WO2020050223A1 - Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detection device - Google Patents

Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detection device Download PDF

Info

Publication number
WO2020050223A1
WO2020050223A1 PCT/JP2019/034456 JP2019034456W WO2020050223A1 WO 2020050223 A1 WO2020050223 A1 WO 2020050223A1 JP 2019034456 W JP2019034456 W JP 2019034456W WO 2020050223 A1 WO2020050223 A1 WO 2020050223A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
detection
wave detector
region
detector according
Prior art date
Application number
PCT/JP2019/034456
Other languages
French (fr)
Japanese (ja)
Inventor
絵梨 竹内
浩希 岡田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020050223A1 publication Critical patent/WO2020050223A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present disclosure relates to an electromagnetic wave detector, an imaging device, a distance measuring device, and an electromagnetic wave detection device.
  • the electromagnetic wave detector includes an electromagnetic wave detection element and an electromagnetic wave focusing element.
  • the electromagnetic wave detection element includes a substrate having a plurality of detection regions, and an output unit that outputs a signal based on the electromagnetic waves detected in each of the detection regions as one signal.
  • the electromagnetic wave focusing element is located on the substrate so as to overlap with each of the detection regions.
  • the electromagnetic wave converging element converges an incident electromagnetic wave to the corresponding detection area.
  • the imaging device includes an electromagnetic wave detector.
  • the distance measuring device includes an electromagnetic wave detector.
  • the electromagnetic wave detection device includes a traveling unit and an electromagnetic wave detector.
  • the advancing section has a plurality of pixels arranged along a reference plane.
  • the advancing unit causes the electromagnetic wave incident on the reference plane to travel in a specific direction for each of the pixels.
  • the electromagnetic wave detector detects an electromagnetic wave traveling in the specific direction.
  • FIG. 3 is a diagram illustrating an example of a traveling direction of an electromagnetic wave incident on an electromagnetic wave detector.
  • FIG. 5 is a diagram illustrating a configuration of an electromagnetic wave detector according to Comparative Example 1. It is a figure showing the example of composition of the electromagnetic wave detector concerning other embodiments. It is a figure showing the example of composition of the electromagnetic wave detection device concerning one embodiment. It is a block diagram showing the example of composition of the electromagnetic wave detection device concerning one embodiment.
  • FIG. 9 is a diagram illustrating an electromagnetic wave detection device including an electromagnetic wave detector according to Comparative Example 2.
  • a sensor for detecting electromagnetic waves the larger the area of the region for detecting the incident electromagnetic waves, the more the electromagnetic waves incident on the region for detecting the electromagnetic waves.
  • the dark current flowing when the electromagnetic wave is not incident on the region increases.
  • the larger the area of the region for detecting electromagnetic waves the longer the perimeter of the region. The longer the perimeter of the region where electromagnetic waves are detected, the greater the dark current that flows when no electromagnetic waves are incident on that region.
  • the depletion layer increases as the area of the region for detecting electromagnetic waves increases.
  • the longer the peripheral length of the region for detecting the electromagnetic wave the larger the depletion layer.
  • the larger the depletion layer the larger the capacitance between the terminals of the photodiode.
  • the larger the capacitance between the terminals of the photodiode the lower the response speed of the photodiode.
  • the electromagnetic wave detector 10 converges an electromagnetic wave incident on a predetermined range, thereby forming a region having an area smaller than the area of the predetermined range. Detects electromagnetic waves. By doing so, the area of the region where the electromagnetic wave is detected is made smaller than the area of the region where the electromagnetic wave enters. As a result, it is possible to reduce the dark current while detecting electromagnetic waves incident on a wide range. Further, when the region for detecting the electromagnetic wave is constituted by a photodiode, the response speed of the photodiode can be increased.
  • the electromagnetic wave detector 10 includes an electromagnetic wave detecting element 20 and an electromagnetic wave converging element 30.
  • the electromagnetic wave detecting element 20 includes the substrate 23.
  • the substrate 23 has a detection region 21 for detecting an electromagnetic wave incident from the positive direction of the Z axis.
  • the other area of the detection area 21 of the substrate 23 is also called a non-detection area 22.
  • the substrate 23 has a substrate surface 23a whose normal is the Z axis.
  • the detection area 21 and the non-detection area 22 are arranged on the substrate surface 23a.
  • the substrate 23 has a plurality of detection areas 21. Each detection area 21 may be surrounded by the non-detection area 22 on the substrate surface 23a.
  • the substrate 23 may be a semiconductor substrate such as silicon.
  • the electromagnetic wave focusing element 30 is located corresponding to each detection area 21.
  • the electromagnetic wave focusing element 30 is positioned so as to overlap with the detection area 21 on the side in the positive direction of the Z axis.
  • the electromagnetic wave converging element 30 converges an electromagnetic wave incident from the positive Z-axis direction toward the detection area 21.
  • the electromagnetic wave converging element 30 changes the traveling direction of the electromagnetic wave coming from the substrate surface 23 a toward the non-detection region 22 so as to reach the detection region 21. In this way, the electromagnetic wave detector 10 can detect the electromagnetic wave coming toward the non-detection region 22 in the detection region 21. As a result, the electromagnetic wave detector 10 can detect an electromagnetic wave incident on a wider area than the detection area 21.
  • the electromagnetic wave focusing element 30 may include a lens.
  • the electromagnetic wave focusing element 30 may include a mirror.
  • the electromagnetic wave focusing element 30 may include an element that can change the traveling direction of the electromagnetic wave, such as a diffraction grating, a metamaterial, or a metasurface.
  • the electromagnetic wave focusing element 30 may be configured as an element array in which a plurality of elements are integrated.
  • the electromagnetic wave focusing element 30 may include a spherical lens, an aspherical lens, a cylindrical lens, or the like.
  • the shape of the lens corresponding to each detection region 21 may be the same in each detection region 21 or may be different in at least some of the detection regions 21.
  • the detection area 21 converts the energy of the incident electromagnetic wave into electric energy.
  • the detection area 21 generates a voltage or current signal based on an incident electromagnetic wave.
  • the signal generated in the detection area 21 is determined based on the wavelength or the intensity of the electromagnetic wave incident on the detection area 21.
  • the detection region 21 may constitute a photodiode (PD) including a junction (pn junction) between the p-type region 24 and the n-type region 25 provided on the substrate 23, as illustrated in FIG.
  • the p-type region 24 is located on the positive side of the Z-axis with respect to the n-type region 25.
  • the position of the p-type region 24 and the position of the n-type region 25 may be exchanged.
  • the layer of the p-type region 24 may be stacked on the n-type region 25.
  • the layer of the p-type region 24 may be configured as a diffusion layer for the n-type region 25.
  • the detection region 21 may include a region where a pn junction exists in plan view of the substrate surface 23a.
  • the non-detection region 22 may include a region where no pn junction exists in a plan view of the substrate surface 23a.
  • the electromagnetic wave detecting element 20 may further include a first electrode 26 electrically connected to the p-type region 24 and a second electrode 27 electrically connected to the n-type region 25.
  • the detection region 21 may output a signal based on the incident electromagnetic wave through the first electrode 26 and the second electrode 27.
  • the electromagnetic wave detection element 20 may be configured as an APD (Avalanche Photo-Diode) or a SPAD (Single Photon Avalanche Diode).
  • the electromagnetic wave detection element 20 may be configured as a SiPM (Silicon Photo-Multiplier) or MPPC (Multi-Pixel Photon Counter).
  • the electromagnetic wave detection element 20 may be configured as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the electromagnetic wave detection element 20 further includes an output unit 40.
  • the output unit 40 is connected to the plurality of detection regions 21 in parallel.
  • the output unit 40 may be connected to the p-type region 24 and the n-type region 25 via the first electrode 26 and the second electrode 27.
  • the output unit 40 acquires a signal output from each detection region 21 based on the incident electromagnetic wave.
  • the output unit 40 outputs a signal obtained from each detection area 21 as one signal.
  • the output unit 40 outputs signals obtained from the plurality of detection areas 21 as one signal, so that the electromagnetic wave detection element 20 functions as a detection element array that outputs signals output from each detection area 21 as separate signals. Instead, it functions as a single detection element.
  • the electromagnetic wave detection element 20 may be a single semiconductor element.
  • the electromagnetic wave detection element 20 may be a single light detection element.
  • the output unit 40 may output a signal to another component of the electromagnetic wave detector 10 or another device different from the electromagnetic wave detector 10.
  • an electromagnetic wave traveling along the path 50a or 50b enters the electromagnetic wave detector 10.
  • the electromagnetic wave traveling along the path 50a travels as it is, it enters the detection area 21.
  • the electromagnetic wave traveling along the path 50b proceeds as it is, it enters the non-detection region 22.
  • the electromagnetic wave converging element 30 changes the traveling direction of the electromagnetic wave traveling along the path 50b to the direction traveling along the path 50c. By doing so, an electromagnetic wave that enters the non-detection region 22 when traveling as it is can enter the detection region 21.
  • the electromagnetic wave detector 10 can detect more electromagnetic waves.
  • the electromagnetic wave detector 90 according to Comparative Example 1 shown in FIG. 6 does not include the electromagnetic wave focusing element 30.
  • the electromagnetic wave detector 90 according to the comparative example has a larger detection area 21 than the electromagnetic wave detector 10 according to the present embodiment, so that the electromagnetic wave traveling along the path 50b enters the detection area 21 with respect to the electromagnetic wave detector 90. Having. When the detection region 21 is large, the area of the pn junction becomes large. The dark current flowing through the pn junction increases as the area of the pn junction increases. That is, in the comparative example, the detection region 21 is expanded to detect the same amount of electromagnetic waves as the electromagnetic wave detector 10 according to the present embodiment, resulting in an increase in dark current.
  • the electromagnetic wave detector 10 according to the present embodiment includes the electromagnetic wave converging element 30 and has a smaller detection area 21 than the comparative example, but can detect the same amount of electromagnetic waves as the comparative example. As a result, the electromagnetic wave detector 10 according to the present embodiment can reduce dark current while detecting electromagnetic waves incident on a wide area.
