WO2020049884A1 - Lithium ion permselective membrane, lithium ion recovery device and lithium-containing compound recovery device using same, and lithium ion recovery method - Google Patents

Lithium ion permselective membrane, lithium ion recovery device and lithium-containing compound recovery device using same, and lithium ion recovery method Download PDF

Info

Publication number
WO2020049884A1
WO2020049884A1 PCT/JP2019/028953 JP2019028953W WO2020049884A1 WO 2020049884 A1 WO2020049884 A1 WO 2020049884A1 JP 2019028953 W JP2019028953 W JP 2019028953W WO 2020049884 A1 WO2020049884 A1 WO 2020049884A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
polymer
lithium
group
structural unit
Prior art date
Application number
PCT/JP2019/028953
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 飯塚
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020049884A1 publication Critical patent/WO2020049884A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/461Apparatus therefor comprising only a single cell, only one anion or cation exchange membrane or one pair of anion and cation membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Definitions

  • the present invention relates to a lithium ion selective permeable membrane.
  • the present invention also relates to a lithium ion recovery device, a lithium-containing compound recovery device, and a lithium ion recovery method using the membrane.
  • Li lithium-containing compounds
  • Li 2 CO 3 Li 2 CO 3
  • Lithium atoms are used when artificially producing tritium (tritium) as fuel for a nuclear fusion reactor. Therefore, the demand for lithium atoms and lithium-containing compounds is rapidly increasing.
  • lithium and the like there is a large amount of lithium and the like on the earth. However, areas where lithium and the like are buried underground are uneven. On the other hand, lithium and the like are contained in large amounts in seawater, and the content of lithium and the like in seawater is enormous relative to the reserves of lithium and the like in the ground. Further, lithium and the like are also included in “Nigari” used for making tofu, an electrolyte for a used lithium ion battery, a concentrated solution discharged during desalination of seawater, and the like. However, each lithium-containing liquid such as seawater, bittern, an electrolytic solution, and a concentrated solution contains not only lithium (ion) but also other metals (ions) such as potassium, sodium, and calcium. Therefore, in order to recover lithium and the like from the above-described lithium-containing liquid, a membrane for separating lithium ions from other metal ions (hereinafter, referred to as a lithium ion separation membrane) is being developed.
  • a lithium ion separation membrane for
  • Patent Literature 1 resin particles and solid electrolyte particles having lithium ion conductivity are arranged in one layer on the same surface, and heated to a temperature equal to or higher than the melting point of the resin to form a part of the solid electrolyte particles into a film.
  • the film exposed on both sides is described.
  • This film is said to be capable of selectively transmitting lithium ions.
  • a sheet that conducts lithium ions includes a solid electrolyte sheet applied to the production of a solid electrolyte layer of a solid secondary battery.
  • Patent Literature 2 discloses that a composition obtained by dispersing a solid electrolyte having lithium ion conductivity and a binder in a dispersion medium containing a fluorine-based solvent is coated on a substrate, and heat-treated.
  • the solid electrolyte sheet obtained by the above method is described.
  • a membrane that selectively permeates lithium ions (hereinafter, referred to as a “lithium ion selective permeation membrane”) is used to quickly recover lithium ions (hereinafter, also referred to as “Li + ”) with higher selectivity. Characteristics are required. Further, it is desirable that the lithium ion selective permeable membrane be capable of maintaining the shape of the membrane by binding lithium ion conductors to each other, that is, to have a film-forming property. With the above film forming property, the gap between the lithium ion conductors can be reduced (for example, the distance between the lithium ion conductors can be reduced), so that the permeability of lithium ions per unit film area can be improved. It is possible.
  • the membrane described in Patent Literature 1 and the sheet described in Patent Literature 2 are intended to prepare membranes and sheets excellent in lithium ion selectivity and lithium ion selectivity and recovery rate (recovery rate), which are necessary properties as a lithium ion selective permeable membrane. , The film formability is inferior.
  • the present invention has excellent lithium ion selectivity and excellent lithium ion selectivity and recovery rate (hereinafter, these two properties are collectively referred to as "Li + selective properties"). It is an object to provide a membrane. It is another object of the present invention to provide a lithium ion recovery device, a lithium-containing compound recovery device, and a lithium ion recovery method that are excellent in Li + selection characteristics.
  • the present inventors have conducted intensive studies and have found that a combination of a lithium ion conductor (A) and a polymer (B) having a specific structural unit having an anionic group having a lithium ion as a counter cation is combined. It has been found that when used, a film can be formed, and the obtained film is excellent in the above-described film forming properties and Li + selectivity.
  • the present invention has been further studied based on these findings, and has been completed.
  • a selectively permeable lithium ion membrane comprising a lithium ion conductor (A) and a polymer (B) having a structural unit represented by the following general formula (B1).
  • L 1 and L 2 each independently represent an alkylene group which may have a substituent
  • R 1 to R 3 each independently represent a hydrogen atom or an alkyl group
  • A represents —NR 4 ⁇ , —O— or —S—
  • R 4 represents a hydrogen atom or an alkyl group
  • Y B1 represents an anionic group having a lithium ion as a counter ion.
  • L 21 and L 22 each independently represent an alkylene group having 1 to 7 carbon atoms
  • R 21 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Y B2 represents It has the same meaning as YB1 described above. * Indicates a binding site as a structural unit of the polymer.
  • the anionic group is -SO 3 - is a Li +, ⁇ 1> ⁇ ⁇ 3> lithium ion permselective membrane according to any one of.
  • ⁇ 5> A water-insoluble polymer (C) different from the polymer (B), wherein at least one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond And the water-insoluble polymer (C) having a glass transition temperature of 0 ° C. or lower, wherein the lithium ion selective permeable membrane according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> A lithium ion recovery device having the lithium ion selective permeable membrane according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> A lithium-containing compound recovery device comprising the lithium ion recovery device according to ⁇ 6>.
