WO2020050272A1 - Diagnosis support device, diagnosis support method and diagnosis support program - Google Patents

Diagnosis support device, diagnosis support method and diagnosis support program Download PDF

Info

Publication number
WO2020050272A1
WO2020050272A1 PCT/JP2019/034623 JP2019034623W WO2020050272A1 WO 2020050272 A1 WO2020050272 A1 WO 2020050272A1 JP 2019034623 W JP2019034623 W JP 2019034623W WO 2020050272 A1 WO2020050272 A1 WO 2020050272A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis support
cross
image
luminance distribution
line segment
Prior art date
Application number
PCT/JP2019/034623
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 上羽
紀代美 水口
仁 福田
Original Assignee
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学 filed Critical 国立大学法人高知大学
Priority to JP2020541238A priority Critical patent/JP7393798B2/en
Publication of WO2020050272A1 publication Critical patent/WO2020050272A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a technique for supporting diagnosis of a vascular disease, and particularly to a technique for supporting diagnosis of arterial dissection.
  • Arterial dissection is defined as blood flow in a blood vessel that has entered the blood vessel wall and has developed between the walls.
  • the vascular wall of the artery is composed of the inner elastic plate, the media and the adventitia from the inside, and the artery consists of an elastic artery whose media is rich in elastic fibers and a muscular muscle whose media is almost free of elastic fibers. Arteries are classified. In a muscular artery, the media (media smooth muscle) is soft, so if the internal elastic plate is torn by any cause, blood flows into the media smooth muscle layer to form a false lumen, thereby causing arterial dissection.
  • Muscular arteries include, for example, cerebral arteries, brachial arteries, femoral arteries, popliteal arteries, and the like, and arterial dissection is particularly common in cerebral arteries. According to the nationwide survey data described in Non-Patent Document 1, it is shown that cerebral artery dissections, which are common in Japanese, are vertebral arteries and basilar arteries.
  • the present invention has been made to solve the above-described problem, and has as its object to provide a diagnosis support apparatus that improves the accuracy of diagnosing a vascular disease.
  • a disease can be predicted based on the luminance distribution in a line segment set in a cross-sectional image of a blood vessel.
  • Item 1 A diagnosis support device that supports diagnosis of a vascular disease, An image acquisition unit that acquires an image including a cross section of the blood vessel, A line segment setting unit that sets one or more line segments that cross the cross section; A luminance distribution calculation unit that calculates a luminance distribution in the line segment; , A diagnosis support device.
  • Item 2. A curve creation unit that creates a brightness distribution curve indicating the brightness distribution, A display unit that displays the luminance distribution curve;
  • Item 3 The diagnosis support device according to item 1 or 2, further comprising a prediction unit that predicts the presence or absence of the disease based on the luminance distribution.
  • Item 4. Item 4.
  • the diagnosis support device wherein the prediction unit predicts the presence or absence of the disease based on a luminance change pattern of the line segment.
  • Item 5. The diagnosis support device according to item 3 or 4, wherein the prediction unit predicts the presence or absence of the disease based on a difference between a maximum value and a minimum value of luminance in the line segment.
  • Item 6. Item 4. The diagnosis support device according to item 3, wherein the prediction unit performs prediction using artificial intelligence.
  • Item 7. Item 7. The diagnosis support device according to any one of Items 1 to 6, wherein the blood vessel is a cerebral artery.
  • Item 8. Item 8. The diagnosis support device according to item 7, wherein the disease is arterial dissection.
  • Item 9. Item 9.
  • the diagnosis support device according to any one of Items 1 to 8, wherein the line segment setting unit sets four or more line segments that cross each other at at least one place.
  • Item 10. Item 10. The diagnosis support device according to item 9, wherein the line segment passes through a central region of the cross section. Item 11. Item 11. The diagnosis support device according to any one of Items 1 to 10, wherein the image is a 3T fat suppression T1 weighted image using local excitation. Item 12. The diagnosis support apparatus according to any one of Items 1 to 10, wherein the image is a CTA original image. Item 13. The diagnosis support apparatus according to any one of Items 1 to 10, wherein the image is an MRA original image. Item 14.
  • a diagnosis support method for supporting diagnosis of a vascular disease An image acquisition step of acquiring an image including a cross section of the blood vessel, A line segment setting step of setting one or more line segments crossing the cross section; A luminance distribution calculating step of calculating a luminance distribution in the line segment of the cross section; , A diagnostic support method.
  • Item 15 A diagnosis support program that operates a computer as a diagnosis support device that supports diagnosis of a vascular disease, An image acquisition unit that acquires an image including a cross section of the blood vessel, A line segment setting unit that sets one or more line segments that cross the cross section, and A luminance distribution calculation unit that calculates a luminance distribution in the line segment of the cross section, A diagnostic support program that operates a computer as a computer.
  • the accuracy of diagnosing a vascular disease can be improved.
  • FIG. 1 It is a block diagram showing the composition of the diagnosis support system concerning one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of a patent type arterial dissection, and (b) to (d) are an HR @ vfl-TSE image, an MRA original image, and a CTA original image, respectively, corresponding to the cross section.
  • FIG. 1 is a cross-sectional view showing an example of a pseudo-intraluminal hematoma formation type artery dissection, and (b) to (d) respectively show an HR @ vfl-TSE image, an MRA original image, and a CTA original corresponding to the cross section. It is an image.
  • (A) shows a state in which four line segments are set in the HR @ vfl-TSE image shown in FIG. 2 (b), and (b) to (e) show each of the four line segments. It is a graph which shows a brightness distribution curve.
  • (A) shows a state in which four line segments are set in the HR @ vfl-TSE image shown in FIG. 3 (b), and (b) to (e) respectively show each of the four line segments. It is a graph which shows a brightness distribution curve.
  • (A) shows a state in which four line segments are set in a cross-sectional image of a normal artery in which an artifact has appeared, and (b) to (e) show respective luminance distribution curves in each of the four line segments.
  • FIG. 3A shows a state in which four line segments are set in the MRA original image shown in FIG. 2 (c) or the CTA original image shown in FIG. 2 (d), and (b) to (e) respectively.
  • 4 is a graph showing each luminance distribution curve in each of the four line segments.
  • 3A shows a state in which four line segments are set in the MRA original image shown in FIG. 3C
  • FIGS. 3B to 3E show respective luminance distributions in the four line segments. It is a graph which shows a curve.
  • 3A shows a state in which four line segments are set in the CTA original image shown in FIG. 3D
  • FIGS. 3B to 3E show respective luminance distributions in each of the four line segments. It is a graph which shows a curve.
  • FIG. 5 is a flowchart illustrating a procedure of a diagnosis support method according to an embodiment of the present invention. It is a block diagram showing the composition of the diagnosis support system concerning the modification of one embodiment of the present invention. It is a box-and-whisker diagram which shows the distribution of the brightness
  • FIG. 1 is a block diagram illustrating a configuration of a diagnosis support system 1 according to an embodiment of the present invention.
  • the diagnosis support system 1 includes an imaging device 2 and a diagnosis support device 3.
  • the imaging device 2 is a device that captures a medical image.
  • an MRI device or a CT device can be used, but a 3 Tesla MRI device is preferable.
  • the 3 Tesla MRI apparatus uses a local excitation technique and a high resolution 3D vfl-TSE 3T fat suppression T1-weighted image (hereinafter, “HR”) using a variable flip angle Turbo Spin Echo method (hereinafter, “vfl-TSE method”). vfl-TSE image ").
  • the imaging apparatus 2 captures an HR @ vfl-TSE image (3T fat suppression T1-weighted image using local excitation) including a cross section of the subject's cerebral artery.
  • the imaging device 2 is communicably connected to the diagnosis support device 3, and an image captured by the imaging device 2 is input to the diagnosis support device 3.
  • the diagnosis support device 3 can be configured by, for example, a general-purpose personal computer, and has a hardware configuration including a CPU (not shown), a main storage device (not shown), an auxiliary storage device 31, an input unit 32, and a display unit. 33 are provided.
  • the CPU reads out various programs stored in the auxiliary storage device 31 to the main storage device and executes the programs, thereby executing various calculation processes.
  • the auxiliary storage device 31 can be composed of, for example, a hard disk drive (HDD) or a solid state drive (SSD).
  • the auxiliary storage device 31 stores a diagnosis support program P in addition to the medical image captured by the imaging device 2.
  • the diagnosis support program P may be recorded on a non-transitory computer-readable recording medium such as a CD-ROM, and by causing the diagnosis support device 3 to read the recording medium, the diagnosis support program P is read. 3 may be installed. Alternatively, the code of the diagnosis support program P may be downloaded to the diagnosis support device 3 via a communication network such as the Internet.
  • the auxiliary storage device 31 may be built in the diagnosis support device 3 or may be provided as an external storage device separate from the diagnosis support device 3.
  • the input unit 32 can be configured with, for example, a keyboard, a mouse, a touch panel, and the like.
  • the display unit 33 can be configured by, for example, a liquid crystal display.
  • the diagnosis support device 3 has a function of supporting diagnosis of a vascular disease, and in this embodiment, particularly has a function of supporting diagnosis of arterial dissection of a cerebral artery.
  • the diagnosis support device 3 includes a control unit 34.
  • the control unit 34 is a functional block realized by the CPU reading the diagnostic support program P stored in the auxiliary storage device 31 into the main storage device and executing the program.
  • the control unit 34 includes an image acquisition unit 341 that acquires an image including a cross section of a blood vessel, a line segment setting unit 342 that sets one or more line segments that cross the cross section, and a luminance that calculates a luminance distribution in the line segment.
  • a distribution calculation unit 343 and a curve creation unit 344 that creates a brightness distribution curve indicating the brightness distribution are provided.
  • the functions of these units will be described more specifically.
  • the image acquisition unit 341 acquires an image including a cross section of the cerebral artery of the subject from the imaging device 2.
  • the cross section means a plane substantially perpendicular to the short axis (Axial) of the blood vessel.
  • the following describes how the cross section of the artery is displayed according to the medical image and the type of arterial dissection.
  • the HR @ vfl-TSE image (3T fat suppression T1-weighted image using local excitation)
  • the MRA original image and the CTA original image are assumed as medical images.
  • Arterial dissection is classified into a patency type and a pseudo-intraluminal hematoma formation type depending on whether or not a thrombus has occurred in the false lumen.
  • FIG. 2 (a) shows an example of a cross-sectional structure of an artery of patent type arterial ablation.
  • a flap dissociated from the blood vessel wall exists in the lumen, blood flow exists in both the true lumen and the false lumen, and the artery is subjected to HRHvfl-TSE image, MRA source.
  • the images and the CTA original images are displayed as shown in FIGS. 2B to 2D, respectively. That is, in the HR @ vfl-TSE image, the luminance of the blood flow part is low, whereas in the MRA original image and the CTA original image, the luminance of the blood flow part is high. Further, in any of the HR @ vfl-TSE image, the MRA original image, and the CTA original image, the blood vessel wall and the flap have a luminance between black and white.
  • FIG. 3 (a) shows an example of a cross-sectional structure of an artery of a pseudo-intraluminal hematoma formation type arterial detachment.
  • false lumen hematoma formation type arterial detachment there is a flap dissociated from the vessel wall in the lumen, blood flow exists in the true lumen, hematoma exists in the false lumen, and the artery is
  • the HR @ vfl-TSE image, the MRA original image, and the CTA original image are displayed as shown in FIGS. 3B to 3D, respectively. That is, in the HR @ vfl-TSE image and the MRA original image, the luminance of the hematoma portion is high, whereas in the CTA original image, the luminance of the hematoma portion is low.
  • the line segment setting unit 342 illustrated in FIG. 1 sets four line segments that cross the cross section of the cerebral artery and intersect with each other in the central region of the cross section.
  • the image acquired by the image acquiring unit 341 is an HR vfl-TSE image
  • a cross section of a patent type arterial dissection artery shown in FIG. 342 sets four line segments L1 to L4 as shown in FIG.
  • the ⁇ line segments L1 to L4 are all straight lines and intersect with each other in the center region of the cross section.
  • the angle between the line L1 and the line L2, the angle between the line L2 and the line L3, the angle between the line L3 and the line L4, and the angle between the line L4 and the line L1 are all 45 °. It is. Note that these angles do not necessarily have to be the same.
  • the line segments L1 to L4 do not necessarily have to be straight lines and do not need to protrude from the cross section.
  • the line segments L1 to L4 do not necessarily have to intersect at one point, but preferably pass through the central region. If the cross section is not circular, the center region may be specified by, for example, obtaining the center of gravity of the cross section.
  • the luminance distribution calculation unit 343 illustrated in FIG. 1 calculates a luminance distribution in the line segment set by the line segment setting unit 342. For example, as shown in FIG. 4A, when the line segments L1 to L4 are set in the arterial cross-sectional image of the patent type arterial dissection, the luminance distribution calculation unit 343 determines from one end to the other end of the cross section in the line segment L1. , And the same calculation is performed for the other line segments L2 to L4.
  • the curve creation unit 344 creates a brightness distribution curve (profile curve) indicating the brightness distribution calculated by the brightness distribution calculation unit 343.
  • the luminance distribution curve created by the curve creating unit 344 is displayed on the display unit 33.
  • FIGS. 4B to 4E are graphs showing respective luminance distribution curves on the line segments L1 to L4 set in the HR vfl-TSE image shown in FIG. 4A.
