WO2020049909A1 - エネルギー移動回路、及び蓄電システム - Google Patents

エネルギー移動回路、及び蓄電システム Download PDF

Info

Publication number
WO2020049909A1
WO2020049909A1 PCT/JP2019/030197 JP2019030197W WO2020049909A1 WO 2020049909 A1 WO2020049909 A1 WO 2020049909A1 JP 2019030197 W JP2019030197 W JP 2019030197W WO 2020049909 A1 WO2020049909 A1 WO 2020049909A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
cell
clamp
inductor
wiring
Prior art date
Application number
PCT/JP2019/030197
Other languages
English (en)
French (fr)
Inventor
倉貫 正明
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020541064A priority Critical patent/JPWO2020049909A1/ja
Priority to US17/266,166 priority patent/US11894702B2/en
Priority to CN201980053283.7A priority patent/CN112566814A/zh
Publication of WO2020049909A1 publication Critical patent/WO2020049909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy transfer circuit for transferring energy between a plurality of cells and modules connected in series, and a power storage system.
  • secondary batteries such as lithium ion batteries and nickel hydrogen batteries have been used for various purposes.
  • on-vehicle including electric bicycle
  • EV Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • PHV Plug-in Hybrid Vehicle
  • peak shift and backup. It is used for power storage applications
  • FR Frequency Regulation
  • Equalization processing includes a passive method and an active method.
  • a discharge resistor is connected to each of a plurality of cells connected in series, and the other cells are discharged so that the voltage of the other cell is adjusted to the voltage of the cell with the lowest voltage.
  • the active method is a method in which energy is transferred between a plurality of cells connected in series to make the capacity between the plurality of cells uniform. The active method has a smaller power loss and can suppress the amount of heat generation, but at present, a passive method having a simple circuit configuration and a low cost is mainly used.
  • an active equalization circuit there is a configuration in which an inductor is connected between a midpoint of two cells and a midpoint of two switches connected in parallel to the two cells (for example, see Patent Document 1). ).
  • the above circuit configuration is a circuit for performing energy transfer between two adjacent cells.
  • the configuration becomes complicated. It is necessary to provide a cell selection circuit that can arbitrarily select one of a plurality of cells, or to arrange a plurality of the above circuit configurations in series and transfer energy in a bucket brigade.
  • the number of wirings and switches for configuring the cell selection circuit increases.
  • the number of inductors increases according to the number of series cells.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technology for realizing an energy transfer circuit using an inductor with a small number of elements.
  • an energy transfer circuit is provided between an inductor, n (n is an integer of 2 or more) cells connected in series, and the n inductors.
  • a cell selection circuit capable of conducting both ends of any one of the cells, both ends of the inductor, and a closed loop including the inductor in a state where the cell selection circuit does not select any cell;
  • a control unit for controlling the cell selection circuit and the clamp switch.
  • the control unit controls the cell selection circuit to make both ends of the cell to be discharged among the n cells and both ends of the inductor conduct for a predetermined time, and controls the cell selection circuit to make the n Cells and the inductor are electrically cut off, the clamp switch is turned on, the clamp switch is turned off, and the cell selection circuit is controlled to control charging of the n cells. Of the inductor and both ends of the inductor for a predetermined time.
  • An energy transfer circuit is provided between an inductor, n cells (n is an integer of 2 or more) connected in series, and the inductor, and both ends of any one of the n cells.
  • a cell selection circuit capable of conducting both ends of the inductor, and a full bridge connection for forming a closed loop including the inductor in a state where the cell selection circuit has not selected any cells.
  • the semiconductor device includes four clamp switches, and a control unit that controls the cell selection circuit and the four clamp switches.
  • the cell selection circuit includes a first wiring connected to one end of the inductor, a second wiring connected to the other end of the inductor, and a node (n + 1) of the n cells connected in series.
  • a plurality of first wiring-side switches respectively connected between an odd-numbered node and the first wiring; and an even-numbered node and the second wiring among the nodes (n + 1) of the n cells connected in series.
  • at least one second wiring side switch respectively connected between the first and second wiring lines.
  • the inductor is connected in parallel between a first wiring and the second wiring, and the inductor includes a node between the first clamp switch and the second clamp switch, and a node between the third clamp switch and the fourth clamp switch.
  • an energy transfer circuit for transferring energy between a plurality of cells or between a plurality of modules using an inductor can be realized with a small number of elements.
  • FIGS. 2A to 2H are diagrams for explaining an operation sequence example of the equalization processing of the power storage system according to the embodiment of the present invention.
  • FIGS. 3A to 3C are diagrams illustrating a specific example of the equalization processing of the power storage system according to the embodiment of the present invention.
  • FIGS. 4A to 4C are diagrams for explaining an equalizing circuit according to a comparative example.
  • FIGS. 5A and 5B are diagrams for explaining an example of a circuit configuration in which the equalizing circuit shown in FIG. 4A is extended when three or more cells connected in series are used. It is.
  • FIGS. 6A and 6B are diagrams for explaining an operation sequence when energy is transferred from the first cell to the third cell in the equalizing circuit shown in FIG. 5B.
  • FIG. 6 is a graph showing the number of switches used in the equalizing circuit according to the example of the present invention and the equalizing circuit according to the comparative example.
  • FIG. 11 is a diagram illustrating a configuration of a power storage system according to a modification of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a power storage system according to another embodiment of the present invention.
  • FIGS. 10A to 10H are circuit diagrams for explaining an example of a basic operation sequence of equalization processing of the power storage system according to the embodiment of the present invention.
  • FIGS. 11A and 11B are diagrams illustrating an example of a circuit configuration when the first switch is configured by two N-channel MOSFETs.
  • FIGS. 12A and 12B are diagrams comparing the configuration of the power storage system according to the comparative example with the configuration of the power storage system according to the embodiment shown in FIG.
  • FIGS. 13A to 13C are circuit diagrams illustrating a sequence of energy transfer from the first cell to the third cell in the power storage system according to the comparative example.
  • FIGS. 14A to 14D are circuit diagrams for describing a sequence of energy transfer from the first cell to the second cell / third cell in the power storage system according to the embodiment shown in FIG.
  • FIG. 10 is a graph showing the number of switching elements used in the equalizing circuit according to the example shown in FIG.
  • FIG. 13 is a diagram illustrating a configuration of a modified example of the power storage system illustrated in FIG.
  • FIG. 11 is a diagram illustrating a configuration of a power storage system according to another modification of the present invention.
  • FIG. 1 is a diagram showing a configuration of a power storage system 1 according to an embodiment of the present invention.
  • the power storage system 1 includes an equalization circuit 10 and a power storage unit 20.
  • Power storage unit 20 includes n (n is an integer of 2 or more) cells connected in series.
  • FIG. 1 illustrates an example in which four cells C1 to C4 are connected in series. Note that the number of cells connected in series varies according to the voltage specifications required for power storage system 1.
  • Each cell can be a chargeable / dischargeable power storage element such as a lithium ion battery cell, a nickel hydrogen battery cell, a lead battery cell, an electric double layer capacitor cell, and a lithium ion capacitor cell.
  • a lithium ion battery cell nominal voltage: 3.6 to 3.7 V
  • the equalization circuit 10 includes a voltage detection unit 14, a cell selection circuit 11, an energy holding circuit 12, and a control unit 13.
  • the voltage detector 14 detects each voltage of n (4 in FIG. 1) cells connected in series. Specifically, the voltage detection unit 14 is connected to each node of n cells connected in series by (n + 1) voltage lines, and detects a voltage between two adjacent voltage lines, respectively. , And detect the voltage of each cell.
  • the voltage detection unit 14 can be configured by, for example, a general-purpose analog front-end IC or an ASIC (Application Specific Integrated Circuit). The voltage detector 14 converts the detected voltage of each cell into a digital value and outputs the digital value to the controller 13.
  • the cell selection circuit 11 is provided between the n cells connected in series and the inductor L1 included in the energy holding circuit 12, and includes both ends of the cell selected from the n cells and the inductor L1. This is a circuit that can conduct both ends.
  • the cell selection circuit 11 includes a first wiring W1 connected to the first end of the inductor L1, a second wiring W2 connected to the second end of the inductor L1, (n + 1) first wiring side switches, and (n + 1) ) Second wiring-side switches.
  • the (n + 1) first wiring side switches are respectively connected between each node of the n cells connected in series and the first wiring W1.
  • the (n + 1) second wiring side switches are respectively connected between the respective nodes of the n cells connected in series and the second wiring W2.
  • the first switch S1, the third switch S3, the fifth switch S5, the seventh switch S7, and the ninth switch S9 are first wiring side switches
  • the second switch S2, the fourth switch S4, and the sixth switch S6, the eighth switch S8, and the tenth switch S10 are second wiring side switches.
  • the energy holding circuit 12 includes an inductor L1 and a clamp switch Sc.
  • the clamp switch Sc is a switch for conducting both ends of the inductor L1 in the energy holding circuit 12.
  • the energy holding circuit 12 can form a closed loop including the inductor L1 in a state where no cell is selected by the cell selection circuit 11. That is, when the clamp switch Sc is controlled to be turned on, a closed loop including the inductor L1 and the clamp switch Sc is formed.
  • a semiconductor switch for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor)
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the control unit 13 performs equalization processing among the n cells connected in series based on the voltages of the n cells detected by the voltage detection unit 14. Further, the control unit 13 determines the abnormal voltage of the cell from the voltage value detected by the voltage detecting unit 14, and stops the execution of the equalizing process when the abnormal voltage of the cell is determined during the execution of the equalizing process. To protect the cell from overvoltage or low voltage below a predetermined value.
  • the control unit 13 can be composed of, for example, a microcomputer. Note that the control unit 13 and the voltage detection unit 14 may be integrated into one chip.
  • the control unit 13 executes equalization processing between n cells connected in series by the active cell balance method.
  • energy is transferred from one cell (cell to be discharged) to another cell (cell to be charged) between n cells connected in series.
  • the control unit 13 controls the cell selection circuit 11 to make both ends of the cell to be discharged out of the n cells and both ends of the inductor L1 conductive for a predetermined time. In this state, a current flows from the discharge target cell to the inductor L1, and energy is accumulated in the inductor L1.
  • control unit 13 controls the cell selection circuit 11 to electrically cut off the n cells and the inductor L1, and turns on the clamp switch Sc. In this state, a circulating current flows through the closed loop, and the inductor current is actively clamped in the energy holding circuit 12.
  • control unit 13 turns off the clamp switch Sc, and controls the cell selection circuit 11 to make both ends of the cell to be charged out of the n cells and both ends of the inductor L1 conductive for a predetermined time.
  • the inductor current actively clamped in the energy holding circuit 12 flows to the cell to be charged.
  • energy transfer from one cell to another cell is completed.
  • FIGS. 2A to 2H are diagrams for explaining an operation sequence example of the equalization processing of the power storage system 1 according to the embodiment of the present invention.
  • the number of series cells is set to 2 for simplification of the description.
  • the control unit 13 controls the first switch S1 and the fourth switch S4 to be in the on state, and the second switch S2, the third switch S3, the fifth switch S5, and the sixth switch S5.
  • the switch S6 and the clamp switch Sc are controlled to be turned off.
  • a current flows from the first cell C1 to the inductor L1, and energy discharged from the first cell C1 is stored in the inductor L1.
  • the control unit 13 controls the clamp switch Sc to the on state, and the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the fifth switch. S5 and the sixth switch S6 are turned off.
  • the energy stored in the inductor L1 flows in the closed loop as the inductor current, and is actively clamped.
  • control unit 13 controls the fourth switch S4 and the fifth switch S5 to be in the on state, and controls the first switch S1, the second switch S2, the third switch S3, and the sixth switch S5.
  • the switch S6 and the clamp switch Sc are controlled to be turned off.
  • the inductor current actively clamped in the closed loop flows through the second cell C2, and the second cell C2 is charged.
  • the control unit 13 controls the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, the fifth switch S5, the sixth switch S6, and the clamp switch Sc. Is turned off.
  • This state is a state where the energy transfer from the first cell C1 to the second cell C2 has been completed.
  • the control unit 13 controls the third switch S3 and the sixth switch S6 to be in the ON state, and controls the first switch S1, the second switch S2, the fourth switch S4, and the fifth switch S4.
  • the switch S5 and the clamp switch Sc are controlled to be turned off.
  • a current flows from the second cell C2 to the inductor L1, and energy discharged from the first cell C1 is stored in the inductor L1.
  • the control unit 13 controls the clamp switch Sc to be in the ON state, and the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the fifth switch S5 and the sixth switch S6 are turned off.
  • the energy stored in the inductor L1 flows in the closed loop as the inductor current, and is actively clamped.
  • the control unit 13 controls the second switch S2 and the third switch S3 to be in the ON state, and the first switch S1, the fourth switch S4, the fifth switch S5, and the sixth switch S5.
  • the switch S6 and the clamp switch Sc are controlled to be turned off.
  • the inductor current actively clamped in the closed loop flows through the first cell C1, and the first cell C1 is charged.
  • the control unit 13 includes the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, the fifth switch S5, the sixth switch S6, and the clamp switch Sc. Is turned off. In this state, the energy transfer from the second cell C2 to the first cell C1 is completed.
  • FIGS. 3A to 3C are diagrams illustrating a specific example of the equalization processing of the power storage system 1 according to the embodiment of the present invention.
  • FIG. 3A is a diagram schematically showing the voltage states of the first cell C1 to the fourth cell C4 before the start of the equalization processing.
  • the control unit 13 calculates an average value of the voltages of the first cell C1 to the fourth cell C4 detected by the voltage detection unit 14, and sets the calculated average value as an equalization target voltage (hereinafter, simply referred to as a target voltage). I do.
  • the control unit 13 transfers energy from a cell higher than the target voltage to a cell lower than the target voltage. For example, among the cells having a voltage higher than the target voltage, the cell having the highest voltage (first cell C1 in FIG. 3A), and the cell having the lowest voltage among the cells having a voltage lower than the target voltage (first cell C1 in FIG. 3A). The energy is transferred to the four cells C4).
  • the control unit 13 performs energy transfer in a range where the voltage of the source cell (cell to be discharged) is equal to or higher than the target voltage and in a range where the voltage of the destination cell (cell to be charged) is equal to or lower than the target voltage. Determine the amount.
  • the control unit 13 determines the discharge time of the transfer source cell and the charge time of the transfer destination cell based on the determined energy transfer amount and the discharge current and the charge current based on the design. Since the amount of energy consumed while being actively clamped by the energy holding circuit 12 is negligible, the discharge time of the source cell and the charge time of the destination cell are substantially the same.
  • FIG. 3B shows a state in which the energy transfer from the first cell C1 as the source cell to the fourth cell C4 as the destination cell is completed.
  • the control unit 13 executes the above-described processing again. Specifically, the cell having the highest voltage (third cell C3 in FIG. 3B) among the cells having a voltage higher than the target voltage, and the cell having the lowest voltage among the cells having a voltage lower than the target voltage (FIG. 3B) In (2), energy is transferred to the second cell C2).
  • FIG. 3 (c) shows a state in which energy transfer from the third cell C3, which is the source cell, to the second cell C2, which is the destination cell, is completed.
  • the equalization processing of the first cell C1 to the fourth cell C4 connected in series is completed.
  • FIGS. 4A to 4C are diagrams for explaining an equalizing circuit according to a comparative example.
  • the equalizing circuit according to the comparative example includes two cells C1, C2, an inductor L1, and two switches S51, S52 connected in series.
  • the first end of the inductor L1 is connected to the midpoint between the two cells C1 and C2, and the second end of the inductor L1 is connected to the midpoint between the two switches S51 and S52 (the first ends of the two switches S51 and S52 are connected to each other). Connected node).
  • the switch S51 is controlled to be on, and the switch S52 is controlled to be off.
  • a current flows from the first cell C1 to the inductor L1, and energy discharged from the first cell C1 is stored in the inductor L1.
  • the switch S51 is controlled to be turned off, and the switch S52 is controlled to be turned on.
  • current flows from the inductor L1 to the second cell C2, and the second cell C2 is charged.
  • FIGS. 5A and 5B are diagrams for explaining an example of a circuit configuration in which the equalizing circuit shown in FIG. 4A is extended when three or more cells connected in series are used. It is. FIGS. 5A and 5B show circuit configuration examples when four cells C1 to C4 are used. When three or more cells connected in series are used, each node of the plurality of cells is connected to the second end of the switch S51, the first end of the inductor L1, and the second end of the switch S52, respectively. Three wirings W1-W3 are required.
  • the potential of the first wiring W1 connected to the second end of the switch S51 is the highest, and the potential of the second wiring W2 connected to the first end of the inductor L1 is the next highest.
  • the third wiring W3 connected to the second end of the switch S52 has the lowest potential.
  • a switch connected between an upper node of the cell and the second wiring W2 and a switch connected between a lower node of the cell and the third wiring W3 are turned on. I do. Thereby, a charging path from the inductor L1 to the cell is formed.
  • FIG. 5B shows a circuit configuration in which six switches S53, S54, S56, S64, S66, and S67 are removed from the circuit configuration of FIG. 5A.
  • FIGS. 6A and 6B are diagrams for explaining an operation sequence when energy is transferred from the first cell C1 to the third cell C3 in the equalizing circuit shown in FIG. 5B.
  • the switches S55, S57, and S51 are controlled to be on, and the other switches S58, S59, S60, S61, S62, S63, S65, and S52 are controlled to be off.
  • a current flows from the first cell C1 to the inductor L1, and energy discharged from the first cell C1 is stored in the inductor L1.
  • the switches S60, S62, and S52 are controlled to be on, and the other switches S55, S57, S58, S59, S61, S63, S65, and S51 are controlled to be off. .
  • a current flows from the inductor L1 to the third cell C3, and the third cell C3 is charged.
  • an inductor is provided between a discharge period for discharging from a source cell and a charging period for charging a destination cell.