  • each detection area 21 may be electrically connected by the conductor 28.
  • the conductor 28 may include a conductive material such as a metal.
  • the conductor 28 may be the p-type region 24.
  • the conductor 28 may be the n-type region 25.
  • the electromagnetic wave detection device 100 includes an electromagnetic wave detector 10 and a traveling unit 70.
  • the electromagnetic wave detection device 100 causes the electromagnetic wave emitted from the detection target 85 to enter the traveling unit 70, changes the traveling direction in the traveling unit 70, and detects the traveling direction with the electromagnetic wave detector 10.
  • the advancing unit 70 includes a reference plane 71 and a plurality of pixels 72 located along the reference plane 71. It can be said that the plurality of pixels 72 are arranged along the reference plane 71.
  • the pixel 72 can change the traveling direction of the electromagnetic wave incident on the reference surface 71.
  • the pixel 72 can transition to one of a first state in which the electromagnetic wave incident on the reference surface 71 travels in a predetermined direction and a second state in which the electromagnetic wave travels in a direction different from the predetermined direction.
  • the progression unit 70 may cause each pixel 72 to transition to one of the first state and the second state.
  • the progression unit 70 may further include a processor that controls the transition of the state of each pixel 72.
  • Each pixel 72 makes the electromagnetic wave incident on the reference surface 71 travel in a specific direction by making a transition to any one of the first state and the second state.
  • the pixel 72 that has transitioned to the first state is represented by a solid line as the pixel 72a.
  • the pixel 72 that has transitioned to the second state is indicated by a broken line as the pixel 72b.
  • the pixel 72 may have a reflection surface that reflects an electromagnetic wave incident on the reference surface 71.
  • the advancing unit 70 may determine the direction in which the electromagnetic wave incident on the reference surface 71 is reflected by controlling the direction of the reflection surface of each pixel 72.
  • the direction of the reflection surface of each pixel 72 may be associated with each of the first state and the second state. That is, the advancing unit 70 determines the direction in which the electromagnetic wave is reflected by changing the direction of the reflection surface of the pixel 72 between when the transition is made to the first state and when the transition is made to the second state. May do it.
  • the advancing unit 70 may include a mirror device such as a DMD (Digital Mirror Device) or a MEMS (Micro Electro Mechanical Systems) mirror.
  • the pixel 72 may be a mirror element.
  • the reference surface 71 may be a mirror element arrangement surface.
  • the pixel 72 of the advancing unit 70 may have a shutter including a reflection surface that reflects an electromagnetic wave.
  • the state in which the shutter is open shall be associated with the first state.
  • the electromagnetic wave is reflected and travels in a direction different from the predetermined direction.
  • the state in which the shutter is closed shall correspond to the second state.
  • the advancing unit 70 may include a MEMS shutter having a shutter whose opening and closing can be controlled and arranged in an array along the reference surface 71.
  • the pixel 72 of the advancing unit 70 may have a liquid crystal shutter.
  • the liquid crystal shutter transitions to one of a transmission state that transmits electromagnetic waves and a reflection state that reflects electromagnetic waves by controlling the alignment state of the liquid crystal.
  • the transmission state and the reflection state are respectively associated with the first state and the second state.
  • the electromagnetic wave detection device 100 may further include a control unit 60.
  • the control unit 60 may control the state of each pixel 72 of the traveling unit 70.
  • the control unit 60 may acquire the detection result of the electromagnetic wave incident on the electromagnetic wave detector 10 from the detection target 85 from the electromagnetic wave detector 10.
  • the control unit 60 includes one or more processors and a memory.
  • the processor may include at least one of a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process.
  • the dedicated processor may include an application specific integrated circuit (ASIC: Application Specific Integrated Circuit).
  • the processor may include a programmable logic device (PLD: Programmable Logic Device).
  • the PLD may include an FPGA (Field ⁇ Programmable ⁇ Gate ⁇ Array).
  • the control unit 60 may include at least one of a system-on-a-chip (SoC) and a system-in-a-package (SiP) in which one or a plurality of processors cooperate.
  • SoC system-on-a-chip
  • SiP system-in-a-package
  • the electromagnetic wave detection device 100 may further include a first imaging unit 81.
  • the first imaging unit 81 may form an image of the incident electromagnetic wave on the reference surface 71 of the traveling unit 70. That is, the first imaging unit 81 may be an optical member whose imaging point is located on the reference plane 71.
  • the first imaging unit 81 may be an optical member including at least one of a lens and a mirror.
  • the electromagnetic wave emitted from the detection target 85 has a spread along a plane intersecting the traveling direction.
  • the spread of the electromagnetic wave is represented as spread ranges 80a, 80b, and 80c for convenience of explanation.
  • the spread ranges 80a, 80b, and 80c correspond to light beams.
  • the first image forming unit 81 forms electromagnetic waves emitted from a predetermined point of the detection target 85 and having spreads represented by spread ranges 80a, 80b, and 80c at different pixels 72.
  • the traveling unit 70 changes the traveling direction of each of the electromagnetic waves having a spread represented by the spread ranges 80a, 80b, and 80c for each pixel 72.
  • the advancing unit 70 can cause the electromagnetic wave incident on one pixel 72 to enter the electromagnetic wave detector 10 and prevent the electromagnetic wave incident on the other pixels 72 from entering the electromagnetic wave detector 10.
  • the pixel 72 causes the incident electromagnetic wave to be incident on the electromagnetic wave detector 10 when transitioning to the first state, and converts the incident electromagnetic wave into the electromagnetic wave detector 10 when transitioning to the second state. Is assumed not to be incident.
  • the advancing unit 70 can cause the electromagnetic waves incident on each pixel 72 to be separately incident on the electromagnetic wave detector 10 by shifting each pixel 72 to the first state one by one.
  • the advancing unit 70 may, for example, cause the electromagnetic wave having a spread represented by the spread range 80a to be incident on the electromagnetic wave detector 10 and prevent the electromagnetic waves having the spread represented by the spread ranges 80b and 80c from being incident on the electromagnetic wave detector 10. .
  • the traveling section 70 can cause the electromagnetic wave related to the image of the detection target 85 formed on the reference surface 71 to be incident on the electromagnetic wave detector 10 for each pixel 72.
  • the electromagnetic wave detection device 100 detects the electromagnetic wave incident from the detection target 85 even when the electromagnetic wave detector 10 is a single detection element by synchronizing the state of the pixel 72 and the detection result of the electromagnetic wave detector 10. It may be detected as a one-dimensional or two-dimensional image of the object 85.
  • the electromagnetic wave detection device 900 according to the comparative example 2 shown in FIG. 10 includes the electromagnetic wave detector 90 without the electromagnetic wave focusing element 30 instead of the electromagnetic wave detector 10 with the electromagnetic wave focusing element 30.
  • the electromagnetic wave detection device 900 according to Comparative Example 2 further includes a second imaging unit 82 that converges the electromagnetic wave traveling from the traveling unit 70 toward the electromagnetic wave detector 90 to the detection surface of the electromagnetic wave detector 90.
  • the electromagnetic wave detector 90 in Comparative Example 2 has a smaller range than the electromagnetic wave detector 10. Can detect only the electromagnetic wave incident on.
  • the electromagnetic wave detection device 900 according to the comparative example 2 can detect an electromagnetic wave incident on a wider range by including the second imaging unit 82.
  • the electromagnetic wave detector 10 can detect an electromagnetic wave incident on a wide range without including the second imaging unit 82.
  • the second imaging unit 82 By eliminating the need for the second imaging unit 82, miniaturization can be realized, the number of components can be reduced, and the structure can be simplified.
  • the electromagnetic wave detector 10 may be provided in an imaging device.
  • the imaging device including the electromagnetic wave detector 10 may cause the electromagnetic wave detector 10 to detect an electromagnetic wave acquired from an imaging target, and generate a captured image based on the detection result.
  • the imaging device may generate a one-dimensional or two-dimensional captured image by including the plurality of electromagnetic wave detectors 10.
  • the electromagnetic wave detector 10 may be provided in a distance measuring device.
  • the distance measuring apparatus including the electromagnetic wave detector 10 may cause the electromagnetic wave detector 10 to detect an electromagnetic wave acquired from the object to be measured, and calculate the distance from the object to be measured based on the detection result.
  • the distance measuring device may acquire distance information on a distance measurement target by a time-of-flight (ToF) method based on a detection result of the electromagnetic wave detector 10.
  • the distance measuring apparatus may execute a DirectToF method that directly measures a time from emission of an electromagnetic wave to detection of a reflected wave as the ToF method.
  • the distance measuring device emits an electromagnetic wave periodically as a ToF method, and indirectly determines a time from emission of the electromagnetic wave to detection of the reflected wave based on the phase of the emitted electromagnetic wave and the phase of the reflected wave.
  • a FlashToF method for measuring may be performed.
  • the ranging device may execute another method such as PhasedToF as the ToF method.
  • the ranging device may include, for example, a time measurement LSI (Large Scale Integrated circuit).
  • descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the numbers in the configurations can be exchanged.
  • the first electrode can exchange “first” and “second” identifiers with the second electrode.
  • the exchange of identifiers takes place simultaneously.
  • the configuration is distinguished.
  • the identifier may be deleted.
  • the configuration from which the identifier is deleted is distinguished by a code. Do not use the interpretation of the order of the configuration or the grounds for the existence of an identifier with a small number based only on the description of the identifier such as “first” and “second” in the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This electromagnetic wave detector is provided with: a substrate having a plurality of detection regions; electromagnetic wave detection elements each including an output unit for outputting a signal based on the electromagnetic waves detected in each of the detection regions; and electromagnetic wave converging elements positioned overlapping each of the detection regions on the substrate. The electromagnetic wave converging elements converge the incoming incident electromagnetic waves into the corresponding detection regions.