  • the vertical axis corresponds to luminance
  • the horizontal axis corresponds to coordinates along each of the line segments L1 to L4.
  • the portion where the blood flow exists has low luminance
  • the flap has medium luminance. Therefore, in the line segment crossing the flap, the luminance changes from middle (blood vessel wall) to low (blood flow) ⁇ middle (flap) ⁇ low (blood flow) ⁇ middle (blood vessel wall).
  • the change in luminance at the boundary portion is steep, but the change in luminance at the boundary portion is gradual in an actual image. . Therefore, the actual luminance distribution curve is not an angular curve as shown in FIGS. 4B to 4E, but a rounded curve. Therefore, as shown in FIGS. 4C and 4D, the luminance distribution curve in which the luminance changes from middle ⁇ low ⁇ medium ⁇ low ⁇ medium has an ⁇ shape as a whole.
  • each luminance in the line segments L1 to L4 is set.
  • the distribution curves are shown in FIGS. 5B to 5E, respectively.
  • the portion where the hematoma exists has a higher luminance than the flap. Therefore, in the line segment crossing the flap, the luminance is medium (blood vessel wall) ⁇ low (hematoma) ⁇ medium (flap) ⁇ high (blood flow) ⁇ medium (blood vessel wall) or medium (blood vessel wall) ⁇ high. (Blood flow) ⁇ medium (flap) ⁇ low (hematoma) ⁇ medium (blood vessel wall).
  • the luminance distribution curve has a ⁇ (integral symbol) shape.
  • the luminance distribution curves shown in FIGS. 5C and 5D include a portion having a ⁇ shape that is inverted left and right.
  • the user determines whether or not the flap exists and whether or not the artery dissection exists based on whether or not the luminance distribution curve has an ⁇ shape and whether or not it includes a portion having a ⁇ shape.
  • the type can be predicted.
  • each of the luminance distribution curves of the line segments L1 to L4 has an ⁇ shape.
  • FIG. 7A shows a state in which the line segments L1 to L4 are set in the MRA original image or the CTA original image of the arterial cross section of the patent type arterial dissection
  • FIGS. 8 is a graph showing respective luminance distribution curves on line segments L1 to L4 shown in FIG.
  • the luminance of the blood flow portion is higher than that of the flap. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to high (blood flow) ⁇ middle (flap) ⁇ high (blood flow) ⁇ middle (blood vessel wall). Therefore, as shown in FIGS. 7 (c) and 7 (d), the luminance distribution curve in which the luminance changes from medium ⁇ high ⁇ medium ⁇ high ⁇ medium has a vertically inverted ⁇ shape (inverted ⁇ shape) as a whole.
  • the luminance distribution curve in which the luminance changes from medium ⁇ high ⁇ medium ⁇ high ⁇ medium has a vertically inverted ⁇ shape (inverted
  • FIG. 8A shows a state in which the line segments L1 to L4 are set in the MRA original image of the arterial cross section of the pseudo-intraluminal hematoma formation type arterial dissection, and FIGS. 8B to 8E respectively.
  • FIG. 9 is a graph showing each luminance distribution curve in the line segments L1 to L4 shown in FIG.
  • the brightness of the hematoma portion is higher than that of the flap similarly to the blood flow portion. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to high (hematoma) ⁇ middle (flap) ⁇ high (blood flow) ⁇ middle (blood vessel wall). Therefore, as shown in FIGS. 8C and 8D, the luminance distribution curve in which the luminance changes from middle to high to middle to high to middle has an inverted ⁇ shape as a whole.
  • the MRA original image when a flap is present in the artery, at least one of the luminance distribution curves is inverted ⁇ -shaped regardless of whether the artery is a patent type or a pseudo-intraluminal hematoma formation type. Present. Therefore, when an MRA original image is used, the presence of a flap can be predicted, but the type of arterial dissection cannot be determined.
  • FIG. 9A shows a state in which the line segments L1 to L4 are set in the CTA original image of the arterial cross section of the pseudo-intraluminal hematoma formation type arterial dissection
  • FIG. 9B to FIG. 10 is a graph showing luminance distribution curves on line segments L1 to L4 shown in FIG. 9 (a).
  • the brightness of the hematoma portion is lower than that of the flap. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to low (hematoma) ⁇ middle (flap) ⁇ high (blood flow) ⁇ middle (blood vessel wall).
  • the luminance distribution curve in which the luminance changes from medium ⁇ low ⁇ medium ⁇ high ⁇ medium includes a portion exhibiting a ⁇ shape.
  • At least one of the luminance distribution curves has an inverted ⁇ shape, and pseudointracavitary hematoma formation
  • at least one of the luminance distribution curves includes a portion having a ⁇ shape. Therefore, the user can predict the presence or absence of a flap and the type of arterial dissection based on whether or not the luminance distribution curve has an inverted ⁇ shape and whether or not the portion has a ⁇ shape. it can.
  • FIG. 10 is a flowchart illustrating a procedure of the diagnosis support method according to the present embodiment.
  • the diagnosis support method according to the present embodiment is performed by the diagnosis support system 1.
  • step S1 the imaging device 2 captures an image including a cross section of the cerebral artery of the subject.
  • step S2 image acquisition step
  • the image acquisition unit 341 acquires an image including a cross section of the cerebral artery from the imaging device 2.
  • step S3 line segment setting step
  • the line segment setting unit 342 sets one or more line segments that cross the cross section included in the image.
  • four line segments L1 to L4 are set.
  • step S4 luminance distribution calculation step
  • the luminance distribution calculation unit 343 calculates the luminance distribution in the line segments L1 to L4.
  • step S5 the curve creating unit 344 creates a brightness distribution curve indicating the calculated brightness distribution.
  • step S6 the display unit 33 displays the created luminance distribution curve.
  • the line segment setting unit 342 sets one or more line segments that cross the cross section, and the luminance distribution calculation unit
  • a calculation unit 343 calculates a luminance distribution in the line segment
  • a curve generation unit 344 generates a luminance distribution curve indicating the luminance distribution
  • a display unit 33 displays the luminance distribution curve. This allows the user to predict the presence or absence of cerebral artery dissection based on the shape of the luminance distribution curve.
  • the user can determine whether or not a flap exists based on whether the luminance distribution curve has an ⁇ shape and whether or not the portion has a ⁇ shape, The type of cerebral artery dissection can be predicted.
  • the image is the CTA original image, the user can determine whether or not the flap exists and whether or not the brain has a flap based on whether or not the luminance distribution curve has an inverted ⁇ shape and whether or not the portion has a ⁇ shape.
  • the type of arterial dissection can be predicted.
  • the user cannot predict the type of cerebral artery dissection, but based on whether or not the luminance distribution curve has an inverted ⁇ shape, the presence or absence of a flap, that is, the cerebral artery It can be predicted whether or not dissociation has occurred.
  • the use of the diagnosis support apparatus 3 makes it possible to improve the diagnosis accuracy of cerebral artery dissection as compared with the diagnosis based on the interpretation of an image that is likely to differ depending on the skills of doctors and technicians.
  • FIG. 11 is a block diagram showing a configuration of a diagnosis support system 1 'according to a modification of the present embodiment.
  • the diagnosis support system 1 ' includes an imaging device 2 and a diagnosis support device 3'. That is, the diagnosis support system 1 'has a configuration in which the diagnosis support device 3 is replaced with the diagnosis support device 3' in the diagnosis support system 1 shown in FIG.
  • the diagnosis support device 3 ' includes a CPU (not shown), a main storage device (not shown), an auxiliary storage device 31, an input unit 32, a display unit 33, and a control unit 34'. . That is, the diagnosis support device 3 'has a configuration in which the control unit 34 is replaced with a control unit 34' in the diagnosis support device 3 shown in FIG.
  • the control unit 34 ’ includes an image acquisition unit 341, a line segment setting unit 342, a luminance distribution calculation unit 343, and a prediction unit 345. That is, the control unit 34 ′ has a configuration in which the curve creation unit 344 is replaced by the prediction unit 345 in the control unit 34 shown in FIG.
  • the prediction unit 345 predicts the presence or absence of a disease, in particular, the presence or absence of cerebral artery dissection based on the luminance distribution calculated by the luminance distribution calculation unit 343. That is, in the above embodiment, the user predicts the presence or absence of cerebral artery dissection based on the shape of the luminance distribution curve displayed on the display unit 33. However, in the present modification, the prediction unit 345 Using the same criteria, the presence or absence of cerebral artery dissection is predicted.
  • the medical image is an HR @ vfl-TSE image, and the luminance of at least one of the set line segments changes from medium to low to medium to low to medium (that is, when a luminance distribution curve is created). , A curve exhibiting an ⁇ shape as a whole), the prediction unit 345 predicts a patent type arterial dissection.
  • the medical image is an HR @ vfl-TSE image, and in at least one of the set line segments, the luminance partially changes from low to medium to high or from high to medium to low (ie, In the case where the brightness distribution curve is created, a curve including a portion having a ⁇ shape is obtained). In this case, the prediction unit 345 predicts that it is a pseudo-intracavity hematoma formation type arterial dissection.
  • the medical image is the MRA original image
  • the brightness of at least one of the set line segments changes from medium to high to medium to high to medium.
  • the prediction unit 345 predicts that it is arterial dissection.
  • the prediction unit 345 does not predict whether the type of arterial dissection is a patent type or a pseudointracavitary hematoma formation type.
  • the medical image is a CTA original image
  • the luminance of at least one of the set line segments changes from medium to high to medium to high to medium (that is, when a luminance distribution curve is created
  • the prediction unit 345 predicts a patent type arterial dissection.
  • the medical image is a CTA original image, and at least one of the set line segments has a luminance that partially changes from medium to high to medium (that is, when a luminance distribution curve is created, In the case where the curve includes a portion having a shape), the prediction unit 345 predicts that the intraluminal hematoma formation type arterial dissection is to be performed.
  • the prediction unit 345 can predict the presence or absence of arterial dissection based on the luminance change pattern in the line segment.
  • the prediction result by the prediction unit 345 is displayed on the display unit 33.
  • the diagnosis support apparatus 3 ' can support the diagnosis of cerebral artery dissection by the user.
  • the prediction unit 345 performs prediction using artificial intelligence (AI).
  • AI artificial intelligence
  • the luminance distribution of each line set on the cross section of the artery is calculated using the image acquisition unit 341, the line segment setting unit 342, and the luminance distribution calculating unit 343 for the medical images of many subjects.
  • Teacher data is created by associating the distribution data with the definitive diagnosis result of each subject. Based on the teacher data, machine learning is performed using, for example, a neural network or the like, and the prediction unit 345 is realized by a learned algorithm.
  • the artificial intelligence is not limited to the neural network, and any known artificial intelligence technology can be used.
  • the prediction accuracy improves as the number of line segments set in the cross section of the artery increases.
  • the luminance distribution curve increases, which makes prediction more difficult.
  • highly accurate prediction is possible by setting many line segments.
  • ⁇ Atherosclerosis is a disease in which a cross-sectional image of a blood vessel is similar to arterial dissection.
  • plaques (atheromas) in which cholesterol and the like are accumulated are formed. Therefore, in FIG. 5A, the cross-sectional image of the blood vessel approximates that obtained by replacing the hematoma in the false cavity with cholesterol or the like. Therefore, in the HR @ vfl-TSE image, in at least one of the set line segments, the luminance partially changes from low to medium to high or from high to medium to low, and when a luminance distribution curve is created, Similar to the intraluminal hematoma formation type arterial dissection, a curve including a ⁇ -shaped portion is obtained.
  • the brightness distribution curve of atherosclerosis is a difference between the maximum value and the minimum value of the brightness (hereinafter, referred to as a signal difference) as compared to the brightness distribution curve of a pseudointracavitary hematoma-forming artery dissection. Tend to be small (see FIG. 12). Therefore, the prediction unit 345 further determines that at least one of the line segments set in the blood vessel portion of the HR @ vfl-TSE image has changed in luminance from low to medium to high or from high to medium to low. Based on the luminance difference in the luminance distribution curve, it is possible to predict whether it is pseudo-intraluminal hematoma formation type arterial dissection or atherosclerosis.
  • the prediction unit 345 can predict the presence or absence of the above three diseases based only on the luminance difference of the luminance distribution curve. However, in order to increase the prediction accuracy, it is preferable that the prediction unit 345 predicts the presence or absence of a disease based on both the luminance change pattern and the luminance difference in the line segment.
  • HR vfl-TSE images were obtained for 26 patients with patent type arterial dissection, 28 patients with pseudointracavitary hematoma-forming type arterial dissection, and 15 patients with atherosclerosis. Then, four line segments were set in the blood vessel portion in each image, and the luminance distribution in the line segments was calculated. Further, for each luminance distribution, a difference (luminance difference) between the maximum value and the minimum value of the luminance was calculated.
  • FIG. 12 is a box-and-whisker plot showing the distribution of luminance differences in the luminance distribution curves of patent-type arterial dissection ( ⁇ ), pseudo-intraluminal hematoma-forming arterial dissection ( ⁇ ), and atherosclerosis (p ⁇ ). .
  • patent-type arterial dissection
  • pseudo-intraluminal hematoma-forming arterial dissection
  • p ⁇ atherosclerosis
  • the diseases to be predicted are cerebral artery dissection and atherosclerosis, but are not particularly limited as long as they are vascular diseases.
  • Diagnosis support system 1 Diagnosis support system 2 Imaging device 3 Diagnosis support device 3' Diagnosis support device 31 Auxiliary storage device 32 Input unit 33 Display unit 34 Control unit 34 'Control unit 341 Image acquisition unit 342 Line segment setting unit 343 Luminance distribution Calculation unit 344 Curve creation unit 345 Prediction units L1 to L4 Line segment P Diagnosis support program

