WO2020050012A1 - Food inspection device and food inspection method - Google Patents
Food inspection device and food inspection method Download PDFInfo
- Publication number
- WO2020050012A1 WO2020050012A1 PCT/JP2019/032526 JP2019032526W WO2020050012A1 WO 2020050012 A1 WO2020050012 A1 WO 2020050012A1 JP 2019032526 W JP2019032526 W JP 2019032526W WO 2020050012 A1 WO2020050012 A1 WO 2020050012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- food
- signal
- unit
- thickness
- resonance
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
Definitions
- the present invention relates to a food inspection apparatus and a food inspection method for food.
- the state of water, salt concentration, or percentage of lipids contained in the foods can affect the finished state of processed or cooked foods.
- the state of water whether ice or water
- the concentration of salt, or the percentage of lipids contained in the food is determined by the finished state of the processed or cooked food (final product state).
- it can affect the quality of the food.
- various indices such as a water content, a salt concentration, and a lipid ratio that can be included in the food also affect the finished state of the processed or cooked food and the quality of the food. Therefore, for producers, those engaged in logistics, and consumers (consumers), such indicators that affect the quality of food are based on the recent circumstances in which "food safety and security" is particularly attracting attention. That is, of course, a very important concern.
- the expected temperature and quality may not be achieved depending on the conditions of ice and / or water contained in the food.
- the food which should be heated after full thawing is heated in the half-thaw state may not be able to sufficiently heat the food.
- the food by completely defrosting food that should be processed at low temperature after it has been half-thawed, the food cannot be kept at a sufficiently low temperature for a certain period of time, maintaining the quality of the food. It can be difficult to do so.
- the expected quality may not be achieved depending on the salt concentration or the lipid ratio.
- Patent Documents 1 to 4 there have been disclosed some devices or methods for examining the temperature and frozen / thawed state of food, or the state of quality deterioration of food, focusing on the electric conductivity or capacitance of food (Patent Documents 1 to 4). 4, and Non-Patent Document 1).
- the state of water contained in a food varies with the temperature of the food, and monitoring the temperature and / or temperature change is a major method for quality control of food that has been conventionally adopted. is there.
- the monitoring of the temperature and / or temperature change of the food is a direct monitoring method using a thermometer, a non-destructive monitoring method using thermography, or, in some cases, a human tactile sensation. Ambiguous indicators are also employed.
- thermometer In the direct monitoring method using a thermometer, the thermometer is inserted into the food to be inspected and used. As a result, the food cannot be sold as a product, and the food must be disposed of. Further, when thermography is used, even if the surface (surface layer) of the food can be measured, it is difficult to measure the inside of the food. In addition, the ambiguous index of human touch is a personal index and lacks versatility and permanence.
- the shape and / or size of the food disposed between the electrodes is determined by the shape and / or size of the electrodes. It has been found that consideration and consideration for the electric capacity of the air layer existing between the food and the food are required.
- the present invention realizes an inspection apparatus and an inspection method capable of measuring or inspecting the state of food, which is exemplified by the state of water, the salt concentration, or the proportion of lipid, with higher accuracy and nondestructively. It greatly contributes to.
- the present inventors have examined foods containing both water and lipid (oil) even if the shapes and / or sizes of the foods to be inspected are different from each other. Even in such a case, an examination apparatus and an examination method capable of reducing the influence of the air layer existing between the food and at least one of the electrodes were repeatedly examined through trial and error.
- the present inventors have studied and analyzed the influence of the electric capacity of the air layer based on the equivalent circuit diagram for analysis shown in FIG.
- the electric capacity (Cf) and the resistance value (Rf) in FIG. 8 are the electric capacity and the resistance value of the food F, respectively.
- Q in FIG. 8 is an insulating thin plate provided between the food F and the electrode (usually, the lower electrode).
- L in FIG. 8 is the inductance of the coil
- RL is the resistance value of the coil near the resonance frequency.
- a parasitic capacitance (Cstr) is set.
- Rout in FIG. 8 is an output impedance. Note that, since the insulating thin plate is not necessarily required, omitting the electric capacity (Cins) of the thin plate is one aspect that can be adopted.
- Cf and Rf of the food F are unknown and are to be inspected.
- all the remaining seven parameters L, RL, Cair, Cins, Cstr, Rout, and V
- Cair is a number that is sensitive to the shape and / or size of the food and is a number that predominantly affects the center frequency and / or bandwidth. It was learned by repeating the experiment.
- the change in the Cair affected by the shape and / or the size of the food placed between the electrodes is substantially negligible, and the state of the food is highly accurately determined by utilizing the center frequency and / or the bandwidth.
- Various examinations were conducted for inspection.
- the present inventors have found that it is possible to more accurately inspect the state of food by creating a solution that can reduce the influence of the air layer in terms of hardware and / or software. Obtained.
- the present invention has been created based on the above-described viewpoints.
- One food inspection device of the present invention for achieving the above technical effects includes a resonance unit including a pair of electrodes and a coil, a transmission unit that generates a first AC signal to the resonance unit, When an AC signal is disposed between the electrodes, an AC signal reflected on the resonance unit, an AC signal transmitted through the resonance unit, an AC signal including a current flowing through the resonance unit, and an AC signal including a voltage generated in the resonance unit
- a receiving unit that receives at least one type of second AC signal selected from a group of signals, a center frequency of a resonance spectrum characteristic based on the second AC signal, a bandwidth of a resonance spectrum characteristic based on the second AC signal,
- a measuring unit that measures at least one selected from a group of signal intensities at a specific frequency in a resonance spectrum characteristic based on the second AC signal, and a capacitance of an air layer between the electrode and the food. Shadow of change And a correcting means for correcting to reduce.
- the reception unit receives the above-described second AC signal when the food is arranged between the pair of electrodes in the resonance unit.
- the measurement unit of the food inspection apparatus includes a center frequency of a resonance spectrum characteristic based on the second AC signal, a bandwidth of a resonance spectrum characteristic based on the second AC signal, and a resonance spectrum based on the second AC signal.
- the state of water, the concentration of salt contained in food, or the state of food represented by the ratio of lipids can be measured with high accuracy and nondestructively.
- a correction unit for performing a correction for reducing an influence of a change in an electric capacity of an air layer between the electrode and the food each food to be inspected is provided. Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipids (oil) is to be inspected, the state of the food is more accurately than before. Can be inspected.
- the measurement unit measures at least the center frequency and / or bandwidth of the resonance spectrum characteristic based on the second AC signal described above, because the change in the dielectric constant of the food and the electrical conductivity (or resistance) Rate), which is a preferred embodiment.
- the correction means has the following configurations (a1), (a2), and (a3).
- (A1) an arrangement unit for arranging the above-mentioned food;
- (A2) A displacement mechanism that displaces the arrangement portion and the electrode in a direction of relatively approaching or separating while the arrangement portion faces the electrode (however, the electrode may also serve as the arrangement portion).
- (A3) When the food is disposed between the electrodes, the second thickness of the air layer for each food is substantially determined based on the first thickness of the food to be inspected measured in advance.
- the thickness of the air layer when each food to be inspected is arranged between the electrodes is adjusted using the displacement mechanism. Therefore, even if the shapes and / or sizes of the foods to be inspected are different from each other, or if the foods containing both water and lipid (oil) are to be inspected, Can also be adjusted to reduce the effect of changes in the capacitance of the air layer.
- the above-mentioned correction means has the following configuration (b1). (B1) Based on the first thickness of each of the foods to be inspected measured in advance, based on the second thickness of the air layer when the foods are arranged between the electrodes. The above-mentioned center frequency and / or the above-mentioned bandwidth, which are calculated with the capacitance as one of the elements, are used to determine the reference between the electrode and the reference food when the reference food is placed between the electrodes. Calculation means for calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the thickness of the air layer
- the thickness of the air layer when each food to be inspected is arranged between the electrodes is calculated using the calculation unit.
- the calculation unit In order to reduce or substantially eliminate the influence of the capacitance due to the thickness of the air layer, even if the shape and / or size of each food to be inspected are different from each other, Alternatively, even when a food containing both water and lipid (oil) is to be inspected, adjustment can be made to reduce the effect of a change in the electric capacity of the air layer.
- one food inspection method of the present invention for achieving the above-described technical effects includes an arrangement step of arranging food between the electrodes of a resonance unit including a pair of electrodes and a coil, and A correction step of performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food when the electrode is disposed between the electrodes, and generating a first AC signal to the resonance unit.
- the transmitting step and when the food is placed between the electrodes, an AC signal reflected on the resonance section, an AC signal transmitted through the resonance section, an AC signal including a current flowing through the resonance section, and the resonance section.
- the bandwidth of the resonance spectral characteristic Comprising a measuring step of measuring at least one selected from the group of the signal intensity of a specific frequency in the resonance spectral properties based on the AC signal.
- the above-described second AC signal when the food is arranged between the pair of electrodes in the resonance unit is received. become. Furthermore, according to the food inspection method, the center frequency of the resonance spectrum characteristic based on the second AC signal, the bandwidth of the resonance spectrum characteristic based on the second AC signal, and the resonance spectrum characteristic based on the second AC signal are different.
- the measurement step of measuring at least one selected from a group of signal intensities at a specific frequency makes it possible to obtain a change in dielectric constant and / or an electrical conductivity (or resistivity) of the food. .
- the state of water, the concentration of salt contained in food, or the state of food represented by the ratio of lipids can be measured with high accuracy and nondestructively.
- each of the foods to be inspected is provided with a correction step for performing a correction for reducing the influence of a change in the electric capacity of the air layer between the electrode and the food, Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipids (oil) is to be inspected, the state of the food is more accurately than before. Can be inspected.
- At least measuring the center frequency and the bandwidth of the resonance spectrum characteristic based on the second AC signal is performed by changing the dielectric constant of the food and the electrical conductivity (or resistivity). This is a preferred embodiment because it is possible to obtain
- the above-described correction step includes the following step (c1).
- (C1) The second thickness of the air layer for each food when the food is disposed between the electrodes based on the first thickness of the food to be inspected previously measured for each food.
- a displacing step in which a disposing portion for disposing the food is opposed to the electrode such that the disposing portion and the electrode are relatively close to or separated from each other so that the food is substantially constant.
- the thickness of the air layer when each food to be inspected is arranged between the electrodes can be adjusted by the displacement step. Even if the shape and / or size of each food to be inspected are different from each other, or even if a food containing both water and lipid (oil) is to be inspected, Adjustments can be made to reduce the effects of changes in the capacitance of the air layer.
- the above-described correction step has the following configuration (d1).
- D1 the above-mentioned electricity based on the second thickness of the above-mentioned air layer when the food is arranged between the electrodes, based on the first thickness of each of the above-mentioned foods to be inspected measured in advance.
- the above-mentioned center frequency and / or the above-mentioned bandwidth calculated with the capacity as one of the elements is used to determine the reference air between the electrode and the reference food when the reference food is placed between the electrodes.
- the thickness of the air layer when each food to be inspected is disposed between the electrodes is calculated by the calculation step. Correction calculations can be performed to reduce or substantially eliminate the effect of capacitance due to the thickness of the air layer, even if the shapes and / or sizes of the foods to be inspected are different from each other, or Even when a food containing both water and lipid (oil) is to be inspected, adjustment can be made to reduce the influence of the change in the electric capacity of the air layer.
- signal intensity is a concept including “standardized intensity”, “non-standardized intensity”, and “reflection intensity” in the embodiment described later.
- each of the inspection target Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy of the food is higher than before. It is possible to check the condition.
- a correction step for performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food since there is provided a correction step for performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food, the inspection target and Even if the shape and / or size of each food is different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy is higher than before. It becomes possible to inspect the condition of food.
- FIG. 1 is a configuration diagram of a food inspection apparatus 100 for food according to the present embodiment.
- the aspects and effects of the food inspection apparatus 100 and the method of inspecting the food using the food inspection apparatus 100 are described in terms of the food to be inspected (for example, seafood, more specifically, , Fish) 10.
- the food inspection apparatus 100 includes a pair of an upper electrode 7 a and a lower electrode 7 b, a resonance unit 40 including a coil 6, and a displacement mechanism that moves the upper electrode 7 a up and down. 30, a transmitting unit 5a (typically, a known function generator), a receiving unit 5b (typically, a known spectrum analyzer), and resonance spectrum characteristics based on an AC signal received by the receiving unit 5b.
- a measuring unit for measuring the center frequency and / or the bandwidth.
- the displacement mechanism 30 is connected to the computer 90 or controlled by the control unit 35 provided in the computer 90, and utilizes a known servomotor to accurately (for example, positioning accuracy ⁇ 0.2 mm).
- the upper electrode 7a can be moved up and down.
- the displacement mechanism 30 can apply a displacement in a direction in which the lower electrode 7b and the upper electrode 7a are relatively close to or separated from each other while the lower electrode 7b on which the food 10 is arranged faces the upper electrode 7a. .
- the displacement mechanism 30 when inspecting the food 10 whose thickness (height) has been inspected in advance, the thickness of the food 10 (corresponding to the “first thickness”. ), The displacement mechanism 30 can be controlled so that the thickness of the air layer (t 2 in FIG. 1) is substantially constant.
- control unit 35 causes the lower electrode 7b and the upper electrode 7a to be relatively close to or separated from each other by the displacement mechanism 30 while making the lower electrode 7b on which the food 10 is arranged face the upper electrode 7a.
- the control unit 35 can serve as a correction unit that performs correction for reducing the influence of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10.
- the lower electrode 7b also plays a role as an arrangement portion for arranging the food item 10.
- the control unit 35 controls the displacement mechanism 30 based on the above-described positioning accuracy of the servo motor so that the thickness of the air layer (t 2 in FIG. 1) is substantially constant.
- the positioning accuracy that can be adopted in the present embodiment is not limited to ⁇ 0.2 mm or less.
- the thickness of the air layer (t 2 in FIG. 1) may be made substantially constant within the range of ⁇ 0.00004 mm or less to ⁇ 0.00025 mm or less, which is the positioning accuracy of other known servomotors. This is an example of adopting the present embodiment.
- the meaning of the term “substantially constant” is not limited to the above numerical range.
- the computer 90 has a role of giving an instruction to the control unit 35 and also has a role of the above-described measuring unit.
- inspection or measurement of the food 10 may be collectively referred to as “inspection”. Further, “measurement or inspection” of the food 10 may be collectively expressed as “inspection”.
- the transmitting unit 5a, the receiving unit 5b, the coil 6, and the resonance unit 40 according to the present embodiment all have the same functions as the transmitting unit 5a, the receiving unit 5b, the coil, and the resonance unit disclosed in Patent Document 5. Is the same.
- the pair of upper electrode 7a and lower electrode 7b of the present embodiment is the same as the pair of electrodes disclosed in Patent Document 5 except that the displacement mechanism 30 and the control unit 35 are provided. is there. Therefore, for example, the transmission unit 5a generates a first AC signal including the center frequency for the resonance unit 40.
- the receiver 5b receives an AC signal reflected by the resonator 40, an AC signal transmitted through the resonator 40, and flows through the resonator 40. At least one type of second AC signal selected from a group of an AC signal including a current and an AC signal including a voltage generated in the resonance unit 40 is received.
- a function generator is used as the transmitting unit 5a, and a spectrum analyzer is used as the receiving unit 5b, but the present embodiment is not limited to such an aspect.
- a spectrum analyzer is used as the receiving unit 5b, but the present embodiment is not limited to such an aspect.
- using another alternative device disclosed in Patent Document 5 is another mode that can be adopted.
- the resonance section 40 includes at least one pair of the upper electrode 7 a and the lower electrode 7 b and the coil 6.
- the resonance section 40 is a series resonance circuit formed by connecting the coil 6 and a capacitor including the upper electrode 7a and the lower electrode 7b in series.
- the food 10 is placed between the upper electrode 7a and the lower electrode 7b, and this state is regarded as a capacitor.
- an insulating layer or an insulator (for example, an acrylic thin plate) is disposed between the upper electrode 7 a and the lower electrode 7 b.
- an insulating layer or an insulator for example, an acrylic thin plate
- water (including water droplets) that is present by adhering to the food 10 water (including water droplets) that is present when moisture contained in the food 10 appears on the outer periphery or surface thereof,
- water (including water droplets) originally present on the outer periphery or surface of the food 10 directly contacts the upper electrode 7a or the lower electrode 7b, or intervenes between the lower electrode 7b and the food 10.
- the insulating layer or the insulator plays a role as an arrangement portion for arranging the food 10.
- the distance between the upper electrode 7 a and the lower electrode 7 b of the portion facing each other without the food 10 is higher than that of the portion facing the food 10. Bending a part of the upper electrode 7a and the lower electrode 7b so as to be shorter than the distance between the electrode 7a and the lower electrode 7b is also a preferable embodiment that can be adopted.
- the receiving unit 5b and a known temperature measuring device 12 in the present embodiment, manufactured by KEYENCE, model NR-1000.
- the computer 90 of the present embodiment can control each step for inspecting the state of the food 10 (hereinafter, also referred to as “inspection step”).
- the computer 90 also stores information (for example, temperature, resonance spectrum characteristics, center frequency (fr) of the resonance spectrum characteristics, and bandwidth ( ⁇ fr) of the resonance spectrum characteristics) obtained from the receiving unit 5b and the temperature measuring device 12. It may also be used to store, display the information, and / or analyze the information.
- the thermocouple 11 and the temperature measuring device 12 can be omitted because they are devices for checking a temperature change of the food 10 for reference.
- the computer 90 that plays the role of the measuring unit of the present embodiment can monitor or integrally control the above-described processing using, for example, an inspection program for inspecting the state of the food 10 described above.
- the inspection program is stored on a known recording medium such as an optical disk inserted into a hard disk drive in the computer 90 or an optical disk drive provided in the computer 90.
- the storage destination is not limited to this.
- the inspection program can monitor or control the above-described processing via a known technique such as a local area network or an Internet line.
- control unit 35 is provided separately from the computer 90 in place of the computer 90 having the control unit 35 as in the present embodiment.
- an object to be inspected by the food inspection apparatus 100 whose thickness (height) (t 1 in FIG. 1 ) is measured in advance by a known measuring unit.
- An arrangement step of arranging a certain food item 10 between the upper electrode 7a and the lower electrode 7b provided in the resonance section 40 is performed.
- the thickness (height) of the food 10 measured in advance corresponds to the “first thickness”.
- the above-mentioned known measuring means includes, for example, manual measurement or measurement using a known measuring instrument.
- the control unit 35 sets the air space for each food 10 Is performed (an example of a correction process, the same applies hereinafter) for controlling the displacement mechanism 30 so that the thickness (t 2 in FIG. 1) is substantially constant. More specifically, in the displacing step, while the lower electrode 7b on which the food 10 is disposed is opposed to the upper electrode 7a, a displacement is provided in a direction in which the lower electrode 7b and the upper electrode 7a are relatively close to or separated from each other. Thereby, the thickness of the air layer for each food 10 can be made substantially constant.
- the food inspection apparatus 100 performs a transmission step of generating a first AC signal including the center frequency for the resonance unit 40 using the transmission unit 5a.
- the receiving unit 5b receives the second AC signal reflecting the state of the food 10. Specifically, when the food 10 is disposed between the electrodes 7a and 7b, an AC signal reflected on the resonance unit 40, an AC signal transmitted through the resonance unit 40, an AC signal including a current flowing through the resonance unit 40, and resonance. A receiving step of receiving at least one type of second AC signal selected from a group of AC signals including a voltage generated in the unit 40 is performed. After that, the measurement unit carried by the computer 90 (more specifically, the computer 90, the transmission unit 5a, and the reception unit 5b) measures the center frequency and / or the bandwidth of the resonance spectrum characteristic based on the received second AC signal. Is performed.
- the displacement process of the present embodiment is performed for each food 10 before measuring the center frequency and the bandwidth of the resonance unit 40.
- the range of the center frequency of the resonance section 40 is not particularly limited.
- the range of the center frequency of the resonance section 40 is preferably 10 kHz or more and less than 100 MHz for the reason described later.
- the frequency is 100 MHz or more, the stray capacitance of the device becomes a problem, and it becomes difficult to manufacture an appropriate resonance circuit. Further, there is a problem that the cost of the inspection apparatus increases. Furthermore, if 1 kHz or 10 MHz is adopted as the center frequency of the resonance section 40, there arises a problem that the electric conductivity of ice and water becomes almost equal. Therefore, it is a preferable aspect that the range of the center frequency of the resonance section 40 is not less than 10 kHz and less than 100 MHz.
- the second AC signal is an AC signal reflected by the resonance unit 40, an AC signal transmitted through the resonance unit 40, an AC signal including a current flowing through the resonance unit 40, and an AC signal including a voltage generated at the resonance unit 40. At least one selected from the group.
- the receiving unit 5b which can also serve as a measuring unit of the food inspection device 100 of the present embodiment, obtains a resonance spectrum characteristic based on the above-described second AC signal, and obtains a center frequency and / or a band of the resonance spectrum characteristic. Measure the width.