Description

電磁波検出器、撮像装置、測距装置、及び電磁波検出装置Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detector 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2018-167225号(2018年9月6日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2018-167225 (filed on Sep. 6, 2018), the entire disclosure of which is incorporated herein by reference.
 本開示は、電磁波検出器、撮像装置、測距装置、及び電磁波検出装置に関する。 The present disclosure relates to an electromagnetic wave detector, an imaging device, a distance measuring device, and an electromagnetic wave detection device.
 従来、光検出器において、受光部の開口率を広げて検出する光量を大きくする構成が知られている(例えば、特許文献1参照)。 Conventionally, in a photodetector, a configuration has been known in which the aperture ratio of a light receiving unit is increased to increase the amount of light to be detected (for example, see Patent Document 1).
特開2015-119093号公報JP 2015-119093 A
 本開示の一実施形態に係る電磁波検出器は、電磁波検出素子と、電磁波収束素子とを備える。前記電磁波検出素子は、複数の検出領域を有する基板と、前記各検出領域で検出された電磁波に基づく信号を1つの信号として出力する出力部とを含む。前記電磁波収束素子は、前記基板の上で、前記各検出領域に重なって位置する。前記電磁波収束素子は、入射してくる電磁波を、対応する前記検出領域に収束させる。 電磁 The electromagnetic wave detector according to an embodiment of the present disclosure includes an electromagnetic wave detection element and an electromagnetic wave focusing element. The electromagnetic wave detection element includes a substrate having a plurality of detection regions, and an output unit that outputs a signal based on the electromagnetic waves detected in each of the detection regions as one signal. The electromagnetic wave focusing element is located on the substrate so as to overlap with each of the detection regions. The electromagnetic wave converging element converges an incident electromagnetic wave to the corresponding detection area.
 本開示の一実施形態に係る撮像装置は、電磁波検出器を備える。 撮 像 The imaging device according to an embodiment of the present disclosure includes an electromagnetic wave detector.
 本開示の一実施形態に係る測距装置は、電磁波検出器を備える。 距 The distance measuring device according to an embodiment of the present disclosure includes an electromagnetic wave detector.
 本開示の一実施形態に係る電磁波検出装置は、進行部と、電磁波検出器とを備える。前記進行部には、基準面に沿って複数の画素が配置されている。前記進行部は、前記基準面に入射した電磁波を前記画素毎に特定の方向へ進行させる。前記電磁波検出器は、前記特定の方向へ進行した電磁波を検出する。 電磁 The electromagnetic wave detection device according to an embodiment of the present disclosure includes a traveling unit and an electromagnetic wave detector. The advancing section has a plurality of pixels arranged along a reference plane. The advancing unit causes the electromagnetic wave incident on the reference plane to travel in a specific direction for each of the pixels. The electromagnetic wave detector detects an electromagnetic wave traveling in the specific direction.
一実施形態に係る電磁波検出器の構成例を示す図である。It is a figure showing the example of composition of the electromagnetic wave detector concerning one embodiment. 図1のA-A断面図である。It is AA sectional drawing of FIG. 電磁波検出素子の構成例を示す断面図である。It is sectional drawing which shows the example of a structure of an electromagnetic wave detection element. 一実施形態に係る電磁波検出器の構成例を示すブロック図である。It is a block diagram showing the example of composition of the electromagnetic wave detector concerning one embodiment. 電磁波検出器に入射する電磁波の進行方向の一例を示す図である。FIG. 3 is a diagram illustrating an example of a traveling direction of an electromagnetic wave incident on an electromagnetic wave detector. 比較例1に係る電磁波検出器の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of an electromagnetic wave detector according to Comparative Example 1. 他の実施形態に係る電磁波検出器の構成例を示す図である。It is a figure showing the example of composition of the electromagnetic wave detector concerning other embodiments. 一実施形態に係る電磁波検出装置の構成例を示す図である。It is a figure showing the example of composition of the electromagnetic wave detection device concerning one embodiment. 一実施形態に係る電磁波検出装置の構成例を示すブロック図である。It is a block diagram showing the example of composition of the electromagnetic wave detection device concerning one embodiment. 比較例2に係る電磁波検出器を含む電磁波検出装置を示す図である。FIG. 9 is a diagram illustrating an electromagnetic wave detection device including an electromagnetic wave detector according to Comparative Example 2.
 以下、本開示に係る実施形態が、図面を参照しながら詳細に説明される。以下の説明で用いられる図は模式的なものである。図面上の寸法比率等は、現実のものとは必ずしも一致していない。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The drawings used in the following description are schematic. The dimensional ratios and the like in the drawings do not always match actual ones.
 電磁波を検出するセンサにおいて、入射してくる電磁波を検出する領域の面積が大きいほど、電磁波を検出する領域に入射する電磁波が増える。一方で、電磁波を検出する領域の面積が大きいほど、その領域に電磁波が入射していないときに流れる暗電流が増える。電磁波を検出する領域の面積が大きいほど、その領域の周囲長が長い。電磁波を検出する領域の周囲長が長いほど、その領域に電磁波が入射していないときに流れる暗電流が増える。 に お い て In a sensor for detecting electromagnetic waves, the larger the area of the region for detecting the incident electromagnetic waves, the more the electromagnetic waves incident on the region for detecting the electromagnetic waves. On the other hand, as the area of the region for detecting the electromagnetic wave is larger, the dark current flowing when the electromagnetic wave is not incident on the region increases. The larger the area of the region for detecting electromagnetic waves, the longer the perimeter of the region. The longer the perimeter of the region where electromagnetic waves are detected, the greater the dark current that flows when no electromagnetic waves are incident on that region.
 電磁波を検出する領域がフォトダイオードで構成される場合、電磁波を検出する領域の面積が大きいほど、空乏層が大きくなる。また、電磁波を検出する領域の周囲長が長いほど、空乏層が大きくなる。空乏層が大きいほど、フォトダイオードの端子間の容量が大きくなる。フォトダイオードの端子間の容量が大きいほど、フォトダイオードの応答速度が低下する。 (4) In the case where the region for detecting electromagnetic waves is formed of a photodiode, the depletion layer increases as the area of the region for detecting electromagnetic waves increases. In addition, the longer the peripheral length of the region for detecting the electromagnetic wave, the larger the depletion layer. The larger the depletion layer, the larger the capacitance between the terminals of the photodiode. The larger the capacitance between the terminals of the photodiode, the lower the response speed of the photodiode.
 図1及び図2に示されるような、本開示の一実施形態に係る電磁波検出器10は、所定範囲に入射してくる電磁波を収束させることによって、所定範囲の面積よりも小さい面積を有する領域で電磁波を検出する。このようにすることで、電磁波を検出する領域の面積は、電磁波が入射してくる領域の面積より小さくされる。その結果、広い範囲に入射してくる電磁波が検出されつつ、暗電流が減らされうる。また、電磁波を検出する領域がフォトダイオードで構成される場合、フォトダイオードの応答速度が速くされうる。 As shown in FIGS. 1 and 2, the electromagnetic wave detector 10 according to the embodiment of the present disclosure converges an electromagnetic wave incident on a predetermined range, thereby forming a region having an area smaller than the area of the predetermined range. Detects electromagnetic waves. By doing so, the area of the region where the electromagnetic wave is detected is made smaller than the area of the region where the electromagnetic wave enters. As a result, it is possible to reduce the dark current while detecting electromagnetic waves incident on a wide range. Further, when the region for detecting the electromagnetic wave is constituted by a photodiode, the response speed of the photodiode can be increased.
 図1及び図2に示されるように、一実施形態に係る電磁波検出器10は、電磁波検出素子20と、電磁波収束素子30とを備える。 As shown in FIGS. 1 and 2, the electromagnetic wave detector 10 according to one embodiment includes an electromagnetic wave detecting element 20 and an electromagnetic wave converging element 30.
 電磁波検出素子20は、基板23を備える。基板23は、Z軸の正の方向から入射してくる電磁波を検出する検出領域21を有する。基板23の検出領域21の他の領域は、非検出領域22ともいう。基板23は、Z軸を法線とする基板面23aを有する。検出領域21と非検出領域22とは、基板面23a上に並んでいる。基板23は、複数の検出領域21を有する。各検出領域21は、基板面23a上において、非検出領域22に囲まれていてよい。基板23は、シリコン等の半導体基板であってよい。 The electromagnetic wave detecting element 20 includes the substrate 23. The substrate 23 has a detection region 21 for detecting an electromagnetic wave incident from the positive direction of the Z axis. The other area of the detection area 21 of the substrate 23 is also called a non-detection area 22. The substrate 23 has a substrate surface 23a whose normal is the Z axis. The detection area 21 and the non-detection area 22 are arranged on the substrate surface 23a. The substrate 23 has a plurality of detection areas 21. Each detection area 21 may be surrounded by the non-detection area 22 on the substrate surface 23a. The substrate 23 may be a semiconductor substrate such as silicon.
 電磁波収束素子30は、各検出領域21に対応して位置する。電磁波収束素子30は、検出領域21に対してZ軸の正の方向の側に重なって位置する。電磁波収束素子30は、Z軸の正の方向の側から入射してくる電磁波を、検出領域21に向けて収束させる。電磁波収束素子30は、基板面23aから見て非検出領域22に向かってくる電磁波の進行方向を、検出領域21に向かうように変更する。このようにすることで、電磁波検出器10は、非検出領域22に向かってくる電磁波を検出領域21で検出できる。その結果、電磁波検出器10は、検出領域21よりも広い範囲に入射してくる電磁波を検出しうる。 The electromagnetic wave focusing element 30 is located corresponding to each detection area 21. The electromagnetic wave focusing element 30 is positioned so as to overlap with the detection area 21 on the side in the positive direction of the Z axis. The electromagnetic wave converging element 30 converges an electromagnetic wave incident from the positive Z-axis direction toward the detection area 21. The electromagnetic wave converging element 30 changes the traveling direction of the electromagnetic wave coming from the substrate surface 23 a toward the non-detection region 22 so as to reach the detection region 21. In this way, the electromagnetic wave detector 10 can detect the electromagnetic wave coming toward the non-detection region 22 in the detection region 21. As a result, the electromagnetic wave detector 10 can detect an electromagnetic wave incident on a wider area than the detection area 21.
