WO2020050342A1 - Dicyclohexylamine salt of n,n'-dibenzylbiotin, and production method for same - Google Patents

Dicyclohexylamine salt of n,n'-dibenzylbiotin, and production method for same Download PDF

Info

Publication number
WO2020050342A1
WO2020050342A1 PCT/JP2019/034892 JP2019034892W WO2020050342A1 WO 2020050342 A1 WO2020050342 A1 WO 2020050342A1 JP 2019034892 W JP2019034892 W JP 2019034892W WO 2020050342 A1 WO2020050342 A1 WO 2020050342A1
Authority
WO
WIPO (PCT)
Prior art keywords
dibenzylbiotin
group
dicyclohexylamine salt
represented
formula
Prior art date
Application number
PCT/JP2019/034892
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 関
優輔 高橋
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2020541285A priority Critical patent/JPWO2020050342A1/en
Publication of WO2020050342A1 publication Critical patent/WO2020050342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings

Definitions

  • the present invention relates to a dicyclohexylamine salt of N, N'-dibenzylbiotin (particularly, a high-purity dicyclohexylamine salt of N, N'-dibenzylbiotin) and a method for producing the same. Further, the present invention relates to the use of N, N'-dibenzylbiotin dicyclohexylamine salt (particularly, high-purity N, N'-dibenzylbiotin dicyclohexylamine salt) to prepare N, N'-dibenzylbiotin.
  • the present invention relates to a method for producing benzyl biotin (particularly, high-purity N, N′-dibenzylbiotin), biotin (particularly, high-purity biotin), an N, N′-dibenzylbiotin ester compound, or a biotin ester compound. Furthermore, the present invention relates to high-purity N, N'-dibenzylbiotin and high-purity biotin.
  • @Biotin is a compound represented by the following formula.
  • @Biotin is produced, for example, by the following synthetic route.
  • Bn represents a benzyl group.
  • Biotin is a water-soluble vitamin expected to have a diabetic preventive effect and the like, and is a useful compound as a drug, a feed additive and the like, and high-purity biotin is required.
  • N, N'-dibenzylbiotin is a compound useful as a protein labeling substance (see Patent Document 1 and Non-patent Document 1), a viral reverse transcriptase inhibitor (see Patent Document 2), and the like. , N'-Dibenzylbiotin is needed.
  • N, N'-dibenzylbiotin can be crystallized, but has a low melting point and is hardly crystalline.
  • the present inventors have confirmed that the HPLC purity of N, N'-dibenzylbiotin obtained by the above synthesis route was 75.58%.
  • the object of the present invention is to provide a technology that enables N, N'-dibenzylbiotin or a derivative thereof or biotin or a derivative thereof to be produced with high purity.
  • N, N′-dibenzylbiotin or a derivative thereof or biotin or a derivative thereof with high purity in order to solve the above-described problems.
  • N, N'-dibenzylbiotin with dicyclohexylamine to form a dicyclohexylamine salt of N, N'-dibenzylbiotin
  • a highly pure dicyclohexylamine of N, N'-dibenzylbiotin can be obtained. It has been found that the xylamine salt can be obtained as a solid.
  • the present inventors contact the obtained dicyclohexylamine salt of N, N′-dibenzylbiotin with at least one acid to remove the dicyclohexylamine salt of N, N′-dibenzylbiotin.
  • High-purity N, N'-dibenzylbiotin or high-purity biotin by proceeding with decyclohexylamine salification or debenzylation of dicyclohexylamine salt or dicyclohexylamine salt of N, N'-dibenzylbiotin was found to be able to be obtained.
  • the present inventors have completed the present invention based on these findings.
  • the present invention includes the following inventions.
  • the following formula (1) [Wherein, Bn represents a benzyl group. ] A dicyclohexylamine salt of N, N'-dibenzylbiotin represented by the formula: [2] The dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1], wherein the HPLC purity is 96% or more. [3] The following formula (2): [Wherein, Bn is as defined above. ] The N, N'-dibenzylbiotin represented by the formula, wherein the HPLC purity is 96% or more. [4] The following formula (3): The biotin represented by the above, wherein the HPLC purity is 96% or more.
  • the acid is at least one acid selected from hydrochloric acid, sulfuric acid, and hydrogen sulfate;
  • the compound (A) has the following formula (2): [Wherein, Bn is as defined above. ]
  • the method according to [10], wherein the N, N′-dibenzylbiotin has an HPLC purity of 96% or more.
  • the acid is at least one acid selected from methanesulfonic acid, sulfuric acid, and hydrobromic acid
  • the compound (A) has the following formula (3): The method according to [8] or [9], which is biotin represented by the formula: [13] The method according to [12], wherein the HPLC purity of the biotin is 96% or more.
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1] is converted to a compound represented by the following formula (5): [Wherein, R 2 has the same meaning as described above, and X represents a halogen atom. ] Reacting with a halide represented by the formula to produce the N, N'-dibenzylbiotin ester compound.
  • N, N ′ is prepared by using N, N′-dibenzylbiotin dicyclohexylamine salt (particularly, high-purity N, N′-dibenzylbiotin dicyclohexylamine salt).
  • a first aspect of the present invention relates to a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • the dicyclohexylamine salt of 'N, N'-dibenzylbiotin is a compound represented by the following formula (1).
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin is not completely purified even after purification, and contains unavoidable impurities. Therefore, "dicyclohexylamine salt of N, N'-dibenzylbiotin" is not a pure substance but means a mixture of the dicyclohexylamine salt of N, N'-dibenzylbiotin and inevitable impurities.
  • Bn represents a benzyl group.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, even more preferably 98.5% or more. It is more preferably at least 99%.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • a second aspect of the present invention relates to high purity N, N'-dibenzylbiotin.
  • N, N'-dibenzylbiotin is a compound represented by the following formula (2).
  • N, N'-dibenzylbiotin is not completely pure even after purification, and contains unavoidable impurities.
  • N, N'-dibenzylbiotin is not a pure substance but means a mixture of N, N'-dibenzylbiotin and unavoidable impurities.
  • Bn represents a benzyl group.
  • the HPLC purity of N, N'-dibenzylbiotin is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably at least 98.5%, even more preferably at least 99%. That is all.
  • the HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • a third aspect of the present invention relates to high purity biotin.
  • Biotin is a compound represented by the following formula (3). Biotin is not completely purified even after purification, and contains unavoidable impurities. Thus, “biotin” is not a pure substance but means a mixture of biotin and unavoidable impurities.
  • Biotin has an HPLC purity of preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, even more preferably 98.5% or more, and still more preferably 99% or more.
  • the HPLC purity of biotin is measured by the method described in the examples.
  • a fourth aspect of the present invention relates to a method for producing a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin is a compound represented by the above formula (1).
  • the method according to the fourth aspect of the present invention comprises the step of contacting N, N'-dibenzylbiotin with dicyclohexylamine to form a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • N, N'-dibenzylbiotin is a compound represented by the above formula (2).
  • N, N'-dibenzylbiotin to be contacted with dicyclohexylamine can be produced by a known method. For example, it can be obtained as a synthetic intermediate in the biotin synthesis route described in the background art. Alternatively, it can be obtained by reacting biotin with a benzylating agent such as benzyl chloride, benzyl bromide, or benzyl iodide in the presence of a base. After the reaction, a reaction solution containing N, N'-dibenzylbiotin is added to ice water, acidified by adding an acid, and N, N'-dibenzylbiotin is extracted with an organic solvent such as ethyl acetate.
  • a benzylating agent such as benzyl chloride, benzyl bromide, or benzyl iodide
  • N, N′-dibenzylbiotin By washing and concentrating, N, N′-dibenzylbiotin can be isolated.
  • N, N'-dibenzylbiotin can be purified by silica gel column purification or the like. Purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
  • the HPLC purity of N, N'-dibenzylbiotin contacted with dicyclohexylamine is preferably 30-95%, more preferably 50-94%, even more preferably 70-93.5%.
  • the HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • the HPLC purity of N, N'-dibenzylbiotin obtained by the biotin synthesis route described in the background art is 75.58%.
  • the solvent used for bringing N, N'-dibenzylbiotin into contact with dicyclohexylamine is not particularly limited as long as it is a solvent capable of dissolving N, N'-dibenzylbiotin, and is appropriately selected from known organic solvents. You can choose.
  • organic solvent examples include nitriles such as acetonitrile and propionitrile; ethers such as THF, 2-methyl-THF, 1,4-dioxane, t-butylmethyl ether, diisopropyl ether, dimethoxyethane and diglyme; acetone , Methyl ethyl ketone, diethyl ketone, etc .; ketones such as methyl acetate, ethyl acetate, butyl acetate, etc .; halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene; toluene, xylene And the like; and aromatic hydrocarbons such as hexane and heptane.
  • nitriles such as acetonitrile and propionitrile
  • ethers such as THF, 2-methyl-THF, 1,4-
  • One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used.
  • organic solvents ethyl acetate, butyl acetate, and methyl ethyl ketone are preferred from the viewpoints of industrial availability and easy handling, and particularly preferred are esters such as ethyl acetate and butyl acetate.
  • esters such as ethyl acetate and butyl acetate.
  • the amount of the solvent used when bringing N, N'-dibenzylbiotin into contact with dicyclohexylamine can be appropriately adjusted in consideration of the capacity of the reaction vessel, etc., but N, N'-dibenzylbiotin 1 mass Parts are usually in the range of 1 to 100 parts by volume.
  • the fact that the amount of the solvent is in the range of 1 to 100 parts by volume based on 1 part by mass of N, N'-dibenzylbiotin indicates that the amount of the solvent is 1 g by mass of N, N'-dibenzylbiotin. Means in the range of 1 to 100 mL. The same applies hereinafter.
  • the amount of dicyclohexylamine used in contacting N, N'-dibenzylbiotin with dicyclohexylamine is not particularly limited as long as it is an amount sufficient to form a dicyclohexylamine salt of N, N'-dibenzylbiotin. However, it can be adjusted appropriately, but is usually in the range of 1.0 to 2.0 mol per 1 mol of N, N'-dibenzylbiotin.
  • the reaction temperature and the reaction time when N, N'-dibenzylbiotin is brought into contact with dicyclohexylamine are not particularly limited as long as the conditions are sufficient to produce a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • the reaction temperature is usually in the range of ⁇ 20 to 100 ° C., preferably in the range of ⁇ 10 to 50 ° C., and the reaction time is usually in the range of 0.5 to 72 hours. .
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin can be isolated from the reaction solution containing the dicyclohexylamine salt of N, N'-dibenzylbiotin by a known solid-liquid separation method.
  • the isolated dicyclohexylamine salt of N, N'-dibenzylbiotin is sufficiently pure as it is, but methanol, ethanol, isopropanol, chloroform, methylene chloride, methyl acetate, ethyl acetate, butyl acetate, isopropyl ether , Hexane, toluene, xylene or a mixture of two or more thereof.
  • a high-purity dicyclohexylamine salt of N, N'-dibenzylbiotin can be produced.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention is preferably 96% or higher, more preferably 97% or higher, even more preferably 98%. The above is even more preferably 98.5% or more, and still more preferably 99% or more.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • a fifth aspect of the present invention relates to a method for producing compound (A) using a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • Compound (A) is a compound represented by the following formula (A). Compound (A) does not become a completely pure substance even after purification, but contains unavoidable impurities. Therefore, “compound (A)” is not a pure substance but means a mixture of compound (A) and unavoidable impurities.
  • R 1 represents a benzyl group or a hydrogen atom.
  • the method according to the fifth aspect of the present invention comprises the step of contacting a dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to produce compound (A).
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin contacted with at least one acid is a dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention. Is preferred.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin contacted with at least one acid is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably. 98.5% or more, more preferably 99% or more.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • the at least one acid to be brought into contact with the dicyclohexylamine salt of 'N, N'-dibenzylbiotin can be appropriately selected according to the type of the compound (A) to be produced.
  • the compound (A) to be produced is N, N'-dibenzylbiotin
  • at least one acid capable of promoting dedicyclohexylamine salification of the dicyclohexylamine salt of N, N'-dibenzylbiotin is selected. Is done. Contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to proceed with the dedicyclohexylamine salification of the dicyclohexylamine salt of N, N'-dibenzylbiotin, -Dibenzylbiotin can be produced.
  • At the time of dedicyclohexylamine salification of the dicyclohexylamine salt of N, N′-dibenzylbiotin, at least one acid to be brought into contact with the dicyclohexylamine salt of N, N′-dibenzylbiotin is, for example, hydrochloric acid, sulfuric acid, sulfuric acid It can be selected from hydrogen salts and the like.
  • the hydrogen sulfate include potassium hydrogen sulfate and sodium hydrogen sulfate.
  • sulfuric acid, hydrogensulfate, particularly potassium hydrogensulfate in view of industrial availability and easy handling.
  • the amount of the acid used is not particularly limited as long as it is an amount sufficient for the removal of dicyclohexylamine to proceed, and can be adjusted as appropriate.
  • the amount of the acid used is preferably in the range of 1.0 to 1000 equivalents per 1 equivalent of the dicyclohexylamine salt of N, N'-dibenzylbiotin, since the dicyclohexylamine salification is efficiently performed in a short time. It is more preferably in the range of 1.0 to 100 equivalents.
  • a known organic solvent can be used as a solvent to be used for removing the dicyclohexylamine salt of the dicyclohexylamine salt of 'N, N'-dibenzylbiotin.
  • the organic solvent include esters such as methyl acetate, ethyl acetate and butyl acetate; halogenated hydrocarbons such as methylene chloride and chloroform; and ethers such as tert-butyl methyl ether.
  • One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used.
  • the amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, but is usually in the range of 1 to 100 parts by volume per 1 part by mass of dicyclohexylamine salt of N, N'-dibenzylbiotin It is.
  • reaction temperature and the reaction temperature in the dedicyclohexylamine salification of the dicyclohexylamine salt of N, N′-dibenzylbiotin can be appropriately adjusted, but the reaction temperature is usually in the range of ⁇ 20 to 120 ° C., preferably The temperature is in the range of -10 to 100 ° C, and the reaction time is usually in the range of 0.5 to 72 hours.
  • N, N'-dibenzylbiotin After the reaction, a reaction solution containing N, N'-dibenzylbiotin was added to ice water, alkali was added to make the mixture basic, and N, N'-dibenzylbiotin was extracted with an organic solvent such as ethyl acetate. , Washing and concentration, N, N'-dibenzylbiotin can be isolated.
  • the isolated N, N'-dibenzylbiotin has sufficiently high purity and may be used for various applications as it is, but may be further purified. Purification can be performed, for example, by silica gel column purification. Silica gel column purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
  • high-purity N, N'-dibenzylbiotin can be produced.
  • the HPLC purity of N, N'-dibenzylbiotin produced by the method according to the fifth aspect of the present invention is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably. Is 98.5% or more, more preferably 99% or more.
  • the HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • the compound (A) to be produced is biotin
  • at least one acid capable of promoting the dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N′-dibenzylbiotin is selected.
  • Contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to promote dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin; Biotin can be produced.
  • At least one acid that is brought into contact with the dicyclohexylamine salt of N, N′-dibenzylbiotin is, for example, methane. It can be selected from sulfonic acid, sulfuric acid, hydrobromic acid and the like.
  • the debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin and the debenzylation of the dicyclohexylamine salt proceed simultaneously, or the debenzylation proceeds after the removal of the dicyclohexylamine salt and the biotin Is presumed to be obtained.
  • the amount of the acid to be used is an amount that is sufficient to allow the dedicyclohexylamine chloride and the debenzylation to proceed.
  • the amount is preferably in the range of 10 to 1000 equivalents per 1 equivalent of dicyclohexylamine salt of N, N'-dibenzylbiotin. It is.
  • a known organic solvent can be used as a solvent to be used for dechlorination and debenzylation of dicyclohexylamine salt of 'N, N'-dibenzylbiotin.
  • the organic solvent include halogenated hydrocarbons such as chloroform and methylene chloride; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as isopropyl ether; aliphatic hydrocarbons such as hexane; Examples include aromatic hydrocarbons such as xylene, mesitylene, anisole, and chlorobenzene.
  • the decyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin proceed efficiently.
  • aromatic hydrocarbons particularly mesitylene.
  • One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used.
  • the amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, but is usually in the range of 1 to 100 parts by volume per 1 part by mass of the dicyclohexylamine salt of N, N'-dibenzylbiotin. It is.
  • the reaction temperature and reaction time for the decyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin can be appropriately adjusted, but the reaction temperature is usually 20 to 200 ° C.
  • the temperature is preferably in the range of 40 to 150 ° C., more preferably 80 to 150 ° C., and still more preferably 100 to 150 ° C., and the reaction time is usually in the range of 0.5 to 17 hours.
  • biotin can be isolated by pouring the reaction solution containing biotin into water and filtering the precipitated solid.
  • the isolated biotin is sufficiently pure and may be used for various applications as it is, but may be further purified.
  • Purification can be performed, for example, by silica gel column purification. Silica gel column purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
  • high-purity biotin can be produced.
  • the HPLC purity of biotin produced by the method according to the fifth aspect of the present invention is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably at least 98.5%, It is even more preferably at least 99%.
  • the HPLC purity of biotin is measured by the method described in the examples.
  • the reaction temperature is adjusted to 40 ° C. or lower, whereby the dicyclohexylamine salt of N, N′-dibenzylbiotin is removed from the dicyclohexylamine salt, and the N, N′-dibenzyl While biotin can be obtained, by adjusting the reaction temperature to more than 40 ° C., dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N′-dibenzylbiotin progress, and biotin can be obtained. it can.
  • a sixth aspect of the present invention relates to a method for producing an N, N'-dibenzylbiotin ester compound using a dicyclohexylamine salt of N, N'-dibenzylbiotin.
  • the 'N, N'-dibenzylbiotin ester compound is a compound represented by the following formula (4).
  • Bn represents a benzyl group
  • R 2 represents an alkyl group, a substituted alkyl group, a group selected from aralkyl and substituted aralkyl groups.
  • Alkyl group means a linear or branched aliphatic saturated hydrocarbon group.
  • the number of carbon atoms of the alkyl group is usually 1 to 30, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, still more preferably 1 to 6, and still more preferably 1 to 4. .
  • the carbon number of a linear alkyl group is 1 or more
  • the carbon number of a branched alkyl group is 3 or more.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, isohexyl, heptyl, , 4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl and the like.
  • Substituted alkyl group means an alkyl group having one or more substituents.
  • alkyl group also applies to the alkyl group from which the substituted alkyl group is derived, unless otherwise specified.
  • one or more substituents are each substituted with a hydrogen atom of the alkyl group.
  • the number of substituents in the substituted alkyl group is preferably 1 to 3, more preferably 1 or 2. When the number of substituents is two or more, the two or more substituents may be the same or different.
  • One or more substituents of the substituted alkyl group can be independently selected from a substituent group ⁇ described below.
  • the number of carbon atoms of the substituted alkyl group (when the substituted alkyl group has one or more substituents containing carbon atoms, the total number of carbon atoms of the substituted alkyl group) is usually 30 or less, preferably 20 or less, more preferably It is 18 or less, still more preferably 16 or less, even more preferably 14 or less, even more preferably 12 or less, and still more preferably 10 or less.
  • substituted alkyl group examples include a cycloalkyloxycarbonyloxyalkyl group such as a cilexetil group.
  • Alkyl group means an alkyl group having one or more aryl groups.
  • alkyl group also applies to the alkyl group included in the aralkyl group, unless otherwise specified.
  • aryl group also applies to the aryl group included in the aralkyl group, unless otherwise specified.
  • Aryl group means a group formed by removing one hydrogen atom of an aromatic ring from an aromatic hydrocarbon having one or more monocyclic or fused polycyclic aromatic rings. .
  • the carbon number of the aryl group is usually 6 to 30, preferably 6 to 20, more preferably 6 to 18, even more preferably 6 to 16, even more preferably 6 to 14, and still more preferably 6 to 12, More preferably, it is 6 to 10.
  • Examples of the aryl group include a monocyclic or condensed polycyclic aromatic ring group.
  • the condensed polycyclic aromatic ring group is usually bicyclic to tetracyclic, preferably bicyclic or tricyclic, more preferably bicyclic.
  • the number of ring-constituting carbon atoms in the monocyclic or condensed polycyclic aromatic ring group is usually 6 to 18, preferably 6 to 14, and more preferably 6 to 10.
  • Examples of the monocyclic aromatic ring group include a phenyl group.
  • Examples of the condensed polycyclic aromatic ring group include a naphthyl group, an anthracenyl group, and a phenanthrenyl group.
  • the fused polycyclic aromatic ring group may be partially saturated (that is, some of the bonds constituting the aromatic ring may be hydrogenated).
  • Examples of the partially saturated condensed polycyclic aromatic ring group include a dihydronaphthyl group, an indanyl group, an acenaphthenyl group and the like.
  • the aryl group also includes a monocyclic or condensed polycyclic aromatic ring group having one or more alkyl groups.
  • the above description of the “alkyl group” also applies to the alkyl group of the monocyclic or condensed polycyclic aromatic ring group, unless otherwise specified.
  • the alkyl group of the monocyclic or condensed polycyclic aromatic ring group preferably has 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and still more preferably 1 to 4 carbon atoms. , Still more preferably 1 to 3, and still more preferably 1 or 2.
  • the number of alkyl groups that the monocyclic or condensed polycyclic aromatic ring group may have is preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 or 2. When the number of alkyl groups is two or more, the two or more alkyl groups may be the same or different.
  • Examples of the monocyclic aromatic ring group having one or more alkyl groups include a tolyl group and a x
  • Aryl groups also include groups having two or more monocyclic or fused polycyclic aromatic rings covalently linked by a single bond.
  • Examples of the group having two or more monocyclic aromatic rings covalently bonded by a single bond include, for example, biphenyl, terphenyl and the like.
  • the aryl group is preferably a phenyl group or a phenyl group having one or more alkyl groups.
  • the number of carbon atoms of the aralkyl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 16, even more preferably 7 to 14, and still more preferably 7 to 12, More preferably, it is 7 to 10.
  • the carbon number of the alkyl group contained in the aralkyl group is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, still more preferably 1 to 4, and still more preferably 1 to 3. .
  • the number of aryl groups possessed by the aralkyl group is preferably from 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the number of aryl groups in the aralkyl group is two or more, the two or more aryl groups may be the same or different.
  • aralkyl group examples include benzyl, phenethyl, ⁇ -methylbenzyl, diphenylmethyl, trityl, biphenylmethyl, terphenylmethyl and the like.
  • a "substituted aralkyl group” means an aralkyl group having one or more substituents.
  • the above description of the “aralkyl group” also applies to the aralkyl group from which the substituted aralkyl group is based, unless otherwise specified.
  • one or more substituents are each substituted with a hydrogen atom of an aryl moiety and / or an alkyl moiety.
  • the hydrogen atom to be substituted may be a hydrogen atom in the aryl moiety or a hydrogen atom in the alkyl moiety, but is preferably a hydrogen atom in the aryl moiety.
  • the number of substituents of the substituted aryl group is preferably from 1 to 3, more preferably 1 or 2. When the number of substituents is two or more, the two or more substituents may be the same or different.
  • One or more substituents of the substituted aryl group can be independently selected from a substituent group ⁇ described below.
  • the number of carbon atoms of the substituted aryl group (when the substituted aryl group has one or more substituents containing carbon atoms, the total number of carbon atoms of the substituted aryl group) is usually 30 or less, preferably 20 or less, more preferably It is 18 or less, still more preferably 16 or less, even more preferably 14 or less, even more preferably 12 or less, and still more preferably 10 or less.
  • Substituent group ⁇ is composed of the following substituents. ( ⁇ -1) halogen atom ( ⁇ -2) nitro group ( ⁇ -3) alkyloxy group ( ⁇ -4) alkylcarbonyl group ( ⁇ -5) alkylcarbonyloxy group ( ⁇ -6) alkyloxycarbonyl group ( ⁇ -7) alkyloxycarbonyloxy group ( ⁇ -8) cycloalkyl group ( ⁇ -9) cycloalkyloxy group ( ⁇ -10) cycloalkylcarbonyl group ( ⁇ -11) cycloalkylcarbonyloxy group ( ⁇ -12) cyclo Alkyloxycarbonyl group ( ⁇ -13) cycloalkyloxycarbonyloxy group ( ⁇ -14) aryloxy group ( ⁇ -15) arylcarbonyl group ( ⁇ -16) arylcarbonyloxy group ( ⁇ -17) aryloxycarbonyl group ( ⁇ -18) aryloxycarbonyloxy group ( ⁇ -19) aralkyloxy group ( ⁇ -20) aralkylcal Bon
  • Substituent group ⁇ is a halogen atom, nitro group, alkyloxy group, alkylcarbonyloxy group, alkyloxycarbonyloxy group, cycloalkyl group, cycloalkyloxy group, cycloalkylcarbonyloxy group, cycloalkyloxycarbonyloxy group, aryl
  • An oxy group, an arylcarbonyloxy group, an aryloxycarbonyloxy group, an aralkyloxy group, an aralkylcarbonyloxy group and an aralkyloxycarbonyloxy group are preferable, and a halogen atom, a nitro group, an alkyloxy group, an alkyloxycarbonyloxy More preferably, it is composed of a group, a cycloalkyl group, a cycloalkyloxy group, a cycloalkyloxycarbonyloxy group and an aryloxy group.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Alkyloxy group means a group represented by an alkyl group -O-.
  • Alkylcarbonyl group means a group represented by an alkyl group -CO-.
  • Alkylcarbonyloxy group means a group represented by an alkyl group -CO-O-.
  • Alkyloxycarbonyl group means a group represented by an alkyl group —O—CO—.
  • Alkyloxycarbonyloxy group means a group represented by an alkyl group —O—CO—O—.
  • alkyl group also applies to the alkyl group included in the alkyloxy group, the alkylcarbonyl group, the alkylcarbonyloxy group, the alkyloxycarbonyl group, or the alkyloxycarbonyloxy group, unless otherwise specified.
  • the number of carbon atoms of the alkyloxy group, alkylcarbonyl group, alkylcarbonyloxy group, alkyloxycarbonyl group or alkyloxycarbonyloxy group is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, It is more preferably 1 to 4, still more preferably 1 to 3, and still more preferably 1 or 2.
  • Cycloalkyl group means a cyclic aliphatic saturated hydrocarbon group.
  • the carbon number of the cycloalkyl group is usually 3 to 10, preferably 3 to 8, and more preferably 3 to 6.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • Cycloalkyloxy group means a group represented by cycloalkyl group -O-.
  • Cycloalkylcarbonyl group means a group represented by cycloalkyl group -CO-.
  • Cycloalkylcarbonyloxy group means a group represented by cycloalkyl group -CO-O-.
  • Cycloalkyloxycarbonyl group means a group represented by cycloalkyl group -O-CO-.
  • Cycloalkyloxycarbonyloxy group means a group represented by cycloalkyl group -O-CO-O-.
  • cycloalkyl group also applies to a cycloalkyloxy group, a cycloalkylcarbonyl group, a cycloalkylcarbonyloxy group, a cycloalkyloxycarbonyl group, or a cycloalkyl group contained in a cycloalkyloxycarbonyloxy group.
  • Aryloxy group means a group represented by an aryl group -O-.
  • Arylcarbonyl group means a group represented by an aryl group -CO-.
  • Arylcarbonyloxy group means a group represented by an aryl group -CO-O-.
  • Aryloxycarbonyl group means a group represented by an aryl group -O-CO-.
  • Aryloxycarbonyloxy group means a group represented by an aryl group -O-CO-O-.
  • aryl group also applies to an aryloxy group, an arylcarbonyl group, an arylcarbonyloxy group, an aryloxycarbonyl group, or an aryl group contained in an aryloxycarbonyloxy group, unless otherwise specified. .
  • the number of carbon atoms of the aryl group contained in the aryloxy group, the arylcarbonyl group, the arylcarbonyloxy group, the aryloxycarbonyl group or the aryloxycarbonyloxy group is preferably 6 to 18, more preferably 6 to 16, and still more preferably. 6-14, still more preferably 6-12, even more preferably 6-10.
  • Alkyloxy group means a group represented by an aralkyl group -O-.
  • Alkylcarbonyl group means a group represented by an aralkyl group -CO-.
  • Alkylcarbonyloxy group means a group represented by an aralkyl group -CO-O-.
  • Alkyloxycarbonyl group means a group represented by an aralkyl group -O-CO-.
  • Alkyloxycarbonyloxy group means a group represented by an aralkyl group -O-CO-O-.
  • aralkyl group also applies to the aralkyl group included in the aralkyloxy group, the aralkylcarbonyl group, the aralkylcarbonyloxy group, the aralkyloxycarbonyl group, or the aralkyloxycarbonyloxy group, unless otherwise specified. .
  • the number of carbon atoms of the aralkyloxy group, the aralkylcarbonyl group, the aralkylcarbonyloxy group, the aralkyloxycarbonyl group or the aralkyl group contained in the aralkyloxycarbonyloxy group is preferably 7 to 18, more preferably 7 to 16, and still more preferably 7-14, more preferably 7-12, even more preferably 7-10.
  • a dicyclohexylamine salt of N, N'-dibenzylbiotin is converted into a compound represented by the following formula (5): Reacting with a halide represented by the formula (I) to form an N, N'-dibenzylbiotin ester compound.
  • the dicyclohexylamine salt of N, N'-dibenzylbiotin to be reacted with the halide is preferably a dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin reacted with the halide is preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, and even more preferably 98.5. % Or more, more preferably 99% or more.
  • the HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
  • R 2 has the same meaning as in the formula (4), and X represents a halogen atom.
  • the halogen atom can be selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, but is preferably selected from a chlorine atom, a bromine atom and an iodine atom.
  • halide examples include iodomethane, ethyl bromide, propyl bromide, allyl bromide, benzyl chloride, benzyl bromide, cilexetil chloride and the like.
  • the amount of the halide to be used is not particularly limited as long as it is an amount sufficient for the reaction to proceed, and can be adjusted as appropriate. Preferably, it is in the range of 1.0 to 10 mol, more preferably, 1.0 to 3.0 mol.
  • a base used for an esterification reaction can be suitably used.
  • examples of such a base include potassium carbonate, potassium hydrogen carbonate, sodium carbonate, baking soda, triethylamine, diisopropylethylamine, DBU and the like.
  • potassium carbonate and triethylamine are preferred because they can be produced under mild conditions.
  • the amount of the base to be used is not particularly limited as long as it is an amount sufficient for the reaction to proceed, and can be appropriately adjusted, but is preferably based on 1 mol of the dicyclohexylamine salt of N, N'-dibenzylbiotin. Is in the range of 1 to 10 mol, more preferably in the range of 1 to 3 mol.
  • a solvent used for an esterification reaction can be suitably used.
  • a solvent used for an esterification reaction examples include nitriles such as acetonitrile and propionitrile; amides such as NN′-dimethylformamide (DMF), NN′-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP) Ethers such as tetrahydrofuran (THF), 2-methyl-THF, 1,4-dioxane, t-butyl-methyl ether, diisopropyl ether, dimethoxyethane and diglyme; ketones such as acetone, methyl ethyl ketone and diethyl ketone; methyl acetate Esters such as acetic acid, ethyl acetate and butyl acetate; hal
  • the amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, and is usually 0.5 to 100 parts by volume per 1 part by mass of dicyclohexylamine salt of N, N'-dibenzylbiotin. Parts by volume, preferably 2.0 to 20 parts by volume.
  • reaction temperature and reaction time when reacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with a halide can be appropriately adjusted, but the reaction temperature is usually in the range of -20 to 100 ° C, preferably It is in the range of 0 to 50 ° C., and the reaction time is usually in the range of 0.5 to 48 hours, preferably in the range of 1.0 to 17 hours.
  • the reaction solution containing the N, N'-dibenzylbiotin ester compound is neutralized by adding water and an acid, and the N, N'-dibenzylbiotin ester compound is extracted with an organic solvent such as ethyl acetate. Then, by washing, and concentrating, the N, N'-dibenzylbiotin ester compound can be isolated. The isolated N, N'-dibenzylbiotin ester compound may be further purified.
  • the N, N'-dibenzylbiotin ester compound can be purified by silica gel column purification or the like. Purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
  • a seventh aspect of the present invention relates to a method for producing a biotin ester compound.
  • the biotin ester compound is a compound represented by the following formula (6).
  • R 2 has the same meaning as in the formula (4).
  • the method according to the sixth aspect of the present invention is represented by the formula (6), wherein a benzyl group is eliminated from the N, N′-dibenzylbiotin ester compound produced by the method according to the fifth aspect of the present invention. Generating a biotin ester compound.
  • Elimination of the benzyl group from the 'N, N'-dibenzylbiotin ester compound can be carried out according to a conventional method.
  • HPLC High Performance Liquid Chromatography
  • ⁇ HPLC measurement conditions (1) HPLC measurement conditions for N, N′-dibenzylbiotin dicyclohexylamine salt and N, N′-dibenzylbiotin ⁇
  • Mobile phase: 50 mM KH 2 PO 4 (pH 3.0) / CH 3 CN 60: 40 ⁇
  • Analysis time 40 min
  • the concentration gradient was controlled by changing the mixing ratio of mobile phases A and B as shown in Table 1 below.
  • biotin has a peak at about 17.3 min.
  • reaction solution was concentrated. Water (140 mL) was added to the concentrated residue to dissolve it, and the aqueous layer was washed with tert-butyl methyl ether (40 mL). The aqueous layer was cooled to 0 ° C. and adjusted to pH 1 with 10% hydrochloric acid. Ethyl acetate (80 mL) was added thereto, and the mixture was separated. The obtained aqueous layer was extracted again with ethyl acetate (20 mL).
  • N, N'-dibenzylbiotin (1.23 g, 71.0%, HPLC purity: 93.01%).
  • the obtained N, N'-dibenzylbiotin was used in the following examples.
  • Example 1 Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin N, N'-dibenzylbiotin (80 mg, 0.188 mmol, HPLC purity: 93.01%, oily) in ethyl acetate (1. 6 mL) solution was added with dicyclohexylamine (37.4 ⁇ L, 0.188 mmol) at 25 ° C., and the mixture was stirred at the same temperature for 3.5 hours and at 0 ° C. for 1 hour. After washing with ethyl and drying under reduced pressure, dicyclohexylamine salt of N, N'-dibenzylbiotin (73.6 mg, yield: 64.5%, HPLC purity: 99.25%) was obtained.
  • the peak derived from the dicyclohexylamine salt of N, N'-dibenzylbiotin and the peak derived from N, N'-dibenzylbiotin are detected at the same position (time). This is presumed to be because the dicyclohexylamine salt of N, N'-dibenzylbiotin is dissociated into N, N'-dibenzylbiotin and dicyclohexylamine in the HPLC column. Therefore, the measurement of the dicyclohexylamine salt of N, N'-dibenzylbiotin was performed indirectly by measuring the dissociated N, N'-dibenzylbiotin, and the purity was evaluated.
  • Example 2 Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin N, N'-dibenzylbiotin (5.0 g, 11.7 mmol, HPLC purity: 93.01%) solution in butyl acetate (50 mL) To the mixture was added dicyclohexylamine (2.34 mL, 11.7 mmol) at 25 ° C, and the mixture was stirred at the same temperature for 2 hours and at 0 ° C for 1 hour. The precipitated crystals were collected by filtration and washed with cold butyl acetate. By drying under reduced pressure, dicyclohexylamine salt of N, N'-dibenzylbiotin (6.05 g, yield: 84.8%, HPLC purity: 98.93%) was obtained.
  • Example 3 Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin
  • N, N'-dibenzylbiotin 80 mg, 0.188 mmol, HPLC purity: 93.01%) in acetone (1.6 mL).
  • dicyclohexylamine 37.4 ⁇ L, 0.188 mmol
  • the precipitated crystals were collected by filtration, washed with cold butyl acetate, and dried under reduced pressure.
  • dicyclohexylamine salt of N, N'-dibenzylbiotin (40.0 mg, yield: 35.1%, HPLC purity: 98.66%) was obtained.
  • Example 4 Preparation of N, N'-dibenzylbiotin by dedicyclohexylamine salification of dicyclohexylamine salt of N, N'-dibenzylbiotin
  • Dicyclohexylamine salt 200 mg, 0.330 mmol
  • ethyl acetate 1.5 mL
  • potassium hydrogen sulfate 58 mg, 0.429 mmol
  • water 500 ⁇ L
  • Example 5 Preparation of biotin by decyclohexylamine chloride and debenzylation of dicyclohexylamine salt of N, N'-dibenzylbiotin Dicyclohexylamine salt of N, N'-dibenzylbiotin obtained in Example 2 (2.0 g, 3.30 mmol) was added and dissolved in a two-phase solvent of mesitylene (5.0 mL) and methanesulfonic acid (3.17 g, 33.0 mmol), and the mixture was stirred at 135 ° C. for 2.5 hours. Further, methanesulfonic acid (3.17 g, 33.0 mmol) was added, and the mixture was stirred at the same temperature for 4.5 hours.
  • mesitylene 5.0 mL
  • methanesulfonic acid 3.17 g, 33.0 mmol
  • Example 6 Preparation of N, N'-dibenzylbiotin ester compound by esterification of dicyclohexylamine salt of N, N'-dibenzylbiotin As shown in the following reaction formula, N, N'-dibenzylbiotin Lexetil ester was synthesized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

One purpose of the present invention is to provide a dicyclohexylamine salt of N,N'-dibenzylbiotin (and, in particular, a high purity dicyclohexylamine salt of N,N'-dibenzylbiotin) and a production method for the dicyclohexylamine salt of N,N'-dibenzylbiotin. To achieve said purpose, the present invention provides a method for producing a dicyclohexylamine salt of N,N'-dibenzylbiotin. The method includes a step for bringing N,N'-dibenzylbiotin into contact with dicyclohexylamine to generate a dicyclohexylamine salt of the N,N'-dibenzylbiotin.