- the present inventors inspected about 100 fish (more specifically, coho salmon) as an example of the food 10 using the food inspection apparatus 100 of the present embodiment.
- the t 2 for each food 10 is set to a specific value of 5 mm to 50 mm (more preferably, 20 mm or more, or 30 mm or less).
- a displacement step (an example of a correction step; the same applies hereinafter) controlled so as to be a distance was employed, and about 100 fish were inspected.
- the displacement mechanism 30 moves the upper electrode 7a up and down, but the electrode moved by the displacement mechanism 30 of the present embodiment is not limited to the upper electrode 7a.
- the displacement mechanism 30 moves the lower electrode 7b up and down instead of or together with the upper electrode 7a, so that the arrangement portion of the present embodiment and the upper electrode 7a or the lower electrode 7b
- This is a preferred aspect of the present embodiment, in which it is also possible to employ a method of displacing in the direction of relatively approaching or separating.
- FIG. 2 is a configuration diagram of a food inspection system 900 of the present embodiment including the food inspection device 100. Therefore, description overlapping with the first embodiment (representatively, description of the food inspection apparatus 100) may be omitted.
- the transmitting unit 5a, the receiving unit 5b, the resonance unit 40, the thermocouple 11, and the temperature measuring device 12 shown in FIG. 1 directly or indirectly serve as a measuring unit.
- the connection to the computer 90 is not shown.
- the relationship between the computer 90 and the transmitting unit 5a, the receiving unit 5b, the resonance unit 40, the thermocouple 11, and the temperature measuring device 12 is as described in FIG.
- the food inspection system 900 moves the food 10 from the left side to the right side in FIG. 2 (in the direction P in FIG. 2) using the transport mechanism 20 represented by a known belt conveyor.
- the transfer speed (including the speed 0) of the transfer mechanism 20 can be monitored or controlled by the computer 90, for example.
- the food inspection system 900 of the present embodiment can perform some or all of the following steps (S1) to (S4).
- (S1) the thickness of the food 10 (height) by measuring the (t a in FIG.
- the thickness (height) of the food 10 corresponds to the “first thickness”.
- the image in the “plan view” described above means an image when viewed from the imaging unit 60 in the direction of ⁇ in FIG. Therefore, in the transport mechanism 20, an image when looking down from just above or almost directly above the mounting surface on which the moving or stationary food item 10 is mounted is a typical planar view image.
- the weighing unit 80 of the present embodiment is a known weighing device that can measure the weight of the conveyed food product 10 in real time. As shown in FIG. 2, the weighing unit 80 is incorporated as a part of the transport mechanism 20. As an example, the weight of the food (eg, fish) 10 that passes above the weighing unit 80 or temporarily stops above the weighing unit 80 is measured in a state where the weighing unit 80 is incorporated under a known belt conveyor. can do.
- the food (eg, fish) 10 that passes above the weighing unit 80 or temporarily stops above the weighing unit 80 is measured in a state where the weighing unit 80 is incorporated under a known belt conveyor. can do.
- the arrangement order of the weighing unit 80, the speed / time measurement unit 70, the imaging unit 60, and the measuring device 50, which is drawn from the left side to the right side of the paper in FIG. 2, is not limited to the order shown in FIG.
- step (S1) of the food inspection system 900 is employed.
- a signal shown in the following (z1) is output to the computer 90. (Z1) as shown in FIG. 2, to rest on the transport mechanism 20, or by the transport mechanism 20 the thickness of the food 10 in the upper moving (height) instrument 50 was measured (t a in FIG. 2) , At least the thickness (height) signal of the food 10
- the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
- the computer 90 that has received the above signal controls the displacement mechanism 30 through the control unit 35 based on the thickness (height) of the food 10 measured in advance. I do. Specifically, the control unit 35 controls the displacement mechanism 30 so that the thickness of the air layer (t 2 in FIG. 2) is substantially constant as a predetermined thickness (for example, 5 mm to 50 mm) in the present embodiment.
- the lower electrode 7b) and the upper electrode 7a are displaced in a direction of relatively approaching or separating (a displacement step (an example of a correction step; the same applies hereinafter)).
- the displacement step is for reducing the influence of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10 when the food 10 is disposed between the upper electrode 7a and the lower electrode 7b. It can serve as a correction step for performing correction.
- the food 10 moves continuously on the transport mechanism 20 without stopping between the upper electrode 7a and the lower electrode 7b. Passing through the gap is also included in being "disposed" between the upper electrode 7a and the lower electrode 7b.
- a modification using the upper electrode 7a and the lower electrode 7b of the resonance unit 40 instead of the above-described speed / time measuring means 70 can be adopted. According to this example, since it is not necessary to use the speed / time measuring means 70, simplification of the food inspection system 900 and / or reduction of equipment costs can be realized.
- the above-described second AC signal which changes when the food 10 moving on the transport mechanism 20 at a constant speed passes between the upper electrode 7a and the lower electrode 7b of the resonance unit 40, Measuring and analyzing the time variation of the signal strength, center frequency, and / or bandwidth of the resonance spectral characteristic based on.
- the time change (time trace) of the signal strength, the center frequency, and / or the bandwidth By analyzing the time change (time trace) of the signal strength, the center frequency, and / or the bandwidth, the time until the food 10 passes between the electrodes 7a and 7b, and the length of the food 10 (more To be precise, the length in the moving direction of the food item 10.
- the "effective length" is derived.
- the “effective length” substantially corresponds to the electric capacity of the food 10, and thus to the signal strength, the center frequency, and / or the bandwidth of the food inspection apparatus 100. Will contribute (in other words, influence).
- the previously measured The thickness (height) of the food 10 and When approximated to a rectangle obtained by multiplying the effective length of the food 10 by a predetermined width (constant), or an ellipse having the length and the width as a major radius and a minor radius (or vice versa), respectively.
- Approximate value of the area of food 10 calculated when approximated (in other words, "effective area")
- the effective area of the air layer between the upper electrode 7a and the food 10 is determined.
- the electric capacity of the air layer (more precisely, “approximate value of electric capacity”; ) Can be derived.
- the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
- the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
- the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
- the computer 90 calculates The thickness (height) of the food 10 (t a in FIG. 2), and Based on the calculated area of the food 10, the calculated area of the air layer between the upper electrode 7 a and the food 10 (to match the calculated area of the food 10) is determined. As a result, the electric capacity of the air layer can be derived from the calculated area and the thickness of the air layer (t 2 in FIG. 2 ).
- the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
- the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
- the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
- the density of the food 10 is constant, it is measured in advance, Weight of food 10, The thickness (height) of the food 10 (t a in FIG. 2), and Since the width of the food 10 is derived based on the length of the food 10 derived from the speed and the time of the food 10, the calculation area of the food 10 is calculated by the following calculation means carried by the computer 90. You.
- the computer 90 calculates The thickness (height) of the food 10 (t a in FIG. 2), and Based on the calculated area of the food 10, the calculated area of the air layer between the upper electrode 7 a and the food 10 (to match the calculated area of the food 10) is determined. As a result, the electric capacity of the air layer can be derived from the calculated area and the thickness of the air layer (t 2 in FIG. 2 ).
- the effective area of the air layer between the upper electrode 7a and the food 10 is determined, and the calculated area is calculated by the following calculation means carried by the computer 90.
- the thickness of the air layer t 2 in FIG. 2
- the electric capacity of the air layer can be derived.
- the “effective width” is the “width” in a direction orthogonal to the “effective length”.
- the “effective width” substantially contributes to the electric capacity of the food 10 and thus to the value of the signal strength, the center frequency, and / or the bandwidth in the food inspection apparatus 100 (in other words, Affect).
- the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
- the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
- the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
- the major radius and the minor radius are respectively used.
- the calculation area of the food 10 calculated when the ellipse is approximated (or vice versa) is calculated by the calculation means of the computer 90.
- the computer 90 calculates The thickness (height) of the food 10 (t a in FIG. 2), and Based on the approximate value of the area of the food 10, the capacitance of the food 10 disposed between the upper electrode 7a and the lower electrode 7b can be derived.
- the food inspection device 200 of the present embodiment is the same as the food inspection device 100 except that the food inspection device 200 of the first embodiment does not include the displacement mechanism 30 and the control unit 35 provided in the food inspection device 100 of the first embodiment. Therefore, description overlapping with the first embodiment may be omitted.
- FIG. 3 is a configuration diagram of the food inspection device 200 of the present embodiment.
- the displacement mechanism 30 of the first embodiment since the displacement mechanism 30 of the first embodiment is not provided, the upper electrode 7a and / or the lower electrode 7b cannot be moved up and down. Therefore, the thickness of the air layer existing between the food 10 disposed between the electrodes 7a and 7b and the upper electrode 7a (corresponding to the “second thickness”.
- This embodiment and other embodiments (modifications) 3) t ′ 2 ) in FIG. 3 will be different for each food 10 having a different thickness (height). As a result, the electric capacity of the air layer changes according to the change in the thickness of the air layer.
- the displacement mechanism 30 uses the reference center frequency and / or the reference bandwidth of the reference food when the second thickness is varied, which is measured in advance, as described below. Even without this, for example, a correction for reducing the effect of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10 can be performed.
- the present inventors use the food inspection apparatus 200 of the present embodiment to compare the food 10 to be inspected with the reference center frequency of the reference food when the second thickness is different, which is to be compared. And / or a reference bandwidth was obtained.
- FIG. 5 shows the thickness of the air layer between the upper electrode 7a and the food 10 (t ′ 2 in FIG. 3) for fish (more specifically, salmon) as an example of a fully thawed food.
- 6 is a graph showing the relationship between the frequency and the center frequency.
- FIG. 6 shows the thickness of the air layer between the upper electrode 7a and the food 10 (t ′ in FIG. 3) for fish (more specifically, salmon) as an example of a fully thawed food.
- 2 is a graph showing the relationship between the bandwidth and the bandwidth.
- the center frequency of the thawed food is seen to fluctuate. For example, by the distance t '2 changes from 20mm to 25 mm, the center frequency was confirmed to about 25kHz also varies. Similarly, as shown in FIG. 4, with the change in distance t '2, the bandwidth of uncompressed foods seen to vary. For example, by the distance t '2 changes from 20mm to 25 mm, the center frequency was confirmed that vary 2kHz or more.
- FIG. 7 is a graph showing the respective resonance spectrum during freezing (solid line) and during decompression (dotted line) when the value of t 2 is 30 mm.
- the thickness of the air layer existing between the food to be inspected and the electrode is 30 mm.
- the vertical axis of each resonance spectrum at the time of freezing (solid line) and at the time of thawing (dotted line) is standardized for easy viewing.
- the degree of resonance intensity is represented as a reflection intensity (the unit is an arbitrary unit, abbreviated as “au”).
- the difference ( ⁇ d in FIG. 7) between the center frequency at the time of freezing ( ⁇ 17.3 ° C.) and the center frequency at the time of thawing (1.2 ° C.) is about 46 kHz, which corresponds to It was confirmed that the difference between the bandwidths was about 37 kHz.
- the present inventors adopted the results obtained from FIGS. 5 and 6 as the reference center frequency and the reference bandwidth of the reference food when the second thickness was varied, respectively.
- the food 10 that is first inspected is used as the reference food. Doing so is also a preferred embodiment.
- the food inspection apparatus 200 further includes a recording unit or a database, and that the reference center frequency and the reference bandwidth be recorded in the recording unit or the database. It is an aspect.
- a recording unit typified by a hard disk drive provided in the computer 90, or the computer 90 electrically or electronically or via a communication unit.
- the reference center frequency and the reference bandwidth can be temporarily or permanently stored in a recording means that can be connected to the computer.
- the center frequency and the bandwidth of the resonance unit 40 are measured, and the measurement result is compared with the reference center frequency and the reference bandwidth of the reference food, so that the upper electrode 7a It is possible to grasp the state (for example, the state of freezing / thawing) of the food 10 disposed between the food 10 and the lower electrode 7b.
- the thickness (height) (corresponding to the “first thickness”; the same applies hereinafter) by a known measuring unit (t in FIG. 3).
- An arrangement step of disposing the food 10 to be inspected by the food inspection device 200, for which 1 ) is measured, between the upper electrode 7a and the lower electrode 7b in the resonance section 40 is performed.
- a computer serving as a calculating unit together with the measurement unit. 90 calculates the thickness of the air layer between the upper electrode 7a and the food 10 (corresponding to the “second thickness”; the same applies hereinafter) (t ′ 2 in FIG. 3).
- the food inspection device 200 measures a center frequency and / or a bandwidth derived from a resonance spectrum characteristic of the food 10 to be inspected.
- the computer 90 compares the center frequency and / or the bandwidth with respect to the following (1) and (2).
- (1) Based on the first thickness of each food 10 to be inspected, the center frequency and / or band calculated as one of the elements based on the electric capacity based on the second thickness of the air layer for each food 10 Width (2)
- the thickness of the air layer between the upper electrode 7a and food 10 correction step based on the (t '2 in FIG. 3) is performed by the computer 90.
- a reference center frequency of the reference food obtained from FIG. 5 corresponding to the thickness of the air layer (t ′ 2 in FIG. 3) is derived.
- t ′ 2 the thickness of the air layer
- a reference center frequency of about 1.950 MHz is derived.
- a calculation step (an example of a correction step) for temporarily adjusting the value of t ′ 2 to 45 mm for each food 10 is assumed. ) Is performed by the computer 90.
- the computer 90 performs a calculation step (an example of a correction step) of adding about 0.150 MHz, which is a difference from about 2.100 MHz, which is a reference center frequency at a certain time, to the measured center frequency of the food 10. .
- a calculation process (an example of a correction process) for correcting the measured bandwidth of the food 10 is performed for the bandwidth as described above.
- the food inspection system 920 of the present embodiment is the same as the food inspection device 900 except that the food inspection system 900 of the second embodiment does not include the displacement mechanism 30 and the control unit 35 provided in the food inspection system 900 of the second embodiment. Therefore, description overlapping with the first embodiment or the second embodiment and its modified example may be omitted.
- FIG. 4 is a configuration diagram of the food inspection system 920 of the present embodiment including the food inspection device 200.
- the food inspection system 920 of the present embodiment uses the transport mechanism 20 typified by a known belt conveyor and moves from the left side to the right side of FIG. The food 10 is moved (in the direction P in FIG. 4). Further, in the process of moving the food item 10, the food inspection system 920 of the present embodiment performs some or all of the following steps described in (S1) to (S4) of the second embodiment. Can be.
- S1 The thickness (height) of the food 10 (corresponding to “first thickness”; the same applies hereinafter) (t ′ a in FIG. 4) is measured, and at least the thickness (height) of the food 10 is measured.
- Thickness (height) measuring side process using a measuring instrument (for example, a known laser distance meter) 50 for outputting a signal (S2) A specific position of the food 10 moving at a constant speed is determined.
- a speed / time measuring unit (for example, a known speedometer or photoelectric sensor) 70 that measures the passing speed (V a in FIG. 4) and the time from the front end to the rear end of the food 10 passing the position is used.
- Speed measurement step used (S3) At least the outer shape of the food 10 is imaged, and an image signal for measuring at least the length (L a in FIG. 4) and the width (W a in FIG. 4) in plan view is output.
- a digital camera equipped with a known image sensor was used, by measuring the weight of the imaging step (S4) food 10, using the weighing unit 80 for outputting a weight signal of at least the food 10, weighing process
- the calculating means (can be calculated by the thickness t 1 of the food 10 is determined) the thickness of the air layer correction step based on the (t '2 in FIG. 3), the computer 90 Done by
- the one food inspection device and one food inspection method of the present invention are extremely useful in current and future industries dealing with food or in industries performing food inspection.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
One food inspection device 100 according to this invention comprises: a resonance unit 40 including a pair of electrodes 7a, 7b and a coil; a transmission unit 5a for producing a first AC signal in the resonance unit 40; a reception unit 5b for, when food 10 is disposed between the electrodes 7a, 7b, receiving at least one type of second AC signal selected from the group consisting of an AC signal reflected by the resonance unit 40, an AC signal that has passed through the resonance unit 40, an AC signal comprising the current flowing through the resonance unit 40, and an AC signal comprising the voltage produced in the resonance unit 40; a measurement unit (computer 90) for measuring at least one selected from the group consisting of the center frequency of a resonance spectrum characteristic based on the second AC signal, the bandwidth of the resonance spectrum characteristic based on the second AC signal, and the signal strength of a specific frequency in the resonance spectrum characteristic based on the second AC signal; and a correction means for carrying out correction for reducing the influence of the variation in the capacitance of an air layer between the food 10 and an electrode 7a, 7b.
Description
本発明は、食品の食品検査装置及び食品検査方法に関する。
The present invention relates to a food inspection apparatus and a food inspection method for food.
食品については、その食品に含まれる水の状態、塩分の濃度、又は脂質の割合が、加工又は調理された食品の仕上がり状態に影響し得る。特に、冷凍食品の場合、食品に含まれる水の状態(氷であるか水であるか)、塩分の濃度、又は脂質の割合は、加工又は調理された食品の仕上がり状態(最終製品の状態)のみならず、その食品の品質にも影響し得る。また、その食品に含まれ得る水分の含有量、塩分濃度、又は脂質の割合などの様々な指標も、加工又は調理された食品の仕上がり状態、及びその食品の品質に関わってくる。そのため、生産者、物流に携わる者、及び需要者(消費者)にとって、食品の品質に影響を及ぼすそのような指標は、特に「食の安心・安全」が注目されている昨今の事情を踏まえれば、極めて重大な関心事であるといえる。
As for foods, the state of water, salt concentration, or percentage of lipids contained in the foods can affect the finished state of processed or cooked foods. In particular, in the case of frozen foods, the state of water (whether ice or water), the concentration of salt, or the percentage of lipids contained in the food is determined by the finished state of the processed or cooked food (final product state). In addition, it can affect the quality of the food. In addition, various indices such as a water content, a salt concentration, and a lipid ratio that can be included in the food also affect the finished state of the processed or cooked food and the quality of the food. Therefore, for producers, those engaged in logistics, and consumers (consumers), such indicators that affect the quality of food are based on the recent circumstances in which "food safety and security" is particularly attracting attention. That is, of course, a very important concern.
例えば、冷凍食品の場合、その食品に含まれる氷及び/又は水の状況によっては、想定している温度・品質が達成できない場合がある。具体的には、本来なら全解凍後に加熱すべき食品を、半解凍状態の段階で加熱してしまうことによって、十分にその食品を加熱することができないことがある。また、逆に、本来なら半解凍状態にした後に低温加工すべき食品を、全解凍してしまうことによって、その食品を一定時間、十分に低温に保つことができず、その食品の品質を保持することが困難な場合もある。また、冷凍食品か否かを問わず、塩分の濃度又は脂質の割合によっては、想定している品質が達成できない場合がある。
For example, in the case of frozen food, the expected temperature and quality may not be achieved depending on the conditions of ice and / or water contained in the food. Specifically, the food which should be heated after full thawing is heated in the half-thaw state may not be able to sufficiently heat the food. Conversely, by completely defrosting food that should be processed at low temperature after it has been half-thawed, the food cannot be kept at a sufficiently low temperature for a certain period of time, maintaining the quality of the food. It can be difficult to do so. In addition, irrespective of whether or not the food is frozen, the expected quality may not be achieved depending on the salt concentration or the lipid ratio.
これまでに、食品の電気伝導率、又は静電容量に着目し、食品の温度及び冷凍・解凍状態、あるいは食品の品質劣化状態を調べる装置又は方法が幾つか開示されている(特許文献1~4、及び非特許文献1)。
Heretofore, there have been disclosed some devices or methods for examining the temperature and frozen / thawed state of food, or the state of quality deterioration of food, focusing on the electric conductivity or capacitance of food (Patent Documents 1 to 4). 4, and Non-Patent Document 1).
一例として、食品に含まれる水の状態は、その食品の温度によって変動するため、その温度及び/又は温度変化を監視することは、従来採用されてきた食品の品質管理のための主要な方法である。代表的には、その食品の温度及び/又は温度変化の監視として、温度計を用いた直接的な監視方法、又はサーモグラフィーを用いた非破壊的な監視方法、あるいは、場合によっては人間の触感という曖昧な指標も採用されている。そこで、本願出願人は、これまでに、誘電率と電気伝導率を含む複素誘電率という客観的指標に基づいて、水分の状態、食品に含まれる塩分の濃度、又は脂質の割合(代表的には、水と油の比率)に代表される食品の状態を、非破壊に測定又は検査する検査装置及び方法を開発し、開示している(特許文献5)。
As an example, the state of water contained in a food varies with the temperature of the food, and monitoring the temperature and / or temperature change is a major method for quality control of food that has been conventionally adopted. is there. Typically, the monitoring of the temperature and / or temperature change of the food is a direct monitoring method using a thermometer, a non-destructive monitoring method using thermography, or, in some cases, a human tactile sensation. Ambiguous indicators are also employed. Therefore, the applicant of the present application has previously reported, based on an objective index of complex permittivity including permittivity and electric conductivity, the state of water, the concentration of salt contained in food, or the proportion of lipid (typically, Has developed and disclosed an inspection device and method for nondestructively measuring or inspecting the state of food represented by water / oil ratio (Patent Document 5).
