값)에 의존하여 결정된다. 예컨대, 도 5에 도시된 바와 같이, 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (m,4) 픽셀의 휘도값이 가장 낮은 경우라면, 제1 기준값은 LRm4이 된다. 따라서, 제1 보정 계수(CC_LR)은 각 픽셀에 대한 휘도값으로 제1 기준값(LRm4)를 나눈 값이 된다. 즉, CC_LR = LRm4/LRij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 5, the luminance value in the pixel data for the first LED (red LED) in the first pixel, that is, the (1,1) pixel is LR11, and the first LED (red LED) in the (1, n) pixel The luminance value in the pixel data for is LR1n, and the luminance value in the pixel data for the first LED (red LED) in (m, n) pixels is LRmn. CC_LR is a first correction coefficient, and is determined depending on a reference value for each position (here, a first reference value). For example, as shown in FIG. 5, among the luminance values in the pixel data for the first LED (red LED), if the luminance value of the (m, 4) pixel is the lowest, the first reference value is LRm4. Therefore, the first correction coefficient CC_LR is a value obtained by dividing the first reference value LRm4 by the luminance value for each pixel. That is, CC_LR = LRm4 / LRij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제1 보정 계수(CC_LR)는 LRm4/LR11이고, (1,2) 픽셀의 제1 보정 계수(CC_LR)는 LRm4/LR12이고, (1,n) 픽셀의 제1 보정 계수(CC_LR)는 LRm4/LR1n이며, (m,n) 픽셀의 제1 보정 계수(CC_LR)는 LRm4/LRmn이 된다.For example, the first correction coefficient (CC_LR) of the (1,1) pixel is LRm4 / LR11, the first correction coefficient (CC_LR) of the (1,2) pixel is LRm4 / LR12, and the (1, n) pixel The first correction coefficient (CC_LR) of is LRm4 / LR1n, and the first correction coefficient (CC_LR) of the (m, n) pixel is LRm4 / LRmn.
이와 같이, 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터 중 제1 엘이디에 관한 픽셀 데이터, 즉 제1 픽셀 데이터 내의 제1 엘이디들별 휘도값에서, 제1 기준값(ref_LR)을 결정하고 제1 기준값에 의해 각각의 픽셀 내 제1 엘이디에 대한 제1 보정 계수(CC_LR)가 결정된다.In this way, among the pixel data measured at the first position (left position, P1), the first reference value (ref_LR) is determined from the pixel data related to the first LED, that is, the luminance values of the first LEDs in the first pixel data. A first correction coefficient (CC_LR) for the first LED in each pixel is determined by the first reference value.
도 6을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LG11이고, (1,n) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LG1n이고, (m,n) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LGmn이다. CC_LG는 제2 보정 계수로서, 위치별 기준값(여기서는, 제2 기준값)에 의존하여 결정된다. 예컨대, 도 6에 도시된 바와 같이, 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (m-1,3) 픽셀의 휘도값이 가장 낮은 경우라면, 제2 기준값은 LGm-13이 된다. 따라서, 제2 보정 계수(CC_LG)은 각 픽셀에 대한 휘도값으로 제2 기준값(LGm-13)를 나눈 값이 된다. 즉, CC_LG = LGm-13/LGij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 6, the luminance value in the pixel data for the second LED (green LED) in the first pixel, that is, the (1,1) pixel is LG11, and the second LED (green LED) in the (1, n) pixel The luminance value in the pixel data for is LG1n, and the luminance value in the pixel data for the second LED (green LED) in (m, n) pixels is LGmn. CC_LG is a second correction coefficient, and is determined depending on a reference value for each position (here, a second reference value). For example, as illustrated in FIG. 6, among the luminance values in the pixel data for the second LED (green LED), if the luminance value of the (m-1,3) pixel is the lowest, the second reference value is LGm- It becomes 13. Therefore, the second correction coefficient CC_LG is a value obtained by dividing the second reference value LGm-13 by the luminance value for each pixel. That is, CC_LG = LGm-13 / LGij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제2 보정 계수(CC_LG)는 LGm-13/LG11이고, (1,2) 픽셀의 제2 보정 계수(CC_LG)는 LGm-13/LG12이고, (1,n) 픽셀의 제2 보정 계수(CC_LG)는 LGm-13/LG1n이며, (m,n) 픽셀의 제2 보정 계수(CC_LG)는 LGm-13/LGmn이 된다.For example, the second correction coefficient (CC_LG) of the (1,1) pixel is LGm-13 / LG11, and the second correction coefficient (CC_LG) of the (1,2) pixel is LGm-13 / LG12, (1 , n) The second correction coefficient (CC_LG) of the pixel is LGm-13 / LG1n, and the second correction coefficient (CC_LG) of the (m, n) pixel is LGm-13 / LGmn.
이와 같이, 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터 중 제2 엘이디에 관한 픽셀 데이터, 즉 제2 픽셀 데이터 내의 제2 엘이디들별 휘도값에서, 제2 기준값(ref_LG)을 결정하고 제2 기준값에 의해 각각의 픽셀 내 제2 엘이디에 대한 제2 보정 계수(CC_LG)가 결정된다.Thus, the second reference value ref_LG is determined from the pixel data related to the second LED among the pixel data measured at the first position (left position, P1), that is, the luminance values of the second LEDs in the second pixel data. The second correction value CC_LG for the second LED in each pixel is determined by the second reference value.
도 7을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LB11이고, (1,n) 픽셀에서 제3엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LB1n이고, (m,n) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 LBmn이다. CC_LB는 제3 보정 계수로서, 위치별 기준값(여기서는, 제3 기준값)에 의존하여 결정된다. 예컨대, 도 7에 도시된 바와 같이, 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (m-2,1) 픽셀의 휘도값이 가장 낮은 경우라면, 제3 기준값은 LBm-21이 된다. 따라서, 제3 보정 계수(CC_LB)은 각 픽셀에 대한 휘도값으로 제3 기준값(LBm-21)를 나눈 값이 된다. 즉, CC_LB= LBm-21/LBij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 7, the luminance value in the pixel data for the third LED (blue LED) in the first pixel, that is, the (1,1) pixel is LB11, and the third LED (blue LED) in the (1, n) pixel The luminance value in the pixel data for is LB1n, and the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is LBmn. CC_LB is a third correction coefficient, and is determined depending on a reference value for each position (here, a third reference value). For example, as illustrated in FIG. 7, among the luminance values in the pixel data for the third LED (blue LED), if the luminance value of the (m-2,1) pixel is the lowest, the third reference value is LBm- 21. Therefore, the third correction coefficient CC_LB is a value obtained by dividing the third reference value LBm-21 by the luminance value for each pixel. That is, CC_LB = LBm-21 / LBij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제3 보정 계수(CC_LB)는 LBm-21/LB11이고, (1,2) 픽셀의 제3 보정 계수(CC_LB)는 LBm-21/LB12이고, (1,n) 픽셀의 제3 보정 계수(CC_LB)는 LBm-21/LB1n이며, (m,n) 픽셀의 제3 보정 계수(CC_LB)는 LBm-21/LBmn이 된다.For example, the third correction factor (CC_LB) of the (1,1) pixel is LBm-21 / LB11, and the third correction factor (CC_LB) of the (1,2) pixel is LBm-21 / LB12, and (1 , n) The third correction coefficient (CC_LB) of the pixel is LBm-21 / LB1n, and the third correction coefficient (CC_LB) of the (m, n) pixel is LBm-21 / LBmn.
이와 같이, 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터 중 제3 엘이디에 관한 픽셀 데이터, 즉 제3 픽셀 데이터 내의 제3 엘이디들별 휘도값에서, 제3 기준값(ref_LB)을 결정하고 제3 기준값에 의해 각각의 픽셀 내 제3 엘이디에 대한 제3 보정 계수(CC_LB)가 결정된다.As described above, from the pixel data of the third LED among the pixel data measured at the first position (left position, P1), that is, the luminance value for each of the third LEDs in the third pixel data, the third reference value ref_LB is determined, The third correction value CC_LB for the third LED in each pixel is determined by the third reference value.
도 8 내지 도 10은 제2 위치(중앙 위치, P2)에서 획득된 픽셀 데이터의 구체적인 예를 나타낸 도면들로서, 도 8은 제2 위치에서의 적색 엘이디(R)에 대한 데이터이고, 도 9는 제2 위치에서의 녹색 엘이디(G)에 대한 데이터이고, 도 10은 제2 위치에서의 청색 엘이디(B)에 대한 데이터이다.8 to 10 are views showing a specific example of the pixel data obtained at the second position (central position, P2), FIG. 8 is data for the red LED R at the second position, and FIG. 9 is the second Data for the green LED (G) at the 2 position, and FIG. 10 is data for the blue LED (B) at the second position.
도 8을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CR11이고, (1,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CR1n이고, (m,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CRmn이다. CC_CR은 제4 보정 계수로서, 위치별 기준값(여기서는, 제4 기준값)에 의존하여 결정된다. 예컨대, 도 8에 도시된 바와 같이, 제1 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (m-1,n-1) 픽셀의 휘도값이 가장 낮은 경우라면, 제4 기준값은 CRm-1n-1이 된다. 따라서, 제4 보정 계수(CC_CR)은 각 픽셀에 대한 휘도값으로 제4 기준값(CRm-1n-1)를 나눈 값이 된다. 즉, CC_CR= CRm-1n-1/CRij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 8, the luminance value in the pixel data for the first LED (red LED) in the first pixel, that is, the (1,1) pixel is CR11, and the first LED (red LED) in the (1, n) pixel The luminance value in the pixel data for is CR1n, and the luminance value in the pixel data for the first LED (red LED) in (m, n) pixels is CRmn. CC_CR is a fourth correction coefficient, and is determined depending on a reference value for each position (here, a fourth reference value). For example, as illustrated in FIG. 8, among the luminance values in the pixel data for the first LED (blue LED), if the luminance value of the (m-1, n-1) pixel is the lowest, the fourth reference value is It becomes CRm-1n-1. Therefore, the fourth correction coefficient CC_CR is a value obtained by dividing the fourth reference value CRm-1n-1 by the luminance value for each pixel. That is, CC_CR = CRm-1n-1 / CRij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제4 보정 계수(CC_CR)는 CRm-1n-1/CR11이고, (1,2) 픽셀의 제4 보정 계수(CC_CR)는 CRm-1n-1/CR12이고, (1,n) 픽셀의 제4 보정 계수(CC_CR)는 CRm-1n-1/CR1n이며, (m,n) 픽셀의 제4 보정 계수(CC_CR)는 CRm-1n-1/CRmn이 된다.For example, the fourth correction coefficient (CC_CR) of the (1,1) pixel is CRm-1n-1 / CR11, and the fourth correction coefficient (CC_CR) of the (1,2) pixel is CRm-1n-1 / CR12 Is, the fourth correction coefficient (CC_CR) of the (1, n) pixel is CRm-1n-1 / CR1n, and the fourth correction coefficient (CC_CR) of the (m, n) pixel is CRm-1n-1 / CRmn .
이와 같이, 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터 중 제1 엘이디(적색 엘이디)에 관한 픽셀 데이터, 즉 제4 픽셀 데이터 내의 제1 엘이디들별 휘도값에서, 제4 기준값(ref_CR)을 결정하고 제4 기준값에 의해 각각의 픽셀 내 제1 엘이디(적색 엘이디)에 대한 제4 보정 계수(CC_CR)가 결정된다.As described above, in the pixel data related to the first LED (red LED) among the pixel data measured at the second position (center position, P2), that is, the luminance value for each of the first LEDs in the fourth pixel data, the fourth reference value (ref_CR ) Is determined, and a fourth correction coefficient (CC_CR) for the first LED (red LED) in each pixel is determined by the fourth reference value.
도 9를 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CG11이고, (1,n) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CG1n이고, (m,n) 픽셀에서 제1 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CGmn이다. CC_CG은 제5 보정 계수로서, 위치별 기준값(여기서는, 제5 기준값)에 의존하여 결정된다. 예컨대, 도 9에 도시된 바와 같이, 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (1,4) 픽셀의 휘도값이 가장 낮은 경우라면, 제5 기준값은 CG14가 된다. 따라서, 제5 보정 계수(CC_CG)은 각 픽셀에 대한 휘도값으로 제5 기준값(CG14)을 나눈 값이 된다. 즉, CC_CG= CG14/CGij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 9, the luminance value in the pixel data for the second LED (green LED) in the first pixel, that is, the (1,1) pixel is CG11, and the second LED (green LED) in the (1, n) pixel The luminance value in the pixel data for is CG1n, and the luminance value in the pixel data for the first LED (green LED) in (m, n) pixels is CGmn. CC_CG is a fifth correction coefficient, and is determined depending on a reference value for each position (here, a fifth reference value). For example, as shown in FIG. 9, among the luminance values in the pixel data for the second LED (green LED), if the luminance value of the (1,4) pixel is the lowest, the fifth reference value is CG14. Therefore, the fifth correction coefficient CC_CG is a value obtained by dividing the fifth reference value CG14 by the luminance value for each pixel. That is, CC_CG = CG14 / CGij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제5 보정 계수(CC_CG)는 CG14/CG11이고, (1,2) 픽셀의 제5 보정 계수(CC_CG)는 CG14/CG12이고, (1,n) 픽셀의 제5 보정 계수(CC_CG)는 CG14/CG1n이며, (m,n) 픽셀의 제5 보정 계수(CC_CG)는 CG14/CGmn이 된다.For example, the fifth correction coefficient (CC_CG) of (1,1) pixels is CG14 / CG11, the fifth correction coefficient (CC_CG) of (1,2) pixels is CG14 / CG12, and (1, n) pixels The fifth correction coefficient of CC_CG is CG14 / CG1n, and the fifth correction coefficient (CC_CG) of (m, n) pixels is CG14 / CGmn.
이와 같이, 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터 중 제2 엘이디(녹색 엘이디)에 관한 픽셀 데이터, 즉 제5 픽셀 데이터 내의 제2 엘이디들별 휘도값에서, 제5 기준값(ref_CG)을 결정하고 제5 기준값에 의해 각각의 픽셀 내 제2 엘이디(녹색 엘이디)에 대한 제5 보정 계수(CC_CG)가 결정된다.As described above, in the pixel data related to the second LED (green LED) among the pixel data measured at the second position (center position, P2), that is, the luminance value for each of the second LEDs in the fifth pixel data, the fifth reference value (ref_CG ) And a fifth correction coefficient (CC_CG) for the second LED (green LED) in each pixel is determined by the fifth reference value.
도 10을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CB11이고, (1,n) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CB1n이고, (m,n) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 CBmn이다. CC_CB는 제6 보정 계수로서, 위치별 기준값(여기서는, 제6 기준값)에 의존하여 결정된다. 예컨대, 도 10에 도시된 바와 같이, 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중, (2,4) 픽셀의 휘도값이 가장 낮은 경우라면, 제6 기준값은 CB24가 된다. 따라서, 제6 보정 계수(CC_CB)은 각 픽셀에 대한 휘도값으로 제6 기준값(CB24)을 나눈 값이 된다. 즉, CC_CB= CB24/CBij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 10, the luminance value in the pixel data for the third LED (blue LED) in the first pixel, (1,1) pixels is CB11, and the third LED (blue LED) in (1, n) pixels The luminance value in the pixel data for is CB1n, and the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is CBmn. CC_CB is a sixth correction coefficient and is determined depending on a reference value for each position (here, a sixth reference value). For example, as illustrated in FIG. 10, among the luminance values in the pixel data for the third LED (blue LED), if the luminance value of the (2,4) pixel is the lowest, the sixth reference value is CB24. Accordingly, the sixth correction coefficient CC_CB is a value obtained by dividing the sixth reference value CB24 by the luminance value for each pixel. That is, CC_CB = CB24 / CBij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제6 보정 계수(CC_CB)는 CB24/CB11이고, (1,2) 픽셀의 제6 보정 계수(CC_CB)는 CB24/CB12이고, (1,n) 픽셀의 제6 보정 계수(CC_CB)는 CB24/CB1n이며, (m,n) 픽셀의 제6 보정 계수(CC_CB)는 CB24/CBmn이 된다.For example, the sixth correction coefficient (CC_CB) of the (1,1) pixel is CB24 / CB11, the sixth correction coefficient (CC_CB) of the (1,2) pixel is CB24 / CB12, and the (1, n) pixel The 6th correction coefficient (CC_CB) of is CB24 / CB1n, and the 6th correction coefficient (CC_CB) of (m, n) pixels is CB24 / CBmn.
이와 같이, 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터 중 제3 엘이디(청색 엘이디)에 관한 픽셀 데이터, 즉 제6 픽셀 데이터 내의 제3 엘이디들별 휘도값에서, 제6 기준값(ref_CB)을 결정하고 제6 기준값에 의해 각각의 픽셀 내 제3 엘이디(청색 엘이디)에 대한 제6 보정 계수(CC_CB)가 결정된다.As described above, in the pixel data related to the third LED (blue LED) among the pixel data measured at the second position (center position, P2), that is, the luminance value for each of the third LEDs in the sixth pixel data, the sixth reference value (ref_CB ) And a sixth correction coefficient (CC_CB) for a third LED (blue LED) in each pixel is determined by the sixth reference value.
도 11 내지 도 13은 제3 위치(우측 위치, P3)에서 획득된 픽셀 데이터의 구체적인 예를 나타낸 도면들로서, 도 11은 제3 위치에서의 적색 엘이디(R)에 대한 데이터이고, 도 12는 제3 위치에서의 녹색 엘이디(G)에 대한 데이터이고, 도 13은 제3 위치에서의 청색 엘이디(B)에 대한 데이터이다.11 to 13 are views showing a specific example of the pixel data obtained at the third position (right position, P3), FIG. 11 is data for the red LED R at the third position, and FIG. 12 is the first Data for the green LED (G) at the 3 position, and FIG. 13 is data for the blue LED (B) at the 3rd position.
도 11을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RR11이고, (1,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RR1n이고, (m,n) 픽셀에서 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RRmn이다. CC_RR은 제7 보정 계수로서, 위치별 기준값(여기서는, 제7 기준값(ref_RR))에 의존하여 결정된다. 예컨대, 도 11에 도시된 바와 같이, 제1 엘이디(적색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중 (m-1,3) 픽셀의 휘도값이 가장 낮은 경우라면, 제7 기준값은 RRm-13가 된다. 따라서, 제7 보정 계수(CC_RR)은 각 픽셀에 대한 휘도값으로 제7 기준값(RRm-13)을 나눈 값이 된다. 즉, CC_RR= RRm-13/RRij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 11, the luminance value in the pixel data for the first LED (red LED) in the first pixel, that is, the (1,1) pixel is RR11, and the first LED (red LED) in the (1, n) pixel The luminance value in the pixel data for is RR1n, and the luminance value in the pixel data for the first LED (red LED) at (m, n) pixels is RRmn. CC_RR is a seventh correction coefficient, and is determined depending on a reference value for each position (here, a seventh reference value (ref_RR)). For example, as illustrated in FIG. 11, if the luminance value of the (m-1,3) pixel among the luminance values in the pixel data for the first LED (red LED) is the lowest, the seventh reference value is RRm-13. Becomes Therefore, the seventh correction coefficient CC_RR is a value obtained by dividing the seventh reference value RRm-13 by the luminance value for each pixel. That is, CC_RR = RRm-13 / RRij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제7 보정 계수(CC_RR)는 RRm-13/RR11이고, (1,2) 픽셀의 제7 보정 계수(CC_RR)는 RRm-13/RR12이고, (1,n) 픽셀의 제7 보정 계수(CC_RR)는 RRm-13/RR1n이며, (m,n) 픽셀의 제7 보정 계수(CC_RR)는 RRm-13/RRmn이 된다.For example, the seventh correction coefficient (CC_RR) of the (1,1) pixel is RRm-13 / RR11, and the seventh correction coefficient (CC_RR) of the (1,2) pixel is RRm-13 / RR12, and (1 , n) The seventh correction coefficient (CC_RR) of the pixel is RRm-13 / RR1n, and the seventh correction coefficient (CC_RR) of the (m, n) pixel is RRm-13 / RRmn.
이와 같이, 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터 중 제1 엘이디(적색 엘이디)에 관한 픽셀 데이터, 즉 제7 픽셀 데이터 내의 제1 엘이디들별 휘도값에서, 제7 기준값(ref_RR)을 결정하고 이렇게 결정된 제7 기준값에 의해 각각의 픽셀 내 제1 엘이디(적색 엘이디)에 대한 제7 보정 계수(CC_RR)가 결정된다.As described above, in the pixel data related to the first LED (red LED) among the pixel data measured at the third position (right position, P3), that is, the luminance value for each of the first LEDs in the seventh pixel data, the seventh reference value (ref_RR ) Is determined and a seventh correction coefficient (CC_RR) for the first LED (red LED) in each pixel is determined by the determined seventh reference value.
도 12를 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RG11이고, (1,n) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RG1n이고, (m,n) 픽셀에서 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RGmn이다. CC_RG는 제8 보정 계수로서, 위치별 기준값(여기서는, 제8 기준값(ref_RG))에 의존하여 결정된다. 예컨대, 도 12에 도시된 바와 같이, 제2 엘이디(녹색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중 (2,n-1) 픽셀의 휘도값이 가장 낮은 경우라면, 제8 기준값은 RG2n-1가 된다. 따라서, 제8 보정 계수(CC_RG)는 각 픽셀에 대한 휘도값으로 제8 기준값(RG2n-1)을 나눈 값이 된다. 즉, CC_RG= RG2n-1/RGij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 12, the luminance value in the pixel data for the second LED (green LED) in the first pixel, that is, the (1,1) pixel is RG11, and the second LED in the (1, n) pixel (green LED) The luminance value in the pixel data for is RG1n, and the luminance value in the pixel data for the second LED (green LED) in the (m, n) pixel is RGmn. CC_RG is an eighth correction coefficient, and is determined depending on the reference value for each position (here, the eighth reference value ref_RG). For example, as illustrated in FIG. 12, if the luminance value of the (2, n-1) pixel among the luminance values in the pixel data for the second LED (green LED) is the lowest, the eighth reference value is RG2n-1. Becomes Accordingly, the eighth correction coefficient CC_RG is a value obtained by dividing the eighth reference value RG2n-1 by the luminance value for each pixel. That is, CC_RG = RG2n-1 / RGij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제8 보정 계수(CC_RG)는 RG2n-1/RG11이고, (1,2) 픽셀의 제8 보정 계수(CC_RG)는 RG2n-1/RG12이고, (1,n) 픽셀의 제8 보정 계수(CC_RG)는 RG2n-1/RG1n이며, (m,n) 픽셀의 제8 보정 계수(CC_RG)는 RG2n-1/RGmn이 된다.For example, the eighth correction coefficient (CC_RG) of the (1,1) pixel is RG2n-1 / RG11, and the eighth correction coefficient (CC_RG) of the (1,2) pixel is RG2n-1 / RG12, (1 , n) The eighth correction coefficient (CC_RG) of the pixel is RG2n-1 / RG1n, and the eighth correction coefficient (CC_RG) of the (m, n) pixel is RG2n-1 / RGmn.
이와 같이, 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터 중 제2 엘이디(녹색 엘이디)에 관한 픽셀 데이터, 즉 제8 픽셀 데이터 내의 제2 엘이디들별 휘도값에서, 제8 기준값(ref_RG)을 결정하고 이렇게 결정된 제8 기준값에 의해 각각의 픽셀 내 제2 엘이디(녹색 엘이디)에 대한 제8 보정 계수(CC_RG)가 결정된다.As described above, in the pixel data related to the second LED (green LED) among the pixel data measured at the third position (right position, P3), that is, the luminance value for each of the second LEDs in the eighth pixel data, the eighth reference value ref_RG ) Is determined and the eighth correction coefficient CC_RG for the second LED (green LED) in each pixel is determined by the determined eighth reference value.