 電磁波収束素子30は、レンズを含んでよい。電磁波収束素子30は、ミラーを含んでもよい。電磁波収束素子30は、回折格子、メタマテリアル又はメタサーフェス等の電磁波の進行方向を変更できる素子を含んでもよい。電磁波収束素子30は、複数の素子を集積した素子アレイとして構成されてもよい。 The electromagnetic wave focusing element 30 may include a lens. The electromagnetic wave focusing element 30 may include a mirror. The electromagnetic wave focusing element 30 may include an element that can change the traveling direction of the electromagnetic wave, such as a diffraction grating, a metamaterial, or a metasurface. The electromagnetic wave focusing element 30 may be configured as an element array in which a plurality of elements are integrated.
 電磁波収束素子30がレンズである場合、電磁波収束素子30は、球面レンズ、非球面レンズ、又はシリンドリカルレンズ等を含んでよい。各検出領域21に対応するレンズの形状は、各検出領域21で同一であってよいし、少なくとも一部の検出領域21で異なっていてもよい。 When the electromagnetic wave focusing element 30 is a lens, the electromagnetic wave focusing element 30 may include a spherical lens, an aspherical lens, a cylindrical lens, or the like. The shape of the lens corresponding to each detection region 21 may be the same in each detection region 21 or may be different in at least some of the detection regions 21.
 検出領域21は、入射してきた電磁波のエネルギーを電気エネルギーに変換する。検出領域21は、入射してきた電磁波に基づく電圧又は電流の信号を生成する。検出領域21で生成される信号は、検出領域21に入射してきた電磁波の波長又は強度等に基づいて決定される。 The detection area 21 converts the energy of the incident electromagnetic wave into electric energy. The detection area 21 generates a voltage or current signal based on an incident electromagnetic wave. The signal generated in the detection area 21 is determined based on the wavelength or the intensity of the electromagnetic wave incident on the detection area 21.
 検出領域21は、図3に例示されるように、基板23に設けられているp型領域24とn型領域25との接合(pn接合)を含むフォトダイオード(PD)を構成してよい。図3の例において、p型領域24は、n型領域25よりもZ軸の正の方向の側に位置している。p型領域24の位置とn型領域25の位置とは、交換されてよい。p型領域24の層は、n型領域25に対して積層していてよい。p型領域24の層は、n型領域25に対する拡散層として構成されてよい。検出領域21は、基板面23aの平面視において、pn接合が存在する領域を含んでよい。非検出領域22は、基板面23aの平面視において、pn接合が存在しない領域を含んでよい。 The detection region 21 may constitute a photodiode (PD) including a junction (pn junction) between the p-type region 24 and the n-type region 25 provided on the substrate 23, as illustrated in FIG. In the example of FIG. 3, the p-type region 24 is located on the positive side of the Z-axis with respect to the n-type region 25. The position of the p-type region 24 and the position of the n-type region 25 may be exchanged. The layer of the p-type region 24 may be stacked on the n-type region 25. The layer of the p-type region 24 may be configured as a diffusion layer for the n-type region 25. The detection region 21 may include a region where a pn junction exists in plan view of the substrate surface 23a. The non-detection region 22 may include a region where no pn junction exists in a plan view of the substrate surface 23a.
 電磁波検出素子20は、p型領域24に電気的に接続する第1電極26と、n型領域25に電気的に接続する第2電極27とをさらに備えてよい。電磁波が検出領域21に入射した場合、検出領域21は、第1電極26と第2電極27とを通じて、入射してきた電磁波に基づく信号を出力してよい。 The electromagnetic wave detecting element 20 may further include a first electrode 26 electrically connected to the p-type region 24 and a second electrode 27 electrically connected to the n-type region 25. When an electromagnetic wave is incident on the detection region 21, the detection region 21 may output a signal based on the incident electromagnetic wave through the first electrode 26 and the second electrode 27.
 電磁波検出素子20は、APD(Avalanche Photo-Diode)又はSPAD(Single Photon Avalanche Diode)として構成されてよい。電磁波検出素子20は、SiPM(Silicon Photo-Multiplier)又はMPPC(Multi-Pixel Photon Counter)として構成されてよい。電磁波検出素子20は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)として構成されてよい。 The electromagnetic wave detection element 20 may be configured as an APD (Avalanche Photo-Diode) or a SPAD (Single Photon Avalanche Diode). The electromagnetic wave detection element 20 may be configured as a SiPM (Silicon Photo-Multiplier) or MPPC (Multi-Pixel Photon Counter). The electromagnetic wave detection element 20 may be configured as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 図4に示されるように、電磁波検出素子20は、出力部40をさらに備える。出力部40は、複数の検出領域21に並列に接続されている。出力部40は、第1電極26及び第2電極27を介して、p型領域24及びn型領域25に接続されてよい。出力部40は、入射してきた電磁波に基づいて各検出領域21が出力する信号を取得する。出力部40は、各検出領域21から取得した信号を1つの信号として出力する。出力部40が複数の検出領域21から取得した信号を1つの信号として出力することによって、電磁波検出素子20は、各検出領域21から出力される信号を別々の信号として出力する検出素子アレイとして機能するのではなく、単一の検出素子として機能する。電磁波検出素子20は、単一の半導体素子であってよい。電磁波検出素子20は、単一の光検出素子であってよい。出力部40は、電磁波検出器10の他の構成部、又は、電磁波検出器10とは異なる他の装置に、信号を出力してよい。 電磁 As shown in FIG. 4, the electromagnetic wave detection element 20 further includes an output unit 40. The output unit 40 is connected to the plurality of detection regions 21 in parallel. The output unit 40 may be connected to the p-type region 24 and the n-type region 25 via the first electrode 26 and the second electrode 27. The output unit 40 acquires a signal output from each detection region 21 based on the incident electromagnetic wave. The output unit 40 outputs a signal obtained from each detection area 21 as one signal. The output unit 40 outputs signals obtained from the plurality of detection areas 21 as one signal, so that the electromagnetic wave detection element 20 functions as a detection element array that outputs signals output from each detection area 21 as separate signals. Instead, it functions as a single detection element. The electromagnetic wave detection element 20 may be a single semiconductor element. The electromagnetic wave detection element 20 may be a single light detection element. The output unit 40 may output a signal to another component of the electromagnetic wave detector 10 or another device different from the electromagnetic wave detector 10.
 図5に示されるように、電磁波検出器10に対して、経路50a又は経路50bに沿って進行する電磁波が入射してくると仮定する。経路50aに沿って進行する電磁波は、そのまま進行する場合、検出領域21に入射する。経路50bに沿って進行する電磁波は、そのまま進行する場合、非検出領域22に入射する。電磁波収束素子30は、経路50bに沿って進行する電磁波の進行方向を、経路50cに沿って進行する方向に変更する。このようにすることで、そのまま進行すると非検出領域22に入射する電磁波が、検出領域21に入射しうる。その結果、電磁波検出器10は、より多くの電磁波を検出できる。 す る As shown in FIG. 5, it is assumed that an electromagnetic wave traveling along the path 50a or 50b enters the electromagnetic wave detector 10. When the electromagnetic wave traveling along the path 50a travels as it is, it enters the detection area 21. When the electromagnetic wave traveling along the path 50b proceeds as it is, it enters the non-detection region 22. The electromagnetic wave converging element 30 changes the traveling direction of the electromagnetic wave traveling along the path 50b to the direction traveling along the path 50c. By doing so, an electromagnetic wave that enters the non-detection region 22 when traveling as it is can enter the detection region 21. As a result, the electromagnetic wave detector 10 can detect more electromagnetic waves.
 図6に示される、比較例1に係る電磁波検出器90は、電磁波収束素子30を備えない。比較例に係る電磁波検出器90は、電磁波検出器90に対して経路50bに沿って進行する電磁波が検出領域21に入射するように、本実施形態に係る電磁波検出器10よりも広い検出領域21を有する。検出領域21が広い場合、pn接合の面積が大きくなる。pn接合の面積が大きいほど、pn接合に流れる暗電流が増加する。つまり、比較例において、本実施形態に係る電磁波検出器10と同じ量の電磁波を検出するために検出領域21が広げられる結果、暗電流が増加する。一方、本実施形態に係る電磁波検出器10は、電磁波収束素子30を備えることによって、比較例よりも小さい検出領域21を有するものの、比較例と同じ量の電磁波を検出できる。その結果、本実施形態に係る電磁波検出器10は、広い面積に入射する電磁波を検出しつつ、暗電流を低減しうる。 電磁 The electromagnetic wave detector 90 according to Comparative Example 1 shown in FIG. 6 does not include the electromagnetic wave focusing element 30. The electromagnetic wave detector 90 according to the comparative example has a larger detection area 21 than the electromagnetic wave detector 10 according to the present embodiment, so that the electromagnetic wave traveling along the path 50b enters the detection area 21 with respect to the electromagnetic wave detector 90. Having. When the detection region 21 is large, the area of the pn junction becomes large. The dark current flowing through the pn junction increases as the area of the pn junction increases. That is, in the comparative example, the detection region 21 is expanded to detect the same amount of electromagnetic waves as the electromagnetic wave detector 10 according to the present embodiment, resulting in an increase in dark current. On the other hand, the electromagnetic wave detector 10 according to the present embodiment includes the electromagnetic wave converging element 30 and has a smaller detection area 21 than the comparative example, but can detect the same amount of electromagnetic waves as the comparative example. As a result, the electromagnetic wave detector 10 according to the present embodiment can reduce dark current while detecting electromagnetic waves incident on a wide area.
 各検出領域21が第1電極26を介して出力部40に接続される場合、検出領域21から出力部40に対する出力抵抗が低くなる。その結果、電磁波検出器10の消費電力が低減しうる。 場合 When each detection region 21 is connected to the output unit 40 via the first electrode 26, the output resistance from the detection region 21 to the output unit 40 decreases. As a result, the power consumption of the electromagnetic wave detector 10 can be reduced.