しかしながら、温度計を用いた直接的な監視方法では、被検査対象である食品内に温度計を挿入して使用することになる。その結果、その食品を商品として販売することができなくなるため、該食品は廃棄処分にせざるを得ない。また、サーモグラフィーを用いた場合は、食品の表面(表層)を測定することができたとしても、その内部まで測定することが困難である。加えて、人間の触感という曖昧な指標は、属人的な指標であるため、汎用性及び永続性に欠ける。
However, in the direct monitoring method using a thermometer, the thermometer is inserted into the food to be inspected and used. As a result, the food cannot be sold as a product, and the food must be disposed of. Further, when thermography is used, even if the surface (surface layer) of the food can be measured, it is difficult to measure the inside of the food. In addition, the ambiguous index of human touch is a personal index and lacks versatility and permanence.
また、仮に食品の温度及び/又は温度変化を監視することができたとしても、食品に含まれる水の状態を正しく把握していることにはならない。特許文献5において述べたとおり、特に、冷凍食品を例に挙げれば、冷凍状態から解凍状態に至る過程、あるいはその逆の、解凍状態から冷凍状態に至る過程における食品内の水の状態は、通常、その食品の温度という指標には現れない場合が多い。従って、温度という指標によって食品に含まれる水の状態を把握することは非常に困難である。
Even if the food temperature and / or temperature change can be monitored, it does not mean that the state of water contained in the food is correctly understood. As described in Patent Document 5, especially in the case of frozen foods, the state of water in food during the process from the frozen state to the thawed state, or vice versa, from the thawed state to the frozen state, is usually Often, it does not appear in the index of the temperature of the food. Therefore, it is very difficult to grasp the state of water contained in the food by using the index of temperature.
一方、本発明者らが、鋭意、研究と分析に取り組んだ結果、特許文献5において開示する発明においては、好適には、電極間に配置される食品の形状及び/又は大きさによって該電極と該食品との間に存在する空気層の電気容量に対する配慮と工夫が求められるとの知見が得られた。
On the other hand, as a result of the present inventors' earnest efforts and research and analysis, in the invention disclosed in Patent Literature 5, preferably, the shape and / or size of the food disposed between the electrodes is determined by the shape and / or size of the electrodes. It has been found that consideration and consideration for the electric capacity of the air layer existing between the food and the food are required.
本発明者らは、特許文献5において開示する検査装置及び検査方法の検査精度を更に高めるべく、鋭意研究と分析に取り組んだ。その結果、特に個々の食品の形状及び/又は大きさが不揃いな食品を数多く検査する場面においては、電極間に配置される各々の食品と該電極との間に存在する空気層の電気容量が変動することから、該電気容量の変動による検査結果への影響が無視できないことが明らかになった。
The present inventors have worked diligently on research and analysis in order to further increase the inspection accuracy of the inspection device and the inspection method disclosed in Patent Document 5. As a result, especially in the case of inspecting a large number of foods having irregular shapes and / or sizes of individual foods, the electric capacity of an air layer existing between each food disposed between the electrodes and the electrode is increased. Because of the fluctuation, it became clear that the influence of the fluctuation of the electric capacity on the inspection result cannot be ignored.
また、本願出願人が開示した特許文献5の図7Bに示すように、水と脂質(油)とをいずれも含む食品が被検査対象となった場合、水と脂質(油)との混合比率が異なることによって変動する中心周波数及び/又はバンド幅の差をより精度高く検査することは、食品業界における重要な関心事といえる。しかしながら、電極間に配置される該食品と該電極との間に存在する空気層の電気容量が大きく変動すれば、高い精度で水と脂質(油)との混合比率を把握することが難しくなる。
In addition, as shown in FIG. 7B of Patent Document 5 disclosed by the present applicant, when a food containing both water and lipid (oil) is to be inspected, the mixing ratio of water and lipid (oil) is determined. It is of great interest in the food industry to more accurately test for differences in center frequency and / or bandwidth that vary due to different. However, if the electric capacity of the air layer existing between the food and the electrode arranged between the electrodes fluctuates greatly, it becomes difficult to grasp the mixing ratio of water and lipid (oil) with high accuracy. .
従って、温度という指標を用いることなく、水の冷凍状態又は解凍状態を確度高く定量化し得る、食品の検査装置及び方法の研究と開発は、未だ道半ばといえる。
Therefore, research and development of food inspection devices and methods that can accurately quantify the frozen or thawed state of water without using the index of temperature can be said to be still in the middle.
本発明は、食品に関して、水分の状態、塩分濃度、又は脂質の割合に例示される食品の状態を、更に高い確度で、かつ非破壊に測定又は検査することができる検査装置及び検査方法の実現に大きく貢献するものである。
The present invention realizes an inspection apparatus and an inspection method capable of measuring or inspecting the state of food, which is exemplified by the state of water, the salt concentration, or the proportion of lipid, with higher accuracy and nondestructively. It greatly contributes to.
本発明者らは、被検査対象となる各々の食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、該食品と該電極の少なくとも一方との間に存在する該空気層の影響を低減し得る検査装置及び検査方法について試行錯誤を繰り返しつつ検討を重ねた。
The present inventors have examined foods containing both water and lipid (oil) even if the shapes and / or sizes of the foods to be inspected are different from each other. Even in such a case, an examination apparatus and an examination method capable of reducing the influence of the air layer existing between the food and at least one of the electrodes were repeatedly examined through trial and error.
一例として、本発明者らは、図8に示す分析用の等価回路図に基づいて、該空気層の電気容量の影響について検討と分析を行った。
と し て As an example, the present inventors have studied and analyzed the influence of the electric capacity of the air layer based on the equivalent circuit diagram for analysis shown in FIG.
図8におけるFは、被検査対象である食品を意味する。従って、図8の電気容量(Cf)と抵抗値(Rf)は、それぞれ食品Fの電気容量と抵抗値である。また、図8におけるQは、食品Fと電極(通常、下側電極)との間に設けた絶縁性の薄板である。また、図8のLは、コイルのインダクタンスであり、RLは、共振周波数近傍におけるコイルの抵抗値である。また、図8に示すように、寄生容量(Cstr)が設定されている。また、図8におけるRoutは、出力インピーダンスである。なお、絶縁性の該薄板は必ずしも要しないため、該薄板の電気容量(Cins)を省くことも採用し得る一態様である。
FF in FIG. 8 means a food to be inspected. Therefore, the electric capacity (Cf) and the resistance value (Rf) in FIG. 8 are the electric capacity and the resistance value of the food F, respectively. Further, Q in FIG. 8 is an insulating thin plate provided between the food F and the electrode (usually, the lower electrode). Further, L in FIG. 8 is the inductance of the coil, and RL is the resistance value of the coil near the resonance frequency. Further, as shown in FIG. 8, a parasitic capacitance (Cstr) is set. Further, Rout in FIG. 8 is an output impedance. Note that, since the insulating thin plate is not necessarily required, omitting the electric capacity (Cins) of the thin plate is one aspect that can be adopted.
ここで、図8に示す9つのパラメータのうち、食品FのCf及びRfが未知数であり、検査対象となる。一方、Cf及びRfを導出するためには、該等価回路図における残り7つのパラメータ(L、RL、Cair、Cins、Cstr、Rout、及びV)が、全て既知、又は略一定にすることが求められる。本発明者らは、これらのうち、Cairが、食品の形状及び/又は大きさよって影響を受けやすく、かつ中心周波数及び/又はバンド幅に支配的に影響を与える数値であることを、種々の実験を繰り返すことによって知得した。そのため、電極間に配置される食品の形状及び/又は大きさによって影響を受ける該Cairの変化を実質的に無視できるようにし、中心周波数及び/又はバンド幅を活用して確度高く食品の状態を検査するため、種々の検討を重ねられた。
Here, among the nine parameters shown in FIG. 8, Cf and Rf of the food F are unknown and are to be inspected. On the other hand, in order to derive Cf and Rf, it is necessary that all the remaining seven parameters (L, RL, Cair, Cins, Cstr, Rout, and V) in the equivalent circuit diagram are known or substantially constant. Can be The inventors have shown that among these, Cair is a number that is sensitive to the shape and / or size of the food and is a number that predominantly affects the center frequency and / or bandwidth. It was learned by repeating the experiment. Therefore, the change in the Cair affected by the shape and / or the size of the food placed between the electrodes is substantially negligible, and the state of the food is highly accurately determined by utilizing the center frequency and / or the bandwidth. Various examinations were conducted for inspection.
その結果、本発明者らは、該空気層の影響をハード的及び/又はソフト的に低減し得る案を創出することによって、より確度高く食品の状態を検査することが可能になるとの知見を得た。本発明は、上述の各視点に基づいて創出された。
As a result, the present inventors have found that it is possible to more accurately inspect the state of food by creating a solution that can reduce the influence of the air layer in terms of hardware and / or software. Obtained. The present invention has been created based on the above-described viewpoints.
上述の技術的効果を奏させるための本発明の1つの食品検査装置は、一対の電極とコイルとを含む共振部と、該共振部に対して第1交流信号を発生する発信部と、食品を該電極間に配置したときの、該共振部に反射する交流信号、該共振部を透過する交流信号、該共振部を流れる電流からなる交流信号、及び該共振部に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する受信部と、該第2交流信号に基づく共振スペクトル特性の中心周波数、該第2交流信号に基づく共振スペクトル特性のバンド幅、及び該第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定する測定部と、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正手段と、を備える。
One food inspection device of the present invention for achieving the above technical effects includes a resonance unit including a pair of electrodes and a coil, a transmission unit that generates a first AC signal to the resonance unit, When an AC signal is disposed between the electrodes, an AC signal reflected on the resonance unit, an AC signal transmitted through the resonance unit, an AC signal including a current flowing through the resonance unit, and an AC signal including a voltage generated in the resonance unit A receiving unit that receives at least one type of second AC signal selected from a group of signals, a center frequency of a resonance spectrum characteristic based on the second AC signal, a bandwidth of a resonance spectrum characteristic based on the second AC signal, And a measuring unit that measures at least one selected from a group of signal intensities at a specific frequency in a resonance spectrum characteristic based on the second AC signal, and a capacitance of an air layer between the electrode and the food. Shadow of change And a correcting means for correcting to reduce.
この食品検査装置によれば、中心周波数を含む第1交流信号を上述の共振部に与えると、食品を共振部における一対の電極間に配置したときの上述に示す第2交流信号を受信部が受信する。加えて、この食品検査装置の測定部が、その第2交流信号に基づく共振スペクトル特性の中心周波数、その第2交流信号に基づく共振スペクトル特性のバンド幅、及びその第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定することにより、該食品の誘電率の変化、及び/又は電気伝導率(又は抵抗率)を取得することが可能となる。その結果、水分の状態、食品に含まれる塩分の濃度、又は脂質の割合(代表的には、水と油の比率)に代表される食品の状態を、高い確度で、かつ非破壊に測定又は検査することができる。加えて、この食品検査装置によれば、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正手段を備えるため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。
According to this food inspection device, when the first AC signal including the center frequency is provided to the above-described resonance unit, the reception unit receives the above-described second AC signal when the food is arranged between the pair of electrodes in the resonance unit. Receive. In addition, the measurement unit of the food inspection apparatus includes a center frequency of a resonance spectrum characteristic based on the second AC signal, a bandwidth of a resonance spectrum characteristic based on the second AC signal, and a resonance spectrum based on the second AC signal. By measuring at least one selected from a group of signal intensities at a specific frequency in the characteristic, it is possible to obtain a change in the dielectric constant of the food and / or an electrical conductivity (or resistivity). Become. As a result, the state of water, the concentration of salt contained in food, or the state of food represented by the ratio of lipids (typically, the ratio of water to oil) can be measured with high accuracy and nondestructively. Can be inspected. In addition, according to this food inspection apparatus, since there is provided a correction unit for performing a correction for reducing an influence of a change in an electric capacity of an air layer between the electrode and the food, each food to be inspected is provided. Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipids (oil) is to be inspected, the state of the food is more accurately than before. Can be inspected.
なお、上述の測定部が、少なくとも、上述の第2交流信号に基づく共振スペクトル特性の中心周波数及び/又はバンド幅を測定することは、該食品の誘電率の変化、及び電気伝導率(又は抵抗率)を取得することが可能となるため、好適な一態様である。
Note that the measurement unit measures at least the center frequency and / or bandwidth of the resonance spectrum characteristic based on the second AC signal described above, because the change in the dielectric constant of the food and the electrical conductivity (or resistance) Rate), which is a preferred embodiment.
また、上述の食品検査装置において、より好適な一態様は、上述の補正手段が、次の(a1)、(a2)、及び(a3)の構成を備えることである。
(a1)上述の食品を配置するための配置部と、
(a2)該配置部を該電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向に変位させる変位機構(但し、該電極が該配置部を兼ねてもよい。)
(a3)予め測定された被検査対象の該食品ごとの第1厚さに基づいて、該食品が該電極間に配置されたときの、該食品ごとの該空気層の第2厚さを略一定にするように、該変位機構を制御する制御部 Further, in the above-described food inspection device, a more preferable aspect is that the correction means has the following configurations (a1), (a2), and (a3).
(A1) an arrangement unit for arranging the above-mentioned food;
(A2) A displacement mechanism that displaces the arrangement portion and the electrode in a direction of relatively approaching or separating while the arrangement portion faces the electrode (however, the electrode may also serve as the arrangement portion).
(A3) When the food is disposed between the electrodes, the second thickness of the air layer for each food is substantially determined based on the first thickness of the food to be inspected measured in advance. A control unit for controlling the displacement mechanism so as to be constant
(a1)上述の食品を配置するための配置部と、
(a2)該配置部を該電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向に変位させる変位機構(但し、該電極が該配置部を兼ねてもよい。)
(a3)予め測定された被検査対象の該食品ごとの第1厚さに基づいて、該食品が該電極間に配置されたときの、該食品ごとの該空気層の第2厚さを略一定にするように、該変位機構を制御する制御部 Further, in the above-described food inspection device, a more preferable aspect is that the correction means has the following configurations (a1), (a2), and (a3).
(A1) an arrangement unit for arranging the above-mentioned food;
(A2) A displacement mechanism that displaces the arrangement portion and the electrode in a direction of relatively approaching or separating while the arrangement portion faces the electrode (however, the electrode may also serve as the arrangement portion).
(A3) When the food is disposed between the electrodes, the second thickness of the air layer for each food is substantially determined based on the first thickness of the food to be inspected measured in advance. A control unit for controlling the displacement mechanism so as to be constant
この好適な一態様の食品検査装置によれば、被検査対象となる各々の食品が上述の電極間に配置されたときの上述の空気層の厚さを、上述の変位機構を用いて調整し得るため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、該空気層の電気容量の変化の影響を低減するように調整することができる。
According to the food inspection device of this preferred embodiment, the thickness of the air layer when each food to be inspected is arranged between the electrodes is adjusted using the displacement mechanism. Therefore, even if the shapes and / or sizes of the foods to be inspected are different from each other, or if the foods containing both water and lipid (oil) are to be inspected, Can also be adjusted to reduce the effect of changes in the capacitance of the air layer.
また、上述の食品検査装置において、より好適な他の一態様は、上述の補正手段が、次の(b1)の構成を備えることである。
(b1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が上述の電極間に配置されたときの上述の空気層の第2厚さに基づく上述の電気容量を要素の1つとして算出される上述の記中心周波数及び/又は上述のバンド幅を、参照用食品が該電極間に配置されたときの該電極と該参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出手段 Further, in the above-mentioned food inspection device, another more preferable aspect is that the above-mentioned correction means has the following configuration (b1).
(B1) Based on the first thickness of each of the foods to be inspected measured in advance, based on the second thickness of the air layer when the foods are arranged between the electrodes. The above-mentioned center frequency and / or the above-mentioned bandwidth, which are calculated with the capacitance as one of the elements, are used to determine the reference between the electrode and the reference food when the reference food is placed between the electrodes. Calculation means for calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the thickness of the air layer
(b1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が上述の電極間に配置されたときの上述の空気層の第2厚さに基づく上述の電気容量を要素の1つとして算出される上述の記中心周波数及び/又は上述のバンド幅を、参照用食品が該電極間に配置されたときの該電極と該参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出手段 Further, in the above-mentioned food inspection device, another more preferable aspect is that the above-mentioned correction means has the following configuration (b1).
(B1) Based on the first thickness of each of the foods to be inspected measured in advance, based on the second thickness of the air layer when the foods are arranged between the electrodes. The above-mentioned center frequency and / or the above-mentioned bandwidth, which are calculated with the capacitance as one of the elements, are used to determine the reference between the electrode and the reference food when the reference food is placed between the electrodes. Calculation means for calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the thickness of the air layer
この好適な他の一態様の食品検査装置によれば、被検査対象となる各々の食品が上述の電極間に配置されたときの上述の空気層の厚さを、上述の算出手段を用いて該空気層の厚さによる電気容量の影響を低減する又は実質的に無くすための補正計算をし得るため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、該空気層の電気容量の変化の影響を低減するように調整することができる。
According to the food inspection apparatus of another preferred aspect, the thickness of the air layer when each food to be inspected is arranged between the electrodes is calculated using the calculation unit. In order to reduce or substantially eliminate the influence of the capacitance due to the thickness of the air layer, even if the shape and / or size of each food to be inspected are different from each other, Alternatively, even when a food containing both water and lipid (oil) is to be inspected, adjustment can be made to reduce the effect of a change in the electric capacity of the air layer.
また、上述の技術的効果を奏させるための本発明の1つの食品検査方法は、一対の電極とコイルとを含む共振部の、該電極間に食品を配置する配置工程と、該食品を該電極間に配置したときの、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正工程と、該共振部に対して第1交流信号を発生する発信工程と、該食品を該電極間に配置したときの、該共振部に反射する交流信号、該共振部を透過する交流信号、該共振部を流れる電流からなる交流信号、及び該共振部に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する受信工程と、該第2交流信号に基づく共振スペクトル特性の中心周波数、該第2交流信号に基づく共振スペクトル特性のバンド幅、及び該第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定する測定工程と、を含む。
Further, one food inspection method of the present invention for achieving the above-described technical effects includes an arrangement step of arranging food between the electrodes of a resonance unit including a pair of electrodes and a coil, and A correction step of performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food when the electrode is disposed between the electrodes, and generating a first AC signal to the resonance unit. The transmitting step, and when the food is placed between the electrodes, an AC signal reflected on the resonance section, an AC signal transmitted through the resonance section, an AC signal including a current flowing through the resonance section, and the resonance section. Receiving at least one type of second AC signal selected from a group of AC signals consisting of a voltage generated at a center frequency of a resonance spectrum characteristic based on the second AC signal, based on the second AC signal. The bandwidth of the resonance spectral characteristic; Comprising a measuring step of measuring at least one selected from the group of the signal intensity of a specific frequency in the resonance spectral properties based on the AC signal.
この食品検査方法によれば、中心周波数を含む第1交流信号を上述の共振部に与えると、食品を共振部における一対の電極間に配置したときの上述に示す第2交流信号を受信することになる。さらに、この食品検査方法によれば、その第2交流信号に基づく共振スペクトル特性の中心周波数、その第2交流信号に基づく共振スペクトル特性のバンド幅、及びその第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定する測定工程により、該食品の誘電率の変化、及び/又は電気伝導率(又は抵抗率)を取得することが可能となる。その結果、水分の状態、食品に含まれる塩分の濃度、又は脂質の割合(代表的には、水と油の比率)に代表される食品の状態を、高い確度で、かつ非破壊に測定又は検査することができる。加えて、この食品検査装置によれば、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正工程を備えるため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。
According to this food inspection method, when the first AC signal including the center frequency is provided to the above-described resonance unit, the above-described second AC signal when the food is arranged between the pair of electrodes in the resonance unit is received. become. Furthermore, according to the food inspection method, the center frequency of the resonance spectrum characteristic based on the second AC signal, the bandwidth of the resonance spectrum characteristic based on the second AC signal, and the resonance spectrum characteristic based on the second AC signal are different. The measurement step of measuring at least one selected from a group of signal intensities at a specific frequency makes it possible to obtain a change in dielectric constant and / or an electrical conductivity (or resistivity) of the food. . As a result, the state of water, the concentration of salt contained in food, or the state of food represented by the ratio of lipids (typically, the ratio of water to oil) can be measured with high accuracy and nondestructively. Can be inspected. In addition, according to this food inspection apparatus, since each of the foods to be inspected is provided with a correction step for performing a correction for reducing the influence of a change in the electric capacity of the air layer between the electrode and the food, Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipids (oil) is to be inspected, the state of the food is more accurately than before. Can be inspected.