도 13을 참조하면, 첫 번째 픽셀, 즉 (1,1) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RB11이고, (1,n) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RB1n이고, (m,n) 픽셀에서 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값은 RBmn이다. CC_RB는 제9 보정 계수로서, 위치별 기준값(여기서는, 제9 기준값(ref_RB))에 의존하여 결정된다. 예컨대, 도 13에 도시된 바와 같이, 제3 엘이디(청색 엘이디)에 대한 픽셀 데이터 내의 휘도값들 중 (1,1) 픽셀의 휘도값이 가장 낮은 경우라면, 제9 기준값은 RB11이 된다. 따라서, 제9 보정 계수(CC_RB)는 각 픽셀에 대한 휘도값으로 제9 기준값(RB11)을 나눈 값이 된다. 즉, CC_RB = RB11/RBij이다(여기서, i = 1, 2, ..., m이고, j = 1, 2, ..., n임).Referring to FIG. 13, the luminance value in the pixel data for the third LED (blue LED) in the first pixel, that is, the (1,1) pixel is RB11, and the third LED (blue LED) in the (1, n) pixel The luminance value in the pixel data for is RB1n, and the luminance value in the pixel data for the third LED (blue LED) in (m, n) pixels is RBmn. CC_RB is the ninth correction coefficient, and is determined depending on the reference value for each position (here, the ninth reference value (ref_RB)). For example, as illustrated in FIG. 13, if the luminance value of the (1,1) pixel among the luminance values in the pixel data for the third LED (blue LED) is the lowest, the ninth reference value is RB11. Therefore, the ninth correction coefficient CC_RB is a value obtained by dividing the ninth reference value RB11 by the luminance value for each pixel. That is, CC_RB = RB11 / RBij (where i = 1, 2, ..., m, and j = 1, 2, ..., n).
예를 들어, (1,1) 픽셀의 제9 보정 계수(CC_RB)는 RB11/RB11이고, (1,2) 픽셀의 제9 보정 계수(CC_RB)는 RB11/RB12이고, (1,n) 픽셀의 제9 보정 계수(CC_RB)는 RB11/RB1n이며, (m,n) 픽셀의 제9 보정 계수(CC_RB)는 RB11/RBmn이 된다.For example, the ninth correction coefficient (CC_RB) of (1,1) pixels is RB11 / RB11, the ninth correction coefficient (CC_RB) of (1,2) pixels is RB11 / RB12, and (1, n) pixels The ninth correction coefficient (CC_RB) of is RB11 / RB1n, and the ninth correction coefficient (CC_RB) of (m, n) pixels is RB11 / RBmn.
이와 같이, 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터 중 제3 엘이디(청색 엘이디)에 관한 픽셀 데이터, 즉 제9 픽셀 데이터 내의 제3 엘이디들별 휘도값에서, 제9 기준값(ref_RB)을 결정하고 이렇게 결정된 제9 기준값에 의해 각각의 픽셀 내 제3 엘이디(청색 엘이디)에 대한 제9 보정 계수(CC_RB)가 결정된다.As described above, in the pixel data related to the third LED (blue LED) among the pixel data measured at the third position (right position, P3), that is, the luminance value for each of the third LEDs in the ninth pixel data, the ninth reference value (ref_RB ) Is determined and the ninth correction coefficient CC_RB for the third LED (blue LED) in each pixel is determined by the determined ninth reference value.
이상과 같이, 본 발명의 엘이디 디스플레이의 휘도 보정 방법은, 엘이디 디스플레이의 전방의 서로 다른 위치들(P1, P2, P3: 도 1)에서 위치별 픽셀 데이터를 획득하고, 이렇게 획득된 위치별 픽셀 데이터 각각에서 위치별 기준값을 결정한 후, 결정된 위치별 기준값에 기초하여 위치별 보정 계수들을 픽셀들 각각(구체적으로는, 픽셀들 각각의 적색 엘이디, 녹색 엘이디, 청색 엘이디 각각)에 대해 결정하게 된다. 앞서 도면들을 참조하여 설명된 바와 같이, 위치별 보정 계수들은 결정된 위치별 기준값에 대한 각각의 픽셀 내 엘이디들의 휘도값의 비(ratio)로 표현된다.As described above, the luminance correction method of the LED display of the present invention acquires pixel data for each position at different positions (P1, P2, P3: FIG. 1) in front of the LED display, and thus obtained pixel data for each position After determining the reference value for each location, the correction coefficients for each location are determined based on the determined location-specific reference value for each of the pixels (specifically, each of the red LED, green LED, and blue LED of each pixel). As described above with reference to the drawings, the correction coefficients for each position are expressed as a ratio of luminance values of LEDs in each pixel to the determined reference value for each position.
도 14는 위치별 기준값들(제1 내지 제9 기준값들임)을 기준으로 컴퓨팅된 보정 계수들(CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB)을 픽셀들 각각의 엘이디들(제1 엘이디(R), 제2 엘이디(G), 및 제3 엘이디(B)) 각각에 적용하기 위한 테이블의 예를 나타낸 도면이고, 도 15는 도 14의 보정 계수들을 픽셀들 각각의 엘이디들에 적용한 상태의 최종 픽셀 데이터(F_pxd)를 나타낸 도면이다.FIG. 14 shows the correction coefficients (CC_LR, CC_LG, CC_LB, CC_CR, CC_CG, CC_CB, CC_RR, CC_RG, CC_RB) computed based on the location-specific reference values (the first to ninth reference values). (First LED (R), second LED (G), and a third LED (B)) is a diagram showing an example of a table for applying to each, Figure 15 is the LED of each of the pixels of the correction coefficients of Figure 14 It is a figure showing the final pixel data (F_pxd) in a state applied to the fields.
도 14를 참조하면, 제1 열에 위치한 픽셀들((m,n) 표기에서 m 부분이 행이고, n 부분이 열인 것으로 정의함), 즉, (1,1) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), (2,1) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), ..., (m,1) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B) 각각에 대하여, 적색 엘이디(R)에 대하여는 제1 보정 계수(CC_LR)를 적용하고, 녹색 엘이디(G)에 대하여는 제2 보정 계수(CC_LG)를 적용하고, 청색 엘이디(B)에 대하여는 제3 보정 계수(CC_LB)를 적용하였다. 여기서, 제1 보정 계수(CC_LR), 제2 보정 계수(CC_LG) 및 제3 보정 계수(CC_LB)는 모두 제1 위치(좌측 위치, P1)에서 측정된 픽셀 데이터에 기초하여 컴퓨팅된 계수들이다.Referring to FIG. 14, pixels located in a first column (in the (m, n) notation, m part is a row and n part is defined as a column), that is, a red LED (R) in the (1,1) pixel, Green LED (G), Blue LED (B), Red LED in (2,1) pixels (R), Green LED (G), Blue LED (B), ..., (m, 1) Red LED in pixels For each of the (R), green LED (G), and blue LED (B), the first correction factor (CC_LR) is applied to the red LED (R), and the second correction factor (CC_LG) is applied to the green LED (G). ) Was applied, and a third correction coefficient (CC_LB) was applied to the blue LED (B). Here, the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB are all coefficients computed based on the pixel data measured at the first position (left position, P1).
그리고, 제2 열에 위치한 픽셀들, 즉, (1,2) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), (2,2) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), ..., (m,2) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B) 각각에 대하여, 적색 엘이디(R)에 대하여는 제4 보정 계수(CC_CR)를 적용하고, 녹색 엘이디(G)에 대하여는 제5 보정 계수(CC_CG)를 적용하고, 청색 엘이디(B)에 대하여는 제6 보정 계수(CC_CB)를 적용하였다. 여기서, 제4 보정 계수(CC_CR), 제5 보정 계수(CC_CG) 및 제6 보정 계수(CC_CB)는 모두 제2 위치(중앙 위치, P2)에서 측정된 픽셀 데이터에 기초하여 컴퓨팅된 계수들이다.Then, the pixels located in the second column, that is, the red LED (R), the green LED (G), the blue LED (B) in the (1,2) pixel, the red LED (R) in the (2,2) pixel, green LED (G), Blue LED (B), ..., (m, 2) For each red LED (R), green LED (G), blue LED (B) in the pixel, for red LED (R) The fourth correction factor (CC_CR) was applied, the fifth correction factor (CC_CG) was applied to the green LED (G), and the sixth correction factor (CC_CB) was applied to the blue LED (B). Here, the fourth correction coefficient CC_CR, the fifth correction coefficient CC_CG, and the sixth correction coefficient CC_CB are all coefficients computed based on the pixel data measured at the second position (central position, P2).
또한, 제3 열에 위치한 픽셀들, 즉, (1,3) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), (2,3) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B), ..., (m,3) 픽셀 내 적색 엘이디(R), 녹색 엘이디(G), 청색 엘이디(B) 각각에 대하여, 적색 엘이디(R)에 대하여는 제7 보정 계수(CC_RR)를 적용하고, 녹색 엘이디(G)에 대하여는 제8 보정 계수(CC_RG)를 적용하고, 청색 엘이디(B)에 대하여는 제9 보정 계수(CC_RB)를 적용하였다. 여기서, 제7 보정 계수(CC_RR), 제8 보정 계수(CC_RG) 및 제9 보정 계수(CC_RB)는 모두 제3 위치(우측 위치, P3)에서 측정된 픽셀 데이터에 기초하여 컴퓨팅된 계수들이다.In addition, the pixels located in the third column, that is, the red LED (R) in the (1,3) pixel, the green LED (G), the blue LED (B), and the red LED (R) in the (2,3) pixel, green LED (G), Blue LED (B), ..., (m, 3) For each red LED (R), green LED (G), blue LED (B) in the pixel, for red LED (R) The seventh correction factor (CC_RR) was applied, the eighth correction factor (CC_RG) was applied to the green LED (G), and the ninth correction factor (CC_RB) was applied to the blue LED (B). Here, the seventh correction coefficient CC_RR, the eighth correction coefficient CC_RG and the ninth correction coefficient CC_RB are all coefficients computed based on the pixel data measured at the third position (right position, P3).
그리고, 제4 열에 위치한 픽셀들에 대하여는 제1 열과 마찬가지로 제1 보정 계수(CC_LR), 제2 보정 계수(CC_LG) 및 제3 보정 계수(CC_LB)를 적용하고, 제5 열에 위치한 픽셀들에 대하여는 제2 열과 마찬가지로 제4 보정 계수(CC_CR), 제5 보정 계수(CC_CG) 및 제6 보정 계수(CC_CB)를 적용하고, 제6 열에 위치한 픽셀들에 대하여는 제3 열과 마찬가지로 제7 보정 계수(CC_RR), 제8 보정 계수(CC_RG) 및 제9 보정 계수(CC_RB)를 적용하였다. 이와 같이 반복하여 적용함으로써, 픽셀들 전체 갯수에 대한 각 위치별 보정 계수들의 비율이 모두 동일하게 1:1:1이 되도록 적용할 수 있다. 즉, 제1 위치(P1)에서 측정된 픽셀 데이터에 기초한 보정 계수들의 개수를 N(LR,LG,LB)라 하고, 제2 위치(P2)에서 측정된 픽셀 데이터에 기초한 보정 계수들의 개수를 N(CR,CG,CB)라 하고, 제3 위치(P3)에서 측정된 픽셀 데이터에 기초한 보정 계수들의 개수를 N(RR,RG,RB)라고 할 때, 엘이디 디스플레이 전체 픽셀들에 대하여, N(LR,LG,LB) = N(CR,CG,CB) = N(RR,RG,RB)가 되도록 적용할 수 있다.Also, the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB are applied to the pixels located in the fourth column, and the pixels located in the fifth column are the same as the first column. Like the second column, the fourth correction coefficient (CC_CR), the fifth correction coefficient (CC_CG), and the sixth correction coefficient (CC_CB) are applied, and for the pixels located in the sixth column, the seventh correction coefficient (CC_RR), like the third column, The eighth correction factor (CC_RG) and the ninth correction factor (CC_RB) were applied. By repeatedly applying as described above, it is possible to apply such that the ratio of the correction coefficients for each position to the total number of pixels is equal to 1: 1: 1. That is, the number of correction coefficients based on the pixel data measured at the first position P1 is called N (LR, LG, LB), and the number of correction coefficients based on the pixel data measured at the second position P2 is N When (CR, CG, CB) is called and the number of correction coefficients based on the pixel data measured at the third position P3 is N (RR, RG, RB), for all the LED displays, N ( LR, LG, LB) = N (CR, CG, CB) = N (RR, RG, RB).
최종 픽셀 데이터(F_pxd)는 도 15에 도시된 예와 같이 표현될 수 있다. 즉, (1,1) 픽셀의 적색 엘이디(R)에 대하여는 앞서 도 14에서 제1 보정 계수(CC_LR)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)는 LR11*CC_LR이 될 수 있고, 녹색 엘이디(G)에 대하여는 앞서 도 14에서 제2 보정 계수(CC_LG)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)는 LG11*CC_LG가 될 수 있고, 청색 엘이디(B)에 대하여는 앞서 도 14에서 제3 보정 계수(CC_LB)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)_는 LB11*CC_LB가 될 수 있다. 마찬가지로, (m,n) 픽셀의 적색 엘이디(R)에 대하여는 앞서 도 14에서 제7 보정 계수(CC_RR)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)는 RRmn*CC_RR이 될 수 있고, 녹색 엘이디(G)에 대하여는 앞서 도 14에서 제8 보정 계수(CC_RG)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)는 RGmn*CC_RG가 될 수 있고, 청색 엘이디(B)에 대하여는 앞서 도 14에서 제9 보정 계수(CC_RB)가 적용되었으므로, 보정 이후의 최종 픽셀 데이터(F_pxd)_는 RBmn*CC_RB가 될 수 있다. The final pixel data F_pxd may be expressed as shown in the example shown in FIG. 15. That is, since the first correction coefficient CC_LR in FIG. 14 was previously applied to the red LED R of the (1,1) pixel, the final pixel data F_pxd after correction may be LR11 * CC_LR, and green Since the second correction coefficient CC_LG in FIG. 14 was previously applied to the LED G, the final pixel data F_pxd after the correction may be LG11 * CC_LG, and the blue LED B may be previously described in FIG. 14. Since the third correction coefficient CC_LB is applied, the final pixel data F_pxd_ after correction may be LB11 * CC_LB. Similarly, since the seventh correction coefficient (CC_RR) in FIG. 14 was previously applied to the red LED R of the (m, n) pixel, the final pixel data (F_pxd) after correction may be RRmn * CC_RR, and green Since the eighth correction coefficient CC_RG in FIG. 14 was previously applied to the LED G, the final pixel data F_pxd after correction may be RGmn * CC_RG, and the blue LED B may be previously described in FIG. 14. Since the ninth correction coefficient CC_RB is applied, the final pixel data F_pxd_ after correction may be RBmn * CC_RB.
이와 같이 본 발명은 좌측 위치, 중앙 위치, 및 우측 위치 각각에 위치한 카메라를 이용하여 휘도를 측정하고, 기준값을 정하여 보정 계수를 컴퓨팅하여, 디스플레이 전체 픽셀들에 대하여 동일한 비율로 적용하여 광도값을 조절함으로써, 종래 엘이디 디스플레이의 시청 위치 별로 휘도의 차이를 보이게 되는 문제점을 해결하여 엘이디 디스플레이 장치를 통해 최적의 균일한 화상을 시청자가 시청할 수 있도록 하는 효과를 갖는다.As described above, the present invention measures luminance using cameras located at each of the left position, the center position, and the right position, computes a correction coefficient by setting a reference value, and adjusts the luminance value by applying the same ratio to all pixels of the display. By doing so, it solves the problem of showing the difference in luminance for each viewing position of the conventional LED display, and has the effect of allowing the viewer to view the optimal uniform image through the LED display device.
이상의 설명에서, 세 군데 위치에서 카메라로 측정하여 픽셀 데이터를 획득하고 있으나, 네 개의 위치 또는 그 보다 많은 위치에서 측정된 픽셀 데이터를 이용할 수도 있다.In the above description, pixel data is obtained by measuring with a camera at three locations, but pixel data measured at four or more locations may be used.
도 16은 본 발명의 일 실시예에 따른 엘이디 디스플레이(10)의 휘도 보정 시스템(100)을 설명하기 위한 도면이다.16 is a view for explaining the luminance correction system 100 of the LED display 10 according to an embodiment of the present invention.
도 16을 참조하여 본 발명의 일 실시예에 따른 엘이디 디스플레이(10)의 휘도 보정 시스템(100)을 설명하면, 적어도 제1 엘이디(도 2의 LR 참고), 제2 엘이디(도 2의 LG 참고) 및 제3 엘이디(도 2의 LB 참고)가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 횡방향과 종방향으로 배열된 본 발명의 엘이디 디스플레이(10)의 휘도 보정 시스템(100)은, 엘이디 디스플레이(10) 전방의 우측(P3), 가운데(P2) 및 좌측(P1)을 포함하는 서로 다른 위치에서 상기 엘이디 디스플레이(10)의 위치별 픽셀 데이터(ML_pxd, MC_pxd, MR_pxd)를 획득하는 픽셀 데이터부(110), 상기 픽셀 데이터부(110)에서 획득한 위치별 픽셀 데이터(ML_pxd, MC_pxd, MR_pxd)에서 각각의 위치별 기준값을 결정하는 기준값 설정부(120), 상기 기준값 설정부(120)에서 획득한 각각의 위치별 기준값에 따라 위치별 보정 계수를 상기 복수 개의 픽셀들 각각에 대하여 결정하는 보정 계수 설정부(130), 상기 보정 계수 설정부(130)에서 획득한 상기 위치별 보정 계수들을 일정 비율로 조합하여(도면에서 F_pxd), 복수 개의 픽셀들 전체에 적용하는 휘도 보정부(140)를 포함한다. 위치별 픽셀 데이터, 위치별 기준값, 위치별 보정 계수들에 관한 내용은 앞서 설명된 휘도 보정 방법의 내용이 그대로 적용될 수 있다.If the luminance correction system 100 of the LED display 10 according to an embodiment of the present invention is described with reference to FIG. 16, at least a first LED (see LR in FIG. 2) and a second LED (see LG in FIG. 2) ) And the third LED (refer to LB in FIG. 2), the luminance correction system 100 of the LED display 10 of the present invention, in which a plurality of pixels are formed in a horizontal direction and a vertical direction, is an LED display (10) Pixel data unit for obtaining pixel data (ML_pxd, MC_pxd, MR_pxd) for each position of the LED display 10 at different positions including the front right (P3), middle (P2), and left (P1) (110), the reference value setting unit 120 for determining the reference value for each location from the pixel data for each location (ML_pxd, MC_pxd, MR_pxd) acquired by the pixel data unit 110, obtained from the reference value setting unit 120 Recall the correction factor for each location according to the reference value for each location The correction coefficient setting unit 130 for determining for each of several pixels, and the correction coefficients for each position obtained by the correction coefficient setting unit 130 are combined at a certain ratio (F_pxd in the drawing), so that all of the plurality of pixels are It includes a luminance correction unit 140 applied to. For the pixel data for each location, the reference value for each location, and the correction coefficients for each location, the contents of the luminance correction method described above may be applied as it is.
또한, 도 2 내지 도 16을 함께 참조하면, 본 발명의 일 실시예에 따른, 적어도 제1 엘이디(예컨대, 도 2의 LR), 제2 엘이디(예컨대, 도 2의 LG) 및 제3 엘이디(예컨대, 도 2의 LB)가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 어레이된 엘이디 디스플레이(10)의 휘도 보정 시스템은, 상기 엘이디 디스플레이(10)의 전방의 좌측(P1)에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제1 기준값, 제2 기준값 및 제3 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비(ratio)를 형성한 제1 보정 계수(CC_LR), 제2 보정 계수(CC_LG) 및 제3 보정 계수(CC_LB)와, 상기 엘이디 디스플레이(10)의 전방의 가운데(P2)에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제4 기준값, 제5 기준값(CC_CG) 및 제6 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제4 보정 계수(CC_CR), 제5 보정 계수(CC_CG) 및 제6 보정 계수(CC_CB), 그리고, 상기 엘이디의 디스플레이(10)의 전방의 우측(P3)에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제7 기준값, 제8 기준값 및 제9 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제7 보정 계수(CC_RR), 제8 보정 계수(CC_RG) 및 제9 보정 계수(CC_RB)를 포함하며, 상기 제1 내지 제9 보정 계수들을 동일한 비율로 조합하여 상기 엘이디 디스플레이의 픽셀들 내의 상기 제1 엘이디, 제2 엘이디 및 제3 엘이디의 휘도값을 보정하는 것을 특징으로 한다.Also, referring to FIGS. 2 to 16 together, according to an embodiment of the present invention, at least a first LED (eg, LR in FIG. 2), a second LED (eg, LG in FIG. 2) and a third LED ( For example, the luminance correction system of the LED display 10 in which a plurality of pixels in which LB of FIG. 2 is formed as one pixel is arrayed is the first LED at the left P1 in front of the LED display 10, The ratio of the luminance values of the first LED, the second LED and the third LED to each of the first reference value, the second reference value, and the third reference value by measuring the luminance values of the second LED and the third LED ( ratio, the first correction coefficient CC_LR, the second correction coefficient CC_LG, and the third correction coefficient CC_LB, and the first LED in the center P2 of the front of the LED display 10, the By measuring the luminance values of the second LED and the third LED, each of the fourth reference value and the fifth group The fourth correction coefficient (CC_CR), the fifth correction coefficient (CC_CG) and the sixth, which form a ratio of the luminance values of the first LED, the second LED, and the third LED to the value (CC_CG) and the sixth reference value. Correction coefficient (CC_CB), and the luminance values of the first LED, the second LED, and the third LED on the right (P3) of the front of the LED display 10 are measured to determine the seventh reference value and the Seventh correction coefficient (CC_RR), eighth correction coefficient (CC_RG) and ninth correction coefficient forming ratios of luminance values of the first LED, the second LED and the third LED with respect to the 8 reference values and the ninth reference values (CC_RB) and combining the first to ninth correction coefficients at the same ratio to correct luminance values of the first LED, the second LED, and the third LED in the pixels of the LED display. .
이상에서 설명된 도 1 내지 도 16의 참조부호는 이하와 같다.Reference numerals of FIGS. 1 to 16 described above are as follows.
10 : 엘이디 디스플레이, P1 : 제1 위치(좌측 위치), P2 : 제2 위치(중앙 위치), P3 : 제3 위치(우측 위치), 110 : 픽셀 데이터부, 120 : 기준값 설정부, 130 : 보정 계수 설정부, 140 : 휘도 보정부.10: LED display, P1: first position (left position), P2: second position (center position), P3: third position (right position), 110: pixel data unit, 120: reference value setting unit, 130: correction Coefficient setting unit, 140: luminance correction unit.
이하에서는 도 17 내지 도 25를 참조하여, 본 발명의 휘도 보정 방법 및 휘도 보정 시스템에 관하여 설명한다. 도 17 내지 도 25에서의 참조부호들은 도 17 내지 도 25에만 국한되는 것임에 유의한다. 즉, 앞서 설명된 도 1 내지 도 16에 표시된 참조부호들은 도 1 내지 도 16에 국한되고, 이하에서 설명되는 도 17 내지 도 25에서의 참조부호들은 도 17 내지 도 25에 국한되는 것임에 유의한다.Hereinafter, a luminance correction method and a luminance correction system of the present invention will be described with reference to FIGS. 17 to 25. Note that reference numerals in FIGS. 17 to 25 are limited to FIGS. 17 to 25 only. That is, the reference numerals indicated in FIGS. 1 to 16 described above are limited to FIGS. 1 to 16, and the reference numerals in FIGS. 17 to 25 described below are limited to FIGS. 17 to 25. .