  • An active clamp period for actively clamping a current is provided. During this active clamp period, all the switches included in the cell selection circuit 11 are controlled to be in an off state, and the inductor L1 is separated from the plurality of cells C1-C4 connected in series.
  • the switch by providing an active clamp period in which all the switches included in the cell selection circuit 11 are controlled to be in an off state, when the switch is made from the discharge period to the charge period, the switch causes breakdown voltage breakdown. Can be prevented, and a short circuit of the cell can be prevented.
  • FIG. 7 is a graph showing the number of switches used in the equalizing circuit according to the embodiment of the present invention and the equalizing circuit according to the comparative example in a graph.
  • the horizontal axis indicates the number of series cells, and the vertical axis indicates the number of switches.
  • the number of switches is two as shown in FIGS. 4A to 4C. If the number of series cells is three or more, the number of switches is defined as 3 (n + 1) -6 + 2 as shown in FIG.
  • -6 is the number of switches S53, S54, S56, S64, S66, and S67 that can be reduced due to the specificity of the circuit
  • +2 is the number of switches S51 and S52 connected to the second end of the inductor L1.
  • the number of switches is defined as 2 (n + 1) +1.
  • +1 is the number of clamp switches Sc.
  • the number of series of cells when the number of series of cells is 3 or less, the number of switches is smaller in the comparative example, the number of series is 4 and the number of both switches is equal. Has a smaller number of switches. For example, when the number of cells in series is 16, 45 switches are required in the comparative example, but 34 switches are sufficient in the embodiment. Thus, in the embodiment, as the number of series increases, the effect of reducing the number of switches increases.
  • an active equalizing circuit using an inductor can be realized with a small number of elements.
  • the number of series cells has been increasing. Therefore, there is a tendency that the effect of reducing the number of switches by employing the equalizing circuit according to the present embodiment is increased. Since there is no need to change the constant of the inductor L1 between this embodiment and the comparative example, it is not necessary to increase the size of the inductor L1 or the size of the switch by employing this embodiment.
  • an active clamp period for actively clamping the inductor current is provided between a discharge period for discharging from one cell and a charging period for charging another cell.
  • FIG. 8 is a diagram showing a configuration of a power storage system 1 according to a modification of the present invention.
  • the clamp switch in the energy holding circuit 12 has a full bridge configuration.
  • the first clamp switch Sc1 and the second clamp switch Sc2 are connected in series between the first wiring W1 and the second wiring W2.
  • a third clamp switch Sc3 and a fourth clamp switch Sc4 are connected in series between the first wiring W1 and the second wiring W2 in parallel with the first clamp switch Sc1 and the second clamp switch Sc2.
  • a first end of the inductor L1 is connected to a midpoint between the first clamp switch Sc1 and the second clamp switch Sc2, and a second end of the inductor L1 is connected to a midpoint between the third clamp switch Sc3 and the fourth clamp switch Sc4. Is done.
  • the direction of the discharge current or the charge current can be arbitrarily selected.
  • the first switch S1 to the tenth switch S10 are configured as bidirectional switches, the direction of the discharge current or the charge current can be arbitrarily selected.
  • FIG. 9 is a diagram showing a configuration of a power storage system 1 according to another embodiment of the present invention.
  • components common to or corresponding to the power storage system 1 illustrated in FIGS. 1 and 8 are denoted by the same reference numerals.
  • the cell selection circuit 11 includes a first wiring W1 connected to a first end of the inductor L1, a second wiring W2 connected to a second end of the inductor L1, a plurality of first wiring side switches, and at least one first wiring. It has a two-wire switch.
  • the plurality of first wiring-side switches are respectively connected between the odd-numbered nodes and the first wiring W1 among the nodes (n + 1) of the n cells connected in series.
  • At least one second wiring-side switch is connected between an even-numbered node and the second wiring W2 among the nodes (n + 1) of the n cells connected in series.
  • the cell selection circuit 11 has three first wiring side switches and two second wiring side switches.
  • the first switch S1, the fifth switch S5, and the ninth switch S9 are first wiring side switches
  • the fourth switch S4 and the eighth switch S8 are second wiring side switches.
  • the energy holding circuit 12 includes an inductor L1, a first clamp switch Sc1, a second clamp switch Sc2, a third clamp switch Sc3, and a fourth clamp switch Sc4.
  • the first clamp switch Sc1, the second clamp switch Sc2, the third clamp switch Sc3, and the fourth clamp switch Sc4 constitute a full bridge circuit.
  • the first arm in which the first clamp switch Sc1 and the second clamp switch Sc2 are connected in series, and the second arm in which the third clamp switch Sc3 and the fourth clamp switch Sc4 are connected in series It is connected in parallel between the first wiring W1 and the second wiring W2.
  • the inductor L1 is connected between a node between the first clamp switch Sc1 and the second clamp switch Sc2 and a node between the third clamp switch Sc3 and the fourth clamp switch Sc4.
  • the first clamp switch Sc1 to the fourth clamp switch Sc4 can conduct both ends of the inductor L1 in the energy holding circuit 12. Specifically, in a state where no cell is selected by the cell selection circuit 11, the first clamp switch Sc1 and the third clamp switch Sc3 are turned on, and the second clamp switch Sc2 and the fourth clamp switch Sc4 are turned off. Alternatively, by controlling the first clamp switch Sc1 and the third clamp switch Sc3 to be in an off state and the second clamp switch Sc2 and the fourth clamp switch Sc4 to be in an on state, a closed loop including the inductor L1 is formed in the energy holding circuit 12. Can be formed.
  • the first to fourth clamp switches Sc1 to Sc4 can switch the direction of the current flowing through the inductor L1. Specifically, with the cell selection circuit 11 selecting one of the cells, the first clamp switch Sc1 and the fourth clamp switch Sc4 are turned on, and the second clamp switch Sc2 and the third clamp switch Sc3 are turned off. The direction of the current flowing through the inductor L1 is switched depending on whether the current is flowing through the inductor L1 by controlling the first clamp switch Sc1 and the fourth clamp switch Sc4 to the off state and the second clamp switch Sc2 and the third clamp switch Sc3 to the on state. be able to.
  • the control unit 13 performs equalization processing among the n cells connected in series based on the voltages of the n cells detected by the voltage detection unit 14. Further, the control unit 13 determines the abnormal voltage of the cell from the voltage value detected by the voltage detecting unit 14, and stops the execution of the equalizing process when the abnormal voltage of the cell is determined during the execution of the equalizing process. To protect the cell from overvoltage or low voltage below a predetermined value.
  • the control unit 13 can be composed of, for example, a microcomputer. Note that the control unit 13 and the voltage detection unit 14 may be integrated into one chip.
  • control unit 13 executes equalization processing between n cells connected in series by the active cell balance method.
  • energy is transferred from one cell (cell to be discharged) to another cell (cell to be charged) between n cells connected in series. Equalize the capacity of one cell with another cell. By repeating this energy transfer, the capacity between the n cells connected in series is equalized.
  • the control unit 13 controls the first clamp switch Sc1 and the fourth clamp switch Sc4 to an on state and the second clamp switch Sc2 and the third clamp switch Sc3 to an off state, or controls the first clamp switch Sc1 and the fourth clamp switch.
  • Sc4 is turned off, the second clamp switch Sc2 and the third clamp switch Sc3 are turned on, and the cell selection circuit 11 is controlled to control both ends of the n-cell to be discharged and the inductor L1. Both ends are made conductive for a predetermined time. In this state, a current flows from the discharge target cell to the inductor L1, and energy is accumulated in the inductor L1.
  • the control unit 13 controls the cell selection circuit 11 to electrically cut off the n cells and the inductor L1, and turns on the first clamp switch Sc1 and the third clamp switch Sc3 and the second clamp switch Sc2. And the fourth clamp switch Sc4 is turned off, the first clamp switch Sc1 and the third clamp switch Sc3 are turned off, and the second clamp switch Sc2 and the fourth clamp switch Sc4 are turned on. In this state, a circulating current flows through the closed loop, and the inductor current is actively clamped in the energy holding circuit 12.
  • the control unit 13 controls the first clamp switch Sc1 and the fourth clamp switch Sc4 to be in an on state and the second clamp switch Sc2 and the third clamp switch Sc3 to be in an off state, or the first clamp switch Sc1 and the fourth clamp switch.
  • the switch Sc4 is turned off, the second clamp switch Sc2 and the third clamp switch Sc3 are turned on, and the cell selection circuit 11 is controlled to control both ends of the cell to be charged among the n cells and the inductor L1. Are made conductive for a predetermined time. In this state, the inductor current actively clamped in the energy holding circuit 12 flows to the cell to be charged. Thus, energy transfer from one cell to another cell is completed.
  • FIGS. 10A to 10H are circuit diagrams for explaining an example of a basic operation sequence of equalization processing of the power storage system 1 according to the embodiment shown in FIG.
  • the number of series cells is set to 2 for simplification of the description.
  • the control unit 13 controls the first switch S1, the first clamp switch Sc1, the fourth clamp switch Sc4, and the fourth switch S4 to be on, and the fifth switch S5, The second clamp switch Sc2 and the third clamp switch Sc3 are turned off.
  • a current flows from the first cell C1 to the inductor L1, and energy discharged from the first cell C1 is stored in the inductor L1.
  • the control unit 13 controls the second clamp switch Sc2 and the fourth clamp switch Sc4 to the on state, and the first switch S1, the fourth switch S4, the fifth switch S5, The first and third clamp switches Sc1 and Sc3 are turned off.
  • the energy stored in the inductor L1 flows in the closed loop as the inductor current, and is actively clamped.
  • the control unit 13 controls the fourth clamp switch Sc4, the fourth switch S4, the fifth switch S5, and the first clamp switch Sc1 to the on state, and sets the first switch S1, The second clamp switch Sc2 and the third clamp switch Sc3 are turned off.
  • the inductor current actively clamped in the closed loop flows through the second cell C2, and the second cell C2 is charged.
  • This state is a state where the energy transfer from the first cell C1 to the second cell C2 has been completed.
  • the control unit 13 controls the fourth switch S4, the second clamp switch Sc2, the third clamp switch Sc3, and the fifth switch S5 to an on state, and the first switch S1, The first clamp switch Sc1 and the fourth clamp switch Sc4 are turned off.
  • a current flows from the second cell C2 to the inductor L1, and energy discharged from the second cell C2 is stored in the inductor L1.
  • the control unit 13 controls the first clamp switch Sc1 and the third clamp switch Sc3 to be in the ON state, and the first switch S1, the fourth switch S4, the fifth switch S5, The second clamp switch Sc2 and the third clamp switch Sc3 are turned off.
  • the energy stored in the inductor L1 flows in the closed loop as the inductor current, and is actively clamped.
  • the control unit 13 controls the third clamp switch Sc3, the first switch S1, the fourth switch S4, and the second clamp switch Sc2 to an on state, and the fifth switch S5, the first switch S5.
  • the clamp switch Sc1 and the fourth clamp switch Sc4 are controlled to be turned off.
  • the inductor current actively clamped in the closed loop flows through the first cell C1, and the first cell C1 is charged.
  • the control unit 13 controls the first switch S1, the fourth switch S4, the fifth switch S5, and the first to fourth clamp switches Sc1 to Sc4. .
  • the energy transfer from the second cell C2 to the first cell C1 is completed.
  • the control unit 13 performs energy transfer in a range where the voltage of the source cell (cell to be discharged) is equal to or higher than the target voltage and in a range where the voltage of the destination cell (cell to be charged) is equal to or lower than the target voltage. Determine the amount.
  • the control unit 13 determines the discharge time of the transfer source cell and the charge time of the transfer destination cell based on the determined energy transfer amount and the discharge current and the charge current based on the design. Since the amount of energy consumed while being actively clamped by the energy holding circuit 12 is negligible, the discharge time of the source cell and the charge time of the destination cell are substantially the same.
  • a plurality of switches included in the cell selection circuit 11 and four clamp switches included in the energy holding circuit 12 include a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) having a relatively high switching speed and a relatively low cost. Use is influential.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a parasitic diode body diode
  • FIGS. 11A and 11B are diagrams illustrating an example of a circuit configuration when the first switch S1 is configured by two N-channel MOSFETs.
  • FIG. 11A shows an example in which source terminals of two N-channel MOSFETs are connected to each other to form a bidirectional switch. In this case, since the anodes of the two series body diodes D1a and D1b face each other, current is prevented from flowing between both ends of the bidirectional switch via the body diode.
  • FIG. 11B shows an example in which the drain terminals of two N-channel MOSFETs are connected to each other to form a bidirectional switch.
  • the cathodes of the two body diodes D1a and D1b in series face each other, so that a current is prevented from flowing between both ends of the bidirectional switch via the body diode.
  • a comparison between the configuration example of FIG. 11A and the configuration example of FIG. 11B shows that the configuration example of FIG. 11A is a power supply circuit (DC / DC converter) of two N-channel MOSFET gate drivers.
  • DC / DC converter power supply circuit
  • the configuration example of FIG. 11A the source potentials of the two N-channel MOSFETs are common, so that the power supply voltages of the two gate drivers can be shared. Therefore, a power supply circuit (DC / DC converter) for supplying a power supply voltage to the two gate drivers can be shared. Thereby, cost and circuit area can be reduced.
  • the configuration example of FIG. 11B since the source potentials of the two N-channel MOSFETs cannot be shared, it is necessary to separately provide a power supply circuit (DC / DC converter) for supplying a power supply voltage to the two gate drivers. is there.
  • FIGS. 12A and 12B are diagrams comparing the configuration of the power storage system 1 according to the comparative example with the configuration of the power storage system 1 according to the embodiment illustrated in FIG.
  • FIG. 12A illustrates a configuration of a power storage system 1 according to a comparative example.
  • the cell selection circuit 11 has (n + 1) first wiring side switches and (n + 1) second wiring side switches.
  • the (n + 1) first wiring side switches are respectively connected between each node of the n cells connected in series and the first wiring W1.
  • the (n + 1) second wiring side switches are respectively connected between the respective nodes of the n cells connected in series and the second wiring W2.
  • the cell selection circuit 11 has five first wiring side switches and five second wiring side switches.
  • the first switch S1, the third switch S3, the fifth switch S5, the seventh switch S7, and the ninth switch S9 are first wiring side switches
  • the sixth switch S6, the eighth switch S8, and the tenth switch S10 are second wiring side switches.
  • the energy holding circuit 12 includes an inductor L1 and a clamp switch Sc.
  • the clamp switch Sc is a switch for conducting both ends of the inductor L1 in the energy holding circuit 12.
  • the energy holding circuit 12 can form a closed loop including the inductor L1 in a state where no cell is selected by the cell selection circuit 11. That is, when the clamp switch Sc is controlled to be turned on, a closed loop including the inductor L1 and the clamp switch Sc is formed.
  • the bidirectional switch shown in the configuration example of FIG. 11A is used for the first switch S1 to the tenth switch S10 and the clamp switch Sc. Therefore, 20 switching elements are used in the cell selection circuit 11 and 2 switching elements are used in the energy holding circuit 12, and a total of 22 switching elements are used.
  • FIG. 12B illustrates a configuration of the power storage system 1 according to the embodiment.
  • the switch Sc3 and the fourth clamp switch Sc4 the bidirectional switches shown in the configuration example of FIG. 11A are used. Therefore, ten switching elements are used in the cell selection circuit 11 and eight switching elements are used in the energy holding circuit 12, so that a total of 18 switching elements are used.
  • FIGS. 13A to 13C are circuit diagrams for describing a sequence of energy transfer from the first cell C1 to the third cell C3 in the power storage system 1 according to the comparative example.
  • the control unit 13 turns on the 1.1th switching element S1a, the 1.2th switching element S1b, the 4.2th switching element S4b, and the 4.1th switching element S4a. State and the other switching elements are turned off.
  • the first state is a state in which the inductor L1 is excited by the energy discharged from the first cell C1.
  • the control unit 13 controls the first clamp switching element Sca and the second clamp switching element Scb to an on state, and controls the other switching elements to an off state.
  • the second state is a state in which a circulating current flows through the inductor L1 via the second clamp switching element Scb and the first clamp switching element Sca, and the current of the inductor L1 is actively clamped.
  • the control unit 13 turns on the 6.2nd switching element S6b, the 6.1th switching element S6a, the 7.1th switching element S7a, and the 7.2th switching element S7b. State and the other switching elements are turned off.
  • the third state is a state in which a current flows from the inductor L1 to the third cell C3, and the inductor L1 is demagnetized.
  • FIGS. 14A to 14D are circuit diagrams for explaining a sequence of energy transfer from the first cell C1 to the second cell C2 / third cell C3 in the power storage system 1 according to the embodiment.
  • the control unit 13 includes the 1.1 switching element S1a, the 1.2 switching element S1b, the 1.1 clamp switching element Sc1a, and the 1.2 clamp switching element Sc1b.
  • the 4.1th switching element Sc4a, the 4.2th clamping switching element Sc4b, the 4.2th switching element S4b, and the 4.1th switching element S4a are controlled to an on state, and the other switching elements are controlled to an off state. are doing.
  • the first state is a state in which the inductor L1 is excited by the energy discharged from the first cell C1.
  • the control unit 13 includes the 4.1 clamp switching element Sc4a, the 4.2 clamp switching element Sc4b, the 2.2 clamp switching element Sc2b, and the 2.1 clamp switching.
  • the element Sc2a is controlled to be turned on, and the other switching elements are controlled to be turned off.
  • a circulating current flows through the inductor L1 through the 4.1 clamp switching element Sc4a, the 4.2 clamp switching element Sc4b, the 2.2 clamp switching element Sc2b, and the 2.1 clamp switching element Sc2a. This is a state in which the current of the inductor L1 is actively clamped.
  • the control unit 13 includes the 4.1 clamp switching element Sc4a, the 4.2 clamp switching element Sc4b, the 4.2 switching element S4b, and the 4.1 switching element S4a.
  • the 5.1th switching element S5a, the 5.2th switching element S5b, the 1.1st clamping switching element Sc1a, and the 1.2th clamping switching element Sc1b are controlled to an on state, and the other switching elements are controlled to an off state. are doing.
  • the third state is a state in which a current flows from the inductor L1 to the second cell C2, and the inductor L1 is demagnetized.
  • the control unit 13 includes the 3.1 clamp switching element Sc3a, the 3.2 clamp switching element Sc3b, the 5.2 switching element S5b, and the 5.1 switching element S5a.
  • the 9.1st switching element S9a, the 9.2th switching element S9b, the 2.1 clamp switching element Sc2a, and the 2.2 clamp switching element Sc2b are controlled to be in an on state, and the other switching elements are controlled to be in an off state. are doing.
  • the fourth state is a state in which a current flows from the inductor L1 to the third cell C3, and the inductor L1 is demagnetized.
  • the control unit 13 makes a transition from the second state to the third state.
  • a transition is made from the second state to the fourth state.