なお、上述の測定工程において、少なくとも、上述の第2交流信号に基づく共振スペクトル特性の中心周波数及びバンド幅を測定することは、該食品の誘電率の変化、及び電気伝導率(又は抵抗率)を取得することが可能となるため、好適な一態様である。
In the above-described measurement step, at least measuring the center frequency and the bandwidth of the resonance spectrum characteristic based on the second AC signal is performed by changing the dielectric constant of the food and the electrical conductivity (or resistivity). This is a preferred embodiment because it is possible to obtain
また、上述の食品検査方法において、より好適な一態様は、上述の補正工程が、次の(c1)の工程を備えることである。
(c1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が上述の電極間に配置されたときの、該食品ごとの上述の空気層の第2厚さを略一定にするように、該食品を配置するための配置部を該電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向の変位を与える変位工程 Further, in the above-described food inspection method, a more preferable aspect is that the above-described correction step includes the following step (c1).
(C1) The second thickness of the air layer for each food when the food is disposed between the electrodes based on the first thickness of the food to be inspected previously measured for each food. A displacing step in which a disposing portion for disposing the food is opposed to the electrode such that the disposing portion and the electrode are relatively close to or separated from each other so that the food is substantially constant.
(c1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が上述の電極間に配置されたときの、該食品ごとの上述の空気層の第2厚さを略一定にするように、該食品を配置するための配置部を該電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向の変位を与える変位工程 Further, in the above-described food inspection method, a more preferable aspect is that the above-described correction step includes the following step (c1).
(C1) The second thickness of the air layer for each food when the food is disposed between the electrodes based on the first thickness of the food to be inspected previously measured for each food. A displacing step in which a disposing portion for disposing the food is opposed to the electrode such that the disposing portion and the electrode are relatively close to or separated from each other so that the food is substantially constant.
この好適な一態様の食品検査方法によれば、被検査対象となる各々の食品が上述の電極間に配置されたときの上述の空気層の厚さを、上述の変位工程によって調整し得るため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、該空気層の電気容量の変化の影響を低減するように調整することができる。
According to the food inspection method of one preferred aspect, the thickness of the air layer when each food to be inspected is arranged between the electrodes can be adjusted by the displacement step. Even if the shape and / or size of each food to be inspected are different from each other, or even if a food containing both water and lipid (oil) is to be inspected, Adjustments can be made to reduce the effects of changes in the capacitance of the air layer.
また、上述の食品検査方法において、より好適な他の一態様は、上述の補正工程が、次の(d1)の構成を備えることである。
(d1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が該電極間に配置されたときの上述の空気層の第2厚さに基づく上述の電気容量を要素の1つとして算出される上述の中心周波数及び/又は上述のバンド幅を、参照用食品が該電極間に配置されたときの該電極と該参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出工程 Further, in the above-described food inspection method, another more preferable aspect is that the above-described correction step has the following configuration (d1).
(D1) the above-mentioned electricity based on the second thickness of the above-mentioned air layer when the food is arranged between the electrodes, based on the first thickness of each of the above-mentioned foods to be inspected measured in advance. The above-mentioned center frequency and / or the above-mentioned bandwidth calculated with the capacity as one of the elements is used to determine the reference air between the electrode and the reference food when the reference food is placed between the electrodes. A calculating step of calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the layer thickness
(d1)予め測定された被検査対象の上述の食品ごとの第1厚さに基づいて、該食品が該電極間に配置されたときの上述の空気層の第2厚さに基づく上述の電気容量を要素の1つとして算出される上述の中心周波数及び/又は上述のバンド幅を、参照用食品が該電極間に配置されたときの該電極と該参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出工程 Further, in the above-described food inspection method, another more preferable aspect is that the above-described correction step has the following configuration (d1).
(D1) the above-mentioned electricity based on the second thickness of the above-mentioned air layer when the food is arranged between the electrodes, based on the first thickness of each of the above-mentioned foods to be inspected measured in advance. The above-mentioned center frequency and / or the above-mentioned bandwidth calculated with the capacity as one of the elements is used to determine the reference air between the electrode and the reference food when the reference food is placed between the electrodes. A calculating step of calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the layer thickness
この好適な他の一態様の食品検査方法によれば、被検査対象となる各々の食品が上述の電極間に配置されたときの上述の空気層の厚さを、上述の算出工程によって、該空気層の厚さによる電気容量の影響を低減する又は実質的に無くすための補正計算をし得るため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、該空気層の電気容量の変化の影響を低減するように調整することができる。
According to the food inspection method of another preferred aspect, the thickness of the air layer when each food to be inspected is disposed between the electrodes is calculated by the calculation step. Correction calculations can be performed to reduce or substantially eliminate the effect of capacitance due to the thickness of the air layer, even if the shapes and / or sizes of the foods to be inspected are different from each other, or Even when a food containing both water and lipid (oil) is to be inspected, adjustment can be made to reduce the influence of the change in the electric capacity of the air layer.
ところで、本願においては、「信号強度」とは、後述する実施形態における「規格化された強度」、「規格化されていない強度」、及び「反射強度」を含む概念である。
By the way, in the present application, “signal intensity” is a concept including “standardized intensity”, “non-standardized intensity”, and “reflection intensity” in the embodiment described later.
本発明の1つの食品検査装置によれば、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正手段を備えるため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。
また、本発明の1つの食品検査方法によれば、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正工程を備えるため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。 According to one food inspection apparatus of the present invention, since there is provided a correction means for performing a correction for reducing an influence of a change in an electric capacity of an air layer between the electrode and the food, each of the inspection target Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy of the food is higher than before. It is possible to check the condition.
Further, according to one food inspection method of the present invention, since there is provided a correction step for performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food, the inspection target and Even if the shape and / or size of each food is different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy is higher than before. It becomes possible to inspect the condition of food.
また、本発明の1つの食品検査方法によれば、該電極と該食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正工程を備えるため、被検査対象となる各食品の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。 According to one food inspection apparatus of the present invention, since there is provided a correction means for performing a correction for reducing an influence of a change in an electric capacity of an air layer between the electrode and the food, each of the inspection target Even if the shapes and / or sizes of the foods are different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy of the food is higher than before. It is possible to check the condition.
Further, according to one food inspection method of the present invention, since there is provided a correction step for performing a correction for reducing the effect of a change in the capacitance of the air layer between the electrode and the food, the inspection target and Even if the shape and / or size of each food is different from each other, or even if the food containing both water and lipid (oil) is to be inspected, the accuracy is higher than before. It becomes possible to inspect the condition of food.
5 ネットワークアナライザー
5a 発信部
5b 受信部
6 コイル
7a,7b 電極
10 食品
11 熱電対
12 温度測定器
20 搬送機構
30 変位機構
35 制御部
40 共振部
50 計測器
60 撮像手段
70 速度計測手段
80 秤量部
90 コンピュータ
100,200 食品検査装置
900,920 食品検査システムReference Signs List 5 Network analyzer 5a Transmitting unit 5b Receiving unit 6 Coil 7a, 7b Electrode 10 Food 11 Thermocouple 12 Temperature measuring device 20 Transport mechanism 30 Displacement mechanism 35 Control unit 40 Resonant unit 50 Measuring device 60 Imaging unit 70 Speed measuring unit 80 Weighing unit 90 Computer 100,200 Food inspection device 900,920 Food inspection system
5a 発信部
5b 受信部
6 コイル
7a,7b 電極
10 食品
11 熱電対
12 温度測定器
20 搬送機構
30 変位機構
35 制御部
40 共振部
50 計測器
60 撮像手段
70 速度計測手段
80 秤量部
90 コンピュータ
100,200 食品検査装置
900,920 食品検査システム
本発明の実施形態として、食品検査装置及び食品検査方法を、添付する図面に基づいて詳細に述べる。なお、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。さらに、各図面を見やすくするために、一部の符号が省略され得る。
と し て As an embodiment of the present invention, a food inspection device and a food inspection method will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings unless otherwise specified. In addition, in the drawings, elements of the present embodiment are not necessarily described with keeping the scale of each other. Furthermore, some reference numerals may be omitted to make each drawing easier to see.
<第1の実施形態>
(食品検査装置の説明)
本実施形態の食品検査装置100について説明する。図1は、本実施形態の食品の食品検査装置100の構成図である。なお、本実施形態においては、食品検査装置100及び食品検査装置100を用いた食品の検査方法の態様及び効果を、被検査対象である食品(例えば、水産食品、より具体的な例で言えば、魚)10を用いて説明する。 <First embodiment>
(Description of food inspection device)
Thefood inspection device 100 according to the present embodiment will be described. FIG. 1 is a configuration diagram of a food inspection apparatus 100 for food according to the present embodiment. In the present embodiment, the aspects and effects of the food inspection apparatus 100 and the method of inspecting the food using the food inspection apparatus 100 are described in terms of the food to be inspected (for example, seafood, more specifically, , Fish) 10.
(食品検査装置の説明)
本実施形態の食品検査装置100について説明する。図1は、本実施形態の食品の食品検査装置100の構成図である。なお、本実施形態においては、食品検査装置100及び食品検査装置100を用いた食品の検査方法の態様及び効果を、被検査対象である食品(例えば、水産食品、より具体的な例で言えば、魚)10を用いて説明する。 <First embodiment>
(Description of food inspection device)
The
本実施形態の食品検査装置100は、図1に示すように、一対である上側電極7a及び下側電極7bと、コイル6とを含む共振部40と、上側電極7aを上下に移動させる変位機構30と、発信部5a(代表的には、公知のファンクションジェネレータ)と、受信部5b(代表的には、公知のスペクトラムアナライザ)と、受信部5bによって受信された交流信号に基づく共振スペクトル特性の中心周波数及び/又はバンド幅を測定する測定部と、を備える。
As shown in FIG. 1, the food inspection apparatus 100 according to the present embodiment includes a pair of an upper electrode 7 a and a lower electrode 7 b, a resonance unit 40 including a coil 6, and a displacement mechanism that moves the upper electrode 7 a up and down. 30, a transmitting unit 5a (typically, a known function generator), a receiving unit 5b (typically, a known spectrum analyzer), and resonance spectrum characteristics based on an AC signal received by the receiving unit 5b. A measuring unit for measuring the center frequency and / or the bandwidth.
また、本実施形態においては、変位機構30が、コンピュータ90に接続する又はコンピュータ90が備える制御部35によって制御され、公知のサーボモーターを活用して、精度良く(例えば、位置決め精度±0.2mm以下)上側電極7aを上下に移動させることができる。その結果、変位機構30が、食品10を配置した下側電極7bを上側電極7aに対向させながら下側電極7bと上側電極7aとを相対的に近接又は離間する方向の変位を与えることができる。
Further, in the present embodiment, the displacement mechanism 30 is connected to the computer 90 or controlled by the control unit 35 provided in the computer 90, and utilizes a known servomotor to accurately (for example, positioning accuracy ± 0.2 mm). Hereinafter) the upper electrode 7a can be moved up and down. As a result, the displacement mechanism 30 can apply a displacement in a direction in which the lower electrode 7b and the upper electrode 7a are relatively close to or separated from each other while the lower electrode 7b on which the food 10 is arranged faces the upper electrode 7a. .
ここで、個々の食品10の形状及び/又は大きさが不揃いな食品10を数多く検査する場面において、あるいは、水と脂質(油)とをいずれも含む食品が被検査対象となる場面において、上側電極7aと下側電極7bとの間に配置される各々の食品10と上側電極7aとの間に存在する空気層の厚さ(「第2厚さ」に該当する。本実施形態及び他の実施形態(変形例を含む)において同じ。)図1のt2)の変化に応じて該空気層の電気容量が変動することになる。
Here, in a scene where many foods 10 having irregular shapes and / or sizes of individual foods 10 are inspected, or in a scene where foods containing both water and lipid (oil) are to be inspected, The thickness of the air layer existing between each food 10 disposed between the electrode 7a and the lower electrode 7b and the upper electrode 7a (corresponding to the “second thickness”. This embodiment and other embodiments) The same applies to the embodiment (including the modified example).) The electric capacity of the air layer changes according to the change of t 2 ) in FIG.
従って、変位機構30を備える食品検査装置100においては、予め厚さ(高さ)が検査された食品10を検査する場合は、食品10の厚さ(「第1厚さ」に該当する。以下、同じ。)にかかわらず、該空気層の厚さ(図1のt2)を略一定にするように、変位機構30を制御することができる。
Therefore, in the food inspection apparatus 100 including the displacement mechanism 30, when inspecting the food 10 whose thickness (height) has been inspected in advance, the thickness of the food 10 (corresponding to the “first thickness”. ), The displacement mechanism 30 can be controlled so that the thickness of the air layer (t 2 in FIG. 1) is substantially constant.
より具体的には、制御部35は、変位機構30により、食品10を配置した下側電極7bを上側電極7aに対向させながら下側電極7bと上側電極7aとを相対的に近接又は離間する方向の変位を与えることによって、食品10ごとの空気層の厚さを略一定にし得る。なお、制御部35は、上側電極7aと、食品10との間の空気層の電気容量の変化の影響を低減するための補正を行う補正手段としての役割を果たし得る。また、本実施形態においては、下側電極7bが、食品10を配置するための配置部としての役割も担う。
More specifically, the control unit 35 causes the lower electrode 7b and the upper electrode 7a to be relatively close to or separated from each other by the displacement mechanism 30 while making the lower electrode 7b on which the food 10 is arranged face the upper electrode 7a. By giving the displacement in the direction, the thickness of the air layer for each food 10 can be made substantially constant. Note that the control unit 35 can serve as a correction unit that performs correction for reducing the influence of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10. Further, in the present embodiment, the lower electrode 7b also plays a role as an arrangement portion for arranging the food item 10.
ここで、本実施形態においては、上述のサーボモーターの位置決め精度に基づいて、制御部35が、該空気層の厚さ(図1のt2)を略一定にするように変位機構30を制御するが、本実施形態において採用され得る該位置決め精度は、±0.2mm以下に限定されない。例えば、公知の他のサーボモーターの位置決め精度である、±0.00004mm以下~±0.00025mm以下の範囲内において、該空気層の厚さ(図1のt2)を略一定にすることも、本実施形態の採用例である。但し、本実施形態の効果の少なくとも一部が奏される限り、「略一定」という文言の意味は前述の数値範囲に限定されない。
Here, in the present embodiment, the control unit 35 controls the displacement mechanism 30 based on the above-described positioning accuracy of the servo motor so that the thickness of the air layer (t 2 in FIG. 1) is substantially constant. However, the positioning accuracy that can be adopted in the present embodiment is not limited to ± 0.2 mm or less. For example, the thickness of the air layer (t 2 in FIG. 1) may be made substantially constant within the range of ± 0.00004 mm or less to ± 0.00025 mm or less, which is the positioning accuracy of other known servomotors. This is an example of adopting the present embodiment. However, as long as at least a part of the effect of the present embodiment is achieved, the meaning of the term “substantially constant” is not limited to the above numerical range.
また、本実施形態においては、コンピュータ90が、制御部35への指示を与える役割とともに、前述の測定部としての役割も担っている。また、以下、食品10を「検査又は測定する」ことを、総称して「検査する」と表現する場合がある。また、食品10の「測定又は検査」を、総称して「検査」と表現する場合がある。
In the present embodiment, the computer 90 has a role of giving an instruction to the control unit 35 and also has a role of the above-described measuring unit. Hereinafter, "inspection or measurement" of the food 10 may be collectively referred to as "inspection". Further, “measurement or inspection” of the food 10 may be collectively expressed as “inspection”.
ところで、本実施形態の発信部5a、受信部5b、コイル6、及び共振部40は、いずれも、特許文献5において開示されている発信部5a、受信部5b、コイル、及び共振部と機能において同じである。また、本実施形態の一対である上側電極7a及び下側電極7bは、変位機構30及び制御部35が設けられている点を除いて、特許文献5において開示されている一対の電極と同じである。従って、例えば、発信部5aは、共振部40に対して中心周波数を含む第1交流信号を発生する。また、受信部5bは、食品10を上側電極7aと下側電極7bとの間に配置したときの、共振部40に反射する交流信号、共振部40を透過する交流信号、共振部40を流れる電流からなる交流信号、及び共振部40に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する。
By the way, the transmitting unit 5a, the receiving unit 5b, the coil 6, and the resonance unit 40 according to the present embodiment all have the same functions as the transmitting unit 5a, the receiving unit 5b, the coil, and the resonance unit disclosed in Patent Document 5. Is the same. The pair of upper electrode 7a and lower electrode 7b of the present embodiment is the same as the pair of electrodes disclosed in Patent Document 5 except that the displacement mechanism 30 and the control unit 35 are provided. is there. Therefore, for example, the transmission unit 5a generates a first AC signal including the center frequency for the resonance unit 40. When the food 10 is disposed between the upper electrode 7a and the lower electrode 7b, the receiver 5b receives an AC signal reflected by the resonator 40, an AC signal transmitted through the resonator 40, and flows through the resonator 40. At least one type of second AC signal selected from a group of an AC signal including a current and an AC signal including a voltage generated in the resonance unit 40 is received.
なお、本実施形態においては、発信部5aとしてファンクションジェネレータを採用し、受信部5bとしてスペクトラムアナライザを採用しているが、本実施形態はそのような態様に限定されない。例えば、特許文献5において開示されている代替機器を用いることも採用し得る他の一態様である。
In the present embodiment, a function generator is used as the transmitting unit 5a, and a spectrum analyzer is used as the receiving unit 5b, but the present embodiment is not limited to such an aspect. For example, using another alternative device disclosed in Patent Document 5 is another mode that can be adopted.
また、共振部40は、上述のとおり、少なくとも一対である上側電極7a及び下側電極7bとコイル6とを含む。本実施形態においては、共振部40は、コイル6と、上側電極7a及び下側電極7bを含むコンデンサーとを直列につなぐことによって形成される直列共振回路である。なお、食品検査装置100の検査時においては、食品10が上側電極7aと下側電極7bとの間に配置された状態となるため、その状態をコンデンサーと捉えることになる。
{Circle around (1)} As described above, the resonance section 40 includes at least one pair of the upper electrode 7 a and the lower electrode 7 b and the coil 6. In the present embodiment, the resonance section 40 is a series resonance circuit formed by connecting the coil 6 and a capacitor including the upper electrode 7a and the lower electrode 7b in series. At the time of inspection by the food inspection device 100, the food 10 is placed between the upper electrode 7a and the lower electrode 7b, and this state is regarded as a capacitor.
さらに、図1及び図2において描かれていないが、食品検査装置100を用いる際に、上側電極7aと下側電極7bとの間に、絶縁層又は絶縁体(例えば、アクリル薄板)を配置することも、採用し得る一態様である。例えば、本実施形態の検査中に、食品10に付着することによって存在する水(水滴を含む)、食品10が含む水分がその外周又は表面上に現れることによって存在する水(水滴を含む)、及び/又は食品10の外周又は表面上に初めから存在する水(水滴を含む)が、上側電極7a又は下側電極7bに直接接触する、又は下側電極7bと食品10との間に介在することを確度高く防止するために該絶縁層又は該絶縁体を備えることは、検査精度の向上の観点から好適な一態様である。前述の例においては、該絶縁層又は該絶縁体が、食品10を配置するための配置部としての役割を担うことになる。
Further, although not illustrated in FIGS. 1 and 2, when using the food inspection device 100, an insulating layer or an insulator (for example, an acrylic thin plate) is disposed between the upper electrode 7 a and the lower electrode 7 b. This is also one mode that can be adopted. For example, during the inspection of the present embodiment, water (including water droplets) that is present by adhering to the food 10, water (including water droplets) that is present when moisture contained in the food 10 appears on the outer periphery or surface thereof, And / or water (including water droplets) originally present on the outer periphery or surface of the food 10 directly contacts the upper electrode 7a or the lower electrode 7b, or intervenes between the lower electrode 7b and the food 10. Providing the insulating layer or the insulator in order to prevent this from occurring with high accuracy is a preferable aspect from the viewpoint of improving inspection accuracy. In the above-described example, the insulating layer or the insulator plays a role as an arrangement portion for arranging the food 10.
加えて、図1及び図2において描かれていないが、食品10を介さないで対向する部分の上側電極7aと下側電極7bとの間の距離が、食品10を介して対向する部分の上側電極7aと下側電極7bとの間の距離よりも短くなるように、上側電極7a及び下側電極7bの一部が屈曲することも、採用し得る好適な一態様である。
In addition, although not illustrated in FIGS. 1 and 2, the distance between the upper electrode 7 a and the lower electrode 7 b of the portion facing each other without the food 10 is higher than that of the portion facing the food 10. Bending a part of the upper electrode 7a and the lower electrode 7b so as to be shorter than the distance between the electrode 7a and the lower electrode 7b is also a preferable embodiment that can be adopted.