화상 데이터의 계조(gray level)는 낮은 영역에서부터 차례대로 저계조(low gray level) 영역, 중계조 영역(mid gray level) 및 고계조(high gray level) 영역으로 구분될 수 있으며, 본 명세서 내에서 고계조 영역은 대체로 최대 휘도값의 80% 이내의 영역이며, 저계조 영역은 고계조 영역의 최대 휘도값의 30% 이내의 영역이며, 그 밖의 나머지 영역은 중계조 영역으로 정의된다.The gray level of the image data may be divided into a low gray level area, a low gray level area, a mid gray level area, and a high gray level area, in order from a low area. The high gradation region is generally an area within 80% of the maximum luminance value, the low gradation region is the region within 30% of the maximum luminance value of the high gradation region, and the other regions are defined as the middle gradation region.
도 17은 본 발명의 일 실시예에 따른 휘도 보정 시스템 및 이를 통한 휘도 보정 방법을 설명하기 위한 도면이고, 도 18은 본 발명의 일 실시예에 따른 휘도 보정 시스템에서, 광 측정부(110)로 픽셀들 각각의 엘이디들의 휘도를 측정하는 방법을 설명하기 위한 도면이다. 도 18에서 엘이디 디스플레이의 픽셀(px)들의 개수는 m * n 개이고, 픽셀(px)들 각각은 풀-컬러 구현을 위해 적색 엘이디(R), 녹색 엘이디(G) 및 청색 엘이디(B)를 포함한다.17 is a view for explaining a luminance correction system according to an embodiment of the present invention and a luminance correction method through the same, and FIG. 18 is a luminance correction system according to an embodiment of the present invention, to the light measurement unit 110 It is a diagram for explaining a method of measuring the luminance of the LEDs of each pixel. In FIG. 18, the number of pixels (px) of the LED display is m * n, and each of the pixels (px) includes a red LED (R), a green LED (G), and a blue LED (B) for full-color implementation. do.
도 17과 도 18을 참조하면, 본 발명의 일 실시예에 따라, 행렬로 배열된 복수 개의 픽셀들을 포함하는 디스플레이의 휘도를 보정하기 위한 휘도 보정 시스템(100)은, 광 측정부(110), 최소값 추출부(120), 보정 계수 생성부(130) 및 정규화부(140)를 포함한다.17 and 18, according to an embodiment of the present invention, a luminance correction system 100 for correcting luminance of a display including a plurality of pixels arranged in a matrix includes: a light measurement unit 110, It includes a minimum value extraction unit 120, a correction coefficient generation unit 130 and a normalization unit 140.
광 측정부(110)는, 엘이디 디스플레이(1)의 픽셀들의 휘도를 측정하기 위한 구성요소이며, 예컨대, 카메라 또는 그 밖의 광 측정 장비일 수 있다. 광 측정부(110)에서, 엘이디 디스플레이(1)의 픽셀(px)들의 휘도를 측정하는 과정은 이하와 같다.The light measurement unit 110 is a component for measuring the luminance of the pixels of the LED display 1, and may be, for example, a camera or other light measurement equipment. In the light measuring unit 110, the process of measuring the luminance of the pixels (px) of the LED display 1 is as follows.
먼저, 엘이디 디스플레이(1)의 전체 픽셀들이 한 번에 점등될 경우 인접 픽셀들 간에 발생할 수 있는 광 간섭을 줄여 보정의 정확도를 높이기 위해, 예컨대, 9개, 16개 등의 픽셀들을 포함하도록 그룹화하여, 하나의 그룹 내에서 하나씩의 픽셀들만을 한 번에 점등시킴으로써, 인접 픽셀로부터의 광 간섭이 없는 상태에서 광 측정부(110)로 측정될 수 있도록 한다. 따라서, 하나의 그룹에 포함된 픽셀의 개수가 9개인 경우, 도 18에서 흑색으로 표시된 바와 같이, 점등되는 픽셀들은 행방향으로도 두 개씩의 픽셀들을 건너뛰어 점등되고 열 방향으로 두 개씩의 픽셀들을 건너뛰어 점등되도록 하여 광 측정부(110)로 측정한다. 하나의 픽셀 내의 세 개의 엘이디들, 즉, 적색 엘이디(R), 녹색 엘이디(G) 및 청색 엘이디(B) 각각에 대하여 이와 같은 방식으로 점등된다. 즉, 행방향으로는 픽셀 px11 내의 적색 엘이디(R), 픽셀 px14 내의 적색 엘이디(R) 등이 점등되고, 열방향으로는 픽셀 px11 내의 적색 엘이디(R), 픽셀 px41 내의 적색 엘이디(R), px44 내의 적색 엘이디(R) 등이 동시에 점등되어 광 측정부(110)로 휘도를 측정하고, 이들에 대해 측정이 종료되면, 그 다음 픽셀들 내의 적색 엘이디들에 대하여 반복한다. 그 다음으로 점등되는 픽셀들은, 예컨대, px12, px15, px18, ..., px42, px45, ... 등이 될 수 있다.First, when all the pixels of the LED display 1 are lit at one time, to reduce the optical interference that may occur between adjacent pixels to increase the accuracy of the correction, for example, by grouping to include 9, 16, etc. pixels , By lighting only one pixel in a group at a time, it can be measured by the light measuring unit 110 in the absence of light interference from adjacent pixels. Therefore, when the number of pixels included in one group is 9, as shown in black in FIG. 18, the pixels that are lit are turned on by skipping two pixels in the row direction and two pixels in the column direction. The light is skipped and measured by the light measurement unit 110. The three LEDs in one pixel, that is, the red LED (R), the green LED (G), and the blue LED (B), respectively, are lit in this way. That is, in the row direction, the red LED (R) in the pixel px11, the red LED (R) in the pixel px14, and the like, the red LED (R) in the pixel px11 in the column direction, and the red LED (R) in the pixel px41, The red LEDs (R) and the like in px44 light up at the same time to measure the luminance with the light measuring unit 110, and when the measurement is finished, repeat for the red LEDs in the next pixels. The next lit pixels may be, for example, px12, px15, px18, ..., px42, px45, ..., and the like.
픽셀(px)들(구체적으로는, 픽셀들 내의 엘이디들을 의미함)을 점등시킨 후, 점등된 픽셀들이 고계조 영역에서 최대 휘도값들을 갖도록 하는 전류를 인가하여 점등된 픽셀들에 대하여 광 측정부(110)로 측정하고, 또한, 저계조 영역에서 최대 휘도값을 갖도록 하는 전류를 인가하여 점등된 픽셀들에 대하여 광 측정부(110)로 측정한다. 광 측정부(110)는 이와 같은 과정을 통해, 픽셀(px)들 각각에 대한 고계조 영역에서의 최대 휘도값과 저계조 영역에서의 최대 휘도값을 포함하는 보정 데이터를 생성한다. 최소값 추출부(120)는, 광 측정부(110)에 의해 측정/생성된 보정 데이터 내에서 고계조 영역에서의 최대 휘도값들을 비교하여, 최대 휘도값들 중에서 최소값인 제1 최소값을 추출해낸다. 또한, 최소값 추출부(120)는, 광 측정부(110)에 의해 측정/생성된 보정 데이터 내에서 저계조 영역에서의 최대 휘도값들을 비교하여, 저계조 영역에서의 최대 휘도값들 중에서 최소값인 제2 최소값을 추출해낸다.After the pixels (px) (specifically, LEDs in the pixels) are turned on, a light measuring unit is applied to the lit pixels by applying a current that causes the lit pixels to have maximum luminance values in a high gradation region. Measured by (110), and by applying a current to have a maximum luminance value in the low gradation region, the lighted pixels are measured by the light measurement unit 110. Through the above process, the light measurement unit 110 generates correction data including the maximum luminance value in the high gradation region and the maximum luminance value in the low gradation region for each of the pixels (px). The minimum value extraction unit 120 compares the maximum luminance values in the high gradation region within the correction data measured / generated by the light measurement unit 110 and extracts the first minimum value, which is the minimum value among the maximum luminance values. In addition, the minimum value extracting unit 120 compares the maximum luminance values in the low gradation region within the correction data measured / generated by the light measurement unit 110, and is the minimum value among the maximum luminance values in the low gradation region. The second minimum value is extracted.
보정 계수 생성부(130)는, 최소값 추출부(120)에 의해 추출된 제1 최소값을 기준으로 상기 보정 데이터 내의 고계조 영역에서의 최대 휘도값들 각각에 대한 제1 보정 계수들을 생성하고, 상기 제2 최소값을 기준으로 상기 보정 데이터 내의 저계조 영역에서의 최대 휘도값들 각각에 대한 제2 보정 계수들을 생성한다.The correction coefficient generation unit 130 generates first correction coefficients for each of the maximum luminance values in the high grayscale region in the correction data based on the first minimum value extracted by the minimum value extraction unit 120, and the Second correction coefficients are generated for each of the maximum luminance values in the low gradation region in the correction data based on a second minimum value.
보정 계수 생성부(130)에 의해 생성된 제1 보정 계수들과 제2 보정 계수들에 기초하여 해당 엘이디들의 전체 휘도 영역에 대하여 정규화를 수행한다. 예컨대, px11 내의 적색 엘이디(R)에 대한 제1 보정 계수와 제2 보정 계수에 기초하여 px11 내의 적색 엘이디(R)의 전체 휘도 영역에 대하여 정규화를 수행하고, px12 내의 적색 엘이디(R)에 대한 제1 보정 계수와 제2 보정 계수에 기초하여 px12 내의 적색 엘이디(R)의 전체 휘도 영역에 대하여 정규화를 수행한다. 이와 같이, 전체 픽셀들 내의 엘이디들 각각에 대하여 각각의 제1 보정 계수와 제2 보정 계수에 기초하여 엘이디들 각각의 전체 휘도 영역에 대하여 정규화를 행한다. 이처럼 정규화를 수행함에 따라, 공급 전류의 변화에 따른 휘도 변화의 폭을 감소시켜 줌으로써, 각 화소간에 더욱 부드러운 휘도 트랜지션(transition)을 제공할 수 있다.Based on the first correction coefficients and the second correction coefficients generated by the correction coefficient generator 130, normalization is performed on the entire luminance region of the corresponding LEDs. For example, normalization is performed on the entire luminance region of the red LED R in px11 based on the first and second correction coefficients for the red LED R in px11, and for the red LED R in px12. Normalization is performed on the entire luminance region of the red LED R in px12 based on the first correction coefficient and the second correction coefficient. In this way, for each of the LEDs in all pixels, normalization is performed for the entire luminance region of each of the LEDs based on the respective first correction coefficient and the second correction coefficient. By performing the normalization as described above, by reducing the width of the luminance change according to the change in the supply current, it is possible to provide a smoother luminance transition between each pixel.
정규화를 행함에 있어서 각각의 엘이디의 전체 휘도 영역에서, 제1 보정 계수를 적용하는 영역과 제2 보정 계수를 적용하는 영역은 구분될 수 있다. 예컨대, 엘이디들 각각의 전체 휘도 영역에서 엘이디들 각각에 대응되는 제1 보정 계수를 적용하는 영역, 즉 제1 보정 계수가 커버하는 영역을 전체 휘도 영역의 상위 50%, 그리고 제2 보정 계수가 커버하는 영역을 전체 휘도 영역의 하위 50%로 하여 보정을 수행할 수 있다.In performing normalization, in the entire luminance region of each LED, a region to which the first correction factor is applied and a region to which the second correction factor is applied can be divided. For example, in the entire luminance area of each of the LEDs, an area to which a first correction coefficient corresponding to each of the LEDs is applied, that is, an area covered by the first correction coefficient is covered by the top 50% of the total luminance area and a second correction coefficient. Correction can be performed by setting the region to be the lower 50% of the entire luminance region.
나아가, 광 측정부(110)는, 픽셀(px) 내의 엘이디들 각각의 고계조 영역과 저계조 영역의 중간 영역인 중계조 영역의 최대 휘도값을 더 측정할 수 있다. 따라서, 보정 데이터 내에는 픽셀(px) 내의 엘이디들 각각의 고계조 영역의 최대 휘도값, 저계조 영역의 최대 휘도값 및 중계조 영역의 최대 휘도값이 포함될 수 있다. 그리고, 보정 데이터가 중계조 영역의 최대 휘도값을 더 포함하도록 생성된 경우, 최소값 추출부(120)는, 상기 보정 데이터 내에서 중계조 영역의 최대 휘도값들 중 최소값인 제3 최소값을 더 추출하고, 보정 계수 생성부(130)는, 상기 제3 최소값을 기준으로 상기 보정 데이터 내의 중계조 영역의 최대 휘도값들 각각에 대한 제3 보정 계수들을 더 생성할 수 있다.Furthermore, the light measurement unit 110 may further measure the maximum luminance value of the middle grayscale region, which is an intermediate region of the high grayscale region and the low grayscale region of each of the LEDs in the pixel (px). Accordingly, the maximum luminance value of the high grayscale region, the maximum luminance value of the low grayscale region, and the maximum luminance value of the grayscale region may be included in the correction data. Then, when the correction data is generated to further include the maximum luminance value of the grayscale region, the minimum value extracting unit 120 further extracts a third minimum value that is the minimum value among the maximum luminance values of the grayscale region within the correction data. In addition, the correction coefficient generation unit 130 may further generate third correction coefficients for each of the maximum luminance values of the grayscale region in the correction data based on the third minimum value.
또한, 제3 보정 계수가 더 생성된 경우, 정규화를 행함에 있어서 각각의 엘이디의 전체 휘도 영역에서, 제1 보정 계수를 적용하는 영역, 제2 보정 계수를 적용하는 영역, 및 제3 보정 계수를 적용하는 영역은 구분될 수 있다. 예컨대, 엘이디들 각각의 전체 휘도 영역에서 엘이디들 각각에 대응되는 제1 보정 계수를 적용하는 영역, 즉 제1 보정 계수가 커버하는 영역을 전체 휘도 영역의 상위 30%, 그리고 제2 보정 계수가 커버하는 영역을 전체 휘도 영역의 하위 30%, 그리고 제3 보정 계수가 커버하는 영역을 나머지 영역에 적용하여 보정을 수행할 수 있다. 전체 휘도 영역에 대한 제1 보정 계수, 제2 보정 계수 및 제3 보정 계수가 커버하는 영역은 얼마든지 다른 비율로 변경될 수 있다.Further, when the third correction coefficient is further generated, in normalizing, in the entire luminance region of each LED, the region to which the first correction factor is applied, the region to which the second correction factor is applied, and the third correction factor are set. The area to be applied can be divided. For example, in the entire luminance area of each of the LEDs, an area to which the first correction coefficient corresponding to each of the LEDs is applied, that is, an area covered by the first correction coefficient is covered by the top 30% of the total luminance area and the second correction coefficient. The correction may be performed by applying the region to the lower 30% of the entire luminance region and the region covered by the third correction coefficient to the remaining region. The areas covered by the first correction coefficient, the second correction coefficient, and the third correction coefficient for the entire luminance area may be changed at different ratios.
더 나아가, 광 측정부(110)는 픽셀들의 엘이디들 각각에 대하여 중간 휘도값을 복수 개 측정하여 이들을 포함하는 보정 데이터를 생성할 수도 있다(도 22 참조).Furthermore, the light measurement unit 110 may generate a plurality of intermediate luminance values for each of the LEDs of the pixels to generate correction data including them (see FIG. 22).
본 명세서 내에서 정규화(Normalization)는, 도 17에 도시된 바와 같이, 광 측정부(110), 최소값 추출부(120), 보정 계수 생성부(130)에 의한 일련의 과정에 의해 엘이디들 각각에 대하여 생성된, 제1 보정 계수, 제2 보정 계수, 그리고, 중계조 영역에 대한 제3 보정 계수를 생성하는 경우, 제3 보정 계수를 이용하여 엘이디들 각각의 전체 휘도 영역에 대하여 적용하는 단계이다. 이에 관하여는 이후에 도 24 및 도 25를 참조하여 더 상세히 설명한다.Normalization in the present specification, as shown in Figure 17, the light measurement unit 110, the minimum value extraction unit 120, by a series of processes by the correction coefficient generation unit 130 to each of the LEDs When generating the first correction coefficient, the second correction coefficient, and the third correction coefficient for the grayscale region, the third correction coefficient is used to apply to the entire luminance region of each of the LEDs. . This will be described in more detail with reference to FIGS. 24 and 25 later.
이와 같이, 보정 데이터로부터 생성된 엘이디들 각각에 대한 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들은 제어부(10)로 제공되며, 제어부(10)에서 이들 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들을 이용하여 픽셀들 내의 엘이디들 각각에 대하여 보정하고 정규화(Normalization)를 진행함으로써, 픽셀들 내 엘이디들의 밝기 단계를 조절하게 되며, 이러한 과정을 통해, 엘이디의 색상 표현력을 향상시킴으로써, 전체적인 화질 개선과 균일성(Uniformity) 향상 효과를 기대할 수 있다.In this way, the first correction coefficients, the second correction coefficients, and the third correction coefficients for each of the LEDs generated from the correction data are provided to the control unit 10, and the control unit 10 provides these first correction coefficients, By adjusting the normalization (Normalization) for each of the LEDs in the pixels using the second correction coefficients and the third correction coefficients, the brightness level of the LEDs in the pixels is adjusted. Through this process, the LED By improving the color expression power, it is possible to expect an overall image quality improvement and uniformity improvement effect.
도 19는 본 발명과 비교되는 종래의 휘도 보정 방법을 설명하기 위한 도면이고, 도 20은 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값과 제2 최소값을 검출하는 과정을 설명하기 위한 도면이다. 도 17 내지 도 20을 참조하여, 본 발명에 따른 휘도 보정 방법에 관해 설명한다.19 is a view for explaining a conventional luminance correction method compared to the present invention, and FIG. 20 is a first from the correction data for each pixel of the LED display in the luminance correction method and system according to an embodiment of the present invention A diagram for explaining a process of detecting a minimum value and a second minimum value. 17 to 20, a description will be given of a luminance correction method according to the present invention.
본 발명에 따라, 행렬로 배열된 복수 개의 픽셀들을 포함하는 엘이디 디스플레이에 대한 휘도 보정 방법은, 픽셀(px)들 내의 엘이디들(R, G, B) 각각의 고계조 영역의 최대 휘도값으로 구성되는 제1 보정 데이터와 픽셀(px)들 내의 엘이디들(R, G, B) 각각의 저계조 영역의 최대 휘도값으로 구성되는 제2 보정 데이터를 포함하는 보정 데이터를 생성하는 단계, 상기 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들 중 최소값인 제1 최소값을 기준으로, 상기 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들에 대한 제1 보정 계수들을 생성하는 단계, 그리고, 상기 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들 중 최소값인 제2 최소값을 기준으로, 상기 제2 보정 데이터 내의 최소 휘도값들에 대한 제2 보정 계수들을 생성하는 단계를 포함한다.According to the present invention, a luminance correction method for an LED display including a plurality of pixels arranged in a matrix consists of a maximum luminance value of each of the high gradation regions of the LEDs R, G, and B in the pixels px. Generating correction data including first correction data and second correction data composed of maximum luminance values of the low grayscale regions of the LEDs R, G, and B in the pixels px, the first Generating first correction coefficients for maximum luminance values of the high gradation region in the first correction data based on a first minimum value that is a minimum value among the maximum luminance values of the high gradation region in the correction data; and And generating second correction coefficients for minimum luminance values in the second correction data, based on a second minimum value, which is a minimum value among the maximum luminance values of the low grayscale region in the second correction data.
도 19에 도시된 종래의 휘도 보정 방법은, 카메라 등의 광 측정 장비를 이용하여 픽셀들 각각에서의 엘이디들에 대한 고계조 영역에서의 최대 휘도값을 측정하고, 이들 고계조 영역에서의 최대 휘도값들을 비교하여 최소값을 추출한 후, 이 최소값을 기준으로 모든 엘이디들의 밝기 단계를 전체 휘도 영역에 대하여 정규화함으로써 엘이디들의 휘도를 보정한다. 하지만, 앞서 언급한 바와 같이, 도 19에 도시된 종래의 휘도 보정 방법은, 고계조 영역의 최대 휘도값들 중에서 최소값을 추출한 후, 추출된 최소값을 기준으로 최대 휘도값들을 이 최소값에 맞추는 과정만 있으므로, 픽셀들 내 엘이디들에 있어서 저계조 영역이나 중계조 영역에 대한 보정은 이뤄지지 않게 되므로, 엘이디 디스플레이의 전체적인 화질 개선에는 상당히 부족하다.The conventional luminance correction method shown in FIG. 19 measures maximum luminance values in the high gradation regions for LEDs in each of the pixels by using light measuring equipment such as a camera, and maximum luminance in these high gradation regions After comparing the values and extracting the minimum value, the luminance levels of all the LEDs are corrected by normalizing the brightness level of all the LEDs to the entire luminance area based on the minimum value. However, as described above, the conventional luminance correction method illustrated in FIG. 19 extracts a minimum value from among the maximum luminance values in the high gradation region, and then only processes the maximum luminance values to the minimum value based on the extracted minimum value. Therefore, since the correction for the low gradation region or the gradation region is not achieved in the LEDs in the pixels, it is significantly insufficient to improve the overall image quality of the LED display.
도 20에 도시된 바와 같이, 픽셀들 내의 엘이디들 각각의 고계조 영역의 최대 휘도값으로 구성되는 제1 보정 데이터에서 최대 휘도값들 중 최소값인 제1 최소값을 추출하고, 이를 기준으로 최대 휘도값들에 대한 제1 보정 계수들을 생성할 뿐만 아니라, 픽셀들 내의 엘이디들 각각의 저계조 영역의 최대 휘도값으로 구성되는 제2 보정 데이터에서 저계조 영역의 최대 휘도값들 중 최소값인 제2 최소값을 추출하고, 이를 기준으로 저계조 영역의 최대 휘도값들에 대한 제2 보정 계수들을 생성하여, 전체 픽셀 내의 엘이디들 각각의 전체 휘도 영역에 대하여 정규화함으로써, 엘이디들의 휘도를 보정하게 된다.As shown in FIG. 20, the first minimum value, which is the minimum value among the maximum luminance values, is extracted from the first correction data composed of the maximum luminance value of the high gradation region of each of the LEDs in the pixels, and the maximum luminance value is based on this. In addition to generating the first correction coefficients for the fields, the second minimum value, which is the minimum value among the maximum luminance values of the low gradation region, is obtained from the second correction data composed of the maximum luminance value of each low gradation region of the LEDs in the pixels. The luminance of the LEDs is corrected by extracting and generating second correction coefficients for the maximum luminance values of the low grayscale region based on this, and normalizing the luminance region of each of the LEDs in the entire pixel.