  • a dead time is inserted during the transition from the excitation state of the inductor L1 to the active clamp state. Similarly, a dead time is inserted during the transition from the active clamp state to the demagnetization state.
  • the controller 13 first turns on the 2.2 clamp switching element Sc2b when transitioning from the excited state of the inductor L1 shown in FIG. 14A to the active clamp state shown in FIG. 14B. Next, the 1.1th switching element S1a, the 4.2th switching element S4b, and the 1.1st clamp switching element Sc1a are turned off. Finally, the 1.2th switching element S1b, the 4.1th switching element S4a, and the 1.2th clamp switching element Sc1b are turned off, and the 2.1st clamp switching element Sc2a is turned on.
  • the dead time is a time during which the above-described external short circuit or breakdown voltage does not occur, and is desirably set to a time as short as possible.
  • the control unit 13 When the control unit 13 makes a transition from the active clamp state shown in FIG. 14B to the demagnetized state shown in FIG. 14C, the control unit 13 first turns off the 2.1st clamp switching element Sc2a. Next, the 4.2th switching element S4b, the 5.1th switching element S5a, and the 1.1th clamp switching element Sc1a are turned on. Next, the 2.2 clamp switching element Sc2b is turned off. Finally, the 4.1th switching element S4a, the 5.2th switching element S5b, and the 1.2th clamp switching element Sc1b are turned on.
  • the 4.2th switching element S4b During the transition from the active clamp state shown in FIG. 14B to the demagnetized state shown in FIG. 14C, the 4.2th switching element S4b, the 5.1th switching element S5a, and the 1.1st clamp
  • the switching element Sc1a is turned on, and between the inductor L1 and the second cell C2, the 4.2th switching element S4b, the body diode D4a of the 4.1th switching element S4a, the 5.1th switching element S5a, the 5.2th switching element.
  • a state is created in which a path is formed in which the body diode D5b of the switching element S5b, the body diode Dc1b of the 1.1th clamp switching element Sc1a, and the body diode Dc1b of the 1.2th clamp switching element Sc1b are interposed.
  • the element S5b or the 1.2th clamp switching element Sc1b does not break down withstand voltage.
  • the 2.1 clamp switching element Sc2a, the 2.2 clamp switching element Sc2b, the 4.1 switching element S4a, the 4.2 switching element S4b, the 5.1 switching element S5a, and the 5.2 switching element Since S5b, the 1.1th clamp switching element Sc1a, and the 1.2th clamp switching element Sc1b are also prevented from being turned on at the same time, the second cell C2 is not short-circuited externally.
  • FIG. 15 is a graph showing the number of switching elements used in the equalizing circuit according to the present embodiment and the equalizing circuit according to the comparative example in a graph.
  • the horizontal axis indicates the number n of series cells, and the vertical axis indicates the number of switching elements.
  • the number of switching elements required in the comparative example is 4 (n + 1) +2, and the number of switching elements required in the present embodiment is 2 (n + 1) +8. Comparing the comparative example with the present example, it is understood that the effect of reducing the number of switching elements is greater in the present example as the number of series increases.
  • the direction of the current emitted from the inductor L1 can be switched by control. Therefore, the number of switching elements included in the cell selection circuit 11 can be halved.
  • the discharging and charging paths can be combined into one, the current path can be halved, and the number of switching elements inserted into the current path can be halved. it can. Further, the driving circuit for driving the gate of the switching element can be halved. Therefore, cost can be reduced and the circuit area can be reduced.
  • FIG. 16 is a diagram showing a configuration of a modification of the power storage system shown in FIG.
  • each of the first clamp switch Sc1 to the fourth clamp switch Sc4 is configured by one switching element, and body diodes Dc1 to Dc4 are formed in antiparallel to each other.
  • the odd nodes can be connected to the first wiring W1 via the eleventh switch S11 and are connected to the second wiring W2 via the twelfth switch S12. It is possible.
  • the even-numbered node can be connected to the first wiring W1 via the thirteenth switch S13, and is connected to the second wiring W2 via the fourteenth switch S14. It is possible.
  • the control unit 13 connects the high-voltage node to the first wiring W1 and connects the low-voltage node to the second wiring W2 among the nodes at both ends of the cell to be discharged or charged.
  • the switch S11, the twelfth switch S12, the thirteenth switch S13, and the fourteenth switch S14 are controlled.
  • the first switch S1, the fourth switch S4, the fifth switch S5, the eighth switch S8, the ninth switch S9, the eleventh switch S11, the twelfth switch S12, the thirteenth switch S13, and the fourteenth switch S14 are illustrated in FIG.
  • the bidirectional switch shown in the configuration example of a) is used. Therefore, ten switching elements are used in the cell selection circuit 11, eight switching elements are used in the polarity switching circuit, and four switching elements are used in the energy holding circuit 12, and a total of 22 switching elements are used. In general formula, it is 2 (n + 1) +12.
  • a semiconductor switching element having no parasitic diode such as an IGBT (Insulated Gate Bipolar Transistor)
  • IGBT Insulated Gate Bipolar Transistor
  • an external diode is connected in parallel to the semiconductor switching element instead of the parasitic diode.
  • Vf forward drop voltage
  • FIG. 17 is a diagram showing a configuration of a power storage system according to another embodiment of the present invention.
  • FIG. 17 illustrates an embodiment of a power storage system including an equalization circuit that equalizes a plurality of modules connected in series. 17, a plurality of modules each include a cell equalizing circuit and a power storage unit in which a plurality of cells are connected in series, similarly to the power storage system 1 illustrated in FIG.
  • the first module M1 includes a cell equalizing circuit 10A and a power storage unit 20A
  • the second module M2 includes a cell equalizing circuit 10B and a power storage unit 20B
  • the third module M3 includes a cell equalizing circuit 10C and a power storage unit.
  • 20C and the fourth module M4 includes a cell equalizing circuit 10D and a power storage unit 20D.
  • the module equalization circuit 10M includes a voltage detection unit 14M, a module selection circuit 11M, an energy holding circuit 12M, and a control unit 13M.
  • the control unit 13M executes an equalization process between m modules connected in series by the active module balance method.
  • energy is transferred from one module (a module to be discharged) to another module (a module to be charged) between m modules connected in series.
  • equalization processing between a plurality of cells connected in series in each module is performed.
  • the equalization processing between a plurality of cells connected in series in each module may be configured to be executed in multiplex with the equalization processing between a plurality of modules.
  • the module equalizing circuit 10M and the cell equalizing circuits 10A to 10D operate in cooperation with each other by communication.
  • the equalization processing between modules is preferably performed prior to the equalization processing between cells.
  • the inter-cell equalization processing is completed to complete the inter-module equalization processing. Can eliminate the voltage difference between the cells caused by executing the equalization processing.
  • the module selecting circuit 11M and the energy holding circuit 12M are configured by the same circuit as the cell equalizing circuit 1 shown in FIG.
  • the energy holding circuit 12M may have the same circuit configuration as the cell equalizing circuit 1 shown in FIG. 1 or FIG.
  • the equalizing circuit of the active cell balance type has been described.
  • the present invention is also applicable to energy transfer that does not aim at equalizing a plurality of cells / modules. For example, when the temperature between the two modules is significantly different, at least a part of the energy of the module with a higher temperature may be transferred to the module with a lower temperature in order to suppress storage deterioration.
  • the embodiment may be specified by the following items.
  • a cell selection circuit (11) capable of conducting both ends of the inductor (L1); A clamp switch (Sc) for forming a closed loop including the inductor (L1) when the cell selection circuit (11) has not selected any cell; A control unit (13) for controlling the cell selection circuit (11) and the clamp switch (Sc);
  • the control unit (13) includes: Controlling the cell selection circuit (11) to make both ends of a cell to be discharged among the n cells (C1-C4) and both ends of the inductor (L1) conduct for a predetermined time; Controlling the cell selection circuit (11) to electrically cut off the n cells (C1-C4) and the inductor (L1) and turn on the clamp switch (Sc); The clamp switch (Sc) is turned off, and the cell selection circuit (11) is controlled to control both ends of a cell to be charged among the n cells (C1-C4) and both ends of the inductor (L1).
  • An energy transfer circuit (10) characterized in that: According to this, the energy transfer circuit (10) that equalizes the capacitance between the cells (C1 to C4) using the inductor (L1) can be realized with a small number of elements.
  • the cell selection circuit (11) includes: A first wiring (W1) connected to one end of the inductor (L1); A second wiring (W2) connected to the other end of the inductor (L1); (N + 1) first wiring side switches (S1, S3, S5, S7) connected between the nodes of the n cells (C1-C4) connected in series and the first wiring (W1), respectively. , S9), (N + 1) second wiring side switches (S2, S4, S6, S8) connected between each node of the n cells (C1-C4) connected in series and the second wiring (W2), respectively. , S10), An energy transfer circuit (10) according to item 1, comprising: According to this, it is possible to realize the energy transfer circuit (10) for equalizing the active method using the inductor (L1) with a small number of switches.
  • a cell selection circuit (11) capable of conducting both ends of the inductor (L1); In a state where the cell selection circuit (11) has not selected any of the cells (C1-C4), four clamp switches (Sc1) connected in full bridge to form a closed loop including the inductor (L1).
  • the cell selection circuit (11) includes: A first wiring (W1) connected to one end of the inductor (L1); A second wiring (W2) connected to the other end of the inductor (L1); Among the nodes (n + 1) of the n cells (C1-C4) connected in series, a plurality of first wiring side switches (S1) connected between odd nodes and the first wiring (W1), respectively. , S5, S9), At least one second wiring side switch connected between an even-numbered node and the second wiring (W2) among the respective nodes (n + 1) of the n cells (C1-C4) connected in series.
  • the control unit (13) includes: The first wiring side switch (S1) and the second wiring side switch (S4) connected to the nodes on both sides of the discharge cell (C1) to be discharged among the n cells (C1-C4). An ON state, and a first state in which the first clamp switch (Sc1) and the fourth clamp switch (Sc4), or the second clamp switch (Sc2) and the third clamp switch (Sc3) are turned on.
  • the first wiring side switch (S1) and the second wiring side switch (S4) connected to the nodes on both sides of the discharge cell (C1) are turned off, and the second clamp switch (Sc2) and the fourth A second state in which the clamp switch (Sc4) or the first clamp switch (Sc1) and the third clamp switch (Sc3) are turned on;
  • the plurality of first wiring side switches are respectively composed of two switching elements (S1a, S1b / S5a, S5b /) having body diodes (D1a, D1b / D5a, D5b / D9a, D9b). S9a, S9b) are formed by being connected in series in opposite directions, In the at least one second wiring side switch (S4, S8), two switching elements (S4a, S4b / S8a, S8b) each having a body diode (D4a, D4b / D8a, D8b) are in opposite directions.
  • the energy transfer circuit (10) according to item 4 or 5, wherein the energy transfer circuit (10) is formed by being connected in series. According to this, the first wiring side switch (S1, S5, S9) and the second wiring side switch (S4, S8) can be switched safely.
  • the four clamp switches are respectively composed of two switching elements (Sc1a, Sc1b / Sc2a, Sc2b /) having body diodes (Dc1a, Dc1b / Dc2a, Dc2b / Dc3a, Dc3b / Dc4a, Dc4b). 7.
  • the energy transfer circuit (10) according to any one of items 4 to 6, characterized in that Sc3a, Sc3b / Sc4a, Sc4b) are formed by being connected in series in opposite directions. According to this, the clamp switches (Sc1-Sc4) can be switched safely.
  • the control unit (13) equalizes the n cells (C1-C4) based on the voltages of the n cells (C1-C4) detected by the voltage detection unit (14).
  • the energy transfer circuit (10) according to any one of items 4 to 7, which performs processing. According to this, an equalizing circuit using energy transfer can be realized.
  • the control unit (13) calculates a target voltage / n of the n cells (C1-C4) based on the voltages of the n cells (C1-C4) detected by the voltage detection unit (14).
  • Item 8 is characterized in that a target capacity is determined, a cell higher than the target voltage / target capacity is determined as a cell to be discharged, and a cell lower than the target voltage / target capacity is determined as a cell to be charged.
  • Energy transfer circuit (10) According to this, active cell balance by energy transfer between cells (C1 to C4) can be realized.
  • N is an integer of 2 or more cells (C1-C4) connected in series;
  • An energy transfer circuit (10) according to any one of items 4 to 9,
  • a power storage system (1) comprising: According to this, it is possible to construct the power storage system (1) in which the energy transfer circuit (10) between the plurality of cells (C1 to C4) using the inductor (L1) is realized with a small number of elements.
  • a module selection circuit (11) capable of conducting both ends of the inductor (L1); A clamp switch (Sc) for forming a closed loop including the inductor (L1) when the module selection circuit (11) has not selected any module; A control unit (13) for controlling the module selection circuit (11) and the clamp switch (Sc);
  • the control unit (13) includes: By controlling the module selection circuit (11), both ends of the module to be discharged among the n modules (C1-C4) and both ends of the inductor (L1) are conducted for a predetermined time, Controlling the module selection circuit (11) to electrically cut off the n modules (C1-C4) and the inductor (L1) and turn on the clamp switch (Sc); The clamp switch (Sc) is turned off, and the module selection circuit (11) is controlled to control both ends of a module to be charged among the n modules (C1-C4) and both ends of the inductor (L1).
  • An energy transfer circuit (10) characterized in that: According to this, the energy transfer circuit (10) for equalizing the capacitance between the plurality of modules (C1 to C4) using the inductor (L1) can be realized with a small number of elements.
  • a module selection circuit (11M) capable of conducting both ends of the inductor (L1M); In a state where the module selection circuit (11M) has not selected any module (M1-M4), four clamp switches (Sc1M) connected in full bridge to form a closed loop including the inductor (L1M) -Sc4M); A control unit (13) for controlling the module selection circuit (11M) and the four clamp switches (Sc1M-Sc4M);
  • the module selection circuit (11M) A first wiring (W1M) connected to one end of the inductor (L1M); A second wiring (W2M) connected to the other end of the inductor (L1M); Among a plurality of nodes (m + 1) of the m modules (M1-M4) connected in series, a plurality of first wiring switches (S1M) connected between odd nodes and the first wiring (W1M), respectively.
  • S4M, S8M and Among the four clamp switches (Sc1M-Sc4M), a first arm in which a first clamp switch (Sc1M) and a second clamp switch (Sc2M) are connected in series, a third clamp switch (Sc3M) and a fourth arm
  • a second arm to which a clamp switch (Sc4M) is connected in series is connected in parallel between the first wiring (W1M) and the second wiring (W2M);
  • the inductor (L1M) includes a node between the first clamp switch (Sc1M) and the second clamp switch (Sc2M), and a node between the third clamp switch (Sc3M) and the fourth clamp switch (Sc4M).
  • An energy transfer circuit (10M) connected between the two. According to this,
  • the control unit (13M) The first wiring side switch (S1M) and the second wiring side switch (S4M) connected to the nodes on both sides of the discharge module (M1) to be discharged among the m modules (M1-M4).
  • An ON state and a first state in which the first clamp switch (Sc1M) and the fourth clamp switch (Sc4M), or the second clamp switch (Sc2M) and the third clamp switch (Sc3M) are turned on.
  • the first wiring side switch (S1M) and the second wiring side switch (S4M) connected to the nodes on both sides of the discharge module (M1) are turned off, and the second clamp switch (Sc2M) and the fourth A clamp switch (Sc4M) or a second state in which the first clamp switch (Sc1M) and the third clamp switch (Sc3M) are turned on;
  • the plurality of first wiring-side switches each include two switching elements (S1a, S1b / S5a, S5b / S5b / D5b / D5a, D5b / D9a, D9b) having body diodes (D1a, D1b / D5a, D5b / D9a, D9b).
  • S9a, S9b are formed by being connected in series in opposite directions
  • two switching elements S4a, S4b / S8a, S8b
  • D4a, D4b / D8a, D8b body diode
  • the energy transfer circuit (10M) according to item 12 or 13, wherein the energy transfer circuit is formed by being connected in series. According to this, the first wiring side switch (S1M, S5M, S9M) and the second wiring side switch (S4M, S8M) can be switched safely.
  • the four clamp switches include two switching elements (Sc1a, Sc1b / Sc2a, Sc2b / Dc4b) each having a body diode (Dc1a, Dc1b / Dc2a, Dc2b / Dc3a, Dc3b / Dc4a, Dc4b).
  • the energy transfer circuit (10M) according to any one of items 12 to 14, wherein Sc3a, Sc3b / Sc4a, and Sc4b) are formed by being connected in series in opposite directions. According to this, the clamp switch (Sc1M-Sc4M) can be switched safely.
  • the energy transfer circuit (10M) according to any one of items 11 to 15, which performs processing. According to this, an equalizing circuit using energy transfer can be realized.
  • the control unit (13M) is configured to calculate a target voltage of the m modules (M1-M4) based on the voltages of the m modules (M1-M4) detected by the voltage detection unit (14M).
  • Item 16 is characterized in that a target capacity is determined, a module higher than the target voltage / target capacity is determined as a module to be discharged, and a module lower than the target voltage / target capacity is determined as a module to be charged.
  • Energy transfer circuit (10M) According to this, it is possible to realize active module balance by energy transfer between the modules (M1 to M4).
  • the m modules (M1-M4) are: A plurality of cells (C1-C4) connected in series; A cell voltage detector (14) for detecting a cell voltage of each of the plurality of cells (C1-C4); A cell equalization circuit (10A-10D) for equalizing a plurality of cell voltages in the same module (M1-M4) based on a cell voltage detected by the cell voltage detection section (14).
  • the cell equalization circuits (10A-10D) operate in cooperation with each other by communication with the control unit (13M), and after the equalization processing among the m modules (M1-M4) is performed, 17.
  • the energy transfer circuit (10M) according to item 16, wherein an equalization process is performed between the plurality of cells (C1 to C4). According to this, the active module balance by the energy transfer between the modules (M1-M4) and the active cell balance by the energy transfer between the cells (C1-C4) are used together to efficiently equalize all the cells. Can be realized.
  • M (m is an integer of 2 or more) modules (M1-M4) connected in series;
  • An energy transfer circuit (10M) according to any one of items 11 to 18,
  • a power storage system (1M) comprising: According to this, it is possible to construct a power storage system (1M) in which an energy transfer circuit (10M) between a plurality of modules (M1 to M4) using an inductor (L1M) is realized with a small number of elements.
  • 1 power storage system, ⁇ 10 ⁇ equalization circuit, ⁇ 11 ⁇ cell selection circuit, ⁇ 12 ⁇ energy holding circuit, ⁇ 13 ⁇ control unit, ⁇ 14 ⁇ voltage detection unit, ⁇ 20 ⁇ power storage unit, ⁇ C1 ⁇ first cell, ⁇ C2 ⁇ second cell, ⁇ C3 ⁇ third cell, ⁇ C4 ⁇ fourth Cell, ⁇ L1 ⁇ inductor, ⁇ W1 ⁇ first wiring, ⁇ W2 ⁇ second wiring, ⁇ S1 ⁇ first switch, ⁇ S1a ⁇ 1.1th switching element, ⁇ D10a, D10b ⁇ body diode, ⁇ S1b ⁇ 1.2th switching element, ⁇ S2 ⁇ second switch, ⁇ S2a ⁇ second .1 switching element, ⁇ S2b ⁇ 2.2 switching element, ⁇ S3 ⁇ third switch, ⁇ S3a ⁇ 3.1 switching element, ⁇ S3b ⁇ 3.2 switching element, ⁇ S4 ⁇ fourth switch, ⁇ S4a ⁇ 4.1 switching element, ⁇ S4b ⁇ fourth .
  • Switching element ⁇ S5 ⁇ fifth switch, ⁇ S5a ⁇ 5.1th switching element, ⁇ S5b ⁇ 5.2th switching element, ⁇ D5b ⁇ body diode, ⁇ S6 ⁇ sixth switch, ⁇ S6a ⁇ 6.1th switching element, ⁇ S6b ⁇ 6.2th switching element, ⁇ S7 Seventh switch, ⁇ S7a ⁇ 7.1th switching element, ⁇ S7b ⁇ 7.2th switching element, ⁇ S8 ⁇ eighth switch, ⁇ S8a ⁇ 8.1th switching element, ⁇ S8b ⁇ 8.2th switching element, ⁇ S9 ⁇ ninth switch, ⁇ S9a ⁇ ninth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