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

This diagnosis support device (3), which supports a diagnosis of a vascular disease, includes: an image acquisition unit (341) which acquires an image including a cross section of a blood vessel; a line segment setting unit (342) which sets one or more line segments crossing the cross section; and a luminance distribution calculation unit (343) which calculates a luminance distribution on the line segment.

Description

診断支援装置、診断支援方法および診断支援プログラムDiagnosis support device, diagnosis support method, and diagnosis support program
 本発明は、血管疾患の診断を支援する技術に関し、特に、動脈解離の診断を支援する技術に関する。 The present invention relates to a technique for supporting diagnosis of a vascular disease, and particularly to a technique for supporting diagnosis of arterial dissection.
 動脈解離とは、血管内の流血が、血管壁に進入して壁間を進展させたものと定義されている。動脈の血管壁は内側から、内弾性板、中膜および外膜で構成されており、動脈は、中膜が弾性繊維を豊富に含む弾性動脈と、中膜が弾性繊維を殆ど含まない筋性動脈とに分類される。筋性動脈では、中膜(中膜平滑筋)が柔らかいため、内弾性板が何らかの原因によって断裂すると、中膜平滑筋層へ血液が流入して偽腔が形成され、動脈解離が引き起こされる。 Arterial dissection is defined as blood flow in a blood vessel that has entered the blood vessel wall and has developed between the walls. The vascular wall of the artery is composed of the inner elastic plate, the media and the adventitia from the inside, and the artery consists of an elastic artery whose media is rich in elastic fibers and a muscular muscle whose media is almost free of elastic fibers. Arteries are classified. In a muscular artery, the media (media smooth muscle) is soft, so if the internal elastic plate is torn by any cause, blood flows into the media smooth muscle layer to form a false lumen, thereby causing arterial dissection.
 筋性動脈としては、例えば、脳動脈、上腕動脈、大腿動脈、膝窩動脈などが含まれるが、動脈解離は、特に脳動脈において多く見られる。非特許文献1に記載の全国調査データによれば、日本人に多い脳動脈解離の発生部位は椎骨動脈および脳底動脈であることが示されている。 Muscular arteries include, for example, cerebral arteries, brachial arteries, femoral arteries, popliteal arteries, and the like, and arterial dissection is particularly common in cerebral arteries. According to the nationwide survey data described in Non-Patent Document 1, it is shown that cerebral artery dissections, which are common in Japanese, are vertebral arteries and basilar arteries.
 脳動脈解離の臨床診断では、先行性頭痛の存在や、血管の経時的形状変化の他、画像診断が特に重要である。具体的には、動脈解離に特異的なintimal flap(以下、フラップとする)や偽腔内血腫の存在を、血管撮影、MRA(CE-MRA)元画像、CTA元画像などによって証明することにより、脳動脈解離の診断がなされる(非特許文献2)。特に、フラップの存在は、脳動脈解離の確実な指標とされている。 臨床 In clinical diagnosis of cerebral artery dissection, image diagnosis is particularly important, in addition to the presence of antecedent headache, changes in the shape of blood vessels over time. Specifically, the presence of intimal flap (hereinafter referred to as “flap”) specific to arterial dissection or false intracavitary hematoma is demonstrated by angiography, MRA (CE-MRA) original image, CTA original image, and the like. Diagnosis of cerebral artery dissection is made (Non-Patent Document 2). In particular, the presence of flaps is a reliable indicator of cerebral artery dissection.
 また、本発明者らによる、血管の経時的形状変化や偽腔内血腫が確認された10名を対象とした調査では、椎骨脳底動脈解離のフラップおよび偽腔内血腫等の構造物の描出には、MRA元画像およびCTA元画像よりも、局所励起を用いた3T脂肪抑制T1強調画像(HR vfl-TSE法)が有用であることが示された。 In addition, in a study conducted by the present inventors on 10 patients in whom temporal changes in the shape of blood vessels and pseudointracavitary hematoma were confirmed, flaps of vertebral basilar artery dissection and structures such as pseudointraluminal hematoma were depicted. Showed that a 3T fat-suppressed T1-weighted image using local excitation (HR @ vfl-TSE method) was more useful than the MRA original image and the CTA original image.
 しかし現状では、動脈解離の画像診断は、MRIのみで行われており脳血管撮影や組織学的証明がなされていない。また、フラップや偽腔内血腫の検出能は、脳血管画像を読影する医師や技師の定性的な評価に左右されるため、バイアスが入り込む余地がある。また、HR vfl-TSE法の分解能を用いても、解離腔内の構造物描出が不十分な症例もあり、読影による診断精度が高いとは言えない状況であった。 However, at present, the image diagnosis of arterial dissection is performed only by MRI, and cerebral angiography and histological proof have not been made. In addition, the ability to detect flaps and false intracavitary hematomas depends on the qualitative evaluation of doctors and technicians who interpret cerebral blood vessel images, and thus there is room for bias. In addition, even when the resolution of the HR @ vfl-TSE method was used, there were cases in which the depiction of structures in the dissociation space was insufficient, and the situation was not high in diagnostic accuracy by interpretation.
 本発明は、上記問題を解決するためになされたものであって、血管疾患の診断精度を向上させる診断支援装置を提供することを課題とする。 The present invention has been made to solve the above-described problem, and has as its object to provide a diagnosis support apparatus that improves the accuracy of diagnosing a vascular disease.
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、血管の断面画像に設定された線分における輝度分布に基づいて、疾患の予測が可能であることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that a disease can be predicted based on the luminance distribution in a line segment set in a cross-sectional image of a blood vessel.
 即ち、本発明は以下の項に記載の発明を包含する。
項1.
 血管疾患の診断を支援する診断支援装置であって、
 前記血管の断面を含む画像を取得する画像取得部と、
 前記断面を横切る1本以上の線分を設定する線分設定部と、
 前記線分における輝度分布を演算する輝度分布演算部と、
を備えた、診断支援装置。
項2.
 前記輝度分布を示す輝度分布曲線を作成する曲線作成部と、
 前記輝度分布曲線を表示する表示部と、
をさらに備えた、項1に記載の診断支援装置。
項3.
 前記輝度分布に基づいて、前記疾患の有無を予測する予測部をさらに備えた、項1または2に記載の診断支援装置。
項4.
 前記予測部は、前記線分における輝度の変化パターンに基づいて、前記疾患の有無を予測する、項3に記載の診断支援装置。
項5.
 前記予測部は、前記線分における輝度の最大値と最小値との差に基づいて、前記疾患の有無を予測する、項3または4に記載の診断支援装置。
項6.
 前記予測部は人工知能を用いて予測する、項3に記載の診断支援装置。
項7.
 前記血管は脳動脈である、項1から6のいずれかに記載の診断支援装置。
項8.
 前記疾患は動脈解離である、項7に記載の診断支援装置。
項9.
 前記線分設定部は、少なくとも1箇所で互いに交差する4本以上の前記線分を設定する、項1から8のいずれかに記載の診断支援装置。
項10.
 前記線分は、前記断面の中心領域を通過する、項9に記載の診断支援装置。
項11.
 前記画像は、局所励起を用いた3T脂肪抑制T1強調画像である、項1から10のいずれかに記載の診断支援装置。
項12.
 前記画像は、CTA元画像である、項1から10のいずれかに記載の診断支援装置。
項13.
 前記画像は、MRA元画像である、項1から10のいずれかに記載の診断支援装置。
項14.
 血管疾患の診断を支援する診断支援方法であって、
 前記血管の断面を含む画像を取得する画像取得ステップと、
 前記断面を横切る1本以上の線分を設定する線分設定ステップと、
 前記断面の前記線分における輝度分布を演算する輝度分布演算ステップと、
を備えた、診断支援方法。
項15.
 血管疾患の診断を支援する診断支援装置としてコンピュータを動作させる診断支援プログラムであって、
 前記血管の断面を含む画像を取得する画像取得部、
 前記断面を横切る1本以上の線分を設定する線分設定部、および、
 前記断面の前記線分における輝度分布を演算する輝度分布演算部、
としてコンピュータを動作させる診断支援プログラム。
That is, the present invention includes the inventions described in the following items.
Item 1.
A diagnosis support device that supports diagnosis of a vascular disease,
An image acquisition unit that acquires an image including a cross section of the blood vessel,
A line segment setting unit that sets one or more line segments that cross the cross section;
A luminance distribution calculation unit that calculates a luminance distribution in the line segment;
, A diagnosis support device.
Item 2.
A curve creation unit that creates a brightness distribution curve indicating the brightness distribution,
A display unit that displays the luminance distribution curve;
The diagnosis support device according to item 1, further comprising:
Item 3.
Item 3. The diagnosis support device according to item 1 or 2, further comprising a prediction unit that predicts the presence or absence of the disease based on the luminance distribution.
Item 4.
Item 4. The diagnosis support device according to item 3, wherein the prediction unit predicts the presence or absence of the disease based on a luminance change pattern of the line segment.
Item 5.
The diagnosis support device according to item 3 or 4, wherein the prediction unit predicts the presence or absence of the disease based on a difference between a maximum value and a minimum value of luminance in the line segment.
Item 6.
Item 4. The diagnosis support device according to item 3, wherein the prediction unit performs prediction using artificial intelligence.
Item 7.
Item 7. The diagnosis support device according to any one of Items 1 to 6, wherein the blood vessel is a cerebral artery.
Item 8.
Item 8. The diagnosis support device according to item 7, wherein the disease is arterial dissection.
Item 9.
Item 9. The diagnosis support device according to any one of Items 1 to 8, wherein the line segment setting unit sets four or more line segments that cross each other at at least one place.
Item 10.
Item 10. The diagnosis support device according to item 9, wherein the line segment passes through a central region of the cross section.
Item 11.
Item 11. The diagnosis support device according to any one of Items 1 to 10, wherein the image is a 3T fat suppression T1 weighted image using local excitation.
Item 12.
The diagnosis support apparatus according to any one of Items 1 to 10, wherein the image is a CTA original image.
Item 13.
The diagnosis support apparatus according to any one of Items 1 to 10, wherein the image is an MRA original image.
Item 14.
A diagnosis support method for supporting diagnosis of a vascular disease,
An image acquisition step of acquiring an image including a cross section of the blood vessel,
A line segment setting step of setting one or more line segments crossing the cross section;
A luminance distribution calculating step of calculating a luminance distribution in the line segment of the cross section;
, A diagnostic support method.
Item 15.
A diagnosis support program that operates a computer as a diagnosis support device that supports diagnosis of a vascular disease,
An image acquisition unit that acquires an image including a cross section of the blood vessel,
A line segment setting unit that sets one or more line segments that cross the cross section, and
A luminance distribution calculation unit that calculates a luminance distribution in the line segment of the cross section,
A diagnostic support program that operates a computer as a computer.
 本発明によれば、血管疾患の診断精度を向上させることができる。 According to the present invention, the accuracy of diagnosing a vascular disease can be improved.
本発明の一実施形態に係る診断支援システムの構成を示すブロック図である。It is a block diagram showing the composition of the diagnosis support system concerning one embodiment of the present invention. (a)は、開存タイプの動脈解離の例を示す断面図であり、(b)~(d)はそれぞれ、当該断面に対応するHR vfl-TSE画像、MRA元画像およびCTA元画像である。(A) is a cross-sectional view showing an example of a patent type arterial dissection, and (b) to (d) are an HR @ vfl-TSE image, an MRA original image, and a CTA original image, respectively, corresponding to the cross section. . (a)は、偽腔内血腫形成タイプの動脈解離の例を示す断面図であり、(b)~(d)はそれぞれ、当該断面に対応するHR vfl-TSE画像、MRA元画像およびCTA元画像である。(A) is a cross-sectional view showing an example of a pseudo-intraluminal hematoma formation type artery dissection, and (b) to (d) respectively show an HR @ vfl-TSE image, an MRA original image, and a CTA original corresponding to the cross section. It is an image. (a)は、図2(b)に示すHR vfl-TSE画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。(A) shows a state in which four line segments are set in the HR @ vfl-TSE image shown in FIG. 2 (b), and (b) to (e) show each of the four line segments. It is a graph which shows a brightness distribution curve. (a)は、図3(b)に示すHR vfl-TSE画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。(A) shows a state in which four line segments are set in the HR @ vfl-TSE image shown in FIG. 3 (b), and (b) to (e) respectively show each of the four line segments. It is a graph which shows a brightness distribution curve. (a)は、アーチファクトが現れた正常動脈の断面画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。(A) shows a state in which four line segments are set in a cross-sectional image of a normal artery in which an artifact has appeared, and (b) to (e) show respective luminance distribution curves in each of the four line segments. FIG. (a)は、図2(c)に示すMRA元画像または図2(d)に示すCTA元画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。(A) shows a state where four line segments are set in the MRA original image shown in FIG. 2 (c) or the CTA original image shown in FIG. 2 (d), and (b) to (e) respectively. 4 is a graph showing each luminance distribution curve in each of the four line segments. (a)は、図3(c)に示すMRA元画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。3A shows a state in which four line segments are set in the MRA original image shown in FIG. 3C, and FIGS. 3B to 3E show respective luminance distributions in the four line segments. It is a graph which shows a curve. (a)は、図3(d)に示すCTA元画像に4本の線分を設定した状態を示しており、(b)~(e)はそれぞれ、当該4本の各線分における各輝度分布曲線を示すグラフである。3A shows a state in which four line segments are set in the CTA original image shown in FIG. 3D, and FIGS. 3B to 3E show respective luminance distributions in each of the four line segments. It is a graph which shows a curve. 本発明の一実施形態に係る診断支援方法の手順を示すフローチャートである。5 is a flowchart illustrating a procedure of a diagnosis support method according to an embodiment of the present invention. 本発明の一実施形態の変形例に係る診断支援システムの構成を示すブロック図である。It is a block diagram showing the composition of the diagnosis support system concerning the modification of one embodiment of the present invention. 開存タイプ動脈解離、偽腔内血腫形成タイプ動脈解離およびアテローム性動脈硬化の各輝度分布曲線における輝度差の分布を示す箱ひげ図である。It is a box-and-whisker diagram which shows the distribution of the brightness | luminance difference in each brightness | luminance distribution curve of patent type arterial dissection, pseudointrahematoma formation type artery dissection, and atherosclerosis.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、本発明は、下記の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.
 (全体構成)
 図1は、本発明の一実施形態に係る診断支援システム1の構成を示すブロック図である。診断支援システム1は、撮像装置2と、診断支援装置3とを備えている。
(overall structure)