종래와 다르게, 본 발명의 휘도 보정 방법은, 엘이디들의 최대 휘도값에 대한 보정 뿐만 아니라, 저계조 영역까지 보정함으로써, 전체적인 화질의 개선과 균일도를 개선하는 효과를 갖는다. 특히, 저계조 영역의 특성, 즉 중계조 영역이나 고계조 영역과 비교할 때, 엘이디 디스플레이의 사용자들이 픽셀들 간의 휘도 차이를 더욱 두드러지게 인식하는 경향이 있으므로, 저계조 영역에 있어서, 보정을 통해 휘도차를 감소시키는 효과가 크다.Unlike the conventional method, the luminance correction method of the present invention has an effect of improving overall image quality and uniformity by correcting not only the maximum luminance value of the LEDs, but also the low gradation region. Particularly, when compared to the characteristics of the low gradation region, that is, compared to the middle gradation region or the high gradation region, users of the LED display tend to perceive the luminance difference between pixels more prominently. The effect of reducing the tea is great.
본 발명의 휘도 보정 방법에서, 보정 데이터를 생성하는 단계는, 픽셀(px)들 내의 엘이디들(R, G, B) 각각에 대하여 광 측정부(110)로 고계조 영역의 최대 휘도값들 및 저계조 영역의 최대 휘도값들을 측정하는 단계를 포함한다. 전술한 바와 같이, 엘이디 디스플레이(1)의 전체 픽셀들이 한 번에 점등될 경우 인접 픽셀들 간에 발생할 수 있는 광 간섭을 줄여 보정의 정확도를 높이기 위해, 예컨대, 9개, 16개 등의 픽셀들을 포함하도록 그룹화하여, 하나의 그룹 내에서 하나씩의 픽셀들만을 한 번에 점등시킴으로써, 인접 픽셀로부터의 광 간섭이 없는 상태에서 광 측정부(110)로 측정될 수 있도록 한다. 따라서, 하나의 그룹에 포함된 픽셀의 개수가 9개인 경우, 도 18에서 흑색으로 표시된 바와 같이, 점등되는 픽셀들은 행방향으로도 두 개씩의 픽셀들을 건너뛰어 점등되고 열 방향으로 두 개씩의 픽셀들을 건너뛰어 점등되도록 하여 광 측정부(110)로 측정한다. 즉, 도 18에서 px11, px14, px17, ..., px41, px44, ... 등이 한 번에 점등되어 최대 휘도값, 및 최소 휘도값을 광 측정부(110)를 통해 측정할 수 있다. 이러한 과정은, 엘이디 디스플레이의 모든 픽셀들 내의 엘이디들에 대한 측정이 이뤄질 때까지 반복된다.In the luminance correction method of the present invention, the step of generating the correction data includes, for each of the LEDs R, G, and B in the pixels px, the maximum luminance values of the high gradation region by the light measurement unit 110 and And measuring the maximum luminance values of the low gradation region. As described above, when all the pixels of the LED display 1 are lit at once, to reduce the optical interference that may occur between adjacent pixels to improve the accuracy of the correction, for example, 9, 16, etc. pixels are included Grouped so that only one pixel in one group is lit at a time, so that it can be measured by the light measuring unit 110 in the absence of light interference from adjacent pixels. Therefore, when the number of pixels included in one group is 9, as shown in black in FIG. 18, the pixels that are lit are turned on by skipping two pixels in the row direction and two pixels in the column direction. The light is skipped and measured by the light measurement unit 110. That is, in FIG. 18, px11, px14, px17, ..., px41, px44, ... are lit at a time to measure the maximum luminance value and the minimum luminance value through the light measuring unit 110. . This process is repeated until measurements of the LEDs in all pixels of the LED display are made.
본 발명의 휘도 보정 방법에서, 제1 보정 계수들을 생성하는 단계는, 광 측정부(110)에 의해 측정/생성된 보정 데이터에서, 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들을 비교하여 최소값 추출부(120)로 제1 최소값을 추출하는 단계와, 최소값 추출부(120)에 의해 추출된 제1 최소값을 기준으로, 보정 계수 생성부(130)로 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들에 대한 제1 보정 계수들을 생성하는 단계로 세분화될 수 있다. 또한, 상기 제2 보정 계수들을 생성하는 단계는, 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들을 비교하여 최소값 추출부(120)로 제2 최소값을 추출하는 단계와, 최소값 추출부(120)에 의해 추출된 제2 최소값을 기준으로, 보정 계수 생성부(130)로 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들에 대한 제2 보정 계수들을 생성하는 단계로 세분화될 수 있다.In the luminance correction method of the present invention, the step of generating the first correction coefficients compares the maximum luminance values of the high gradation region in the first correction data with the minimum value in the correction data measured / generated by the light measurement unit 110. Extracting the first minimum value by the extraction unit 120 and, based on the first minimum value extracted by the minimum value extraction unit 120, the correction coefficient generation unit 130 to the maximum of the high grayscale region in the first correction data It may be subdivided into steps of generating first correction coefficients for luminance values. In addition, the generating of the second correction coefficients may include comparing the maximum luminance values of the low grayscale region in the second correction data to extract the second minimum value with the minimum value extraction unit 120 and the minimum value extraction unit 120. Based on the second minimum value extracted by, the correction coefficient generation unit 130 may be subdivided into a step of generating second correction coefficients for the maximum luminance values of the low grayscale region in the second correction data.
본 발명의 휘도 보정 방법에서, 제1 보정 계수들은 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들 중에서 최소값인 제1 최소값을 제1 보정 데이터 내의 고계조 영역의 최대 휘도값들로 나눈 값들일 수 있다. 예컨대, px11, px12, px13, px14, px15, px16, px17, 및 px18 내의 적색 엘이디(R)(도 20의 X축에서, 1, 2, 3, 4, 5, 6, 7, 8 로 넘버링되어 있음)의 고계조 영역의 최대 휘도값들이 각각 Max11, Max12, Max13, Max14, Max15, Max16, Max17 및 Max18이라고 가정하고, 이들 고계조 영역의 최대 휘도값들 중 최소값, 즉 제1 최소값이 Max17이라고 가정하면, 제1 보정 계수들은 각각 Max17/Max11, Max17/Max12, Max17/Max13, Max17/Max14, Max17/Max15, Max17/Max16, Max17/Max17, 및 Max17/Max18이 된다.In the luminance correction method of the present invention, the first correction coefficients are values obtained by dividing the first minimum value, which is the minimum value among the maximum luminance values of the high grayscale region in the first correction data, with the maximum luminance values of the high grayscale region in the first correction data. You can. For example, red LEDs (R) in px11, px12, px13, px14, px15, px16, px17, and px18 (numbered 1, 2, 3, 4, 5, 6, 7, 8 on the X axis in FIG. 20). The maximum luminance values of the high gradation regions of Max11, Max12, Max13, Max14, Max15, Max16, Max17, and Max18, respectively, and the minimum of the maximum luminance values of these high gradation regions, that is, the first minimum value is Max17 Assuming, the first correction coefficients are Max17 / Max11, Max17 / Max12, Max17 / Max13, Max17 / Max14, Max17 / Max15, Max17 / Max16, Max17 / Max17, and Max17 / Max18, respectively.
한편, 제2 보정 계수들은 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들 중에서 최소값인 제2 최소값을 제2 보정 데이터 내의 저계조 영역의 최대 휘도값들로 나눈 값들일 수 있다. 예컨대, px11, px12, px13, px14, px15, px16, px17, 및 px18 내의 적색 엘이디(R)(도 20의 X축에서, 1, 2, 3, 4, 5, 6, 7, 8 로 넘버링되어 있음)의 저계조 영역의 최대 휘도값들이 각각 Max11', Max12', Max13', Max14', Max15', Max16', Max17' 및 Max18'이라고 가정하고, 이들 저계조 영역의 최대 휘도값들 중 최소값, 즉 제2 최소값이 Max17'이라고 가정하면, 제2 보정 계수들은 각각 Max17'/Max11', Max17'/Max12', Max17'/Max13', Max17'/Max14', Max17'/Max15', Max17'/Max16', Max17'/Max17', 및 Max17'/Max18'이 된다.Meanwhile, the second correction coefficients may be values obtained by dividing the second minimum value, which is the minimum value among the maximum luminance values of the low grayscale region in the second correction data, with the maximum luminance values of the low grayscale region in the second correction data. For example, red LEDs (R) in px11, px12, px13, px14, px15, px16, px17, and px18 (numbered 1, 2, 3, 4, 5, 6, 7, 8 on the X axis in FIG. 20). The maximum luminance values of the low gradation regions of Max11 ', Max12', Max13 ', Max14', Max15 ', Max16', Max17 'and Max18', respectively, and the minimum values among the maximum luminance values of these low gradation regions. That is, assuming that the second minimum value is Max17 ', the second correction coefficients are Max17' / Max11 ', Max17' / Max12 ', Max17' / Max13 ', Max17' / Max14 ', Max17' / Max15 ', Max17', respectively. / Max16 ', Max17' / Max17 ', and Max17' / Max18 '.
도 21은 본 발명의 일 실시예에 따른 휘도 보정 방법에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값, 제2 최소값 및 제3 최소값을 검출하는 과정을 설명하기 위한 도면이다. 도 17, 도 18 및 도 21을 함께 참조하면, 본 발명의 휘도 보정 방법에 따라, 보정 데이터를 생성함에 있어서, 엘이디들의 고계조 영역의 최대 휘도값으로 구성된 제1 보정 데이터, 엘이디들의 저계조 영역의 최대 휘도값으로 구성된 제2 보정 데이터, 그리고 엘이디들의 고계조 영역과 저계조 영역의 중간 영역인 중계조 영역의 최대 휘도값으로 구성되는 제3 보정 데이터를 포함하도록 보정 데이터를 생성할 수 있다. 이와 같이 중계조 영역의 최대 휘도값들로 구성된 제3 보정 데이터 내에서 중계조 영역의 최대 휘도값들 중 최소값인 제3 최소값을 추출해 내고, 추출된 제3 최소값을 기준으로 제3 보정 데이터 내의 중계조 영역의 최대 휘도값들에 대한 제3 보정 계수들을 생성할 수 있다. 예컨대, px11, px12, px13, px14, px15, px16, px17, 및 px18 내의 적색 엘이디(R)(도 21의 X축에서, 1, 2, 3, 4, 5, 6, 7, 8 로 넘버링되어 있음)의 중간 휘도값들이 각각 Max11”, Max12”, Max13”, Max14”, Max15”, Max16”, Max17” 및 Max18”이라고 가정하고, 이들 중계조 영역의 최대 휘도값들 중 최소값, 즉 제3 최소값이 Max16”이라고 가정하면, 제3 보정 계수들은 각각 Max16”/Max11”, Max16”/Max12”, Max16”/Max13”, Max16”/Max14”, Max16”/Max15”, Max16”/Max16”, Max16”/Max17”, 및 Max16”/Max18”이 된다.21 is a view for explaining a process of detecting a first minimum value, a second minimum value, and a third minimum value from the correction data for each of the pixels of the LED display in the luminance correction method according to an embodiment of the present invention. Referring to FIGS. 17, 18, and 21 together, according to the luminance correction method of the present invention, in generating correction data, first correction data composed of maximum luminance values of high-gradation regions of LEDs, and low-gradation regions of LEDs The correction data may be generated to include the second correction data composed of the maximum luminance value of and the third correction data composed of the maximum luminance value of the middle gradation region which is an intermediate region of the high gradation region and the low gradation region of the LEDs. As described above, a third minimum value, which is the minimum value among the maximum luminance values of the grayscale region, is extracted from the third correction data composed of the maximum luminance values of the grayscale region, and the relay in the third correction data is based on the extracted third minimum value. Third correction coefficients may be generated for the maximum luminance values of the jaw region. For example, red LEDs (R) in px11, px12, px13, px14, px15, px16, px17, and px18 (on the X axis in FIG. 21, numbered 1, 2, 3, 4, 5, 6, 7, 8 Is assumed to be Max11 ”, Max12”, Max13 ”, Max14”, Max15 ”, Max16”, Max17 ”and Max18” respectively, and the minimum of the maximum luminance values of these grayscale areas, that is, the third Assuming that the minimum value is Max16 ”, the third correction factors are Max16” / Max11 ”, Max16” / Max12 ”, Max16” / Max13 ”, Max16” / Max14 ”, Max16” / Max15 ”, Max16” / Max16 ”, respectively. It becomes Max16 ”/ Max17”, and Max16 ”/ Max18”.
이 실시예에서, 상기 제3 보정 계수들을 생성하는 단계는, 상기 제3 보정 데이터 내의 중계조 영역의 최대 휘도값들을 비교하여 최소값 추출부(120)로 제3 최소값을 추출하는 단계와, 최소값 추출부(120)에 의해 추출된 제3 최소값을 기준으로, 보정 계수 생성부(130)로 제3 보정 데이터 내의 최소 휘도값들에 대한 제3 보정 계수들을 생성하는 단계로 세분화될 수 있다.In this embodiment, the generating of the third correction coefficients includes: comparing the maximum luminance values of the grayscale areas in the third correction data to extract a third minimum value with the minimum value extraction unit 120, and extracting the minimum value Based on the third minimum value extracted by the unit 120, the correction coefficient generation unit 130 may be subdivided into a step of generating third correction coefficients for the minimum luminance values in the third correction data.
본 발명에 따른 휘도 보정 방법은 도 23에서 블록도로 요약되어 있다. 도 23에 도시된 바와 같이, 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들을 생성하는 단계는, 이 순서대로, 또는 병렬적으로 동시에 수행될 수 있고, 최종적으로 전체 픽셀들의 전체 엘이디들의 전체 휘도 영역에 대하여 정규화를 진행함으로써 보정이 완료될 수 있다.The luminance correction method according to the present invention is summarized in block diagram in FIG. 23. As shown in FIG. 23, the step of generating the first correction coefficients, the second correction coefficients and the third correction coefficients can be performed simultaneously in this order or in parallel, and finally the entirety of all pixels. The correction may be completed by normalizing the entire luminance region of the LEDs.
더 나아가, 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들을 생성하는 방법은, 위에서 제시된 방법으로 국한되지 않고 다른 방법으로도 얼마든지 생성할 수 있다.Furthermore, the method of generating the first correction coefficients, the second correction coefficients, and the third correction coefficients is not limited to the method presented above, but can be generated in any other way.
또한, 광 측정부(110)로 측정할 시, 픽셀들을 소정의 개수로 그룹화하여 휘도를 측정하는 경우, 보정 데이터는 위와는 다르게, 도 18에서의 px11의 적색 엘이디(R)에 대응되는 데이터가 도 20에서의 LED 1이고, 도 18에서의 px14의 적색 엘이디(R)에 대응되는 데이터가 도 20에서의 LED 2이고, 도 18에서의 px17의 적색 엘이디(R)에 대응되는 데이터가 도 20에서의 LED 3일 수 있다.In addition, when measuring by the light measuring unit 110, when the luminance is measured by grouping the pixels to a predetermined number, the correction data is different from the above, the data corresponding to the red LED (R) of px11 in Figure 18 The LED 1 in FIG. 20, the data corresponding to the red LED (R) of px14 in FIG. 18 is the LED 2 in FIG. 20, the data corresponding to the red LED (R) of px17 in FIG. It can be LED 3.
또한, 하나의 픽셀은 적색 엘이디(R), 녹색 엘이디(G) 및 청색 엘이디(B)를 포함하고 있으므로, 보정 데이터 내의 제1 보정 데이터는, 픽셀들 내의 적색 엘이디(R)들 각각의 최대 휘도값으로 구성되는 제1-1 보정 데이터, 픽셀들 내의 녹색 엘이디(G)들 각각의 최대 휘도값으로 구성되는 제1-2 보정 데이터, 픽셀들 내의 청색 엘이디(B)들 각각의 최대 휘도값으로 구성되는 제1-3 보정 데이터를 포함한다. 따라서, 상기 제1 최소값은, 제1-1 보정 데이터 내의 최대 휘도값들 중 최소값인 제1-1 최소값, 제1-2 보정 데이터 내의 최대 휘도값들 중 최소값인 제1-2 최소값, 그리고 제1-3 보정 데이터 내의 최대 휘도값들 중 최소값인 제1-3 최소값을 포함한다. 그리고, 제1 보정 계수들은, 상기 제1-1 최소값을 기준으로 생성된 제1-1 보정 계수들, 제1-2 최소값을 기준으로 생성된 제1-2 보정 계수들, 그리고 제1-3 최소값을 기준으로 생성된 제1-3 보정 계수들을 포함한다.In addition, since one pixel includes a red LED (R), a green LED (G), and a blue LED (B), the first correction data in the correction data is the maximum luminance of each of the red LEDs (R) in the pixels. 1-1 correction data composed of values, and 1-2 correction data composed of the maximum luminance values of each of the green LEDs (G) in pixels, and the maximum luminance values of each of the blue LEDs (B) in the pixels. It includes the first to third correction data. Accordingly, the first minimum value is a minimum value of 1-1, which is a minimum value among maximum luminance values in the 1-1 correction data, a minimum value of 1-2, which is a minimum value among maximum luminance values in the 1-2 correction data, and 1-3 includes the first to third minimum values, which are the minimum values among the maximum luminance values in the correction data. In addition, the first correction coefficients are first-first correction coefficients generated based on the first-first minimum value, first-second correction coefficients generated based on the first-second minimum value, and first-3 Contains 1-3 correction coefficients generated based on the minimum value.
또한, 보정 데이터 내의 제2 보정 데이터는, 픽셀들 내의 적색 엘이디(R)들 각각의 최소 휘도값으로 구성되는 제2-1 보정 데이터, 픽셀들 내의 녹색 엘이디(G)들 각각의 최소 휘도값으로 구성되는 제2-2 보정 데이터, 그리고 픽셀들 내의 청색 엘이디(B)들 각각의 최소 휘도값으로 구성되는 제2-3 보정 데이터를 포함한다. 따라서, 상기 제2 최소값은, 제2-1 보정 데이터 내의 최소 휘도값들 중 최소값인 제2-1 최소값, 제2-2 보정 데이터 내의 최소 휘도값들 중 최소값인 제2-2 최소값, 그리고 제2-3 보정 데이터 내의 최소 휘도값들 중 최소값인 제2-3 최소값을 포함한다. 또한, 상기 제2 보정 계수들은, 제2-1 최소값을 기준으로 생성된 제2-1 보정 계수들, 제2-2 최소값을 기준으로 생성된 제2-2 보정 계수들, 그리고 상기 제2-3 최소값을 기준으로 생성된 제2-3 보정 계수들을 포함한다.In addition, the second correction data in the correction data is a 2-1 correction data composed of the minimum luminance value of each of the red LEDs R in the pixels, and the minimum luminance value of each of the green LEDs G in the pixels. 2-2 correction data, and 2-3 correction data, which are composed of the minimum luminance value of each of the blue LEDs B in the pixels. Accordingly, the second minimum value is a minimum value of 2-1, which is a minimum value among minimum luminance values in 2-1 correction data, a minimum value of 2-2, which is a minimum value among minimum luminance values in 2-2 correction data, and a second minimum value. 2-3, the minimum value of the minimum luminance value in the correction data is included. In addition, the second correction coefficients are 2-1 correction coefficients generated based on the 2-1 minimum value, 2-2 correction coefficients generated based on the 2-2 minimum value, and the second 2- 3 Includes 2-3 correction factors generated based on the minimum value.
또한, 도 21에 도시된 바와 같이, 보정 데이터가 중계조 영역의 최대 휘도값들을 포함하는 경우, 제3 보정 데이터는 픽셀들 내의 적색 엘이디(R)들 각각의 중계조 영역의 최대 휘도값으로 구성되는 제3-1 보정 데이터, 픽셀들 내의 녹색 엘이디(G)들 각각의 중계조 영역의 최대 휘도값으로 구성되는 제3-2 보정 데이터, 그리고 픽셀들 내의 청색 엘이디(B)들 각각의 중계조 영역의 최대 휘도값으로 구성되는 제3-3 보정 데이터를 포함한다. 따라서, 상기 제3 최소값은, 제3-1 보정 데이터 내의 중계조 영역의 최대 휘도값들 중 최소값인 제3-1 최소값, 제3-2 보정 데이터 내의 중계조 영역의 최대 휘도값들 중 최소값인 제3-2 최소값, 그리고 제3-3 보정 데이터 내의 중계조 영역의 최대 휘도값들 중 최소값인 제3-3 최소값을 포함한다. 또한, 상기 제3 보정 계수들은, 제3-1 최소값을 기준으로 생성된 제3-1 보정 계수들, 제3-2 최소값을 기준으로 생성된 제3-2 보정 계수들, 그리고 제3-3 최소값을 기준으로 생성된 제3-3 보정 계수들을 포함한다.In addition, as shown in FIG. 21, when the correction data includes the maximum luminance values of the grayscale region, the third correction data is configured as the maximum luminance value of each grayscale region of the red LEDs R in the pixels. 3-1 correction data, 3-2 correction data composed of the maximum luminance value of each grayscale region of the green LEDs G in pixels, and the grayscale of each of the blue LEDs B in pixels Contains 3-3 correction data composed of the maximum luminance value of the area. Accordingly, the third minimum value is a minimum value among 3-1 minimum values, which are the minimum values among the maximum luminance values of the grayscale region in the 3-1 correction data, and a minimum value among maximum luminance values of the grayscale regions in the 3-2 correction data. 3-3 minimum value, and 3-3 minimum value, which is the minimum value among the maximum luminance values of the grayscale region in the 3-3 correction data. In addition, the third correction coefficients, 3-1 correction coefficients generated based on the 3-1 minimum value, 3-2 correction coefficients generated based on the 3-2 minimum value, and 3-3 3-3 correction coefficients generated based on the minimum value.
위의 설명에서, 제1-1 보정 계수들은 고계조 영역에서 적색에 대응하는 보정 계수들이고, 제1-2 보정 계수들은 녹색에 대응하는 보정 계수들이고, 제1-3 보정 계수들은 청색에 대응하는 보정 계수들이다. 그리고, 제2-1 보정 계수들은 저계조 영역에서 적색에 대응하는 보정 계수들이고, 제2-2 보정 계수들은 녹색에 대응하는 보정 계수들이고, 제2-3 보정 계수들은 청색에 대응하는 보정 계수들이다. 이에 따라, 정규화부는 고계조 영역에 대응하는 적색, 녹색 및 청색 휘도값들, 즉 적색, 녹색 및 청색 엘이디들 각각의 고계조 영역에서의 휘도값들에 대해 제1 보정 계수들을 적용하여 정규화하고, 저계조 영역에 대응하는 적색, 녹색 및 청색 휘도값들, 즉 적색, 녹색 및 청색 엘이디들 각각의 저계조 영역에서의 휘도값들에 대해 제2 보정 계수들을 적용하여 정규화한다.In the above description, the 1-1 correction coefficients are correction coefficients corresponding to red in the high gradation region, the 1-2 correction coefficients are correction coefficients corresponding to green, and the 1-3 correction coefficients correspond to blue These are correction factors. And, the 2-1 correction coefficients are correction coefficients corresponding to red in the low grayscale region, the 2-2 correction coefficients are correction coefficients corresponding to green, and the 2-3 correction coefficients are correction coefficients corresponding to blue. . Accordingly, the normalization unit normalizes the red, green, and blue luminance values corresponding to the high gradation region by applying first correction coefficients to the luminance values in each of the high gradation regions of the red, green, and blue LEDs, The red, green and blue luminance values corresponding to the low gradation region, that is, the luminance values in the low gradation region of each of the red, green and blue LEDs are applied and normalized.