制御部は、セル選択回路を制御して、直列接続されたn個のセルの内の放電対象とするセルの両端とインダクタの両端を所定時間、導通させる。次に制御部は、セル選択回路を制御してn個のセルとインダクタを電気的に遮断するとともに、クランプスイッチをターンオンさせる。次に制御部は、クランプスイッチをターンオフさせるとともに、セル選択回路を制御してn個のセルの内の充電対象とするセルの両端とインダクタの両端を所定時間、導通させる。

Description

エネルギー移動回路、及び蓄電システム
 本発明は、直列接続された複数のセルやモジュール間のエネルギーを移動するエネルギー移動回路、及び蓄電システムに関する。
 近年、リチウムイオン電池やニッケル水素電池などの二次電池が様々な用途で使用されている。例えば、EV(ElectricVehicle)、HEV (Hybrid ElectricVehicle)、PHV(Plug-in Hybrid Vehicle)の走行用モータに電力を供給することを目的とする車載(電動自転車を含む)用途、ピークシフト、バックアップを目的とした蓄電用途、系統の周波数安定化を目的としたFR(Frequency Regulation)用途などに使用されている。
 一般的に、リチウムイオン電池などの二次電池では電力効率の維持および安全性担保の観点から、直列接続された複数のセル間において容量を均等化する均等化処理が実行される。均等化処理にはパッシブ方式とアクティブ方式がある。パッシブ方式は、直列接続された複数のセルにそれぞれ放電抵抗を接続し、最も電圧が低いセルの電圧に、他のセルの電圧を合わせるように他のセルを放電して、複数のセル間の容量を揃える方式である。アクティブ方式は、直列接続された複数のセル間でエネルギー移動を行うことにより、複数のセル間の容量を揃える方式である。アクティブ方式のほうが電力損失が少なく、発熱量を抑えることができるが、現在、回路構成がシンプルで低コストなパッシブ方式が主流となっている。
 近年、特に車載用途において、電池パックのエネルギー容量と出力が増加してきている。即ち、電池パック内の各セルの容量と、セルの直列数が増加してきている。それに伴い、複数のセル間において不均衡となっているエネルギー量が増大してきている。従って、均等化処理により、複数のセル間の不均衡を解消するために必要な時間も増大してきている。
 これに対して、特に車載用途において、均等化処理に必要な時間の短縮が求められている。大きなエネルギー不均衡を短時間で解消するには、大電流を流して均等化する必要がある。パッシブ方式では、電圧が高いセルの容量を抵抗で消費させることによりエネルギー不均衡を解消させるため、抵抗に流す電流が大きくなると発熱量も大きくなる。上述のように、セルの直列数が増加してくると、基板上に、抵抗発熱に対する放熱面積を確保することが難しくなってくる。
 そこで、エネルギーを熱に変換して消費させるのではなく、エネルギーを容量が少ないセルに移動させるアクティブ方式の必要性が高まっている。アクティブ方式の均等化回路の構成として、2つのセルの中点と、2つのセルに並列接続された2つのスイッチの中点との間にインダクタを接続する構成がある(例えば、特許文献1参照)。
特開平7-322516号公報
 上記回路構成は、隣接する2つのセル間でエネルギー移動を行うための回路であるが、3つ以上のセルを直列接続させ、任意の2つのセル間でエネルギー移動可能な構成とする場合、回路構成が複雑化する。複数のセルの1つを任意に選択できるセル選択回路を設けるか、上記回路構成を直列に複数並べてバケツリレー的にエネルギーを移動させる必要がある。前者の場合、セル選択回路を構成するための配線やスイッチの数が増加する。後者の場合、セルの直列数に応じてインダクタの数が増加する。
 本発明はこうした状況に鑑みなされたものであり、その目的は、インダクタを用いたエネルギー移動回路を少ない素子数で実現する技術を提供することにある。
 上記課題を解決するために、本発明のある態様のエネルギー移動回路は、インダクタと、直列接続されたn(nは2以上の整数)個のセルと前記インダクタ間に設けられ、前記n個のセルのいずれかのセルの両端と、前記インダクタの両端を導通させることが可能なセル選択回路と、前記セル選択回路がいずれのセルも選択していない状態で、前記インダクタを含む閉ループを形成するためのクランプスイッチと、前記セル選択回路と前記クランプスイッチを制御する制御部と、を備える。前記制御部は、前記セル選択回路を制御して前記n個のセルの内の放電対象とするセルの両端と前記インダクタの両端を所定時間、導通させ、前記セル選択回路を制御して前記n個のセルと前記インダクタを電気的に遮断するとともに、前記クランプスイッチをターンオンさせ、前記クランプスイッチをターンオフさせるとともに、前記セル選択回路を制御して前記n個のセルの内の充電対象とするセルの両端と前記インダクタの両端を所定時間、導通させる。
 本発明のある態様のエネルギー移動回路は、インダクタと、直列接続されたn(nは2以上の整数)個のセルと前記インダクタ間に設けられ、前記n個のセルのいずれかのセルの両端と、前記インダクタの両端を導通させることが可能なセル選択回路と、前記セル選択回路がいずれのセルも選択していない状態で、前記インダクタを含む閉ループを形成するための、フルブリッジ接続された4個のクランプスイッチと、前記セル選択回路と前記4個のクランプスイッチを制御する制御部と、を備える。前記セル選択回路は、前記インダクタの一端に接続される第1配線と、前記インダクタの他端に接続される第2配線と、前記直列接続されたn個のセルの各ノード(n+1)の内、奇数ノードと前記第1配線との間にそれぞれ接続される複数の第1配線側スイッチと、前記直列接続されたn個のセルの各ノード(n+1)の内、偶数ノードと前記第2配線との間にそれぞれ接続される少なくとも1個の第2配線側スイッチと、を含む。前記4個のクランプスイッチの内、第1クランプスイッチ及び第2クランプスイッチが直列に接続された第1アームと、第3クランプスイッチ及び第4クランプスイッチが直列に接続された第2アームが、前記第1配線と前記第2配線間に並列に接続され、前記インダクタは、前記第1クランプスイッチと前記第2クランプスイッチ間のノードと、前記第3クランプスイッチと前記第4クランプスイッチ間のノードとの間に接続される。
 本発明によれば、インダクタを用いて複数のセル間、あるいは複数のモジュール間のエネルギー移動を行うエネルギー移動回路を少ない素子数で実現することができる。
本発明の実施例に係る蓄電システムの構成を示す図である。 図2(a)-(h)は、本発明の実施例に係る蓄電システムの均等化処理の動作シーケンス例を説明するための図である。 図3(a)-(c)は、本発明の実施例に係る蓄電システムの均等化処理の具体例を説明するための図である。 図4(a)-(c)は、比較例に係る均等化回路を説明するための図である。 図5(a)、(b)は、図4(a)に示した均等化回路を、直列接続された3つ以上のセルが使用される場合に拡張した回路構成例を説明するための図である。 図6(a)、(b)は、図5(b)に示した均等化回路において、第1セルから第3セルにエネルギー移動する場合の動作シーケンスを説明するための図である。 本発明の実施例に係る均等化回路と、比較例に係る均等化回路において使用されるスイッチの数をグラフで示した図である。 本発明の変形例に係る蓄電システムの構成を示す図である。 本発明の別の実施例に係る蓄電システムの構成を示す図である。 図10(a)-(h)は、本発明の実施例に係る蓄電システムの均等化処理の基本動作シーケンス例を説明するための回路図である。 図11(a)-(b)は、第1スイッチを2つのNチャンネルMOSFETで構成する場合の回路構成例を示す図である。 図12(a)-(b)は、比較例に係る蓄電システムの構成と、図9に示した実施例に係る蓄電システムの構成を比較した図である。 図13(a)-(c)は、比較例に係る蓄電システムの第1セルから第3セルへのエネルギー移動のシーケンスを説明するための回路図である。 図14(a)-(d)は、図9に示した実施例に係る蓄電システムの第1セルから第2セル/第3セルへのエネルギー移動のシーケンスを説明するための回路図である。 図9に示した実施例に係る均等化回路と、比較例に係る均等化回路において使用されるスイッチング素子の数をグラフで示した図である。 図12(b)に示した蓄電システムの変形例の構成を示す図である。 本発明の別の変形例に係る蓄電システムの構成を示す図である。
 図1は、本発明の実施例に係る蓄電システム1の構成を示す図である。蓄電システム1は、均等化回路10及び蓄電部20を備える。蓄電部20は、直列接続されたn(nは2以上の整数)個のセルを含む。図1では、4つのセルC1-C4が直列接続された例を描いている。なお、直列接続されるセル数は、蓄電システム1に要求される電圧仕様に応じて変わる。
 各セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等の充放電可能な蓄電素子を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。
 均等化回路10は、電圧検出部14、セル選択回路11、エネルギー保持回路12及び制御部13を含む。電圧検出部14は、直列接続されたn(図1では4)個のセルの各電圧を検出する。具体的には電圧検出部14は、直列接続されたn個のセルの各ノードと、(n+1)本の電圧線で接続され、隣接する2本の電圧線間の電圧をそれぞれ検出することにより、各セルの電圧を検出する。電圧検出部14は例えば、汎用のアナログフロントエンドICまたはASIC(Application Specific Integrated Circuit)で構成することができる。電圧検出部14は、検出した各セルの電圧をデジタル値に変換し、制御部13に出力する。
 セル選択回路11は、直列接続されたn個のセルと、エネルギー保持回路12に含まれるインダクタL1との間に設けられ、n個のセルの内から選択されたセルの両端と、インダクタL1の両端を導通させることができる回路である。セル選択回路11は、インダクタL1の第1端に接続される第1配線W1、インダクタL1の第2端に接続される第2配線W2、(n+1)個の第1配線側スイッチ、及び(n+1)個の第2配線側スイッチを有する。(n+1)個の第1配線側スイッチは、直列接続されたn個のセルの各ノードと、第1配線W1との間にそれぞれ接続される。(n+1)個の第2配線側スイッチは、直列接続されたn個のセルの各ノードと、第2配線W2との間にそれぞれ接続される。
 図1に示す例ではn=4、ノード数=5であり、セル選択回路11は、5個の第1配線側スイッチ、及び5個の第2配線側スイッチを有する。図1では、第1スイッチS1、第3スイッチS3、第5スイッチS5、第7スイッチS7及び第9スイッチS9が第1配線側スイッチであり、第2スイッチS2、第4スイッチS4、第6スイッチS6、第8スイッチS8及び第10スイッチS10が第2配線側スイッチである。
 エネルギー保持回路12は、インダクタL1及びクランプスイッチScを含む。クランプスイッチScは、インダクタL1の両端をエネルギー保持回路12内で導通させるためのスイッチである。エネルギー保持回路12は、セル選択回路11がいずれのセルも選択していない状態で、インダクタL1を含む閉ループを形成することができる。即ち、クランプスイッチScがオン状態に制御されると、インダクタL1とクランプスイッチScを含む閉ループが形成される。
 第1スイッチS1-第10スイッチS10及びクランプスイッチScには、半導体スイッチ(例えば、MOSFET(Metal-Oxide-SemiconductorField-Effect Transistor)やIGBT(Insulated Gate BipolarTransistor))を使用することができる。以下、第1スイッチS1-第10スイッチS10及びクランプスイッチScに、MOSFETを使用する例を想定する。
 制御部13は、電圧検出部14により検出されたn個のセルの電圧をもとに、直列接続されたn個のセル間の均等化処理を実行する。また、制御部13は、電圧検出部14により検出された電圧値からセルの電圧異常を判断し、均等化処理の実行中においてセルの電圧異常を判断した場合、均等化処理の実行を停止し、セルを過電圧、あるいは所定値以下の低電圧から保護する。制御部13は例えば、マイクロコンピュータで構成することができる。なお制御部13と電圧検出部14は、ワンチップに統合されて構成されてもよい。
 本実施例では制御部13は、アクティブセルバランス方式により直列接続されたn個のセル間の均等化処理を実行する。本実施例に係るアクティブセルバランス方式では、直列接続されたn個のセル間において、あるセル(放電対象のセル)から、別のセル(充電対象のセル)にエネルギー移動を行うことにより、あるセルと別のセルの容量を均等化する。すなわち、均等化回路10は、任意の2つのセル間でエネルギー移動を行うエネルギー移動回路として機能し、このエネルギー移動を繰り返すことにより、直列接続されたn個のセル間の容量を均等化する。
 まず制御部13は、セル選択回路11を制御してn個のセルの内の放電対象とするセルの両端とインダクタL1の両端を所定時間、導通させる。この状態では、放電対象のセルからインダクタL1に電流が流れ、インダクタL1にエネルギーが蓄積される。
 次に制御部13は、セル選択回路11を制御してn個のセルとインダクタL1を電気的に遮断するとともに、クランプスイッチScをターンオンさせる。この状態では、上記閉ループに循環電流が流れ、エネルギー保持回路12内で、インダクタ電流がアクティブクランプされる。
 次に制御部13は、クランプスイッチScをターンオフさせるとともに、セル選択回路11を制御してn個のセルの内の充電対象とするセルの両端とインダクタL1の両端を所定時間、導通させる。この状態では、エネルギー保持回路12内にアクティブクランプされているインダクタ電流が、充電対象のセルに流れる。以上により、あるセルから別のセルへのエネルギー移動が完了する。
 図2(a)-(h)は、本発明の実施例に係る蓄電システム1の均等化処理の動作シーケンス例を説明するための図である。本動作シーケンス例では説明を簡略化するために、セルの直列数を2としている。図2(a)に示す第1状態では、制御部13は、第1スイッチS1及び第4スイッチS4をオン状態に制御し、第2スイッチS2、第3スイッチS3、第5スイッチS5、第6スイッチS6及びクランプスイッチScをオフ状態に制御する。この状態では、第1セルC1からインダクタL1に電流が流れ、第1セルC1から放電されたエネルギーがインダクタL1に蓄積される。
 図2(b)に示す第2状態では、制御部13は、クランプスイッチScをオン状態に制御し、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、第5スイッチS5及び第6スイッチS6をオフ状態に制御する。この状態では、インダクタL1に蓄積されたエネルギーが、インダクタ電流として閉ループ内を流れ、アクティブクランプされる。
 図2(c)に示す第3状態では、制御部13は、第4スイッチS4及び第5スイッチS5をオン状態に制御し、第1スイッチS1、第2スイッチS2、第3スイッチS3、第6スイッチS6及びクランプスイッチScをオフ状態に制御する。この状態では、閉ループ内にアクティブクランプされているインダクタ電流が第2セルC2に流れ、第2セルC2が充電される。
 図2(d)に示す第4状態では、制御部13は、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、第5スイッチS5、第6スイッチS6及びクランプスイッチScをオフ状態に制御する。この状態は、第1セルC1から第2セルC2へのエネルギー移動が完了した状態である。
 図2(e)に示す第5状態では、制御部13は、第3スイッチS3及び第6スイッチS6をオン状態に制御し、第1スイッチS1、第2スイッチS2、第4スイッチS4、第5スイッチS5及びクランプスイッチScをオフ状態に制御する。この状態では、第2セルC2からインダクタL1に電流が流れ、第1セルC1から放電されたエネルギーがインダクタL1に蓄積される。
 図2(f)に示す第6状態では、制御部13は、クランプスイッチScをオン状態に制御し、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、第5スイッチS5及び第6スイッチS6をオフ状態に制御する。この状態では、インダクタL1に蓄積されたエネルギーが、インダクタ電流として閉ループ内を流れ、アクティブクランプされる。
 図2(g)に示す第7状態では、制御部13は、第2スイッチS2及び第3スイッチS3をオン状態に制御し、第1スイッチS1、第4スイッチS4、第5スイッチS5、第6スイッチS6及びクランプスイッチScをオフ状態に制御する。この状態では、閉ループ内にアクティブクランプされているインダクタ電流が第1セルC1に流れ、第1セルC1が充電される。
 図2(h)に示す第8状態では、制御部13は、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、第5スイッチS5、第6スイッチS6及びクランプスイッチScをオフ状態に制御する。この状態は、第2セルC2から第1セルC1へのエネルギー移動が完了した状態である。
 第2状態または第6状態において、閉ループ内にインダクタ電流がアクティブクランプされることにより、インダクタ電流の連続性が確保されるため、セル選択回路11の安全かつ確実なスイッチ切替が可能となる。
 図3(a)-(c)は、本発明の実施例に係る蓄電システム1の均等化処理の具体例を説明するための図である。本具体例では、4つのセルC1-C4が直列接続されている例を想定する。図3(a)は、均等化処理の開始前の第1セルC1-第4セルC4の電圧の状態を模式的に示す図である。制御部13は、電圧検出部14により検出された第1セルC1-第4セルC4の電圧の平均値を算出し、算出した平均値を均等化目標電圧(以下、単に目標電圧という)に設定する。
 制御部13は、目標電圧より高いセルから、目標電圧より低いセルへエネルギーを移動させる。例えば、目標電圧より高いセルの内、最も電圧が高いセル(図3(a)では第1セルC1)から、目標電圧より低いセルの内、最も電圧が低いセル(図3(a)では第4セルC4)にエネルギーを移動させる。
 制御部13は、移動元のセル(放電対象のセル)の電圧が目標電圧以上となる範囲で、かつ移動先のセル(充電対象のセル)の電圧が目標電圧以下となる範囲で、エネルギー移動量を決定する。制御部13は、決定したエネルギー移動量と、設計にもとづく放電電流及び充電電流に基づき、移動元のセルの放電時間と移動先のセルの充電時間を決定する。エネルギー保持回路12にアクティブクランプされている間に消費されるエネルギー量は無視できる程度であるため、移動元のセルの放電時間と移動先のセルの充電時間はほぼ同じになる。
 図3(b)は、移動元のセルである第1セルC1から、移動先のセルである第4セルC4へのエネルギー移動が完了した状態を示している。制御部13は上述した処理を再び、実行する。具体的には、目標電圧より高いセルの内、最も電圧が高いセル(図3(b)では第3セルC3)から、目標電圧より低いセルの内、最も電圧が低いセル(図3(b)では第2セルC2)にエネルギーを移動させる。
 図3(c)は、移動元のセルである第3セルC3から、移動先のセルである第2セルC2へのエネルギー移動が完了した状態を示している。以上により、直列接続された第1セルC1-第4セルC4の均等化処理が完了する。
 図3(a)-(c)に示した具体例では、はじめに、直列接続された複数のセルの電圧の平均値を算出し、目標値を設定した。この点、目標値を設定しないアルゴリズムも可能である。制御部13は各時点において、直列接続された複数のセルの電圧の内、最も電圧が高いセルから最も電圧が低いセルへエネルギーを移動させることにより、当該2つのセルの電圧を均等化する。制御部13は、この処理を、直列接続された複数のセルの電圧が全て均等化されるまで繰り返し実行する。
 また上記具体例では、均等化目標値として電圧を使用する例を説明したが、電圧の代わりに、実容量、放電可能容量または充電可能容量を使用してもよい。
 図4(a)-(c)は、比較例に係る均等化回路を説明するための図である。図4(a)に示すように比較例に係る均等化回路は、直列接続された2つのセルC1、C2、インダクタL1、及び2つのスイッチS51、S52を備える。インダクタL1の第1端は2つのセルC1、C2の中点に接続され、インダクタL1の第2端は2つのスイッチS51、S52の中点(2つのスイッチS51、S52の第1端同士が接続されたノード)に接続される。