FIG. 1 is a block diagram illustrating a configuration of a diagnosis support system 1 according to an embodiment of the present invention. The diagnosis support system 1 includes an imaging device 2 and a diagnosis support device 3.
 撮像装置2は、医用画像を撮像する装置である。撮像装置2としては、MRI装置やCT装置を用いることができるが、3テスラMRI装置が好適である。3テスラMRI装置は、局所励起技術と、variable flip angle Turbo Spin Echo法(以下、「vfl-TSE法」)を用いたHigh resolution 3D vfl-TSE 法の3T脂肪抑制T1強調画像(以下、「HR vfl-TSE画像」)を撮像することができる。 The imaging device 2 is a device that captures a medical image. As the imaging device 2, an MRI device or a CT device can be used, but a 3 Tesla MRI device is preferable. The 3 Tesla MRI apparatus uses a local excitation technique and a high resolution 3D vfl-TSE 3T fat suppression T1-weighted image (hereinafter, “HR”) using a variable flip angle Turbo Spin Echo method (hereinafter, “vfl-TSE method”). vfl-TSE image ").
 本実施形態では、撮像装置2によって、被検者の脳動脈の断面を含むHR vfl-TSE画像(局所励起を用いた3T脂肪抑制T1強調画像)を撮像する。また、撮像装置2は、診断支援装置3と通信可能に接続されており、撮像装置2によって撮像された画像は、診断支援装置3に入力される。 In the present embodiment, the imaging apparatus 2 captures an HR @ vfl-TSE image (3T fat suppression T1-weighted image using local excitation) including a cross section of the subject's cerebral artery. The imaging device 2 is communicably connected to the diagnosis support device 3, and an image captured by the imaging device 2 is input to the diagnosis support device 3.
 (診断支援装置)
 診断支援装置3は、例えば汎用のパーソナルコンピュータで構成することができ、ハードウェア構成として、CPU(図示せず)、主記憶装置(図示せず)、補助記憶装置31、入力部32および表示部33を備えている。診断支援装置3では、CPUが補助記憶装置31に記憶された各種プログラムを主記憶装置に読み出して実行することにより、各種演算処理を実行する。
(Diagnosis support device)
The diagnosis support device 3 can be configured by, for example, a general-purpose personal computer, and has a hardware configuration including a CPU (not shown), a main storage device (not shown), an auxiliary storage device 31, an input unit 32, and a display unit. 33 are provided. In the diagnosis support device 3, the CPU reads out various programs stored in the auxiliary storage device 31 to the main storage device and executes the programs, thereby executing various calculation processes.
 補助記憶装置31は、例えばハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)で構成することができる。補助記憶装置31には、撮像装置2によって撮像された医用画像の他、診断支援プログラムPが記憶されている。診断支援プログラムPは、CD-ROMなどの非一時的なコンピュータ読み取り可能な記録媒体に記録されてもよく、当該記録媒体を診断支援装置3に読み取らせることにより、診断支援プログラムPを診断支援装置3にインストールしてもよい。あるいは、インターネット等の通信ネットワークを介して診断支援プログラムPのコードを診断支援装置3にダウンロードしてもよい。なお、補助記憶装置31は、診断支援装置3に内蔵されてもよいし、診断支援装置3とは別体の外部記憶装置として設けてもよい。 The auxiliary storage device 31 can be composed of, for example, a hard disk drive (HDD) or a solid state drive (SSD). The auxiliary storage device 31 stores a diagnosis support program P in addition to the medical image captured by the imaging device 2. The diagnosis support program P may be recorded on a non-transitory computer-readable recording medium such as a CD-ROM, and by causing the diagnosis support device 3 to read the recording medium, the diagnosis support program P is read. 3 may be installed. Alternatively, the code of the diagnosis support program P may be downloaded to the diagnosis support device 3 via a communication network such as the Internet. The auxiliary storage device 31 may be built in the diagnosis support device 3 or may be provided as an external storage device separate from the diagnosis support device 3.
 入力部32は、例えば、キーボード、マウス、タッチパネルなどで構成することができる。また、表示部33は、例えば、液晶ディスプレイなどによって構成することができる。 The input unit 32 can be configured with, for example, a keyboard, a mouse, a touch panel, and the like. The display unit 33 can be configured by, for example, a liquid crystal display.
 診断支援装置3は、血管疾患の診断を支援する機能を有しており、本実施形態では特に、脳動脈の動脈解離の診断を支援する機能を有している。その機能を実現するため、診断支援装置3は制御部34を備えている。制御部34は、補助記憶装置31に記憶されている診断支援プログラムPを、CPUが主記憶装置に読み出して実行することにより実現される機能ブロックである。 The diagnosis support device 3 has a function of supporting diagnosis of a vascular disease, and in this embodiment, particularly has a function of supporting diagnosis of arterial dissection of a cerebral artery. In order to realize the function, the diagnosis support device 3 includes a control unit 34. The control unit 34 is a functional block realized by the CPU reading the diagnostic support program P stored in the auxiliary storage device 31 into the main storage device and executing the program.
 制御部34は、血管の断面を含む画像を取得する画像取得部341と、前記断面を横切る1本以上の線分を設定する線分設定部342と、前記線分における輝度分布を演算する輝度分布演算部343と、前記輝度分布を示す輝度分布曲線を作成する曲線作成部344とを備えている。以下、これら各部の機能をより具体的に説明する。 The control unit 34 includes an image acquisition unit 341 that acquires an image including a cross section of a blood vessel, a line segment setting unit 342 that sets one or more line segments that cross the cross section, and a luminance that calculates a luminance distribution in the line segment. A distribution calculation unit 343 and a curve creation unit 344 that creates a brightness distribution curve indicating the brightness distribution are provided. Hereinafter, the functions of these units will be described more specifically.
 (画像取得)
 画像取得部341は、被検者の脳動脈の断面を含む画像を、撮像装置2から取得する。本実施形態では、断面とは、血管の短軸(Axial)に略垂直な面を意味する。
(Image acquisition)
The image acquisition unit 341 acquires an image including a cross section of the cerebral artery of the subject from the imaging device 2. In the present embodiment, the cross section means a plane substantially perpendicular to the short axis (Axial) of the blood vessel.
 以下、医用画像および動脈解離の種類に応じて、動脈の断面がどのように表示されるかについて、説明する。上述のように、本実施形態では、医用画像として、HR vfl-TSE画像(局所励起を用いた3T脂肪抑制T1強調画像)、MRA元画像およびCTA元画像を想定している。また、動脈解離は、偽腔内で血栓が生じているか否かによって、開存タイプと偽腔内血腫形成タイプとに分類される。 The following describes how the cross section of the artery is displayed according to the medical image and the type of arterial dissection. As described above, in the present embodiment, the HR @ vfl-TSE image (3T fat suppression T1-weighted image using local excitation), the MRA original image, and the CTA original image are assumed as medical images. Arterial dissection is classified into a patency type and a pseudo-intraluminal hematoma formation type depending on whether or not a thrombus has occurred in the false lumen.
 図2(a)は、開存タイプ動脈剥離の動脈の断面構造の一例を示している。開存タイプ動脈剥離では、内腔に血管壁から解離したフラップが存在し、真腔内および偽腔内のいずれにも血流が存在しており、当該動脈はHR vfl-TSE画像、MRA元画像およびCTA元画像において、それぞれ図2(b)~(d)のように表示される。すなわち、HR vfl-TSE画像では、血流部分の輝度が低くなるのに対し、MRA元画像およびCTA元画像では、血流部分の輝度が高くなる。また、HR vfl-TSE画像、MRA元画像およびCTA元画像のいずれにおいても、血管壁およびフラップは、輝度が黒と白の中間程度になる。 FIG. 2 (a) shows an example of a cross-sectional structure of an artery of patent type arterial ablation. In a patent type arterial detachment, a flap dissociated from the blood vessel wall exists in the lumen, blood flow exists in both the true lumen and the false lumen, and the artery is subjected to HRHvfl-TSE image, MRA source. The images and the CTA original images are displayed as shown in FIGS. 2B to 2D, respectively. That is, in the HR @ vfl-TSE image, the luminance of the blood flow part is low, whereas in the MRA original image and the CTA original image, the luminance of the blood flow part is high. Further, in any of the HR @ vfl-TSE image, the MRA original image, and the CTA original image, the blood vessel wall and the flap have a luminance between black and white.
 また、図3(a)は、偽腔内血腫形成タイプ動脈剥離の動脈の断面構造の一例を示している。偽腔内血腫形成タイプ動脈剥離では、内腔に血管壁から解離したフラップが存在し、真腔内には血流が存在し、偽腔内には血腫が存在しており、当該動脈は、HR vfl-TSE画像、MRA元画像およびCTA元画像において、それぞれ図3(b)~(d)のように表示される。すなわち、HR vfl-TSE画像およびMRA元画像では、血腫部分の輝度が高くなるのに対し、CTA元画像では、血腫部分の輝度が低くなる。 FIG. 3 (a) shows an example of a cross-sectional structure of an artery of a pseudo-intraluminal hematoma formation type arterial detachment. In false lumen hematoma formation type arterial detachment, there is a flap dissociated from the vessel wall in the lumen, blood flow exists in the true lumen, hematoma exists in the false lumen, and the artery is The HR @ vfl-TSE image, the MRA original image, and the CTA original image are displayed as shown in FIGS. 3B to 3D, respectively. That is, in the HR @ vfl-TSE image and the MRA original image, the luminance of the hematoma portion is high, whereas in the CTA original image, the luminance of the hematoma portion is low.
 (線分設定)
 図1に示す線分設定部342は、本実施形態では、脳動脈の断面を横切り、かつ、当該断面の中心領域において互いに交差する4本の線分を設定する。例えば、画像取得部341が取得した画像がHR vfl-TSE画像であり、図2(b)に示す、開存タイプ動脈解離の動脈の断面が当該画像に含まれている場合、線分設定部342は、図4(a)に示すように、4本の線分L1~L4を設定する。
(Line setting)
In the present embodiment, the line segment setting unit 342 illustrated in FIG. 1 sets four line segments that cross the cross section of the cerebral artery and intersect with each other in the central region of the cross section. For example, when the image acquired by the image acquiring unit 341 is an HR vfl-TSE image, and a cross section of a patent type arterial dissection artery shown in FIG. 342 sets four line segments L1 to L4 as shown in FIG.
 線分L1~L4はいずれも直線であり、断面の中心領域において互いに交差している。線分L1と線分L2との角度、線分L2と線分L3との角度、線分L3と線分L4との角度、および線分L4と線分L1との角度は、いずれも45°である。なお、これらの角度は必ずしも互いに同一でなくてもよい。 The 分 line segments L1 to L4 are all straight lines and intersect with each other in the center region of the cross section. The angle between the line L1 and the line L2, the angle between the line L2 and the line L3, the angle between the line L3 and the line L4, and the angle between the line L4 and the line L1 are all 45 °. It is. Note that these angles do not necessarily have to be the same.
 また、線分L1~L4は、必ずしも直線でなくてもよく、断面からはみ出ていなくてもよい。また、線分L1~L4は、必ずしも1箇所で交差しなくてもよいが、中心領域を通過することが好ましい。また、断面が円形でない場合、例えば断面の重心を求めることにより中心領域を特定してもよい。 線 Moreover, the line segments L1 to L4 do not necessarily have to be straight lines and do not need to protrude from the cross section. The line segments L1 to L4 do not necessarily have to intersect at one point, but preferably pass through the central region. If the cross section is not circular, the center region may be specified by, for example, obtaining the center of gravity of the cross section.
 (輝度分布算出・輝度分布曲線作成)
 図1に示す輝度分布演算部343は、線分設定部342によって設定された線分における輝度分布を演算する。例えば図4(a)に示すように、開存タイプ動脈解離の動脈断面画像に線分L1~L4が設定された場合、輝度分布演算部343は、線分L1における断面の一方端から他方端までの各ピクセルの輝度を算出し、他の線分L2~L4についても同様の演算を行う。
(Calculation of luminance distribution and creation of luminance distribution curve)
The luminance distribution calculation unit 343 illustrated in FIG. 1 calculates a luminance distribution in the line segment set by the line segment setting unit 342. For example, as shown in FIG. 4A, when the line segments L1 to L4 are set in the arterial cross-sectional image of the patent type arterial dissection, the luminance distribution calculation unit 343 determines from one end to the other end of the cross section in the line segment L1. , And the same calculation is performed for the other line segments L2 to L4.
 曲線作成部344は、輝度分布演算部343によって算出された輝度分布を示す輝度分布曲線(プロファイルカーブ)を作成する。曲線作成部344が作成した輝度分布曲線は表示部33に表示される。 The curve creation unit 344 creates a brightness distribution curve (profile curve) indicating the brightness distribution calculated by the brightness distribution calculation unit 343. The luminance distribution curve created by the curve creating unit 344 is displayed on the display unit 33.
 (HR vfl-TSE画像を用いる場合の予測)
 図4(b)~(e)は、それぞれ図4(a)に示すHR vfl-TSE画像に設定された線分L1~L4における各輝度分布曲線を示すグラフである。各グラフにおいて、縦軸は輝度に対応し、横軸は、各線分L1~L4に沿った座標に対応する。HR vfl-TSE画像では、血流が存在する部分は輝度が低く、フラップでは輝度が中程度となる。そのため、フラップを横切っている線分では、輝度が中(血管壁)→低(血流)→中(フラップ)→低(血流)→中(血管壁)と変化する。
(Prediction when HR vfl-TSE image is used)
FIGS. 4B to 4E are graphs showing respective luminance distribution curves on the line segments L1 to L4 set in the HR vfl-TSE image shown in FIG. 4A. In each graph, the vertical axis corresponds to luminance, and the horizontal axis corresponds to coordinates along each of the line segments L1 to L4. In the HR vfl-TSE image, the portion where the blood flow exists has low luminance, and the flap has medium luminance. Therefore, in the line segment crossing the flap, the luminance changes from middle (blood vessel wall) to low (blood flow) → middle (flap) → low (blood flow) → middle (blood vessel wall).
 ここで、図4(a)等に示す図は、模式的な断面図であるため、境界部分における輝度の変化は急峻であるが、実際の画像では、境界部分における輝度の変化は緩やかである。そのため、実際の輝度分布曲線は、図4(b)~(e)のように角張った曲線ではなく、丸みを帯びた曲線となる。したがって、図4(c)および(d)のように、輝度が中→低→中→低→中と変化している輝度分布曲線は、全体としてω形状を呈する。 Here, since the diagrams shown in FIG. 4A and the like are schematic cross-sectional views, the change in luminance at the boundary portion is steep, but the change in luminance at the boundary portion is gradual in an actual image. . Therefore, the actual luminance distribution curve is not an angular curve as shown in FIGS. 4B to 4E, but a rounded curve. Therefore, as shown in FIGS. 4C and 4D, the luminance distribution curve in which the luminance changes from middle → low → medium → low → medium has an ω shape as a whole.
 また、図5(a)に示すように、偽腔内血腫形成タイプ動脈解離の動脈断面のHR vfl-TSE画像に線分L1~L4が設定された場合の、線分L1~L4における各輝度分布曲線をそれぞれ図5(b)~(e)に示す。HR vfl-TSE画像では、血腫存在する部分は輝度がフラップよりも高くなる。そのため、フラップを横切っている線分では、輝度が中(血管壁)→低(血腫)→中(フラップ)→高(血流)→中(血管壁)、または、中(血管壁)→高(血流)→中(フラップ)→低(血腫)→中(血管壁)と変化する。 Further, as shown in FIG. 5A, when the line segments L1 to L4 are set in the HR @ vfl-TSE image of the arterial cross section of the pseudo-intraluminal hematoma formation type arterial dissection, each luminance in the line segments L1 to L4 is set. The distribution curves are shown in FIGS. 5B to 5E, respectively. In the HR @ vfl-TSE image, the portion where the hematoma exists has a higher luminance than the flap. Therefore, in the line segment crossing the flap, the luminance is medium (blood vessel wall) → low (hematoma) → medium (flap) → high (blood flow) → medium (blood vessel wall) or medium (blood vessel wall) → high. (Blood flow) → medium (flap) → low (hematoma) → medium (blood vessel wall).