  • ⁇ 8> A method for recovering lithium ions, comprising recovering lithium ions using the lithium ion selective permeable membrane according to any one of ⁇ 1> to ⁇ 5>.
  • substituents when there are a plurality of substituents, linking groups, structural units, and the like (hereinafter, referred to as substituents) represented by a specific code or formula, or when a plurality of Alternatively, when they are alternatively specified, the respective substituents and the like may be the same or different from each other. This holds true for the definition of the number of substituents and the like.
  • group of each group described as an example of each substituent is used to mean both an unsubstituted form and a form having a substituent.
  • alkyl group means an alkyl group which may have a substituent.
  • the number of carbon atoms of the group means the total number of carbon atoms including the substituent unless otherwise specified.
  • the term “compound” is used to include not only the compound itself but also its salt and its ion. Also, it is meant to include a structure in which a part of the structure is changed, as long as the effects of the present invention are not impaired. Further, a compound that is not specified to be substituted or unsubstituted may have any substituent within a range that does not impair the effects of the present invention. This is the same for the substituent and the linking group.
  • “(meth) acrylate” is used to mean both acrylate and methacrylate.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the SP value is described by omitting the unit (cal / cm 3 ) 1/2 .
  • the lithium ion permselective membrane of the present invention is excellent in film-forming properties, and is also excellent in lithium ion selectivity and recovery rate (Li + selectivity). Further, the lithium ion recovery device, the lithium-containing compound recovery device, and the lithium ion recovery method of the present invention enable lithium ions or lithium-containing compounds to be recovered at an excellent recovery rate and an excellent selectivity. .
  • FIG. 1 is a schematic diagram of a lithium ion recovery device according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a lithium-containing compound recovery device according to one embodiment of the present invention.
  • the lithium ion selective permeable membrane of the present invention is a lithium ion conductor (A) and a polymer (B) having a structural unit represented by the following general formula (B1) (hereinafter, also simply referred to as “polymer (B)”). ).
  • the form of the lithium ion selective permeable membrane of the present invention may be any form that has film-forming properties and has lithium ion conductivity. Both the lithium ion conductor (A) and the polymer (B) constituting the lithium ion selective permeable membrane of the present invention have lithium ion conductivity.
  • one form of the membrane includes a form in which the lithium ion conductor (A) is dispersed in the polymer (B) (for example, a form of a composite film).
  • This variance may be random, regular, or the like.
  • the lithium ion selective permeable membrane of the present invention having the above-described configuration is excellent in film forming property, lithium ion selectivity and recovery rate. The reason for this is not clear, but is presumed as follows.
  • the polymer (B) is formed by linking an anionic group having a lithium ion (hereinafter also referred to as “Li + ”) as a counter cation to a linking group having a specific chain length or more represented by —L 1 -AL 2 —.
  • the polymer (B) has the anionic group, in the lithium ion selective permeable membrane of the present invention, the lithium ion conductor (A) having a high lithium ion selectivity is dispersed in the polymer (B) in the state where the ion conductivity is high.
  • the body (A) and the polymer (B) interact with each other to sufficiently bind the lithium ion conductors (A) to each other, and further to improve the adhesion between the lithium ion conductor (A) and the polymer (B). Can be increased, and it is considered that excellent film-forming properties are exhibited.
  • the polymer (B) since the anionic group in the polymer (B) is bonded to the carbon chain via a linking group having a specific length or more as described above, the polymer has an appropriate mobility. Therefore, the polymer (B) not only does not inhibit the ionic conductivity of the coexisting lithium ion conductor (A) but also reinforces the lithium ion conductivity of the lithium ion conductor (A) by its own lithium ion conductivity. . As a result, it is considered that the lithium ion selective permeable membrane of the present invention has enhanced lithium ion permeability and exhibits an excellent lithium ion recovery rate.
  • the thickness of the lithium ion selective permeable membrane of the present invention can be appropriately selected according to the intended mode, the size of the device to be incorporated, and the like. For example, it is 1 to 1000 ⁇ m, and may be 10 to 500 ⁇ m.
  • the lithium ion selective permeable membrane of the present invention may be in a form having a support and a substrate. Since the lithium ion selective permeable membrane of the present invention has excellent film-forming properties, it can be handled alone without using a support or a substrate.
  • the membrane area can be appropriately selected depending on the intended mode, the size of the device to be incorporated, and the like. . For example, it is 0.5 to 500,000 cm 2 and may be 1 to 100,000 cm 2 .
  • the lithium ion conductor (A) used in the present invention is a compound exhibiting lithium ion conductivity (conducts lithium ions and does not easily conduct other metal ions such as potassium and sodium (preferably does not conduct)). If it is, there is no particular limitation. Further, the lithium ion conductor (A) preferably has resistance to a lithium-containing liquid and a recovery liquid described later (for example, “water-insoluble” described later). Specific examples of the lithium ion conductor (A) include an oxide-based inorganic solid electrolyte. The oxide-based inorganic solid electrolyte is preferably a compound containing an oxygen atom and having lithium ion conductivity.
  • the lithium ion conductor (A) used in the present invention is a solid in a steady state, it is generally not dissociated or released into cations and anions. In this regard, it is clearly distinguished from water or lithium salts, in which cations and anions are dissociated or free in the polymer. That is, the lithium ion conductor (A) is used in the sense that it does not contain a lithium salt.
  • the lithium salt refers to a low-molecular weight inorganic or organic lithium salt compound (for example, CF 3 SO 3 Li used in Test No. c11 in Examples described later).
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is substituted by nitrogen
  • LiPOD 1 LiPOD 1
  • a 1 ON A 1 is at least one of Si, B, Ge, Al, C, Ga, and the like
  • the lithium ion conductor (A) is preferably a particle.
  • the median diameter D50 of the lithium ion conductor particles is not particularly limited, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less, in order to improve the film strength. preferable.
  • the lower limit is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 0.6 ⁇ m or more.