 以下、第1セルC1から第2セルC2にエネルギー移動する場合の動作シーケンスを説明する。まず図4(b)に示すようにスイッチS51をオン状態に制御し、スイッチS52をオフ状態に制御する。これにより、第1セルC1からインダクタL1に電流が流れ、第1セルC1から放電されたエネルギーがインダクタL1に蓄積される。次に図4(c)に示すようにスイッチS51をオフ状態に制御し、スイッチS52をオン状態に制御する。これにより、インダクタL1から第2セルC2に電流が流れ、第2セルC2が充電される。このように、直列接続された2つのセルC1、C2間のエネルギー移動を、インダクタL1と2つのスイッチS51、S52で実現することができる。
 図5(a)、(b)は、図4(a)に示した均等化回路を、直列接続された3つ以上のセルが使用される場合に拡張した回路構成例を説明するための図である。図5(a)、(b)では、4つのセルC1-C4が使用される場合の回路構成例を示している。直列接続された3つ以上のセルが使用される場合、複数のセルの各ノードを、スイッチS51の第2端、インダクタL1の第1端、及びスイッチS52の第2端にそれぞれ接続するための3本の配線W1-W3が必要である。3本の配線W1-W3の内、スイッチS51の第2端に接続される第1配線W1の電位が最も高く、インダクタL1の第1端に接続される第2配線W2の電位が次に高く、スイッチS52の第2端に接続される第3配線W3の電位が最も低い。
 図5(a)に示すように複数のセルの各ノードと、3本の配線W1-W3間に3つのスイッチが接続される。あるセルから放電する場合、当該セルの上側のノードと第1配線W1との間に接続されたスイッチと、当該セルの下側のノードと第2配線W2との間に接続されたスイッチをオンする。これにより、当該セルからインダクタL1への放電経路が形成される。
 あるセルに充電する場合、当該セルの上側のノードと第2配線W2との間に接続されたスイッチと、当該セルの下側のノードと第3配線W3との間に接続されたスイッチをオンする。これにより、インダクタL1から当該セルへの充電経路が形成される。
 図5(a)に示す回路構成において、第1セルC1の上側のノードには、別のセルが接続されていないため、当該別のセルの充放電に使用するための経路が不要となる。従って、当該ノードと第2配線W2との間に接続されたスイッチS54、及び当該ノードと第3配線W3との間に接続されたスイッチS53は省略可能である。
 また第4セルC4の下側のノードには、別のセルが接続されていないため、当該別のセルの充放電に使用するための経路が不要となる。従って、当該ノードと第1配線W1との間に接続されたスイッチS67、及び当該ノードと第2配線W2との間に接続されたスイッチS66は省略可能である。
 さらに第1セルC1に充電する場合の、放電経路と充電経路を逆向きにすることにより、スイッチS56を省略可能であり、第4セルC4から放電する場合の、放電経路と充電経路を逆向きにすることにより、スイッチS64を省略可能である。以上から合計6つのスイッチを省略可能である。図5(b)は、図5(a)の回路構成から6つのスイッチS53、S54、S56、S64、S66、S67を取り除いた回路構成を示している。
 図6(a)、(b)は、図5(b)に示した均等化回路において、第1セルC1から第3セルC3にエネルギー移動する場合の動作シーケンスを説明するための図である。図6(a)に示す第1状態では、スイッチS55、S57、S51がオン状態に制御され、その他のスイッチS58、S59、S60、S61、S62、S63、S65、S52がオフ状態に制御される。この状態では、第1セルC1からインダクタL1に電流が流れ、第1セルC1から放電されたエネルギーがインダクタL1に蓄積される。
 図6(b)に示す第2状態では、スイッチS60、S62、S52がオン状態に制御され、その他のスイッチS55、S57、S58、S59、S61、S63、S65、S51がオフ状態に制御される。この状態では、この状態では、インダクタL1から第3セルC3に電流が流れ、第3セルC3が充電される。
 以下、上述した本発明の実施例に係る均等化回路と、比較例に係る均等化回路を比較する。本発明の実施例では、図2(a)-(h)に示したように、移動元のセルから放電される放電期間と、移動先のセルに充電される充電期間との間に、インダクタ電流をアクティブクランプするアクティブクランプ期間が設けられる。このアクティブクランプ期間には、セル選択回路11に含まれる全てのスイッチがオフ状態に制御され、インダクタL1と、直列接続された複数のセルC1-C4が分離される。
 一方、比較例で図6(a)、(b)に示したように放電期間と充電期間との間にアクティブクランプ期間が設けられない。従って放電期間から充電期間に切り替わる際、インダクタL1に蓄積されたエネルギー(LI/2(LはL1のインダクタンス、IはL1の電流))が行き場を失い、逆起電圧を発生させ、スイッチの耐圧破壊を引き起こす可能性がある。スイッチに耐圧破壊が発生すると、セルが短絡し、セルがダメージを受けることになる。
 これに対して本実施例では、セル選択回路11に含まれる全てのスイッチがオフ状態に制御されるアクティブクランプ期間を設けることにより、放電期間から充電期間に切り替わる際に、スイッチが耐圧破壊を起こすことを防止することができ、セルの短絡を防止することができる。
 なお比較例においても、図4(a)-(c)に示したように2つのセルC1、C2が直列接続された構成では、スイッチとして使用するMOSFETのソース-ドレイン間に形成される逆導通ダイオード(寄生ダイオード)を利用することにより、スイッチの耐圧破壊を防止することができる。例えば、図4(b)の状態からスイッチS51がターンオフされると、スイッチS52の逆導通ダイオードが導通し、逆導通ダイオードに電流が少し流れた状態でスイッチS52がターンオンされる。これにより、スイッチS51、S52の耐圧破壊を防止することができる。
 なお比較例において、3つ以上のセルが直列接続された構成では、充電対象のセルの充電経路に含まれるスイッチの逆導通ダイオードのみを導通させることが困難であるため、逆導通ダイオードを利用して耐圧破壊を防止する手法を採用することは難しい。
 図7は、本発明の実施例に係る均等化回路と、比較例に係る均等化回路において使用されるスイッチの数をグラフで示した図である。横軸はセルの直列数を示し、縦軸はスイッチの数を示している。比較例では、セルの直列数が2の場合、図4(a)-(c)に示したようにスイッチの数は2である。セルの直列数が3以上の場合、図5(b)に示すようにスイッチの数は、3(n+1)-6+2で定義される。-6は、回路の特殊性から削減できるスイッチS53、S54、S56、S64、S66、S67の数であり、+2は、インダクタL1の第2端に接続されるスイッチS51、S52の数である。実施例では、図1に示すようにスイッチの数は、2(n+1)+1で定義される。+1は、クランプスイッチScの数である。
 比較例と実施例を比較すると、セルの直列数が3以下では比較例の方がスイッチの数が少なく、直列数が4で両者のスイッチの数が等しくなり、直列数が5以上で実施例の方がスイッチの数が少なくなる。例えば、セルの直列数が16の場合、比較例ではスイッチが45個必要となるが、実施例では34個で足りる。このように実施例では直列数が増加するほど、スイッチの削減効果が大きくなる。
 以上説明したように本実施例によれば、インダクタを用いたアクティブ方式の均等化回路を少ない素子数で実現することができる。近年、特に車載用途において、セルの直列数が増加する傾向にある。従って、本実施例に係る均等化回路を採用することによるスイッチの削減効果が大きくなる傾向にある。また本実施例と比較例との間において、インダクタL1の定数を変える必要がないため、本実施例を採用することにより、インダクタL1のサイズやスイッチのサイズを大型化する必要もない。
 また本実施例では、あるセルから放電する放電期間と、別のセルに充電する充電期間の間に、インダクタ電流をアクティブクランプするアクティブクランプ期間を設けている。このアクティブクランプ期間に、放電経路のスイッチと充電経路のスイッチを同時オフさせることにより、セル選択回路11内のスイッチの切り替えを安全かつ円滑に行うことができる。
 この点、比較例を直列数増加に対応して選択スイッチを設けた場合では放電経路のスイッチと充電経路のスイッチを同時オフさせると、大きな逆起電圧が発生し、スイッチの耐圧破壊に至る可能性がある。放電経路のスイッチと充電経路のスイッチを同時オフさせないように制御するには、厳密なタイミングでスイッチ制御を行う必要があり、スイッチ制御回路のコストが上昇する。
 また本実施例では、アクティブクランプ期間の前後において、インダクタ電流の連続性が確保されるため、アクティブクランプ期間を設けても、効率を殆ど低下させずにエネルギー移動を行うことができる。
 以上、本発明を実施例をもとに説明した。実施例は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に容易に理解されるところである。
 図8は、本発明の変形例に係る蓄電システム1の構成を示す図である。図8に示した蓄電システム1において、図1に示した蓄電システム1と共通、あるいは相当する構成要素には同一の図番を付している。変形例では、エネルギー保持回路12内のクランプスイッチをフルブリッジ構成としている。変形例に係るエネルギー保持回路12では、第1配線W1と第2配線W2間に、第1クランプスイッチSc1と第2クランプスイッチSc2が直列接続される。さらに第1配線W1と第2配線W2間に、第1クランプスイッチSc1と第2クランプスイッチSc2と並列に、第3クランプスイッチSc3と第4クランプスイッチSc4が直列接続される。インダクタL1の第1端は、第1クランプスイッチSc1と第2クランプスイッチSc2の中点に接続され、インダクタL1の第2端は、第3クランプスイッチSc3と第4クランプスイッチSc4の中点に接続される。
 変形例に係る構成では、放電電流または充電電流の向きを任意に選択することができる。なお、図1に示した構成でも、第1スイッチS1-第10スイッチS10を双方向スイッチで構成すれば、放電電流または充電電流の向きを任意に選択することができる。
 上述した実施例では、直列接続された複数のセル間をアクティブ方式により均等化する例を説明した。この点、実施例に係る均等化回路を用いて、直列接続された複数のモジュール間を均等化することもできる。本明細書内の「セル」を「モジュール」に適宜、読み替えればよい。また、直列接続された複数のモジュール間の均等化処理と、各モジュール内の直列接続された複数のセル間の均等化処理を、多重的に実行する構成であってもよい。
 図9は、本発明の別の実施例に係る蓄電システム1の構成を示す図である。図9に示した蓄電システム1において、図1、図8に示した蓄電システム1と共通、あるいは相当する構成要素には同一の図番を付している。
 セル選択回路11は、インダクタL1の第1端に接続される第1配線W1、インダクタL1の第2端に接続される第2配線W2、複数の第1配線側スイッチ、及び少なくとも1個の第2配線側スイッチを有する。
 複数の第1配線側スイッチは、直列接続されたn個のセルの各ノード(n+1)の内、奇数ノードと第1配線W1との間にそれぞれ接続される。少なくとも1個の第2配線側スイッチは、直列接続されたn個のセルの各ノード(n+1)の内、偶数ノードと第2配線W2との間にそれぞれ接続される。
 図9に示す例ではn=4、ノード数=5であり、セル選択回路11は、3個の第1配線側スイッチ、及び2個の第2配線側スイッチを有する。図9では、第1スイッチS1、第5スイッチS5及び第9スイッチS9が第1配線側スイッチであり、第4スイッチS4及び第8スイッチS8が第2配線側スイッチである。
 エネルギー保持回路12は、インダクタL1、第1クランプスイッチSc1、第2クランプスイッチSc2、第3クランプスイッチSc3及び第4クランプスイッチSc4を含む。第1クランプスイッチSc1、第2クランプスイッチSc2、第3クランプスイッチSc3及び第4クランプスイッチSc4はフルブリッジ回路を構成している。具体的には、第1クランプスイッチSc1及び第2クランプスイッチSc2が直列に接続された第1アームと、第3クランプスイッチSc3及び第4クランプスイッチSc4が直列に接続された第2アームが、第1配線W1と第2配線W2間に並列に接続される。インダクタL1は、第1クランプスイッチSc1と第2クランプスイッチSc2間のノードと、第3クランプスイッチSc3と第4クランプスイッチSc4間のノードとの間に接続される。
 第1クランプスイッチSc1-第4クランプスイッチSc4は、インダクタL1の両端をエネルギー保持回路12内で導通させることができる。具体的には、セル選択回路11がいずれのセルも選択していない状態で、第1クランプスイッチSc1及び第3クランプスイッチSc3をオン状態かつ第2クランプスイッチSc2及び第4クランプスイッチSc4をオフ状態、または第1クランプスイッチSc1及び第3クランプスイッチSc3をオフ状態かつ第2クランプスイッチSc2及び第4クランプスイッチSc4をオン状態に制御することにより、エネルギー保持回路12内において、インダクタL1を含む閉ループを形成することができる。
 また、第1クランプスイッチSc1-第4クランプスイッチSc4は、インダクタL1に流れる電流の向きを切り替えることができる。具体的には、セル選択回路11がいずれかのセルを選択している状態で、第1クランプスイッチSc1及び第4クランプスイッチSc4をオン状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御するか、第1クランプスイッチSc1及び第4クランプスイッチSc4をオフ状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオン状態に制御するかにより、インダクタL1に流れる電流の向きを切り替えることができる。
 制御部13は、電圧検出部14により検出されたn個のセルの電圧をもとに、直列接続されたn個のセル間の均等化処理を実行する。また、制御部13は、電圧検出部14により検出された電圧値からセルの電圧異常を判断し、均等化処理の実行中においてセルの電圧異常を判断した場合、均等化処理の実行を停止し、セルを過電圧、あるいは所定値以下の低電圧から保護する。制御部13は例えば、マイクロコンピュータで構成することができる。なお制御部13と電圧検出部14は、ワンチップに統合されて構成されてもよい。
 本実施例では制御部13は、アクティブセルバランス方式により直列接続されたn個のセル間の均等化処理を実行する。本実施例に係るアクティブセルバランス方式では、直列接続されたn個のセル間において、あるセル(放電対象のセル)から、別のセル(充電対象のセル)にエネルギー移動を行うことにより、あるセルと別のセルの容量を均等化する。このエネルギー移動を繰り返すことにより、直列接続されたn個のセル間の容量を均等化する。
 まず制御部13は、第1クランプスイッチSc1及び第4クランプスイッチSc4をオン状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御する、又は第1クランプスイッチSc1及び第4クランプスイッチSc4をオフ状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオン状態に制御するとともに、セル選択回路11を制御してn個のセルの内の放電対象とするセルの両端とインダクタL1の両端を所定時間、導通させる。この状態では、放電対象のセルからインダクタL1に電流が流れ、インダクタL1にエネルギーが蓄積される。
 次に制御部13は、セル選択回路11を制御してn個のセルとインダクタL1を電気的に遮断するとともに、第1クランプスイッチSc1及び第3クランプスイッチSc3をオン状態かつ第2クランプスイッチSc2及び第4クランプスイッチSc4をオフ状態、または第1クランプスイッチSc1及び第3クランプスイッチSc3をオフ状態かつ第2クランプスイッチSc2及び第4クランプスイッチSc4をオン状態に制御する。この状態では、上記閉ループに循環電流が流れ、エネルギー保持回路12内で、インダクタ電流がアクティブクランプされる。
 次に制御部13は、第1クランプスイッチSc1及び第4クランプスイッチSc4をオン状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御する、又は第1クランプスイッチSc1及び第4クランプスイッチSc4をオフ状態かつ第2クランプスイッチSc2及び第3クランプスイッチSc3をオン状態に制御するとともに、セル選択回路11を制御してn個のセルの内の充電対象とするセルの両端とインダクタL1の両端を所定時間、導通させる。この状態では、エネルギー保持回路12内にアクティブクランプされているインダクタ電流が、充電対象のセルに流れる。以上により、あるセルから別のセルへのエネルギー移動が完了する。
 図10(a)-(h)は、図9に示した実施例に係る蓄電システム1の均等化処理の基本動作シーケンス例を説明するための回路図である。本基本動作シーケンス例では説明を簡略化するために、セルの直列数を2としている。図10(a)に示す第1状態では、制御部13は、第1スイッチS1、第1クランプスイッチSc1、第4クランプスイッチSc4及び第4スイッチS4をオン状態に制御し、第5スイッチS5、第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御する。この状態では、第1セルC1からインダクタL1に電流が流れ、第1セルC1から放電されたエネルギーがインダクタL1に蓄積される。
 図10(b)に示す第2状態では、制御部13は、第2クランプスイッチSc2及び第4クランプスイッチSc4をオン状態に制御し、第1スイッチS1、第4スイッチS4、第5スイッチS5、第1クランプスイッチSc1及び第3クランプスイッチSc3をオフ状態に制御する。この状態では、インダクタL1に蓄積されたエネルギーが、インダクタ電流として閉ループ内を流れ、アクティブクランプされる。
 図10(c)に示す第3状態では、制御部13は、第4クランプスイッチSc4、第4スイッチS4、第5スイッチS5及び第1クランプスイッチSc1をオン状態に制御し、第1スイッチS1、第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御する。この状態では、閉ループ内にアクティブクランプされているインダクタ電流が第2セルC2に流れ、第2セルC2が充電される。
 図10(d)に示す第4状態では、制御部13は、第1スイッチS1、第4スイッチS4、第5スイッチS5、及び第1クランプスイッチSc1-第4クランプスイッチSc4をオフ状態に制御する。この状態は、第1セルC1から第2セルC2へのエネルギー移動が完了した状態である。
 図10(e)に示す第5状態では、制御部13は、第4スイッチS4、第2クランプスイッチSc2、第3クランプスイッチSc3及び第5スイッチS5をオン状態に制御し、第1スイッチS1、第1クランプスイッチSc1及び第4クランプスイッチSc4をオフ状態に制御する。この状態では、第2セルC2からインダクタL1に電流が流れ、第2セルC2から放電されたエネルギーがインダクタL1に蓄積される。
 図10(f)に示す第6状態では、制御部13は、第1クランプスイッチSc1及び第3クランプスイッチSc3をオン状態に制御し、第1スイッチS1、第4スイッチS4、第5スイッチS5、第2クランプスイッチSc2及び第3クランプスイッチSc3をオフ状態に制御する。この状態では、インダクタL1に蓄積されたエネルギーが、インダクタ電流として閉ループ内を流れ、アクティブクランプされる。
 図10(g)に示す第7状態では、制御部13は、第3クランプスイッチSc3第1スイッチS1第4スイッチS4及び第2クランプスイッチSc2をオン状態に制御し、第5スイッチS5、第1クランプスイッチSc1及び第4クランプスイッチSc4をオフ状態に制御する。この状態では、閉ループ内にアクティブクランプされているインダクタ電流が第1セルC1に流れ、第1セルC1が充電される。
 図10(h)に示す第8状態では、制御部13は、第1スイッチS1、第4スイッチS4、第5スイッチS5、及び第1クランプスイッチSc1-第4クランプスイッチSc4をオフ状態に制御する。この状態は、第2セルC2から第1セルC1へのエネルギー移動が完了した状態である。
 第2状態または第6状態において、閉ループ内にインダクタ電流がアクティブクランプされることにより、インダクタ電流の連続性が確保されるため、セル選択回路11の安全かつ確実なスイッチ切替が可能となる。
 制御部13は、移動元のセル(放電対象のセル)の電圧が目標電圧以上となる範囲で、かつ移動先のセル(充電対象のセル)の電圧が目標電圧以下となる範囲で、エネルギー移動量を決定する。制御部13は、決定したエネルギー移動量と、設計にもとづく放電電流及び充電電流に基づき、移動元のセルの放電時間と移動先のセルの充電時間を決定する。エネルギー保持回路12にアクティブクランプされている間に消費されるエネルギー量は無視できる程度であるため、移動元のセルの放電時間と移動先のセルの充電時間はほぼ同じになる。