 ここで、上述のように、実際の輝度分布曲線は丸みを帯びており、また、フラップの幅は小さいため、血流(または血腫)からフラップを経て血腫(または血流)に至る部分の輝度分布曲線は、∫(積分記号)形状を呈する。例えば、図5(c)および(d)に示す輝度分布曲線は、左右反転した∫形状を呈した部分を含んでいる。 Here, as described above, since the actual luminance distribution curve is rounded and the width of the flap is small, the luminance of a portion from the blood flow (or hematoma) through the flap to the hematoma (or blood flow) is obtained. The distribution curve has a ∫ (integral symbol) shape. For example, the luminance distribution curves shown in FIGS. 5C and 5D include a portion having a ∫ shape that is inverted left and right.
 このように、HR vfl-TSE画像では、開存タイプ動脈解離の動脈にフラップが存在する場合、線分L1~L4の少なくともいずれかの輝度分布曲線がω形状を呈する。また、偽腔内血腫形成タイプ動脈解離の動脈にフラップが存在する場合、線分L1~L4の少なくともいずれかの輝度分布曲線は、∫形状を呈する部分を含む。よって、ユーザ(医師、技師など)は、輝度分布曲線がω形状を呈しているか否か、および、∫形状を呈した部分を含むか否かに基づき、フラップの存在有無、および、動脈解離のタイプを予測することができる。 Thus, in the HR vfl-TSE image, when a flap exists in the artery of the patent type arterial dissection, at least one of the luminance distribution curves of the line segments L1 to L4 has an ω shape. Further, when a flap exists in an artery dissociated in a pseudoluminal hematoma formation type artery, at least one of the luminance distribution curves of the line segments L1 to L4 includes a portion exhibiting a ∫ shape. Therefore, the user (a doctor, a technician, or the like) determines whether or not the flap exists and whether or not the artery dissection exists based on whether or not the luminance distribution curve has an ω shape and whether or not it includes a portion having a ∫ shape. The type can be predicted.
 なお、フラップが発生していない正常な動脈であっても、HR vfl-TSE画像では、図6(a)に示すように、血流領域の中央にアーチファクトという輝度の高い部分が現れることがある。線分L1~L4がアーチファクトを通過している場合、図6(b)~(e)に示すように、線分L1~L4の各輝度分布曲線は、いずれもω形状を呈することとなる。 Note that, even in a normal artery where no flap has occurred, in the HR @ vfl-TSE image, as shown in FIG. 6A, a high-luminance portion called an artifact may appear in the center of the blood flow region. . When the line segments L1 to L4 pass through the artifact, as shown in FIGS. 6B to 6E, each of the luminance distribution curves of the line segments L1 to L4 has an ω shape.
 ここで、フラップが存在している断面に4本未満の線分を設定した場合、線分の本数が少ないほど全ての線分がフラップを横切る確率が高くなる。そのため、線分の設定本数が4本未満の場合、輝度分布曲線がω形状を呈していたとしても、フラップによるものであるのか、アーチファクトによるものであるのかの判別が難しくなる。 Here, when less than four line segments are set in the cross section where the flap exists, the probability that all the line segments cross the flap increases as the number of line segments decreases. Therefore, when the set number of line segments is less than four, it is difficult to determine whether the luminance distribution curve is due to a flap or an artifact even if the luminance distribution curve has an ω shape.
 一方、線分を4本以上設定した場合、フラップが存在している断面では、例えば図4(a)に示すように、4本の線分L1~L4の一部のみが、偽腔からフラップを経て真腔に至るため、全ての線分L1~L4の輝度分布曲線がω形状を呈するわけではない。したがって、線分を4本以上設定することにより、正常な動脈の画像にアーチファクトが発生したとしても、当該動脈にフラップが存在すると誤って予測することを防止できる。これにより、線分の設定本数が4本未満の場合に比べ、動脈解離の予測精度をさらに向上させることができる。 On the other hand, when four or more line segments are set, only a part of the four line segments L1 to L4 is removed from the false lumen in the section where the flap exists, as shown in FIG. , The brightness distribution curves of all the line segments L1 to L4 do not necessarily have an ω shape. Therefore, by setting four or more line segments, even if an artifact occurs in a normal artery image, it is possible to prevent erroneous prediction that a flap exists in the artery. This makes it possible to further improve the prediction accuracy of arterial dissection as compared to the case where the set number of line segments is less than four.
 (MRA元画像またはCTA元画像を用いる場合の予測)
 図7(a)は、開存タイプ動脈解離の動脈断面のMRA元画像またはCTA元画像に線分L1~L4が設定された状態を示しており、図7(b)~(e)は、それぞれ図7(a)に示す線分L1~L4における各輝度分布曲線を示すグラフである。MRA元画像およびCTA元画像ではいずれも、血流部分の輝度はフラップよりも高くなる。そのため、偽腔からフラップを経て真腔に至る線分では、輝度が中(血管壁)→高(血流)→中(フラップ)→高(血流)→中(血管壁)と変化する。したがって、図7(c)および(d)のように、輝度が中→高→中→高→中と変化している輝度分布曲線は、全体として上下に反転したω形状(反転ω形状)を呈する。
(Prediction when using MRA original image or CTA original image)
FIG. 7A shows a state in which the line segments L1 to L4 are set in the MRA original image or the CTA original image of the arterial cross section of the patent type arterial dissection, and FIGS. 8 is a graph showing respective luminance distribution curves on line segments L1 to L4 shown in FIG. In both the MRA original image and the CTA original image, the luminance of the blood flow portion is higher than that of the flap. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to high (blood flow) → middle (flap) → high (blood flow) → middle (blood vessel wall). Therefore, as shown in FIGS. 7 (c) and 7 (d), the luminance distribution curve in which the luminance changes from medium → high → medium → high → medium has a vertically inverted ω shape (inverted ω shape) as a whole. Present.
 図8(a)は、偽腔内血腫形成タイプ動脈解離の動脈断面のMRA元画像に線分L1~L4が設定された状態を示しており、図8(b)~(e)は、それぞれ図8(a)に示す線分L1~L4における各輝度分布曲線を示すグラフである。MRA元画像では、血腫部分も血流部分と同様にフラップよりも輝度が高くなる。そのため、偽腔からフラップを経て真腔に至る線分では、輝度が中(血管壁)→高(血腫)→中(フラップ)→高(血流)→中(血管壁)と変化する。したがって、図8(c)および(d)のように、輝度が中→高→中→高→中と変化している輝度分布曲線は、全体として反転ω形状を呈する。 FIG. 8A shows a state in which the line segments L1 to L4 are set in the MRA original image of the arterial cross section of the pseudo-intraluminal hematoma formation type arterial dissection, and FIGS. 8B to 8E respectively. FIG. 9 is a graph showing each luminance distribution curve in the line segments L1 to L4 shown in FIG. In the MRA original image, the brightness of the hematoma portion is higher than that of the flap similarly to the blood flow portion. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to high (hematoma) → middle (flap) → high (blood flow) → middle (blood vessel wall). Therefore, as shown in FIGS. 8C and 8D, the luminance distribution curve in which the luminance changes from middle to high to middle to high to middle has an inverted ω shape as a whole.
 このように、MRA元画像では、動脈にフラップが存在する場合、開存タイプ動脈解離であっても偽腔内血腫形成タイプ動脈解離であっても、輝度分布曲線の少なくともいずれかが反転ω形状を呈する。そのため、MRA元画像を用いる場合、フラップの存在は予測できるが、動脈解離のタイプは判別できない。 Thus, in the MRA original image, when a flap is present in the artery, at least one of the luminance distribution curves is inverted ω-shaped regardless of whether the artery is a patent type or a pseudo-intraluminal hematoma formation type. Present. Therefore, when an MRA original image is used, the presence of a flap can be predicted, but the type of arterial dissection cannot be determined.
 図9(a)は、偽腔内血腫形成タイプ動脈解離の動脈断面のCTA元画像に線分L1~L4が設定された状態を示しており、図9(b)~(e)は、それぞれ図9(a)に示す線分L1~L4における各輝度分布曲線を示すグラフである。CTA元画像では、血腫部分の輝度はフラップよりも低くなる。そのため、偽腔からフラップを経て真腔に至る線分では、輝度が中(血管壁)→低(血腫)→中(フラップ)→高(血流)→中(血管壁)と変化する。上述のように、実際の輝度分布曲線は丸みを帯びた曲線であるため、輝度分布曲線の中→高→中と変化している部分は、△(デルタ)形状を呈する。したがって、図9(c)および(d)のように、輝度が中→低→中→高→中と変化している輝度分布曲線は、△形状を呈する部分を含む。 FIG. 9A shows a state in which the line segments L1 to L4 are set in the CTA original image of the arterial cross section of the pseudo-intraluminal hematoma formation type arterial dissection, and FIG. 9B to FIG. 10 is a graph showing luminance distribution curves on line segments L1 to L4 shown in FIG. 9 (a). In the CTA original image, the brightness of the hematoma portion is lower than that of the flap. Therefore, in the line segment from the false lumen to the true lumen via the flap, the luminance changes from middle (blood vessel wall) to low (hematoma) → middle (flap) → high (blood flow) → middle (blood vessel wall). As described above, since the actual luminance distribution curve is a rounded curve, a portion where the luminance distribution curve changes from middle to high to middle has a △ (delta) shape. Therefore, as shown in FIGS. 9C and 9D, the luminance distribution curve in which the luminance changes from medium → low → medium → high → medium includes a portion exhibiting a △ shape.
 このように、CTA元画像では、開存タイプ動脈解離の場合、図7(c)および(d)に示すように、輝度分布曲線の少なくともいずれかが反転ω形状を呈し、偽腔内血腫形成タイプ動脈解離の場合、図9(c)および(d)に示すように、輝度分布曲線の少なくともいずれかが△形状を呈する部分を含む。よってユーザは、輝度分布曲線が反転ω形状を呈しているか否か、および、△形状を呈した部分を含むか否かに基づき、フラップの存在有無、および、動脈解離のタイプを予測することができる。 Thus, in the CTA original image, in the case of patent type arterial dissection, as shown in FIGS. 7C and 7D, at least one of the luminance distribution curves has an inverted ω shape, and pseudointracavitary hematoma formation In the case of type arterial dissection, as shown in FIGS. 9C and 9D, at least one of the luminance distribution curves includes a portion having a △ shape. Therefore, the user can predict the presence or absence of a flap and the type of arterial dissection based on whether or not the luminance distribution curve has an inverted ω shape and whether or not the portion has a △ shape. it can.
 (診断支援方法)
 図10は、本実施形態に係る診断支援方法の手順を示すフローチャートである。本実施形態に係る診断支援方法は、診断支援システム1によって実施される。
(Diagnosis support method)
FIG. 10 is a flowchart illustrating a procedure of the diagnosis support method according to the present embodiment. The diagnosis support method according to the present embodiment is performed by the diagnosis support system 1.
 ステップS1では、撮像装置2によって被検者の被検者の脳動脈の断面を含む画像を撮像する。 In step S1, the imaging device 2 captures an image including a cross section of the cerebral artery of the subject.
 ステップS2(画像取得ステップ)では、画像取得部341が、前記脳動脈の断面を含む画像を撮像装置2から取得する。 In step S2 (image acquisition step), the image acquisition unit 341 acquires an image including a cross section of the cerebral artery from the imaging device 2.
 ステップS3(線分設定ステップ)では、線分設定部342が、前記画像に含まれる断面を横切る1本以上の線分を設定する。本実施形態では、図4(a)等に示すように、4本の線分L1~L4を設定する。 In step S3 (line segment setting step), the line segment setting unit 342 sets one or more line segments that cross the cross section included in the image. In the present embodiment, as shown in FIG. 4A and the like, four line segments L1 to L4 are set.
 ステップS4(輝度分布演算ステップ)では、輝度分布演算部343が、線分L1~L4における輝度分布を演算する。 In step S4 (luminance distribution calculation step), the luminance distribution calculation unit 343 calculates the luminance distribution in the line segments L1 to L4.
 ステップS5では、曲線作成部344が、演算された前記輝度分布を示す輝度分布曲線を作成する。 In step S5, the curve creating unit 344 creates a brightness distribution curve indicating the calculated brightness distribution.
 ステップS6では、表示部33が、作成された前記輝度分布曲線を表示する。 In step S6, the display unit 33 displays the created luminance distribution curve.
 (総括)
 以上のように、本実施形態では、画像取得部341が取得した動脈の断面を含む画像に対し、線分設定部342が前記断面を横切る1本以上の線分を設定し、輝度分布演算部343が前記線分における輝度分布を演算し、曲線作成部344が前記輝度分布を示す輝度分布曲線を作成し、表示部33が前記輝度分布曲線を表示する。これにより、ユーザは、輝度分布曲線の形状に基づいて、脳動脈解離の有無を予測することができる。
(Summary)
As described above, in the present embodiment, for the image including the cross section of the artery acquired by the image acquisition unit 341, the line segment setting unit 342 sets one or more line segments that cross the cross section, and the luminance distribution calculation unit A calculation unit 343 calculates a luminance distribution in the line segment, a curve generation unit 344 generates a luminance distribution curve indicating the luminance distribution, and a display unit 33 displays the luminance distribution curve. This allows the user to predict the presence or absence of cerebral artery dissection based on the shape of the luminance distribution curve.
 画像がHR vfl-TSE画像である場合、ユーザは、輝度分布曲線がω形状を呈しているか否か、および、∫形状を呈した部分を含むか否かに基づき、フラップの存在有無、および、脳動脈解離のタイプを予測することができる。画像がCTA元画像である場合、ユーザは、輝度分布曲線が反転ω形状を呈しているか否か、および、△形状を呈した部分を含むか否かに基づき、フラップの存在有無、および、脳動脈解離のタイプを予測することができる。画像がMRA元画像である場合、ユーザは、脳動脈解離のタイプを予測することはできないが、輝度分布曲線が反転ω形状を呈しているか否かに基づき、フラップの存在有無、すなわち、脳動脈解離が生じているか否かを予測することができる。 If the image is an HR vfl-TSE image, the user can determine whether or not a flap exists based on whether the luminance distribution curve has an ω shape and whether or not the portion has a ∫ shape, The type of cerebral artery dissection can be predicted. When the image is the CTA original image, the user can determine whether or not the flap exists and whether or not the brain has a flap based on whether or not the luminance distribution curve has an inverted ω shape and whether or not the portion has a △ shape. The type of arterial dissection can be predicted. If the image is the MRA original image, the user cannot predict the type of cerebral artery dissection, but based on whether or not the luminance distribution curve has an inverted ω shape, the presence or absence of a flap, that is, the cerebral artery It can be predicted whether or not dissociation has occurred.
 したがって、診断支援装置3を用いることにより、医師や技師の技量による差が生じやすい画像の読影のみによる診断に比べ、脳動脈解離の診断精度を向上させることができる。 Therefore, the use of the diagnosis support apparatus 3 makes it possible to improve the diagnosis accuracy of cerebral artery dissection as compared with the diagnosis based on the interpretation of an image that is likely to differ depending on the skills of doctors and technicians.
 〔変形例〕
 以下、本実施形態の変形例について説明する。なお、本変形例において、既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
(Modification)
Hereinafter, a modified example of the present embodiment will be described. In the present modification, members having the same functions as those already described are denoted by the same reference numerals, and description thereof will be omitted.