  • the lithium ion conductor (A) preferably has a form in which the particle size does not largely change before and after the formation of the lithium ion selective permeable membrane, and is dispersed in the polymer (B) after the film is formed.
  • the particulate lithium ion conductor (A) as a raw material for forming the lithium ion selective permeable membrane.
  • the measurement of the average particle diameter of the particles of the lithium ion conductor (A) is performed according to the following procedure.
  • the lithium ion conductor particles are diluted with 1% by weight of a dispersion of 1% by mass in a 20 mL sample bottle using heptane.
  • the dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test. Using this dispersion liquid sample, data was taken 50 times at a temperature of 25 ° C.
  • the lithium ion selective permeable membrane of the present invention may contain one type of lithium ion conductor (A), or may contain two or more types.
  • the content of the lithium ion conductor (A) in the lithium ion selective permeable membrane of the present invention is preferably 20% by mass or more, and more preferably 30% by mass in the total solid content in order to improve the recovery rate and selectivity of lithium ions.
  • the above is more preferable, and 40% by mass or more is further preferable.
  • the upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less, from the viewpoint of film formability.
  • the solid content refers to a component remaining in the film when a lithium ion selective permeable membrane is formed by drying by blowing air at 50 ° C. for 5 hours and vacuum drying at 100 ° C. for 5 hours, specifically, a solvent described below. Means other components.
  • the polymer having a structural unit represented by formula (B) is a polymer in which the counter cation in the anionic group is a hydrogen atom or an alkali metal ion, and the lithium cation of the present invention in which the counter cation is limited to lithium ion. It includes a polymer (B) which is a constituent material of the permselective membrane and a polymer (b) in which the counter cation is limited to sodium ion or potassium ion.
  • the type of the polymer having the structural unit represented by the following general formula (B) is not particularly limited as long as it has the following structural unit, but the polymer has high flexibility and can achieve the above-described effects at a high level.
  • (hydrogenated) aliphatic hydrocarbon polymers and the like are preferable, and (hydrogenated) aliphatic acyclic hydrocarbon polymers are more preferable.
  • the aliphatic hydrocarbon polymer and the aliphatic acyclic hydrocarbon polymer may be saturated or unsaturated, and preferably have a polymer main chain mainly formed of carbon-carbon bonds.
  • a diene-based polymer having a double bond in the main chain and a non-diene-based polymer having no double bond in the main chain are exemplified.
  • Specific examples thereof include polybutadiene, polyisoprene, butyl rubber, acrylonitrile-butadiene copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, or a hydrogen reduced product of an aromatic hydrocarbon polymer described later.
  • L 1 and L 2 each independently represent an alkylene group which may have a substituent
  • R 1 to R 3 each independently represent a hydrogen atom or an alkyl group
  • A represents —NR 4 ⁇ , -O- or -S-
  • R 4 represents a hydrogen atom or an alkyl group
  • Y B represents an anion having a hydrogen atom or an alkali metal ion (preferably a lithium ion, a sodium ion or a potassium ion) as a counter ion.
  • * Indicates a binding site as a structural unit of the polymer.
  • the anionic group may be any group that can form an anion and impart lithium ion conductivity to the polymer itself.
  • M represents a hydrogen atom or an alkali metal ion. In the selectively permeable lithium ion membrane of the present invention, the M may be separated (free) or not separated (free).
  • M is a lithium ion in the polymer (B) which is a constituent material of the lithium ion selective permeable membrane, and is a hydrogen atom or an alkali metal ion excluding the lithium ion in the polymer (b).
  • OM is preferred.
  • the polymer, in the structural unit represented by the above formula (B), may have a Y B except Meikisuru Y B in the formula.
  • polymer (B) is a structural material of a lithium ion selective permeable membrane of the present invention.
  • the polymer (B) used in the present invention has a structural unit represented by the following general formula (B1).
  • This polymer (B) has lithium ion conductivity.
  • L 1 and L 2 each independently represent an alkylene group which may have a substituent.
  • the carbon number of the alkylene group which may have a substituent in L 1 is preferably 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, particularly preferably 1 to 3, and 1 or 2 Most preferred.
  • the number of carbon atoms of the alkylene group which may have a substituent in L 2 is preferably 1 to 10, more preferably from 1 to 7, more preferably 1 to 5, and most preferably 1-3.
  • the alkylene group which may have a substituent in L 1 and L 2 may be linear or branched, and may have a ring structure (for example, a 5- or 6-membered ring structure, The ring-constituting atom is preferably a carbon atom.).
  • L 1 and L 2 are an alkylene group having a ring structure
  • the bond constituting the ring structure is a group represented by -L 1 -AL 2 -from the viewpoint of not impairing the mobility of the anionic group.
  • the atom is not in the following shortest chain, and it is more preferable that one of the atoms forming the ring structure be present as a quaternary carbon atom in the shortest chain.
  • R 1 to R 3 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group in R 1 to R 3 preferably has 1 to 4 carbon atoms, more preferably 1 or 2, and still more preferably 1.
  • R 1 is preferably a hydrogen atom or methyl, and more preferably a hydrogen atom.
  • Each of R 2 and R 3 is preferably a hydrogen atom.
  • a -NR 4 is -, - O-or -S- shown, R 4 represents a hydrogen atom or an alkyl group.
  • R 4 is more preferably a hydrogen atom.
  • A is preferably -O- or -S-, and more preferably -S-.
  • Y B1 represents an anionic group having a lithium ion as a counter cation.
  • preferable anionic groups the description of the above-described anionic groups can be applied. * Indicates a binding site as a structural unit of the polymer.
  • the chain connecting the carbon atom to which R 1 is bonded and the anionic group Y B1 is too long in consideration of the ratio of the anionic group in the polymer (B).
  • the number of bonds of atoms constituting the shortest chain (hereinafter, also simply referred to as "the shortest atom number”) is preferably 10 or less, and 8 or less. The following is more preferable, the value of 7 or less is further preferable, and the value of 6 or less is most preferable.