 セル選択回路11に含まれる複数のスイッチ及びエネルギー保持回路12に含まれる4つのクランプスイッチには、比較的スイッチング速度が速く、比較的低コストなMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用することが有力である。NチャンネルMOSFETでは、ソースからドレイン方向に寄生ダイオード(ボディダイオード)が形成される。従って、ソース端子とドレイン端子の両方から電流が流入する可能性がある用途では、2つのMOSFETを逆向きに直列接続して双方向スイッチとして使用することが一般的である。
 図11(a)-(b)は、第1スイッチS1を2つのNチャンネルMOSFETで構成する場合の回路構成例を示す図である。図11(a)は、2つのNチャンネルMOSFETのソース端子同士を接続して双方向スイッチを構成する例を示している。この場合、直列の2つのボディダイオードD1a、D1bのアノード同士が向き合うことになるため、双方向スイッチの両端間にボディダイオードを介して電流が流れることが阻止される。
 図11(b)は、2つのNチャンネルMOSFETのドレイン端子同士を接続して双方向スイッチを構成する例を示している。この場合、直列の2つのボディダイオードD1a、D1bのカソード同士が向き合うことになるため、双方向スイッチの両端間にボディダイオードを介して電流が流れることが阻止される。
 図11(a)の構成例と図11(b)の構成例を比較すると、図11(a)の構成例の方が、2つのNチャンネルMOSFETのゲートドライバの電源回路(DC/DCコンバータ)を共通化できるメリットがある。図11(a)の構成例では2つのNチャンネルMOSFETのソース電位が共通であるため、2つのゲートドライバの電源電圧を共通化することができる。従って、2つのゲートドライバに電源電圧を供給する電源回路(DC/DCコンバータ)も共通化できる。これにより、コスト及び回路面積を削減することができる。一方、図11(b)の構成例では、2つのNチャンネルMOSFETのソース電位を共通化できないため、2つのゲートドライバに電源電圧を供給する電源回路(DC/DCコンバータ)を別々に設ける必要がある。
 図12(a)-(b)は、比較例に係る蓄電システム1の構成と、図9に示した実施例に係る蓄電システム1の構成を比較した図である。図12(a)は、比較例に係る蓄電システム1の構成を示している。比較例では、セル選択回路11は、(n+1)個の第1配線側スイッチ、及び(n+1)個の第2配線側スイッチを有する。(n+1)個の第1配線側スイッチは、直列接続されたn個のセルの各ノードと、第1配線W1との間にそれぞれ接続される。(n+1)個の第2配線側スイッチは、直列接続されたn個のセルの各ノードと、第2配線W2との間にそれぞれ接続される。
 図12(a)に示す例ではn=4、ノード数=5であり、セル選択回路11は、5個の第1配線側スイッチ、及び5個の第2配線側スイッチを有する。図12(a)では、第1スイッチS1、第3スイッチS3、第5スイッチS5、第7スイッチS7及び第9スイッチS9が第1配線側スイッチであり、第2スイッチS2、第4スイッチS4、第6スイッチS6、第8スイッチS8及び第10スイッチS10が第2配線側スイッチである。
 エネルギー保持回路12は、インダクタL1及びクランプスイッチScを含む。クランプスイッチScは、インダクタL1の両端をエネルギー保持回路12内で導通させるためのスイッチである。エネルギー保持回路12は、セル選択回路11がいずれのセルも選択していない状態で、インダクタL1を含む閉ループを形成することができる。即ち、クランプスイッチScがオン状態に制御されると、インダクタL1とクランプスイッチScを含む閉ループが形成される。
 図12(a)に示す例では、第1スイッチS1-第10スイッチS10及びクランプスイッチScに、図11(a)の構成例に示す双方向スイッチが使用されている。従って、セル選択回路11で20個のスイッチング素子、エネルギー保持回路12で2個のスイッチング素子が使用され、合計22個のスイッチング素子が使用されている。
 図12(b)は、実施例に係る蓄電システム1の構成を示している。図12(b)に示す例では、第1スイッチS1、第4スイッチS4、第5スイッチS5、第8スイッチS8、第9スイッチS9、第1クランプスイッチSc1、第2クランプスイッチSc2、第3クランプスイッチSc3及び第4クランプスイッチSc4に、図11(a)の構成例に示す双方向スイッチが使用されている。従って、セル選択回路11で10個のスイッチング素子、エネルギー保持回路12で8個のスイッチング素子が使用され、合計18個のスイッチング素子が使用されている。
 図13(a)-(c)は、比較例に係る蓄電システム1の第1セルC1から第3セルC3へのエネルギー移動のシーケンスを説明するための回路図である。
 図13(a)に示す第1状態では、制御部13は、第1.1スイッチング素子S1a、第1.2スイッチング素子S1b、第4.2スイッチング素子S4b及び第4.1スイッチング素子S4aをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第1状態は、第1セルC1から放電されたエネルギーでインダクタL1が励磁されている状態である。
 図13(b)に示す第2状態では、制御部13は、第1クランプスイッチング素子Sca及び第2クランプスイッチング素子Scbをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第2状態は、第2クランプスイッチング素子Scb及び第1クランプスイッチング素子Scaを介して、インダクタL1に循環電流が流れ、インダクタL1の電流がアクティブクランプされている状態である。
 図13(c)に示す第3状態では、制御部13は、第6.2スイッチング素子S6b、第6.1スイッチング素子S6a、第7.1スイッチング素子S7a及び第7.2スイッチング素子S7bをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第3状態は、インダクタL1から第3セルC3に電流が流れ、インダクタL1が減磁している状態である。
 図14(a)-(d)は、実施例に係る蓄電システム1の第1セルC1から第2セルC2/第3セルC3へのエネルギー移動のシーケンスを説明するための回路図である。
 図14(a)に示す第1状態では、制御部13は、第1.1スイッチング素子S1a、第1.2スイッチング素子S1b、第1.1クランプスイッチング素子Sc1a、第1.2クランプスイッチング素子Sc1b、第4.1クランプスイッチング素子Sc4a、第4.2クランプスイッチング素子Sc4b、第4.2スイッチング素子S4b及び第4.1スイッチング素子S4aをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第1状態は、第1セルC1から放電されたエネルギーでインダクタL1が励磁されている状態である。
 図14(b)に示す第2状態では、制御部13は、第4.1クランプスイッチング素子Sc4a、第4.2クランプスイッチング素子Sc4b、第2.2クランプスイッチング素子Sc2b及び第2.1クランプスイッチング素子Sc2aをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第2状態は、第4.1クランプスイッチング素子Sc4a、第4.2クランプスイッチング素子Sc4b、第2.2クランプスイッチング素子Sc2b及び第2.1クランプスイッチング素子Sc2aを介して、インダクタL1に循環電流が流れ、インダクタL1の電流がアクティブクランプされている状態である。
 図14(c)に示す第3状態では、制御部13は、第4.1クランプスイッチング素子Sc4a、第4.2クランプスイッチング素子Sc4b、第4.2スイッチング素子S4b、第4.1スイッチング素子S4a、第5.1スイッチング素子S5a、第5.2スイッチング素子S5b、第1.1クランプスイッチング素子Sc1a及び第1.2クランプスイッチング素子Sc1bをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第3状態は、インダクタL1から第2セルC2に電流が流れ、インダクタL1が減磁している状態である。
 図14(d)に示す第4状態では、制御部13は、第3.1クランプスイッチング素子Sc3a、第3.2クランプスイッチング素子Sc3b、第5.2スイッチング素子S5b、第5.1スイッチング素子S5a、第9.1スイッチング素子S9a、第9.2スイッチング素子S9b、第2.1クランプスイッチング素子Sc2a及び第2.2クランプスイッチング素子Sc2bをオン状態に制御し、その他のスイッチング素子をオフ状態に制御している。第4状態は、インダクタL1から第3セルC3に電流が流れ、インダクタL1が減磁している状態である。
 制御部13は、第1セルC1から放電されたエネルギーを第2セルC2に充電する場合、第2状態から第3状態に遷移させる。第1セルC1から放電されたエネルギーを第3セルC3に充電する場合、第2状態から第4状態に遷移させる。
 ところで、スイッチング素子のスイッチングタイミングには、温度変化や閾値レベルの変化により、ばらつきが発生する。従って、セル選択回路11に含まれる複数のスイッチング素子、及びエネルギー保持回路12に含まれる複数のスイッチング素子を、設計者が意図した理想的なタイミングでオン/オフ制御することは難しい。これらのスイッチング素子のスイッチングタイミングのずれにより、インダクタL1の励磁状態からアクティブクランプ状態に遷移する際、放電セルに外部短絡が発生する可能性がある。また放電経路中のスイッチング素子に耐圧破壊が発生する可能性がある。同様にスイッチングタイミングのずれにより、アクティブクランプ状態から減磁状態に遷移する際、充電セルに外部短絡が発生する可能性がある。また充電経路中のスイッチング素子に耐圧破壊が発生する可能性がある。
 例えば上記図10(a)-(h)に示した基本動作シーケンスにおいて、図10(a)に示したインダクタL1の励磁状態から図10(b)に示したアクティブクランプ状態に遷移する際に、第1セルC1に外部短絡が発生する可能性や第1スイッチS1、第4スイッチS4又は第1クランプスイッチSc1に耐圧破壊が発生する可能性がある。また、図10(b)に示したアクティブクランプ状態から図10(c)に示した減磁状態に遷移する際に、第2セルC2に外部短絡が発生する可能性や第4スイッチS4、第5スイッチS5又は第1クランプスイッチSc1に耐圧破壊が発生する可能性がある。
 そこで本実施例では、インダクタL1の励磁状態からアクティブクランプ状態に遷移する間にデッドタイムを挿入する。同様にアクティブクランプ状態から減磁状態に遷移する間にデッドタイムを挿入する。
 制御部13は、図14(a)に示したインダクタL1の励磁状態から図14(b)に示したアクティブクランプ状態に遷移する際、最初に第2.2クランプスイッチング素子Sc2bをターンオンする。次に第1.1スイッチング素子S1a、第4.2スイッチング素子S4b、及び第1.1クランプスイッチング素子Sc1aをターンオフする。最後に第1.2スイッチング素子S1b、第4.1スイッチング素子S4a、第1.2クランプスイッチング素子Sc1bをターンオフし、第2.1クランプスイッチング素子Sc2aをターンオンする。
 図14(a)に示したインダクタL1の励磁状態から図14(b)に示したアクティブクランプ状態に遷移する間に、第2.2クランプスイッチング素子Sc2bをターンオンして、インダクタL1の両端間に第2.1クランプスイッチング素子Sc2aのボディダイオードDc1aが介在した経路が形成された状態を作る。第2.2クランプスイッチング素子Sc2bがターンオンしても、第2.1クランプスイッチング素子Sc2aのボディダイオードDc1aがあるため、第1セルC1は外部短絡しない。この状態において、第1.1スイッチング素子S1a、第4.2スイッチング素子S4b及び第1.1クランプスイッチング素子Sc1aのうちの1つがターンオフした時点でインダクタL1の両端が導通する。従って、第1.1スイッチング素子S1a、第4.2スイッチング素子S4b及び第1.1クランプスイッチング素子Sc1aのターンオフのタイミングにずれが生じても、第1.1スイッチング素子S1a、第4.2スイッチング素子S4b又は第1.1クランプスイッチング素子Sc1aに耐圧破壊が発生することはない。
 なお、デッドタイム中は、第2.1クランプスイッチング素子Sc2aのボディダイオードDc2aを電流が流れるため、ボディダイオードDc2aの順方向降下電圧Vfと電流量に応じた損失が発生する。従ってデッドタイムは、上述の外部短絡や耐圧破壊が発生しない時間であって、できるだけ短い時間に設定されることが望ましい。
 制御部13は、図14(b)に示したアクティブクランプ状態から図14(c)に示した減磁状態に遷移する際、最初に第2.1クランプスイッチング素子Sc2aをターンオフする。次に第4.2スイッチング素子S4b、第5.1スイッチング素子S5a及び第1.1クランプスイッチング素子Sc1aをターンオンする。次に第2.2クランプスイッチング素子Sc2bをターンオフする。最後に第4.1スイッチング素子S4a、第5.2スイッチング素子S5b及び第1.2クランプスイッチング素子Sc1bをターンオンする。
 図14(b)に示したアクティブクランプ状態から図14(c)に示した減磁状態に遷移する間に、第4.2スイッチング素子S4b、第5.1スイッチング素子S5a及び第1.1クランプスイッチング素子Sc1aをターンオンして、インダクタL1と第2セルC2間に、第4.2スイッチング素子S4b、第4.1スイッチング素子S4aのボディダイオードD4a、第5.1スイッチング素子S5a、第5.2スイッチング素子S5bのボディダイオードD5b、第1.1クランプスイッチング素子Sc1a及び第1.2クランプスイッチング素子Sc1bのボディダイオードDc1bが介在した経路が形成された状態を作る。
 この状態において、第2.1クランプスイッチング素子Sc2aと第2.2クランプスイッチング素子Sc2bの両方がオフ状態になりインダクタL1から第2セルC2に充電可能な状態になったとき、第4.1スイッチング素子S4a、第5.2スイッチング素子S5b及び第1.2クランプスイッチング素子Sc1bのうちの1つがターンオンしても、ターンオンしていない2つのスイッチング素子の両端間に高電圧が発生することはない。従って、第4.1スイッチング素子S4a、第5.2スイッチング素子S5b及び第1.2クランプスイッチング素子Sc1bのターンオンのタイミングにずれが生じても、第4.1スイッチング素子S4a、第5.2スイッチング素子S5b又は第1.2クランプスイッチング素子Sc1bが耐圧破壊することはない。また、第2.1クランプスイッチング素子Sc2a、第2.2クランプスイッチング素子Sc2b、第4.1スイッチング素子S4a、第4.2スイッチング素子S4b、第5.1スイッチング素子S5a、第5.2スイッチング素子S5b、第1.1クランプスイッチング素子Sc1a及び第1.2クランプスイッチング素子Sc1bが同時にオンすることも回避されるため、第2セルC2が外部短絡することもない。
 図15は、本実施例に係る均等化回路と、比較例に係る均等化回路において使用されるスイッチング素子の数をグラフで示した図である。横軸はセルの直列数nを示し、縦軸はスイッチング素子の数を示している。比較例において必要なスイッチング素子の数は、4(n+1)+2であり、本実施例において必要なスイッチング素子の数は、2(n+1)+8である。比較例と本実施例を比較すると、本実施例の方が直列数が増加するほど、スイッチング素子の削減効果が大きくなることが分かる。
 以上説明したように本実施例によれば、エネルギー保持回路12にフルブリッジ型の8個のクランプスイッチを設けることにより、インダクタL1から放出される電流の向きを制御により切り替えることができる。従って、セル選択回路11に含まれるスイッチング素子の数を半分にすることができる。比較例では、インダクタL1から放出される電流の向きを切り替えることができないため、各セルの各ノードに放電用と充電用の2つの電流経路を設ける必要がある。この点、本実施例では放電用と充電用の経路を1つにまとめることができるため、電流経路を半分にすることができ、電流経路に挿入されるスイッチング素子の数も半分にすることができる。さらに、スイッチング素子のゲートを駆動する駆動回路も半分にすることができる。よって、コストを削減でき、回路面積を縮小することができる。
 図16は、図12(b)に示した蓄電システムの変形例の構成を示す図である。図16に示す変形例では、第1クランプスイッチSc1-第4クランプスイッチSc4はそれぞれ1つのスイッチング素子で構成され、それぞれ逆並列にボディダイオードDc1-Dc4が形成される。直列接続されたn個のセルの各ノード(n+1)の内、奇数ノードは第11スイッチS11を介して第1配線W1に接続可能であり、第12スイッチS12を介して第2配線W2に接続可能である。直列接続されたn個のセルの各ノード(n+1)の内、偶数ノードは第13スイッチS13を介して第1配線W1に接続可能であり、第14スイッチS14を介して第2配線W2に接続可能である。
 制御部13は、放電対象または充電対象のセルの両端ノードの内、高圧のノードの方を第1配線W1に接続し、低圧のノードの方を第2配線W2に接続するように、第11スイッチS11、第12スイッチS12、第13スイッチS13、及び第14スイッチS14を制御する。第1スイッチS1、第4スイッチS4、第5スイッチS5、第8スイッチS8、第9スイッチS9、第11スイッチS11、第12スイッチS12、第13スイッチS13、及び第14スイッチS14に、図11(a)の構成例に示す双方向スイッチが使用されている。従って、セル選択回路11で10個のスイッチング素子、極性切替回路で8個、エネルギー保持回路12で4個のスイッチング素子が使用され、合計22個のスイッチング素子が使用されている。一般式で記載すると、2(n+1)+12である。
 上述した実施例では、スイッチング素子としてMOSFETを使用する例を説明した。この点、IGBT(InsulatedGate Bipolar Transistor)等の寄生ダイオードが形成されない半導体スイッチング素子を用いてもよい。その場合、寄生ダイオードの代わりに外付けダイオードを半導体スイッチング素子に対して並列接続する。順方向降下電圧Vfが低いダイオードを使用するほど、デッドタイムにおける損失を小さくすることができ、効率が向上する。
 また上述した実施例では、直列接続された複数のセル間をアクティブ方式により均等化する例を説明した。この点、実施例に係る均等化回路を用いて、直列接続された複数のモジュール間を均等化することもできる。本明細書内の「セル」を「モジュール」に適宜、読み替えればよい。
 図17は、本発明の別の実施例に係る蓄電システムの構成を示す図である。図17は、直列接続された複数のモジュール間を均等化処理する均等化回路を備える蓄電システムの一実施例を示している。図17において、複数のモジュールは図9に示した蓄電システム1と同様にそれぞれセル用均等化回路及び複数のセルが直列接続される蓄電部を備えている。第1モジュールM1はセル用均等化回路10A及び蓄電部20Aを備え、第2モジュールM2はセル用均等化回路10B及び蓄電部20Bを備え、第3モジュールM3はセル用均等化回路10C及び蓄電部20Cを備え、第4モジュールM4はセル用均等化回路10D及び蓄電部20Dを備えている。
 モジュール用均等化回路10Mは、電圧検出部14M、モジュール選択回路11M、エネルギー保持回路12M及び制御部13Mを含む。
 本実施例では制御部13Mは、アクティブモジュールバランス方式により直列接続されたm個のモジュール間の均等化処理を実行する。本実施例に係るアクティブモジュールバランス方式では、直列接続されたm個のモジュール間において、あるモジュール(放電対象のモジュール)から、別のモジュール(充電対象のモジュール)にエネルギー移動を行うことにより、あるモジュールと別のモジュールの容量を均等化する。すなわち、モジュール用均等化回路10Mは、任意の2つのモジュール間でエネルギー移動を行うエネルギー移動回路として機能し、このエネルギー移動を繰り返すことにより、直列接続されたm個のモジュール間の容量を均等化する。
 以上の複数のモジュール間の均等化処理とは別に各モジュール内の直列接続された複数のセル間の均等化処理が行われる。各モジュール内の直列接続された複数のセル間の均等化処理は、複数のモジュール間の均等化処理と多重的に実行する構成であってもよい。この場合、モジュール用均等化回路10Mとセル用均等化回路10A~10Dとは通信により互いに連携して動作される。モジュール間の均等化処理は、セル間の均等化処理よりも優先して実行されることが好ましく、モジュール間の均等化処理が完了した後に、セル間の均等化処理を完了させることによりモジュール間の均等化処理を実行したことにより発生する各セルの電圧差を解消できる。