また、本実施形態の食品検査装置100においては、受信部5bと、食品10の温度を測定する熱電対11の情報を取得する公知の温度測定器12(本実施形態では、KEYENCE社製、型式NR-1000)とに接続されているコンピュータ90を備えている。本実施形態のコンピュータ90は、食品10の状態を検査するための各工程(以下、「検査工程」ともいう)を制御し得る。また、コンピュータ90は、受信部5b及び温度測定器12から得られる情報(例えば、温度、共振スペクトル特性、該共振スペクトル特性の中心周波数(fr)、及び共振スペクトル特性のバンド幅(Δfr))を保存する、該情報を表示する、及び/又は該情報を分析するためにも用いられ得る。なお、本実施形態の食品検査装置100においては、熱電対11及び温度測定器12は、食品10の温度変化を参考までに調べるための機器であるため、省くことができる。
Further, in the food inspection device 100 of the present embodiment, the receiving unit 5b and a known temperature measuring device 12 (in the present embodiment, manufactured by KEYENCE, model NR-1000). The computer 90 of the present embodiment can control each step for inspecting the state of the food 10 (hereinafter, also referred to as “inspection step”). The computer 90 also stores information (for example, temperature, resonance spectrum characteristics, center frequency (fr) of the resonance spectrum characteristics, and bandwidth (Δfr) of the resonance spectrum characteristics) obtained from the receiving unit 5b and the temperature measuring device 12. It may also be used to store, display the information, and / or analyze the information. In the food inspection device 100 according to the present embodiment, the thermocouple 11 and the temperature measuring device 12 can be omitted because they are devices for checking a temperature change of the food 10 for reference.
なお、本実施形態の測定部の役割を担うコンピュータ90は、例えば、上述の食品10の状態を検査するための検査プログラムにより、上述の処理を監視し、又は統合的に制御することができる。例えば、本実施形態では、該検査プログラムがコンピュータ90内のハードディスクドライブ、又はコンピュータ90に設けられた光ディスクドライブ等に挿入される光ディスク等の公知の記録媒体に保存されているが、該検査プログラムの保存先はこれに限定されない。また、該検査プログラムは、例えば、ローカルエリアネットワークやインターネット回線等の公知の技術を介して上述の処理を監視し、又は制御することもできる。
The computer 90 that plays the role of the measuring unit of the present embodiment can monitor or integrally control the above-described processing using, for example, an inspection program for inspecting the state of the food 10 described above. For example, in the present embodiment, the inspection program is stored on a known recording medium such as an optical disk inserted into a hard disk drive in the computer 90 or an optical disk drive provided in the computer 90. The storage destination is not limited to this. In addition, the inspection program can monitor or control the above-described processing via a known technique such as a local area network or an Internet line.
また、本実施形態のようにコンピュータ90が制御部35を内蔵する代わりに、制御部35がコンピュータ90と別に設けられることも、採用し得る他の一態様である。
In another embodiment, the control unit 35 is provided separately from the computer 90 in place of the computer 90 having the control unit 35 as in the present embodiment.
(食品検査方法の説明)
上述の構成を備える食品検査装置100を用いれば、共振部40の中心周波数とバンド幅を測定することによって、上側電極7aと下側電極7bとの間に配置された食品10の状態(例えば、冷凍/解凍の状態)を把握することが可能となる。 (Explanation of food inspection method)
By using thefood inspection device 100 having the above-described configuration, by measuring the center frequency and the bandwidth of the resonance unit 40, the state of the food 10 disposed between the upper electrode 7a and the lower electrode 7b (for example, (Freezing / thawing state).
上述の構成を備える食品検査装置100を用いれば、共振部40の中心周波数とバンド幅を測定することによって、上側電極7aと下側電極7bとの間に配置された食品10の状態(例えば、冷凍/解凍の状態)を把握することが可能となる。 (Explanation of food inspection method)
By using the
より詳細には、まず、本実施形態の食品検査方法においては、公知の計測手段によって予め厚さ(高さ)(図1のt1)が測定された、食品検査装置100の被検査対象である食品10を、共振部40が備える上側電極7aと下側電極7bとの間に配置する配置工程が行われる。なお、本実施形態において、予め測定された食品10の厚さ(高さ)は、「第1厚さ」に該当する。また、前述の公知の計測手段は、例えば、手動による測定、又は公知の計測器を用いた測定を含む。
More specifically, first, in the food inspection method according to the present embodiment, an object to be inspected by the food inspection apparatus 100 whose thickness (height) (t 1 in FIG. 1 ) is measured in advance by a known measuring unit. An arrangement step of arranging a certain food item 10 between the upper electrode 7a and the lower electrode 7b provided in the resonance section 40 is performed. In the present embodiment, the thickness (height) of the food 10 measured in advance corresponds to the “first thickness”. In addition, the above-mentioned known measuring means includes, for example, manual measurement or measurement using a known measuring instrument.
食品10が配置された後、予め測定されることによって得られた食品10の厚さ(高さ)(図1のt1)の値に基づいて、制御部35は、食品10ごとの空気層の厚さ(図1のt2)を略一定にするように、変位機構30を制御する変位工程(補正工程の例。以下同じ。)が行われる。より具体的には、変位工程により、食品10を配置した下側電極7bを上側電極7aに対向させながら下側電極7bと上側電極7aとを相対的に近接又は離間する方向の変位を与えることによって、食品10ごとの空気層の厚さを略一定にし得る。
After the food 10 is placed, based on the thickness (height) (t 1 in FIG. 1) of the food 10 obtained by pre-measurement, the control unit 35 sets the air space for each food 10 Is performed (an example of a correction process, the same applies hereinafter) for controlling the displacement mechanism 30 so that the thickness (t 2 in FIG. 1) is substantially constant. More specifically, in the displacing step, while the lower electrode 7b on which the food 10 is disposed is opposed to the upper electrode 7a, a displacement is provided in a direction in which the lower electrode 7b and the upper electrode 7a are relatively close to or separated from each other. Thereby, the thickness of the air layer for each food 10 can be made substantially constant.
上述の変位工程が行われた後、食品検査装置100は、発信部5aを用いて、共振部40に対して中心周波数を含む第1交流信号を発生する発信工程が行われる。
後 After the above-described displacement step is performed, the food inspection apparatus 100 performs a transmission step of generating a first AC signal including the center frequency for the resonance unit 40 using the transmission unit 5a.
受信部5bが、食品10の状態を反映した第2交流信号を受信する。具体的には、食品10を電極7a,7b間に配置したときの、共振部40に反射する交流信号、共振部40を透過する交流信号、共振部40を流れる電流からなる交流信号、及び共振部40に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する受信工程が行われる。その後、コンピュータ90(より詳細には、コンピュータ90、発信部5a、及び受信部5b)が担う測定部において、受信された第2交流信号に基づく共振スペクトル特性の中心周波数及び/又はバンド幅を測定する測定工程が行われる。
The receiving unit 5b receives the second AC signal reflecting the state of the food 10. Specifically, when the food 10 is disposed between the electrodes 7a and 7b, an AC signal reflected on the resonance unit 40, an AC signal transmitted through the resonance unit 40, an AC signal including a current flowing through the resonance unit 40, and resonance. A receiving step of receiving at least one type of second AC signal selected from a group of AC signals including a voltage generated in the unit 40 is performed. After that, the measurement unit carried by the computer 90 (more specifically, the computer 90, the transmission unit 5a, and the reception unit 5b) measures the center frequency and / or the bandwidth of the resonance spectrum characteristic based on the received second AC signal. Is performed.
なお、複数の食品10を連続的に被検査対象とする場合は、共振部40の中心周波数とバンド幅を測定する前に、食品10ごとに本実施形態の変位工程が行われる。
In the case where a plurality of foods 10 are to be inspected continuously, the displacement process of the present embodiment is performed for each food 10 before measuring the center frequency and the bandwidth of the resonance unit 40.
ところで、共振部40の中心周波数の範囲は、特に限定されない。但し、後述する理由により、共振部40の中心周波数の範囲は、10kHz以上100MHz未満であることが好ましい。
By the way, the range of the center frequency of the resonance section 40 is not particularly limited. However, the range of the center frequency of the resonance section 40 is preferably 10 kHz or more and less than 100 MHz for the reason described later.
該周波数が100MHz以上であると装置の浮遊容量が問題となり、適切な共振回路の作製が困難になる。また、検査装置のコストが上昇するという問題がある。さらに共振部40の中心周波数として、1kHz又は10MHzを採用すると、氷と水の電気伝導率がほぼ等しくなるという問題が生じる。従って、共振部40の中心周波数の範囲として、10kHz以上100MHz未満が採用されることは好適な一態様である。
(4) If the frequency is 100 MHz or more, the stray capacitance of the device becomes a problem, and it becomes difficult to manufacture an appropriate resonance circuit. Further, there is a problem that the cost of the inspection apparatus increases. Furthermore, if 1 kHz or 10 MHz is adopted as the center frequency of the resonance section 40, there arises a problem that the electric conductivity of ice and water becomes almost equal. Therefore, it is a preferable aspect that the range of the center frequency of the resonance section 40 is not less than 10 kHz and less than 100 MHz.
また、第2交流信号は、共振部40に反射する交流信号、共振部40を透過する交流信号、共振部40を流れる電流からなる交流信号、及び共振部40に発生する電圧からなる交流信号の群から選択される少なくとも1種である。また、本実施形態の食品検査装置100の測定部としての役割も果たし得る受信部5bは、前述の第2交流信号に基づく共振スペクトル特性を取得し、該共振スペクトル特性の中心周波数及び/又はバンド幅を測定する。
The second AC signal is an AC signal reflected by the resonance unit 40, an AC signal transmitted through the resonance unit 40, an AC signal including a current flowing through the resonance unit 40, and an AC signal including a voltage generated at the resonance unit 40. At least one selected from the group. In addition, the receiving unit 5b, which can also serve as a measuring unit of the food inspection device 100 of the present embodiment, obtains a resonance spectrum characteristic based on the above-described second AC signal, and obtains a center frequency and / or a band of the resonance spectrum characteristic. Measure the width.
ここで、本発明者らが、本実施形態の食品検査装置100を用いて、食品10の一例である約100匹の魚(より、具体的にはギンザケ)を検査した。具体的には、位置決め精度が±0.2mm以下である変位機構30を用いて、食品10ごとのt2を5mm~50mm(より好適には、20mm以上、又は30mm以下)のうちの特定の距離となるように制御した変位工程(補正工程の例。以下、同じ。)を採用し、約100匹の魚を検査した。その結果、変位機構30を用いなかった場合、例えば、魚の厚さが約1.5%(見方を変えると、t2について約5%)異なることによって、解凍状態であるか凍結状態であるかを判別することが容易ではなくなった。一方、本実施形態を採用することにより、該厚さが約1.5%(見方を変えると、t2について約5%)互いに異なる魚の数の約70%について、解凍状態であることを判別することが可能となった、という優位な結果が得られた。
Here, the present inventors inspected about 100 fish (more specifically, coho salmon) as an example of the food 10 using the food inspection apparatus 100 of the present embodiment. Specifically, using the displacement mechanism 30 whose positioning accuracy is ± 0.2 mm or less, the t 2 for each food 10 is set to a specific value of 5 mm to 50 mm (more preferably, 20 mm or more, or 30 mm or less). A displacement step (an example of a correction step; the same applies hereinafter) controlled so as to be a distance was employed, and about 100 fish were inspected. As a result, when using no displacement mechanism 30, for example, (a different viewpoint, about 5% for t 2) is about 1.5% the thickness of the fish or by different, is a frozen state or a decompressed state Is no longer easy to determine. On the other hand, by employing the present embodiment, (a different viewpoint, about 5% for t 2) said thickness is about 1.5% for different about 70% of the number of fish from each other, determine that the thawing state The advantage was that it became possible to do so.
ところで、本実施形態においては、変位機構30が上側電極7aを上下に移動させているが本実施形態の変位機構30が移動させる電極は上側電極7aに限定されない。例えば、変位機構30が、上側電極7aの代わりに、又は上側電極7aととともに、下側電極7bを上下に移動させることにより、本実施形態の配置部と上側電極7a又は、下側電極7bとを相対的に近接又は離間する方向に変位させることも採用し得る本実施形態の好適な一態様である。
By the way, in the present embodiment, the displacement mechanism 30 moves the upper electrode 7a up and down, but the electrode moved by the displacement mechanism 30 of the present embodiment is not limited to the upper electrode 7a. For example, the displacement mechanism 30 moves the lower electrode 7b up and down instead of or together with the upper electrode 7a, so that the arrangement portion of the present embodiment and the upper electrode 7a or the lower electrode 7b This is a preferred aspect of the present embodiment, in which it is also possible to employ a method of displacing in the direction of relatively approaching or separating.
<第2の実施形態>
図2は、食品検査装置100を含む本実施形態の食品検査システム900の構成図である。従って、第1の実施形態(代表的には、食品検査装置100に関する説明)と重複する説明は省略され得る。また、図面を見やすくするために、図1に示す発信部5a、受信部5b、共振部40、熱電対11、及び温度測定器12が、直接的又は間接的に、測定部としての役割を担うコンピュータ90に接続されている様子は描かれていない。発信部5a、受信部5b、共振部40、熱電対11、及び温度測定器12とコンピュータ90との関係は、図1の説明のとおりである。 <Second embodiment>
FIG. 2 is a configuration diagram of afood inspection system 900 of the present embodiment including the food inspection device 100. Therefore, description overlapping with the first embodiment (representatively, description of the food inspection apparatus 100) may be omitted. In addition, in order to make the drawing easy to see, the transmitting unit 5a, the receiving unit 5b, the resonance unit 40, the thermocouple 11, and the temperature measuring device 12 shown in FIG. 1 directly or indirectly serve as a measuring unit. The connection to the computer 90 is not shown. The relationship between the computer 90 and the transmitting unit 5a, the receiving unit 5b, the resonance unit 40, the thermocouple 11, and the temperature measuring device 12 is as described in FIG.
図2は、食品検査装置100を含む本実施形態の食品検査システム900の構成図である。従って、第1の実施形態(代表的には、食品検査装置100に関する説明)と重複する説明は省略され得る。また、図面を見やすくするために、図1に示す発信部5a、受信部5b、共振部40、熱電対11、及び温度測定器12が、直接的又は間接的に、測定部としての役割を担うコンピュータ90に接続されている様子は描かれていない。発信部5a、受信部5b、共振部40、熱電対11、及び温度測定器12とコンピュータ90との関係は、図1の説明のとおりである。 <Second embodiment>
FIG. 2 is a configuration diagram of a
本実施形態の食品検査システム900は、公知のベルトコンベアに代表される搬送機構20を用いて、図2の紙面左側から右側に向けて(図2のP方向に)食品10を移動させる。なお、搬送機構20の搬送速度(速度0を含む)は、例えば、コンピュータ90によって監視又は制御され得る。また、食品10の移動の過程において、本実施形態の食品検査システム900は、次の(S1)~(S4)の一部又は全部の工程を行うことができる。
(S1)食品10の厚さ(高さ)(図2のta)を測定して、少なくとも食品10の厚さ(高さ)信号を出力する測定する計測器(例えば、公知のレーザー距離計)50を用いた、厚さ(高さ)計側工程
(S2)一定の速度で移動する食品10の、ある特定の位置を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する、速度・時間計測手段(例えば、公知の速度計と時計)70を用いた、速度計測工程
(S3)食品10の少なくとも外形を撮像して、少なくとも平面視における長さ(図2のLa)と幅(図2のWa)を測定するための画像信号を出力する撮像手段(例えば、公知の撮像素子を備えるデジタルカメラ)60を用いた、撮像工程
(S4)食品10の重量を測定して、少なくとも食品10の重量信号を出力する秤量部80を用いた、秤量工程 Thefood inspection system 900 according to the present embodiment moves the food 10 from the left side to the right side in FIG. 2 (in the direction P in FIG. 2) using the transport mechanism 20 represented by a known belt conveyor. The transfer speed (including the speed 0) of the transfer mechanism 20 can be monitored or controlled by the computer 90, for example. In the process of moving the food 10, the food inspection system 900 of the present embodiment can perform some or all of the following steps (S1) to (S4).
(S1) the thickness of the food 10 (height) by measuring the (t a in FIG. 2), at least the thickness of the food 10 (height) signal is measured and outputs a measuring instrument (for example, knownlaser rangefinder 2.) Thickness (height) gauge side process using 50) (S2) The speed of the food 10 moving at a constant speed passing through a specific position (V a in FIG. 2) and the tip of the food 10 Speed measurement step using speed / time measurement means (for example, a known speedometer and clock) 70 for measuring the time until the rear end passes through the position. (S3) Image at least the outer shape of food 10 An imaging unit (for example, a digital camera equipped with a known imaging device) 60 that outputs an image signal for measuring at least a length (L a in FIG. 2) and a width (W a in FIG. 2) in plan view is used. (S4) The weight of the food 10 was measured and Both were used weighing unit 80 for outputting a weight signal of food 10, weighing process
(S1)食品10の厚さ(高さ)(図2のta)を測定して、少なくとも食品10の厚さ(高さ)信号を出力する測定する計測器(例えば、公知のレーザー距離計)50を用いた、厚さ(高さ)計側工程
(S2)一定の速度で移動する食品10の、ある特定の位置を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する、速度・時間計測手段(例えば、公知の速度計と時計)70を用いた、速度計測工程
(S3)食品10の少なくとも外形を撮像して、少なくとも平面視における長さ(図2のLa)と幅(図2のWa)を測定するための画像信号を出力する撮像手段(例えば、公知の撮像素子を備えるデジタルカメラ)60を用いた、撮像工程
(S4)食品10の重量を測定して、少なくとも食品10の重量信号を出力する秤量部80を用いた、秤量工程 The
(S1) the thickness of the food 10 (height) by measuring the (t a in FIG. 2), at least the thickness of the food 10 (height) signal is measured and outputs a measuring instrument (for example, known
なお、本実施形態において、食品10の厚さ(高さ)は、「第1厚さ」に該当する。また、上述の「平面視」における像とは、撮像手段60から図2のαの向きに視たときの像を意味する。従って、搬送機構20において、移動中の又は静止中の食品10を載置する載置面に対して真上又は略真上から見下ろしたときの像が、代表的な平面視の像である。
In the present embodiment, the thickness (height) of the food 10 corresponds to the “first thickness”. Further, the image in the “plan view” described above means an image when viewed from the imaging unit 60 in the direction of α in FIG. Therefore, in the transport mechanism 20, an image when looking down from just above or almost directly above the mounting surface on which the moving or stationary food item 10 is mounted is a typical planar view image.
また、本実施形態の秤量部80は、搬送される食品10の重量をリアルタイムで計測することができる公知の計量器である。図2に示すように、秤量部80は、搬送機構20の一部として組み込まれている。一例として、秤量部80が公知のベルトコンベアの下側に組み込まれた状態で、秤量部80の上方を通過する又は秤量部80の上方で一旦停止する食品(例えば、魚)10の重量を測定することができる。
The weighing unit 80 of the present embodiment is a known weighing device that can measure the weight of the conveyed food product 10 in real time. As shown in FIG. 2, the weighing unit 80 is incorporated as a part of the transport mechanism 20. As an example, the weight of the food (eg, fish) 10 that passes above the weighing unit 80 or temporarily stops above the weighing unit 80 is measured in a state where the weighing unit 80 is incorporated under a known belt conveyor. can do.
また、図2において紙面左側から右側にかけて描かれている秤量部80、速度・時間計測手段70、撮像手段60、及び計測器50の配置順序は、図2に示された順序に限定されない。
配置 In addition, the arrangement order of the weighing unit 80, the speed / time measurement unit 70, the imaging unit 60, and the measuring device 50, which is drawn from the left side to the right side of the paper in FIG. 2, is not limited to the order shown in FIG.
次に、具体的な(S1)~(S4)の一部又は全部の工程を行う代表的な実施形態及びその変形例について説明する。
Next, a description will be given of a typical embodiment in which some or all of the specific steps (S1) to (S4) are performed, and modifications thereof.
本実施形態においては、食品検査システム900のうち、(S1)の工程のみが採用される。
In the present embodiment, only the step (S1) of the food inspection system 900 is employed.
具体的には、以下の(z1)に示す信号をコンピュータ90に出力する。
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)信号 Specifically, a signal shown in the following (z1) is output to thecomputer 90.
(Z1) as shown in FIG. 2, to rest on thetransport mechanism 20, or by the transport mechanism 20 the thickness of the food 10 in the upper moving (height) instrument 50 was measured (t a in FIG. 2) , At least the thickness (height) signal of the food 10
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)信号 Specifically, a signal shown in the following (z1) is output to the
(Z1) as shown in FIG. 2, to rest on the
その後、搬送機構20上の食品10は、共振部40が備える上側電極7aと下側電極7bとの間に配置される(配置工程)。
Then, the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
該配置工程と略同時又は該配置工程の前に、上述の信号を受けたコンピュータ90は、予め測定された食品10の厚さ(高さ)に基づいて、制御部35を通じて変位機構30を制御する。具体的には、制御部35は、変位機構30により、空気層の厚さ(図2のt2)が所定の厚さ(例えば、5mm~50mm)として略一定になるように、本実施形態の配置部(下側電極7b)と上側電極7aとを相対的に近接又は離間する方向に変位させる(変位工程(補正工程の例。以下、同じ。))。
At about the same time as or before the placement step, the computer 90 that has received the above signal controls the displacement mechanism 30 through the control unit 35 based on the thickness (height) of the food 10 measured in advance. I do. Specifically, the control unit 35 controls the displacement mechanism 30 so that the thickness of the air layer (t 2 in FIG. 2) is substantially constant as a predetermined thickness (for example, 5 mm to 50 mm) in the present embodiment. (The lower electrode 7b) and the upper electrode 7a are displaced in a direction of relatively approaching or separating (a displacement step (an example of a correction step; the same applies hereinafter)).