그리고, 보정 데이터가 중계조 영역의 최대 휘도값들을 포함하는 경우, 제3-1 보정 계수들은 중계조 영역에서 적색에 대응하는 보정 계수들이고, 제3-2 보정 계수들은 녹색에 대응하는 보정 계수들이고, 제3-3 보정 계수들은 청색에 대응하는 보정 계수들이다. 이에 따라, 정규화부는, 고계조 영역에 대응하는 적색, 녹색 및 청색 휘도값들, 즉, 적색, 녹색 및 청색 엘이디들 각각의 고계조 영역에서의 휘도값들에 대해 제1 보정 계수들을 적용하여 정규화하고, 저계조 영역에 대응하는 적색, 녹색 및 청색 휘도값들, 즉 적색, 녹색 및 청색 엘이디들 각각의 저계조 영역에서의 휘도값들에 대해 제2 보정 계수들을 적용하여 정규화하고, 중계조 영역에 대응하는 적색, 녹색 및 청색 휘도값들, 즉 적색, 녹색 및 청색 엘이디들 각각의 중계조 영역에서의 휘도값들에 대해 제3 보정 계수들을 적용하여 정규화한다.And, when the correction data includes the maximum luminance values of the grayscale region, the 3-1 correction coefficients are correction coefficients corresponding to red in the grayscale region, and the 3-2 correction coefficients are correction coefficients corresponding to green. , The 3-3 correction coefficients are correction coefficients corresponding to blue. Accordingly, the normalization unit normalizes by applying first correction coefficients to red, green, and blue luminance values corresponding to the high gradation region, that is, luminance values in each of the high gradation regions of the red, green, and blue LEDs. Then, the red, green, and blue luminance values corresponding to the low grayscale region, that is, the red, green, and blue LEDs, respectively, are normalized by applying second correction coefficients to the luminance values in the low grayscale region, and the grayscale region Red, green, and blue luminance values corresponding to, that is, red, green, and blue LEDs are normalized by applying third correction coefficients to the luminance values in each grayscale region.
도 22는 본 발명의 일 실시예에 따른 휘도 보정 방법 및 시스템에서 엘이디 디스플레이의 픽셀들 각각에 대하여 보정 데이터로부터 제1 최소값, 제2 최소값, 제3 최소값 및 제4 최소값을 검출하는 과정을 설명하기 위한 도면으로서, 여기서 제3 최소값과 제4 최소값은, 중계조 영역을 제1 중계조 영역과 제2 중계조 영역으로 나누어서 각각에서의 최대 휘도값들의 최소값이다.22 illustrates a process of detecting a first minimum value, a second minimum value, a third minimum value, and a fourth minimum value from the correction data for each of the pixels of the LED display in the luminance correction method and system according to an embodiment of the present invention For the purpose of this drawing, the third minimum value and the fourth minimum value are the minimum values of the maximum luminance values in each by dividing the grayscale region into the first grayscale region and the second grayscale region.
도 21에 도시된 실시예에서는 픽셀들 각각의 엘이디들에 대하여 각각의 중계조 영역의 최대 휘도값을 광 측정부(110)로 한 번만 측정하고 있으나, 도 22에 도시된 실시예에서는 중계조 영역을 제1 중계조 영역과 제2 중계조 영역으로 구분하여 각각에서 측정하여, 제1 중계조 영역에서의 최대 휘도값과 제2 중계조 영역에서의 최대 휘도값을 포함하도록 보정 데이터를 생성하고, 이로부터 제3 최소값 및 제4 최소값을 추출한 후, 제3 보정 계수들 및 제4 보정 계수들을 생성하여 휘도 보정을 진행한다. 더 나아가, 중계조 영역을 더 세분하여 이들 각각에서 엘이디들에 대한 최대 휘도값을 측정하여 보정 데이터를 생성한 후 휘도 보정을 진행할 수도 있다.In the embodiment illustrated in FIG. 21, the maximum luminance value of each grayscale region for each LED of the pixels is measured only once by the light measurement unit 110, but in the embodiment illustrated in FIG. 22, the grayscale region Is divided into a first grayscale region and a second grayscale region and measured in each to generate correction data to include a maximum luminance value in the first grayscale region and a maximum luminance value in the second grayscale region, After extracting the third minimum value and the fourth minimum value, the third correction coefficients and the fourth correction coefficients are generated to perform luminance correction. Further, the grayscale region may be further subdivided to measure the maximum luminance value for the LEDs in each of them, thereby generating correction data and then performing luminance correction.
다음으로, 도 24를 참조하여, 도 20에서 생성된 제1 보정 계수들 및 제2 보정 계수들로 엘이디들의 전체 영역에 대하여 정규화하는 과정을 설명한다. 예를 들어, 엘이디 1(X 축에서의 LED 1)에 대하여 정규화하는 과정을 설명하면, 고계조 영역에서의 최소값, 즉 제1 최소값이 엘이디(LED) 7의 고계조 영역에서의 최대 휘도값(Max17)이므로, 엘이디 1에 적용될 제1 보정 계수는 Max17/Max11이다. 따라서, 제1 보정 계수가 커버하는 휘도 영역 내에서는 밝기 단계(통상적으로 전류의 크기로 조절하므로, 전류의 크기와 관련됨) 전체에 정규화부(도 17의 140)에 의해 이와 같은 제1 보정 계수(Max17/Max11)가 모두 곱해진다. 엘이디 2에 적용될 제1 보정 계수는 Max17/Max12이고, 엘이디 3에 적용될 제1 보정 계수는 Max17/Max13이며, …, 엘이디 8에 적용될 제1 보정 계수는 Max17/Max18이 되며, 모든 엘이디들에 대하여 제1 보정 계수가 커버하는 휘도 영역에 대하여 각각의 제1 보정 계수가 적용될 수 있다. 여기서, 제1 보정 계수가 커버하는 휘도 영역은, 도 24에 도시된 바와 같이 엘이디들 각각의 휘도 영역 전체에서 상위 50%일 수 있고, 이 경우, 제2 보정 계수가 커버하는 휘도 영역은 하위 50%이다. 제1 보정 계수가 커버하는 휘도 영역 및 제2 보정 계수가 커버하는 휘도 영역은 이러한 비율로 한정되지 않고 다른 비율로 적용될 수도 있다.Next, with reference to FIG. 24, a process of normalizing the entire region of the LEDs with the first correction coefficients and the second correction coefficients generated in FIG. 20 will be described. For example, when the process of normalizing LED 1 (LED 1 on the X axis) is described, the minimum value in the high gradation region, that is, the first minimum value is the maximum luminance value in the high gradation region of LED 7 Max17), the first correction coefficient to be applied to the LED 1 is Max17 / Max11. Accordingly, within the luminance region covered by the first correction coefficient, the first correction coefficient (such as 140 of FIG. 17) is applied to the entire brightness step (normally related to the magnitude of the current, and thus related to the magnitude of the current). Max17 / Max11) are all multiplied. The first correction coefficient to be applied to the LED 2 is Max17 / Max12, the first correction coefficient to be applied to the LED 3 is Max17 / Max13,… , The first correction coefficient to be applied to the LED 8 is Max17 / Max18, and each first correction coefficient may be applied to the luminance region covered by the first correction coefficient for all the LEDs. Here, the luminance region covered by the first correction coefficient may be the upper 50% of the entire luminance region of each of the LEDs as illustrated in FIG. 24, and in this case, the luminance region covered by the second correction coefficient may be lower 50 %to be. The luminance region covered by the first correction coefficient and the luminance region covered by the second correction coefficient are not limited to these ratios and may be applied at different ratios.
그리고, 저계조 영역에서의 최소값, 즉 제2 최소값이 엘이디(LED) 7의 저계조 영역에서의 최대 휘도값(Max17')이므로, 엘이디 1에 적용될 제2 보정 계수는 Max17'/Max11'이다. 따라서, 제2 보정 계수가 커버하는 휘도 영역 내에서는 밝기 단계 전체에 정규화부(도 17의 140)에 의해 이와 같은 제2 보정 계수(Max17'/Max11')가 모두 곱해진다. 엘이디 2에 적용될 제2 보정 계수는 Max17'/Max12'이고, 엘이디 3에 적용될 제2 보정 계수는 Max17'/Max13'이며, …, 엘이디 8에 적용될 제2 보정 계수는 Max17'/Max18'이 되며, 모든 엘이디들에 대하여 제2 보정 계수가 커버하는 휘도 영역에 대하여 각각의 제2 보정 계수가 적용될 수 있다.In addition, since the minimum value in the low gradation region, that is, the second minimum value is the maximum luminance value (Max17 ') in the low gradation region of the LED 7, the second correction coefficient to be applied to the LED 1 is Max17' / Max11 '. Accordingly, in the luminance region covered by the second correction coefficient, all of the second correction coefficients Max17 '/ Max11' are multiplied by the normalization unit (140 in FIG. 17) in the entire brightness step. The second correction coefficient to be applied to the LED 2 is Max17 '/ Max12', and the second correction coefficient to be applied to the LED 3 is Max17 '/ Max13',… , The second correction factor to be applied to the LED 8 is Max17 '/ Max18', and each second correction factor can be applied to the luminance region covered by the second correction factor for all the LEDs.
다음으로, 도 25를 참조하여, 도 21에서 생성된 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들로 엘이디들의 전체 영역에 대하여 정규화하는 과정을 설명한다. 저계조 영역과 고계조 영역에 대한 정규화는 앞서 도 24에 관한 설명이 그대로 적용될 수 있으므로 중복 설명은 생략한다.Next, with reference to FIG. 25, a process of normalizing the entire region of the LEDs with the first correction factors, the second correction factors, and the third correction factors generated in FIG. 21 will be described. For the normalization of the low gradation region and the high gradation region, the description of FIG. 24 may be applied as it is, so a duplicate description is omitted.
중계조 영역에서의 최소값, 즉 제3 최소값이 엘이디(LED) 6의 중계조 영역에서의 최대 휘도값(Max16”)이므로, 엘이디 1에 적용될 제3 보정 계수는 Max16”/Max11”이다. 따라서, 제3 보정 계수가 커버하는 휘도 영역 내에서는 밝기 단계 전체에 정규화부(도 17의 140)에 의해 이와 같은 제3 보정 계수(Max16”/Max11”)가 모두 곱해진다. 엘이디 2에 적용될 제3 보정 계수는 Max16”/Max12”이고, 엘이디 3에 적용될 제3 보정 계수는 Max16”/Max13”이며, …, 엘이디 8에 적용될 제3 보정 계수는 Max16'/Max18”이 되며, 모든 엘이디들에 대하여 제3 보정 계수가 커버하는 휘도 영역에 대하여 각각의 제3 보정 계수가 적용될 수 있다. 여기서, 제3 보정 계수가 커버하는 영역은 엘이디들 각각에서의 중계조 영역이다. 또한, 도 25에서 제1 보정 계수가 커버하는 영역을 전체 휘도 영역 중 상위 30%, 제2 보정 계수가 커버하는 영역을 전체 휘도 영역 중 하위 30%, 그리고 제3 보정 계수가 커버하는 영역은 중간의 40%로 예시하였으나, 얼마든지 다르게 설정될 수도 있다.Since the minimum value in the grayscale region, that is, the third minimum value is the maximum luminance value in the grayscale region of the LED 6 (Max16 ”), the third correction coefficient to be applied to the LED 1 is Max16” / Max11 ”. Therefore, in the luminance region covered by the third correction coefficient, all of the third correction coefficients Max16 ”/ Max11” are multiplied by the normalization unit (140 in FIG. 17) in the entire brightness step. The third correction factor to be applied to the LED 2 is Max16 ”/ Max12”, and the third correction factor to be applied to the LED 3 is Max16 ”/ Max13”,… , The third correction coefficient to be applied to the LED 8 is Max16 '/ Max18 ", and each third correction coefficient may be applied to the luminance region covered by the third correction coefficient for all the LEDs. Here, the area covered by the third correction coefficient is a grayscale area in each of the LEDs. In addition, in FIG. 25, the upper 30% of the entire luminance area covers the area covered by the first correction coefficient, the lower 30% of the total luminance area covers the area covered by the second correction coefficient, and the area covered by the third correction coefficient is intermediate. Although illustrated as 40% of, it may be set to any number differently.
위에서 설명된 본 발명의 휘도 보정 시스템 및 방법은, 다양한 엘이디 디스플레이에 적용될 수 있을 것이다. 예컨대, 하나의 픽셀이 마이크로 엘이디들로 이뤄진 마이크로 엘이디 디스플레이에도 적용될 수 있다.The brightness correction system and method of the present invention described above may be applied to various LED displays. For example, it can be applied to a micro LED display in which one pixel is composed of micro LEDs.
이와 같이, 본 발명의 휘도 보정 방법 및 시스템은 종래 최대 휘도값을 기준으로 휘도를 보정하는 방식의 단점을 극복하여 엘이디의 휘도 표현력과 균일성을 더욱 개선할 수 있고, 전체적인 화질 개선 효과를 기대할 수 있다.As described above, the luminance correction method and system of the present invention can overcome the disadvantages of the conventional method of correcting luminance based on the maximum luminance value, further improving the luminance expression and uniformity of the LED, and expect the overall image improvement effect. have.
이상에서 설명된 도 17 내지 도 25의 참조부호는 이하와 같다.17 to 25 described above are as follows.
1 : 마이크로 엘이디 디스플레이, 10 : 제어 PC, 100 : 휘도 보정 시스템, 110 : 광 측정부, 120 : 최소값 추출부, 130 : 보정 계수 생성부, 140 : 정규화부, px : 픽셀.1: micro LED display, 10: control PC, 100: luminance correction system, 110: light measurement unit, 120: minimum value extraction unit, 130: correction coefficient generation unit, 140: normalization unit, px: pixel.
이하에서는 도 30 내지 도 41을 참조하여, 본 발명의 엘이디 디스플레이 드라이버 IC 및 이를 이용한 엘이디 디스플레이의 휘도 조절 방법에 관하여 설명한다. 앞서 도 1 내지 도 16, 또는 도 17 내지 도 25의 참조부호들과 다소 중복되어 표현되어 있으나, 도 30 내지 도 41에서의 참조부호들은 도 30 내지 도 41에 국한되는 것임에 유의한다.Hereinafter, with reference to FIGS. 30 to 41, the LED display driver IC of the present invention and a method for adjusting luminance of the LED display using the same will be described. It is noted that the reference numerals in FIGS. 1 to 16 or 17 to 25 are somewhat overlapped, but the reference numerals in FIGS. 30 to 41 are limited to FIGS. 30 to 41.
앞서 설명된 화상 데이터의 계조(gray level)에 관한 정의와 유사하게, 도 30 내지 도 41을 참조한 이하의 설명에서의 영상 신호의 계조(gray level)는 낮은 영역에서부터 차례대로 저계조(low gray level) 영역, 중계조 영역(mid gray level) 및 고계조(high gray level) 영역으로 구분될 수 있으며, 고계조 영역은 각각의 엘이디의 최대 휘도값의 80% 이상의 영역이며, 저계조 영역은 고계조 영역의 최대 휘도값의 30% 미만의 영역이며, 그 밖의 나머지 영역은 중계조 영역으로 정의된다. 하지만, 이러한 계조 영역의 범위는 설명의 편의를 위해 구분한 것으로서, 반드시 상술한 범위로 한정되는 것은 아니다.Similar to the definition regarding the gray level of the image data described above, the gray level of the video signal in the following description with reference to FIGS. 30 to 41 is a low gray level in turn starting from a low region. ), Middle gray level (mid gray level) and high gray level (high gray level) can be divided into areas, the high gray level area is an area of 80% or more of the maximum luminance value of each LED, the low gray level area is high gray level The area is less than 30% of the maximum luminance value of the area, and the other areas are defined as a grayscale area. However, the range of the gradation region is divided for convenience of description, and is not necessarily limited to the above-described range.
도 30은 본 발명에 따른 엘이디 드라이버 IC(100)의 기본 블록도이다. 도 30를 참조하면, 본 발명의 일 실시예에 따라 입력 영상 신호(Ss)에 대응되게 엘이디 디스플레이 내 엘이디들의 휘도를 조절하기 위한 엘이디 디스플레이 드라이버 IC(100)는, 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조를 판단하는 제어부(110), 제어부(110)의 제어에 따라 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조(PWM) 신호와 펄스진폭변조(PAM) 신호가 머지된 머지 신호(merged signal)(Sm)를 생성하는 머지 신호 생성부(120)를 포함한다. 또한, 상기 엘이디 디스플레이 드라이버 IC(100)는, 엘이디 디스플레이부(200) 내에 행렬로 어레이된 픽셀들의 열별로 할당되고 머지 신호 생성부(120)로부터 제공되는 머지 신호(Sm)에 응답하여 각각의 엘이디들이 적절한 휘도로 발광하도록 동작하는 스위칭 회로부(130)를 더 포함한다. 머지 신호 생성부(100)에서는, 펄스진폭변조 신호 생성부(122)가 펄스폭변조 신호에 대하여 펄스진폭변조(PAM)를 행하여 머지 신호(Sm)를 생성하거나, 펄스폭변조 신호 생성부(121)가 펄스진폭변조 신호에 대하여 펄스폭변조를 행하여 머지 신호(Sm)를 생성한다.30 is a basic block diagram of an LED driver IC 100 according to the present invention. Referring to Figure 30, according to one embodiment of the invention an input video signal (S s) LED display driver IC (100) for adjusting the brightness of the presented LED display within the LED corresponding to an input image signal (S s) receiving an input the input video signal (s s), the control unit 110 to determine the gray level of the pulse width modulation in correspondence with the gradation of the input image signal (s s) in response to the control of the control unit 110 (PWM) signals and pulse amplitude And a merge signal generator 120 that generates a merged signal (S m ) in which a modulated (PAM) signal is merged. In addition, the LED display driver IC 100 is assigned to each column of pixels arranged in a matrix in the LED display unit 200 and responds to each of the merge signals S m provided from the merge signal generator 120. The LED further includes a switching circuit unit 130 that operates to emit light at an appropriate luminance. In the merge signal generation unit 100, the pulse amplitude modulation signal generation unit 122 performs pulse amplitude modulation (PAM) on the pulse width modulation signal to generate a merge signal S m or a pulse width modulation signal generation unit ( 121) performs a pulse width modulation on the pulse amplitude modulation signal to generate a merge signal S m .
본 발명은 이러한 구성을 통해 입력 영상 신호에 대응하여 듀티비(duty ratio)의 변경만으로 엘이디 디스플레이 내 엘이디들의 휘도를 조절하는 종래 방식의 한계를 극복하고자, 펄스폭변조(PWM) 뿐만이 아니라 펄스진폭(Pulse amplutude)의 차이를 이용하는 펄스진폭변조(PAM)를 함께 이용하여, 펄스폭변조(PWM) 신호와 펄스진폭변조(PAM) 신호가 머지된 머지 신호를 생성함으로써, 특히 저계조 영역에서의 표현력을 보강하고 플리커 현상을 저감시키고, HDR 영역에서의 화질을 개선시키는 효과를 볼 수 있다.The present invention is to overcome the limitations of the conventional method of adjusting the luminance of the LEDs in the LED display only by changing the duty ratio in response to the input video signal through such a configuration, as well as pulse width modulation (PWM) as well as pulse amplitude ( By using pulse amplitude modulation (PAM) using the difference of pulse amplutude together, a merge signal in which a pulse amplitude modulation (PWM) signal and a pulse amplitude modulation (PAM) signal are merged is generated, thereby expressing the expressive power, particularly in a low gray scale region. The effect of reinforcing, reducing the flicker phenomenon, and improving the image quality in the HDR region can be seen.
도 31은 본 발명의 일 실시예에 따른 엘이디 디스플레이 드라이버 IC의 블록도로서, 도 30의 머지 신호 생성부(120)는 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호를 생성하는 펄스폭변조 신호 생성부(121)와, 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sw)를 생성하는 펄스진폭변조 신호 생성부(122)를 포함한다. 도 31에 도시된 실시예에서 제어부(110)에 의해 신호들의 동기화가 수행된다. 즉, 제어부(110)의 제어, 예컨대, 제어부(110)에 의해 제공되는 클럭신호(CLK)에 따라 입력 영상 신호(Ss)의 계조에 대응되게 적절한 펄스폭(pulse width) 및 듀티비를 갖는 펄스폭변조 신호(Sw), 그리고 적절한 펄스폭 및 듀티비를 갖는 펄스폭변조 신호(Sw)에 대한 펄스진폭의 조절이 이루어져, 머지 신호(Sm)가 생성된다. 먼저, 펄스폭변조 신호 생성부(121)에서 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성한 후, 생성된 펄스폭변조 신호(Sw)에 대하여 펄스진폭변조 신호 생성부(122)가 펄스진폭을 입력 영상 신호(Ss)의 계조에 대응되게 조절함으로써, 펄스진폭변조된 형태의 머지 신호(Sm)를 생성하게 된다. 즉, 1차적으로 펄스폭변조 신호 생성부(121)에 의해 펄스폭변조(PWM)가 수행되고, 펄스진폭변조 신호 생성부(122)에 의해 2차적으로 펄스진폭변조(PAM)이 수행되어 최종적으로 머지 신호(Sm)가 생성된다. 도면에서 최종적으로 펄스진폭변조에 의해 머지 신호(Sm)가 생성되고 있으므로, 펄스진폭변조 신호(Sa)와 머지 신호(Sm)를 함께 표시하였다.31 is a block diagram of an LED display driver IC according to an embodiment of the present invention, and the merge signal generation unit 120 of FIG. 30 generates a pulse width modulation signal corresponding to the gray level of the input image signal S s It includes a pulse width modulation signal generation unit 121 and a pulse amplitude modulation signal generation unit 122 for generating a pulse amplitude modulation signal (S w ) corresponding to the gradation of the input image signal (S s ). In the embodiment shown in FIG. 31, synchronization of signals is performed by the controller 110. That is, according to the control of the control unit 110, for example, an appropriate pulse width and duty ratio corresponding to the gradation of the input image signal S s according to the clock signal CLK provided by the control unit 110 pulse width modulation signal (S w), and is made up of a pulse amplitude adjustment to the pulse width modulation signal (S w) having an appropriate pulse width and the duty ratio is generated by the remaining signal (S m). First, the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w corresponding to the gradation of the input image signal S s , and then pulses the generated pulse width modulation signal S w The amplitude modulated signal generator 122 adjusts the pulse amplitude to correspond to the gradation of the input image signal Ss, thereby generating a pulse amplitude modulated merge signal S m . That is, pulse width modulation (PWM) is firstly performed by the pulse width modulation signal generation unit 121, and pulse amplitude modulation (PAM) is secondarily performed by the pulse amplitude modulation signal generation unit 122 to finally As a result, a merge signal S m is generated. In the drawing, since the merge signal S m is finally generated by the pulse amplitude modulation, the pulse amplitude modulation signal S a and the merge signal S m are displayed together.
도 32는 도 31에서의 펄스폭변조 신호(Sw)와 펄스진폭변조 신호(Sa)의 예들을 나타낸 도면이며, (a)는 펄스폭변조 신호(Sw)의 예이고, (b)는 펄스진폭변조 신호(Sa), 즉 결과적으로 머지 신호(Sm)의 예이다.32 is a view showing examples of the pulse width modulation signal (S w ) and the pulse amplitude modulation signal (S a ) in FIG. 31, (a) is an example of the pulse width modulation signal (S w ), (b) Is an example of a pulse amplitude modulation signal S a , that is, a merge signal S m as a result.