 図11は、本実施形態の変形例に係る診断支援システム1’の構成を示すブロック図である。診断支援システム1’は、撮像装置2と、診断支援装置3’とを備えている。すなわち、診断支援システム1’は、図1に示す診断支援システム1において、診断支援装置3を診断支援装置3’に置き換えた構成である。 FIG. 11 is a block diagram showing a configuration of a diagnosis support system 1 'according to a modification of the present embodiment. The diagnosis support system 1 'includes an imaging device 2 and a diagnosis support device 3'. That is, the diagnosis support system 1 'has a configuration in which the diagnosis support device 3 is replaced with the diagnosis support device 3' in the diagnosis support system 1 shown in FIG.
 診断支援装置3’は、CPU(図示せず)と、主記憶装置(図示せず)と、補助記憶装置31と、入力部32と、表示部33と、制御部34’とを備えている。すなわち、診断支援装置3’は、図1に示す診断支援装置3において、制御部34を制御部34’に置き換えた構成である。 The diagnosis support device 3 'includes a CPU (not shown), a main storage device (not shown), an auxiliary storage device 31, an input unit 32, a display unit 33, and a control unit 34'. . That is, the diagnosis support device 3 'has a configuration in which the control unit 34 is replaced with a control unit 34' in the diagnosis support device 3 shown in FIG.
 制御部34’は、画像取得部341と、線分設定部342と、輝度分布演算部343と、予測部345とを備えている。すなわち、制御部34’は、図1に示す制御部34において、曲線作成部344を予測部345に置き換えた構成である。 The control unit 34 ’includes an image acquisition unit 341, a line segment setting unit 342, a luminance distribution calculation unit 343, and a prediction unit 345. That is, the control unit 34 ′ has a configuration in which the curve creation unit 344 is replaced by the prediction unit 345 in the control unit 34 shown in FIG.
 予測部345は、輝度分布演算部343によって演算された輝度分布に基づいて、疾患の有無、特に脳動脈解離の有無を予測する。すなわち、上記実施形態では、ユーザが表示部33に表示された輝度分布曲線の形状に基づいて脳動脈解離の有無を予測していたが、本変形例では、予測部345が、上記実施形態と同様の基準を用いて脳動脈解離の有無を予測する。 The prediction unit 345 predicts the presence or absence of a disease, in particular, the presence or absence of cerebral artery dissection based on the luminance distribution calculated by the luminance distribution calculation unit 343. That is, in the above embodiment, the user predicts the presence or absence of cerebral artery dissection based on the shape of the luminance distribution curve displayed on the display unit 33. However, in the present modification, the prediction unit 345 Using the same criteria, the presence or absence of cerebral artery dissection is predicted.
 例えば、医用画像がHR vfl-TSE画像であり、設定された線分の少なくとも1本において、輝度が中→低→中→低→中と変化している(すなわち、輝度分布曲線を作成した場合、全体としてω形状を呈する曲線となる)場合、予測部345は、開存タイプ動脈解離であると予測する。同様に、医用画像がHR vfl-TSE画像であり、設定された線分の少なくとも1本において、輝度が部分的に低→中→高、または高→中→低と変化している(すなわち、輝度分布曲線を作成した場合、∫形状を呈した部分を含む曲線となる)場合、予測部345は、偽腔内血腫形成タイプ動脈解離であると予測する。 For example, the medical image is an HR @ vfl-TSE image, and the luminance of at least one of the set line segments changes from medium to low to medium to low to medium (that is, when a luminance distribution curve is created). , A curve exhibiting an ω shape as a whole), the prediction unit 345 predicts a patent type arterial dissection. Similarly, the medical image is an HR @ vfl-TSE image, and in at least one of the set line segments, the luminance partially changes from low to medium to high or from high to medium to low (ie, In the case where the brightness distribution curve is created, a curve including a portion having a ∫ shape is obtained). In this case, the prediction unit 345 predicts that it is a pseudo-intracavity hematoma formation type arterial dissection.
 また、医用画像がMRA元画像であり、設定された線分の少なくとも1本において、輝度が中→高→中→高→中と変化している(すなわち、輝度分布曲線を作成した場合、全体として反転ω形状を呈する曲線となる)場合、予測部345は、動脈解離であると予測する。なお、医用画像がMRA元画像である場合、予測部345は、動脈解離のタイプが開存タイプか偽腔内血腫形成タイプかの予測は行わない。 In addition, the medical image is the MRA original image, and the brightness of at least one of the set line segments changes from medium to high to medium to high to medium. In this case, the prediction unit 345 predicts that it is arterial dissection. When the medical image is the MRA original image, the prediction unit 345 does not predict whether the type of arterial dissection is a patent type or a pseudointracavitary hematoma formation type.
 また、医用画像がCTA元画像であり、設定された線分の少なくとも1本において、輝度が中→高→中→高→中と変化している(すなわち、輝度分布曲線を作成した場合、全体として反転ω形状を呈する曲線となる)場合、予測部345は、開存タイプ動脈解離であると予測する。同様に、医用画像がCTA元画像であり、設定された線分の少なくとも1本において、輝度が部分的に中→高→中と変化している(すなわち、輝度分布曲線を作成した場合、△形状を呈した部分を含む曲線となる)場合、予測部345は、偽腔内血腫形成タイプ動脈解離であると予測する。 Also, the medical image is a CTA original image, and the luminance of at least one of the set line segments changes from medium to high to medium to high to medium (that is, when a luminance distribution curve is created, In this case, the prediction unit 345 predicts a patent type arterial dissection. Similarly, the medical image is a CTA original image, and at least one of the set line segments has a luminance that partially changes from medium to high to medium (that is, when a luminance distribution curve is created, In the case where the curve includes a portion having a shape), the prediction unit 345 predicts that the intraluminal hematoma formation type arterial dissection is to be performed.
 このように、予測部345は、線分における輝度の変化パターンに基づいて、動脈解離の有無を予測することができる。予測部345による予測結果は、表示部33に表示される。これにより、診断支援装置3’は、ユーザによる脳動脈解離の診断を支援することができる。 予 測 Thus, the prediction unit 345 can predict the presence or absence of arterial dissection based on the luminance change pattern in the line segment. The prediction result by the prediction unit 345 is displayed on the display unit 33. Thereby, the diagnosis support apparatus 3 'can support the diagnosis of cerebral artery dissection by the user.
 さらなる変形例として、予測部345は人工知能(AI)を用いて予測することが好ましい。この場合、多数の被検者の医用画像について、画像取得部341、線分設定部342および輝度分布演算部343を用いて、動脈の断面に設定した各線分の輝度分布を演算し、各輝度分布のデータを各被検者の確定診断結果と対応付けて教師データを作成する。この教師データに基づき、例えばニューラルネットワーク等を用いて機械学習を行い、学習済みアルゴリズムによって予測部345を実現する。なお、人工知能は、ニューラルネットワークに限らず、あらゆる周知の人工知能技術に基づくものを用いることができる。 As a further modification, it is preferable that the prediction unit 345 performs prediction using artificial intelligence (AI). In this case, the luminance distribution of each line set on the cross section of the artery is calculated using the image acquisition unit 341, the line segment setting unit 342, and the luminance distribution calculating unit 343 for the medical images of many subjects. Teacher data is created by associating the distribution data with the definitive diagnosis result of each subject. Based on the teacher data, machine learning is performed using, for example, a neural network or the like, and the prediction unit 345 is realized by a learned algorithm. The artificial intelligence is not limited to the neural network, and any known artificial intelligence technology can be used.
 一般に、動脈の断面に設定する線分が多くなるほど予測精度は向上するが、上記実施形態において説明したユーザによる予測では、輝度分布曲線が多くなるため、かえって予測が困難になる。これに対し、予測部345による予測(特に人工知能を用いた予測)では、線分を多く設定することにより精度の高い予測が可能となる。 Generally, the prediction accuracy improves as the number of line segments set in the cross section of the artery increases. However, in the prediction performed by the user described in the above embodiment, the luminance distribution curve increases, which makes prediction more difficult. On the other hand, in the prediction by the prediction unit 345 (particularly, prediction using artificial intelligence), highly accurate prediction is possible by setting many line segments.
 なお、血管の断面画像が動脈解離と類似する疾患として、アテローム性動脈硬化がある。アテローム性動脈硬化を発症した血管では、内部にコレステロール等が蓄積したプラーク(粥腫)が形成される。そのため、血管の断面画像は、図5(a)において、偽腔内の血腫をコレステロール等に置き換えたものに近似する。よって、HR vfl-TSE画像では、設定された線分の少なくとも1本において、輝度が部分的に低→中→高、または高→中→低と変化し、輝度分布曲線を作成した場合、偽腔内血腫形成タイプ動脈解離と同様、∫形状を呈した部分を含む曲線となる。 疾患 Atherosclerosis is a disease in which a cross-sectional image of a blood vessel is similar to arterial dissection. In blood vessels that have developed atherosclerosis, plaques (atheromas) in which cholesterol and the like are accumulated are formed. Therefore, in FIG. 5A, the cross-sectional image of the blood vessel approximates that obtained by replacing the hematoma in the false cavity with cholesterol or the like. Therefore, in the HR @ vfl-TSE image, in at least one of the set line segments, the luminance partially changes from low to medium to high or from high to medium to low, and when a luminance distribution curve is created, Similar to the intraluminal hematoma formation type arterial dissection, a curve including a ∫-shaped portion is obtained.
 ここで、アテローム性動脈硬化の輝度分布曲線は、偽腔内血腫形成タイプ動脈解離の輝度分布曲線に比べ、輝度の最大値と最小値との差(以下、輝度差(signal difference)と称する)が小さい傾向にある(図12参照)。そこで、予測部345は、HR vfl-TSE画像の血管部分に設定された線分の少なくとも1本において、輝度が部分的に低→中→高、または高→中→低と変化した場合、さらに輝度分布曲線の輝度差に基づいて、偽腔内血腫形成タイプ動脈解離であるかアテローム性動脈硬化であるかを予測することができる。 Here, the brightness distribution curve of atherosclerosis is a difference between the maximum value and the minimum value of the brightness (hereinafter, referred to as a signal difference) as compared to the brightness distribution curve of a pseudointracavitary hematoma-forming artery dissection. Tend to be small (see FIG. 12). Therefore, the prediction unit 345 further determines that at least one of the line segments set in the blood vessel portion of the HR @ vfl-TSE image has changed in luminance from low to medium to high or from high to medium to low. Based on the luminance difference in the luminance distribution curve, it is possible to predict whether it is pseudo-intraluminal hematoma formation type arterial dissection or atherosclerosis.
 また、図12に示すように、輝度分布曲線の輝度差は、
偽腔内血腫形成タイプ動脈解離>アテローム性動脈硬化>開存タイプ動脈解離
という傾向がある。そのため、予測部345は、輝度分布曲線の輝度差のみによっても、上記3つの疾患の有無を予測することができる。ただし、予測精度を高めるためには、予測部345は、線分における輝度の変化パターンおよび輝度差の両方に基づいて、疾患の有無を予測することが好ましい。
Further, as shown in FIG. 12, the luminance difference of the luminance distribution curve is
There is a tendency for pseudointrahematoma-forming arterial dissection>atherosclerosis> patent type arterial dissection. Therefore, the prediction unit 345 can predict the presence or absence of the above three diseases based only on the luminance difference of the luminance distribution curve. However, in order to increase the prediction accuracy, it is preferable that the prediction unit 345 predicts the presence or absence of a disease based on both the luminance change pattern and the luminance difference in the line segment.
 〔付記事項〕
 本発明は上記実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる形態も本発明の技術的範囲に含まれる。
[Appendix]
The present invention is not limited to the above-described embodiment, and various changes can be made within the scope shown in the claims, and a form obtained by appropriately combining the technical means disclosed in the embodiment is also a technology of the present invention. Included in the target range.
 以下、本発明の実施例について説明するが、本発明はこれに限定されない。
 本実施例では、開存タイプ動脈解離の患者26名、偽腔内血腫形成タイプ動脈解離の患者28名およびアテローム性動脈硬化の患者15名のHR vfl-TSE画像を取得した。そして、各画像における血管部分に4本の線分を設定し、当該線分における輝度分布を演算した。さらに各輝度分布について、輝度の最大値と最小値との差(輝度差)を算出した。
Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
In the present example, HR vfl-TSE images were obtained for 26 patients with patent type arterial dissection, 28 patients with pseudointracavitary hematoma-forming type arterial dissection, and 15 patients with atherosclerosis. Then, four line segments were set in the blood vessel portion in each image, and the luminance distribution in the line segments was calculated. Further, for each luminance distribution, a difference (luminance difference) between the maximum value and the minimum value of the luminance was calculated.
 図12は、開存タイプ動脈解離(ω)、偽腔内血腫形成タイプ動脈解離(∫)およびアテローム性動脈硬化(p∫)の各輝度分布曲線における輝度差の分布を示す箱ひげ図である。同図に示されるように、開存タイプ動脈解離、偽腔内血腫形成タイプ動脈解離およびアテローム性動脈硬化の各輝度分布曲線における輝度差は、四分位範囲が互いに重複しておらず、
偽腔内血腫形成タイプ動脈解離>アテローム性動脈硬化>開存タイプ動脈解離
という傾向がある。よって、輝度分布曲線の輝度差が、上記3つの疾患の有無を予測するための指標になり得ることが分かった。
FIG. 12 is a box-and-whisker plot showing the distribution of luminance differences in the luminance distribution curves of patent-type arterial dissection (ω), pseudo-intraluminal hematoma-forming arterial dissection (∫), and atherosclerosis (p∫). . As shown in the figure, the brightness difference in each brightness distribution curve of the patent type arterial dissection, pseudointracavitary hematoma formation type arterial dissection and atherosclerosis, the interquartile ranges do not overlap each other,
There is a tendency for pseudointrahematoma-forming arterial dissection>atherosclerosis> patent type arterial dissection. Therefore, it was found that the luminance difference between the luminance distribution curves could be an index for predicting the presence or absence of the above three diseases.
 上記実施形態では、予測対象となる疾患が脳動脈解離およびアテローム性動脈硬化であったが、血管疾患であれば特に限定されない。 In the above embodiment, the diseases to be predicted are cerebral artery dissection and atherosclerosis, but are not particularly limited as long as they are vascular diseases.
1   診断支援システム
1’  診断支援システム
2   撮像装置
3   診断支援装置
3’  診断支援装置
31  補助記憶装置
32  入力部
33  表示部
34  制御部
34’ 制御部
341 画像取得部
342 線分設定部
343 輝度分布演算部
344 曲線作成部
345 予測部
L1~L4 線分
P   診断支援プログラム
DESCRIPTION OF SYMBOLS 1 Diagnosis support system 1 'Diagnosis support system 2 Imaging device 3 Diagnosis support device 3' Diagnosis support device 31 Auxiliary storage device 32 Input unit 33 Display unit 34 Control unit 34 'Control unit 341 Image acquisition unit 342 Line segment setting unit 343 Luminance distribution Calculation unit 344 Curve creation unit 345 Prediction units L1 to L4 Line segment P Diagnosis support program