Description

N,N’-ジベンジルビオチンのジシクロへキシルアミン塩及びその製造方法Dicyclohexylamine salt of N, N'-dibenzylbiotin and method for producing the same
 本発明は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩(特に、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩)及びその製造方法に関する。また、本発明は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩(特に、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩)を使用して、N,N’-ジベンジルビオチン(特に、高純度のN,N’-ジベンジルビオチン)、ビオチン(特に、高純度のビオチン)、N,N’-ジベンジルビオチンエステル化合物又はビオチンエステル化合物を製造する方法に関する。さらに、本発明は、高純度のN,N’-ジベンジルビオチン及び高純度のビオチンに関する。 << The present invention relates to a dicyclohexylamine salt of N, N'-dibenzylbiotin (particularly, a high-purity dicyclohexylamine salt of N, N'-dibenzylbiotin) and a method for producing the same. Further, the present invention relates to the use of N, N'-dibenzylbiotin dicyclohexylamine salt (particularly, high-purity N, N'-dibenzylbiotin dicyclohexylamine salt) to prepare N, N'-dibenzylbiotin. The present invention relates to a method for producing benzyl biotin (particularly, high-purity N, N′-dibenzylbiotin), biotin (particularly, high-purity biotin), an N, N′-dibenzylbiotin ester compound, or a biotin ester compound. Furthermore, the present invention relates to high-purity N, N'-dibenzylbiotin and high-purity biotin.
 ビオチンは、下記式で表される化合物である。 @Biotin is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ビオチンは、例えば、以下の合成ルートにより製造される。なお、Bnはベンジル基を表す。 @Biotin is produced, for example, by the following synthetic route. Bn represents a benzyl group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記合成ルートにおいて、ビオチンを高純度で得るためには、その前躯体(合成中間体)であるN,N’-ジベンジルビオチンを高純度で得る必要がある。 に お い て In order to obtain biotin with high purity in the above synthesis route, it is necessary to obtain N, N'-dibenzylbiotin as a precursor (synthesis intermediate) with high purity.
 ビオチンは、糖尿病予防効果等が期待される水溶性ビタミンであり、医薬、飼料添加剤等として有用な化合物であり、高純度のビオチンが求められている。N,N’-ジベンジルビオチンは、タンパク質の標識物質(特許文献1及び非特許文献1参照)、ウイルス逆転写酵素阻害剤(特許文献2参照)等として有用な化合物であり、高純度のN,N’-ジベンジルビオチンが求められている。 Biotin is a water-soluble vitamin expected to have a diabetic preventive effect and the like, and is a useful compound as a drug, a feed additive and the like, and high-purity biotin is required. N, N'-dibenzylbiotin is a compound useful as a protein labeling substance (see Patent Document 1 and Non-patent Document 1), a viral reverse transcriptase inhibitor (see Patent Document 2), and the like. , N'-Dibenzylbiotin is needed.
国際公開WO2010/106347号公報International Publication WO2010 / 106347 米国特許第5763469号U.S. Pat. No. 5,763,469
 N,N’-ジベンジルビオチンは結晶化が可能であるものの、融点が低く、難結晶性である。本発明者らが確認したところ、上記合成ルートで得られるN,N’-ジベンジルビオチンのHPLC純度は75.58%であった。 'N, N'-dibenzylbiotin can be crystallized, but has a low melting point and is hardly crystalline. The present inventors have confirmed that the HPLC purity of N, N'-dibenzylbiotin obtained by the above synthesis route was 75.58%.
 本発明は、N,N’-ジベンジルビオチン若しくはその誘導体又はビオチン若しくはその誘導体を高純度で製造することを可能とする技術を提供することを目的とする。 The object of the present invention is to provide a technology that enables N, N'-dibenzylbiotin or a derivative thereof or biotin or a derivative thereof to be produced with high purity.
 本発明者らは、上記課題を解決するために、N,N’-ジベンジルビオチン若しくはその誘導体又はビオチン若しくはその誘導体を高純度で製造することを可能とする技術について鋭意検討を重ねた結果、N,N’-ジベンジルビオチンをジシクロへキシルアミンと接触させて、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩を形成させることにより、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩を固体として得ることができることを見出した。また、本発明者らは、得られたN,N’-ジベンジルビオチンのジシクロへキシルアミン塩を少なくとも1種の酸と接触させて、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩の脱ジシクロへキシルアミン塩化又はN,N’-ジベンジルビオチンのジシクロへキシルアミン塩の脱ジシクロへキシルアミン塩化及び脱ベンジル化を進行させることにより、高純度のN,N’-ジベンジルビオチン又は高純度のビオチンを得ることができることを見出した。そして、本発明者らは、これらの知見に基づいて、本発明を完成させるに至った。 Means for Solving the Problems The present inventors have conducted intensive studies on a technique for producing N, N′-dibenzylbiotin or a derivative thereof or biotin or a derivative thereof with high purity in order to solve the above-described problems. By contacting N, N'-dibenzylbiotin with dicyclohexylamine to form a dicyclohexylamine salt of N, N'-dibenzylbiotin, a highly pure dicyclohexylamine of N, N'-dibenzylbiotin can be obtained. It has been found that the xylamine salt can be obtained as a solid. Further, the present inventors contact the obtained dicyclohexylamine salt of N, N′-dibenzylbiotin with at least one acid to remove the dicyclohexylamine salt of N, N′-dibenzylbiotin. High-purity N, N'-dibenzylbiotin or high-purity biotin by proceeding with decyclohexylamine salification or debenzylation of dicyclohexylamine salt or dicyclohexylamine salt of N, N'-dibenzylbiotin Was found to be able to be obtained. The present inventors have completed the present invention based on these findings.
 すなわち、本発明は、以下の発明を包含する。
[1]下記式(1):
Figure JPOXMLDOC01-appb-C000013
[式中、Bnはベンジル基を表す。]
で表されるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩。
[2]HPLC純度が96%以上である、[1]に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩。
[3]下記式(2):
Figure JPOXMLDOC01-appb-C000014
[式中、Bnは前記と同義である。]
で表されるN,N’-ジベンジルビオチンであって、HPLC純度が96%以上である、前記N,N’-ジベンジルビオチン。
[4]下記式(3):
Figure JPOXMLDOC01-appb-C000015
で表されるビオチンであって、HPLC純度が96%以上である、前記ビオチン。
[5][1]に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を製造する方法であって、
 下記式(2):
Figure JPOXMLDOC01-appb-C000016
[式中、Bnは前記と同義である。]
で表されるN,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させて、前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を生成させる工程を含む、前記方法。
[6]前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、[5]に記載の方法。
[7]前記N,N’-ジベンジルビオチンのHPLC純度が95%以下である、[5]又は[6]に記載の方法。
[8]下記式(A):
Figure JPOXMLDOC01-appb-C000017
[式中、Rはベンジル基又は水素原子を表す。]
で表される化合物(A)を製造する方法であって、
 [1]に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を少なくとも1種の酸と接触させて、前記化合物(A)を生成させる工程を含む、前記方法。
[9]前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、[8]に記載の方法。
[10]前記酸が、塩酸、硫酸及び硫酸水素塩から選択される少なくとも1種の酸であり、
 前記化合物(A)が、下記式(2):
Figure JPOXMLDOC01-appb-C000018
[式中、Bnは前記と同義である。]
で表されるN,N’-ジベンジルビオチンである、[8]又は[9]に記載の方法。
[11]前記N,N’-ジベンジルビオチンのHPLC純度が96%以上である、[10]に記載の方法。
[12]前記酸が、メタンスルホン酸、硫酸及び臭化水素酸から選択される少なくとも1種の酸であり、
 前記化合物(A)が、下記式(3):
Figure JPOXMLDOC01-appb-C000019
で表されるビオチンである、[8]又は[9]に記載の方法。
[13]前記ビオチンのHPLC純度が96%以上である、[12]に記載の方法。
[14]下記式(4):
Figure JPOXMLDOC01-appb-C000020
[式中、Bnは前記と同義であり、Rは炭素数1~30のアルキル基、炭素数1~30の置換アルキル基、炭素数7~30のアラルキル基及び炭素数7~30の置換アラルキル基から選択される基を表す。]
で表されるN,N’-ジベンジルビオチンエステル化合物を製造する方法であって、
 [1]に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を、塩基の存在下、下記式(5):
Figure JPOXMLDOC01-appb-C000021
[式中、Rは前記と同義であり、Xはハロゲン原子を表す。]
で表されるハロゲン化物と反応させて、前記N,N’-ジベンジルビオチンエステル化合物を生成させる工程を含む、前記方法。
[15]前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、[14]に記載の方法。
[16]下記式(6):
Figure JPOXMLDOC01-appb-C000022
[式中、Rは前記と同義である。]
で表されるビオチンエステル化合物を製造する方法であって、
 [14]又は[15]に記載の方法で製造されたN,N’-ジベンジルビオチンエステル化合物からベンジル基を脱離させて、前記ビオチンエステル化合物を生成させる工程を含む、前記方法。
That is, the present invention includes the following inventions.
[1] The following formula (1):
Figure JPOXMLDOC01-appb-C000013
[Wherein, Bn represents a benzyl group. ]
A dicyclohexylamine salt of N, N'-dibenzylbiotin represented by the formula:
[2] The dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1], wherein the HPLC purity is 96% or more.
[3] The following formula (2):
Figure JPOXMLDOC01-appb-C000014
[Wherein, Bn is as defined above. ]
The N, N'-dibenzylbiotin represented by the formula, wherein the HPLC purity is 96% or more.
[4] The following formula (3):
Figure JPOXMLDOC01-appb-C000015
The biotin represented by the above, wherein the HPLC purity is 96% or more.
[5] A method for producing a dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1],
The following equation (2):
Figure JPOXMLDOC01-appb-C000016
[Wherein, Bn is as defined above. ]
Contacting N, N'-dibenzylbiotin represented by the formula with dicyclohexylamine to form the dicyclohexylamine salt of N, N'-dibenzylbiotin.
[6] The method according to [5], wherein the dicyclohexylamine salt of N, N'-dibenzylbiotin has an HPLC purity of 96% or more.
[7] The method according to [5] or [6], wherein the N, N′-dibenzylbiotin has an HPLC purity of 95% or less.
[8] The following formula (A):
Figure JPOXMLDOC01-appb-C000017
[In the formula, R 1 represents a benzyl group or a hydrogen atom. ]
A method for producing a compound (A) represented by the formula:
The method comprising the step of contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1] with at least one acid to produce the compound (A).
[9] The method according to [8], wherein the dicyclohexylamine salt of N, N'-dibenzylbiotin has a HPLC purity of 96% or more.
[10] the acid is at least one acid selected from hydrochloric acid, sulfuric acid, and hydrogen sulfate;
The compound (A) has the following formula (2):
Figure JPOXMLDOC01-appb-C000018
[Wherein, Bn is as defined above. ]
The method according to [8] or [9], wherein the method is N, N'-dibenzylbiotin represented by the formula:
[11] The method according to [10], wherein the N, N′-dibenzylbiotin has an HPLC purity of 96% or more.
[12] The acid is at least one acid selected from methanesulfonic acid, sulfuric acid, and hydrobromic acid,
The compound (A) has the following formula (3):
Figure JPOXMLDOC01-appb-C000019
The method according to [8] or [9], which is biotin represented by the formula:
[13] The method according to [12], wherein the HPLC purity of the biotin is 96% or more.
[14] The following formula (4):
Figure JPOXMLDOC01-appb-C000020
Wherein Bn is as defined above, and R 2 is an alkyl group having 1 to 30 carbon atoms, a substituted alkyl group having 1 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, and a substituted group having 7 to 30 carbon atoms. Represents a group selected from aralkyl groups. ]
A method for producing an N, N′-dibenzylbiotin ester compound represented by the formula:
The dicyclohexylamine salt of N, N'-dibenzylbiotin according to [1] is converted to a compound represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000021
[Wherein, R 2 has the same meaning as described above, and X represents a halogen atom. ]
Reacting with a halide represented by the formula to produce the N, N'-dibenzylbiotin ester compound.
[15] The method according to [14], wherein the dicyclohexylamine salt of N, N'-dibenzylbiotin has an HPLC purity of 96% or more.
[16] The following formula (6):
Figure JPOXMLDOC01-appb-C000022
[Wherein, R 2 has the same meaning as described above. ]
A method for producing a biotin ester compound represented by
The method according to [14] or [15], comprising a step of removing a benzyl group from the N, N'-dibenzylbiotin ester compound produced by the method according to [15] to produce the biotin ester compound.
 本発明によれば、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩(特に、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩)及びその製造方法が提供される。また、本発明によれば、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩(特に、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩)を使用して、N,N’-ジベンジルビオチン(特に、高純度のN,N’-ジベンジルビオチン)、ビオチン(特に、高純度のビオチン)、N,N’-ジベンジルビオチンエステル化合物又はビオチンエステル化合物を製造する方法が提供される。さらに、本発明によれば、高純度のN,N’-ジベンジルビオチン及び高純度のビオチンが提供される。 According to the present invention, there is provided a dicyclohexylamine salt of N, N'-dibenzylbiotin (particularly, a high-purity dicyclohexylamine salt of N, N'-dibenzylbiotin) and a method for producing the same. Further, according to the present invention, N, N ′ is prepared by using N, N′-dibenzylbiotin dicyclohexylamine salt (particularly, high-purity N, N′-dibenzylbiotin dicyclohexylamine salt). -Dibenzylbiotin (particularly high-purity N, N'-dibenzylbiotin), biotin (particularly high-purity biotin), N, N'-dibenzylbiotin ester compound or a method for producing a biotin ester compound Is done. Further, according to the present invention, high-purity N, N'-dibenzylbiotin and high-purity biotin are provided.
≪第1態様≫
 本発明の第1態様は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩に関する。
<< First aspect >>
A first aspect of the present invention relates to a dicyclohexylamine salt of N, N'-dibenzylbiotin.
 N,N’-ジベンジルビオチンのジシクロへキシルアミン塩は、下記式(1)で表される化合物である。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩は、精製を行っても完全には純物質とはならず、不可避的不純物を含む。したがって、「N,N’-ジベンジルビオチンのジシクロへキシルアミン塩」は、純物質ではなく、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩と不可避的不純物との混合物を意味する。 The dicyclohexylamine salt of 'N, N'-dibenzylbiotin is a compound represented by the following formula (1). The dicyclohexylamine salt of N, N'-dibenzylbiotin is not completely purified even after purification, and contains unavoidable impurities. Therefore, "dicyclohexylamine salt of N, N'-dibenzylbiotin" is not a pure substance but means a mixture of the dicyclohexylamine salt of N, N'-dibenzylbiotin and inevitable impurities.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(1)において、Bnはベンジル基を表す。 に お い て In the formula (1), Bn represents a benzyl group.
 N,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、実施例に記載の方法により測定される。 The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, even more preferably 98.5% or more. It is more preferably at least 99%. The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
≪第2態様≫
 本発明の第2態様は、高純度のN,N’-ジベンジルビオチンに関する。
<< 2nd aspect >>
A second aspect of the present invention relates to high purity N, N'-dibenzylbiotin.
 N,N’-ジベンジルビオチンは、下記式(2)で表される化合物である。N,N’-ジベンジルビオチンは、精製を行っても完全には純物質とはならず、不可避的不純物を含む。したがって、「N,N’-ジベンジルビオチン」は、純物質ではなく、N,N’-ジベンジルビオチンと不可避的不純物との混合物を意味する。 'N, N'-dibenzylbiotin is a compound represented by the following formula (2). N, N'-dibenzylbiotin is not completely pure even after purification, and contains unavoidable impurities. Thus, "N, N'-dibenzylbiotin" is not a pure substance but means a mixture of N, N'-dibenzylbiotin and unavoidable impurities.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(2)において、Bnはベンジル基を表す。 に お い て In the formula (2), Bn represents a benzyl group.
 N,N’-ジベンジルビオチンのHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのHPLC純度は、実施例に記載の方法により測定される。 The HPLC purity of N, N'-dibenzylbiotin is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably at least 98.5%, even more preferably at least 99%. That is all. The HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples.
≪第3態様≫
 本発明の第3態様は、高純度のビオチンに関する。
{Third aspect}
A third aspect of the present invention relates to high purity biotin.
 ビオチンは、下記式(3)で表される化合物である。ビオチンは、精製を行っても完全には純物質とはならず、不可避的不純物を含む。したがって、「ビオチン」は、純物質ではなく、ビオチンと不可避的不純物との混合物を意味する。 @Biotin is a compound represented by the following formula (3). Biotin is not completely purified even after purification, and contains unavoidable impurities. Thus, "biotin" is not a pure substance but means a mixture of biotin and unavoidable impurities.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 ビオチンのHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。ビオチンのHPLC純度は、実施例に記載の方法により測定される。 Biotin has an HPLC purity of preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, even more preferably 98.5% or more, and still more preferably 99% or more. The HPLC purity of biotin is measured by the method described in the examples.
≪第4態様≫
 本発明の第4態様は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩を製造する方法に関する。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩は、上記式(1)で表される化合物である。
<< 4th mode >>
A fourth aspect of the present invention relates to a method for producing a dicyclohexylamine salt of N, N'-dibenzylbiotin. The dicyclohexylamine salt of N, N'-dibenzylbiotin is a compound represented by the above formula (1).
 本発明の第4態様に係る方法は、N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させて、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を生成させる工程を含む。なお、N,N’-ジベンジルビオチンは、上記式(2)で表される化合物である。 方法 The method according to the fourth aspect of the present invention comprises the step of contacting N, N'-dibenzylbiotin with dicyclohexylamine to form a dicyclohexylamine salt of N, N'-dibenzylbiotin. Note that N, N'-dibenzylbiotin is a compound represented by the above formula (2).