먼저, (a)를 살펴보면, 저계조 영역(30% 미만의 계조 영역), 중계조 영역(30% 이상 및 80% 미만의 계조 영역) 및 고계조 영역(80% 이상의 계조 영역) 각각에 대하여 한 주기씩의 펄스폭변조 신호(Sw)의 예들을 나타내었으며, 입력 영상 신호의 계조에 대응되게 소정의 펄스폭 내에서 적절한 듀티비가 결정된다. 앞서 언급한 바와 같이, 이러한 범위는 설명의 편의를 위해 구분된 것이므로, 저계조 영역, 중계조 영역 및 고계조 영역은 상황에 따라 다르게 정의될 수도 있다.First, looking at (a), each of the low gradation regions (gradation regions of less than 30%), the middle gradation regions (gradation regions of 30% or more and less than 80%), and the high gradation regions (gradation regions of 80% or more) Examples of the pulse width modulation signal S w of each period are shown, and an appropriate duty ratio is determined within a predetermined pulse width corresponding to the gradation of the input video signal. As mentioned above, since these ranges are divided for convenience of description, the low grayscale region, the middle grayscale region, and the high grayscale region may be defined differently according to circumstances.
다음으로, (b)에서는 차례대로 저계조 영역에 대하여 펄스진폭이 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스진폭변조 신호(Sa)의 예, 고계조 영역에 대하여 펄스진폭이 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스진폭변조 신호(Sa)의 예, 그리고, 저계조 영역과 고계조 영역 모두에 대하여 펄스진폭이 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스진폭변조 신호(Sa)의 예를 나타내고 있다. 저계조 영역에 해당하는 임의의 입력 영상 신호인 경우, 펄스폭변조와 펄스진폭변조가 모두 수행된 이후의 최종적인 머지 신호의 예들은 도 41에 도시되어 있다. (b)에서는 3비트(23) 펄스진폭변조의 경우에 대해서만 예시하였으나, 이러한 비트수로 한정되는 것은 아니다. 또한, 도시되지는 않았으나, 중계조 영역에 대하여도, 입력 영상 신호(Ss)의 계조에 대응되게 조절될 수도 있다.Next, in (b), an example of the pulse amplitude modulation signal S a when the pulse amplitude is adjusted to correspond to the gray level of the input image signal Ss in turn, for example, the pulse amplitude for the high gray level area An example of a pulse amplitude modulation signal S a when it is adjusted to correspond to the gradation of the input video signal S s , and the pulse amplitude for both the low gradation region and the high gradation region is the input image signal S s An example of the pulse amplitude modulation signal S a when adjusted to correspond to the gradation of is shown. In the case of an arbitrary input image signal corresponding to a low grayscale region, examples of final merge signals after both pulse width modulation and pulse amplitude modulation are performed are illustrated in FIG. 41. In (b), only the case of 3-bit (2 3 ) pulse amplitude modulation is illustrated, but the number of bits is not limited. Also, although not shown, the grayscale region may be adjusted to correspond to the grayscale of the input image signal S s .
저계조 영역에 적용하는 경우, 제어부(110)에서 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있는 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성한 후, 펄스진폭변조 신호 생성부(122)가 펄스폭변조 신호 생성부(121)에서 생성된 펄스폭변조 신호(Sw)의 펄스진폭을 도 32의 (b)의 첫 번째와 같은 형태로 입력 영상 신호(Ss)의 계조에 대응되게 조절할 수 있다. 만약 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있지 않은 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)는 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성하고, 펄스진폭변조 신호 생성부(122)에서의 펄스진폭 조절은 수행되지 않음으로써, 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)가 스위칭 회로부(130) 측으로 인가되어 엘이디의 전류 및 휘도를 조절하게 된다.When applied to the low gradation region, the control unit 110 from the input image signal (S s), the input receives a video signal (S s) of the grayscale input image in the determination, the control unit 110 whether or not in the low gradation region When it is determined that the gradation of the signal S s is within the low gradation region, the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w to correspond to the gradation of the input image signal S s . Subsequently, the pulse amplitude modulation signal generation unit 122 inputs the pulse amplitude of the pulse width modulation signal S w generated by the pulse width modulation signal generation unit 121 in the first form of FIG. 32 (b). It can be adjusted to correspond to the gradation of the video signal (S s ). If the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region, the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s . modulated signal (S w), the generation, and pulse amplitude modulated by a pulse amplitude control in the signal generating unit 122 is not carried out, the resulting pulse width modulated by the PWM signal generation unit 121 signal (S w ) Is applied to the switching circuit 130 to control the current and luminance of the LED.
또한, 고계조 영역에 적용하는 경우, 제어부(110)는 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 고계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 고계조 영역 내에 있는 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성한 후, 펄스진폭변조 신호 생성부(122)가 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)의 펄스진폭을 도 32 (b)의 두 번째와 같은 형태로 입력 영상 신호(Ss)의 계조에 대응되게 조절할 수 있다. 만일 제어부(110)에서 입력 영상 신호(Ss)의 계조가 고계조 영역 내에 있지 않은 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)는 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성하고, 펄스진폭변조 신호 생성부(122)에 의한 펄스진폭의 조절은 수행되지 않음으로써, 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)가 스위칭 회로부(130) 측으로 인가되어 엘이디의 전류 및 휘도를 조절하게 된다.In addition, in the case of applying the gradation region, the control unit 110 the input image signal (S s) from the input receives a video signal (S s) is high the determination and control section 110 whether or not in the gray scale area gradation of When it is determined that the gradation of the input image signal S s is within the high gradation region, the pulse width modulation signal generation unit 121 generates a pulse width modulation signal S w to correspond to the gradation of the input image signal S s . After generation, the pulse amplitude modulation signal generator 122 generates the pulse amplitude of the pulse width modulation signal S w generated by the pulse width modulation signal generator 121 as shown in FIG. 32 (b). With the input video signal (S s ) It can be adjusted to correspond to the gradation. If the controller 110 determines that the gradation of the input image signal S s is not within the high gradation region, the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s . The pulse width modulation signal S generated by the pulse width modulation signal generation unit 121 is generated by generating the modulation signal S w and not adjusting the pulse amplitude by the pulse amplitude modulation signal generation unit 122. w ) is applied to the switching circuit 130 to control the current and luminance of the LED.
또한, 저계조 및 고계조 모두에 적용하는 경우, 제어부(110)는 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 저계조 영역 및 고계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있거나 고계조 영역 내에 있는 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성한 후, 펄스진폭변조 신호 생성부(122)가 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)의 펄스진폭을 입력 영상 신호(Ss)의 계조에 대응되게 조절할 수 있다. 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 및 고계조 영역 내에 있지 않은 것으로 판단한 경우, 펄스폭변조 신호 생성부(121)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호(Sw)를 생성하고, 펄스진폭변조 신호 생성부(122)에 의한 펄스진폭의 조절은 수행되지 않음으로써, 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)가 스위칭 회로부(130) 측으로 인가되어 엘이디의 전류 및 휘도를 조절하게 된다.In addition, when applied to both the low-gradation and high-gradation, the control unit 110 determines whether or not in the gray scale is the low gradation region and high gradation region for receiving the input video signal (S s), the input image signal (S s) Then, when the controller 110 determines that the grayscale of the input image signal S s is within the low grayscale region or the high grayscale region, the pulse width modulation signal generator 121 generates the grayscale of the input image signal S s a generating a pulse width modulated signal (S w) to correspond to the later, the pulse amplitude of the pulse amplitude modulation signal generator 122 is a pulse width modulated signal (S w) generated by the PWM signal generation unit 121 Can be adjusted to correspond to the gradation of the input video signal S s . When the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region and the high gradation region, the pulse width modulation signal generation unit 121 corresponds to the gradation of the input image signal S s As such, the pulse width modulation signal S w is generated and the pulse amplitude modulation by the pulse amplitude modulation signal generation unit 122 is not performed, so that the pulse width modulation generated by the pulse width modulation signal generation unit 121 is performed. The signal S w is applied to the switching circuit 130 to control the current and luminance of the LED.
이와 같이, 엘이디 디스플레이 내의 엘이디들 각각의 휘도 조절에 따른 표현력의 강화를 위해, 펄스폭변조와 펄스진폭변조를 모두 사용함으로써, 종래에 펄스폭변조 만을 이용하는 방식의 단점을 개선할 수 있다. 예컨대, 종래 펄스폭변조 신호만을 이용하여 엘이디들 각각의 휘도를 조절하는 방식에서, 펄스폭변조 신호에 의해 커버되는 제어가 12비트(212) 그레이 제어라고 가정하면, 본 발명에서는 이러한 펄스폭변조 신호에 의한 12비트(212)에 더하여 펄스진폭변조 신호(예컨대, 6비트(26)로 가정하면)를 더 사용하게 되면, 18비트(218) 그레이 제어가 가능해지므로, 엘이디들 각각의 표현력을 더욱 증가시킬 수 있게 된다. 펄스폭변조 신호에 의한 제어만으로는 16비트(216) 그레이 제어 이상으로는 불가능한 점을 고려해 보면, 본 발명은 펄스폭변조 신호와 펄스진폭변조 신호를 함께 사용함으로써, 이러한 한계점을 극복할 수 있게 된다.As described above, in order to enhance the expressive power according to the brightness control of each of the LEDs in the LED display, by using both pulse width modulation and pulse amplitude modulation, it is possible to improve the disadvantages of the conventional method using only pulse width modulation. For example, in a method of adjusting the luminance of each of the LEDs using only the conventional pulse width modulation signal, assuming that the control covered by the pulse width modulation signal is a 12-bit (2 12 ) gray control, in the present invention, such pulse width modulation When the pulse amplitude modulation signal (for example, 6 bits (2 6 )) is used in addition to the 12 bits (2 12 ) by the signal, 18 bits (2 18 ) gray control becomes possible, so each of the LEDs It is possible to further increase the expressive power. Considering that control by the pulse width modulation signal alone is impossible with more than 16 bit (2 16 ) gray control, the present invention can overcome this limitation by using the pulse width modulation signal and the pulse amplitude modulation signal together. .
도 33은 본 발명의 다른 실시예에 따른 엘이디 드라이버 IC의 블록도이다. 도 33을 참조하면, 도 30의 머지 신호 생성부(120)는 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호를 생성하는 펄스폭변조 신호 생성부(121)와, 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sw)를 생성하는 펄스진폭변조 신호 생성부(122)를 포함한다. 도 31에 도시된 실시예서와 마찬가지로 이 실시예에서는 제어부(110)에 의해 신호의 동기화가 수행된다. 즉, 제어부(110)의 제어, 예컨대, 제어부(110)에 의해 제공되는 클럭신호(CLK)에 따라 입력 영상 신호(Ss)의 계조에 대응되게 적절한 펄스진폭을 갖는 펄스진폭변조 신호(Sa)와, 이러한 펄스진폭변조 신호에 대한 듀티비의 조절이 수행된다. 먼저, 펄스진폭변조 신호 생성부(122)에서 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sa)를 생성한 후, 생성된 펄스진폭변조 신호(Sa)에 대하여 펄스폭변조 신호 생성부(121)가 펄스폭, 펄스의 듀티비를 입력 영상 신호의 계조에 대응되게 조절함으로써, 최종적인 머지 신호(Sm)를 생성하게 된다. 즉, 1차적으로 펄스진폭변조 신호 생성부(122)에 의해 펄스진폭변조(PAM)가 수행되고, 펄스폭변조 신호 생성부(121)에 의해 2차적으로 펄스폭변조(PWM)가 수행되어 최종적으로 머지 신호(Sm)가 생성된다. 도면에서 최종적으로 펄스폭변조에 의해 머지 신호(Sm)가 생성되고 있으므로, 펄스폭변조 신호(Sw)와 머지 신호(Sm)를 함께 표시하였다.33 is a block diagram of an LED driver IC according to another embodiment of the present invention. Referring to FIG. 33, the merge signal generation unit 120 of FIG. 30 includes a pulse width modulation signal generation unit 121 that generates a pulse width modulation signal corresponding to the gray level of the input image signal S s , and an input image signal It includes a pulse amplitude modulation signal generation unit 122 for generating a pulse amplitude modulation signal (S w ) corresponding to the gradation of (S s ). As in the embodiment shown in FIG. 31, in this embodiment, synchronization of the signal is performed by the controller 110. That is, according to the control of the control unit 110, for example, a pulse amplitude modulation signal S a having an appropriate pulse amplitude corresponding to the gradation of the input image signal S s according to the clock signal CLK provided by the control unit 110 ), And adjustment of the duty ratio for this pulse amplitude modulation signal is performed. First, the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a corresponding to the gradation of the input image signal S s , and then pulses the generated pulse amplitude modulation signal S a The width modulation signal generating unit 121 adjusts the pulse width and the duty ratio of the pulse to correspond to the gray level of the input video signal, thereby generating the final merge signal S m . That is, pulse amplitude modulation (PAM) is primarily performed by the pulse amplitude modulation signal generation unit 122, and pulse width modulation (PWM) is performed secondarily by the pulse amplitude modulation signal generation unit 121 to finally perform As a result, a merge signal S m is generated. In the drawing, since the merge signal S m is finally generated by the pulse width modulation, the pulse width modulation signal S w and the merge signal S m are displayed together.
도 34는 도 33에서의 펄스진폭변조(Sa)와 펄스폭변조 신호(Sw, 여기서는 최종적인 머지 신호(Sm))의 예들을 나타낸 도면이며, (a)는 펄스진폭변조 신호(Sa)의 예이고, (b)는 펄스폭변조 신호(Sw), 즉 최종적인 머지 신호(Sm)의 예이다.FIG. 34 is a view showing examples of the pulse amplitude modulation (S a ) and the pulse width modulation signal (S w , here, the final merge signal (S m )) in FIG. 33, and (a) is the pulse amplitude modulation signal (S). a ) is an example, and (b) is an example of a pulse width modulation signal S w , that is, a final merge signal S m .
먼저, (a)를 살펴보면, 저계조 영역(30% 미만의 계조 영역), 중계조 영역(30% 이상 및 80% 미만의 계조 영역) 및 고계조 영역(80% 이상의 계조 영역) 각각에 대하여 한 주기씩의 펄스진폭변조 신호(Sa)의 예들을 나타내었다. 각각의 계조 영역 내에서 입력 영상 신호의 계조에 대응되게 적절한 펄스진폭을 먼저 결정한다.First, looking at (a), each of the low gradation regions (gradation regions of less than 30%), the middle gradation regions (gradation regions of 30% or more and less than 80%), and the high gradation regions (gradation regions of 80% or more) shows examples of pulse amplitude modulation signal (S a) of each period. The appropriate pulse amplitude is first determined to correspond to the gradation of the input image signal in each gradation region.
다음으로, (b)에서는 차례대로 입력 영상 신호가 저계조 영역 내에 있는 경우, (a)에서 펄스진폭이 결정되어 생성된 펄스진폭변조 신호에 대하여, 소정의 펄스폭 내에서 듀티비가 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스폭변조 신호(Sa)의 예, 입력 영상 신호가 저계조 영역 내에 있는 경우, (a)에서 펄스진폭이 결정되어 생성된 펄스진폭변조 신호에 대하여, 소정의 펄스폭 내에서 듀티비가 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스폭변조 신호(Sw)의 예, 그리고, 저계조 영역과 고계조 영역 모두에 대하여 소정의 펄스폭 내에서 듀티비가 입력 영상 신호(Ss)의 계조에 대응되게 조절되는 경우의 펄스폭변조 신호(Sw)의 예를 나타내고 있다. 도시되지는 않았으나, 중계조 영역에 대하여도, 입력 영상 신호(Ss)의 계조에 대응되게 조절될 수도 있다.Next, in (b), when the input video signal is in the low gradation region in turn, the duty ratio within a predetermined pulse width is input to the pulse amplitude modulation signal generated by determining the pulse amplitude in (a). Example of pulse width modulation signal S a when adjusted to correspond to the gradation of S s ), when the input image signal is within the low gradation region, pulse amplitude is determined in (a) to the generated pulse amplitude modulation signal. For example, an example of the pulse width modulation signal S w when the duty ratio is adjusted to correspond to the gradation of the input video signal S s within a predetermined pulse width, and for both the low gradation region and the high gradation region An example of the pulse width modulation signal S w when the duty ratio is adjusted to correspond to the gradation of the input video signal S s within the pulse width of? Although not illustrated, the grayscale region may be adjusted to correspond to the grayscale of the input image signal S s .
예를 들어, 저계조 영역에 적용하는 경우, 제어부(110)는 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있는 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sa)를 생성한 후, 펄스폭변조 신호 생성부(121)가 펄스진폭변조 신호 생성부(122)에 의해 생성된 펄스진폭변조 신호(Sa)의 듀티비를 도 34 (b)의 첫 번째와 같이 입력 영상 신호(Ss)의 계조에 대응되게 조절할 수 있다. 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있지 않은 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)에 의한 펄스진폭의 조절을 이뤄지지 않고, 펄스폭변조 신호 생성부(121)에서 직접 펄스폭변조 신호(Sw)를 생성하여 스위칭 회로부(123) 측으로 제공함으로써 엘이디들의 전류 및 휘도를 조절할 수 있다.For example, if applied to the low gradation region, the control unit 110 receives the input image signal (S s), the gray level of the input image signal (S s), and determines whether or not in the low gradation region, the control unit (110 ), If it is determined that the gradation of the input image signal S s is within the low gradation region, the pulse amplitude modulation signal generation unit 122 corresponds to the gradation of the input image signal S s , so that the pulse amplitude modulation signal S a ), The pulse width modulation signal generator 121 generates a duty ratio of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generator 122 with the first in FIG. 34 (b). Similarly, it can be adjusted to correspond to the gradation of the input video signal S s . If the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region, the pulse amplitude modulation signal generation unit 122 does not control the pulse amplitude, and the pulse width modulation signal generation unit By generating the pulse width modulation signal (S w ) directly at 121 and providing it to the switching circuit unit 123 side, the current and luminance of the LEDs can be adjusted.
또한, 고계조 영역에 적용하는 경우, 제어부(110)는 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 고계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 고계조 영역 내에 있는 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sa)를 생성한 후, 펄스폭변조 신호 생성부(121)가 펄스진폭변조 신호 생성부(122)에 의해 생성된 펄스진폭변조 신호(Sa)의 듀티비를 도 34 (b)의 두 번째와 같이 입력 영상 신호(Ss)의 계조에 대응되게 조절할 수 있다. 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있지 않은 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)에 의한 펄스진폭의 조절을 이뤄지지 않고, 펄스폭변조 신호 생성부(121)에서 직접 펄스폭변조 신호(Sw)를 생성하여 스위칭 회로부(123) 측으로 제공함으로써 엘이디들의 전류 및 휘도를 조절할 수 있다.In addition, in the case of applying the gradation region, the control unit 110 the input image signal (S s) from the input receives a video signal (S s) is high the determination and control section 110 whether or not in the gray scale area gradation of When it is determined that the gradation of the input image signal S s is within the high gradation region, the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a to correspond to the gradation of the input image signal S s . After generation, the pulse width modulation signal generation unit 121 inputs the duty ratio of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generation unit 122 as shown in FIG. 34 (b). It can be adjusted to correspond to the gradation of the video signal (S s ). If the controller 110 determines that the gradation of the input image signal S s is not within the low gradation region, the pulse amplitude modulation signal generation unit 122 does not control the pulse amplitude, and the pulse width modulation signal generation unit By generating the pulse width modulation signal (S w ) directly at 121 and providing it to the switching circuit unit 123 side, the current and luminance of the LEDs can be adjusted.
저계조 영역 및 고계조 영역 모두에 대하여 적용하는 경우, 제어부(110)가 입력 영상 신호(Ss)를 입력받아 입력 영상 신호(Ss)의 계조가 저계조 영역 및 고계조 영역 내에 있는지 여부를 판단하고, 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에 있거나 고계조 영역 내에 있는 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)가 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sa)를 생성한 후, 펄스폭변조 신호 생성부(121)가 펄스진폭변조 신호 생성부(122)에 의해 생성된 펄스진폭변조 신호(Sa)의 듀티비를 입력 영상 신호(Ss)의 계조에 대응되게 도 34 (b)의 세 번째와 같이 조절할 수 있다. 제어부(110)에서 입력 영상 신호(Ss)의 계조가 저계조 영역 내에도 있지 않고 고계조 영역 내에도 있지 않은 것으로 판단한 경우, 펄스진폭변조 신호 생성부(122)에 의한 펄스진폭의 조절을 이뤄지지 않고, 펄스폭변조 신호 생성부(121)에서 직접 펄스폭변조 신호(Sw)를 생성하여 스위칭 회로부(123) 측으로 제공함으로써 엘이디들의 전류 및 휘도를 조절할 수 있다. 이 실시예에서도 입력 영상 신호가 저계조 영역 및/또는 고계조 영역 내에 있는 경우에 대하여만 예시하였으나, 중계조 영역에 대하여도 적용될 수 있다.When applied to both the low gradation region and high gradation region, the control section 110 whether or not in the gray scale is the low gradation region and high gradation region of the input image signal (S s), the input receives a video signal (S s) If it is determined and the control unit 110 determines that the gray level of the input image signal S s is in the low gray level region or in the high gray level region, the pulse amplitude modulation signal generation unit 122 determines whether the gray level of the input image signal S s is After generating the pulse amplitude modulation signal S a corresponding to the gradation, the duty of the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generation unit 122 by the pulse amplitude modulation signal generation unit 121 The ratio may be adjusted as the third of FIG. 34 (b) to correspond to the gradation of the input image signal S s . If the controller 110 determines that the gradation of the input image signal S s is neither within the low gradation region nor within the high gradation region, the pulse amplitude is not adjusted by the pulse amplitude modulation signal generation unit 122. Instead, the pulse width modulation signal generation unit 121 directly generates a pulse width modulation signal S w and provides it to the switching circuit unit 123 to control the current and luminance of the LEDs. Even in this embodiment, only the case where the input video signal is in the low gray level area and / or the high gray level area is illustrated, but it can also be applied to the gray level area.
이와 같이, 엘이디 디스플레이 내의 엘이디들 각각의 휘도 조절에 따른 표현력의 강화를 위해, 펄스폭변조와 펄스진폭변조를 모두 사용함으로써, 종래에 펄스폭변조만을 이용하는 방식의 단점을 개선할 수 있다.As described above, in order to enhance the expressive power according to the brightness control of each of the LEDs in the LED display, by using both pulse width modulation and pulse amplitude modulation, it is possible to improve the disadvantages of the conventional method using only pulse width modulation.
도 35 내지 도 38은 본 발명의 또 다른 실시예에 따른 엘이디 드라이버 IC를 설명하기 위한 블록도들로서, 구체적으로는, 도 35는 본 발명의 또 다른 실시예에 따른 엘이디 드라이버 IC의 블록도이고, 도 36은 도 35의 실시예에서 입력 영상 신호가 저계조 영역 내에 있는 경우에만 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이고, 도 37은 도 35의 실시예에서 입력 영상 신호가 고계조 영역 내에 있는 경우에만 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이고, 도 38은 도 35의 실시예에서 입력 영상 신호가 저계조 영역 내에 있거나 고계조 영역 내에 있는 경우에 적용되는 머지 신호의 생성 과정을 설명하기 위한 도면이다.35 to 38 are block diagrams for explaining the LED driver IC according to another embodiment of the present invention. Specifically, FIG. 35 is a block diagram of the LED driver IC according to another embodiment of the present invention. 36 is a view for explaining a process of generating a merge signal applied only when the input image signal is in a low grayscale region in the embodiment of FIG. 35, and FIG. 37 is a high grayscale region of the input image signal in the embodiment of FIG. FIG. 38 is a view for explaining a process of generating a merge signal that is applied only in the case of FIG. It is a drawing for explaining.