 本実施例のモジュール用均等化回路10Mは、モジュール選択回路11M及びエネルギー保持回路12Mを、図9に示したセル用の均等化回路1と同様の回路により構成されるが、モジュール選択回路11M及びエネルギー保持回路12Mは図1あるいは図8に示したセル用の均等化回路1と同様の回路構成であってもよい。
 また上述した各実施例では、アクティブセルバランス方式の均等化回路を説明したが、複数のセル/モジュール間の均等化を目的としないエネルギー移動にも適用可能である。例えば、2つのモジュール間の温度が大きく異なる場合、保存劣化を抑制するために、温度が高いモジュールのエネルギーの少なくとも一部を、温度が低いモジュールに移動させてもよい。
 以上、本発明を各実施例をもとに説明した。各実施例は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に容易に理解されるところである。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 インダクタ(L1)と、
 直列接続されたn(nは2以上の整数)個のセル(C1-C4)と前記インダクタ(L1)間に設けられ、前記n個のセル(C1-C4)のいずれかのセルの両端と、前記インダクタ(L1)の両端を導通させることが可能なセル選択回路(11)と、
 前記セル選択回路(11)がいずれのセルも選択していない状態で、前記インダクタ(L1)を含む閉ループを形成するためのクランプスイッチ(Sc)と、
 前記セル選択回路(11)と前記クランプスイッチ(Sc)を制御する制御部(13)と、を備え、
 前記制御部(13)は、
 前記セル選択回路(11)を制御して前記n個のセル(C1-C4)の内の放電対象とするセルの両端と前記インダクタ(L1)の両端を所定時間、導通させ、
 前記セル選択回路(11)を制御して前記n個のセル(C1-C4)と前記インダクタ(L1)を電気的に遮断するとともに、前記クランプスイッチ(Sc)をターンオンさせ、
 前記クランプスイッチ(Sc)をターンオフさせるとともに、前記セル選択回路(11)を制御して前記n個のセル(C1-C4)の内の充電対象とするセルの両端と前記インダクタ(L1)の両端を所定時間、導通させる、
 ことを特徴とするエネルギー移動回路(10)。
 これによれば、インダクタ(L1)を用いて複数のセル(C1-C4)間の容量を均等化するエネルギー移動回路(10)を、少ない素子数で実現することができる。
[項目2]
 前記セル選択回路(11)は、
 前記インダクタ(L1)の一端に接続される第1配線(W1)と、
 前記インダクタ(L1)の他端に接続される第2配線(W2)と、
 前記直列接続されたn個のセル(C1-C4)の各ノードと、前記第1配線(W1)間にそれぞれ接続される(n+1)個の第1配線側スイッチ(S1、S3、S5、S7、S9)と、
 前記直列接続されたn個のセル(C1-C4)の各ノードと、前記第2配線(W2)間にそれぞれ接続される(n+1)個の第2配線側スイッチ(S2、S4、S6、S8、S10)と、
 を含むことを特徴とする項目1に記載のエネルギー移動回路(10)。
 これによれば、インダクタ(L1)を用いたアクティブ方式の均等化を行うエネルギー移動回路(10)を少ないスイッチ数で実現することができる。
[項目3]
 nは、5以上の整数であることを特徴とする項目1または2に記載のエネルギー移動回路(10)。
 セルの直列数(n)が多くなるほど、素子の削減効果が大きくなる。
[項目4]
 インダクタ(L1)と、
 直列接続されたn(nは2以上の整数)個のセル(C1-C4)と前記インダクタ(L1)間に設けられ、前記n個のセル(C1-C4)のいずれかのセルの両端と、前記インダクタ(L1)の両端を導通させることが可能なセル選択回路(11)と、
 前記セル選択回路(11)がいずれのセル(C1-C4)も選択していない状態で、前記インダクタ(L1)を含む閉ループを形成するための、フルブリッジ接続された4個のクランプスイッチ(Sc1-Sc4)と、
 前記セル選択回路(11)と前記4個のクランプスイッチ(Sc1-Sc4)を制御する制御部(13)と、を備え、
 前記セル選択回路(11)は、
 前記インダクタ(L1)の一端に接続される第1配線(W1)と、
 前記インダクタ(L1)の他端に接続される第2配線(W2)と、
 前記直列接続されたn個のセル(C1-C4)の各ノード(n+1)の内、奇数ノードと前記第1配線(W1)との間にそれぞれ接続される複数の第1配線側スイッチ(S1、S5、S9)と、
 前記直列接続されたn個のセル(C1-C4)の各ノード(n+1)の内、偶数ノード
と前記第2配線(W2)との間にそれぞれ接続される少なくとも1個の第2配線側スイッチ(S4、S8)と、を含み、
 前記4個のクランプスイッチ(Sc1-Sc4)の内、第1クランプスイッチ(Sc1)及び第2クランプスイッチ(Sc2)が直列に接続された第1アームと、第3クランプスイッチ(Sc3)及び第4クランプスイッチ(Sc4)が直列に接続された第2アームが、前記第1配線(W1)と前記第2配線(W2)間に並列に接続され、
 前記インダクタ(L1)は、前記第1クランプスイッチ(Sc1)と前記第2クランプスイッチ(Sc2)間のノードと、前記第3クランプスイッチ(Sc3)と前記第4クランプスイッチ(Sc4)間のノードとの間に接続されることを特徴とするエネルギー移動回路(10)。
 これによれば、インダクタ(L1)を用いた複数のセル(C1-C4)間のエネルギー移動回路(10)を少ない素子数で実現することができる。
[項目5]
 前記制御部(13)は、
 前記n個のセル(C1-C4)の内の放電対象とする放電セル(C1)の両側のノードに接続された前記第1配線側スイッチ(S1)と前記第2配線側スイッチ(S4)をオン状態、並びに前記第1クランプスイッチ(Sc1)及び前記第4クランプスイッチ(Sc4)、又は前記第2クランプスイッチ(Sc2)及び前記第3クランプスイッチ(Sc3)をオン状態に制御する第1状態、
 前記放電セル(C1)の両側のノードに接続された前記第1配線側スイッチ(S1)と前記第2配線側スイッチ(S4)をオフ状態、並びに前記第2クランプスイッチ(Sc2)及び前記第4クランプスイッチ(Sc4)、又は前記第1クランプスイッチ(Sc1)及び前記第3クランプスイッチ(Sc3)をオン状態に制御する第2状態、
 前記n個のセル(C1-C4)の内の充電対象とする充電セル(C2)の両側のノードに接続された前記第1配線側スイッチ(S5)と前記第2配線側スイッチ(S4)をオン状態、並びに前記充電セル(C2)に電流が流れるように前記第1クランプスイッチ(Sc1)及び前記第4クランプスイッチ(Sc4)、又は前記第2クランプスイッチ(Sc2)及び前記第3クランプスイッチ(Sc3)をオン状態に制御する第3状態、
 の順に制御することを特徴とする項目4に記載のエネルギー移動回路(10)。
 これによれば、任意の2つのセル間においてエネルギー移動を行うことができる。
[項目6]
 前記複数の第1配線側スイッチ(S1、S5、S9)は、それぞれ、ボディダイオード(D1a、D1b/D5a、D5b/D9a、D9b)を有する2個のスイッチング素子(S1a、S1b/S5a、S5b/S9a、S9b)が逆向きに直列に接続されて形成され、
 前記少なくとも1個の第2配線側スイッチ(S4、S8)は、それぞれ、ボディダイオード(D4a、D4b/D8a、D8b)を有する2個のスイッチング素子(S4a、S4b/S8a、S8b)が逆向きに直列に接続されて形成されることを特徴とする項目4または5に記載のエネルギー移動回路(10)。
 これによれば、第1配線側スイッチ(S1、S5、S9)と第2配線側スイッチ(S4、S8)を安全に切り替えることができる。
[項目7]
 前記4個のクランプスイッチ(Sc1-Sc4)は、それぞれ、ボディダイオード(Dc1a、Dc1b/Dc2a、Dc2b/Dc3a、Dc3b/Dc4a、Dc4b)を有する2個のスイッチング素子(Sc1a、Sc1b/Sc2a、Sc2b/Sc3a、Sc3b/Sc4a、Sc4b)が逆向きに直列に接続されて形成されることを特徴と項目4から6のいずれか1項に記載のエネルギー移動回路(10)。
 これによれば、クランプスイッチ(Sc1-Sc4)を安全に切り替えることができる。
[項目8]
 前記n個のセル(C1-C4)のそれぞれの電圧を検出する電圧検出部(14)をさらに備え、
 前記制御部(13)は、前記電圧検出部(14)により検出された前記n個のセル(C1-C4)の電圧をもとに、前記n個のセル(C1-C4)間の均等化処理を実行する項目4から7のいずれか1項に記載のエネルギー移動回路(10)。
 これによれば、エネルギー移動を利用した均等化回路を実現することができる。
[項目9]
 前記制御部(13)は、前記電圧検出部(14)により検出された前記n個のセル(C1-C4)の電圧をもとに、前記n個のセル(C1-C4)の目標電圧/目標容量を決定し、前記目標電圧/目標容量より高いセルを放電対象のセルに決定し、前記目標電圧/目標容量より低いセルを充電対象のセルに決定することを特徴とする項目8に記載のエネルギー移動回路(10)。
 これによれば、セル(C1-C4)間のエネルギー移動によるアクティブセルバランスを実現することができる。
[項目10]
 直列接続されたn(nは2以上の整数)個のセル(C1-C4)と、
 項目4から9のいずれか1項に記載のエネルギー移動化回路(10)と、
 を備えることを特徴とする蓄電システム(1)。
 これによれば、インダクタ(L1)を用いた複数のセル(C1-C4)間のエネルギー移動回路(10)を少ない素子数で実現した蓄電システム(1)を構築することができる。
[項目11]
 インダクタ(L1)と、
 直列接続されたn(nは2以上の整数)個のモジュール(C1-C4)と前記インダクタ(L1)間に設けられ、前記n個のモジュール(C1-C4)のいずれかのモジュールの両端と、前記インダクタ(L1)の両端を導通させることが可能なモジュール選択回路(11)と、
 前記モジュール選択回路(11)がいずれのモジュールも選択していない状態で、前記インダクタ(L1)を含む閉ループを形成するためのクランプスイッチ(Sc)と、
 前記モジュール選択回路(11)と前記クランプスイッチ(Sc)を制御する制御部(13)と、を備え、
 前記制御部(13)は、
 前記モジュール選択回路(11)を制御して前記n個のモジュール(C1-C4)の内の放電対象とするモジュールの両端と前記インダクタ(L1)の両端を所定時間、導通させ、
 前記モジュール選択回路(11)を制御して前記n個のモジュール(C1-C4)と前記インダクタ(L1)を電気的に遮断するとともに、前記クランプスイッチ(Sc)をターンオンさせ、
 前記クランプスイッチ(Sc)をターンオフさせるとともに、前記モジュール選択回路(11)を制御して前記n個のモジュール(C1-C4)の内の充電対象とするモジュールの両端と前記インダクタ(L1)の両端を所定時間、導通させる、
 ことを特徴とするエネルギー移動回路(10)。
 これによれば、インダクタ(L1)を用いて複数のモジュール(C1-C4)間の容量を均等化するエネルギー移動回路(10)を、少ない素子数で実現することができる。
[項目12]
 インダクタ(L1M)と、
 直列接続されたm(mは2以上の整数)個のモジュール(M1-M4)と前記インダクタ(L1M)間に設けられ、前記m個のモジュール(M1-M4)のいずれかのモジュールの両端と、前記インダクタ(L1M)の両端を導通させることが可能なモジュール選択回路(11M)と、
 前記モジュール選択回路(11M)がいずれのモジュール(M1-M4)も選択していない状態で、前記インダクタ(L1M)を含む閉ループを形成するための、フルブリッジ接続された4個のクランプスイッチ(Sc1M-Sc4M)と、
 前記モジュール選択回路(11M)と前記4個のクランプスイッチ(Sc1M-Sc4M)を制御する制御部(13)と、を備え、
 前記モジュール選択回路(11M)は、
 前記インダクタ(L1M)の一端に接続される第1配線(W1M)と、
 前記インダクタ(L1M)の他端に接続される第2配線(W2M)と、
 前記直列接続されたm個のモジュール(M1-M4)の各ノード(m+1)の内、奇数ノードと前記第1配線(W1M)との間にそれぞれ接続される複数の第1配線側スイッチ(S1M、S5M、S9M)と、
 前記直列接続されたm個のモジュール(M1-M4)の各ノード(m+1)の内、偶数ノードと前記第2配線(W2M)との間にそれぞれ接続される少なくとも1個の第2配線側スイッチ(S4M、S8M)と、を含み、
 前記4個のクランプスイッチ(Sc1M-Sc4M)の内、第1クランプスイッチ(Sc1M)及び第2クランプスイッチ(Sc2M)が直列に接続された第1アームと、第3クランプスイッチ(Sc3M)及び第4クランプスイッチ(Sc4M)が直列に接続された第2アームが、前記第1配線(W1M)と前記第2配線(W2M)間に並列に接続され、
 前記インダクタ(L1M)は、前記第1クランプスイッチ(Sc1M)と前記第2クランプスイッチ(Sc2M)間のノードと、前記第3クランプスイッチ(Sc3M)と前記第4クランプスイッチ(Sc4M)間のノードとの間に接続されることを特徴とするエネルギー移動回路(10M)。
 これによれば、インダクタ(L1M)を用いた複数のモジュール(M1-M4)間のエネルギー移動回路(10M)を少ない素子数で実現することができる。
[項目13]
 前記制御部(13M)は、
 前記m個のモジュール(M1-M4)の内の放電対象とする放電モジュール(M1)の両側のノードに接続された前記第1配線側スイッチ(S1M)と前記第2配線側スイッチ(S4M)をオン状態、並びに前記第1クランプスイッチ(Sc1M)及び前記第4クランプスイッチ(Sc4M)、又は前記第2クランプスイッチ(Sc2M)及び前記第3クランプスイッチ(Sc3M)をオン状態に制御する第1状態、
 前記放電モジュール(M1)の両側のノードに接続された前記第1配線側スイッチ(S1M)と前記第2配線側スイッチ(S4M)をオフ状態、並びに前記第2クランプスイッチ(Sc2M)及び前記第4クランプスイッチ(Sc4M)、又は前記第1クランプスイッチ(Sc1M)及び前記第3クランプスイッチ(Sc3M)をオン状態に制御する第2状態、
 前記m個のモジュール(M1-M4)の内の充電対象とする充電モジュール(M2)の両側のノードに接続された前記第1配線側スイッチ(S5M)と前記第2配線側スイッチ(S4M)をオン状態、並びに前記充電モジュール(M2)に電流が流れるように前記第1クランプスイッチ(Sc1M)及び前記第4クランプスイッチ(Sc4M)、又は前記第2クランプスイッチ(Sc2M)及び前記第3クランプスイッチ(Sc3M)をオン状態に制御する第3状態、
 の順に制御することを特徴とする項目12に記載のエネルギー移動回路(10M)。
 これによれば、任意の2つのモジュール間においてエネルギー移動を行うことができる。
[項目14]
 前記複数の第1配線側スイッチ(S1M、S5M、S9M)は、それぞれ、ボディダイオード(D1a、D1b/D5a、D5b/D9a、D9b)を有する2個のスイッチング素子(S1a、S1b/S5a、S5b/S9a、S9b)が逆向きに直列に接続されて形成され、
 前記少なくとも1個の第2配線側スイッチ(S4M、S8M)は、それぞれ、ボディダイオード(D4a、D4b/D8a、D8b)を有する2個のスイッチング素子(S4a、S4b/S8a、S8b)が逆向きに直列に接続されて形成されることを特徴とする項目12または13に記載のエネルギー移動回路(10M)。
 これによれば、第1配線側スイッチ(S1M、S5M、S9M)と第2配線側スイッチ(S4M、S8M)を安全に切り替えることができる。
[項目15]
 前記4個のクランプスイッチ(Sc1M-Sc4M)は、それぞれ、ボディダイオード(Dc1a、Dc1b/Dc2a、Dc2b/Dc3a、Dc3b/Dc4a、Dc4b)を有する2個のスイッチング素子(Sc1a、Sc1b/Sc2a、Sc2b/Sc3a、Sc3b/Sc4a、Sc4b)が逆向きに直列に接続されて形成されることを特徴と項目12から14のいずれか1項に記載のエネルギー移動回路(10M)。
 これによれば、クランプスイッチ(Sc1M-Sc4M)を安全に切り替えることができる。
[項目16]
 前記m個のモジュール(M1-M4)のそれぞれの電圧を検出する電圧検出部(14M)をさらに備え、
 前記制御部(13M)は、前記電圧検出部(14M)により検出された前記m個のモジュール(M1-M4)の電圧をもとに、前記m個のモジュール(M1-M4)間の均等化処理を実行する項目11から15のいずれか1項に記載のエネルギー移動回路(10M)。
 これによれば、エネルギー移動を利用した均等化回路を実現することができる。
[項目17]
 前記制御部(13M)は、前記電圧検出部(14M)により検出された前記m個のモジュール(M1-M4)の電圧をもとに、前記m個のモジュール(M1-M4)の目標電圧/目標容量を決定し、前記目標電圧/目標容量より高いモジュールを放電対象のモジュールに決定し、前記目標電圧/目標容量より低いモジュールを充電対象のモジュールに決定することを特徴とする項目16に記載のエネルギー移動回路(10M)。
 これによれば、モジュール(M1-M4)間のエネルギー移動によるアクティブモジュールバランスを実現することができる。
[項目18]
 前記m個のモジュール(M1-M4)は、それぞれ、
 直列接続された複数のセル(C1-C4)と、
 前記複数のセル(C1-C4)のそれぞれのセル電圧を検出するセル電圧検出部(14)と、
 前記セル電圧検出部(14)により検出されるセル電圧に基づいて同一モジュール(M1-M4)内の複数のセル電圧を均等化するセル用均等化回路(10A-10D)と、を含み、
 前記セル用均等化回路(10A-10D)は、前記制御部(13M)と通信により互いに連携して動作し、前記m個のモジュール(M1-M4)間の均等化処理が実行された後、前記複数のセル(C1-C4)間の均等化処理を実行することを特徴とする項目16に記載のエネルギー移動回路(10M)。
 これによれば、モジュール(M1-M4)間のエネルギー移動によるアクティブモジュールバランスと、セル(C1-C4)間のエネルギー移動によるアクティブセルバランスを併用して、効率的に全てのセルの均等化を実現することができる。
[項目19]
 直列接続されたm(mは2以上の整数)個のモジュール(M1-M4)と、
 項目11から18のいずれか1項に記載のエネルギー移動化回路(10M)と、
 を備えることを特徴とする蓄電システム(1M)。
 これによれば、インダクタ(L1M)を用いた複数のモジュール(M1-M4)間のエネルギー移動回路(10M)を少ない素子数で実現した蓄電システム(1M)を構築することができる。
 1 蓄電システム、 10 均等化回路、 11 セル選択回路、 12 エネルギー保持回路、 13 制御部、 14 電圧検出部、 20 蓄電部、 C1 第1セル、 C2 第2セル、 C3 第3セル、 C4 第4セル、 L1 インダクタ、 W1 第1配線、 W2 第2配線、 S1 第1スイッチ、 S1a 第1.1スイッチング素子、 D10a,D10b ボディダイオード、 S1b 第1.2スイッチング素子、 S2 第2スイッチ、 S2a 第2.1スイッチング素子、 S2b 第2.2スイッチング素子、 S3 第3スイッチ、 S3a 第3.1スイッチング素子、 S3b 第3.2スイッチング素子、 S4 第4スイッチ、 S4a 第4.1スイッチング素子、 S4b 第4.2スイッチング素子、 S5 第5スイッチ、 S5a 第5.1スイッチング素子、 S5b 第5.2スイッチング素子、 D5b ボディダイオード、 S6 第6スイッチ、 S6a 第6.1スイッチング素子、 S6b 第6.2スイッチング素子、 S7 第7スイッチ、 S7a 第7.1スイッチング素子、 S7b 第7.2スイッチング素子、 S8 第8スイッチ、 S8a 第8.1スイッチング素子、 S8b 第8.2スイッチング素子、 S9 第9スイッチ、 S9a 第9.1スイッチング素子、 S9b 第9.2スイッチング素子、 S10 第10スイッチ、 S10a 第10.1スイッチング素子、 S10b 第10.2スイッチング素子、 Sc クランプスイッチ、 Sca 第1クランプスイッチング素子、 Scb 第2クランプスイッチング素子、 Sc1 第1クランプスイッチ、 Sc2 第2クランプスイッチ、 Sc3 第3クランプスイッチ、 Sc4 第4クランプスイッチ、 D1a,D1b,D2a,D2b,D3a,D3b,D4a,D4b,D5a,D6a,D6b,D7a,D7b,D8a,D8b,D9a,D9b,Dca,Dcb,Dc1,Dc2,Dc3,Dc4 ボディダイオード。