  • the lower limit of the minimum number of atoms is 3 or more, preferably 4 or more, more preferably 5 or more from the viewpoint of imparting mobility to the anionic group to increase the permeability of lithium ions and exhibit an excellent lithium ion recovery rate. More preferred.
  • the structural unit represented by the general formula (B1) in the polymer (P1-1) in the examples two carbon atoms in the ethylene group, one sulfur atom and three carbon atoms in the propylene group are used. A total of 6 is the shortest atom number.
  • the side chain when the shortest chain is regarded as the main chain, that is, the number of bonds of atoms constituting the longest chain among the branched chains in L 1 and L 2 (hereinafter, also simply referred to as “longest atom number”). ) Is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.
  • the upper limit of the SP value of the structural unit represented by the general formula (B1) improves the hydrophobicity of the structural unit having an anionic group, suppresses the permeation of hydrated ions, and increases the water permeability of the lithium ion selective membrane. In respect of suppression, 24 or less is preferable, and 22 or less is more preferable.
  • the lower limit of the SP value is preferably 14 or more, more preferably 16 or more. That is, the SP value is preferably from 14 to 24, and more preferably from 16 to 22.
  • the SP value of the structural unit represented by the general formula (B1) is determined as follows.
  • SP value is a value determined by calculation using the HSPiP 5 th Edition 5.0.04 (https://hansen-solubility.com/downloads.php) . In calculating the polymer structure, the calculation is made by setting both ends of the repeating unit structure to *.
  • L 21 and L 22 each independently represent an alkylene group having 1 to 7 carbon atoms.
  • the carbon number of the alkylene group in L 21 is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1 or 2.
  • the alkylene group in L 22 is preferably 1 to 5, 1 to 3 more preferred.
  • R 21 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the number of carbon atoms of the alkyl group in R 21 to R 23 is preferably 1 or 2, more preferably 1.
  • R 21 is preferably a hydrogen atom or methyl, and more preferably a hydrogen atom.
  • Each of R 22 and R 23 is preferably a hydrogen atom.
  • Y B2 has the same meaning as Y B1 in Formula (B1), and represents an anionic group having a lithium ion as a counter cation. As for preferable anionic groups, the description of the above-described anionic groups can be applied. * Indicates a binding site as a structural unit of the polymer.
  • shortest number atoms coupled atoms of the atoms that constitute the shortest chain
  • the description of the shortest atom number and the longest atom number in the group represented by -L 1 -AL 2 -in the general formula (B1) can be preferably applied.
  • L 1, L 2, R 1 ⁇ R 3 and A have the same meanings as L 1, L 2, R 1 ⁇ R 3 and A in the formula (B1).
  • Y b1 represents an anionic group having a hydrogen atom or an alkali metal ion (preferably a sodium ion or a potassium ion) as a counter ion.
  • the lithium ions are not included in the alkali metal ions in the Y b1.
  • preferable anionic groups the description of the above-described anionic groups can be applied. * Indicates a binding site as a structural unit of the polymer.
  • Examples of the structural units represented by the general formulas (B), (B1) and (b1) include the following structural units. However, it is not limited to these structural units.
  • M represents a hydrogen atom or an alkali metal ion, and corresponds to the counter cation defined by the formulas (B), (B1) and (b1).
  • the polymer (B) may have a structural unit other than the structural unit represented by the general formula (B1) (hereinafter, referred to as other structural units).
  • Other structural units are not particularly limited as long as they are copolymerizable with the structural unit represented by the general formula (B1).
  • a structural unit capable of forming the above-mentioned aliphatic hydrocarbon polymer is mentioned, and specifically, ethylene, 1,3-butadiene, isobutylene, isoprene, acrylonitrile, 5-ethylidene-2-norbornene, dicyclopentadiene And structural units containing 1,4-hexadiene and the like as monomer components, and oxidized and hydrogenated forms of these structural units.
  • the polymer (b) may have a structural unit other than the structural unit represented by the general formula (b1). The structural units to be described are mentioned.
  • the ratio of the structural unit represented by the general formula (B1) and the ratio of the structural unit represented by the general formula (B2) in the polymer (B) are not particularly limited, but are preferably from 5 to 95 mol%, preferably from 10 to 95 mol%. 9090 mol% is more preferable, and 20-80 mol% is still more preferable.
  • the ratio of the other structural units in the polymer (B) is not particularly limited, but is preferably from 5 to 95 mol%, more preferably from 10 to 90 mol%, even more preferably from 20 to 80 mol%.
  • the proportion of the structural unit represented by the general formula (b1) in the polymer (b) is not particularly limited, but is preferably 5 to 100 mol%, more preferably 10 to 90 mol%, and further preferably 20 to 80 mol%.
  • the ratio of the other structural units in the polymer (b) is not particularly limited, but is preferably 0 to 95 mol%, more preferably 10 to 90 mol%, and further preferably 20 to 80 mol%.
  • the polymer (B) may independently have one type of the structural unit represented by the general formula (B1) and the other structural units, or may have two or more types.
  • the polymer (b) may have one or two or more types of the structural unit represented by the general formula (b1) and the other structural units independently.
  • the form of the polymer (B) and the polymer (b) is not particularly limited, and may be any form such as random, block, and graft as long as the effects of the present invention are not impaired.
  • the polymers (B) and (b) are different from the above-mentioned lithium salts in that they are polymers having a repeating structural unit.
  • the number average molecular weight (Mn) of the polymers (B) and (b) is preferably 800 or more, more preferably 1,000 or more, further preferably 1,000 to 10,000, and particularly preferably 1500 to 8,000.
  • the number average molecular weight can be measured by a known method using gel permeation chromatography (GPC).
  • the lithium ion selective permeable membrane of the present invention may contain one kind of polymer (B) or two or more kinds.