 図7に示されるように、他の実施形態に係る電磁波検出器10において、各検出領域21は、導体28によって電気的に接続されていてよい。導体28は、金属等の導電性材料を含んでよい。検出領域21において基板23の表面にp型領域24が位置する場合、導体28は、p型領域24であってよい。検出領域21において基板23の表面にn型領域25が位置する場合、導体28は、n型領域25であってよい。各検出領域21が導体28で接続されることによって、第1電極26が低減されうるとともに、第1電極26と出力部40とを接続する配線が低減されうる。配線の本数が減ることによって配線の寄生容量が減少しうる。その結果、電磁波検出器10の動作が高速化しうる。 As shown in FIG. 7, in the electromagnetic wave detector 10 according to another embodiment, each detection area 21 may be electrically connected by the conductor 28. The conductor 28 may include a conductive material such as a metal. When the p-type region 24 is located on the surface of the substrate 23 in the detection region 21, the conductor 28 may be the p-type region 24. When the n-type region 25 is located on the surface of the substrate 23 in the detection region 21, the conductor 28 may be the n-type region 25. By connecting each detection region 21 with the conductor 28, the first electrode 26 can be reduced, and the number of wires connecting the first electrode 26 and the output unit 40 can be reduced. The reduction in the number of wirings can reduce the parasitic capacitance of the wirings. As a result, the operation of the electromagnetic wave detector 10 can be speeded up.
 図8及び図9に示されるように、一実施形態に係る電磁波検出装置100は、電磁波検出器10と、進行部70とを備える。電磁波検出装置100は、検出対象85から射出される電磁波を進行部70に入射させ、進行部70で進行方向を変更し、電磁波検出器10で検出する。 As shown in FIGS. 8 and 9, the electromagnetic wave detection device 100 according to one embodiment includes an electromagnetic wave detector 10 and a traveling unit 70. The electromagnetic wave detection device 100 causes the electromagnetic wave emitted from the detection target 85 to enter the traveling unit 70, changes the traveling direction in the traveling unit 70, and detects the traveling direction with the electromagnetic wave detector 10.
 進行部70は、基準面71と、基準面71に沿って位置する複数の画素72とを備える。複数の画素72は、基準面71に沿って配置されているともいえる。画素72は、基準面71に入射してきた電磁波の進行方向を変更させうる。画素72は、基準面71に入射してきた電磁波を、所定方向へ進行させる第1状態と、所定方向とは異なる方向へ進行させる第2状態とのいずれかの状態に遷移しうる。進行部70は、各画素72を、第1状態及び第2状態のいずれかの状態に遷移させてよい。進行部70は、各画素72の状態の遷移を制御するプロセッサをさらに備えてよい。各画素72は、第1状態及び第2状態のいずれかの状態に遷移することによって、基準面71に入射してきた電磁波を、特定の方向に進行させる。第1状態に遷移している画素72は、画素72aとして実線で表されている。第2状態に遷移している画素72は、画素72bとして破線で表されている。 The advancing unit 70 includes a reference plane 71 and a plurality of pixels 72 located along the reference plane 71. It can be said that the plurality of pixels 72 are arranged along the reference plane 71. The pixel 72 can change the traveling direction of the electromagnetic wave incident on the reference surface 71. The pixel 72 can transition to one of a first state in which the electromagnetic wave incident on the reference surface 71 travels in a predetermined direction and a second state in which the electromagnetic wave travels in a direction different from the predetermined direction. The progression unit 70 may cause each pixel 72 to transition to one of the first state and the second state. The progression unit 70 may further include a processor that controls the transition of the state of each pixel 72. Each pixel 72 makes the electromagnetic wave incident on the reference surface 71 travel in a specific direction by making a transition to any one of the first state and the second state. The pixel 72 that has transitioned to the first state is represented by a solid line as the pixel 72a. The pixel 72 that has transitioned to the second state is indicated by a broken line as the pixel 72b.
 画素72は、基準面71に入射する電磁波を反射する反射面を有してよい。進行部70は、各画素72の反射面の向きを制御することによって、基準面71に入射する電磁波を反射する方向を決定してよい。各画素72の反射面の向きは、第1状態及び第2状態それぞれに対応づけられてよい。つまり、進行部70は、第1状態に遷移している場合と、第2状態に遷移している場合とで、画素72の反射面の向きを異ならせることによって、電磁波を反射する方向を決定してよい。進行部70は、DMD(Digital Mirror Device)又はMEMS(Micro Electro Mechanical Systems)ミラー等のミラーデバイスを備えてよい。画素72は、ミラー素子であってよい。基準面71は、ミラー素子の配列面であってよい。 The pixel 72 may have a reflection surface that reflects an electromagnetic wave incident on the reference surface 71. The advancing unit 70 may determine the direction in which the electromagnetic wave incident on the reference surface 71 is reflected by controlling the direction of the reflection surface of each pixel 72. The direction of the reflection surface of each pixel 72 may be associated with each of the first state and the second state. That is, the advancing unit 70 determines the direction in which the electromagnetic wave is reflected by changing the direction of the reflection surface of the pixel 72 between when the transition is made to the first state and when the transition is made to the second state. May do it. The advancing unit 70 may include a mirror device such as a DMD (Digital Mirror Device) or a MEMS (Micro Electro Mechanical Systems) mirror. The pixel 72 may be a mirror element. The reference surface 71 may be a mirror element arrangement surface.
 進行部70の画素72は、電磁波を反射する反射面を含むシャッタを有してよい。シャッタが開いている場合、電磁波が透過し、所定方向へ進行するものとする。シャッタが開いている状態は、第1状態に対応づけられるものとする。シャッタが閉じている場合、電磁波が反射し、所定方向とは異なる方向へ進行するものとする。シャッタが閉じている状態は、第2状態に対応づけられるものとする。画素72がシャッタを有する場合、進行部70は、基準面71に沿ってアレイ状に配列されている開閉制御可能なシャッタを有するMEMSシャッタ等を備えてよい。 The pixel 72 of the advancing unit 70 may have a shutter including a reflection surface that reflects an electromagnetic wave. When the shutter is open, it is assumed that the electromagnetic wave is transmitted and travels in a predetermined direction. The state in which the shutter is open shall be associated with the first state. When the shutter is closed, the electromagnetic wave is reflected and travels in a direction different from the predetermined direction. The state in which the shutter is closed shall correspond to the second state. When the pixel 72 has a shutter, the advancing unit 70 may include a MEMS shutter having a shutter whose opening and closing can be controlled and arranged in an array along the reference surface 71.
 進行部70の画素72は、液晶シャッタを有してよい。液晶シャッタは、液晶の配向状態を制御することによって、電磁波を透過する透過状態と、電磁波を反射する反射状態とのいずれかの状態に遷移する。透過状態及び反射状態はそれぞれ、第1状態及び第2状態に対応づけられるものとする。 The pixel 72 of the advancing unit 70 may have a liquid crystal shutter. The liquid crystal shutter transitions to one of a transmission state that transmits electromagnetic waves and a reflection state that reflects electromagnetic waves by controlling the alignment state of the liquid crystal. The transmission state and the reflection state are respectively associated with the first state and the second state.
 電磁波検出装置100は、制御部60をさらに備えてよい。制御部60は、進行部70の各画素72の状態を制御してよい。制御部60は、検出対象85から電磁波検出器10に入射する電磁波の検出結果を、電磁波検出器10から取得してよい。 The electromagnetic wave detection device 100 may further include a control unit 60. The control unit 60 may control the state of each pixel 72 of the traveling unit 70. The control unit 60 may acquire the detection result of the electromagnetic wave incident on the electromagnetic wave detector 10 from the detection target 85 from the electromagnetic wave detector 10.
 制御部60は、1以上のプロセッサおよびメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサの少なくとも一方を含んでよい。専用のプロセッサは、特定用途向けIC(ASIC:Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD:Programmable Logic Device)を含んでよい。PLDは、FPGA(Field Programmable Gate Array)を含んでよい。制御部60は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System-in-a-Package)の少なくとも一方を含んでよい。 The control unit 60 includes one or more processors and a memory. The processor may include at least one of a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process. The dedicated processor may include an application specific integrated circuit (ASIC: Application Specific Integrated Circuit). The processor may include a programmable logic device (PLD: Programmable Logic Device). The PLD may include an FPGA (Field \ Programmable \ Gate \ Array). The control unit 60 may include at least one of a system-on-a-chip (SoC) and a system-in-a-package (SiP) in which one or a plurality of processors cooperate.
 電磁波検出装置100は、第1結像部81をさらに備えてよい。第1結像部81は、入射してくる電磁波を進行部70の基準面71で結像してよい。つまり、第1結像部81は、その結像点が基準面71に位置する光学部材であってよい。第1結像部81は、レンズ及びミラーの少なくとも一方を含む光学部材であってよい。 The electromagnetic wave detection device 100 may further include a first imaging unit 81. The first imaging unit 81 may form an image of the incident electromagnetic wave on the reference surface 71 of the traveling unit 70. That is, the first imaging unit 81 may be an optical member whose imaging point is located on the reference plane 71. The first imaging unit 81 may be an optical member including at least one of a lens and a mirror.
 検出対象85から射出される電磁波は、その進行方向に交差する面に沿った広がりを有する。電磁波の広がりは、説明の便宜上、広がり範囲80a、80b及び80cとして表されるものとする。電磁波が光である場合、広がり範囲80a、80b及び80cは、光線束に相当する。 (4) The electromagnetic wave emitted from the detection target 85 has a spread along a plane intersecting the traveling direction. The spread of the electromagnetic wave is represented as spread ranges 80a, 80b, and 80c for convenience of explanation. When the electromagnetic waves are light, the spread ranges 80a, 80b, and 80c correspond to light beams.
 第1結像部81は、検出対象85の所定点から射出され、広がり範囲80a、80b及び80cで表される広がりを有する電磁波それぞれを異なる画素72で結像させると仮定する。 It is assumed that the first image forming unit 81 forms electromagnetic waves emitted from a predetermined point of the detection target 85 and having spreads represented by spread ranges 80a, 80b, and 80c at different pixels 72.