 ジシクロヘキシルアミンと接触させるN,N’-ジベンジルビオチンは、公知の方法によって製造することができる。例えば、背景技術に記載のビオチンの合成ルートにおいて合成中間体として得ることができる。あるいは、ビオチンを、塩基の存在下、ベンジルクロライド、ベンジルブロマイド、ベンジルアイオダイド等のベンジル化剤と反応させることにより得ることができる。反応後、N,N’-ジベンジルビオチンを含有する反応液を氷水中に加え、酸を加えて酸性にした後、酢酸エチル等の有機溶媒でN,N’-ジベンジルビオチンを抽出し、洗浄及び濃縮することにより、N,N’-ジベンジルビオチンを単離することができる。N,N’-ジベンジルビオチンは、シリカゲルカラム精製等により精製することができる。精製は、例えば、シリカゲルカラムを備える自動分取精製装置等を使用して行うことができる。 N, N'-dibenzylbiotin to be contacted with dicyclohexylamine can be produced by a known method. For example, it can be obtained as a synthetic intermediate in the biotin synthesis route described in the background art. Alternatively, it can be obtained by reacting biotin with a benzylating agent such as benzyl chloride, benzyl bromide, or benzyl iodide in the presence of a base. After the reaction, a reaction solution containing N, N'-dibenzylbiotin is added to ice water, acidified by adding an acid, and N, N'-dibenzylbiotin is extracted with an organic solvent such as ethyl acetate. By washing and concentrating, N, N′-dibenzylbiotin can be isolated. N, N'-dibenzylbiotin can be purified by silica gel column purification or the like. Purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
 ジシクロヘキシルアミンと接触させるN,N’-ジベンジルビオチンのHPLC純度は、好ましくは30~95%、より好ましくは50~94%、より一層好ましくは70~93.5%である。N,N’-ジベンジルビオチンのHPLC純度は、実施例に記載の方法により測定される。なお、背景技術に記載のビオチンの合成ルートで得られるN,N’-ジベンジルビオチンのHPLC純度は75.58%である。 The HPLC purity of N, N'-dibenzylbiotin contacted with dicyclohexylamine is preferably 30-95%, more preferably 50-94%, even more preferably 70-93.5%. The HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples. The HPLC purity of N, N'-dibenzylbiotin obtained by the biotin synthesis route described in the background art is 75.58%.
 N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させることにより、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩を製造することができる。 By contacting 'N, N'-dibenzylbiotin with dicyclohexylamine, a dicyclohexylamine salt of N, N'-dibenzylbiotin can be produced.
 N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させる際に使用する溶媒は、N,N’-ジベンジルビオチンが溶解し得る溶媒である限り特に限定されず、公知の有機溶媒の中から適宜選択することができる。有機溶媒としては、例えば、アセトニトリル、プロピオニトリル等のニトリル類;THF、2-メチル-THF、1,4-ジオキサン、t-ブチルメチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、ジグライム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類等が挙げられる。1種の有機溶媒を単独でも使用してもよいし、2種以上の有機溶媒の混合溶媒を使用してもよい。有機溶媒の中でも、工業的に入手可能な点、取り扱いが容易な点等から、酢酸エチル、酢酸ブチル、メチルエチルケトンが好ましく、特に好ましくは酢酸エチル、酢酸ブチル等のエステル類が好ましい。又はこれらの2種以上の混合溶媒を使用することが好適である。N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させる際に使用する溶媒の量は、反応容器の容量等を勘案して適宜調整することができるが、N,N’-ジベンジルビオチン 1質量部に対して、通常1~100容量部の範囲である。なお、溶媒の量が、N,N’-ジベンジルビオチン 1質量部に対して、1~100容量部の範囲であることは、溶媒の量が、N,N’-ジベンジルビオチン 1gに対して、1~100mLの範囲であることを意味する。以下同様である。 The solvent used for bringing N, N'-dibenzylbiotin into contact with dicyclohexylamine is not particularly limited as long as it is a solvent capable of dissolving N, N'-dibenzylbiotin, and is appropriately selected from known organic solvents. You can choose. Examples of the organic solvent include nitriles such as acetonitrile and propionitrile; ethers such as THF, 2-methyl-THF, 1,4-dioxane, t-butylmethyl ether, diisopropyl ether, dimethoxyethane and diglyme; acetone , Methyl ethyl ketone, diethyl ketone, etc .; ketones such as methyl acetate, ethyl acetate, butyl acetate, etc .; halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene; toluene, xylene And the like; and aromatic hydrocarbons such as hexane and heptane. One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used. Among the organic solvents, ethyl acetate, butyl acetate, and methyl ethyl ketone are preferred from the viewpoints of industrial availability and easy handling, and particularly preferred are esters such as ethyl acetate and butyl acetate. Alternatively, it is preferable to use a mixed solvent of two or more of these. The amount of the solvent used when bringing N, N'-dibenzylbiotin into contact with dicyclohexylamine can be appropriately adjusted in consideration of the capacity of the reaction vessel, etc., but N, N'-dibenzylbiotin 1 mass Parts are usually in the range of 1 to 100 parts by volume. The fact that the amount of the solvent is in the range of 1 to 100 parts by volume based on 1 part by mass of N, N'-dibenzylbiotin indicates that the amount of the solvent is 1 g by mass of N, N'-dibenzylbiotin. Means in the range of 1 to 100 mL. The same applies hereinafter.
 N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させる際に使用するジシクロヘキシルアミンの量は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩が生成するのに十分な量である限り特に限定されず、適宜調整することができるが、N,N’-ジベンジルビオチン 1モルに対して、通常、1.0~2.0モルの範囲である。 The amount of dicyclohexylamine used in contacting N, N'-dibenzylbiotin with dicyclohexylamine is not particularly limited as long as it is an amount sufficient to form a dicyclohexylamine salt of N, N'-dibenzylbiotin. However, it can be adjusted appropriately, but is usually in the range of 1.0 to 2.0 mol per 1 mol of N, N'-dibenzylbiotin.
 N,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させる際の反応温度及び反応時間は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩が生成するのに十分な条件である限り特に限定されず、適宜調整することができるが、反応温度は、通常-20~100℃の範囲、好ましくは-10~50℃の範囲であり、反応時間は、通常0.5~72時間の範囲である。 The reaction temperature and the reaction time when N, N'-dibenzylbiotin is brought into contact with dicyclohexylamine are not particularly limited as long as the conditions are sufficient to produce a dicyclohexylamine salt of N, N'-dibenzylbiotin. The reaction temperature is usually in the range of −20 to 100 ° C., preferably in the range of −10 to 50 ° C., and the reaction time is usually in the range of 0.5 to 72 hours. .
 反応後、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を含有する反応液から公知の固液分離方法により、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を単離することができる。単離されたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩は、そのままでも十分に高純度であるが、メタノール、エタノール、イソプロパノール、クロロホルム、塩化メチレン、酢酸メチル、酢酸エチル、酢酸ブチル、イソプロピルエーテル、ヘキサン、トルエン、キシレン又はこれらの2種以上の混合物を使用して精製してもよい。 後 After the reaction, the dicyclohexylamine salt of N, N'-dibenzylbiotin can be isolated from the reaction solution containing the dicyclohexylamine salt of N, N'-dibenzylbiotin by a known solid-liquid separation method. The isolated dicyclohexylamine salt of N, N'-dibenzylbiotin is sufficiently pure as it is, but methanol, ethanol, isopropanol, chloroform, methylene chloride, methyl acetate, ethyl acetate, butyl acetate, isopropyl ether , Hexane, toluene, xylene or a mixture of two or more thereof.
 本発明の第4態様に係る方法によれば、高純度のN,N’-ジベンジルビオチンのジシクロへキシルアミン塩を製造することができる。本発明の第4態様に係る方法により製造されるN,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、実施例に記載の方法により測定される。 According to the method according to the fourth aspect of the present invention, a high-purity dicyclohexylamine salt of N, N'-dibenzylbiotin can be produced. The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention is preferably 96% or higher, more preferably 97% or higher, even more preferably 98%. The above is even more preferably 98.5% or more, and still more preferably 99% or more. The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
≪第5態様≫
 本発明の第5態様は、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を使用して、化合物(A)を製造する方法に関する。
<< Fifth aspect >>
A fifth aspect of the present invention relates to a method for producing compound (A) using a dicyclohexylamine salt of N, N'-dibenzylbiotin.
 化合物(A)は、下記式(A)で表される化合物である。化合物(A)は、精製を行っても完全には純物質とはならず、不可避的不純物を含む。したがって、「化合物(A)」は、純物質ではなく、化合物(A)と不可避的不純物との混合物を意味する Compound (A) is a compound represented by the following formula (A). Compound (A) does not become a completely pure substance even after purification, but contains unavoidable impurities. Therefore, "compound (A)" is not a pure substance but means a mixture of compound (A) and unavoidable impurities.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(A)において、Rは、ベンジル基又は水素原子を表す。 In the formula (A), R 1 represents a benzyl group or a hydrogen atom.
 式(A)において、Rがベンジル基を表す場合、化合物(A)は、上記式(2)で表されるN,N’-ジベンジルビオチンである。 In the formula (A), when R 1 represents a benzyl group, the compound (A) is N, N′-dibenzylbiotin represented by the above formula (2).
 式(A)において、Rが水素原子を表す場合、化合物(A)は、上記式(3)で表されるビオチンである。 In the formula (A), when R 1 represents a hydrogen atom, the compound (A) is biotin represented by the above formula (3).
 本発明の第5態様に係る方法は、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を少なくとも1種の酸と接触させて、化合物(A)を生成させる工程を含む。 方法 The method according to the fifth aspect of the present invention comprises the step of contacting a dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to produce compound (A).
 少なくとも1種の酸と接触させるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩は、本発明の第4態様に係る方法で製造されたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩であることが好ましい。 The dicyclohexylamine salt of N, N'-dibenzylbiotin contacted with at least one acid is a dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention. Is preferred.
 少なくとも1種の酸と接触させるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、実施例に記載の方法により測定される。 The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin contacted with at least one acid is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably. 98.5% or more, more preferably 99% or more. The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩と接触させる少なくとも1種の酸は、製造される化合物(A)の種類に応じて適宜選択することができる。 The at least one acid to be brought into contact with the dicyclohexylamine salt of 'N, N'-dibenzylbiotin can be appropriately selected according to the type of the compound (A) to be produced.
 以下、製造される化合物(A)がN,N’-ジベンジルビオチンである場合について説明する。 Hereinafter, the case where the compound (A) to be produced is N, N'-dibenzylbiotin will be described.
 製造される化合物(A)がN,N’-ジベンジルビオチンである場合、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化を進行させることができる少なくとも1種の酸が選択される。N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を少なくとも1種の酸と接触させて、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化を進行させることにより、N,N’-ジベンジルビオチンを製造することができる。 When the compound (A) to be produced is N, N'-dibenzylbiotin, at least one acid capable of promoting dedicyclohexylamine salification of the dicyclohexylamine salt of N, N'-dibenzylbiotin is selected. Is done. Contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to proceed with the dedicyclohexylamine salification of the dicyclohexylamine salt of N, N'-dibenzylbiotin, -Dibenzylbiotin can be produced.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化を行う際、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩と接触させる少なくとも1種の酸は、例えば、塩酸、硫酸、硫酸水素塩等から選択することができる。硫酸水素塩としては、例えば、硫酸水素カリウム、硫酸水素ナトリウム等が挙げられる。これらの酸の中でも、工業的に入手可能な点、取り扱いが容易な点等から、硫酸、硫酸水素塩、特に硫酸水素カリウム等を使用することが好適である。酸の使用量は、脱ジシクロヘキシルアミン塩化が進行するのに十分な量である限り特に限定されず、適宜調整することができる。酸の使用量は、短時間で効率的に脱ジシクロヘキシルアミン塩化を行う点から、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩 1当量に対して、好ましくは1.0~1000当量の範囲、より好ましくは1.0~100当量の範囲である。 At the time of dedicyclohexylamine salification of the dicyclohexylamine salt of N, N′-dibenzylbiotin, at least one acid to be brought into contact with the dicyclohexylamine salt of N, N′-dibenzylbiotin is, for example, hydrochloric acid, sulfuric acid, sulfuric acid It can be selected from hydrogen salts and the like. Examples of the hydrogen sulfate include potassium hydrogen sulfate and sodium hydrogen sulfate. Among these acids, it is preferable to use sulfuric acid, hydrogensulfate, particularly potassium hydrogensulfate in view of industrial availability and easy handling. The amount of the acid used is not particularly limited as long as it is an amount sufficient for the removal of dicyclohexylamine to proceed, and can be adjusted as appropriate. The amount of the acid used is preferably in the range of 1.0 to 1000 equivalents per 1 equivalent of the dicyclohexylamine salt of N, N'-dibenzylbiotin, since the dicyclohexylamine salification is efficiently performed in a short time. It is more preferably in the range of 1.0 to 100 equivalents.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化を行う際に使用する溶媒としては、公知の有機溶媒を使用することができる。有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;tert-ブチルメチルエーテル等のエーテル類が挙げられる。1種の有機溶媒を単独で使用してもよいし、2種以上の有機溶媒の混合溶媒を使用してもよい。溶媒の使用量は、反応容器の容量等を勘案して適宜調整することができるが、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩 1質量部に対して、通常1~100容量部の範囲である。 A known organic solvent can be used as a solvent to be used for removing the dicyclohexylamine salt of the dicyclohexylamine salt of 'N, N'-dibenzylbiotin. Examples of the organic solvent include esters such as methyl acetate, ethyl acetate and butyl acetate; halogenated hydrocarbons such as methylene chloride and chloroform; and ethers such as tert-butyl methyl ether. One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used. The amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, but is usually in the range of 1 to 100 parts by volume per 1 part by mass of dicyclohexylamine salt of N, N'-dibenzylbiotin It is.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化を行う際の反応温度及び反応温度は適宜調整することができるが、反応温度は、通常-20~120℃の範囲、好ましくは-10~100℃の範囲であり、反応時間は、通常0.5~72時間の範囲である。 The reaction temperature and the reaction temperature in the dedicyclohexylamine salification of the dicyclohexylamine salt of N, N′-dibenzylbiotin can be appropriately adjusted, but the reaction temperature is usually in the range of −20 to 120 ° C., preferably The temperature is in the range of -10 to 100 ° C, and the reaction time is usually in the range of 0.5 to 72 hours.
 反応後、N,N’-ジベンジルビオチンを含有する反応液を氷水中に加え、アルカリを加えて塩基性にした後、酢酸エチル等の有機溶媒でN,N’-ジベンジルビオチンを抽出し、洗浄し、濃縮することにより、N,N’-ジベンジルビオチンを単離することができる。単離されたN,N’-ジベンジルビオチンは十分に高純度であり、そのまま種々の用途に使用してもよいが、さらに精製してもよい。精製は、例えば、シリカゲルカラム精製等により行うことができる。シリカゲルカラム精製は、例えば、シリカゲルカラムを備える自動分取精製装置等を使用して行うことができる。 After the reaction, a reaction solution containing N, N'-dibenzylbiotin was added to ice water, alkali was added to make the mixture basic, and N, N'-dibenzylbiotin was extracted with an organic solvent such as ethyl acetate. , Washing and concentration, N, N'-dibenzylbiotin can be isolated. The isolated N, N'-dibenzylbiotin has sufficiently high purity and may be used for various applications as it is, but may be further purified. Purification can be performed, for example, by silica gel column purification. Silica gel column purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
 本発明の第5態様に係る方法によれば、高純度のN,N’-ジベンジルビオチンを製造することができる。本発明の第5態様に係る方法により製造されるN,N’-ジベンジルビオチンのHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのHPLC純度は、実施例に記載の方法により測定される。 According to the method according to the fifth aspect of the present invention, high-purity N, N'-dibenzylbiotin can be produced. The HPLC purity of N, N'-dibenzylbiotin produced by the method according to the fifth aspect of the present invention is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably. Is 98.5% or more, more preferably 99% or more. The HPLC purity of N, N'-dibenzylbiotin is determined by the method described in the examples.
 以下、製造される化合物(A)がビオチンである場合について説明する。 Hereinafter, the case where the compound (A) to be produced is biotin will be described.