  • the content of the polymer (B) in the selectively permeable membrane for lithium ion of the present invention is preferably 5 to 50% by mass, more preferably 7 to 40% by mass, and still more preferably 10 to 30% by mass based on the total solid content. , 15 to 25% by mass.
  • the terminal structure of the polymer (B) and the polymer (b) is not particularly limited, and depends on the presence or absence of other structural units, the type of a substrate used during synthesis, or the type of a quenching agent (reaction terminator) during synthesis. Not uniquely determined.
  • the terminal structure is, for example, a hydrogen atom, a hydroxy group, a halogen atom, an ethylenically unsaturated group, an alkyl group, an aromatic heterocyclic group (preferably a thiophene ring) or an aromatic hydrocarbon group (preferably a benzene ring). ).
  • Method for synthesizing polymer (B) As a method for synthesizing the polymer (B), a polymer having a reactive group a is reacted with a compound having a reactive group b capable of forming a bond by reacting with the reactive group a and an anionic group to form an anion. And a method of polymerizing a monomer having an anionic group to obtain a polymer.
  • the anionic group means an anionic group having a lithium ion as a counter cation.
  • the reactive group a and the reactive group b are groups capable of forming a linking group represented by -L 1 -AL 2 -or a part thereof by a chemical reaction.
  • the compound having an anionic group and the monomer having an anionic group used in these synthesis methods can be synthesized by a conventional method without any particular limitation.
  • a conventional ion exchange lithium such as LiOH
  • a base or an ion exchange membrane is brought into contact with a compound or monomer having an anionic group having a sodium ion or the like as a counter cation, etc.).
  • a commonly used method can be appropriately selected.
  • the method for synthesizing the polymer itself can be a commonly used method, for example, a radical polymerization can be mentioned, and a polymerization initiator, a reaction terminator, and the like are also usually used in combination with the monomers, oligomers, and the like to be used. Agents can be used as appropriate. In addition, a commercially available polymer can also be used as the polymer.
  • the lithium ion selective permeable membrane of the present invention also preferably contains a water-insoluble polymer (C).
  • the water-insoluble polymer (C) has one or more of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond, and has a glass transition temperature ( Hereinafter, the polymer is also referred to as Tg).
  • the polymer (C) is different from the polymer (B) in that it does not have an anionic group via a linking group having a specific chain length or more represented by -L 1 -AL 2-.
  • Water-insoluble polymer means that the solubility of the polymer in 100 g of water is 0.1 g or less under the condition of a liquid temperature of 25 ° C.
  • the water-insoluble polymer (C) may be any of a chain polymerizable polymer, a polyaddition polymer and a polycondensation polymer, and is preferably a chain polymerizable polymer and a polyaddition polymer.
  • chain-polymerized polymer (C) the water-insoluble polymer that is a chain-polymerized polymer
  • polyaddition-type polymer (C) the water-insoluble polymer (C) that is a polyaddition-type polymer.
  • the chain polymerization type polymer (C) is a polymer obtained by chain-polymerizing one or more monomers having a non-aromatic carbon-carbon double bond.
  • a vinyl polymer is mentioned, and more specifically, a (meth) acrylic polymer and a hydrocarbon polymer (aliphatic hydrocarbon polymer and aromatic hydrocarbon polymer) are mentioned.
  • the aliphatic hydrocarbon polymer include those described above for the polymer (B).
  • the aromatic hydrocarbon polymer include polymers having a structural unit derived from an aromatic vinyl compound such as a styrene compound, for example, styrene-butadiene copolymer. Coalescence.
  • Specific examples of ()) include (meth) acrylonitrile, hydroxy group-containing (meth) acrylate (for example, hydroxyethyl (meth) acrylate), sulfanyl group-containing (meth) acrylate (for example, sulfanylethyl (meth) acrylate), and (meth) Examples thereof include acrylamide, vinyl alcohol, allylamine, and sulfide bond-containing (meth) acrylates (eg, 2-methylthioethyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate).
  • the monomer (a1) may be used alone or in combination of two or more.
  • a copolymerization component is introduced into a structural unit having any one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond.
  • Examples of the monomer (monomer (b1)) include 1,3-butadiene, isoprene, and alkyl (meth) acrylate (preferably, ethyl acrylate, butyl acrylate, and (2-ethylhexyl) acrylate). Of these, 1,3-butadiene, isoprene or butyl acrylate is preferred, and 1,3-butadiene or isoprene is more preferred.
  • One kind of the monomer (b1) may be used alone, or two or more kinds may be used. It is also preferable to introduce an ether bond or the like by subjecting a natural rubber containing polyisoprene or the like to epoxidation or the like.
  • the chain polymerization type polymer (C) may use a third monomer (a monomer other than the above) to such an extent that its function is not impaired.
  • the content of the structural unit derived from the monomer (a1) is preferably 26% by mass or more, and the upper limit is preferably 70% by mass or less, and 60% by mass. Is more preferably, and particularly preferably 50% by mass or less.
  • chain polymerizable polymer (C) synthesized by epoxidation of natural rubber containing the above polyisoprene or the like structural units having an ether bond or the like in all structural units constituting the chain polymerizable polymer (C) Is preferably 26% by mass or more, and the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the chain polymerization type polymer (C) is preferably a polymer synthesized using one kind of the monomer (a1) and one kind of the monomer (b1) from the viewpoint of film strength.
  • polyaddition polymer (C)- examples include polyurethane and polyurea.
  • Specific examples of monomers for introducing any one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond into the polyaddition polymer (C) include 4,4 4'-methylenebis (phenylisocyanate), 4,4'-methylenebis (cyclohexylisocyanate), isophorone diisocyanate, ethylene glycol, di (propylene glycol) and tetramethylene glycol, or a monomer such as cyano group, amide group, amino group And a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond.
  • the lower limit of the Tg of the water-insoluble polymer (C) is practically ⁇ 60 ° C. or higher, and preferably ⁇ 40 ° C. or higher.