 進行部70は、広がり範囲80a、80b及び80cで表される広がりを有する電磁波それぞれの進行方向を各画素72で変更する。進行部70は、1つの画素72に入射してくる電磁波を電磁波検出器10に入射させ、他の画素72に入射してくる電磁波を電磁波検出器10に入射させないようにしうる。画素72は、第1状態に遷移している場合に、入射してくる電磁波を電磁波検出器10に入射させ、第2状態に遷移している場合に、入射してくる電磁波を電磁波検出器10に入射させないと仮定する。進行部70は、各画素72を1つずつ第1状態に遷移させることによって、各画素72に入射してくる電磁波を別々に電磁波検出器10に入射させうる。進行部70は、例えば広がり範囲80aで表される広がりを有する電磁波を電磁波検出器10に入射させ、広がり範囲80b及び80cで表される広がりを有する電磁波を電磁波検出器10に入射させないようにしうる。このようにすることで、進行部70は、基準面71に結像した検出対象85の像に係る電磁波を、画素72ごとに電磁波検出器10に入射させうる。電磁波検出装置100は、画素72の状態と電磁波検出器10の検出結果とを同期させることによって、電磁波検出器10が単一の検出素子である場合でも、検出対象85から入射する電磁波を、検出対象85に関する一次元又は二次元の像として検出しうる。 The traveling unit 70 changes the traveling direction of each of the electromagnetic waves having a spread represented by the spread ranges 80a, 80b, and 80c for each pixel 72. The advancing unit 70 can cause the electromagnetic wave incident on one pixel 72 to enter the electromagnetic wave detector 10 and prevent the electromagnetic wave incident on the other pixels 72 from entering the electromagnetic wave detector 10. The pixel 72 causes the incident electromagnetic wave to be incident on the electromagnetic wave detector 10 when transitioning to the first state, and converts the incident electromagnetic wave into the electromagnetic wave detector 10 when transitioning to the second state. Is assumed not to be incident. The advancing unit 70 can cause the electromagnetic waves incident on each pixel 72 to be separately incident on the electromagnetic wave detector 10 by shifting each pixel 72 to the first state one by one. The advancing unit 70 may, for example, cause the electromagnetic wave having a spread represented by the spread range 80a to be incident on the electromagnetic wave detector 10 and prevent the electromagnetic waves having the spread represented by the spread ranges 80b and 80c from being incident on the electromagnetic wave detector 10. . By doing so, the traveling section 70 can cause the electromagnetic wave related to the image of the detection target 85 formed on the reference surface 71 to be incident on the electromagnetic wave detector 10 for each pixel 72. The electromagnetic wave detection device 100 detects the electromagnetic wave incident from the detection target 85 even when the electromagnetic wave detector 10 is a single detection element by synchronizing the state of the pixel 72 and the detection result of the electromagnetic wave detector 10. It may be detected as a one-dimensional or two-dimensional image of the object 85.
 図10に示される、比較例2に係る電磁波検出装置900は、電磁波収束素子30を備える電磁波検出器10ではなく、電磁波収束素子30を備えない電磁波検出器90を備える。比較例2に係る電磁波検出装置900は、進行部70から電磁波検出器90に向けて進行する電磁波を電磁波検出器90の検出面に収束させる第2結像部82をさらに備える。 電磁 The electromagnetic wave detection device 900 according to the comparative example 2 shown in FIG. 10 includes the electromagnetic wave detector 90 without the electromagnetic wave focusing element 30 instead of the electromagnetic wave detector 10 with the electromagnetic wave focusing element 30. The electromagnetic wave detection device 900 according to Comparative Example 2 further includes a second imaging unit 82 that converges the electromagnetic wave traveling from the traveling unit 70 toward the electromagnetic wave detector 90 to the detection surface of the electromagnetic wave detector 90.
 比較例2における電磁波検出器90の検出領域21の面積が本開示の一実施形態における電磁波検出器10の検出領域21の面積と等しい場合、電磁波検出器90は、電磁波検出器10よりも狭い範囲に入射してくる電磁波しか検出できない。比較例2に係る電磁波検出装置900は、第2結像部82を備えることによって、より広い範囲に入射してくる電磁波を検出することができる。 When the area of the detection region 21 of the electromagnetic wave detector 90 in Comparative Example 2 is equal to the area of the detection region 21 of the electromagnetic wave detector 10 according to an embodiment of the present disclosure, the electromagnetic wave detector 90 has a smaller range than the electromagnetic wave detector 10. Can detect only the electromagnetic wave incident on. The electromagnetic wave detection device 900 according to the comparative example 2 can detect an electromagnetic wave incident on a wider range by including the second imaging unit 82.
 一方、本開示の一実施形態における電磁波検出器10は、第2結像部82を備えなくとも、広い範囲に入射してくる電磁波を検出しうる。第2結像部82が不要となることによって、小型化が実現されたり、部品点数が削減されたり、構造が簡素化されたりしうる。 On the other hand, the electromagnetic wave detector 10 according to an embodiment of the present disclosure can detect an electromagnetic wave incident on a wide range without including the second imaging unit 82. By eliminating the need for the second imaging unit 82, miniaturization can be realized, the number of components can be reduced, and the structure can be simplified.
 他の実施形態において、電磁波検出器10は、撮像装置に備えられてよい。電磁波検出器10を備える撮像装置は、撮像対象から取得する電磁波を電磁波検出器10に検出させ、検出結果に基づいて撮像画像を生成してよい。撮像装置は、複数の電磁波検出器10を備えることによって、一次元又は二次元の撮像画像を生成してよい。 In another embodiment, the electromagnetic wave detector 10 may be provided in an imaging device. The imaging device including the electromagnetic wave detector 10 may cause the electromagnetic wave detector 10 to detect an electromagnetic wave acquired from an imaging target, and generate a captured image based on the detection result. The imaging device may generate a one-dimensional or two-dimensional captured image by including the plurality of electromagnetic wave detectors 10.
 他の実施形態において、電磁波検出器10は、測距装置に備えられてよい。電磁波検出器10を備える測距装置は、測距対象から取得する電磁波を電磁波検出器10に検出させ、検出結果に基づいて測距対象からの距離を算出してよい。 In another embodiment, the electromagnetic wave detector 10 may be provided in a distance measuring device. The distance measuring apparatus including the electromagnetic wave detector 10 may cause the electromagnetic wave detector 10 to detect an electromagnetic wave acquired from the object to be measured, and calculate the distance from the object to be measured based on the detection result.
 測距装置は、電磁波検出器10の検出結果に基づいて、ToF(Time of Flight)方式によって、測距対象に関する距離情報を取得してよい。測距装置は、ToF方式として、電磁波を放射してから反射波を検出するまでの時間を直接測定するDirectToF方式を実行してよい。測距装置は、ToF方式として、電磁波を周期的に放射し、放射した電磁波の位相と反射波の位相とに基づいて、電磁波を放射してから反射波を検出するまでの時間を間接的に測定するFlashToF方式を実行してよい。測距装置は、ToF方式として、PhasedToF等の他の方式を実行してもよい。測距装置は、例えば、時間計測LSI(Large Scale Integrated circuit)を含んでよい。 The distance measuring device may acquire distance information on a distance measurement target by a time-of-flight (ToF) method based on a detection result of the electromagnetic wave detector 10. The distance measuring apparatus may execute a DirectToF method that directly measures a time from emission of an electromagnetic wave to detection of a reflected wave as the ToF method. The distance measuring device emits an electromagnetic wave periodically as a ToF method, and indirectly determines a time from emission of the electromagnetic wave to detection of the reflected wave based on the phase of the emitted electromagnetic wave and the phase of the reflected wave. A FlashToF method for measuring may be performed. The ranging device may execute another method such as PhasedToF as the ToF method. The ranging device may include, for example, a time measurement LSI (Large Scale Integrated circuit).
 本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部に含まれる機能などは論理的に矛盾しないように再配置可能である。複数の機能部等は、1つに組み合わせられたり、分割されたりしてよい。上述した本開示に係る各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施されうる。 Although the present disclosure has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present disclosure. For example, functions included in each functional unit can be rearranged so as not to be logically inconsistent. A plurality of functional units and the like may be combined into one or divided. Each of the embodiments according to the present disclosure described above is not limited to being faithfully implemented in each of the embodiments described above, and may be implemented by appropriately combining or omitting some of the features. .
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1電極は、第2電極と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。 に お い て In the present disclosure, descriptions such as “first” and “second” are identifiers for distinguishing the configuration. In the configurations distinguished by the description such as “first” and “second” in the present disclosure, the numbers in the configurations can be exchanged. For example, the first electrode can exchange "first" and "second" identifiers with the second electrode. The exchange of identifiers takes place simultaneously. Even after the exchange of the identifier, the configuration is distinguished. The identifier may be deleted. The configuration from which the identifier is deleted is distinguished by a code. Do not use the interpretation of the order of the configuration or the grounds for the existence of an identifier with a small number based only on the description of the identifier such as “first” and “second” in the present disclosure.
 10 電磁波検出器
 20 電磁波検出素子
 21 検出領域
 22 非検出領域
 23 基板
 23a 基板面
 24 p型領域
 25 n型領域
 26 第1電極
 27 第2電極
 28 導体
 30 電磁波収束素子
 40 出力部
 50a、50b、50c 電磁波の経路
 60 制御部
 70 進行部
 71 基準面
 72(72a、72b) 画素
 80a、80b、80c 広がり範囲
 81 第1結像部
 82 第2結像部
 85 検出対象
 100 電磁波検出装置
Reference Signs List 10 electromagnetic wave detector 20 electromagnetic wave detection element 21 detection area 22 non-detection area 23 substrate 23a substrate surface 24 p-type area 25 n-type area 26 first electrode 27 second electrode 28 conductor 30 electromagnetic wave convergence element 40 output section 50a, 50b, 50c Electromagnetic wave path 60 Control unit 70 Traveling unit 71 Reference plane 72 (72a, 72b) Pixels 80a, 80b, 80c Spread range 81 First imaging unit 82 Second imaging unit 85 Detected object 100 Electromagnetic wave detection device