 製造される化合物(A)がビオチンである場合、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を進行させることができる少なくとも1種の酸が選択される。N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を少なくとも1種の酸と接触させて、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を進行させることにより、ビオチンを製造することができる。 化合物 When the compound (A) to be produced is biotin, at least one acid capable of promoting the dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N′-dibenzylbiotin is selected. Contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with at least one acid to promote dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin; Biotin can be produced.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を行う際、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩と接触させる少なくとも1種の酸は、例えば、メタンスルホン酸、硫酸、臭化水素酸等から選択することができる。これらの酸を使用することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化が、同時に、あるいは、脱ジシクロヘキシルアミン塩化の後に脱ベンジル化が進行し、ビオチンが得られるものと推測される。 In the decyclopentadiamine salification and debenzylation of the dicyclohexylamine salt of N, N′-dibenzylbiotin, at least one acid that is brought into contact with the dicyclohexylamine salt of N, N′-dibenzylbiotin is, for example, methane. It can be selected from sulfonic acid, sulfuric acid, hydrobromic acid and the like. By using these acids, the debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin and the debenzylation of the dicyclohexylamine salt proceed simultaneously, or the debenzylation proceeds after the removal of the dicyclohexylamine salt and the biotin Is presumed to be obtained.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を行う際、酸の使用量は、脱ジシクロヘキシルアミン塩化及び脱ベンジル化が進行するのに十分な量である限り特に限定されないが、短時間で効率的に脱ジシクロヘキシルアミン塩化及び脱ベンジル化を行う点から、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩 1当量に対して、好ましくは10~1000当量の範囲である。 When the dicyclohexylamine salt and the debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin are carried out, the amount of the acid to be used is an amount that is sufficient to allow the dedicyclohexylamine chloride and the debenzylation to proceed. Although not particularly limited, from the viewpoint that dedicyclohexylamine salification and debenzylation are efficiently performed in a short time, the amount is preferably in the range of 10 to 1000 equivalents per 1 equivalent of dicyclohexylamine salt of N, N'-dibenzylbiotin. It is.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を行う際に使用する溶媒としては、公知の有機溶媒を使用することができる。有機溶媒としては、例えば、クロロホルム、塩化メチレン等のハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;イソプロピルエーテル等のエーテル類;ヘキサン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、アニソール、クロロベンゼン等の芳香族炭化水素類が挙げられる。中でも、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化が効率的に進行し、得られるN,N’-ジベンジルビオチン及びビオチンの純度をより一層高くするためには、芳香族炭化水素類、特にメシチレンを使用することが好ましい。1種の有機溶媒を単独して使用してもよいし、2種以上の有機溶媒の混合溶媒を使用してもよい。溶媒の使用量は、反応容器の容量等を勘案して適宜調整することができるが、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩 1質量部に対して、通常1~100容量部の範囲である。 A known organic solvent can be used as a solvent to be used for dechlorination and debenzylation of dicyclohexylamine salt of 'N, N'-dibenzylbiotin. Examples of the organic solvent include halogenated hydrocarbons such as chloroform and methylene chloride; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as isopropyl ether; aliphatic hydrocarbons such as hexane; Examples include aromatic hydrocarbons such as xylene, mesitylene, anisole, and chlorobenzene. Above all, in order to further efficiently purify the obtained N, N'-dibenzylbiotin and biotin, the decyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin proceed efficiently. It is preferable to use aromatic hydrocarbons, particularly mesitylene. One organic solvent may be used alone, or a mixed solvent of two or more organic solvents may be used. The amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, but is usually in the range of 1 to 100 parts by volume per 1 part by mass of the dicyclohexylamine salt of N, N'-dibenzylbiotin. It is.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化を行う際の反応温度及び反応時間は、適宜調整することができるが、反応温度は、通常20~200℃の範囲、好ましくは40~150℃の温度、より好ましくは80~150℃、さらに好ましくは100~150℃であり、反応時間は、通常0.5~17時間の範囲である。 The reaction temperature and reaction time for the decyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N'-dibenzylbiotin can be appropriately adjusted, but the reaction temperature is usually 20 to 200 ° C. The temperature is preferably in the range of 40 to 150 ° C., more preferably 80 to 150 ° C., and still more preferably 100 to 150 ° C., and the reaction time is usually in the range of 0.5 to 17 hours.
 反応後、ビオチンを含有する反応液を水中の注加し、析出した固体を濾過することにより、ビオチンを単離することができる。単離されたビオチンは十分に高純度であり、そのまま種々の用途に使用してもよいが、さらに精製してもよい。精製は、例えば、シリカゲルカラム精製等により行うことができる。シリカゲルカラム精製は、例えば、シリカゲルカラムを備える自動分取精製装置等を使用して行うことができる。 After the reaction, biotin can be isolated by pouring the reaction solution containing biotin into water and filtering the precipitated solid. The isolated biotin is sufficiently pure and may be used for various applications as it is, but may be further purified. Purification can be performed, for example, by silica gel column purification. Silica gel column purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
 本発明の第5態様に係る方法によれば、高純度のビオチンを製造することができる。本発明の第5態様に係る方法により製造されるビオチンのHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。ビオチンのHPLC純度は、実施例に記載の方法により測定される。 According to the method according to the fifth aspect of the present invention, high-purity biotin can be produced. The HPLC purity of biotin produced by the method according to the fifth aspect of the present invention is preferably at least 96%, more preferably at least 97%, even more preferably at least 98%, even more preferably at least 98.5%, It is even more preferably at least 99%. The HPLC purity of biotin is measured by the method described in the examples.
 なお、酸として硫酸を使用する場合、反応温度を40℃以下に調整することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化が進行し、N,N’-ジベンジルビオチンを得ることができる一方、反応温度を40℃超に調整することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の脱ジシクロヘキシルアミン塩化及び脱ベンジル化が進行し、ビオチンを得ることができる。 When sulfuric acid is used as the acid, the reaction temperature is adjusted to 40 ° C. or lower, whereby the dicyclohexylamine salt of N, N′-dibenzylbiotin is removed from the dicyclohexylamine salt, and the N, N′-dibenzyl While biotin can be obtained, by adjusting the reaction temperature to more than 40 ° C., dedicyclohexylamine salification and debenzylation of the dicyclohexylamine salt of N, N′-dibenzylbiotin progress, and biotin can be obtained. it can.
≪第6態様≫
 本発明の第6態様は、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩を使用して、N,N’-ジベンジルビオチンエステル化合物を製造する方法に関する。
<< Sixth embodiment >>
A sixth aspect of the present invention relates to a method for producing an N, N'-dibenzylbiotin ester compound using a dicyclohexylamine salt of N, N'-dibenzylbiotin.
 N,N’-ジベンジルビオチンエステル化合物は、下記式(4)で表される化合物である。 The 'N, N'-dibenzylbiotin ester compound is a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(4)において、Bnはベンジル基を表し、Rはアルキル基、置換アルキル基、アラルキル基及び置換アラルキル基から選択される基を表す。 In the formula (4), Bn represents a benzyl group, R 2 represents an alkyl group, a substituted alkyl group, a group selected from aralkyl and substituted aralkyl groups.
 「アルキル基」は、直鎖状又は分岐鎖状の脂肪族飽和炭化水素基を意味する。 "Alkyl group" means a linear or branched aliphatic saturated hydrocarbon group.
 アルキル基の炭素数は、通常1~30、好ましくは1~20、より好ましくは1~10、より一層好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4である。なお、直鎖状のアルキル基の炭素数は1以上であり、分岐鎖状のアルキル基の炭素数は3以上である。 The number of carbon atoms of the alkyl group is usually 1 to 30, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, still more preferably 1 to 6, and still more preferably 1 to 4. . In addition, the carbon number of a linear alkyl group is 1 or more, and the carbon number of a branched alkyl group is 3 or more.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、4,4-ジメチルペンチル基、オクチル基、2,2,4-トリメチルペンチル基、ノニル基、デシル基等が挙げられる。 Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, isohexyl, heptyl, , 4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl and the like.
 「置換アルキル基」は、1以上の置換基を有するアルキル基を意味する。「アルキル基」に関する上記説明は、別段規定される場合を除き、置換アルキル基の元になるアルキル基にも適用される。 "Substituted alkyl group" means an alkyl group having one or more substituents. The above description regarding “alkyl group” also applies to the alkyl group from which the substituted alkyl group is derived, unless otherwise specified.
 置換アルキル基において、1以上の置換基は、それぞれ、アルキル基の水素原子と置換されている。置換アルキル基が有する置換基の数は、好ましくは1~3、より好ましくは1又は2である。置換基の数が2以上である場合、2以上の置換基は同一であってもよいし、異なっていてもよい。置換アルキル基が有する1以上の置換基は、それぞれ独立して、後述する置換基群αから選択することができる。 In the substituted alkyl group, one or more substituents are each substituted with a hydrogen atom of the alkyl group. The number of substituents in the substituted alkyl group is preferably 1 to 3, more preferably 1 or 2. When the number of substituents is two or more, the two or more substituents may be the same or different. One or more substituents of the substituted alkyl group can be independently selected from a substituent group α described below.
 置換アルキル基の炭素数(置換アルキル基が、炭素原子を含有する1以上の置換基を有する場合には、置換アルキル基の合計炭素数)は、通常30以下、好ましくは20以下、より好ましくは18以下、より一層好ましくは16以下、より一層好ましくは14以下、より一層好ましくは12以下、より一層好ましくは10以下である。 The number of carbon atoms of the substituted alkyl group (when the substituted alkyl group has one or more substituents containing carbon atoms, the total number of carbon atoms of the substituted alkyl group) is usually 30 or less, preferably 20 or less, more preferably It is 18 or less, still more preferably 16 or less, even more preferably 14 or less, even more preferably 12 or less, and still more preferably 10 or less.
 置換アルキル基としては、例えば、シレキセチル基等のシクロアルキルオキシカルボニルオキシアルキル基等が挙げられる。 Examples of the substituted alkyl group include a cycloalkyloxycarbonyloxyalkyl group such as a cilexetil group.
 「アラルキル基」は、1以上のアリール基を有するアルキル基を意味する。「アルキル基」に関する上記説明は、別段規定される場合を除き、アラルキル基に含まれるアルキル基にも適用される。「アリール基」に関する下記説明は、別段規定される場合を除き、アラルキル基に含まれるアリール基にも適用される。 << "Aralkyl group" means an alkyl group having one or more aryl groups. The above description regarding the “alkyl group” also applies to the alkyl group included in the aralkyl group, unless otherwise specified. The following description of the “aryl group” also applies to the aryl group included in the aralkyl group, unless otherwise specified.
 「アリール基」は、1以上の単環式又は縮合多環式の芳香族環を有する芳香族炭化水素から、芳香族環の1個の水素原子を除去することにより生成される基を意味する。 “Aryl group” means a group formed by removing one hydrogen atom of an aromatic ring from an aromatic hydrocarbon having one or more monocyclic or fused polycyclic aromatic rings. .
 アリール基の炭素数は、通常6~30、好ましくは6~20、より好ましくは6~18、より一層好ましくは6~16、より一層好ましくは6~14、より一層好ましくは6~12、より一層好ましくは6~10である。 The carbon number of the aryl group is usually 6 to 30, preferably 6 to 20, more preferably 6 to 18, even more preferably 6 to 16, even more preferably 6 to 14, and still more preferably 6 to 12, More preferably, it is 6 to 10.
 アリール基としては、例えば、単環式又は縮合多環式の芳香族環基が挙げられる。縮合多環式の芳香族環基は、通常2~4環式、好ましくは2又は3環式、より好ましくは2環式である。単環式又は縮合多環式の芳香族環基における環構成炭素原子の数は、通常6~18、好ましくは6~14、より好ましくは6~10である。単環式の芳香族環基としては、例えば、フェニル基が挙げられる。縮合多環式の芳香族環基としては、例えば、ナフチル基、アントラセニル基、フェナントレニル基等が挙げられる。縮合多環式の芳香族環基は、部分的に飽和されていてもよい(すなわち、芳香族環を構成する結合の一部が水素化されていてもよい)。部分的に飽和された縮合多環式の芳香族環基としては、例えば、ジヒドロナフチル基、インダニル基、アセナフテニル基等が挙げられる。 Examples of the aryl group include a monocyclic or condensed polycyclic aromatic ring group. The condensed polycyclic aromatic ring group is usually bicyclic to tetracyclic, preferably bicyclic or tricyclic, more preferably bicyclic. The number of ring-constituting carbon atoms in the monocyclic or condensed polycyclic aromatic ring group is usually 6 to 18, preferably 6 to 14, and more preferably 6 to 10. Examples of the monocyclic aromatic ring group include a phenyl group. Examples of the condensed polycyclic aromatic ring group include a naphthyl group, an anthracenyl group, and a phenanthrenyl group. The fused polycyclic aromatic ring group may be partially saturated (that is, some of the bonds constituting the aromatic ring may be hydrogenated). Examples of the partially saturated condensed polycyclic aromatic ring group include a dihydronaphthyl group, an indanyl group, an acenaphthenyl group and the like.
 アリール基には、1以上のアルキル基を有する単環式又は縮合多環式の芳香族環基も包含される。「アルキル基」に関する上記説明は、別段規定される場合を除き、単環式又は縮合多環式の芳香族環基が有するアルキル基にも適用される。単環式又は縮合多環式の芳香族環基が有するアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。単環式又は縮合多環式の芳香族環基が有し得るアルキル基の数は、好ましくは1~4、より好ましくは1~3、より一層好ましくは1又は2である。アルキル基の数が2以上である場合、2以上のアルキル基は同一であってもよいし、異なっていてもよい。1以上のアルキル基を有する単環式の芳香族環基としては、例えば、トリル基、キシリル基等が挙げられる。 The aryl group also includes a monocyclic or condensed polycyclic aromatic ring group having one or more alkyl groups. The above description of the “alkyl group” also applies to the alkyl group of the monocyclic or condensed polycyclic aromatic ring group, unless otherwise specified. The alkyl group of the monocyclic or condensed polycyclic aromatic ring group preferably has 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and still more preferably 1 to 4 carbon atoms. , Still more preferably 1 to 3, and still more preferably 1 or 2. The number of alkyl groups that the monocyclic or condensed polycyclic aromatic ring group may have is preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 or 2. When the number of alkyl groups is two or more, the two or more alkyl groups may be the same or different. Examples of the monocyclic aromatic ring group having one or more alkyl groups include a tolyl group and a xylyl group.
 アリール基には、単結合で共有結合した2以上の単環式又は縮合多環式の芳香族環を有する基も包含される。単結合で共有結合した2以上の単環式の芳香族環を有する基としては、例えば、ビフェニル、テルフェニル等が挙げられる。 Aryl groups also include groups having two or more monocyclic or fused polycyclic aromatic rings covalently linked by a single bond. Examples of the group having two or more monocyclic aromatic rings covalently bonded by a single bond include, for example, biphenyl, terphenyl and the like.
 アリール基は、好ましくは、フェニル基又は1以上のアルキル基を有するフェニル基である。 The aryl group is preferably a phenyl group or a phenyl group having one or more alkyl groups.
 アラルキル基の炭素数は、通常7~30、好ましくは7~20、より好ましくは7~18、より一層好ましくは7~16、より一層好ましくは7~14、より一層好ましくは7~12、より一層好ましくは7~10である。 The number of carbon atoms of the aralkyl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 16, even more preferably 7 to 14, and still more preferably 7 to 12, More preferably, it is 7 to 10.
 アラルキル基に含まれるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。 The carbon number of the alkyl group contained in the aralkyl group is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, still more preferably 1 to 4, and still more preferably 1 to 3. .
 アラルキル基が有するアリール基の数は、好ましくは1~3、より好ましくは1又は2、より一層好ましくは1である。アラルキル基が有するアリール基の数が2以上である場合、2以上のアリール基は同一であってもよいし、異なっていてもよい。 The number of aryl groups possessed by the aralkyl group is preferably from 1 to 3, more preferably 1 or 2, and even more preferably 1. When the number of aryl groups in the aralkyl group is two or more, the two or more aryl groups may be the same or different.
 アラルキル基としては、例えば、ベンジル、フェネチル基、α-メチルベンジル基、ジフェニルメチル基、トリチル基、ビフェニルメチル基、テルフェニルメチル基等が挙げられる。 Examples of the aralkyl group include benzyl, phenethyl, α-methylbenzyl, diphenylmethyl, trityl, biphenylmethyl, terphenylmethyl and the like.
 「置換アラルキル基」は、1以上の置換基を有するアラルキル基を意味する。「アラルキル基」に関する上記説明は、別段規定される場合を除き、置換アラルキル基の元になるアラルキル基にも適用される。 << A "substituted aralkyl group" means an aralkyl group having one or more substituents. The above description of the “aralkyl group” also applies to the aralkyl group from which the substituted aralkyl group is based, unless otherwise specified.
 置換アラルキル基において、1以上の置換基は、それぞれ、アリール部分及び/又はアルキル部分の水素原子と置換されている。置換される水素原子は、アリール部分の水素原子であってもよいし、アルキル部分の水素原子であってもよいが、アリール部分の水素原子であることが好ましい。置換アリール基が有する置換基の数は、好ましくは1~3、より好ましくは1又は2である。置換基の数が2以上である場合、2以上の置換基は同一であってもよいし、異なっていてもよい。置換アリール基が有する1以上の置換基は、それぞれ独立して、後述する置換基群αから選択することができる。置換アリール基の炭素数(置換アリール基が、炭素原子を含有する1以上の置換基を有する場合には、置換アリール基の合計炭素数)は、通常30以下、好ましくは20以下、より好ましくは18以下、より一層好ましくは16以下、より一層好ましくは14以下、より一層好ましくは12以下、より一層好ましくは10以下である。 {In the substituted aralkyl group, one or more substituents are each substituted with a hydrogen atom of an aryl moiety and / or an alkyl moiety. The hydrogen atom to be substituted may be a hydrogen atom in the aryl moiety or a hydrogen atom in the alkyl moiety, but is preferably a hydrogen atom in the aryl moiety. The number of substituents of the substituted aryl group is preferably from 1 to 3, more preferably 1 or 2. When the number of substituents is two or more, the two or more substituents may be the same or different. One or more substituents of the substituted aryl group can be independently selected from a substituent group α described below. The number of carbon atoms of the substituted aryl group (when the substituted aryl group has one or more substituents containing carbon atoms, the total number of carbon atoms of the substituted aryl group) is usually 30 or less, preferably 20 or less, more preferably It is 18 or less, still more preferably 16 or less, even more preferably 14 or less, even more preferably 12 or less, and still more preferably 10 or less.
 置換基群αは、以下の置換基から構成される。