その結果、仮に、形状及び/又は大きさが不揃いな複数の食品10を検査する場合であっても、食品10ごとの空気層の厚さ(図2のt2)が略一定となる。該変位工程は、食品10を上側電極7aと下側電極7bとの間に配置したときの、上側電極7aと食品10との間の該空気層の電気容量の変化の影響を低減するための補正を行う補正工程としての役割を果たし得る。
As a result, even if a plurality of foods 10 having irregular shapes and / or sizes are inspected, the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant. The displacement step is for reducing the influence of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10 when the food 10 is disposed between the upper electrode 7a and the lower electrode 7b. It can serve as a correction step for performing correction.
なお、本実施形態及び後述する他の変形例においては、食品10が、搬送機構20上を連続的に移動し、上側電極7aと下側電極7bとの間で停止することなく電極7a,7b間を通過することも、上側電極7aと下側電極7bとの間に「配置される」ことに含まれる。
In the present embodiment and other modified examples described later, the food 10 moves continuously on the transport mechanism 20 without stopping between the upper electrode 7a and the lower electrode 7b. Passing through the gap is also included in being "disposed" between the upper electrode 7a and the lower electrode 7b.
本実施形態においては、食品検査システム900の構成の一部及び上述の各工程により、被検査対象となる各食品10の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品10が被検査対象となった場合であっても、従来よりも確度高く食品の状態を検査することが可能になる。
In this embodiment, even if the shapes and / or sizes of the foods 10 to be inspected are different from each other due to a part of the configuration of the food inspection system 900 and each of the above-described steps, or water and lipids Even when the food 10 containing both (oil) and the food 10 is to be inspected, the state of the food can be inspected with higher accuracy than before.
(第2の本実施形態の変形例(1))
次に、第2の実施形態において説明した、(S2)に示された速度計測工程の変形例について説明する。 (Modification (1) of Second Embodiment)
Next, a modified example of the speed measurement step shown in (S2) described in the second embodiment will be described.
次に、第2の実施形態において説明した、(S2)に示された速度計測工程の変形例について説明する。 (Modification (1) of Second Embodiment)
Next, a modified example of the speed measurement step shown in (S2) described in the second embodiment will be described.
本変形例については、上述の速度・時間計測手段70の代わりに、共振部40が備える上側電極7aと下側電極7bを用いた変形例を採用することができる。この例によれば、速度・時間計測手段70を用いる必要がないため、食品検査システム900の簡素化及び/又は設備コストの低減を実現し得る。
Regarding this modification, a modification using the upper electrode 7a and the lower electrode 7b of the resonance unit 40 instead of the above-described speed / time measuring means 70 can be adopted. According to this example, since it is not necessary to use the speed / time measuring means 70, simplification of the food inspection system 900 and / or reduction of equipment costs can be realized.
具体的には、一定の速度で搬送機構20上を移動する食品10が、共振部40が備える上側電極7aと下側電極7bとの間を通過したときに変化する、上述の第2交流信号に基づく共振スペクトル特性の信号強度、中心周波数、及び/又はバンド幅の時間変化を測定し、分析する工程が行われる。該信号強度、該中心周波数、及び/又は該バンド幅の時間変化(タイムトレース)を分析することより、食品10が電極7a,7b間を通過するまでの時間、及び食品10の長さ(より正確には、食品10の移動方向の長さ。本変形例においては、「有効長さ」)が導出される。なお、本変形例においては、「有効長さ」が実質的に、食品10の電気容量に対して、ひいては、食品検査装置100における信号強度、中心周波数、及び/又はバンド幅の値に対して寄与する(換言すれば、影響を与える)ことになる。
Specifically, the above-described second AC signal, which changes when the food 10 moving on the transport mechanism 20 at a constant speed passes between the upper electrode 7a and the lower electrode 7b of the resonance unit 40, Measuring and analyzing the time variation of the signal strength, center frequency, and / or bandwidth of the resonance spectral characteristic based on. By analyzing the time change (time trace) of the signal strength, the center frequency, and / or the bandwidth, the time until the food 10 passes between the electrodes 7a and 7b, and the length of the food 10 (more To be precise, the length in the moving direction of the food item 10. In this modification, the "effective length" is derived. In this modification, the “effective length” substantially corresponds to the electric capacity of the food 10, and thus to the signal strength, the center frequency, and / or the bandwidth of the food inspection apparatus 100. Will contribute (in other words, influence).
その結果、予め測定された、
食品10の厚さ(高さ)、並びに、
食品10の有効長さと、所定の幅(定数)とを乗じて求められる矩形に近似した場合、又は該長さと該幅とを、それぞれ長半径と短半径(あるいは、その逆)とする楕円に近似した場合に算出される食品10の面積の近似値(換言すれば、「有効面積」)
に基づいて、上側電極7aと食品10との間の空気層の有効面積とが定まることになる。その結果、該有効面積と、該空気層の厚さ(図2のt2)とから、該空気層の電気容量(より正確には、「電気容量の近似値」、以下、単に「電気容量」ともいう。)を導出することができる。 As a result, the previously measured
The thickness (height) of thefood 10 and
When approximated to a rectangle obtained by multiplying the effective length of thefood 10 by a predetermined width (constant), or an ellipse having the length and the width as a major radius and a minor radius (or vice versa), respectively. Approximate value of the area of food 10 calculated when approximated (in other words, "effective area")
, The effective area of the air layer between theupper electrode 7a and the food 10 is determined. As a result, from the effective area and the thickness of the air layer (t 2 in FIG. 2), the electric capacity of the air layer (more precisely, “approximate value of electric capacity”; ) Can be derived.
食品10の厚さ(高さ)、並びに、
食品10の有効長さと、所定の幅(定数)とを乗じて求められる矩形に近似した場合、又は該長さと該幅とを、それぞれ長半径と短半径(あるいは、その逆)とする楕円に近似した場合に算出される食品10の面積の近似値(換言すれば、「有効面積」)
に基づいて、上側電極7aと食品10との間の空気層の有効面積とが定まることになる。その結果、該有効面積と、該空気層の厚さ(図2のt2)とから、該空気層の電気容量(より正確には、「電気容量の近似値」、以下、単に「電気容量」ともいう。)を導出することができる。 As a result, the previously measured
The thickness (height) of the
When approximated to a rectangle obtained by multiplying the effective length of the
, The effective area of the air layer between the
(第2の本実施形態の変形例(2))
本変形例においては、食品検査システム900のうち、(S1)及び(S2)の工程のみが採用される。 (Modification (2) of Second Embodiment)
In this modification, only the steps (S1) and (S2) of thefood inspection system 900 are employed.
本変形例においては、食品検査システム900のうち、(S1)及び(S2)の工程のみが採用される。 (Modification (2) of Second Embodiment)
In this modification, only the steps (S1) and (S2) of the
具体的には、以下の(z1)及び(z2)に示す2つの信号をコンピュータ90に出力する。
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z2)搬送機構20上を一定の速度で移動する食品10に対して、ある特定の位置(上述の(S2)の変形例における電極7a,7b間の位置を含む)を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する速度・時間計測手段70による、少なくとも食品10の該速度及び該時間の信号 Specifically, two signals shown in the following (z1) and (z2) are output to thecomputer 90.
(Z1) as shown in FIG. 2, to rest on thetransport mechanism 20, or by the transport mechanism 20 the thickness of the food 10 in the upper moving (height) instrument 50 was measured (t a in FIG. 2) A signal of at least the thickness (height) of the food 10 (z2) With respect to the food 10 moving at a constant speed on the transport mechanism 20, a certain position (the electrodes 7a, a velocity (V a in FIG. 2) passing through the containing position between 7b), from the tip of the food 10 to the rear end is due to velocity and time measuring means 70 for measuring the time for passing through the position of at least the food 10 Signal of the speed and the time of
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z2)搬送機構20上を一定の速度で移動する食品10に対して、ある特定の位置(上述の(S2)の変形例における電極7a,7b間の位置を含む)を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する速度・時間計測手段70による、少なくとも食品10の該速度及び該時間の信号 Specifically, two signals shown in the following (z1) and (z2) are output to the
(Z1) as shown in FIG. 2, to rest on the
その後、搬送機構20上の食品10は、共振部40が備える上側電極7aと下側電極7bとの間に配置される(配置工程)。
Then, the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
該配置工程と略同時又は該配置工程の前に、上述の信号を受けたコンピュータ90は、予め測定された食品10の厚さ(高さ)に基づいて、第2の本実施形態と同様に、制御部35を通じて変位機構30を制御する変位工程が行われる。
At substantially the same time as or before the placement step, the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
その結果、仮に、形状及び/又は大きさが不揃いな複数の食品10を検査する場合であっても、食品10ごとの空気層の厚さ(図2のt2)が略一定となる。
As a result, even if a plurality of foods 10 having irregular shapes and / or sizes are inspected, the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
さらに、本変形例においては、(z2)の信号に基づく補正工程が行われる。
Further, in this modification, a correction step based on the signal of (z2) is performed.
具体的には、まず、予め測定された食品10の該速度と該時間とから導出される食品10の長さと、所定の幅(定数)とを乗じて求められる矩形に近似した場合、又は該長さと該幅とを、それぞれ長半径と短半径(あるいは、その逆)とする楕円に近似した場合に算出される食品10の面積の近似値(以下、「算出面積」ともいう。)が、コンピュータ90が担う算出手段により算出される。
Specifically, first, when approximating a rectangle obtained by multiplying the length of the food 10 derived from the speed and the time of the food 10 measured in advance and a predetermined width (constant), or The approximate value of the area of the food 10 calculated when the length and the width are approximated to an ellipse having a major radius and a minor radius (or vice versa), respectively (hereinafter, also referred to as “calculated area”) is: It is calculated by calculation means carried by the computer 90.
上述の算出手段によって、コンピュータ90は、予め測定された、
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の算出面積
に基づいて、上側電極7aと食品10との間の空気層の算出面積(食品10の算出面積と一致させる)とが定まることになる。その結果、該算出面積と、上述の空気層の厚さ(図2のt2)とから、該空気層の電気容量を導出することができる。 By the above-described calculating means, thecomputer 90 calculates
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the calculated area of thefood 10, the calculated area of the air layer between the upper electrode 7 a and the food 10 (to match the calculated area of the food 10) is determined. As a result, the electric capacity of the air layer can be derived from the calculated area and the thickness of the air layer (t 2 in FIG. 2 ).
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の算出面積
に基づいて、上側電極7aと食品10との間の空気層の算出面積(食品10の算出面積と一致させる)とが定まることになる。その結果、該算出面積と、上述の空気層の厚さ(図2のt2)とから、該空気層の電気容量を導出することができる。 By the above-described calculating means, the
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the calculated area of the
その結果、本変形例においては、食品検査システム900の構成の一部及び上述の各工程により、被検査対象となる各食品10の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品10が被検査対象となった場合であっても、第2の本実施形態よりも確度高く食品の状態を検査することが可能になる。
As a result, in this modified example, even if the shapes and / or sizes of the foods 10 to be inspected are different from each other due to a part of the configuration of the food inspection system 900 and the respective steps described above, or Even when the food 10 containing both water and lipid (oil) is to be inspected, the state of the food can be inspected with higher accuracy than in the second embodiment.
(第2の本実施形態の変形例(3))
本変形例においては、食品検査システム900のうち、(S1)、(S2)、及び(S4)の工程のみが採用される。 (Modification (3) of Second Embodiment)
In this modification, only the steps (S1), (S2), and (S4) of thefood inspection system 900 are employed.
本変形例においては、食品検査システム900のうち、(S1)、(S2)、及び(S4)の工程のみが採用される。 (Modification (3) of Second Embodiment)
In this modification, only the steps (S1), (S2), and (S4) of the
具体的には、以下の(z1)~(z3)に示す2つの信号をコンピュータ90に出力する。
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z2)搬送機構20上を一定の速度で移動する食品10に対して、ある特定の位置(上述の(S2)の変形例における電極7a,7b間の位置を含む)を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する速度・時間計測手段70による、少なくとも食品10の該速度及び該時間の信号
(z3)食品10の重量を測定する秤量部80による、少なくとも食品10の重量信号 Specifically, two signals shown in the following (z1) to (z3) are output to thecomputer 90.
(Z1) as shown in FIG. 2, to rest on thetransport mechanism 20, or by the transport mechanism 20 the thickness of the food 10 in the upper moving (height) instrument 50 was measured (t a in FIG. 2) A signal of at least the thickness (height) of the food 10 (z2) With respect to the food 10 moving at a constant speed on the transport mechanism 20, a certain position (the electrodes 7a, a velocity (V a in FIG. 2) passing through the containing position between 7b), from the tip of the food 10 to the rear end is due to velocity and time measuring means 70 for measuring the time for passing through the position of at least the food 10 (Z3) At least the weight signal of the food 10 by the weighing unit 80 for measuring the weight of the food 10
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z2)搬送機構20上を一定の速度で移動する食品10に対して、ある特定の位置(上述の(S2)の変形例における電極7a,7b間の位置を含む)を通過する速度(図2のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する速度・時間計測手段70による、少なくとも食品10の該速度及び該時間の信号
(z3)食品10の重量を測定する秤量部80による、少なくとも食品10の重量信号 Specifically, two signals shown in the following (z1) to (z3) are output to the
(Z1) as shown in FIG. 2, to rest on the
その後、搬送機構20上の食品10は、共振部40が備える上側電極7aと下側電極7bとの間に配置される(配置工程)。
Then, the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
該配置工程と略同時又は該配置工程の前に、上述の信号を受けたコンピュータ90は、予め測定された食品10の厚さ(高さ)に基づいて、第2の本実施形態と同様に、制御部35を通じて変位機構30を制御する変位工程が行われる。
At substantially the same time as or before the placement step, the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
その結果、仮に、形状及び/又は大きさが不揃いな複数の食品10を検査する場合であっても、食品10ごとの空気層の厚さ(図2のt2)が略一定となる。
As a result, even if a plurality of foods 10 having irregular shapes and / or sizes are inspected, the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
さらに、本変形例においては、第2の本実施形態の変形例(1)において説明した(z2)の信号に基づく補正工程、及び(z3)の信号に基づく補正工程が行われる。
{Furthermore, in this modification, the correction step based on the signal (z2) and the correction step based on the signal (z3) described in the modification (1) of the second embodiment are performed.
具体的には、食品10の密度が一定であると仮定し、予め測定された、
食品10の重量、
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の該速度と該時間とから導出される食品10の長さ
に基づいて食品10の幅が導出されることから、コンピュータ90が担う以下の算出手段により、食品10の算出面積が算出される。 Specifically, assuming that the density of thefood 10 is constant, it is measured in advance,
Weight offood 10,
The thickness (height) of the food 10 (t a in FIG. 2), and
Since the width of thefood 10 is derived based on the length of the food 10 derived from the speed and the time of the food 10, the calculation area of the food 10 is calculated by the following calculation means carried by the computer 90. You.
食品10の重量、
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の該速度と該時間とから導出される食品10の長さ
に基づいて食品10の幅が導出されることから、コンピュータ90が担う以下の算出手段により、食品10の算出面積が算出される。 Specifically, assuming that the density of the
Weight of
The thickness (height) of the food 10 (t a in FIG. 2), and
Since the width of the
上述の算出手段によって、コンピュータ90は、予め測定された、
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の算出面積
に基づいて、上側電極7aと食品10との間の空気層の算出面積(食品10の算出面積と一致させる)とが定まることになる。その結果、該算出面積と、該空気層の厚さ(図2のt2)とから、該空気層の電気容量を導出することができる。 By the above-described calculating means, thecomputer 90 calculates
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the calculated area of thefood 10, the calculated area of the air layer between the upper electrode 7 a and the food 10 (to match the calculated area of the food 10) is determined. As a result, the electric capacity of the air layer can be derived from the calculated area and the thickness of the air layer (t 2 in FIG. 2 ).
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の算出面積
に基づいて、上側電極7aと食品10との間の空気層の算出面積(食品10の算出面積と一致させる)とが定まることになる。その結果、該算出面積と、該空気層の厚さ(図2のt2)とから、該空気層の電気容量を導出することができる。 By the above-described calculating means, the
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the calculated area of the
その結果、本変形例においては、食品検査システム900の構成の一部及び上述の各工程により、被検査対象となる各食品10の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品10が被検査対象となった場合であっても、第2の本実施形態よりも確度高く食品の状態を検査することが可能になる。
As a result, in this modified example, even if the shapes and / or sizes of the foods 10 to be inspected are different from each other due to a part of the configuration of the food inspection system 900 and the respective steps described above, or Even when the food 10 containing both water and lipid (oil) is to be inspected, the state of the food can be inspected with higher accuracy than in the second embodiment.
なお、仮に、本変形例において、食品10の長さとして、第2の本実施形態の変形例(1)における「有効長さ」を採用した場合においては、
食品10の重量、
食品10の厚さ(高さ)(図2のta)、及び、
食品10の有効長さ
に基づいて食品10の「有効幅」が導出される。 Note that, in this modification, if the “effective length” in the modification (1) of the second embodiment is adopted as the length of thefood 10,
Weight offood 10,
The thickness of the food 10 (height) (t a in FIG. 2), and,
The “effective width” of thefood 10 is derived based on the effective length of the food 10.
食品10の重量、
食品10の厚さ(高さ)(図2のta)、及び、
食品10の有効長さ
に基づいて食品10の「有効幅」が導出される。 Note that, in this modification, if the “effective length” in the modification (1) of the second embodiment is adopted as the length of the
Weight of
The thickness of the food 10 (height) (t a in FIG. 2), and,
The “effective width” of the
その結果、上側電極7aと食品10との間の空気層の有効面積(食品10の有効面積と一致させる)とが定まることになるため、コンピュータ90が担う以下の算出手段により、該算出面積と、該空気層の厚さ(図2のt2)とから、該空気層の電気容量を導出することができる。
As a result, the effective area of the air layer between the upper electrode 7a and the food 10 (to match the effective area of the food 10) is determined, and the calculated area is calculated by the following calculation means carried by the computer 90. , And the thickness of the air layer (t 2 in FIG. 2), the electric capacity of the air layer can be derived.
なお、「有効幅」とは、「有効長さ」に直交する向きの「幅」である。この場合、「有効幅」が実質的に、食品10の電気容量に対して、ひいては、食品検査装置100における信号強度、中心周波数、及び/又はバンド幅の値に対して寄与する(換言すれば、影響を与える)ことになる。
The “effective width” is the “width” in a direction orthogonal to the “effective length”. In this case, the “effective width” substantially contributes to the electric capacity of the food 10 and thus to the value of the signal strength, the center frequency, and / or the bandwidth in the food inspection apparatus 100 (in other words, Affect).
(第2の本実施形態の変形例(4))
本変形例においては、食品検査システム900のうち、(S1)、(S2)、及び(S3)の工程のみが採用される。 (Modification (4) of Second Embodiment)
In the present modification, only the steps (S1), (S2), and (S3) of thefood inspection system 900 are employed.
本変形例においては、食品検査システム900のうち、(S1)、(S2)、及び(S3)の工程のみが採用される。 (Modification (4) of Second Embodiment)
In the present modification, only the steps (S1), (S2), and (S3) of the
具体的には、以下の(z1)及び(z4)に示す2つの信号をコンピュータ90に出力する。
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z4)搬送機構20上の食品10の少なくとも外形を撮像する撮像手段60による、平面視における長さ(図2のLa)を測定するための画像信号 Specifically, two signals shown in the following (z1) and (z4) are output to thecomputer 90.
(Z1) as shown in FIG. 2, to rest on thetransport mechanism 20, or by the transport mechanism 20 the thickness of the food 10 in the upper moving (height) instrument 50 was measured (t a in FIG. 2) At least the signal of the thickness (height) of the food 10 (z4) for measuring the length (L a in FIG. 2) in plan view by the imaging means 60 for imaging at least the outer shape of the food 10 on the transport mechanism 20. Image signal
(z1)図2に示すように、搬送機構20上の静止する、又は搬送機構20上を移動中の食品10の厚さ(高さ)(図2のta)を測定した計測器50による、少なくとも食品10の厚さ(高さ)の信号
(z4)搬送機構20上の食品10の少なくとも外形を撮像する撮像手段60による、平面視における長さ(図2のLa)を測定するための画像信号 Specifically, two signals shown in the following (z1) and (z4) are output to the
(Z1) as shown in FIG. 2, to rest on the
その後、搬送機構20上の食品10は、共振部40が備える上側電極7aと下側電極7bとの間に配置される(配置工程)。
Then, the food 10 on the transport mechanism 20 is disposed between the upper electrode 7a and the lower electrode 7b of the resonance unit 40 (arrangement step).