  • the Tg of the water-insoluble polymer (C) itself can be adjusted by the type of the monomer and the amount used in the synthesis.
  • the form of the water-insoluble polymer (C) is not particularly limited, and includes forms that each of the above polymers can take among random, block, and graft.
  • the Tg of the water-insoluble polymer (C) is determined as follows.
  • the glass transition temperature (Tg) is sensed at the time of the second temperature increase in such a manner that the DSC curve is bent due to a change in specific heat and the base line moves in parallel.
  • the temperature at the intersection of the tangent to the base line at a temperature lower than this bend and the tangent to the point where the slope is maximum at the bent portion is defined as the glass transition temperature (Tg).
  • Tg glass transition temperature
  • the lithium ion selective permeable membrane of the present invention may contain one type of water-insoluble polymer (C), or may contain two or more types.
  • the content of the water-insoluble polymer (C) in the lithium ion selective permeable membrane of the present invention is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 40% by mass or less.
  • the lower limit is preferably 1% by mass or more, and more preferably 5% by mass or more.
  • the lithium ion selective permeable membrane of the present invention may contain components other than the above-mentioned lithium ion conductor (A), polymer (B) and water-insoluble polymer (C) as long as the effects of the present invention are not impaired.
  • Such components include, for example, ionic liquids described in WO 2017/199821.
  • the method for producing the lithium ion selective permeable membrane of the present invention is not particularly limited.
  • the lithium ion conductor (A), the polymer (B) and the solvent are stirred for 1 to 5 hours in a temperature range from 20 ° C. to the boiling point of the solvent, and the mixture of the lithium ion conductor (A) and the polymer (B) is stirred. Get.
  • This mixture is applied by a usual method and dried at 40 to 100 ° C. for 3 to 24 hours to obtain the lithium ion selective permeable membrane of the present invention as a membrane.
  • the solvent is not particularly limited, but a solvent having an SP value of 15 or more is preferable.
  • the solvent examples include water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, ethyl acetate, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and dichloromethane.
  • water, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and N-methyl-2-pyrrolidone are preferred.
  • One type of solvent may be used, or two or more types may be used.
  • the lithium ion recovery device the lithium-containing compound recovery device, and the lithium ion recovery method of the present invention will be described.
  • the lithium ion recovery device of the present invention includes the lithium ion selective permeable membrane of the present invention.
  • This lithium ion recovery device is a device for recovering lithium ions from the above-mentioned lithium-containing liquid, and can suitably carry out the lithium ion recovery method of the present invention described later.
  • the lithium ion recovery device 1A shown in FIG. 1 will be described below.
  • the lithium ion recovery device 1A includes a lithium ion selective permeable membrane 10. As shown in FIG. 1, the lithium ion recovery device 1A includes a substantially U-shaped processing tank 2 and a lithium ion selective permeable membrane disposed at the bottom of the processing tank 2 and separating the processing tank 2 into two spaces. 10 is provided. The lithium ion selective permeable membrane 10 is arranged such that its edge is in contact with the inner surface of the bottom portion, and separates the two spaces. In addition, the lithium ion recovery device 1A includes a negative electrode 4 disposed in a space separated from the lithium ion selective permeable membrane 10 in a space facing the lithium ion selective permeable membrane 10 and a lithium ion selective permeable membrane in the other space.
  • the processing tank 2 has a permselective membrane 10 and a positive electrode 3 spaced apart and facing each other.
  • the positive electrode 3 and the negative electrode 4 are electrically connected to a negative terminal or a positive terminal of the power supply 16 by lead wires.
  • the processing tank 2 is equipped with a device having a stirring function (stirring device). Specifically, a stirrer 17 disposed in the two isolated spaces in the processing tank 2 and a turntable (a driving unit and a control unit, which are installed below the processing tank 2 and rotate the stirrer 17 respectively). 18).
  • the undiluted solution 5 containing lithium ions is charged into one space (the space where the positive electrode 3 is disposed) separated by the lithium ion selective permeable membrane 10, and the other space (the negative electrode 4 is disposed).
  • the recovered liquid 6 for recovering lithium ions from the undiluted solution 5 is charged into the space (the space).
  • a liquid containing other metal ions such as potassium ions and sodium ions in addition to lithium ions is used.
  • the above-mentioned lithium-containing liquid such as seawater, concentrated seawater, and bittern is used.
  • the recovery liquid 6 is preferably a liquid that does not contain lithium ions and other metal ions at the stage before the operation as a lithium ion recovery apparatus is started.
  • dilute hydrochloric acid and water (preferably pure water) ) Etc. can be used.
  • the method of recovering lithium ions by the lithium ion recovery device 1A can be performed in the same manner as the method using a normal lithium ion separation membrane, except that the lithium ion selective permeable membrane 10 is used.
  • the lithium ion recovery device 1A includes the above-mentioned lithium ion selective permeable membrane 10 so that, as described later, the concentration difference (gradient) of the lithium ions between the stock solution 5 and the recovery solution 6 (both electrodes).
  • the lithium ions (not shown) contained in the stock solution 5 can be selectively transmitted (moved) to the recovery solution 6 quickly and selectively through the lithium ion selective permeable membrane 10 even if no voltage is applied therebetween. Can be.
  • the lithium ion recovery device 1A of the present invention can further increase the recovery efficiency of lithium ions by applying a voltage between both electrodes and performing electrodialysis.
  • the lithium ion selective permeable membrane of the present invention is used in a lithium ion collecting apparatus, and the lithium ion collecting apparatus including the lithium ion selective permeable membrane of the present invention has an excellent lithium ion collecting speed and It can be recovered with excellent selectivity.
  • the lithium ion recovery device of the present invention is not limited to the lithium ion recovery device 1A.
  • the processing tank 2 has a substantially U shape, but in the present invention, the shape of the processing tank 2 can be applied without any particular limitation to a generally adopted shape.