(α-1)ハロゲン原子
(α-2)ニトロ基
(α-3)アルキルオキシ基
(α-4)アルキルカルボニル基
(α-5)アルキルカルボニルオキシ基
(α-6)アルキルオキシカルボニル基
(α-7)アルキルオキシカルボニルオキシ基
(α-8)シクロアルキル基
(α-9)シクロアルキルオキシ基
(α-10)シクロアルキルカルボニル基
(α-11)シクロアルキルカルボニルオキシ基
(α-12)シクロアルキルオキシカルボニル基
(α-13)シクロアルキルオキシカルボニルオキシ基
(α-14)アリールオキシ基
(α-15)アリールカルボニル基
(α-16)アリールカルボニルオキシ基
(α-17)アリールオキシカルボニル基
(α-18)アリールオキシカルボニルオキシ基
(α-19)アラルキルオキシ基
(α-20)アラルキルカルボニル基
(α-21)アラルキルカルボニルオキシ基
(α-22)アラルキルオキシカルボニル基
(α-23)アラルキルオキシカルボニルオキシ基
Substituent group α is composed of the following substituents.
(Α-1) halogen atom (α-2) nitro group (α-3) alkyloxy group (α-4) alkylcarbonyl group (α-5) alkylcarbonyloxy group (α-6) alkyloxycarbonyl group (α -7) alkyloxycarbonyloxy group (α-8) cycloalkyl group (α-9) cycloalkyloxy group (α-10) cycloalkylcarbonyl group (α-11) cycloalkylcarbonyloxy group (α-12) cyclo Alkyloxycarbonyl group (α-13) cycloalkyloxycarbonyloxy group (α-14) aryloxy group (α-15) arylcarbonyl group (α-16) arylcarbonyloxy group (α-17) aryloxycarbonyl group ( α-18) aryloxycarbonyloxy group (α-19) aralkyloxy group (α-20) aralkylcal Bonyl group (α-21) aralkylcarbonyloxy group (α-22) aralkyloxycarbonyl group (α-23) aralkyloxycarbonyloxy group
 置換基群αは、ハロゲン原子、ニトロ基、アルキルオキシ基、アルキルカルボニルオキシ基、アルキルオキシカルボニルオキシ基、シクロアルキル基、シクロアルキルオキシ基、シクロアルキルカルボニルオキシ基、シクロアルキルオキシカルボニルオキシ基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニルオキシ基、アラルキルオキシ基、アラルキルカルボニルオキシ基及びアラルキルオキシカルボニルオキシ基から構成されることが好ましく、ハロゲン原子、ニトロ基、アルキルオキシ基、アルキルオキシカルボニルオキシ基、シクロアルキル基、シクロアルキルオキシ基、シクロアルキルオキシカルボニルオキシ基及びアリールオキシ基から構成されることがさらに好ましい。 Substituent group α is a halogen atom, nitro group, alkyloxy group, alkylcarbonyloxy group, alkyloxycarbonyloxy group, cycloalkyl group, cycloalkyloxy group, cycloalkylcarbonyloxy group, cycloalkyloxycarbonyloxy group, aryl An oxy group, an arylcarbonyloxy group, an aryloxycarbonyloxy group, an aralkyloxy group, an aralkylcarbonyloxy group and an aralkyloxycarbonyloxy group are preferable, and a halogen atom, a nitro group, an alkyloxy group, an alkyloxycarbonyloxy More preferably, it is composed of a group, a cycloalkyl group, a cycloalkyloxy group, a cycloalkyloxycarbonyloxy group and an aryloxy group.
 「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。 "Halogen atom" means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 「アルキルオキシ基」は、アルキル基-O-で表される基を意味する。 "Alkyloxy group" means a group represented by an alkyl group -O-.
 「アルキルカルボニル基」は、アルキル基-CO-で表される基を意味する。 "Alkylcarbonyl group" means a group represented by an alkyl group -CO-.
 「アルキルカルボニルオキシ基」は、アルキル基-CO-O-で表される基を意味する。 "Alkylcarbonyloxy group" means a group represented by an alkyl group -CO-O-.
 「アルキルオキシカルボニル基」は、アルキル基-O-CO-で表される基を意味する。
 「アルキルオキシカルボニルオキシ基」は、アルキル基-O-CO-O-で表される基を意味する。
“Alkyloxycarbonyl group” means a group represented by an alkyl group —O—CO—.
“Alkyloxycarbonyloxy group” means a group represented by an alkyl group —O—CO—O—.
 「アルキル基」に関する上記説明は、別段規定される場合を除き、アルキルオキシ基、アルキルカルボニル基、アルキルカルボニルオキシ基、アルキルオキシカルボニル基又はアルキルオキシカルボニルオキシ基に含まれるアルキル基にも適用される。アルキルオキシ基、アルキルカルボニル基、アルキルカルボニルオキシ基、アルキルオキシカルボニル基又はアルキルオキシカルボニルオキシ基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。 The above description regarding the “alkyl group” also applies to the alkyl group included in the alkyloxy group, the alkylcarbonyl group, the alkylcarbonyloxy group, the alkyloxycarbonyl group, or the alkyloxycarbonyloxy group, unless otherwise specified. . The number of carbon atoms of the alkyloxy group, alkylcarbonyl group, alkylcarbonyloxy group, alkyloxycarbonyl group or alkyloxycarbonyloxy group is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, It is more preferably 1 to 4, still more preferably 1 to 3, and still more preferably 1 or 2.
 「シクロアルキル基」は、環状の脂肪族飽和炭化水素基を意味する。シクロアルキル基の炭素数は、通常3~10、好ましくは3~8、より好ましくは3~6である。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。 "Cycloalkyl group" means a cyclic aliphatic saturated hydrocarbon group. The carbon number of the cycloalkyl group is usually 3 to 10, preferably 3 to 8, and more preferably 3 to 6. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
 「シクロアルキルオキシ基」は、シクロアルキル基-O-で表される基を意味する。 "Cycloalkyloxy group" means a group represented by cycloalkyl group -O-.
 「シクロアルキルカルボニル基」は、シクロアルキル基-CO-で表される基を意味する。 "Cycloalkylcarbonyl group" means a group represented by cycloalkyl group -CO-.
 「シクロアルキルカルボニルオキシ基」は、シクロアルキル基-CO-O-で表される基を意味する。 "Cycloalkylcarbonyloxy group" means a group represented by cycloalkyl group -CO-O-.
 「シクロアルキルオキシカルボニル基」は、シクロアルキル基-O-CO-で表される基を意味する。 "Cycloalkyloxycarbonyl group" means a group represented by cycloalkyl group -O-CO-.
 「シクロアルキルオキシカルボニルオキシ基」は、シクロアルキル基-O-CO-O-で表される基を意味する。 "Cycloalkyloxycarbonyloxy group" means a group represented by cycloalkyl group -O-CO-O-.
 「シクロアルキル基」に関する上記説明は、シクロアルキルオキシ基、シクロアルキルカルボニル基、シクロアルキルカルボニルオキシ基、シクロアルキルオキシカルボニル基又はシクロアルキルオキシカルボニルオキシ基に含まれるシクロアルキル基にも適用される。 The above description regarding the “cycloalkyl group” also applies to a cycloalkyloxy group, a cycloalkylcarbonyl group, a cycloalkylcarbonyloxy group, a cycloalkyloxycarbonyl group, or a cycloalkyl group contained in a cycloalkyloxycarbonyloxy group.
 「アリールオキシ基」は、アリール基-O-で表される基を意味する。 "Aryloxy group" means a group represented by an aryl group -O-.
 「アリールカルボニル基」は、アリール基-CO-で表される基を意味する。 "Arylcarbonyl group" means a group represented by an aryl group -CO-.
 「アリールカルボニルオキシ基」は、アリール基-CO-O-で表される基を意味する。 "Arylcarbonyloxy group" means a group represented by an aryl group -CO-O-.
 「アリールオキシカルボニル基」は、アリール基-O-CO-で表される基を意味する。 "Aryloxycarbonyl group" means a group represented by an aryl group -O-CO-.
 「アリールオキシカルボニルオキシ基」は、アリール基-O-CO-O-で表される基を意味する。 "Aryloxycarbonyloxy group" means a group represented by an aryl group -O-CO-O-.
 「アリール基」に関する上記説明は、別段規定される場合を除き、アリールオキシ基、アリールカルボニル基、アリールカルボニルオキシ基、アリールオキシカルボニル基又はアリールオキシカルボニルオキシ基に含まれるアリール基にも適用される。アリールオキシ基、アリールカルボニル基、アリールカルボニルオキシ基、アリールオキシカルボニル基又はアリールオキシカルボニルオキシ基に含まれるアリール基の炭素数は、好ましくは6~18、より好ましくは6~16、より一層好ましくは6~14、より一層好ましくは6~12、より一層好ましくは6~10である。 The above description regarding “aryl group” also applies to an aryloxy group, an arylcarbonyl group, an arylcarbonyloxy group, an aryloxycarbonyl group, or an aryl group contained in an aryloxycarbonyloxy group, unless otherwise specified. . The number of carbon atoms of the aryl group contained in the aryloxy group, the arylcarbonyl group, the arylcarbonyloxy group, the aryloxycarbonyl group or the aryloxycarbonyloxy group is preferably 6 to 18, more preferably 6 to 16, and still more preferably. 6-14, still more preferably 6-12, even more preferably 6-10.
 「アラルキルオキシ基」は、アラルキル基-O-で表される基を意味する。 "Aralkyloxy group" means a group represented by an aralkyl group -O-.
 「アラルキルカルボニル基」は、アラルキル基-CO-で表される基を意味する。 "Aralkylcarbonyl group" means a group represented by an aralkyl group -CO-.
 「アラルキルカルボニルオキシ基」は、アラルキル基-CO-O-で表される基を意味する。 "Aralkylcarbonyloxy group" means a group represented by an aralkyl group -CO-O-.
 「アラルキルオキシカルボニル基」は、アラルキル基-O-CO-で表される基を意味する。 "Aralkyloxycarbonyl group" means a group represented by an aralkyl group -O-CO-.
 「アラルキルオキシカルボニルオキシ基」は、アラルキル基-O-CO-O-で表される基を意味する。 "Aralkyloxycarbonyloxy group" means a group represented by an aralkyl group -O-CO-O-.
 「アラルキル基」に関する上記説明は、別段規定される場合を除き、アラルキルオキシ基、アラルキルカルボニル基、アラルキルカルボニルオキシ基、アラルキルオキシカルボニル基又はアラルキルオキシカルボニルオキシ基に含まれるアラルキル基にも適用される。アラルキルオキシ基、アラルキルカルボニル基、アラルキルカルボニルオキシ基、アラルキルオキシカルボニル基又はアラルキルオキシカルボニルオキシ基に含まれるアラルキル基の炭素数は、好ましくは7~18、より好ましくは7~16、より一層好ましくは7~14、より一層好ましくは7~12、より一層好ましくは7~10である。 The above description regarding the “aralkyl group” also applies to the aralkyl group included in the aralkyloxy group, the aralkylcarbonyl group, the aralkylcarbonyloxy group, the aralkyloxycarbonyl group, or the aralkyloxycarbonyloxy group, unless otherwise specified. . The number of carbon atoms of the aralkyloxy group, the aralkylcarbonyl group, the aralkylcarbonyloxy group, the aralkyloxycarbonyl group or the aralkyl group contained in the aralkyloxycarbonyloxy group is preferably 7 to 18, more preferably 7 to 16, and still more preferably 7-14, more preferably 7-12, even more preferably 7-10.
 本発明の第6態様に係る方法は、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を、塩基の存在下、下記式(5):
Figure JPOXMLDOC01-appb-C000028
で表されるハロゲン化物と反応させて、N,N’-ジベンジルビオチンエステル化合物を生成させる工程を含む。
In a method according to a sixth aspect of the present invention, a dicyclohexylamine salt of N, N'-dibenzylbiotin is converted into a compound represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000028
Reacting with a halide represented by the formula (I) to form an N, N'-dibenzylbiotin ester compound.
 ハロゲン化物と反応させるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩は、本発明の第4態様に係る方法で製造されたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩であることが好ましい。 The dicyclohexylamine salt of N, N'-dibenzylbiotin to be reacted with the halide is preferably a dicyclohexylamine salt of N, N'-dibenzylbiotin produced by the method according to the fourth aspect of the present invention.
 ハロゲン化物と反応させるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度は、好ましくは96%以上、より好ましくは97%以上、より一層好ましくは98%以上、より一層好ましくは98.5%以上、より一層好ましくは99%以上である。N,N’-ジベンジルビオチンのジシクロへキシルアミン塩のHPLC純度は、実施例に記載の方法により測定される。 The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin reacted with the halide is preferably 96% or more, more preferably 97% or more, even more preferably 98% or more, and even more preferably 98.5. % Or more, more preferably 99% or more. The HPLC purity of the dicyclohexylamine salt of N, N'-dibenzylbiotin is determined by the method described in the examples.
 式(5)において、Rは、式(4)と同義であり、Xはハロゲン原子を表す。ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択することができるが、塩素原子、臭素原子及びヨウ素原子から選択することが好ましい。 In the formula (5), R 2 has the same meaning as in the formula (4), and X represents a halogen atom. The halogen atom can be selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, but is preferably selected from a chlorine atom, a bromine atom and an iodine atom.
 ハロゲン化物としては、例えば、ヨードメタン、エチルブロミド、プロピルブロミド、アリルブロミド、ベンジルクロリド、ベンジルブロミド、シレキセチルクロリド等が挙げられる。 Examples of the halide include iodomethane, ethyl bromide, propyl bromide, allyl bromide, benzyl chloride, benzyl bromide, cilexetil chloride and the like.
 ハロゲン化物の使用量は、反応が進行するに十分な量である限り特に限定されず、適宜調整することができるが、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩 1モルに対して、好ましくは、1.0~10モル、より好ましくは、1.0~3.0モルの範囲である。 The amount of the halide to be used is not particularly limited as long as it is an amount sufficient for the reaction to proceed, and can be adjusted as appropriate. Preferably, it is in the range of 1.0 to 10 mol, more preferably, 1.0 to 3.0 mol.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩をハロゲン化物と反応させる際に使用する塩基としては、例えば、エステル化反応に使用される塩基を好適に使用することができる。かかる塩基としては、例えば、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、重曹、トリエチルアミン、ジイソプロピルエチルアミン、DBU等が挙げられる。これらの塩基の中でも温和な条件で製造可能である点から、炭酸カリウム、トリエチルアミンを使用することが好適である。 As the base used when reacting the dicyclohexylamine salt of 'N, N'-dibenzylbiotin with a halide, for example, a base used for an esterification reaction can be suitably used. Examples of such a base include potassium carbonate, potassium hydrogen carbonate, sodium carbonate, baking soda, triethylamine, diisopropylethylamine, DBU and the like. Among these bases, potassium carbonate and triethylamine are preferred because they can be produced under mild conditions.
 塩基の使用量は、反応が進行するに十分な量である限り特に限定されず、適宜調整することができるが、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩 1モルに対して、好ましくは1~10モルの範囲、より好ましくは1~3モルの範囲である。 The amount of the base to be used is not particularly limited as long as it is an amount sufficient for the reaction to proceed, and can be appropriately adjusted, but is preferably based on 1 mol of the dicyclohexylamine salt of N, N'-dibenzylbiotin. Is in the range of 1 to 10 mol, more preferably in the range of 1 to 3 mol.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩をハロゲン化物と反応させる際に使用する溶媒としては、例えば、エステル化反応に使用される溶媒を好適に使用することができる。かかる溶媒としては、例えば、アセトニトリル、プロピオニトリル等のニトリル類;N-N’-ジメチルホルムアミド(DMF)、N-N’-ジメチルアセトアミド(DMA)、N-メチルピロリドン(NMP)等のアミド類;テトラヒドロフラン(THF)、2-メチル-THF、1,4-ジオキサン、t-ブチル-メチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、ジグライム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類等が挙げられる。1種の溶媒を単独で使用してもよいし、2種以上の溶媒の混合溶媒を使用してもよい。かかる溶媒の中でも、DMF、DMA、NMP等のアミド類又はこれらの2種以上の混合溶媒が好適である。 As a solvent used when reacting the dicyclohexylamine salt of 'N, N'-dibenzylbiotin with a halide, for example, a solvent used for an esterification reaction can be suitably used. Examples of such a solvent include nitriles such as acetonitrile and propionitrile; amides such as NN′-dimethylformamide (DMF), NN′-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP) Ethers such as tetrahydrofuran (THF), 2-methyl-THF, 1,4-dioxane, t-butyl-methyl ether, diisopropyl ether, dimethoxyethane and diglyme; ketones such as acetone, methyl ethyl ketone and diethyl ketone; methyl acetate Esters such as acetic acid, ethyl acetate and butyl acetate; halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane and chlorobenzene; aromatic hydrocarbons such as toluene and xylene; hexane, heptane and the like Of aliphatic hydrocarbons It is. One type of solvent may be used alone, or a mixed solvent of two or more types of solvents may be used. Among such solvents, amides such as DMF, DMA, and NMP, or a mixed solvent of two or more of these are preferred.
 溶媒の使用量は、反応容器の容量等を勘案して適宜調整することができるが、N,N’-ジベンジルビオチンのジシクロへキシルアミン塩 1質量部に対して、通常0.5~100容量部の範囲、好ましくは2.0~20容量部の範囲である。 The amount of the solvent used can be appropriately adjusted in consideration of the capacity of the reaction vessel and the like, and is usually 0.5 to 100 parts by volume per 1 part by mass of dicyclohexylamine salt of N, N'-dibenzylbiotin. Parts by volume, preferably 2.0 to 20 parts by volume.
 N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩をハロゲン化物と反応させる際の反応温度及び反応時間は、適宜調整することができるが、反応温度は、通常-20~100℃の範囲、好ましくは0~50℃の範囲であり、反応時間は、通常0.5~48時間の範囲、好ましくは1.0~17時間の範囲である。 The reaction temperature and reaction time when reacting the dicyclohexylamine salt of N, N'-dibenzylbiotin with a halide can be appropriately adjusted, but the reaction temperature is usually in the range of -20 to 100 ° C, preferably It is in the range of 0 to 50 ° C., and the reaction time is usually in the range of 0.5 to 48 hours, preferably in the range of 1.0 to 17 hours.
 反応後、N,N’-ジベンジルビオチンエステル化合物を含有する反応液に水及び酸を加えて中性にした後、酢酸エチル等の有機溶媒でN,N’-ジベンジルビオチンエステル化合物を抽出し、洗浄し、濃縮することにより、N,N’-ジベンジルビオチンエステル化合物を単離することができる。単離されたN,N’-ジベンジルビオチンエステル化合物をさらに精製してもよい。N,N’-ジベンジルビオチンエステル化合物は、シリカゲルカラム精製等により精製することができる。精製は、例えば、シリカゲルカラムを備える自動分取精製装置等を使用して行うことができる。 After the reaction, the reaction solution containing the N, N'-dibenzylbiotin ester compound is neutralized by adding water and an acid, and the N, N'-dibenzylbiotin ester compound is extracted with an organic solvent such as ethyl acetate. Then, by washing, and concentrating, the N, N'-dibenzylbiotin ester compound can be isolated. The isolated N, N'-dibenzylbiotin ester compound may be further purified. The N, N'-dibenzylbiotin ester compound can be purified by silica gel column purification or the like. Purification can be performed using, for example, an automatic preparative purification device equipped with a silica gel column.
≪第7態様≫
 本発明の第7態様は、ビオチンエステル化合物を製造する方法に関する。
7Seventh aspect≫
A seventh aspect of the present invention relates to a method for producing a biotin ester compound.
 ビオチンエステル化合物は、下記式(6)で表される化合物である。 The biotin ester compound is a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(6)において、Rは式(4)と同義である。 In the formula (6), R 2 has the same meaning as in the formula (4).
 本発明の第6態様に係る方法は、本発明の第5態様に係る方法で製造されたN,N’-ジベンジルビオチンエステル化合物からベンジル基を脱離させて、式(6)で表されるビオチンエステル化合物を生成させる工程を含む。 The method according to the sixth aspect of the present invention is represented by the formula (6), wherein a benzyl group is eliminated from the N, N′-dibenzylbiotin ester compound produced by the method according to the fifth aspect of the present invention. Generating a biotin ester compound.
 N,N’-ジベンジルビオチンエステル化合物からのベンジル基の脱離は、常法に従って行うことができる。 Elimination of the benzyl group from the 'N, N'-dibenzylbiotin ester compound can be carried out according to a conventional method.