Claims (15)

  1.  血管疾患の診断を支援する診断支援装置であって、
     前記血管の断面を含む画像を取得する画像取得部と、
     前記断面を横切る1本以上の線分を設定する線分設定部と、
     前記線分における輝度分布を演算する輝度分布演算部と、
    を備えた、診断支援装置。
    A diagnosis support device that supports diagnosis of a vascular disease,
    An image acquisition unit that acquires an image including a cross section of the blood vessel,
    A line segment setting unit that sets one or more line segments that cross the cross section;
    A luminance distribution calculation unit that calculates a luminance distribution in the line segment;
    , A diagnosis support device.
  2.  前記輝度分布を示す輝度分布曲線を作成する曲線作成部と、
     前記輝度分布曲線を表示する表示部と、
    をさらに備えた、請求項1に記載の診断支援装置。
    A curve creation unit that creates a brightness distribution curve indicating the brightness distribution,
    A display unit that displays the luminance distribution curve;
    The diagnosis support device according to claim 1, further comprising:
  3.  前記輝度分布に基づいて、前記疾患の有無を予測する予測部をさらに備えた、請求項1または2に記載の診断支援装置。 The diagnosis support apparatus according to claim 1 or 2, further comprising a prediction unit that predicts the presence or absence of the disease based on the luminance distribution.
  4.  前記予測部は、前記線分における輝度の変化パターンに基づいて、前記疾患の有無を予測する、請求項3に記載の診断支援装置。 The diagnosis support device according to claim 3, wherein the prediction unit predicts the presence or absence of the disease based on a luminance change pattern of the line segment.
  5.  前記予測部は、前記線分における輝度の最大値と最小値との差に基づいて、前記疾患の有無を予測する、請求項3または4に記載の診断支援装置。 5. The diagnosis support apparatus according to claim 3, wherein the prediction unit predicts the presence or absence of the disease based on a difference between a maximum value and a minimum value of luminance in the line segment.
  6.  前記予測部は人工知能を用いて予測する、請求項3に記載の診断支援装置。 The diagnosis support apparatus according to claim 3, wherein the prediction unit performs prediction using artificial intelligence.
  7.  前記血管は脳動脈である、請求項1から6のいずれかに記載の診断支援装置。 7. The diagnosis support device according to claim 1, wherein the blood vessel is a cerebral artery.
  8.  前記疾患は動脈解離である、請求項7に記載の診断支援装置。 The diagnosis support apparatus according to claim 7, wherein the disease is arterial dissection.
  9.  前記線分設定部は、少なくとも1箇所で互いに交差する4本以上の前記線分を設定する、請求項1から8のいずれかに記載の診断支援装置。 The diagnosis support device according to any one of claims 1 to 8, wherein the line segment setting unit sets four or more line segments that intersect each other at at least one location.
  10.  前記線分は、前記断面の中心領域を通過する、請求項9に記載の診断支援装置。 The diagnosis support apparatus according to claim 9, wherein the line segment passes through a central region of the cross section.
  11.  前記画像は、局所励起を用いた3T脂肪抑制T1強調画像である、請求項1から10のいずれかに記載の診断支援装置。 The diagnosis support apparatus according to any one of claims 1 to 10, wherein the image is a 3T fat suppression T1-weighted image using local excitation.
  12.  前記画像は、CTA元画像である、請求項1から10のいずれかに記載の診断支援装置。 The diagnosis support apparatus according to any one of claims 1 to 10, wherein the image is a CTA original image.
  13.  前記画像は、MRA元画像である、請求項1から10のいずれかに記載の診断支援装置。 The diagnostic support apparatus according to any one of claims 1 to 10, wherein the image is an MRA original image.
  14.  血管疾患の診断を支援する診断支援方法であって、
     前記血管の断面を含む画像を取得する画像取得ステップと、
     前記断面を横切る1本以上の線分を設定する線分設定ステップと、
     前記断面の前記線分における輝度分布を演算する輝度分布演算ステップと、
    を備えた、診断支援方法。
    A diagnosis support method for supporting diagnosis of a vascular disease,
    An image acquisition step of acquiring an image including a cross section of the blood vessel,
    A line segment setting step of setting one or more line segments crossing the cross section;
    A luminance distribution calculating step of calculating a luminance distribution in the line segment of the cross section;
    , A diagnostic support method.
  15.  血管疾患の診断を支援する診断支援装置としてコンピュータを動作させる診断支援プログラムであって、
     前記血管の断面を含む画像を取得する画像取得部、
     前記断面を横切る1本以上の線分を設定する線分設定部、および、
     前記断面の前記線分における輝度分布を演算する輝度分布演算部、
    としてコンピュータを動作させる診断支援プログラム。
    A diagnosis support program that operates a computer as a diagnosis support device that supports diagnosis of a vascular disease,
    An image acquisition unit that acquires an image including a cross section of the blood vessel,
    A line segment setting unit that sets one or more line segments that cross the cross section, and
    A luminance distribution calculation unit that calculates a luminance distribution in the line segment of the cross section,
    A diagnostic support program that operates a computer as a computer.
PCT/JP2019/034623 2018-09-07 2019-09-03 Diagnosis support device, diagnosis support method and diagnosis support program WO2020050272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541238A JP7393798B2 (en) 2018-09-07 2019-09-03 Diagnosis support device, diagnosis support method, and diagnosis support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018167734 2018-09-07
JP2018-167734 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050272A1 true WO2020050272A1 (en) 2020-03-12