  • the lithium ion recovery device 1A includes a magnetic stirrer as a stirring device.
  • a stirring device may not be provided, and a known stirring device other than the magnetic stirrer (for example, a mechanical stirrer, (Shaker) and a circulation mechanism shown in FIG. 2 to be described later.
  • the size, structure, material, and the like of the treatment tank 2, the positive electrode 3, and the negative electrode 4 in the lithium ion recovery device 1A are not particularly limited, and a commonly used configuration can be appropriately selected.
  • the lithium-containing compound recovery device of the present invention includes the lithium-ion recovery device of the present invention, and further includes a device that neutralizes the recovered lithium ions to convert the lithium ions into a lithium-containing compound.
  • the lithium-containing compound recovery apparatus 100 shown in FIG. 2 will be described as an example, together with the lithium ion recovery method of the present invention.
  • the lithium-containing compound recovery device 100 shown in FIG. 2 includes a lithium ion recovery device 1B having the lithium ion selective permeable membrane 10 of the present invention.
  • the lithium ion recovery apparatus 1B includes a cylindrical processing tank 2, a lithium ion selective permeable membrane 10 disposed in the processing tank 2, and defining two isolated spaces in the processing tank 2, and a lithium ion selective permeable membrane.
  • a positive electrode 3 is disposed in contact with one surface of the positive electrode 10, and a negative electrode 4 is disposed in contact with the other surface of the lithium ion selective permeable membrane 10.
  • the positive electrode 3 and the negative electrode 4 are connected to the + terminal or the ⁇ terminal of the power supply, respectively.
  • the lithium ion selective permeable membrane 10 is provided with a circulation mechanism for circulating the undiluted or recovered liquid as a stirring device.
  • This circulating mechanism can perform not only the function of stirring the stock solution or the recovered solution, but also the function of exchanging or recovering them.
  • the stock solution storage tank 11 for storing (storing) the stock solution 5 is connected to the isolated space in which the stock solution storage tank 11 and the positive electrode 3 are arranged, and the stock solution 5 is transferred from the stock solution storage tank 11 to the isolated space.
  • a recovery storage tank 12 that stores (retains) the recovery liquid 6 is connected to an isolated space in which the recovery storage tank 12 and the negative electrode 4 are arranged, and the recovery liquid 6 is transferred from the recovery storage tank 12 to the isolated space.
  • a pipe for connecting the collected liquid storage tank 12 and the isolated space in which the negative electrode 4 is disposed to discharge the collected liquid 6 from the isolated space to the collected liquid storage tank 12 (collected liquid discharge pipe) 13d), and pumps 14c and 14d provided in the recovered liquid transfer pipe 13c and the recovered liquid discharge pipe 13d, respectively.
  • a lithium-containing compound recovery unit (tank) 15 is provided in the recovery liquid storage tank 12.
  • the lithium-containing compound recovery unit 15 has a reaction tank that stores the recovery liquid 6 and converts lithium ions into lithium-containing compounds, and further inputs a compound that converts lithium ions into lithium-containing compounds, such as a hopper. (Not shown).
  • This reaction tank is provided with a pipe (collected liquid transfer pipe) 13e extending to the collection storage tank 12, and a pump 14e in the middle of the pipe 13e.
  • the method of recovering a lithium-containing compound by the lithium-containing compound recovery apparatus 100 is the same as the method of recovering lithium ions by using the lithium ion selective permeable membrane 10 except that the lithium ions recovered using a normal lithium ion separation membrane contain lithium ions. It can be carried out in the same manner as in the method of converting into a compound.
  • the stock solution 5 is stored in the stock solution storage tank 11.
  • the undiluted solution 5 is sent by the pump 14a through the pipe 13a to the isolated space of the processing tank 2 where the positive electrode 3 is arranged, and returned to the undiluted solution storage tank 11 by the pump 14b through the pipe 13b.
  • the stock solution 5 is circulating between the stock solution storage tank 11 and the processing tank 2.
  • the recovery liquid storage tank 12 stores the recovery liquid 6 (dilute hydrochloric acid or the like).
  • the recovered liquid 6 is sent by the pump 14c through the pipe 13c to the isolated space of the processing tank 2 where the negative electrode 4 is disposed, and returned to the recovered liquid storage tank 12 through the pipe 13d by the pump 14d.
  • the recovery liquid 6 is circulating between the recovery liquid storage tank 12 and the processing tank 2.
  • lithium ions (not shown) are recovered in the recovery liquid 6 by the lithium ion recovery apparatus 1B while circulating the stock solution 5 and the recovery liquid 6 as necessary.
  • the method of recovering lithium ions using the lithium ion recovery device 1B is the same as the method of recovering lithium ions using the lithium ion recovery device 1A.
  • the recovery liquid 6 is passed through the pipe 13e by the pump 14e, and is returned to the lithium-containing compound recovery section.
  • a compound that converts lithium ions into a lithium-containing compound for example, an aqueous solution of sodium carbonate (Na 2 CO 3 ) is added to the recovery liquid 6, and the lithium-containing compound (Li 2 CO 3 ) A precipitate can be obtained.
  • the precipitate is solid-liquid separated by a conventional method, and if necessary, purified and dried to obtain a lithium-containing compound, for example, a powder of Li 2 CO 3 .
  • the lithium-containing compound recovery device 100 including the lithium-ion recovery device 1B can recover a lithium-containing compound having a high lithium ion purity with high productivity.
  • the lithium-containing compound recovery device of the present invention is not limited to the lithium-containing compound recovery device 100 described above.
  • the lithium ion recovery device 1A provided in the lithium-containing compound recovery device can be applied to the lithium ion recovery device 1A, and further the above-mentioned changes can be applied.
  • the lithium-containing compound recovery device and the lithium ion recovery method
  • JP-A-2015-34315 and JP-A-5765850 can be referred to as needed.