 以下、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
HPLC純度の測定
 以下の製造例及び実施例において、N,N’-ジベンジルビオチン、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩及びビオチンの各化合物のHPLC純度の値は、下記測定条件に準じてHPLC(高速液体クロマトグラフィー)を行い、該HPLCで測定される全ピークの面積値(溶媒由来のピークを除く)の合計に対する、該HPLCで測定される各化合物のピーク面積値の割合から求められる値である。
Measurement of HPLC Purity In the following Production Examples and Examples, the HPLC purity values of N, N′-dibenzylbiotin, the dicyclohexylamine salt of N, N′-dibenzylbiotin, and each compound of biotin were measured under the following measurement conditions. HPLC (High Performance Liquid Chromatography) is performed in accordance with the ratio of the peak area value of each compound measured by the HPLC to the sum of the area values of all peaks (excluding solvent-derived peaks) measured by the HPLC. This is the required value.
<HPLCの測定条件>
(1)N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩及びN,N’-ジベンジルビオチンに関するHPLCの測定条件
・カラム:L-coulmn ODS 5μm(4.6x150mm)
・移動相:50mM KHPO (pH 3.0)/CHCN=60:40
・流量:1mL/min
・カラム温度:40℃
・測定波長:254nm
・分析時間:40min
<HPLC measurement conditions>
(1) HPLC measurement conditions for N, N′-dibenzylbiotin dicyclohexylamine salt and N, N′-dibenzylbiotin ・ Column: L-coulmn ODS 5 μm (4.6 × 150 mm)
Mobile phase: 50 mM KH 2 PO 4 (pH 3.0) / CH 3 CN = 60: 40
・ Flow rate: 1 mL / min
-Column temperature: 40 ° C
-Measurement wavelength: 254 nm
・ Analysis time: 40 min
 なお、上記HPLCの測定条件において、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩は、約20.7min、N,N’-ジベンジルビオチンは、約20.7minにピークが確認される。 Under the above HPLC measurement conditions, a peak is observed at about 20.7 min for N, N′-dibenzylbiotin dicyclohexylamine salt and about 20.7 min for N, N′-dibenzylbiotin.
(2)ビオチンに関するHPLCの測定条件
・カラム:X bridge O18 5μm(4.6x150mm)
・移動相:[移動相A]50mM KHPO(pH3.0),[移動相B]CHCN
・流量:1mL/min
・カラム温度:40℃
・測定波長:210nm
・分析時間:50min
(2) HPLC measurement conditions for biotin / column: X bridge O18 5 μm (4.6 × 150 mm)
Mobile phase: mobile phase A] 50mM KH 2 PO 4 ( pH3.0), [ Mobile phase B] CH 3 CN
・ Flow rate: 1 mL / min
-Column temperature: 40 ° C
-Measurement wavelength: 210 nm
・ Analysis time: 50 min
 移動相A,Bの混合比を下記表1のように変化させて濃度勾配を制御した。
Figure JPOXMLDOC01-appb-T000030
The concentration gradient was controlled by changing the mixing ratio of mobile phases A and B as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000030
 なお、上記HPLCの測定条件において、ビオチンは、約17.3minにピークが確認される。 Under the above HPLC measurement conditions, biotin has a peak at about 17.3 min.
製造例:N、N’-ジベンジルビオチンの製造
 ビオチン(1.0g,4.09mmol,HPLC純度:99.98%)をジメチルスルホキシド(DMSO,20mL)に溶解させ、25℃で、水酸化カリウム(758mg,13.5mmol)を加えた。そこへ同温度で、ベンジルクロリド(1.55mL,13.5mmol)を加えて15時間攪拌した。
Production Example: Production of N, N′-dibenzylbiotin Biotin (1.0 g, 4.09 mmol, HPLC purity: 99.98%) was dissolved in dimethyl sulfoxide (DMSO, 20 mL), and potassium hydroxide was added at 25 ° C. (758 mg, 13.5 mmol) was added. At the same temperature, benzyl chloride (1.55 mL, 13.5 mmol) was added, and the mixture was stirred for 15 hours.
 反応終了後、0℃で10%塩酸を加え、pH1に調整した。そこへ酢酸エチル(80mL)を加えて分液し、得られた水層を再度酢酸エチル(50mL)で抽出した。有機層を合し、水洗(3x100mL)後、飽和食塩水(50mL)で洗浄し、硫酸マグネシウムで乾燥させた。有機層を濃縮することにより得られた濃縮残渣にメタノール(8mL)と水(4mL)を加えて溶解させ、0℃で水酸化ナトリウム(0.41g,10.2mmol)を加え、25℃で17時間攪拌した。 終了 After the reaction was completed, 10% hydrochloric acid was added at 0 ° C. to adjust the pH to 1. Ethyl acetate (80 mL) was added thereto to carry out liquid separation, and the obtained aqueous layer was extracted again with ethyl acetate (50 mL). The organic layers were combined, washed with water (3 × 100 mL), washed with saturated saline (50 mL), and dried over magnesium sulfate. Methanol (8 mL) and water (4 mL) were added to and dissolved in the concentrated residue obtained by concentrating the organic layer. Sodium hydroxide (0.41 g, 10.2 mmol) was added at 0 ° C. Stirred for hours.
 反応終了後、反応液を濃縮した。濃縮残渣に水(140mL)を加えて溶解させ、水層をtert-ブチルメチルエーテル(40mL)で洗浄した。水層を0℃に冷やし、10%塩酸でpH1に調整した。ここへ酢酸エチル(80mL)を加えて分液し、得られた水層を再度酢酸エチル(20mL)で抽出した。有機層を合し、水洗(3x60mL)、飽和食塩水(20mL)で洗浄、硫酸マグネシウムで乾燥し、減圧濃縮後、Isolera(バイオタージ社)(溶出溶媒:ヘキサン/酢酸エチル=1/2)で精製することにより、N、N’-ジベンジルビオチン(1.23g,71.0%,HPLC純度:93.01%)を得た。得られたN、N’-ジベンジルビオチンを以下の実施例で使用した。 終了 After the reaction was completed, the reaction solution was concentrated. Water (140 mL) was added to the concentrated residue to dissolve it, and the aqueous layer was washed with tert-butyl methyl ether (40 mL). The aqueous layer was cooled to 0 ° C. and adjusted to pH 1 with 10% hydrochloric acid. Ethyl acetate (80 mL) was added thereto, and the mixture was separated. The obtained aqueous layer was extracted again with ethyl acetate (20 mL). The organic layers were combined, washed with water (3 × 60 mL), washed with saturated saline (20 mL), dried over magnesium sulfate, concentrated under reduced pressure, and then with Isolera (Biotage) (elution solvent: hexane / ethyl acetate = 1/2). Purification gave N, N'-dibenzylbiotin (1.23 g, 71.0%, HPLC purity: 93.01%). The obtained N, N'-dibenzylbiotin was used in the following examples.
実施例1:N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の製造
 N,N’-ジベンジルビオチン(80mg,0.188mmol,HPLC純度:93.01%,オイル状)の酢酸エチル(1.6mL)溶液に、25℃で、ジシクロヘキシルアミン(37.4μL,0.188mmol)を加え、同温度で3.5時間、0℃で1時間攪拌した後、析出した結晶をろ取し、冷酢酸エチルで洗浄し、減圧乾燥することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(73.6mg,収率:64.5%,HPLC純度:99.25%)を得た。
Example 1: Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin N, N'-dibenzylbiotin (80 mg, 0.188 mmol, HPLC purity: 93.01%, oily) in ethyl acetate (1. 6 mL) solution was added with dicyclohexylamine (37.4 μL, 0.188 mmol) at 25 ° C., and the mixture was stirred at the same temperature for 3.5 hours and at 0 ° C. for 1 hour. After washing with ethyl and drying under reduced pressure, dicyclohexylamine salt of N, N'-dibenzylbiotin (73.6 mg, yield: 64.5%, HPLC purity: 99.25%) was obtained.
 実施例1で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の物性データは、以下の通りである。
 融点:126℃
 IR:2940,1697,1447cm-1
 H-NMR:δ7.30-7.18(m,10H),4.76(d,1H),4.48(d,1H),4.10(d,1H),3.99(d,1H),3.94(m,1H),3.79(m,1H),3.14(m,1H),2.78(dd,1H),2.61(m,3H),2.05(t,2H),1.79-0.98(m,26H)
 13C-NMR:δ175.6,161.6,138.2,137.9,129.0,128.4,128.3,127.8,127.7,62.7,61.6,55.9,52.6,48.2,45.6,35.4,35.2,32.8,29.5,28.9,26.2,25.5,25.0
Physical property data of the dicyclohexylamine salt of N, N'-dibenzylbiotin obtained in Example 1 is as follows.
Melting point: 126 ° C
IR: 2940, 1697, 1447 cm -1
1 H-NMR: δ7.30-7.18 (m, 10H), 4.76 (d, 1H), 4.48 (d, 1H), 4.10 (d, 1H), 3.99 (d , 1H), 3.94 (m, 1H), 3.79 (m, 1H), 3.14 (m, 1H), 2.78 (dd, 1H), 2.61 (m, 3H), 2 .05 (t, 2H), 1.79-0.98 (m, 26H)
13 C-NMR: δ 175.6, 161.6, 138.2, 137.9, 129.0, 128.4, 128.3, 127.8, 127.7, 62.7, 61.6, 55 .9, 52.6, 48.2, 45.6, 35.4, 35.2, 32.8, 29.5, 28.9, 26.2, 25.5, 25.0
 なお、上記HPLCの測定条件において、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩由来のピークと、N,N’-ジベンジルビオチン由来のピークとは同じ位置(時間)に検出される。これは、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩が、HPLCのカラム中で、N,N’-ジベンジルビオチンとジシクロヘキシルアミンとに解離しているためと推測される。したがって、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩に関する測定は、解離したN,N’-ジベンジルビオチンに関する測定を行うことにより、間接的に行い、その純度を評価した。 In the HPLC measurement conditions, the peak derived from the dicyclohexylamine salt of N, N'-dibenzylbiotin and the peak derived from N, N'-dibenzylbiotin are detected at the same position (time). This is presumed to be because the dicyclohexylamine salt of N, N'-dibenzylbiotin is dissociated into N, N'-dibenzylbiotin and dicyclohexylamine in the HPLC column. Therefore, the measurement of the dicyclohexylamine salt of N, N'-dibenzylbiotin was performed indirectly by measuring the dissociated N, N'-dibenzylbiotin, and the purity was evaluated.
実施例2:N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の製造
 N,N’-ジベンジルビオチン(5.0g,11.7mmol,HPLC純度:93.01%)の酢酸ブチル(50mL)溶液に、25℃で、ジシクロヘキシルアミン(2.34mL、11.7mmol)を加え、同温度で2時間、0℃で1時間攪拌した後、析出した結晶をろ取し、冷酢酸ブチルで洗浄し、減圧乾燥することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(6.05g,収率:84.8%,HPLC純度:98.93%)を得た。
Example 2: Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin N, N'-dibenzylbiotin (5.0 g, 11.7 mmol, HPLC purity: 93.01%) solution in butyl acetate (50 mL) To the mixture was added dicyclohexylamine (2.34 mL, 11.7 mmol) at 25 ° C, and the mixture was stirred at the same temperature for 2 hours and at 0 ° C for 1 hour. The precipitated crystals were collected by filtration and washed with cold butyl acetate. By drying under reduced pressure, dicyclohexylamine salt of N, N'-dibenzylbiotin (6.05 g, yield: 84.8%, HPLC purity: 98.93%) was obtained.
 実施例2で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の物性データは、以下の通りである。
 融点:126℃
 IR:2940,1697,1447cm-1
 H-NMR:δ7.30-7.18(m,10H),4.76(d,1H),4.48(d,1H),4.10(d,1H),3.99(d,1H),3.94(m,1H),3.79(m,1H),3.14(m,1H),2.78(dd,1H),2.61(m,3H),2.05(t,2H),1.79-0.98(m,26H)
 13C-NMR:δ175.6,161.6,138.2,137.9,129.0,128.4,128.3,127.8,127.7,62.7,61.6,55.9,52.6,48.2,45.6,35.4,35.2,32.8,29.5,28.9,26.2,25.5,25.0
Physical property data of the dicyclohexylamine salt of N, N'-dibenzylbiotin obtained in Example 2 is as follows.
Melting point: 126 ° C
IR: 2940, 1697, 1447 cm -1
1 H-NMR: δ7.30-7.18 (m, 10H), 4.76 (d, 1H), 4.48 (d, 1H), 4.10 (d, 1H), 3.99 (d , 1H), 3.94 (m, 1H), 3.79 (m, 1H), 3.14 (m, 1H), 2.78 (dd, 1H), 2.61 (m, 3H), 2 .05 (t, 2H), 1.79-0.98 (m, 26H)
13 C-NMR: δ 175.6, 161.6, 138.2, 137.9, 129.0, 128.4, 128.3, 127.8, 127.7, 62.7, 61.6, 55 .9, 52.6, 48.2, 45.6, 35.4, 35.2, 32.8, 29.5, 28.9, 26.2, 25.5, 25.0
実施例3:N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の製造
 N,N’-ジベンジルビオチン(80mg,0.188mmol,HPLC純度:93.01%)のアセトン(1.6mL)溶液に、25℃で、ジシクロヘキシルアミン(37.4μL、0.188mmol)を加え、同温度で2時間、0℃で1時間攪拌した後、析出した結晶をろ取し、冷酢酸ブチルで洗浄し、減圧乾燥することにより、N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(40.0mg,収率:35.1%、HPLC純度:98.66%)を得た。
Example 3: Preparation of dicyclohexylamine salt of N, N'-dibenzylbiotin In a solution of N, N'-dibenzylbiotin (80 mg, 0.188 mmol, HPLC purity: 93.01%) in acetone (1.6 mL). After adding dicyclohexylamine (37.4 μL, 0.188 mmol) at 25 ° C. and stirring at the same temperature for 2 hours and at 0 ° C. for 1 hour, the precipitated crystals were collected by filtration, washed with cold butyl acetate, and dried under reduced pressure. By drying, dicyclohexylamine salt of N, N'-dibenzylbiotin (40.0 mg, yield: 35.1%, HPLC purity: 98.66%) was obtained.
 実施例3で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩の物性データは、以下の通りである。
 融点:126℃
 IR:2940,1697,1447cm-1
 H-NMR:δ7.30-7.18(m,10H),4.76(d,1H),4.48(d,1H),4.10(d,1H),3.99(d,1H),3.94(m,1H),3.79(m,1H),3.14(m,1H),2.78(dd,1H),2.61(m,3H),2.05(t,2H),1.79-0.98(m,26H)
 13C-NMR:δ175.6,161.6,138.2,137.9,129.0,128.4,128.3,127.8,127.7,62.7,61.6,55.9,52.6,48.2,45.6,35.4,35.2,32.8,29.5,28.9,26.2,25.5,25.0
Physical property data of the dicyclohexylamine salt of N, N'-dibenzylbiotin obtained in Example 3 is as follows.
Melting point: 126 ° C
IR: 2940, 1697, 1447 cm -1
1 H-NMR: δ7.30-7.18 (m, 10H), 4.76 (d, 1H), 4.48 (d, 1H), 4.10 (d, 1H), 3.99 (d , 1H), 3.94 (m, 1H), 3.79 (m, 1H), 3.14 (m, 1H), 2.78 (dd, 1H), 2.61 (m, 3H), 2 .05 (t, 2H), 1.79-0.98 (m, 26H)
13 C-NMR: δ 175.6, 161.6, 138.2, 137.9, 129.0, 128.4, 128.3, 127.8, 127.7, 62.7, 61.6, 55 .9, 52.6, 48.2, 45.6, 35.4, 35.2, 32.8, 29.5, 28.9, 26.2, 25.5, 25.0
実施例4:N,N’-ジベンジルビオチンのジシクロへキシルアミン塩の脱ジシクロへキシルアミン塩化によるN,N’-ジベンジルビオチンの製造
 実施例2で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(200mg,0.330mmol)を酢酸エチル(1.5mL)に加えて縣濁させ、25℃で硫酸水素カリウム(58mg、0.429mmol)の水(500μL)溶液を加え、1.5時間攪拌した。反応終了後、反応液に酢酸エチル(20mL)を加えて分液し、得られた水層を再度酢酸エチル(10mL)で抽出した。有機層を合わせ、水洗(30mL)後、飽和食塩水(30mL)で洗浄し、硫酸マグネシウム上で乾燥させた。有機層を濃縮し、N,N’-ジベンジルビオチン(140mg,収率:quant.,HPLC純度:98.66%,無色透明の固体,融点:94℃)を得た。
Example 4: Preparation of N, N'-dibenzylbiotin by dedicyclohexylamine salification of dicyclohexylamine salt of N, N'-dibenzylbiotin Preparation of N, N'-dibenzylbiotin obtained in Example 2 Dicyclohexylamine salt (200 mg, 0.330 mmol) was suspended in ethyl acetate (1.5 mL), and a solution of potassium hydrogen sulfate (58 mg, 0.429 mmol) in water (500 μL) was added at 25 ° C. Stirred for hours. After completion of the reaction, ethyl acetate (20 mL) was added to the reaction solution to carry out liquid separation, and the obtained aqueous layer was extracted again with ethyl acetate (10 mL). The organic layers were combined, washed with water (30 mL), washed with saturated saline (30 mL), and dried over magnesium sulfate. The organic layer was concentrated to give N, N′-dibenzylbiotin (140 mg, yield: quant., HPLC purity: 98.66%, colorless and transparent solid, melting point: 94 ° C.).
実施例5:N,N’-ジベンジルビオチンのジシクロへキシルアミン塩の脱ジシクロへキシルアミン塩化及び脱ベンジル化によるビオチンの製造
 実施例2で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(2.0g,3.30mmol)をメシチレン(5.0mL)及びメタンスルホン酸(3.17g、33.0mmol)の二相溶媒に加えて溶解させ、135℃で2.5時間攪拌した。さらに、メタンスルホン酸(3.17g、33.0mmol)を加え、同温で、4.5時間攪拌した。反応終了後、80℃で酢酸(580μL)を加えて二層に分離し、メシチレンを除去した。残りの反応溶液に0℃で蒸留水(40mL)を加え、同温度で1時間攪拌した。析出した結晶をろ取し、水及びアセトンで洗浄し、減圧乾燥することにより、ビオチン(625mg,収率:77.6%,HPLC純度:99.00%)を得た。
Example 5: Preparation of biotin by decyclohexylamine chloride and debenzylation of dicyclohexylamine salt of N, N'-dibenzylbiotin Dicyclohexylamine salt of N, N'-dibenzylbiotin obtained in Example 2 (2.0 g, 3.30 mmol) was added and dissolved in a two-phase solvent of mesitylene (5.0 mL) and methanesulfonic acid (3.17 g, 33.0 mmol), and the mixture was stirred at 135 ° C. for 2.5 hours. Further, methanesulfonic acid (3.17 g, 33.0 mmol) was added, and the mixture was stirred at the same temperature for 4.5 hours. After completion of the reaction, acetic acid (580 μL) was added at 80 ° C. to separate into two layers, and mesitylene was removed. Distilled water (40 mL) was added to the remaining reaction solution at 0 ° C., and the mixture was stirred at the same temperature for 1 hour. The precipitated crystals were collected by filtration, washed with water and acetone, and dried under reduced pressure to obtain biotin (625 mg, yield: 77.6%, HPLC purity: 99.00%).
実施例6:N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のエステル化によるN,N’-ジベンジルビオチンエステル化合物の製造
 以下の反応式に示すように、N,N’-ジベンジルビオチンシレキセチルエステルを合成した。
Example 6: Preparation of N, N'-dibenzylbiotin ester compound by esterification of dicyclohexylamine salt of N, N'-dibenzylbiotin As shown in the following reaction formula, N, N'-dibenzylbiotin Lexetil ester was synthesized.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 実施例2で得られたN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩(1.0g,1.65mmol)をN,N-ジメチルホルムアミド(DMF,10mL)に加えて溶解させた。そこへ、炭酸カリウム(342mg,2.47mmol)を25℃で加えた後、同温度でシレキセチルクロリド(452μL、2.47mmol)を加え、60℃で6時間攪拌した。反応終了後、25℃で水(10mL)を加え、5%塩酸でpH7に調整した。そこへ、酢酸エチル(80mL)を加えて分液し、得られた水層を再度酢酸エチル(30mL)で抽出した。有機層を合わせ、水洗(3x50mL)後、飽和食塩水(50mL)で洗浄し、硫酸マグネシウム上で乾燥させた。有機層を濃縮後、Isolera(バイオタージ社)(溶出溶媒:ヘキサン/酢酸エチル=2/1)で精製し、シレキセチル(3aS,4S,6aR)-5-(1,3-ジベンジル-2,3,3a,4,6,6a-ヘキサヒドロ-2-オキソ-1H-チエン[3,4-d]イミダゾール5-イル)ペンタノエート(1.46g,収率:quant.)を得た。 ジ Dicyclohexylamine salt of N, N'-dibenzylbiotin (1.0 g, 1.65 mmol) obtained in Example 2 was added to N, N-dimethylformamide (DMF, 10 mL) and dissolved. After potassium carbonate (342 mg, 2.47 mmol) was added thereto at 25 ° C., cilexetil chloride (452 μL, 2.47 mmol) was added at the same temperature, and the mixture was stirred at 60 ° C. for 6 hours. After completion of the reaction, water (10 mL) was added at 25 ° C., and the pH was adjusted to 7 with 5% hydrochloric acid. Ethyl acetate (80 mL) was added thereto and the mixture was separated, and the obtained aqueous layer was extracted again with ethyl acetate (30 mL). The organic layers were combined, washed with water (3 × 50 mL), washed with saturated saline (50 mL), and dried over magnesium sulfate. After concentrating the organic layer, it was purified with Isolera (Biotage) (elution solvent: hexane / ethyl acetate = 2/1) to give cilexetil (3aS, 4S, 6aR) -5- (1,3-dibenzyl-2,3). , 3a, 4,6,6a-Hexahydro-2-oxo-1H-thiene [3,4-d] imidazol-5-yl) pentanoate (1.46 g, yield: quant.) Was obtained.