該配置工程と略同時又は該配置工程の前に、上述の信号を受けたコンピュータ90は、予め測定された食品10の厚さ(高さ)に基づいて、第2の本実施形態と同様に、制御部35を通じて変位機構30を制御する変位工程が行われる。
At substantially the same time as or before the placement step, the computer 90 that has received the above-described signal, based on the thickness (height) of the food 10 measured in advance, similarly to the second embodiment, A displacement step of controlling the displacement mechanism 30 through the control unit 35 is performed.
その結果、仮に、形状及び/又は大きさが不揃いな複数の食品10を検査する場合であっても、食品10ごとの空気層の厚さ(図2のt2)が略一定となる。
As a result, even if a plurality of foods 10 having irregular shapes and / or sizes are inspected, the thickness of the air layer (t 2 in FIG. 2 ) for each food 10 is substantially constant.
さらに、本変形例においては、(z4)の信号に基づく補正工程が行われる。
Furthermore, in this modification, a correction step based on the signal of (z4) is performed.
具体的には、まず、予め測定された食品10の長さと、所定の幅(定数)とを乗じて求められる矩形に近似した場合、又は該長さと該幅とを、それぞれ長半径と短半径(あるいは、その逆)とする楕円に近似した場合に算出される食品10の算出面積が、コンピュータ90が担う算出手段により算出される。
Specifically, first, when approximating a rectangle obtained by multiplying the length of the food 10 measured in advance and a predetermined width (constant), or the length and the width, the major radius and the minor radius are respectively used. The calculation area of the food 10 calculated when the ellipse is approximated (or vice versa) is calculated by the calculation means of the computer 90.
上述の算出手段によって、コンピュータ90は、予め測定された、
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の該面積の近似値
に基づいて、上側電極7aと下側電極7bとの間に配置される食品10の電気容量を導出することができる。 By the above-described calculating means, thecomputer 90 calculates
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the approximate value of the area of thefood 10, the capacitance of the food 10 disposed between the upper electrode 7a and the lower electrode 7b can be derived.
食品10の厚さ(高さ)(図2のta)、並びに、
食品10の該面積の近似値
に基づいて、上側電極7aと下側電極7bとの間に配置される食品10の電気容量を導出することができる。 By the above-described calculating means, the
The thickness (height) of the food 10 (t a in FIG. 2), and
Based on the approximate value of the area of the
その結果、本変形例においては、食品検査システム900の構成の一部及び上述の各工程により、被検査対象となる各食品10の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品10が被検査対象となった場合であっても、第2の本実施形態よりも確度高く食品の状態を検査することが可能になる。
As a result, in this modified example, even if the shapes and / or sizes of the foods 10 to be inspected are different from each other due to a part of the configuration of the food inspection system 900 and the respective steps described above, or Even when the food 10 containing both water and lipid (oil) is to be inspected, the state of the food can be inspected with higher accuracy than in the second embodiment.
なお、本変形例の更なる他の変形例(1)として、食品検査システム900のうち、(S1)、(S2)、及び(S3)の工程のみを採用して、搬送機構20上の食品10を撮像する撮像手段60による、平面視における長さ(図2のLa)及び幅(図2のWa)を測定するための画像信号を、コンピュータ90に出力することも採用され得る。この場合、撮像手段60によって食品10の長さ(図2のLa)のみならず幅(図2のWa)の情報も得ることができるため、第2の本実施形態の変形例(4)よりも検査の精度を高め得る。
As still another modified example (1) of this modified example, only the steps (S1), (S2), and (S3) of the food inspection system 900 are employed to Outputting an image signal to the computer 90 for measuring the length (L a in FIG. 2) and the width (W a in FIG. 2) in plan view by the imaging unit 60 for imaging the image 10 may be adopted. In this case, not only the length (L a in FIG. 2) but also the width (W a in FIG. 2) of the food 10 can be obtained by the imaging unit 60. Therefore, the modification (4) of the second embodiment of the present invention can be obtained. The accuracy of the inspection can be improved as compared with the case of (1).
加えて、本変形例の更なる他の変形例(2)として、食品検査システム900のうち、(S1)、(S2)、及び(S3)の工程のみを採用して、搬送機構20上の食品10を撮像する撮像手段60によって、平面視における食品10の面積を直接的に測定するための画像信号を、コンピュータ90に出力することも採用され得る。この場合、撮像手段60によって食品10の面積の情報を得ることができるため、第2の本実施形態の変形例(4)よりも検査の精度を高め得る。
In addition, as still another modified example (2) of this modified example, only the steps (S1), (S2), and (S3) of the food inspection system 900 are employed to Outputting an image signal for directly measuring the area of the food 10 in a plan view to the computer 90 by the imaging means 60 for imaging the food 10 can also be adopted. In this case, since information on the area of the food 10 can be obtained by the imaging unit 60, the accuracy of the inspection can be higher than in the modification (4) of the second embodiment.
<第3の実施形態>
本実施形態の食品検査装置200は、第1の実施形態の食品検査装置100が備える変位機構30及び制御部35を有しない点を除いて、食品検査装置100と同じである。従って、第1の実施形態と重複する説明は省略され得る。 <Third embodiment>
Thefood inspection device 200 of the present embodiment is the same as the food inspection device 100 except that the food inspection device 200 of the first embodiment does not include the displacement mechanism 30 and the control unit 35 provided in the food inspection device 100 of the first embodiment. Therefore, description overlapping with the first embodiment may be omitted.
本実施形態の食品検査装置200は、第1の実施形態の食品検査装置100が備える変位機構30及び制御部35を有しない点を除いて、食品検査装置100と同じである。従って、第1の実施形態と重複する説明は省略され得る。 <Third embodiment>
The
図3は、本実施形態の食品検査装置200の構成図である。
FIG. 3 is a configuration diagram of the food inspection device 200 of the present embodiment.
本実施形態においては、第1の実施形態の変位機構30を有しないため、上側電極7a及び/又は下側電極7bを上下に移動させることができない。従って、電極7a,7b間に配置される食品10と上側電極7aとの間に存在する空気層の厚さ(「第2厚さ」に該当する。本実施形態及び他の実施形態(変形例を含む)において同じ。)図3のt’2)は、厚さ(高さ)の異なる食品10ごとに異なることになる。その結果、空気層の厚さの変化に応じて該空気層の電気容量が変動することになる。
In this embodiment, since the displacement mechanism 30 of the first embodiment is not provided, the upper electrode 7a and / or the lower electrode 7b cannot be moved up and down. Therefore, the thickness of the air layer existing between the food 10 disposed between the electrodes 7a and 7b and the upper electrode 7a (corresponding to the “second thickness”. This embodiment and other embodiments (modifications) 3) t ′ 2 ) in FIG. 3 will be different for each food 10 having a different thickness (height). As a result, the electric capacity of the air layer changes according to the change in the thickness of the air layer.
しかしながら、本実施形態においては、後述する、予め測定される、第2厚さを異ならせたときの、参照用食品における参照中心周波数及び/又は参照バンド幅を活用することにより、変位機構30がなくても、例えば上側電極7aと食品10との間の空気層の電気容量の変化の影響を低減するための補正を行うことができる。
However, in the present embodiment, the displacement mechanism 30 uses the reference center frequency and / or the reference bandwidth of the reference food when the second thickness is varied, which is measured in advance, as described below. Even without this, for example, a correction for reducing the effect of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10 can be performed.
以下に、食品10を上側電極7aと下側電極7bとの間に配置したときの、例えば上側電極7aと食品10との間の空気層の電気容量の変化の影響を低減するための、具体的な補正手段及び補正工程について説明する。
Hereinafter, when the food 10 is disposed between the upper electrode 7a and the lower electrode 7b, for example, to reduce the influence of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10, A typical correction means and a correction process will be described.
まず、本発明者らは、本実施形態の食品検査装置200を用いて、被検査対象となる食品10の比較対象となる、第2厚さを異ならせたときの参照用食品の参照中心周波数及び/又は参照バンド幅を取得した。
First, the present inventors use the food inspection apparatus 200 of the present embodiment to compare the food 10 to be inspected with the reference center frequency of the reference food when the second thickness is different, which is to be compared. And / or a reference bandwidth was obtained.
図5は、十分に解凍された食品の一例としての魚(より具体的には、サケ)についての、上側電極7aと食品10との間の空気層の厚さ(図3のt’2)と、中心周波数との関係を示すグラフである。また、図6は、十分に解凍された食品の一例としての魚(より具体的には、サケ)についての、上側電極7aと食品10との間の空気層の厚さ(図3のt’2)と、バンド幅との関係を示すグラフである。
FIG. 5 shows the thickness of the air layer between the upper electrode 7a and the food 10 (t ′ 2 in FIG. 3) for fish (more specifically, salmon) as an example of a fully thawed food. 6 is a graph showing the relationship between the frequency and the center frequency. FIG. 6 shows the thickness of the air layer between the upper electrode 7a and the food 10 (t ′ in FIG. 3) for fish (more specifically, salmon) as an example of a fully thawed food. 2 ) is a graph showing the relationship between the bandwidth and the bandwidth.
図3に示すように、t’2の距離の変化に伴って、解凍された食品の中心周波数が変動することがわかる。例えば、t’2の距離が20mmから25mmに変化することによって、中心周波数は約25kHzも変動することが確認された。同様に、図4に示すように、t’2の距離の変化に伴って、解凍された食品のバンド幅も変動することがわかる。例えば、t’2の距離が20mmから25mmに変化することによって、中心周波数は2kHz以上変動することが確認された。
As shown in FIG. 3, with the change in distance t '2, the center frequency of the thawed food is seen to fluctuate. For example, by the distance t '2 changes from 20mm to 25 mm, the center frequency was confirmed to about 25kHz also varies. Similarly, as shown in FIG. 4, with the change in distance t '2, the bandwidth of uncompressed foods seen to vary. For example, by the distance t '2 changes from 20mm to 25 mm, the center frequency was confirmed that vary 2kHz or more.
ここで、空気層の電気容量の変動による検査結果への影響の一例について説明する。図7は、参考例としての、t2の値が30mmであるときの凍結時(実線)及び解凍時(点線)の各共振スペクトルを示すグラフである。なお、図7の示す例においては、被検査対象となる食品と電極との間に存在する空気層の厚みは30mmである。また、図7においては、図を見やすくするために、凍結時(実線)及び解凍時(点線)の各共振スペクトルの縦軸を規格化している。また、図7の縦軸について、共振の強さの度合いを反射強度(単位は、arbitrary unit,略して「a.u.」)として表している。
Here, an example of the influence on the inspection result due to the fluctuation of the electric capacity of the air layer will be described. 7, as a reference example, is a graph showing the respective resonance spectrum during freezing (solid line) and during decompression (dotted line) when the value of t 2 is 30 mm. In the example shown in FIG. 7, the thickness of the air layer existing between the food to be inspected and the electrode is 30 mm. In FIG. 7, the vertical axis of each resonance spectrum at the time of freezing (solid line) and at the time of thawing (dotted line) is standardized for easy viewing. In addition, on the vertical axis in FIG. 7, the degree of resonance intensity is represented as a reflection intensity (the unit is an arbitrary unit, abbreviated as “au”).
図7に示すように、凍結時(-17.3℃)における中心周波数と、解凍時(1.2℃)における中心周波数との差(図7のΔd)は、約46kHzであり、対応するバンド幅の差は、約37kHzであることが確認された。
As shown in FIG. 7, the difference (Δd in FIG. 7) between the center frequency at the time of freezing (−17.3 ° C.) and the center frequency at the time of thawing (1.2 ° C.) is about 46 kHz, which corresponds to It was confirmed that the difference between the bandwidths was about 37 kHz.
従って、凍結状態と解凍状態との変化の一例において、中心周波数の差が約46kHzであり、対応するバンド幅の差が約37kHzであることを考慮すれば、t’2の距離の変動が中心周波数及びバンド幅に影響を無視することができない。
Therefore, in an example of the change between the frozen state and the thawed state, considering that the difference in the center frequency is about 46 kHz and the corresponding difference in the bandwidth is about 37 kHz, the change in the distance of t ′ 2 is the center. The effects on frequency and bandwidth cannot be ignored.
そこで、本発明者らは、図5及び図6から得られた結果を、それぞれ、第2厚さを異ならせたときの、参照用食品の参照中心周波数及び参照バンド幅として採用した。なお、本実施形態の変形例の一つとして、図5及び図6から得られた結果の代わりに、被測定対象となる食品10のうち、最初に検査された食品10を参照用食品として採用することも、好適な一態様である。
Therefore, the present inventors adopted the results obtained from FIGS. 5 and 6 as the reference center frequency and the reference bandwidth of the reference food when the second thickness was varied, respectively. In addition, as one of the modified examples of the present embodiment, instead of the results obtained from FIGS. 5 and 6, among the foods 10 to be measured, the food 10 that is first inspected is used as the reference food. Doing so is also a preferred embodiment.
参照中心周波数及び参照バンド幅に関しては、食品検査装置200が記録部又はデータベースをさらに備え、該参照中心周波数及び該参照バンド幅を該記録部又は該データベースに記録しておくことは、好適な一態様である。例えば、被検査対象となる食品10の中心周波数及び/又はバンド幅と比較させるために、コンピュータ90が備えるハードディスクドライブに代表される記録手段、あるいはコンピュータ90に電気・電子的に又は通信手段を介して接続し得る記録手段の中に、参照中心周波数及び参照バンド幅が一時的又は永続的に保存され得る。
Regarding the reference center frequency and the reference bandwidth, it is preferable that the food inspection apparatus 200 further includes a recording unit or a database, and that the reference center frequency and the reference bandwidth be recorded in the recording unit or the database. It is an aspect. For example, in order to compare the center frequency and / or the bandwidth of the food 10 to be inspected, a recording unit typified by a hard disk drive provided in the computer 90, or the computer 90 electrically or electronically or via a communication unit. The reference center frequency and the reference bandwidth can be temporarily or permanently stored in a recording means that can be connected to the computer.
上述の構成を備える食品検査装置200を用いれば、共振部40の中心周波数とバンド幅を測定し、その測定結果と参照用食品の参照中心周波数及び参照バンド幅とを比べることによって、上側電極7aと下側電極7bとの間に配置された食品10の状態(例えば、冷凍/解凍の状態)を把握することが可能となる。
If the food inspection device 200 having the above-described configuration is used, the center frequency and the bandwidth of the resonance unit 40 are measured, and the measurement result is compared with the reference center frequency and the reference bandwidth of the reference food, so that the upper electrode 7a It is possible to grasp the state (for example, the state of freezing / thawing) of the food 10 disposed between the food 10 and the lower electrode 7b.
より詳細には、まず、本実施形態の食品検査方法においては、公知の計測手段によって予め厚さ(高さ)(「第1厚さ」に該当する。以下、同じ。)(図3のt1)が測定された、食品検査装置200の被検査対象である食品10を、共振部40における、上側電極7aと下側電極7bとの間に配置する配置工程が行われる。
More specifically, first, in the food inspection method according to the present embodiment, the thickness (height) (corresponding to the “first thickness”; the same applies hereinafter) by a known measuring unit (t in FIG. 3). An arrangement step of disposing the food 10 to be inspected by the food inspection device 200, for which 1 ) is measured, between the upper electrode 7a and the lower electrode 7b in the resonance section 40 is performed.
食品10が配置された後、予め測定されることによって得られた食品10の厚さ(高さ)(図3のt1)の値に基づいて、測定部とともに算出手段としての役割を担うコンピュータ90が、上側電極7aと食品10との間の空気層の厚さ(「第2厚さ」に該当する。以下、同じ。)(図3のt’2)を算出する。
Based on the value of the thickness (height) (t 1 in FIG. 3) of the food 10 obtained by pre-measurement after the food 10 is placed, a computer serving as a calculating unit together with the measurement unit. 90 calculates the thickness of the air layer between the upper electrode 7a and the food 10 (corresponding to the “second thickness”; the same applies hereinafter) (t ′ 2 in FIG. 3).
上述の空気層の厚さの算出と同時に、又は該算出の前後に、食品検査装置200は、被検査対象となる食品10の共振スペクトル特性から導かれる中心周波数及び/又はバンド幅を測定する。
と 同時 に Simultaneously with or before and after the calculation of the thickness of the air layer described above, the food inspection device 200 measures a center frequency and / or a bandwidth derived from a resonance spectrum characteristic of the food 10 to be inspected.
その後、コンピュータ90は、下記の(1)及び(2)について、中心周波数及び/又はバンド幅を比較する。
(1)被検査対象となる食品10ごとの第1厚さに基づいて、食品10ごとの空気層の第2厚さに基づく電気容量を要素の1つとして算出される中心周波数及び/又はバンド幅
(2)図5及び/又は図6から得られる、上側電極7aと参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅 Thereafter, thecomputer 90 compares the center frequency and / or the bandwidth with respect to the following (1) and (2).
(1) Based on the first thickness of eachfood 10 to be inspected, the center frequency and / or band calculated as one of the elements based on the electric capacity based on the second thickness of the air layer for each food 10 Width (2) Reference center frequency and / or reference bandwidth corresponding to the thickness of the reference air layer between the upper electrode 7a and the reference food obtained from FIG. 5 and / or FIG.
(1)被検査対象となる食品10ごとの第1厚さに基づいて、食品10ごとの空気層の第2厚さに基づく電気容量を要素の1つとして算出される中心周波数及び/又はバンド幅
(2)図5及び/又は図6から得られる、上側電極7aと参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅 Thereafter, the
(1) Based on the first thickness of each
本実施形態においては、上述の比較が行われることにより、上側電極7aと食品10との間の空気層の厚さ(図3のt’2)に基づく補正工程がコンピュータ90によって行われる。
In the present embodiment, by the above comparison is made, the thickness of the air layer between the upper electrode 7a and food 10 correction step based on the (t '2 in FIG. 3) is performed by the computer 90.
例えば、中心周波数について説明すると、空気層の厚さ(図3のt’2)に相当する、図5から得られる参照用食品の参照中心周波数を導出する。例えば、t’2の値が15mmであれば、約1.950MHzの参照中心周波数が導き出される。
For example, to explain the center frequency, a reference center frequency of the reference food obtained from FIG. 5 corresponding to the thickness of the air layer (t ′ 2 in FIG. 3) is derived. For example, if the value of t ′ 2 is 15 mm, a reference center frequency of about 1.950 MHz is derived.
そこで、たとえ検査対象となる個々の食品10の形状及び/又は大きさが不揃いであっても、食品10ごとのt’2の値を、仮に45mmとして合わせ込むための算出工程(補正工程の例)がコンピュータ90により行われる。
Therefore, even if the shapes and / or sizes of the individual foods 10 to be inspected are not uniform, a calculation step (an example of a correction step) for temporarily adjusting the value of t ′ 2 to 45 mm for each food 10 is assumed. ) Is performed by the computer 90.
実際に食品10を測定したときのt’2の値が15mmであった例を採用すれば、t’2の値が15mmであるときの約1.950MHzと、t’2の値が45mmであるときの参照中心周波数である約2.100MHzとの差である約0.150MHzを、測定された食品10の中心周波数に加算する、という算出工程(補正工程の例)がコンピュータ90により行われる。
Indeed 'by adopting the example 2 values were 15 mm, t' t as measured food 10 and about 1.950MHz when the value of 2 is 15 mm, t '2 values at 45mm The computer 90 performs a calculation step (an example of a correction step) of adding about 0.150 MHz, which is a difference from about 2.100 MHz, which is a reference center frequency at a certain time, to the measured center frequency of the food 10. .
その結果、食品10を電極7a,7b間に配置したときの、上側電極7aと食品10との間の空気層の電気容量の変化の影響を低減することができる。
結果 As a result, when the food 10 is disposed between the electrodes 7a and 7b, the effect of a change in the electric capacity of the air layer between the upper electrode 7a and the food 10 can be reduced.
バンド幅についても、上述の同様に、測定された食品10のバンド幅を補正するための算出工程(補正工程の例)が行われる。
Similarly, a calculation process (an example of a correction process) for correcting the measured bandwidth of the food 10 is performed for the bandwidth as described above.
<第4の実施形態>
本実施形態の食品検査システム920は、第2の実施形態の食品検査システム900が備える変位機構30及び制御部35を有しない点を除いて、食品検査装置900と同じである。従って、第1の実施形態、又は第2の実施形態及びその変形例と重複する説明は省略され得る。 <Fourth embodiment>
Thefood inspection system 920 of the present embodiment is the same as the food inspection device 900 except that the food inspection system 900 of the second embodiment does not include the displacement mechanism 30 and the control unit 35 provided in the food inspection system 900 of the second embodiment. Therefore, description overlapping with the first embodiment or the second embodiment and its modified example may be omitted.