Claims (11)

  1.  複数の検出領域を有する基板と、前記各検出領域で検出された電磁波に基づく信号を1つの信号として出力する出力部とを含む電磁波検出素子と、
     前記基板の上で、前記各検出領域に重なって位置する電磁波収束素子と
    を備え、
     前記電磁波収束素子は、入射してくる電磁波を、対応する前記検出領域に収束させる、電磁波検出器。
    A substrate having a plurality of detection regions, and an electromagnetic wave detection element including an output unit that outputs a signal based on the electromagnetic waves detected in each of the detection regions as one signal,
    On the substrate, comprising an electromagnetic wave focusing element positioned so as to overlap with each of the detection regions,
    An electromagnetic wave detector, wherein the electromagnetic wave converging element converges an incident electromagnetic wave to a corresponding detection region.
  2.  前記電磁波検出素子は、電磁波を検出しない非検出領域を備え、
     前記複数の検出領域はそれぞれ、前記非検出領域に囲まれている、請求項1に記載の電磁波検出器。
    The electromagnetic wave detection element includes a non-detection region that does not detect an electromagnetic wave,
    The electromagnetic wave detector according to claim 1, wherein each of the plurality of detection regions is surrounded by the non-detection region.
  3.  前記電磁波収束素子は、前記非検出領域に向かって入射してくる電磁波を、対応する前記検出領域の範囲内に向かわせる、請求項2に記載の電磁波検出器。 3. The electromagnetic wave detector according to claim 2, wherein the electromagnetic wave converging element directs an electromagnetic wave incident toward the non-detection region to a region within the corresponding detection region.
  4.  前記電磁波収束素子は、レンズ又はミラーの少なくとも一方を含む、請求項1乃至3いずれか1項に記載の電磁波検出器。 4. The electromagnetic wave detector according to claim 1, wherein the electromagnetic wave focusing element includes at least one of a lens and a mirror. 5.
  5.  前記電磁波検出素子は、単一の半導体素子である、請求項1乃至4いずれか1項に記載の電磁波検出器。 The electromagnetic wave detector according to any one of claims 1 to 4, wherein the electromagnetic wave detection element is a single semiconductor element.
  6.  前記電磁波検出素子は、単一の光検出素子である、請求項1乃至5いずれか1項に記載の電磁波検出器。 The electromagnetic wave detector according to any one of claims 1 to 5, wherein the electromagnetic wave detection element is a single light detection element.
  7.  前記電磁波検出素子は、単一のPD、APD、SPAD、SiPM、MPPC、CCD、及びCMOSのうち少なくとも1つを含む、請求項1乃至6いずれか1項に記載の電磁波検出器。 The electromagnetic wave detector according to any one of claims 1 to 6, wherein the electromagnetic wave detection element includes at least one of a single PD, APD, SPAD, SiPM, MPPC, CCD, and CMOS.
  8.  前記複数の検出領域はそれぞれ、導体によって電気的に接続されている、請求項1乃至7いずれか1項に記載の電磁波検出器。 The electromagnetic wave detector according to any one of claims 1 to 7, wherein each of the plurality of detection regions is electrically connected by a conductor.
  9.  請求項1乃至8いずれか1項に記載の電磁波検出器を備える撮像装置。 An imaging apparatus comprising the electromagnetic wave detector according to any one of claims 1 to 8.
  10.  請求項1乃至8いずれか1項に記載の電磁波検出器を備える測距装置。 A distance measuring device comprising the electromagnetic wave detector according to any one of claims 1 to 8.
  11.  基準面に沿って複数の画素が配置され、前記基準面に入射した電磁波を前記画素毎に特定の方向へ進行させる進行部と、
     前記特定の方向へ進行した電磁波を検出する請求項1乃至8いずれか1項に記載の電磁波検出器と
    を備える、電磁波検出装置。
    A plurality of pixels are arranged along a reference plane, and a traveling unit that advances an electromagnetic wave incident on the reference plane in a specific direction for each of the pixels,
    An electromagnetic wave detection device comprising: the electromagnetic wave detector according to any one of claims 1 to 8, which detects the electromagnetic wave traveling in the specific direction.
PCT/JP2019/034456 2018-09-06 2019-09-02 Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detection device WO2020050223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167225 2018-09-06
JP2018167225A JP2020043135A (en) 2018-09-06 2018-09-06 Electromagnetic wave detector, imaging apparatus, distance measuring device, and electromagnetic wave detection device