Claims (16)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Bnはベンジル基を表す。]
    で表されるN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩。
    The following equation (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, Bn represents a benzyl group. ]
    A dicyclohexylamine salt of N, N'-dibenzylbiotin represented by the formula:
  2.  HPLC純度が96%以上である、請求項1に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩。 The dicyclohexylamine salt of N, N'-dibenzylbiotin according to claim 1, wherein the HPLC purity is 96% or more.
  3.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Bnは前記と同義である。]
    で表されるN,N’-ジベンジルビオチンであって、HPLC純度が96%以上である、前記N,N’-ジベンジルビオチン。
    The following equation (2):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, Bn is as defined above. ]
    The N, N'-dibenzylbiotin represented by the formula, wherein the HPLC purity is 96% or more.
  4.  下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    で表されるビオチンであって、HPLC純度が96%以上である、前記ビオチン。
    The following equation (3):
    Figure JPOXMLDOC01-appb-C000003
    The biotin represented by the above, wherein the HPLC purity is 96% or more.
  5.  請求項1に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を製造する方法であって、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Bnは前記と同義である。]
    で表されるN,N’-ジベンジルビオチンをジシクロヘキシルアミンと接触させて、前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を生成させる工程を含む、前記方法。
    A method for producing a dicyclohexylamine salt of N, N'-dibenzylbiotin according to claim 1, wherein
    The following equation (2):
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, Bn is as defined above. ]
    Contacting N, N'-dibenzylbiotin represented by the formula with dicyclohexylamine to form the dicyclohexylamine salt of N, N'-dibenzylbiotin.
  6.  前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、請求項5に記載の方法。 The method according to claim 5, wherein the HPLC purity of the dicyclohexylamine salt of the N, N'-dibenzylbiotin is 96% or more.
  7.  前記N,N’-ジベンジルビオチンのHPLC純度が95%以下である、請求項5又は6に記載の方法。 7. The method according to claim 5, wherein the HPLC purity of the N, N'-dibenzylbiotin is 95% or less.
  8.  下記式(A):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rはベンジル基又は水素原子を表す。]
    で表される化合物(A)を製造する方法であって、
     請求項1に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を少なくとも1種の酸と接触させて、前記化合物(A)を生成させる工程を含む、前記方法。
    The following formula (A):
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, R 1 represents a benzyl group or a hydrogen atom. ]
    A method for producing a compound (A) represented by the formula:
    2. A method comprising the step of contacting the dicyclohexylamine salt of N, N'-dibenzylbiotin according to claim 1 with at least one acid to form said compound (A).
  9.  前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、請求項8に記載の方法。 The method according to claim 8, wherein the HPLC purity of the dicyclohexylamine salt of the N, N'-dibenzylbiotin is 96% or more.
  10.  前記酸が、塩酸、硫酸及び硫酸水素塩から選択される少なくとも1種の酸であり、
     前記化合物(A)が、下記式(2):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Bnは前記と同義である。]
    で表されるN,N’-ジベンジルビオチンである、請求項8又は9に記載の方法。
    The acid is at least one acid selected from hydrochloric acid, sulfuric acid, and hydrogen sulfate;
    The compound (A) has the following formula (2):
    Figure JPOXMLDOC01-appb-C000006
    [Wherein, Bn is as defined above. ]
    10. The method according to claim 8 or 9, which is N, N'-dibenzylbiotin represented by the formula:
  11.  前記N,N’-ジベンジルビオチンのHPLC純度が96%以上である、請求項10に記載の方法。 The method according to claim 10, wherein the HPLC purity of the NN, N'-dibenzylbiotin is 96% or more.
  12.  前記酸が、メタンスルホン酸、硫酸及び臭化水素酸から選択される少なくとも1種の酸であり、
     前記化合物(A)が、下記式(3):
    Figure JPOXMLDOC01-appb-C000007
    で表されるビオチンである、請求項8又は9に記載の方法。
    The acid is at least one acid selected from methanesulfonic acid, sulfuric acid and hydrobromic acid,
    The compound (A) has the following formula (3):
    Figure JPOXMLDOC01-appb-C000007
    The method according to claim 8 or 9, which is biotin represented by the following formula:
  13.  前記ビオチンのHPLC純度が96%以上である、請求項12に記載の方法。 The method according to claim 12, wherein the biotin has an HPLC purity of 96% or more.
  14.  下記式(4):
    Figure JPOXMLDOC01-appb-C000008
    [式中、Bnは前記と同義であり、Rは炭素数1~30のアルキル基、炭素数1~30の置換アルキル基、炭素数7~30のアラルキル基及び炭素数7~30の置換アラルキル基から選択される基を表す。]
    で表されるN,N’-ジベンジルビオチンエステル化合物を製造する方法であって、
     請求項1に記載のN,N’-ジベンジルビオチンのジシクロヘキシルアミン塩を、塩基の存在下、下記式(5):
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは前記と同義であり、Xはハロゲン原子を表す。]
    で表されるハロゲン化物と反応させて、前記N,N’-ジベンジルビオチンエステル化合物を生成させる工程を含む、前記方法。
    The following equation (4):
    Figure JPOXMLDOC01-appb-C000008
    Wherein Bn is as defined above, and R 2 is an alkyl group having 1 to 30 carbon atoms, a substituted alkyl group having 1 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, and a substituted group having 7 to 30 carbon atoms. Represents a group selected from aralkyl groups. ]
    A method for producing an N, N′-dibenzylbiotin ester compound represented by the formula:
    The dicyclohexylamine salt of N, N′-dibenzylbiotin according to claim 1 in the presence of a base in the following formula (5):
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, R 2 has the same meaning as described above, and X represents a halogen atom. ]
    Reacting with a halide represented by the formula to produce the N, N'-dibenzylbiotin ester compound.
  15.  前記N,N’-ジベンジルビオチンのジシクロヘキシルアミン塩のHPLC純度が96%以上である、請求項14に記載の方法。 15. The method according to claim 14, wherein the HPLC purity of the dicyclohexylamine salt of the N, N'-dibenzylbiotin is 96% or more.
  16.  下記式(6):
    Figure JPOXMLDOC01-appb-C000010
    [式中、Rは前記と同義である。]
    で表されるビオチンエステル化合物を製造する方法であって、
     請求項14又は15に記載の方法で製造されたN,N’-ジベンジルビオチンエステル化合物からベンジル基を脱離させて、前記ビオチンエステル化合物を生成させる工程を含む、前記方法。
    The following equation (6):
    Figure JPOXMLDOC01-appb-C000010
    [Wherein, R 2 has the same meaning as described above. ]
    A method for producing a biotin ester compound represented by
    A method for producing the biotin ester compound by removing a benzyl group from the N, N'-dibenzylbiotin ester compound produced by the method according to claim 14 or 15.
PCT/JP2019/034892 2018-09-07 2019-09-05 Dicyclohexylamine salt of n,n'-dibenzylbiotin, and production method for same WO2020050342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541285A JPWO2020050342A1 (en) 2018-09-07 2019-09-05 Dicyclohexylamine salt of N, N'-dibenzylbiotin and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167550 2018-09-07
JP2018167550 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050342A1 true WO2020050342A1 (en) 2020-03-12