本実施形態の食品検査システム920は、第2の実施形態の食品検査システム900が備える変位機構30及び制御部35を有しない点を除いて、食品検査装置900と同じである。従って、第1の実施形態、又は第2の実施形態及びその変形例と重複する説明は省略され得る。 <Fourth embodiment>
The
図4は、食品検査装置200を含む本実施形態の食品検査システム920の構成図である。
FIG. 4 is a configuration diagram of the food inspection system 920 of the present embodiment including the food inspection device 200.
第2の実施形態及びその変形例と同様に、本実施形態の食品検査システム920は、公知のベルトコンベアに代表される搬送機構20を用いて、図4の紙面左側から右側に向けて(図4のP方向に)食品10を移動させる。また、食品10の移動の過程において、本実施形態の食品検査システム920は、第2の実施形態の(S1)~(S4)において説明した下記の各工程の一部又は全部の工程を行うことができる。
(S1)食品10の厚さ(高さ)(「第1厚さ」に該当する。以下、同じ。)(図4のt’a)を測定して、少なくとも食品10の厚さ(高さ)信号を出力する測定する計測器(例えば、公知のレーザー距離計)50を用いた、厚さ(高さ)計側工程
(S2)一定の速度で移動する食品10の、ある特定の位置を通過する速度(図4のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する、速度・時間計測手段(例えば、公知のスピードメーター又は光電センサー)70を用いた、速度計測工程
(S3)食品10の少なくとも外形を撮像して、少なくとも平面視における長さ(図4のLa)と幅(図4のWa)を測定するための画像信号を出力する撮像手段(例えば、公知の撮像素子を備えるデジタルカメラ)60を用いた、撮像工程
(S4)食品10の重量を測定して、少なくとも食品10の重量信号を出力する秤量部80を用いた、秤量工程 Similarly to the second embodiment and its modified example, thefood inspection system 920 of the present embodiment uses the transport mechanism 20 typified by a known belt conveyor and moves from the left side to the right side of FIG. The food 10 is moved (in the direction P in FIG. 4). Further, in the process of moving the food item 10, the food inspection system 920 of the present embodiment performs some or all of the following steps described in (S1) to (S4) of the second embodiment. Can be.
(S1) The thickness (height) of the food 10 (corresponding to “first thickness”; the same applies hereinafter) (t ′ a in FIG. 4) is measured, and at least the thickness (height) of thefood 10 is measured. Thickness (height) measuring side process using a measuring instrument (for example, a known laser distance meter) 50 for outputting a signal (S2) A specific position of the food 10 moving at a constant speed is determined. A speed / time measuring unit (for example, a known speedometer or photoelectric sensor) 70 that measures the passing speed (V a in FIG. 4) and the time from the front end to the rear end of the food 10 passing the position is used. Speed measurement step used (S3) At least the outer shape of the food 10 is imaged, and an image signal for measuring at least the length (L a in FIG. 4) and the width (W a in FIG. 4) in plan view is output. (For example, a digital camera equipped with a known image sensor) 0 was used, by measuring the weight of the imaging step (S4) food 10, using the weighing unit 80 for outputting a weight signal of at least the food 10, weighing process
(S1)食品10の厚さ(高さ)(「第1厚さ」に該当する。以下、同じ。)(図4のt’a)を測定して、少なくとも食品10の厚さ(高さ)信号を出力する測定する計測器(例えば、公知のレーザー距離計)50を用いた、厚さ(高さ)計側工程
(S2)一定の速度で移動する食品10の、ある特定の位置を通過する速度(図4のVa)と、食品10の先端から後端までが該位置を通過する時間とを計測する、速度・時間計測手段(例えば、公知のスピードメーター又は光電センサー)70を用いた、速度計測工程
(S3)食品10の少なくとも外形を撮像して、少なくとも平面視における長さ(図4のLa)と幅(図4のWa)を測定するための画像信号を出力する撮像手段(例えば、公知の撮像素子を備えるデジタルカメラ)60を用いた、撮像工程
(S4)食品10の重量を測定して、少なくとも食品10の重量信号を出力する秤量部80を用いた、秤量工程 Similarly to the second embodiment and its modified example, the
(S1) The thickness (height) of the food 10 (corresponding to “first thickness”; the same applies hereinafter) (t ′ a in FIG. 4) is measured, and at least the thickness (height) of the
具体的な(S1)~(S4)の一部又は全部の工程を行う代表的な実施形態及びその変形例について説明した第2の実施形態及びその変形例と同様に、「食品10の厚さ(高さ)」、「有効長さ」、「有効面積」、「算出面積」、「有効幅」、及び/又は「直接的に測定される面積」が測定され、又はコンピュータ90が担う以下の算出手段(補正手段の例)により算出される算出工程(補正工程の例)が、コンピュータ90により行われる。
As in the second embodiment and its modified example, which describe the typical embodiment and its modified example in which a part or all of the specific steps (S1) to (S4) are performed, the "thickness of food 10" (Height) "," effective length "," effective area "," calculated area "," effective width ", and / or" directly measured area "are measured, or The calculation process (an example of the correction process) calculated by the calculation device (an example of the correction device) is performed by the computer 90.
上述の測定結果、及び算出手段(算出工程)によって、空気層の厚さ(食品10の厚さt1が定まることにより算出可能)(図3のt’2)に基づく補正工程が、コンピュータ90によって行われる。
Above measurement results, and the calculating means (calculating step), (can be calculated by the thickness t 1 of the food 10 is determined) the thickness of the air layer correction step based on the (t '2 in FIG. 3), the computer 90 Done by
その結果、本変形例においては、食品検査システム920の構成の一部及び上述の各工程により、被検査対象となる各食品10の形状及び/又は大きさが互いに異なっていたとしても、あるいは、水と脂質(油)とをいずれも含む食品10が被検査対象となった場合であっても、第3の実施形態よりも確度高く食品の状態を検査することが可能になる。
As a result, in the present modification, even if the shapes and / or sizes of the foods 10 to be inspected are different from each other due to a part of the configuration of the food inspection system 920 and the respective steps described above, or Even when the food 10 containing both water and lipid (oil) is to be inspected, the state of the food can be inspected more accurately than in the third embodiment.
以上述べたとおり、上述の各実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組み合わせを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
と お り As described above, the disclosure of each of the above-described embodiments has been described for describing the embodiments, and is not intended to limit the present invention. In addition, modifications that fall within the scope of the present invention, including other combinations of the embodiments, are also included in the claims.
本発明の1つの食品検査装置及び1つの食品検査方法は、現在及び将来の、食品を取扱う各産業、又は食品の検査を行う各産業において極めて有用である。
The one food inspection device and one food inspection method of the present invention are extremely useful in current and future industries dealing with food or in industries performing food inspection.
Claims (12)
- 一対の電極とコイルとを含む共振部と、
前記共振部に対して第1交流信号を発生する発信部と、
食品を該電極間に配置したときの、前記共振部に反射する交流信号、前記共振部を透過する交流信号、前記共振部を流れる電流からなる交流信号、及び前記共振部に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する受信部と、
前記第2交流信号に基づく共振スペクトル特性の中心周波数、前記第2交流信号に基づく共振スペクトル特性のバンド幅、及び前記第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定する測定部と、
前記電極と前記食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正手段と、を備える、
食品検査装置。 A resonance unit including a pair of electrodes and a coil,
A transmitting unit that generates a first AC signal with respect to the resonance unit;
When a food is placed between the electrodes, the signal comprises an AC signal reflected on the resonance section, an AC signal transmitted through the resonance section, an AC signal including a current flowing through the resonance section, and a voltage generated on the resonance section. A receiving unit that receives at least one type of second AC signal selected from a group of AC signals;
From the group of the center frequency of the resonance spectrum characteristic based on the second AC signal, the bandwidth of the resonance spectrum characteristic based on the second AC signal, and the signal intensity of a specific frequency in the resonance spectrum characteristic based on the second AC signal A measuring unit for measuring at least one selected,
A correction unit that performs correction for reducing the influence of the change in the capacitance of the air layer between the electrode and the food,
Food inspection equipment. - 前記補正手段は、
前記食品を配置するための配置部と、
前記配置部を前記電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向に変位させる変位機構と、
予め測定された被検査対象の前記食品ごとの第1厚さに基づいて、前記食品が前記電極間に配置されたときの、前記食品ごとの前記空気層の第2厚さを略一定にするように、前記変位機構を制御する制御部と、を備える、
請求項1に記載の食品検査装置。 The correction means,
An arrangement unit for arranging the food,
A displacement mechanism that displaces the disposition portion and the electrode in a direction to relatively approach or separate while disposing the disposition portion facing the electrode,
When the food is disposed between the electrodes, the second thickness of the air layer for each food is made substantially constant based on the first thickness of the food to be inspected previously measured for each food. And a control unit that controls the displacement mechanism,
The food inspection device according to claim 1. - 前記補正手段は、
予め測定された被検査対象の前記食品ごとの第1厚さに基づいて、前記食品が該電極間に配置されたときの、前記食品ごとの前記空気層の第2厚さに基づく前記電気容量を要素の1つとして算出される前記中心周波数及び/又は前記バンド幅を、参照用食品が該電極間に配置されたときの該電極と前記参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出手段を備える、
請求項1に記載の食品検査装置。 The correction means,
The capacitance based on the second thickness of the air layer for each food when the food is arranged between the electrodes based on the first thickness of the food to be inspected measured in advance based on the first thickness of each food. The center frequency and / or the bandwidth calculated as one of the elements, the thickness of the reference air layer between the electrode and the reference food when the reference food is disposed between the electrodes. And calculating means for calculating by comparing with a reference center frequency and / or a reference bandwidth corresponding to the
The food inspection device according to claim 1. - 前記補正手段は、予め測定された前記食品ごとの有効長さ又は前記食品ごとの長さに基づいて、前記食品ごとの有効面積又は算出面積を算出する算出手段をさらに備える、
請求項2に記載の食品検査装置。 The correction unit further includes a calculation unit that calculates an effective area or a calculated area for each food based on the effective length or the length of each food measured in advance,
The food inspection device according to claim 2. - 前記補正手段は、予め測定された前記食品ごとの有効幅又は前記食品ごとの幅に基づいて、前記食品ごとの有効面積又は算出面積を算出する算出手段をさらに備える、
請求項4に記載の食品検査装置。 The correction unit further includes a calculation unit that calculates an effective area or a calculated area for each food based on the effective width or the width of each food measured in advance.
The food inspection device according to claim 4. - 前記算出手段は、さらに、予め測定された前記食品ごとの有効長さ又は前記食品ごとの長さに基づいて、前記食品ごとの有効面積又は算出面積を算出する、
請求項3に記載の食品検査装置。 The calculating means further calculates an effective area or a calculated area for each food, based on an effective length for each food or a length for each food measured in advance.
The food inspection device according to claim 3. - 前記算出手段は、さらに、予め測定された前記食品ごとの有効幅又は前記食品ごとの幅に基づいて、前記食品ごとの有効面積又は算出面積を算出する、
請求項6に記載の食品検査装置。 The calculating means further calculates an effective area or a calculated area for each food, based on an effective width for each food or a width for each food measured in advance.
The food inspection device according to claim 6. - 前記食品の少なくとも外形を撮像する撮像手段をさらに備え、
前記有効長さ又は前記長さ、前記有効幅又は前記幅、及び/又は前記食品ごとの有効面積又は算出面積が、前記撮像手段を用いて予め測定される、
請求項5に記載の食品検査装置。 Further comprising imaging means for imaging at least the outer shape of the food,
The effective length or the length, the effective width or the width, and / or the effective area or the calculated area for each food is measured in advance using the imaging unit.
The food inspection device according to claim 5. - 前記食品の少なくとも外形を撮像する撮像手段をさらに備え、
前記有効長さ又は前記長さ、前記有効幅又は前記幅、及び/又は前記食品ごとの有効面積又は算出面積が、前記撮像手段を用いて予め測定される、
請求項7に記載の食品検査装置。 Further comprising imaging means for imaging at least the outer shape of the food,
The effective length or the length, the effective width or the width, and / or the effective area or the calculated area for each food is measured in advance using the imaging unit.
The food inspection device according to claim 7. - 一対の電極とコイルとを含む共振部の、該電極間に食品を配置する配置工程と、
前記食品を該電極間に配置したときの、前記電極と前記食品との間の空気層の電気容量の変化の影響を低減するための補正を行う補正工程と、
前記共振部に対して第1交流信号を発生する発信工程と、
前記食品を該電極間に配置したときの、前記共振部に反射する交流信号、前記共振部を透過する交流信号、前記共振部を流れる電流からなる交流信号、及び前記共振部に発生する電圧からなる交流信号の群から選択される少なくとも1種の第2交流信号を受信する受信工程と、
前記第2交流信号に基づく共振スペクトル特性の中心周波数、前記第2交流信号に基づく共振スペクトル特性のバンド幅、及び前記第2交流信号に基づく共振スペクトル特性におけるある特定の周波数の信号強度の群から選択される少なくとも1つを測定する測定工程と、を含む、
食品検査方法。 An arrangement step of arranging food between the electrodes, of the resonance section including a pair of electrodes and a coil,
When the food is disposed between the electrodes, a correction step of performing a correction to reduce the effect of a change in the capacitance of the air layer between the electrodes and the food,
A transmitting step of generating a first AC signal to the resonance unit;
When the food is disposed between the electrodes, an AC signal reflected on the resonance unit, an AC signal transmitted through the resonance unit, an AC signal including a current flowing through the resonance unit, and a voltage generated on the resonance unit Receiving at least one type of second AC signal selected from the group of AC signals:
From the group of the center frequency of the resonance spectrum characteristic based on the second AC signal, the bandwidth of the resonance spectrum characteristic based on the second AC signal, and the signal intensity of a specific frequency in the resonance spectrum characteristic based on the second AC signal Measuring at least one selected, and
Food inspection method. - 前記補正工程は、
予め測定された被検査対象の前記食品ごとの第1厚さに基づいて、前記食品が前記電極間に配置されたときの、前記食品ごとの前記空気層の第2厚さを略一定にするように、前記食品を配置するための配置部を前記電極に対向させながら該配置部と該電極とを相対的に近接又は離間する方向の変位を与える変位工程を含む、
請求項10に記載の食品検査方法。 The correcting step includes:
When the food is disposed between the electrodes, the second thickness of the air layer for each food is made substantially constant based on the first thickness of the food to be inspected previously measured for each food. As described above, including a displacement step of giving a displacement in a direction to relatively approach or separate the placement portion and the electrode while facing the electrode placement portion for placing the food,
The food inspection method according to claim 10. - 前記補正工程は、
予め測定された被検査対象の前記食品ごとの第1厚さに基づいて、前記食品が該電極間に配置されたときの、前記食品ごとの前記空気層の第2厚さに基づく前記電気容量を要素の1つとして算出される前記中心周波数及び/又は前記バンド幅を、参照用食品が該電極間に配置されたときの該電極と前記参照用食品との間の参照用空気層の厚さに対応する参照中心周波数及び/又は参照バンド幅と比較することによって算出する算出工程を含む、
請求項10に記載の食品検査方法。 The correcting step includes:
The capacitance based on the second thickness of the air layer for each food when the food is arranged between the electrodes based on the first thickness of the food to be inspected measured in advance based on the first thickness of each food. The center frequency and / or the bandwidth calculated as one of the elements, the thickness of the reference air layer between the electrode and the reference food when the reference food is disposed between the electrodes. Including a calculation step of calculating by comparing with the reference center frequency and / or reference bandwidth corresponding to
The food inspection method according to claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018165426A JP6652999B1 (en) | 2018-09-04 | 2018-09-04 | Food inspection device and food inspection method |
JP2018-165426 | 2018-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020050012A1 true WO2020050012A1 (en) | 2020-03-12 |
Family
ID=69624488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032526 WO2020050012A1 (en) | 2018-09-04 | 2019-08-21 | Food inspection device and food inspection method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6652999B1 (en) |
WO (1) | WO2020050012A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142350A (en) * | 1989-10-30 | 1991-06-18 | Murata Mfg Co Ltd | Vector impedance detecting sensor |
US5900736A (en) * | 1997-07-28 | 1999-05-04 | Transtech Systems, Inc. | Paving material density indicator and method using capacitance |
US20120245873A1 (en) * | 2011-02-22 | 2012-09-27 | The Mitre Corporation | Classifying and identifying materials based on permitivity features |
US20140176480A1 (en) * | 2012-12-20 | 2014-06-26 | Synaptics Incorporated | Compensation for air gap in an input device |
JP2014533890A (en) * | 2011-11-18 | 2014-12-15 | ルクスビュー テクノロジー コーポレイション | Micro LED structure with electrically insulating layer and method of forming an array of micro LED structures |
JP2017191099A (en) * | 2016-04-07 | 2017-10-19 | 国立大学法人東京農工大学 | Food inspection device and food inspection method |
WO2018035358A1 (en) * | 2016-08-19 | 2018-02-22 | Ecolab Usa Inc. | Conductivity sensor with void correction |
JP2018509605A (en) * | 2015-02-03 | 2018-04-05 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and device for determination of water content |
US20180180499A1 (en) * | 2015-06-10 | 2018-06-28 | Torque And More (Tam) Gmbh | Distance Compensation |
JP2019105604A (en) * | 2017-12-14 | 2019-06-27 | 島根県 | Electrostatic capacity type sensor |
-
2018
- 2018-09-04 JP JP2018165426A patent/JP6652999B1/en active Active
-
2019
- 2019-08-21 WO PCT/JP2019/032526 patent/WO2020050012A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142350A (en) * | 1989-10-30 | 1991-06-18 | Murata Mfg Co Ltd | Vector impedance detecting sensor |
US5900736A (en) * | 1997-07-28 | 1999-05-04 | Transtech Systems, Inc. | Paving material density indicator and method using capacitance |
US20120245873A1 (en) * | 2011-02-22 | 2012-09-27 | The Mitre Corporation | Classifying and identifying materials based on permitivity features |
JP2014533890A (en) * | 2011-11-18 | 2014-12-15 | ルクスビュー テクノロジー コーポレイション | Micro LED structure with electrically insulating layer and method of forming an array of micro LED structures |
US20140176480A1 (en) * | 2012-12-20 | 2014-06-26 | Synaptics Incorporated | Compensation for air gap in an input device |
JP2018509605A (en) * | 2015-02-03 | 2018-04-05 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and device for determination of water content |
US20180180499A1 (en) * | 2015-06-10 | 2018-06-28 | Torque And More (Tam) Gmbh | Distance Compensation |
JP2017191099A (en) * | 2016-04-07 | 2017-10-19 | 国立大学法人東京農工大学 | Food inspection device and food inspection method |
WO2018035358A1 (en) * | 2016-08-19 | 2018-02-22 | Ecolab Usa Inc. | Conductivity sensor with void correction |
JP2019105604A (en) * | 2017-12-14 | 2019-06-27 | 島根県 | Electrostatic capacity type sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2020038127A (en) | 2020-03-12 |
JP6652999B1 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4065700B2 (en) | Microwave resonance device | |
US7755351B2 (en) | Method and apparatus for detecting inconsistencies in fiber reinforced resin parts using eddy currents | |
EP1314022B1 (en) | Device, method and system for measuring the distribution of selected properties in a material | |
Içier et al. | Dielectrical properties of food materials—2: Measurement techniques | |
KR101739628B1 (en) | Apparatus and method for analyzing a semiconductor wafer by using a terahertz wave | |
Nelson et al. | Grain moisture content determination by microwave measurements | |
US5097216A (en) | Apparatus for inspecting the wall thickness of a container and corresponding method | |
JP2018531386A6 (en) | Sensors used in measurement systems suitable for dielectric impedance spectroscopy | |
JP2018531386A (en) | Sensors used in measurement systems suitable for dielectric impedance spectroscopy | |
Zhu et al. | Determining the fat concentration of fresh raw cow milk using dielectric spectroscopy combined with chemometrics | |
US5723797A (en) | Container inspection apparatus having diameter measuring means and associated method | |
JP6276384B2 (en) | Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object | |
JP6652999B1 (en) | Food inspection device and food inspection method | |
RU2548064C1 (en) | Method to measure dielectric permeability of materials and device for its realisation | |
JP6652944B2 (en) | Food inspection device and food inspection method | |
Jain et al. | CSIWC RF sensor for micro‐fluidic non‐contact quality assessment of milk | |
Soltani et al. | Use of dielectric properties in quality measurement of agricultural products | |
Ricci et al. | Microwave sensing for food safety: a neural network implementation | |
JP2019100912A (en) | Identification device of substance using electromagnetic wave and identification method | |
Mukhopadhyay et al. | Low cost sensing system for dairy products quality monitoring | |
Nakawajana et al. | Minimally destructive assessment of mangosteen translucency based on electrical impedance measurements | |
JP2023036023A (en) | Method and apparatus for tread measurement system | |
Ricci et al. | Microwave tomography for food contamination monitoring | |
Gibson et al. | An overview of microwave techniques for the efficient measurement of food materials | |
Cavagnaro et al. | Wideband measurement of dielectric properties of powder materials: developing an experimental set-up |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857538 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19857538 Country of ref document: EP Kind code of ref document: A1 |