Publications (1)

Publication Number Publication Date
WO2020050223A1 true WO2020050223A1 (en) 2020-03-12

Family

ID=69721830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034456 WO2020050223A1 (en) 2018-09-06 2019-09-02 Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detection device

Country Status (2)

Country Link
JP (1) JP2020043135A (en)
WO (1) WO2020050223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139717A1 (en) * 2022-01-20 2023-07-27 日本電気株式会社 Transmitter/receiver, transmission/reception device, and transmission/reception method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230400A (en) * 1999-12-06 2001-08-24 Canon Inc Solid-state image sensor
JP2006059995A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Amplification type solid-state imaging apparatus
JP2008103614A (en) * 2006-10-20 2008-05-01 Mitsui Eng & Shipbuild Co Ltd Photoelectric transducer device
WO2017094362A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Solid-state imaging element and imaging apparatus
JP2018132384A (en) * 2017-02-14 2018-08-23 京セラ株式会社 Electromagnetic wave detection device, program, and information acquisition system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230400A (en) * 1999-12-06 2001-08-24 Canon Inc Solid-state image sensor
JP2006059995A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Amplification type solid-state imaging apparatus
JP2008103614A (en) * 2006-10-20 2008-05-01 Mitsui Eng & Shipbuild Co Ltd Photoelectric transducer device
WO2017094362A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Solid-state imaging element and imaging apparatus
JP2018132384A (en) * 2017-02-14 2018-08-23 京セラ株式会社 Electromagnetic wave detection device, program, and information acquisition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139717A1 (en) * 2022-01-20 2023-07-27 日本電気株式会社 Transmitter/receiver, transmission/reception device, and transmission/reception method

Also Published As

Publication number Publication date
JP2020043135A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
EP3896746B1 (en) Single-photon avalanche diode and manufacturing method, detector array, and image sensor
US11122227B2 (en) Image sensor, image capturing system, and production method of image sensor
US20200191925A1 (en) Systems and methods for an apd array solid-state laser radar
US20190191067A1 (en) Device for acquiring a 2d image and a depth image of a scene
US20180084238A1 (en) Device having a 2d image sensor and depth sensor
US10319764B2 (en) Image sensor and electronic device
CN116840814A (en) Electromagnetic wave detection device and information acquisition system
US20210033744A1 (en) Electromagnetic wave detection apparatus and information acquisition system
WO2020050223A1 (en) Electromagnetic wave detector, imaging device, distance measuring device, and electromagnetic wave detection device
CN103314281A (en) Radiation sensor
US11579427B2 (en) Method and apparatus for filtering and filtered light detection
US11703568B2 (en) Method for providing a detection signal for objects to be detected
CN112074713A (en) Electromagnetic wave detection device and information acquisition system
US11860279B2 (en) Image sensing device and photographing device including the same
CN114599990A (en) Imaging system and detection method
WO2020022146A1 (en) Electromagnetic wave detector and information acquisition system
Friedl LiDAR and autonomous cars: no conventional solution: TOF lidars are recognized as the norm, but FMCW systems are increasingly growing in popularity
CN112558038A (en) Scanning method of laser radar
WO2019041250A1 (en) Electronic device and distance measurement apparatus comprising same, and electronic equipment
US20230408699A1 (en) Time-of-flight image sensor with quantom dot photodetectors
WO2020032098A1 (en) Electromagnetic wave detection apparatus and information acquisition system
JP2022026845A (en) Imaging apparatus
WO2023022964A1 (en) Multispectral and lidar detector using light field optics, and systems using same
CN116762021A (en) Laser receiving circuit, control method thereof, distance measuring device and mobile platform
CN116209919A (en) Electromagnetic wave detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857840

Country of ref document: EP

Kind code of ref document: A1