Family

ID=69721691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034892 WO2020050342A1 (en) 2018-09-07 2019-09-05 Dicyclohexylamine salt of n,n'-dibenzylbiotin, and production method for same

Country Status (2)

Country Link
JP (1) JPWO2020050342A1 (en)
WO (1) WO2020050342A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330776A (en) * 1994-06-08 1995-12-19 Sumitomo Chem Co Ltd Production of biotin derivative
JP2001516363A (en) * 1997-03-27 2001-09-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for debenzylation of dibenzylbiotin
CN1616463A (en) * 2003-11-10 2005-05-18 浙江医药股份有限公司新昌制药厂 Process for preparing dibenzyl biotin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330776A (en) * 1994-06-08 1995-12-19 Sumitomo Chem Co Ltd Production of biotin derivative
JP2001516363A (en) * 1997-03-27 2001-09-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for debenzylation of dibenzylbiotin
CN1616463A (en) * 2003-11-10 2005-05-18 浙江医药股份有限公司新昌制药厂 Process for preparing dibenzyl biotin

Also Published As

Publication number Publication date
JPWO2020050342A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
ES2562080T3 (en) Process and intermediate compounds to prepare integrase inhibitors
ES2599752T3 (en) Production method of a 4,4-difluoro-3,4-dihydroisoquinoline derivative
WO1999001420A1 (en) Process for the preparation of 2-aminomalonic acid derivatives and intermediates used in the process
US10040771B2 (en) Method for preparing prostacyclin receptor agonist 4-[N-(5,6-diphenylpyrazin-2-yl)-N-isopropylamino]-1-butanol
EP2736905A1 (en) Intermediate compounds and process for the preparation of lurasidone and salts thereof
EP3313841A1 (en) Process for the preparation of a xanthine-based compound
ITMI20101239A1 (en) PROCESS AND INTERMEDIATE FOR THE PREPARATION OF AN ACTIVE PRINCIPLE
ES2881882T3 (en) Method to produce N-retinoylaminoalkanesulfonic acid
JP4750337B2 (en) Method for producing sulfonate ester
WO2020050342A1 (en) Dicyclohexylamine salt of n,n&#39;-dibenzylbiotin, and production method for same
CN112939814B (en) Preparation method of deuterated dacarbazine intermediate
US7473803B2 (en) Process for production of optically active 2-halogeno-carboxylic acids
JP3561938B2 (en) Method for producing thiophane derivatives
WO2018012573A1 (en) Method for producing crystal of uracil compound
JP2009120599A (en) Method for producing etodolac ester
EP0968994A1 (en) Substituted trifluorobenzoic acids, esters thereof, and process for producing the same
JPWO2011024429A1 (en) Method for producing pyrimidinylacetonitrile derivative and synthetic intermediate thereof
JP2013006782A (en) Method for producing pyrazole compound
WO2023013757A1 (en) Method for producing alkylsilyloxy substituted benzyl compound
CN108503583B (en) Alkylation method of nitrogen-hydrogen-containing compound and application thereof
JP4596804B2 (en) Method for producing cilazapril
JP6780958B2 (en) 1- (3-carboxypyridyl-2-) -2-phenyl-4-methylpiperazine having a crystal structure and its production method
US6002041A (en) Process for preparing di-C1 - C4 -alkyl 5-nitro-isophthalates
TW202130617A (en) Process for preparing 1,1&#39;-disulfanediylbis(4-fluoro-2-methyl-5-nitrobenzene)
CN114805121A (en) Esterification reaction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857208

Country of ref document: EP

Kind code of ref document: A1