도 35를 참조하면, 머지 신호 생성부(120)는 입력 영상 신호(Ss)의 계조에 대응되게 펄스폭변조 신호를 생성하는 펄스폭변조 신호 생성부(121)와, 입력 영상 신호(Ss)의 계조에 대응되게 펄스진폭변조 신호(Sw)를 생성하는 펄스진폭변조 신호 생성부(122), 그리고 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)와 펄스진폭변조 신호 생성부에 의해 생성된 펄스진폭변조 신호(Sa)를 제어부(110)의 제어에 따라 머지하여 머지 신호(Sm)를 생성하기 위한 머지부(123)를 포함한다. 머지부(123)는 제어부(110)로부터 제공되는 동기화 클럭 신호(CLK)에 따라, 펄스폭변조 신호 생성부(121)에 의해 생성된 펄스폭변조 신호(Sw)와 펄스진폭변조 신호 생성부(122)에 의해 생성된 펄스진폭변조 신호(Sa)를 머지한다.Referring to Figure 35, the remaining signal generator 120 and the input image signal (S s) of in correspondence to the gradation generating a pulse width modulation signal for generating a pulse width modulated signal 121, the input image signal (S s ) Corresponding to the grayscale of the pulse amplitude modulation signal generation unit (S w ) for generating a pulse amplitude modulation signal (S w ) and the pulse width modulation signal generated by the pulse width modulation signal generation unit (121) (S w ) and And a merge unit 123 for merging the pulse amplitude modulation signal S a generated by the pulse amplitude modulation signal generation unit under the control of the controller 110 to generate a merge signal S m . The merge unit 123 generates a pulse width modulation signal S w and a pulse amplitude modulation signal generation unit generated by the pulse width modulation signal generation unit 121 according to the synchronization clock signal CLK provided from the control unit 110. The pulse amplitude modulation signal (S a ) generated by (122) is merged.
도 36에 도시된 바와 같이, 입력 영상 신호(Ss)가 저계조 영역에 있을 때 적용하는 경우, 저계조 영역을 제외한 나머지 영역에 대하여는 펄스폭변조 신호 생성부(121)에서 펄스폭변조 신호(Sw)를 생성하고, 저계조 영역에 대하여는 펄스진폭변조 신호 생성부(122)에서 펄스진폭변조 신호(Sa)를 생성하며, 머지 신호 생성부(123)에서 이들 신호들을 머지하여 스위칭 회로부(130) 측으로 제공함으로써 엘이디들의 전류 및 휘도를 조절한다.As shown in FIG. 36, when applied when the input image signal S s is in the low grayscale region, the pulse width modulation signal ( S w ), and for the low grayscale region, the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a , and the merge signal generation unit 123 merges these signals to switch the circuit unit ( 130) Adjusts the current and brightness of the LEDs by providing them to the side.
또한, 도 37에 도시된 바와 같이, 입력 영상 신호(Ss)가 고계조 영역에 있을 때 적용하는 경우, 고계조 영역을 제외한 나머지 영역에 대하여는 펄스폭변조 신호 생성부(121)에서 펄스폭변조 신호(Sw)를 생성하고, 고계조 영역에 대하여는 펄스진폭변조 신호 생성부(122)에서 펄스진폭변조 신호(Sa)를 생성하며, 머지 신호 생성부(123)에서는 이들 신호들을 머지하여 스위칭 회로부(130) 측으로 제공함으로써, 엘이디들의 전류 및 휘도를 조절한다.In addition, as illustrated in FIG. 37, when applied when the input image signal S s is in the high grayscale region, the pulse width modulation is generated by the pulse width modulation signal generation unit 121 for the remaining regions except the high grayscale region. The signal S w is generated, and the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal S a for the high gradation region, and the merge signal generation unit 123 merges these signals for switching. Provided to the circuit 130, the current and luminance of the LEDs are adjusted.
또한, 도 38에 도시된 바와 같이, 입력 영상 신호(Ss)가 저계조 영역 내에 있거나 고계조 영역 내에 있을 때 적용하는 경우, 저계조 영역 및 고계조 영역을 제외한 나머지 영역(중계조 영역)에 대하여는 펄스폭변조 신호 생성부(121)에서 펄스폭변조 신호(Sw)를 생성하고, 고계조 영역에 대하여는 펄스진폭변조 신호 생성부(122)에서 펄스진폭변조 신호(Sa)를 생성하며, 머지 신호 생성부(123)에서 이들 신호들을 머지하여 스위칭 회로부(130) 측으로 제공함으로써, 엘이디들의 전류 및 휘도를 조절한다.In addition, as shown in FIG. 38, when applied when the input image signal S s is in the low grayscale region or in the high grayscale region, in the remaining regions (grayscale region) except the low grayscale region and the high grayscale region For the pulse width modulation signal generation unit 121 generates a pulse width modulation signal (S w ), and for the high gradation region, the pulse amplitude modulation signal generation unit 122 generates a pulse amplitude modulation signal (S a ), By merging these signals from the merge signal generator 123 and providing them to the switching circuit 130, the current and luminance of the LEDs are adjusted.
마찬가지로, 이 실시예에서도 입력 영상 신호가 저계조 영역 및/또는 고계조 영역 내에 있는 경우에 대하여만 예시하였으나, 중계조 영역에 대하여도 적용될 수 있다.Similarly, in this embodiment, only the case where the input video signal is in the low gray level region and / or the high gray level region is illustrated, but it can also be applied to the gray level region.
도 39는 펄스폭변조 방식으로만 엘이디 디스플레이 내 엘이디들의 휘도를 제어하는 종래의 방식의 단점을 보여주기 위한 감마 곡선이고, 도 40은 펄스폭변조 신호와 펄스진폭변조 신호의 머지 신호를 이용하는 본 발명의 특징을 보여주기 위한 도면이다.39 is a gamma curve for showing the disadvantages of the conventional method of controlling the luminance of the LEDs in the LED display only with the pulse width modulation method, and FIG. 40 is the present invention using the pulse width modulation signal and the merge signal of the pulse amplitude modulation signal. It is a drawing to show the characteristics of.
먼저, 도 39를 참조하여 감마(γ) = 2.8인 곡선에 대하여 살펴보면, 종래의 펄스폭변조 신호를 이용한 8bit(28) 그레이 제어에 있어서는, 그레이 클럭(GCLK) 32Mhz에서 클럭 타임은 31.25㎱라고 할 때, 210을 표현하기 위해서는 31.25*210㎱, 즉 32㎲의 시간이 필요하고, 이것을 이용해 216을 표현하고자 하면, 32㎲*26 즉, 2.048㎳의 시간이 요구된다. 따라서 리프레시 레이트(refresh rate)는 대략 488hz를 얻을 수 있다. 그러므로, 펄스폭변조만을 이용할 경우, 리프레시 레이트를 희생해야 하는 문제점이 존재하며, 이에 따라 플리커 현상이 발생하여 화질을 저하시킬 수 있다. 이러한 플리커는 특허 저계조 영역에서 두드러지게 나타나게 되어 화질에 영향을 주게 된다.First, referring to FIG. 39, a curve with gamma (γ) = 2.8 will be considered. In the 8- bit (2 8 ) gray control using a conventional pulse width modulation signal, the clock time is 31.25 ms at 32 MHz of gray clock (GCLK). In order to express 2 10 , 31.25 * 2 10 ㎱, that is, 32 시간 of time is required, and if you want to express 2 16 using this, 32 ㎲ * 2 6, that is, 2.048 시간 of time is required. Therefore, a refresh rate of about 488 hz can be obtained. Therefore, when only pulse width modulation is used, there is a problem of sacrificing the refresh rate, and accordingly, a flicker phenomenon may occur, thereby degrading image quality. These flickers appear prominently in the low-gradation domain of the patent, which affects image quality.
또한, 앞에서도 언급하였고 감마(γ=2.8) 곡선에서 알 수 있는 바와 같이, 저계조 영역에서의 미세한 표현력을 위해 구동 IC 측의 제어 신호들을 더 구분할 필요가 있는데, 종래의 펄스폭변조 만으로는 한계가 있다.In addition, as mentioned above and as can be seen from the gamma (γ = 2.8) curve, it is necessary to further classify the control signals on the driving IC side for fine expression in the low gradation region. have.
따라서, 본 발명에서는 도 40에 도시된 바와 같이, 펄스폭변조와 펄스진폭변조를 함께 사용하여 머지 신호를 생성함으로써, 종래의 한계점들을 극복할 수 있다.Therefore, in the present invention, as shown in FIG. 40, by using the pulse width modulation and the pulse amplitude modulation together to generate a merge signal, it is possible to overcome the conventional limitations.
본 발명의 일 실시예에 따라, 머지 신호 생성부(도 30의 100)에 의해 생성되는 머지 신호(Sm)는 펄스폭변조 신호 생성부(121)에 의해 생성되는 펄스폭변조 신호의 비트수와 펄스진폭변조 신호 생성부(122)에 의해 생성되는 펄스진폭변조의 비트수의 합에 대응하는 미세도를 갖는 신호일 수 있다. 상기 미세도는, 본 명세서 내에서는, 펄스폭변조 신호인 경우 펄스폭변조 신호 내에 얼마만큼의 비트수가 포함되는지의 정도, 그리고 펄스진폭변조 신호인 경우 펄스진폭변조 신호 내에 얼마 만큼의 비트수가 포함되는지의 정도를 나타내는 용어로서 정의된다. 이 경우, 머지 신호(Sm)는 펄스폭변조 신호의 비트수에 대응되는 리프레시 레이트(refresh rate)를 갖게 된다. 도 40을 참조하여 미세도와 리프레시 레이트에 관하여 예를 들어 설명한다.According to an embodiment of the present invention, the merge signal S m generated by the merge signal generation unit 100 in FIG. 30 is the number of bits of the pulse width modulation signal generated by the pulse width modulation signal generation unit 121. It may be a signal having a fineness corresponding to the sum of the number of bits of the pulse amplitude modulation generated by the pulse amplitude modulation signal generation unit 122. The fineness, in this specification, the degree of the number of bits included in the pulse width modulation signal in the case of a pulse width modulation signal, and, in the case of a pulse amplitude modulation signal, how many bits are included in the pulse amplitude modulation signal. It is defined as a term indicating the degree of. In this case, the merge signal S m has a refresh rate corresponding to the number of bits of the pulse width modulated signal. The fineness and refresh rate will be described with reference to FIG. 40 by way of example.
본 발명에 따른 방법의 일 예로서 제시된 도 40을 참조하면, 감마(γ) = 2.8인 곡선에 대하여 살펴보면, 펄스폭변조 신호를 이용한 10bit(210) 그레이 제어와 펄스진폭변조 신호를 이용한 6bit(26) 그레이 제어에 있어서, 그레이 클럭(GCLK) 32Mhz에서 클럭 타임은 31.25㎱이고, 210을 표현하기 위해서는 31.25*210㎱, 즉 32㎲의 시간이 요구되므로, 리프레시 레이트는 1/32㎲, 즉 31,250hz이다. 펄스진폭변조 신호를 이용한 6bit(26) 만큼이 추가되어 미세한 조정이 가능하더라도, 펄스진폭변조 신호만을 이용하여 16bit 그레이 제어를 하는 경우(이 경우, 31.25*216㎱가 요구되므로, 리프레시 레이트는 2048㎲의 시간이 요구되어 리프레시 레이트는 488hz가 됨)와 비교하여 보면, 종래의 펄스폭변조만을 이용할 때보다 훨씬 높은 리프레시 레이트를 달성할 수 있다.Referring to FIG. 40 presented as an example of the method according to the present invention, looking at a curve with gamma (γ) = 2.8, a 10-bit (2 10 ) gray control using a pulse width modulation signal and a 6-bit using a pulse amplitude modulation signal ( 26) in the control gray, gray clock (GCLK) from 32Mhz clock time is 31.25㎱, and so in order to express 2 10 31.25 * 2 10 ㎱, i.e. the time required 32㎲, the refresh rate is 1 / 32㎲ That is, 31,250hz. Even if fine adjustment is possible by adding as much as 6 bits (2 6 ) using the pulse amplitude modulation signal, when 16-bit gray control is performed using only the pulse amplitude modulation signal (in this case, 31.25 * 2 16 요구 is required, the refresh rate is Compared with the conventional pulse width modulation alone, a much higher refresh rate can be achieved in comparison with 2048 Hz of time required, resulting in a refresh rate of 488 hz).
이에 따라 특히 저계조 영역에서 미세한 휘도 조절이 가능해져 표현력을 향상시킬 수 있게 된다. 또한, HDR(High Dynamic Range)에서의 표현력을 향상시켜 엘이디 디스플레이 장치의 전반적인 화질 개선 효과를 볼 수 있으며, 고속 리프레시를 필요로 하는 3D 디스플레이 제품에 적용할 수 있는 이점이 있다.Accordingly, it is possible to finely adjust the luminance, particularly in a low grayscale region, thereby improving expression. In addition, by improving the expressive power in HDR (High Dynamic Range), it is possible to see the overall image improvement effect of the LED display device, and has an advantage that can be applied to 3D display products requiring high-speed refresh.
이상과 같이, 본 발명에 따른 엘이디 디스플레이 드라이버 IC는 종래에는 펄스폭변조 신호만을 이용하여 엘이디들의 휘도를 조절함에 있어서의 한계점을 극복하고자 하였다. 본 발명에 따른 엘이디 디스플레이 드라이버 IC는 종래의 펄스폭변조 신호에 의한 비트수에 더하여 펄스폭변조 신호에 의한 비트수 만큼의 미세 조절이 가능해진다. 예컨대, 펄스폭변조 신호에 의한 비트수가 12비트(212개)라고 하고, 펄스진폭변조 신호에 의한 비트수가 6비트(26개)라고 하면, 18비트(218개) 만큼의 미세 조절이 가능해진다. 또한, 리프레시 레이트의 증가에 따른 휘도의 증가에 대응되게 펄스진폭변조를 이용하여 엘이디들의 휘도를 조절함으로써, 최상의 디스플레이 화질을 구현할 수 있다. 또한, 본 발명은, 픽셀들이 마이크로 엘이디들로 구현된 고해상도의 풀-컬러 엘이디 디스플레이에 적용될 수 있으며, 고속의 리프레시를 구현함으로써, 3D 제품 등의 고속 프레임 제품에 적용할 수 있는 장점이 있다.As described above, the LED display driver IC according to the present invention has conventionally tried to overcome the limitation in controlling the luminance of the LEDs using only the pulse width modulation signal. The LED display driver IC according to the present invention can be finely adjusted as much as the number of bits by the pulse width modulation signal in addition to the number of bits by the conventional pulse width modulation signal. For example, if the number of bits by the pulse width modulation signal is 12 bits (2 12 ) and the number of bits by the pulse amplitude modulation signal is 6 bits (2 6 ), fine adjustment of 18 bits (2 18 ) is performed. It becomes possible. In addition, by adjusting the luminance of the LEDs using pulse amplitude modulation to correspond to the increase in luminance according to the increase in the refresh rate, it is possible to realize the best display image quality. In addition, the present invention has the advantage that the pixels can be applied to a high-resolution full-color LED display implemented with micro LEDs, and can be applied to high-speed frame products such as 3D products by implementing high-speed refresh.
본 발명에 따른 엘이디 디스플레이 내의 엘이디들의 휘도 조절 방법은, (1) 제어부에서 상기 입력 영상 신호의 계조를 판단하는 단계, (2) 상기 제어부의 판단에 의존하여 상기 입력 영상 신호의 계조에 대응되게 펄스폭변조(PWM) 신호를 생성하는 단계, (3) 상기 제어부의 판단에 의존하여 상기 입력 영상 신호의 계조에 대응되게 펄스진폭변조(PAM) 신호를 생성하는 단계, (4) 상기 펄스폭변조 신호와 상기 펄스진폭변조 신호를 머지하여 머지 신호를 생성하는 단계, 그리고, (5) 상기 머지 신호로 상기 엘이디들의 휘도를 조절하는 단계를 포함한다. 상기 단계들에서, (2) 단계와 (3) 단계는, (2) 단계 - (3) 단계 순으로 진행될 수도 있고, (3) - (2) 단계 순으로 진행될 수도 있으며, 서로 병렬적으로 진행될 수도 있다.The brightness control method of the LEDs in the LED display according to the present invention includes: (1) determining a gradation level of the input image signal by a control unit, and (2) pulse corresponding to a gradation level of the input image signal depending on the determination of the control unit. Generating a width modulated (PWM) signal, (3) generating a pulse amplitude modulated (PAM) signal corresponding to the gradation of the input image signal depending on the determination of the controller, (4) the pulse width modulated signal And merging the pulse amplitude modulation signal to generate a merge signal, and (5) adjusting the luminance of the LEDs with the merge signal. In the above steps, steps (2) and (3) may be performed in the order of steps (2)-(3), or (3)-(2), and may be performed in parallel with each other. It might be.
예컨대, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 저계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 저계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스폭변조 신호를 생성한 후, 상기 펄스진폭변조 신호를 생성하는 단계((3) 단계)에서, 상기 펄스폭변조 신호를 생성하는 단계에서 생성된 펄스폭변조 신호의 펄스진폭을 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다. For example, in the determining step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is within a low gray level region, and the control unit determines that the gray level of the input image signal is within the low gray level region. If it is determined that there is, in the step of generating the pulse width modulation signal (step (2)), generating a pulse width modulation signal corresponding to the gradation of the input image signal, and then generating the pulse amplitude modulation signal ( In step (3), the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
또한, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 고계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 고계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스폭변조 신호를 생성한 후, 상기 펄스진폭변조 신호를 생성하는 단계((3) 단계)에서, 상기 펄스폭변조 신호를 생성하는 단계에서 생성된 펄스폭변조 신호의 펄스진폭을 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다.In addition, in the determining step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is in a high gray level region, and the control unit determines that the gray level of the input image signal is within the high gray level region. If it is determined that there is, in the step of generating the pulse width modulation signal (step (2)), generating a pulse width modulation signal corresponding to the gradation of the input image signal, and then generating the pulse amplitude modulation signal ( In step (3), the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
또한, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 저계조 영역 및 고계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 저계조 영역 또는 상기 고계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스폭변조 신호를 생성하는 단계((1) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스폭변조 신호를 생성한 후, 상기 펄스진폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 펄스폭변조 신호를 생성하는 단계에서 생성된 펄스폭변조 신호의 펄스진폭을 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다.In addition, in the determination step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is within a low gray level region and a high gray level region, and the gray level of the input image signal is determined by the control unit. When it is determined that the signal is within the low grayscale region or the high grayscale region, in the step of generating the pulse width modulation signal (step (1)), after generating a pulse width modulation signal corresponding to the grayscale of the input image signal, the In the step of generating a pulse amplitude modulated signal (step (2)), the pulse amplitude of the pulse width modulated signal generated in the step of generating the pulse width modulated signal may be adjusted to correspond to the gradation of the input image signal.
또 다르게는, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 저계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 저계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스진폭변조 신호를 생성하는 단계((3) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스진폭변조 신호를 생성한 후, 상기 펄스폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 펄스진폭변조 신호를 생성하는 단계에서 생성된 펄스진폭변조 신호의 듀티비를 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다.Alternatively, in the determining step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is within a low gray level region, and the control unit determines that the gray level of the input image signal is the low gray level. If it is determined that the signal is within the range, in the step of generating the pulse amplitude modulation signal (step (3)), after generating a pulse amplitude modulation signal corresponding to the gray level of the input image signal, generating the pulse width modulation signal In step ((2) step), the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input image signal.
또한, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 고계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 고계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스진폭변조 신호를 생성하는 단계((3) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스진폭변조 신호를 생성한 후, 상기 펄스폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 펄스진폭변조 신호를 생성하는 단계에서 생성된 펄스진폭변조 신호의 듀티비를 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다.In addition, in the determining step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is in a high gray level region, and the control unit determines that the gray level of the input image signal is within the high gray level region. If it is determined that there is, in the step of generating the pulse amplitude modulation signal (step (3)), generating a pulse amplitude modulation signal corresponding to the gradation of the input video signal, and then generating the pulse width modulation signal ( In step (2), the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input video signal.
또한, 상기 제어부의 판단 단계((1) 단계)에서, 상기 제어부에서 상기 입력 영상 신호의 계조가 저계조 영역 및 고계조 영역 내에 있는지 여부를 판단하여, 상기 제어부에서 상기 입력 영상 신호의 계조가 상기 저계조 영역 또는 상기 고계조 영역 내에 있는 것으로 판단한 경우, 상기 펄스진폭변조 신호를 생성하는 단계((3) 단계)에서, 상기 입력 영상 신호의 계조에 대응되는 펄스진폭변조 신호를 생성한 후, 상기 펄스폭변조 신호를 생성하는 단계((2) 단계)에서, 상기 펄스진폭변조 신호를 생성하는 단계에서 생성된 펄스진폭변조 신호의 듀티비를 상기 입력 영상 신호의 계조에 대응되게 조절할 수 있다.In addition, in the determination step ((1) step) of the control unit, the control unit determines whether the gray level of the input image signal is within a low gray level region and a high gray level region, and the gray level of the input image signal is determined by the control unit. When it is judged that it is within the low grayscale region or the high grayscale region, in the step of generating the pulse amplitude modulation signal (step (3)), after generating a pulse amplitude modulation signal corresponding to the grayscale of the input image signal, the In the step of generating a pulse width modulated signal (step (2)), the duty ratio of the pulse amplitude modulated signal generated in the step of generating the pulse amplitude modulated signal may be adjusted to correspond to the gradation of the input image signal.
이상에서 설명된 도 30 내지 도 41의 참조부호는 이하와 같다.Reference numerals of FIGS. 30 to 41 described above are as follows.
100 : 엘이디 드라이버 IC, 110 : 제어부, 120 : 머지 신호 생성부, 121 : 펄스폭변조 신호 생성부, 122 : 펄스진폭변조 신호 생성부, 123 : 머지부, 130 : 스위칭 회로부.100: LED driver IC, 110: control unit, 120: merge signal generation unit, 121: pulse width modulation signal generation unit, 122: pulse amplitude modulation signal generation unit, 123: merge unit, 130: switching circuit unit.

Claims (20)

  1. 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 어레이된 엘이디 디스플레이의 휘도 보정 방법으로서,A method of correcting luminance of an LED display in which a plurality of pixels in which the first LED, the second LED, and the third LED are formed as one pixel are arrayed,
    (a) 상기 엘이디 디스플레이의 전방의 서로 다른 위치들에서 위치별 픽셀 데이터를 획득하는 단계;(a) obtaining pixel data for each location at different positions in front of the LED display;
    (b) 상기 (a)단계에서 획득된 위치별 픽셀 데이터 각각에서 위치별 기준값을 결정하는 단계;(b) determining a reference value for each location in each pixel data for each location obtained in step (a);
    (c) 상기 (b)단계에서 결정된 위치별 기준값에 기초하여 위치별 보정 계수들을 상기 픽셀들 각각에 대하여 결정하는 단계; 및(c) determining correction coefficients for each of the pixels based on a reference value for each position determined in step (b); And
    (d) 상기 (c)단계에서 결정된 위치별 보정 계수들을 소정의 비율로 조합하여 상기 엘이디 디스플레이의 픽셀들 전체에 적용하는 단계;를 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.(d) combining the correction coefficients for each position determined in the step (c) at a predetermined ratio and applying them to all pixels of the LED display; the method of correcting the luminance of the LED display.
  2. 청구항 1에 있어서, 상기 위치별 픽셀 데이터는 픽셀 내 엘이디들 각각에 대한 휘도값을 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 1, wherein the pixel data for each location comprises a luminance value for each of the LEDs in the pixel.
  3. 청구항 2에 있어서, 상기 위치별 기준값은, 상기 위치별 픽셀 데이터 내에서 가장 낮은 휘도값인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 2, wherein the reference value for each location is the lowest luminance value in the pixel data for each location.