Claims (19)

  1.  インダクタと、
     直列接続されたn(nは2以上の整数)個のセルと前記インダクタ間に設けられ、前記n個のセルのいずれかのセルの両端と、前記インダクタの両端を導通させることが可能なセル選択回路と、
     前記セル選択回路がいずれのセルも選択していない状態で、前記インダクタを含む閉ループを形成するためのクランプスイッチと、
     前記セル選択回路と前記クランプスイッチを制御する制御部と、を備え、
     前記制御部は、
     前記セル選択回路を制御して前記n個のセルの内の放電対象とするセルの両端と前記インダクタの両端を所定時間、導通させ、
     前記セル選択回路を制御して前記n個のセルと前記インダクタを電気的に遮断するとともに、前記クランプスイッチをターンオンさせ、
     前記クランプスイッチをターンオフさせるとともに、前記セル選択回路を制御して前記n個のセルの内の充電対象とするセルの両端と前記インダクタの両端を所定時間、導通させる、
     ことを特徴とするエネルギー移動回路。
  2.  前記セル選択回路は、
     前記インダクタの一端に接続される第1配線と、
     前記インダクタの他端に接続される第2配線と、
     前記直列接続されたn個のセルの各ノードと、前記第1配線間にそれぞれ接続される(n+1)個の第1配線側スイッチと、
     前記直列接続されたn個のセルの各ノードと、前記第2配線間にそれぞれ接続される(n+1)個の第2配線側スイッチと、
     を含むことを特徴とする請求項1に記載のエネルギー移動回路。
  3.  nは、5以上の整数であることを特徴とする請求項1または2に記載のエネルギー移動回路。
  4.  インダクタと、
     直列接続されたn(nは2以上の整数)個のセルと前記インダクタ間に設けられ、前記n個のセルのいずれかのセルの両端と、前記インダクタの両端を導通させることが可能なセル選択回路と、
     前記セル選択回路がいずれのセルも選択していない状態で、前記インダクタを含む閉ループを形成するための、フルブリッジ接続された4個のクランプスイッチと、
     前記セル選択回路と前記4個のクランプスイッチを制御する制御部と、を備え、
     前記セル選択回路は、
     前記インダクタの一端に接続される第1配線と、
     前記インダクタの他端に接続される第2配線と、
     前記直列接続されたn個のセルの各ノード(n+1)の内、奇数ノードと前記第1配線との間にそれぞれ接続される複数の第1配線側スイッチと、
     前記直列接続されたn個のセルの各ノード(n+1)の内、偶数ノードと前記第2配線との間にそれぞれ接続される少なくとも1個の第2配線側スイッチと、を含み、
     前記4個のクランプスイッチの内、第1クランプスイッチ及び第2クランプスイッチが直列に接続された第1アームと、第3クランプスイッチ及び第4クランプスイッチが直列に接続された第2アームが、前記第1配線と前記第2配線間に並列に接続され、
     前記インダクタは、前記第1クランプスイッチと前記第2クランプスイッチ間のノードと、前記第3クランプスイッチと前記第4クランプスイッチ間のノードとの間に接続されることを特徴とするエネルギー移動回路。
  5.  前記制御部は、
     前記n個のセルの内の放電対象とする放電セルの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオン状態、並びに前記第1クランプスイッチ及び前記第4クランプスイッチ、又は前記第2クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第1状態、
     前記放電セルの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオフ状態、並びに前記第2クランプスイッチ及び前記第4クランプスイッチ、又は前記第1クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第2状態、
     前記n個のセルの内の充電対象とする充電セルの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオン状態、並びに前記充電セルに電流が流れるように前記第1クランプスイッチ及び前記第4クランプスイッチ、又は前記第2クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第3状態、
     の順に制御することを特徴とする請求項4に記載のエネルギー移動回路。
  6.  前記複数の第1配線側スイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成され、
     前記少なくとも1個の第2配線側スイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成されることを特徴とする請求項4または5に記載のエネルギー移動回路。
  7.  前記4個のクランプスイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成されることを特徴とする請求項4から6のいずれか1項に記載のエネルギー移動回路。
  8.  前記n個のセルのそれぞれの電圧を検出する電圧検出部をさらに備え、
     前記制御部は、前記電圧検出部により検出された前記n個のセルの電圧をもとに、前記n個のセル間の均等化処理を実行する請求項1から7のいずれか1項に記載のエネルギー移動回路。
  9.  前記制御部は、前記電圧検出部により検出された前記n個のセルの電圧をもとに、前記n個のセルの目標電圧/目標容量を決定し、前記目標電圧/目標容量より高いセルを放電対象のセルに決定し、前記目標電圧/目標容量より低いセルを充電対象のセルに決定することを特徴とする請求項8に記載のエネルギー移動回路。
  10.  直列接続されたn(nは2以上の整数)個のセルと、
     請求項1から9のいずれか1項に記載のエネルギー移動回路と、
     を備えることを特徴とする蓄電システム。
  11.  インダクタと、
     直列接続されたm(mは2以上の整数)個のモジュールと前記インダクタ間に設けられ、前記m個のモジュールのいずれかのモジュールの両端と、前記インダクタの両端を導通させることが可能なモジュール選択回路と、
     前記モジュール選択回路がいずれのモジュールも選択していない状態で、前記インダクタを含む閉ループを形成するためのクランプスイッチと、
     前記モジュール選択回路と前記クランプスイッチを制御する制御部と、を備え、
     前記制御部は、
     前記モジュール選択回路を制御して前記m個のモジュールの内の放電対象とするモジュールの両端と前記インダクタの両端を所定時間、導通させ、
     前記モジュール選択回路を制御して前記m個のモジュールと前記インダクタを電気的に遮断するとともに、前記クランプスイッチをターンオンさせ、
     前記クランプスイッチをターンオフさせるとともに、前記モジュール選択回路を制御して前記m個のモジュールの内の充電対象とするモジュールの両端と前記インダクタの両端を所定時間、導通させる、
     ことを特徴とするエネルギー移動回路。
  12.  インダクタと、
     直列接続されたm(mは2以上の整数)個のモジュールと前記インダクタ間に設けられ、前記m個のモジュールのいずれかのモジュールの両端と、前記インダクタの両端を導通させることが可能なモジュール選択回路と、
     前記モジュール選択回路がいずれのモジュールも選択していない状態で、前記インダクタを含む閉ループを形成するための、フルブリッジ接続された4個のクランプスイッチと、
     前記モジュール選択回路と前記m個のクランプスイッチを制御する制御部と、を備え、
     前記モジュール選択回路は、
     前記インダクタの一端に接続される第1配線と、
     前記インダクタの他端に接続される第2配線と、
     前記直列接続されたm個のモジュールの各ノード(m+1)の内、奇数ノードと前記第1配線との間にそれぞれ接続される複数の第1配線側スイッチと、
     前記直列接続されたm個のモジュールの各ノード(m+1)の内、偶数ノードと前記第2配線との間にそれぞれ接続される少なくとも1個の第2配線側スイッチと、を含み、
     前記4個のクランプスイッチの内、第1クランプスイッチ及び第2クランプスイッチが直列に接続された第1アームと、第3クランプスイッチ及び第4クランプスイッチが直列に接続された第2アームが、前記第1配線と前記第2配線間に並列に接続され、
     前記インダクタは、前記第1クランプスイッチと前記第2クランプスイッチ間のノードと、前記第3クランプスイッチと前記第4クランプスイッチ間のノードとの間に接続されることを特徴とするエネルギー移動回路。
  13.  前記制御部は、
     前記m個のモジュールの内の放電対象とする放電モジュールの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオン状態、並びに前記第1クランプスイッチ及び前記第4クランプスイッチ、又は前記第2クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第1状態、
     前記放電モジュールの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオフ状態、並びに前記第2クランプスイッチ及び前記第4クランプスイッチ、又は前記第1クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第2状態、
     前記m個のモジュールの内の充電対象とする充電モジュールの両側のノードに接続された前記第1配線側スイッチと前記第2配線側スイッチをオン状態、並びに前記充電モジュールに電流が流れるように前記第1クランプスイッチ及び前記第4クランプスイッチ、又は前記第2クランプスイッチ及び前記第3クランプスイッチをオン状態に制御する第3状態、
     の順に制御することを特徴とする請求項12に記載のエネルギー移動回路。
  14.  前記複数の第1配線側スイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成され、
     前記少なくとも1個の第2配線側スイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成されることを特徴とする請求項12または13に記載のエネルギー移動回路。
  15.  前記4個のクランプスイッチは、それぞれ、ボディダイオードを有する2個のスイッチング素子が逆向きに直列に接続されて形成されることを特徴と請求項12から14のいずれか1項に記載のエネルギー移動回路。
  16.  前記m個のモジュールのそれぞれの電圧を検出する電圧検出部をさらに備え、
     前記制御部は、前記電圧検出部により検出された前記m個のモジュールの電圧をもとに、前記m個のモジュール間の均等化処理を実行する請求項11から15のいずれか1項に記載のエネルギー移動回路。
  17.  前記制御部は、前記電圧検出部により検出された前記m個のモジュールの電圧をもとに、前記m個のモジュールの目標電圧/目標容量を決定し、前記目標電圧/目標容量より高いモジュールを放電対象のモジュールに決定し、前記目標電圧/目標容量より低いモジュールを充電対象のモジュールに決定することを特徴とする請求項16に記載のエネルギー移動回路。
  18.  前記m個のモジュールは、それぞれ、
     直列接続された複数のセルと、
     前記複数のセルのそれぞれのセル電圧を検出するセル電圧検出部と、
     前記セル電圧検出部により検出されるセル電圧に基づいて同一モジュール内の複数のセル電圧を均等化するセル用均等化回路と、を含み、
     前記セル用均等化回路は、前記制御部と通信により互いに連携して動作し、前記m個のモジュール間の均等化処理が実行された後、前記複数のセル間の均等化処理を実行することを特徴とする請求項16に記載のエネルギー移動回路。
  19.  直列接続されたm(mは2以上の整数)個のモジュールと、
     請求項11から18のいずれか1項に記載のエネルギー移動回路と、 を備えることを特徴とする蓄電システム。
PCT/JP2019/030197 2018-09-06 2019-08-01 エネルギー移動回路、及び蓄電システム WO2020049909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020541064A JPWO2020049909A1 (ja) 2018-09-06 2019-08-01 エネルギー移動回路、及び蓄電システム
US17/266,166 US11894702B2 (en) 2018-09-06 2019-08-01 Energy transfer circuit and power storage system
CN201980053283.7A CN112566814A (zh) 2018-09-06 2019-08-01 能量移动电路以及蓄电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018167045 2018-09-06
JP2018-167045 2018-09-06
JP2018-213507 2018-11-14
JP2018213507 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020049909A1 true WO2020049909A1 (ja) 2020-03-12

Family

ID=69723144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030197 WO2020049909A1 (ja) 2018-09-06 2019-08-01 エネルギー移動回路、及び蓄電システム

Country Status (4)

Country Link
US (1) US11894702B2 (ja)
JP (1) JPWO2020049909A1 (ja)
CN (1) CN112566814A (ja)
WO (1) WO2020049909A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351598A1 (en) * 2018-11-02 2021-11-11 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
US20200395774A1 (en) * 2019-06-17 2020-12-17 Renesas Electronics America Inc. Single inductor multiple output charger for multiple battery applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019606A1 (en) * 2016-07-15 2018-01-18 Postech Academy-Industry Foundation Battery cell balancing circuit using single inductor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328656B2 (ja) 1994-05-25 2002-09-30 株式会社岡村研究所 電池の充電制御装置及び方法
US20050120715A1 (en) * 1997-12-23 2005-06-09 Christion School Of Technology Charitable Foundation Trust Heat energy recapture and recycle and its new applications
JP3280642B2 (ja) * 1999-09-08 2002-05-13 長野日本無線株式会社 蓄電モジュール
KR20040072672A (ko) * 2001-12-21 2004-08-18 지세케 앤드 데브리엔트 게엠베하 시트재 및 시트재를 제조 및 프로세싱하기 위한 장치 및방법
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
WO2007119682A1 (ja) * 2006-04-13 2007-10-25 Panasonic Corporation 電池パックおよびその断線検知方法
JP2009081949A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 組電池の保護装置及びこれを含む組電池システム
US8466657B2 (en) * 2008-10-31 2013-06-18 Bren-Tronics Batteries International, L.L.C. Autonomous balancing of series connected charge storage devices
DE102008043611A1 (de) * 2008-11-10 2010-05-12 Robert Bosch Gmbh Angleichen elektrischer Spannungen elektrischer Speichereinheiten
US8519670B2 (en) * 2009-03-23 2013-08-27 Motiv Power Systems, Inc. System and method for balancing charge within a battery pack
JP5051264B2 (ja) * 2010-04-08 2012-10-17 株式会社デンソー 電池電圧監視装置
CN102856950A (zh) * 2011-06-29 2013-01-02 尹千泳 电池充电电路
JP2013013291A (ja) * 2011-06-30 2013-01-17 Hitachi Ltd 電池間電圧均等化回路
US9166416B2 (en) * 2011-09-02 2015-10-20 Boston-Power, Inc. Method for balancing cells in batteries
EP2773014B1 (en) * 2011-10-28 2018-01-03 Renesas Electronics Corporation Battery system
US9472961B2 (en) * 2013-02-25 2016-10-18 Semiconductor Components Industries, Llc Method of forming a balancing circuit for a plurality of battery cells and structure therefor
JP6428107B2 (ja) * 2014-09-29 2018-11-28 株式会社村田製作所 蓄電装置、電子機器、電動車両および電力システム
US9559541B2 (en) * 2015-01-15 2017-01-31 Rockwell Automation Technologies, Inc. Modular multilevel converter and charging circuit therefor
US10256511B2 (en) * 2015-05-28 2019-04-09 Bren-Tronics, Inc. Secondary battery housing with control electronics
CN106849212A (zh) * 2015-12-08 2017-06-13 普威能源公司 电池储能系统和其控制系统以及其应用
WO2020049910A1 (ja) * 2018-09-06 2020-03-12 パナソニックIpマネジメント株式会社 均等化回路、及び蓄電システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019606A1 (en) * 2016-07-15 2018-01-18 Postech Academy-Industry Foundation Battery cell balancing circuit using single inductor

Also Published As

Publication number Publication date
JPWO2020049909A1 (ja) 2021-09-02
US11894702B2 (en) 2024-02-06
US20210313813A1 (en) 2021-10-07
CN112566814A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US11196264B2 (en) Modular energy storage direct converter system
US8120322B2 (en) Charge equalization apparatus
US8008890B2 (en) Charge equalization apparatus
US11909234B2 (en) Recharging circuit for modular multilevel converters
Ling et al. Energy bus-based equalization scheme with bi-directional isolated Cuk equalizer for series connected battery strings
JP2018521625A (ja) 個々のモジュール、電気的変換器システム、および電池システム
US11437828B2 (en) Equalization circuit and power storage system
CN110949154B (zh) 充电装置
WO2020049909A1 (ja) エネルギー移動回路、及び蓄電システム
Dam et al. Low-frequency selection switch based cell-to-cell battery voltage equalizer with reduced switch count
JP5794982B2 (ja) 電源装置及び充電回路
JP7382585B2 (ja) エネルギー移動回路、及び蓄電システム
JP7474994B2 (ja) エネルギ移動回路、及び蓄電システム
Park et al. Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle li-ion battery system
JP7418457B2 (ja) エネルギ移動回路、及び蓄電システム
EP3562024B1 (en) Auto adjusting balancer apparatus
Lemmen et al. Flexbattery—Merging multilevel power conversion and energy storage
PT106681A (pt) Conversor eletrónico comutado para equilíbrio do estado de carga em células de baterias

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858235

Country of ref document: EP

Kind code of ref document: A1