Family

ID=69722307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034623 WO2020050272A1 (en) 2018-09-07 2019-09-03 Diagnosis support device, diagnosis support method and diagnosis support program

Country Status (2)

Country Link
JP (1) JP7393798B2 (en)
WO (1) WO2020050272A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275141A (en) * 2006-04-03 2007-10-25 Hitachi Medical Corp Image display device
JP2010274059A (en) * 2009-06-01 2010-12-09 Toshiba Corp Image diagnostic apparatus, image processing method, and x-ray ct apparatus
JP2013183875A (en) * 2012-03-07 2013-09-19 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic diagnosis assisting method
JP2017074320A (en) * 2015-10-16 2017-04-20 キヤノンマーケティングジャパン株式会社 Medical image processing device, program mountable on medical image processing device, and medical image processing method
US20190105008A1 (en) * 2017-10-10 2019-04-11 International Business Machines Corporation Detection and characterization of aortic pathologies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275141A (en) * 2006-04-03 2007-10-25 Hitachi Medical Corp Image display device
JP2010274059A (en) * 2009-06-01 2010-12-09 Toshiba Corp Image diagnostic apparatus, image processing method, and x-ray ct apparatus
JP2013183875A (en) * 2012-03-07 2013-09-19 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic diagnosis assisting method
JP2017074320A (en) * 2015-10-16 2017-04-20 キヤノンマーケティングジャパン株式会社 Medical image processing device, program mountable on medical image processing device, and medical image processing method
US20190105008A1 (en) * 2017-10-10 2019-04-11 International Business Machines Corporation Detection and characterization of aortic pathologies

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHANG, CHIH-PING: "The role of False Lumen Size in Prediction of In-Hospital Complications After Acute Type B Aortic Dissection", JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, vol. 52, no. 14, 2008, pages 1170 - 1176, XP029650098, DOI: 10.1016/j.jacc.2008.06.034 *
KATZ, WILLIAM T.: "AORTA DETECTION IN MAGNETIC RESONANCE IMAGE USING MULTIPLE ARTIFICIAL NEURAL NETWORKS", ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, vol. 12, no. 3, 1990, pages 1302 - 1303, XP055689664 *
KAWAHARA, NOBUTAKA: "Medical Imaging Class for Clinical Residents, Cranial nerve area", IRYO KAGAKU SYA, 17 March 2008 (2008-03-17), pages 80 - 85 *
KOVACS, TAMAS: "Automatic Segmentation of the Vessel Lumen from 3D CTA Images of Aortic Dissection", BILDVERARBEITUNG FUER DIE MEDIZIN, vol. 2006, 2006, pages 161 - 165, XP002479741, DOI: 10.1007/3-540-32137-3_33 *
LEE, NOAH: "True-false lumen segmentation of aortic dissection using multi-scale wavelet analysis and generative-discriminative model matching", PROC. SPIE, MEDICAL IMAGING 2008, vol. 6915, 17 March 2008 (2008-03-17), pages 69152V - 1-11, XP055689660 *
LI, JIANNING: "Multi-Task Deep Convolutional Neural Network for the Segmentation of Type B Aortic Dissection", 26 June 2018 (2018-06-26), XP081039883, Retrieved from the Internet <URL:http://arxiv.org/abs/1806.09860vl> [retrieved on 20191118] *
MORARIU, COSMIN ADRIAN: "Sequential vs. Batch Machine-Learning with Evolutionary Hyperparameter Optimization for Segmenting Aortic Dissection Thrombus", 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, 2016, pages 1189 - 1194, XP033085749, DOI: 10.1109/ICPR.2016.7899798 *
TAKEHARA, YASUO: "Magnetic Resonance Angiography of the Aorta", THE JOURNAL OF JAPANESE COLLEGE OF ANGIOLOGY , JAPANESE COLLEGE OF ANGIOLOGY, vol. 49, no. 6, 22 January 2010 (2010-01-22), pages 503 - 516, XP055689667 *
WANG, DUO: "Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method", PROC. SPIE , MEDICAL IMAGING 2018, vol. 10574, 2 March 2018 (2018-03-02), pages 1057424 - 1-8, XP060103102 *

Also Published As

Publication number Publication date
JP7393798B2 (en) 2023-12-07
JPWO2020050272A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US20210338333A1 (en) Systems and methods for treatment planning based on plaque progression and regression curves
Kubo et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy
Harloff et al. 3D blood flow characteristics in the carotid artery bifurcation assessed by flow‐sensitive 4D MRI at 3T
Angelini Novel imaging of coronary artery anomalies to assess their prevalence, the causes of clinical symptoms, and the risk of sudden cardiac death
Baliga et al. The role of imaging in aortic dissection and related syndromes
Markl et al. Analysis of pulse wave velocity in the thoracic aorta by flow‐sensitive four‐dimensional MRI: Reproducibility and correlation with characteristics in patients with aortic atherosclerosis
Achenbach Computed tomography coronary angiography
Petraco et al. Fractional flow reserve–guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions
Van Ooij et al. A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four‐dimensional flow MRI
Bhave et al. Multimodality imaging of thoracic aortic diseases in adults
US7340083B2 (en) Method and system for atherosclerosis risk scoring
JP5436125B2 (en) Diagnosis support apparatus, operation method thereof, and diagnosis support program
Cohen-Adad et al. Quantitative MRI of the spinal cord
Allen et al. Detection and hemodynamic evaluation of flap fenestrations in type B aortic dissection with 4D flow MRI: comparison with conventional MRI and CT angiography
CN113261939A (en) Machine-based risk prediction for perioperative myocardial infarction or complications from medical data
KR102190431B1 (en) Method and Apparatus for Diagnosing Vascular Disease
Tian et al. Visualizing wall enhancement over time in unruptured intracranial aneurysms using 3D vessel wall imaging
Diedrich et al. Validation of an arterial tortuosity measure with application to hypertension collection of clinical hypertensive patients
Kilinc et al. Hemodynamic evaluation of type B aortic dissection using compressed sensing accelerated 4D flow MRI
CN113939224B (en) Vertebral artery interlayer risk assessment method, computer equipment and storage medium
US20230143229A1 (en) Method for diagnostic ultrasound of carotid artery
WO2020050272A1 (en) Diagnosis support device, diagnosis support method and diagnosis support program
Gasteiger Visual exploration of cardiovascular hemodynamics
JP2007135683A (en) Diagnostic supporting apparatus
JP7315657B2 (en) Disease diagnosis and treatment support system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858222

Country of ref document: EP

Kind code of ref document: A1