  4. 청구항 1에 있어서, 상기 위치별 보정 계수들은, 상기 위치별 기준값에 대한 상기 복수 개의 픽셀들 내 엘이디들 각각의 위치별 픽셀 데이터의 비(ratio)인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 1, wherein the correction coefficients for each position is a ratio of pixel data for each position of the LEDs in the plurality of pixels with respect to the reference value for each position.
  5. 청구항 1에 있어서, 상기 픽셀들 전체 갯수에 대한 각 위치별 보정 계수들의 비율은 동일한 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 1, wherein the ratio of the correction coefficients for each position to the total number of pixels is the same, characterized in that the luminance correction method of the LED display.
  6. 청구항 1에 있어서, 상기 위치별 픽셀 데이터는, 상기 서로 다른 위치들에서의 위치별 제1 픽셀 데이터, 제2 픽셀 데이터 및 제3 픽셀 데이터를 포함하며, 상기 제1 픽셀 데이터는 제1 엘이디들 각각의 휘도값을 포함하고, 상기 제2 픽셀 데이터는 제2 엘이디들 각각의 휘도값을 포함하고, 상기 제3 픽셀 데이터는 제3 엘이디들 각각의 휘도값을 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 1, wherein the pixel data for each location includes first pixel data, second pixel data, and third pixel data for each location at the different locations, and the first pixel data is for each of the first LEDs. The luminance of the LED display, wherein the second pixel data includes the luminance value of each of the second LEDs, and the third pixel data includes the luminance value of each of the third LEDs. How to correct luminance.
  7. 청구항 6에 있어서, 상기 위치별 기준값은, 상기 서로 다른 위치들에서의 위치별 제1 기준값, 제2 기준값 및 제3 기준값을 포함하며, 상기 제1 기준값은 상기 제1 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제2 기준값은 상기 제2 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제3 기준값은 상기 제3 픽셀 데이터 내에서 가장 낮은 휘도값인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 6, The reference value for each location includes a first reference value, a second reference value, and a third reference value for each location at the different locations, and the first reference value is the lowest luminance in the first pixel data. Value, the second reference value is the lowest luminance value in the second pixel data, and the third reference value is the lowest luminance value in the third pixel data.
  8. 청구항 7에 있어서, 상기 위치별 보정 계수들은, 상기 서로 다른 위치들에서의 위치별 제1 보정 계수들, 제2 보정 계수들 및 제3 보정 계수들을 포함하며, 상기 제1 보정 계수들은 상기 제1 기준값에 대한 상기 제1 엘이디들 각각의 휘도값의 비(ratio)이고, 상기 제2 보정 계수들은 상기 제2 기준값에 대한 상기 제2 엘이디들 각각의 휘도값의 비이고, 상기 제3 보정 계수들은 상기 제3 기준값에 대한 상기 제3 엘이디들 각각의 휘도값의 비인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 7, wherein the correction factors for each location, the first correction coefficients for each location at the different positions, the second correction coefficients and the third correction coefficients, wherein the first correction coefficients are the first correction coefficients The ratio of the luminance value of each of the first LEDs to the reference value is the ratio, and the second correction coefficients are the ratio of the luminance value of each of the second LEDs to the second reference value, and the third correction factors are And the luminance value of each of the third LEDs relative to the third reference value.
  9. 청구항 1에 있어서, 상기 (a)단계에서 상기 엘이디 디스플레이의 전방의 서로 다른 위치들은, 좌측 위치, 상기 좌측 위치보다 우측인 중앙 위치, 및 상기 중앙 위치보다 우측인 우측 위치를 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The method according to claim 1, Different positions in front of the LED display in step (a), characterized in that it comprises a left position, a central position to the right than the left position, and a right position to the right than the center position. , How to correct the luminance of the LED display.
  10. 청구항 9에 있어서, 상기 위치별 픽셀 데이터는,The method according to claim 9, wherein the pixel data for each location,
    상기 좌측 위치에서 획득되는 제1 픽셀 데이터, 제2 픽셀 데이터 및 제3 픽셀 데이터를 포함하고, 상기 중앙 위치에서 획득되는 제4 픽셀 데이터, 제5 픽셀 데이터 및 제6 픽셀 데이터를 포함하고, 상기 우측 위치에서 획득되는 제7 픽셀 데이터, 제8 픽셀 데이터 및 제9 픽셀 데이터를 포함하며,It includes the first pixel data, the second pixel data and the third pixel data obtained at the left position, the fourth pixel data, the fifth pixel data and the sixth pixel data obtained at the central position, and the right 7th pixel data, 8th pixel data, and 9th pixel data acquired at the position,
    상기 제1 픽셀 데이터, 상기 제4 픽셀 데이터 및 제7 픽셀 데이터는 제1 엘이디들 각각의 휘도값을 포함하고, 상기 제2 픽셀 데이터, 상기 제5 픽셀 데이터 및 상기 제8 픽셀 데이터는 제2 엘이디들 각각의 휘도값을 포함하고, 상기 제3 픽셀 데이터, 상기 제6 픽셀 데이터 및 상기 제9 픽셀 데이터는 제3 엘이디들 각각의 휘도값을 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The first pixel data, the fourth pixel data, and the seventh pixel data include luminance values of the first LEDs, and the second pixel data, the fifth pixel data, and the eighth pixel data are second LEDs. The luminance correction method of the LED display, wherein each of the third pixel data, the sixth pixel data, and the ninth pixel data includes a luminance value of each of the third LEDs.
  11. 청구항 10에 있어서, 상기 위치별 기준값은, 제1 기준값, 제2 기준값, 제3 기준값, 제4 기준값, 제5 기준값, 제6 기준값, 제7 기준값, 제8 기준값 및 제9 기준값을 포함하며,The method according to claim 10, wherein the reference value for each location includes a first reference value, a second reference value, a third reference value, a fourth reference value, a fifth reference value, a sixth reference value, a seventh reference value, an eighth reference value, and a ninth reference value,
    상기 제1 기준값은 상기 제1 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제2 기준값은 상기 제2 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제3 기준값은 상기 제3 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제4 기준값은 상기 제4 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제5 기준값은 상기 제5 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제6 기준값은 상기 제6 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제7 기준값은 상기 제7 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제8 기준값은 상기 제8 픽셀 데이터 내에서 가장 낮은 휘도값이고, 상기 제9 기준값은 상기 제9 픽셀 데이터 내에서 가장 낮은 휘도값인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The first reference value is the lowest luminance value in the first pixel data, the second reference value is the lowest luminance value in the second pixel data, and the third reference value is the lowest luminance value in the third pixel data. A luminance value, the fourth reference value is the lowest luminance value in the fourth pixel data, the fifth reference value is the lowest luminance value in the fifth pixel data, and the sixth reference value is the sixth pixel data The lowest luminance value within, the seventh reference value is the lowest luminance value within the seventh pixel data, the eighth reference value is the lowest luminance value within the eighth pixel data, and the ninth reference value is the A luminance correction method of the LED display, characterized in that it is the lowest luminance value in the ninth pixel data.
  12. 청구항 11에 있어서, 상기 위치별 보정 계수들은, 제1 보정 계수들, 제2 보정 계수들, 제3 보정 계수들, 제4 보정 계수들, 제5 보정 계수들, 제6 보정 계수들, 제7 보정 계수들, 제8 보정 계수들 및 제9 보정 계수들을 포함하며,The method according to claim 11, The position-specific correction coefficients, first correction coefficients, second correction coefficients, third correction coefficients, fourth correction coefficients, fifth correction coefficients, sixth correction coefficients, seventh Correction factors, eighth correction factors and ninth correction factors,
    상기 제1 보정 계수들은 상기 제1 기준값에 대한 상기 제1 엘이디들 각각의 휘도값의 비(ratio)이고, 상기 제2 보정 계수들은 상기 제2 기준값에 대한 상기 제2 엘이디들 각각의 휘도값의 비이고, 상기 제3 보정 계수들은 상기 제3 기준값에 대한 상기 제3 엘이디들 각각의 휘도값의 비이고,The first correction coefficients are the ratio of the luminance values of each of the first LEDs to the first reference value, and the second correction coefficients are the luminance values of each of the second LEDs to the second reference value. Ratio, and the third correction coefficients are ratios of luminance values of each of the third LEDs to the third reference value,
    상기 제4 보정 계수들은 상기 제4 기준값에 대한 상기 제1 엘이디들 각각의 휘도값의 비이고, 상기 제5 보정 계수들은 상기 제5 기준값에 대한 상기 제2 엘이디들 각각의 휘도값의 비이고, 상기 제6 보정 계수들은 상기 제6 기준값에 대한 상기 제3 엘이디들 각각의 휘도값의 비이고,The fourth correction coefficients are ratios of luminance values of each of the first LEDs to the fourth reference value, and the fifth correction coefficients are ratios of luminance values of each of the second LEDs to the fifth reference value, The sixth correction coefficients are ratios of luminance values of each of the third LEDs to the sixth reference value,
    상기 제7 보정 계수들은 상기 제7 기준값에 대한 상기 제1 엘이디들 각각의 휘도값의 비이고, 상기 제8 보정 계수들은 상기 제8 기준값에 대한 상기 제2 엘이디들 각각의 휘도값의 비이고, 상기 제9 보정 계수들은 상기 제9 기준값에 대한 상기 제3 엘이디들 각각의 휘도값의 비인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.The seventh correction coefficients are the ratio of the luminance values of each of the first LEDs to the seventh reference value, and the eighth correction coefficients are the ratio of the luminance values of each of the second LEDs to the eighth reference value, The ninth correction coefficients are the ratio of the luminance value of each of the third LEDs to the ninth reference value, the luminance correction method of the LED display.
  13. 청구항 12에 있어서, 상기 (d)단계에서 상기 제1 보정 계수들 내지 제9 보정 계수들을 상기 엘이디 디스플레이의 픽셀들 전체에 적용하는 단계는,The method of claim 12, wherein in the step (d), applying the first correction factors to the ninth correction factors to all pixels of the LED display,
    제1 픽셀 내 제1 엘이디 내지 제3 엘이디 각각에 대해 제1 보정 계수 내지 제3 보정 계수 각각을 적용하고, 상기 제1 픽셀에 이웃하는 제2 픽셀 내 제1 엘이디 내지 제3 엘이디 각각에 대해 제4 보정 계수 내지 제6 보정 계수 각각을 적용하고, 상기 제2 픽셀에 이웃하는 제3 픽셀 내 제1 엘이디 내지 제3 엘이디 각각에 대해 제7 보정 계수 내지 제9 보정 계수 각각을 적용하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 방법.Each of the first to third correction factors is applied to each of the first to third LEDs in the first pixel, and the first to third to third LEDs in the second pixel adjacent to the first pixel are applied. Characterized in that each of the fourth correction factor to the sixth correction factor is applied, and each of the seventh correction factor to the ninth correction factor is applied to each of the first and third LEDs in the third pixel adjacent to the second pixel. The brightness correction method of the LED display.
  14. 적어도 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 횡방향과 종방향으로 배열된 엘이디 디스플레이의 휘도 보정 시스템에 있어서,In the luminance correction system of the LED display in which a plurality of pixels in which at least the first LED, the second LED, and the third LED are formed as one pixel are arranged in the lateral and longitudinal directions,
    상기 엘이디 디스플레이 전방의 우측, 가운데 및 좌측을 포함하는 서로 다른 위치에서 상기 엘이디 디스플레이의 위치별 픽셀 데이터를 획득하는 픽셀 데이터부;A pixel data unit that acquires pixel data for each position of the LED display at different positions including the right, center, and left sides of the front of the LED display;
    상기 픽셀 데이터부에서 획득한 위치별 픽셀 데이터에서 각각의 위치별 기준값을 결정하는 기준값 설정부;A reference value setting unit for determining a reference value for each location from the pixel data for each location obtained from the pixel data unit;
    상기 기준값 설정부에서 획득한 각각의 위치별 기준값에 따라 위치별 보정 계수를 상기 복수 개의 픽셀들 각각에 대하여 결정하는 보정 계수 설정부; 및A correction coefficient setting unit for determining a correction coefficient for each location for each of the plurality of pixels according to a reference value for each location acquired by the reference value setting unit; And
    상기 보정 계수 설정부에서 획득한 상기 위치별 보정 계수들을 일정 비율로 조합하여 복수 개의 픽셀들 전체에 적용하는 휘도 보정부;를 포함하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.And a luminance correction unit that combines the correction factors for each position obtained by the correction factor setting unit at a predetermined ratio and applies them to all of a plurality of pixels.
  15. 청구항 14에 있어서, 상기 픽셀 데이터부는, 상기 복수 개의 픽셀들을 구성하는 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디 각각에 대한 휘도값을 획득하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.15. The method of claim 14, wherein the pixel data unit, The first LED, the second LED and the third LED constituting the plurality of pixels, characterized in that for obtaining a luminance value for each, the luminance correction system of the LED display .
  16. 청구항 14에 있어서, 상기 기준값 설정부는, 상기 복수 개의 픽셀들의 위치별 픽셀 데이터에서 가장 낮은 휘도값을 선택하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.The luminance correction system of an LED display according to claim 14, wherein the reference value setting unit selects the lowest luminance value from pixel data for each location of the plurality of pixels.
  17. 청구항 14에 있어서, 상기 보정 계수 설정부는, 상기 기준값 설정부에서 설정된 기준값에 대한 상기 픽셀 데이터부에서 획득한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디 각각의 휘도값의 비(Ratio)를 설정하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.The method according to claim 14, The correction coefficient setting unit, the ratio of the luminance value of each of the first LED, the second LED and the third LED obtained in the pixel data unit with respect to the reference value set by the reference value setting unit (Ratio) Characterized in that, to set the luminance correction system of the LED display.
  18. 청구항 14에 있어서, 상기 휘도 보정부는, 상기 복수 개의 픽셀들에 대한 각각의 위치별 보정 계수의 비율이 동일하도록 적용하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.The luminance correction system of the LED display according to claim 14, wherein the luminance correction unit is applied so that a ratio of correction coefficients for each location of the plurality of pixels is the same.
  19. 적어도 제1 엘이디, 제2 엘이디 및 제3 엘이디가 하나의 픽셀로 형성되는 복수 개의 픽셀들이 어레이된 엘이디 디스플레이의 휘도 보정 시스템으로서,A luminance correction system of an LED display in which a plurality of pixels in which at least the first LED, the second LED, and the third LED are formed as one pixel are arrayed,
    상기 엘이디 디스플레이의 전방의 좌측에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제1 기준값, 제2 기준값 및 제3 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비(ratio)를 형성한 제1 보정 계수, 제2 보정 계수 및 제3 보정 계수;Measure the luminance values of the first LED, the second LED and the third LED on the left side of the front of the LED display, and measure the luminance values of the first reference value, the second reference value, and the third reference value for the first LED and the second reference value. A first correction coefficient, a second correction coefficient, and a third correction coefficient that form a ratio of the luminance values of the two LEDs and the third LED;
    상기 엘이디 디스플레이의 전방의 가운데에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제4 기준값, 제5 기준값 및 제6 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제4 보정 계수, 제5 보정 계수 및 제6 보정 계수; 및Measure the luminance values of the first LED, the second LED, and the third LED in the center of the front of the LED display, and measure the luminance values of the fourth reference value, the fifth reference value, and the sixth reference value, respectively. A fourth correction coefficient, a fifth correction coefficient, and a sixth correction coefficient that form a ratio of the luminance values of the two LEDs and the third LED; And
    상기 엘이디의 디스플레이의 전방의 우측에서 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값을 측정하여 각각의 제7 기준값, 제8 기준값 및 제9 기준값에 대한 상기 제1 엘이디, 상기 제2 엘이디 및 상기 제3 엘이디의 휘도값의 비를 형성한 제7 보정 계수, 제8 보정 계수 및 제9 보정 계수;를 포함하며,Measure the luminance values of the first LED, the second LED, and the third LED on the right side of the front of the display of the LED, and measure the luminance values of the seventh reference value, the eighth reference value, and the ninth reference value, respectively. And a seventh correction coefficient, an eighth correction coefficient, and a ninth correction coefficient, which form a ratio of the luminance values of the second LED and the third LED.
    상기 제1 내지 제8 보정 계수들을 동일한 비율로 조합하여 상기 엘이디 디스플레이의 픽셀들 내의 상기 제1 엘이디, 제2 엘이디 및 제3 엘이디의 휘도값을 보정하는 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.Compensating the luminance values of the first LED, the second LED and the third LED in the pixels of the LED display by combining the first to eighth correction coefficients in the same ratio, the luminance correction system of the LED display .
  20. 청구항 19에 있어서, 상기 제1 내지 제9 기준값은 각각의 좌측, 가운데 및 우측에서 측정된 각각의 제1 엘이디, 제2 엘이디 및 제3 엘이디의 휘도값 중 가장 낮은 휘도값인 것을 특징으로 하는, 엘이디 디스플레이의 휘도 보정 시스템.The method according to claim 19, wherein the first to ninth reference value is characterized in that the lowest luminance value of the luminance value of each of the first LED, the second LED and the third LED measured at the left, middle and right sides, Luminance correction system of LED display.
PCT/KR2019/010555 2018-09-07 2019-08-20 Method and system for correcting brightness of led display WO2020050522A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020180106895A KR20200028610A (en) 2018-09-07 2018-09-07 Method and system for correcting luminance in led display
KR10-2018-0106895 2018-09-07
KR10-2018-0160651 2018-12-13
KR1020180160651A KR20200072738A (en) 2018-12-13 2018-12-13 Method and system for brightness calibration in led display
KR10-2019-0005326 2019-01-15
KR1020190005326A KR20200088696A (en) 2019-01-15 2019-01-15 Led display driver ic and method for adjusting blightness of led display thereby

Publications (1)

Publication Number Publication Date
WO2020050522A1 true WO2020050522A1 (en) 2020-03-12

Family

ID=69721532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010555 WO2020050522A1 (en) 2018-09-07 2019-08-20 Method and system for correcting brightness of led display

Country Status (1)

Country Link
WO (1) WO2020050522A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104814A (en) * 2020-11-03 2020-12-18 卡莱特(深圳)云科技有限公司 Automatic exposure adjusting method and device and LED display screen correcting method
CN112289209A (en) * 2020-10-20 2021-01-29 长春希达电子技术有限公司 LED display box body and display screen splicing pixel interval brightness correction method
CN113241037A (en) * 2021-05-08 2021-08-10 湖南国天电子科技有限公司 LED screen single-point brightness correction method and system
CN113257182A (en) * 2021-06-29 2021-08-13 卡莱特云科技股份有限公司 Lamp point position correction method and device in LED display screen correction process
CN113496670A (en) * 2020-03-20 2021-10-12 西安诺瓦星云科技股份有限公司 Image processing method, device and system
CN113571010A (en) * 2021-07-29 2021-10-29 西安诺瓦星云科技股份有限公司 Brightness and chrominance information acquisition method, device and system and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046720A1 (en) * 2000-02-03 2004-03-11 Yoshifumi Nagai Image display apparatus and control method thereof
KR101374648B1 (en) * 2013-08-29 2014-03-17 삼익전자공업 주식회사 Sign board system of easy check and correction with separate led correcting and imaging coefficients
KR20140054750A (en) * 2012-10-29 2014-05-09 엘지디스플레이 주식회사 Apparatus and method for generating of luminance correction data, and method for luminance correction of organic light emitting diode display device
WO2017052102A1 (en) * 2015-09-23 2017-03-30 삼성전자 주식회사 Electronic device, and display panel device correction method and system thereof
US20180158400A1 (en) * 2015-08-24 2018-06-07 Mitsubishi Electric Corporation Led display device and luminance correction method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046720A1 (en) * 2000-02-03 2004-03-11 Yoshifumi Nagai Image display apparatus and control method thereof
KR20140054750A (en) * 2012-10-29 2014-05-09 엘지디스플레이 주식회사 Apparatus and method for generating of luminance correction data, and method for luminance correction of organic light emitting diode display device
KR101374648B1 (en) * 2013-08-29 2014-03-17 삼익전자공업 주식회사 Sign board system of easy check and correction with separate led correcting and imaging coefficients
US20180158400A1 (en) * 2015-08-24 2018-06-07 Mitsubishi Electric Corporation Led display device and luminance correction method therefor
WO2017052102A1 (en) * 2015-09-23 2017-03-30 삼성전자 주식회사 Electronic device, and display panel device correction method and system thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496670A (en) * 2020-03-20 2021-10-12 西安诺瓦星云科技股份有限公司 Image processing method, device and system
CN113496670B (en) * 2020-03-20 2022-04-08 西安诺瓦星云科技股份有限公司 Image processing method, device and system
CN112289209A (en) * 2020-10-20 2021-01-29 长春希达电子技术有限公司 LED display box body and display screen splicing pixel interval brightness correction method
CN112289209B (en) * 2020-10-20 2022-08-23 长春希达电子技术有限公司 LED display box body and display screen abutted pixel interval brightness correction method
CN112104814A (en) * 2020-11-03 2020-12-18 卡莱特(深圳)云科技有限公司 Automatic exposure adjusting method and device and LED display screen correcting method
CN113241037A (en) * 2021-05-08 2021-08-10 湖南国天电子科技有限公司 LED screen single-point brightness correction method and system
CN113257182A (en) * 2021-06-29 2021-08-13 卡莱特云科技股份有限公司 Lamp point position correction method and device in LED display screen correction process
CN113257182B (en) * 2021-06-29 2021-09-17 卡莱特云科技股份有限公司 Lamp point position correction method and device in LED display screen correction process
CN113571010A (en) * 2021-07-29 2021-10-29 西安诺瓦星云科技股份有限公司 Brightness and chrominance information acquisition method, device and system and computer readable storage medium

Similar Documents

Publication Publication Date Title
WO2020050522A1 (en) Method and system for correcting brightness of led display
WO2018131759A1 (en) Display apparatus, control method and compensation coefficient calculation method thereof
WO2018097501A1 (en) Display apparatus and driving method of display panel
WO2019231073A1 (en) Display panel and method for driving the display panel
WO2018124784A1 (en) Display apparatus and display method
WO2020085768A1 (en) Display apparatus and method for driving same
WO2014157930A1 (en) Image processing method and apparatus for display devices
WO2017010709A1 (en) Display apparatus and control method thereof
WO2017164458A1 (en) Organic light emitting diode display device and method of operating the same
WO2014168454A1 (en) Electronic device, display controlling apparatus and method thereof
WO2016021896A1 (en) Gamma setting system of display device and gamma setting method thereof
EP3750149A1 (en) Display panel and method for driving the display panel
WO2019139226A1 (en) Electronic device and control method thereof
WO2014180309A1 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
WO2017061691A1 (en) Display device and control method therefor
WO2016076497A1 (en) Method and device for image display based on metadata, and recording medium therefor
TW200912848A (en) Display correction circuit of organic EL panel
WO2021080209A1 (en) Display apparatus and operating method thereof
WO2019066443A1 (en) Display apparatus and control method thereof
WO2020056840A1 (en) Display panel, method for establishing overdrive lookup table thereof, and readable storage medium
WO2017086493A1 (en) Liquid crystal display device and driving method thereof
JP2001318651A (en) Method for compensating nonuniformity of display by change in primary color of color monitor
WO2022045421A1 (en) Display device and control method therefor
WO2023153723A1 (en) Display device for dog and method for driving same
WO2021029622A1 (en) Source driver controlling bias current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857307

Country of ref document: EP

Kind code of ref document: A1