  • NISSO-PB B-1000 (trade name, 1,2-polybutadiene homopolymer, manufactured by Nippon Soda Co., Ltd.) and V-601 (trade name, oil-soluble azo polymerization initiator, Wako Pure Chemical Industries, Ltd.) 1.4 g
  • DMAc oil-soluble azo polymerization initiator, Wako Pure Chemical Industries, Ltd.
  • This suspension was applied on a Petri dish having a diameter of 4.9 cm, allowed to stand at room temperature overnight, and further dried by blowing air at 50 ° C. for 5 hours and vacuum-dried at 100 ° C. for 5 hours.
  • a lithium ion selective permeable membrane 101 (thickness: 200 ⁇ m) was manufactured. Further, the constituent materials of the lithium ion selective permeable membrane (lithium ion conductor (A), polymer (B), the polymer (C), and the organic solvent) were subjected to Test No. Test No. 101 except that the composition of Table 1 described below was used instead of the composition of Test No. 101. Test No. 101 in the same manner as in the preparation of the lithium ion selective permeable membrane of No. 101.
  • Lithium ion selective permeable membranes of 102 to 108 and c11 to c14 were produced. Each thickness was 200 ⁇ m.
  • the test No. As shown in the evaluation of film forming properties described below, the lithium ion selective permeable films of c11, c12 and c14 did not have sufficient binding properties and could not be taken out as films. Test No. Although the lithium ion selective permeable membrane of c13 was formed, it had many defects, and the following lithium ion selective permeable membrane could not be evaluated.
  • Test No. Test Nos. 101 to 108 are the lithium ion selective permeable membranes of the present invention.
  • c11 to c14 are lithium ion selective permeable membranes for comparison.
  • Lithium ion recovery rate By measuring the lithium ion concentration of the recovery solution 6 after performing the electrodialysis for 3 hours, the ratio of lithium ions transferred from the stock solution 5 to the recovery solution 6 was determined, and the lithium ion recovery rate was evaluated by applying the following evaluation criteria. . -Evaluation criteria- A: 10% or more B: 5% or more and less than 10% C: Exceeding detection limit and less than 5% D: below detection limit
  • Lithium ion selectivity Ratio of lithium ions in the total amount of lithium ions and sodium ions in the recovered solution 6 after electrodialysis for 3 hours (content of Li + (mol) / [total content of Li + and Na + (mol)]) ) was determined, and lithium ion selectivity was evaluated by applying the following evaluation criteria.
  • Lithium ion conductor (A) LAGP: Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (median diameter 10 ⁇ m, manufactured by Wako Pure Chemical Industries, Ltd.) (2) Polymer (B) (P1-1) to (P1-6): Polymers (P1-1) to (P1-6) synthesized above. (CP1-1): poly (ethylene-co-acrylic acid) (manufactured by Aldrich) (CP1-2): a polymer (cP1-1) neutralized with NaOH (neutralization ratio of 90% or more) at the time of liquid preparation. SP value: Shows the SP value of the structural unit represented by the general formula (B1).
  • No. c11 uses a low molecular weight organic lithium salt compound and a water-insoluble polymer (C).
  • C water-insoluble polymer
  • an anionic group-containing polymer having a carboxy group bonded directly to the polymer main chain was used.
  • No. 14 manufactures a lithium ion selective permeable membrane using the Na salt of the anionic group-containing polymer, and in each case, the polymer (B) having a structural unit represented by the general formula (B1) in the present invention (B1) ) Is not contained.
  • a lithium ion selective permeable membrane is prepared using an anionic group-containing polymer in which a carboxy group is directly bonded to a polymer main chain and a water-insoluble polymer (C). It does not contain the polymer (B) having the represented structural unit.
  • This No. Although c13 could be taken out from the petri dish as a film, the obtained film had many defects and could not be evaluated for performance as a lithium ion selective permeable film.
  • the lithium ion selective permeable membrane of the present invention having the polymer (B) having the structural unit represented by the general formula (B1) was excellent in film formability. Moreover, this lithium ion selective permeable membrane showed an excellent lithium ion recovery rate and lithium ion selectivity. Furthermore, the selectively permeable lithium ion membrane of the present invention was excellent in both membrane strength and water permeability.
  • Lithium ion recovery device 1A, 1B Lithium ion recovery device 2 Processing tank 3 Positive electrode 4 Negative electrode 5 undiluted solution 6 Recovered liquid 10 Lithium ion selective permeable membrane 11 Stock solution storage tank 12 Recovery liquid storage tank 13a-e piping 14a-e pump 15 Lithium-containing compound recovery department 16 Power supply 17 stirrer 18 Turntable 100 Lithium-containing compound recovery device

Abstract

Provided are a lithium ion permselective membrane having excellent membrane formability and Li+ selectivity, a lithium ion recovery device and a lithium-containing compound recovery device having excellent Li+ selectivity, and a lithium ion recovery method. The lithium ion permselective membrane contains a lithium ion conductor and a specific polymer (B) having an anionic group.

Description

リチウムイオン選択透過膜、この膜を用いたリチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法Lithium ion selective permeable membrane, lithium ion recovery apparatus and lithium-containing compound recovery apparatus using this membrane, and lithium ion recovery method

 本発明は、リチウムイオン選択透過膜に関する。また本発明は、この膜を用いたリチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法に関する。

The present invention relates to a lithium ion selective permeable membrane. The present invention also relates to a lithium ion recovery device, a lithium-containing compound recovery device, and a lithium ion recovery method using the membrane.

 ガソリン車及びディーゼル車に対して電気自動車は環境負荷が少ないため普及が進められている。電気自動車に搭載される大型リチウム(Li)イオン電池には、LiCO等のリチウム含有化合物(以下、リチウム含有化合物、リチウム原子及び/又はリチウムイオンを合わせて「リチウム等」と称することがある。)が用いられる。また、リチウム原子は、核融合炉の燃料となる三重水素(トリチウム)を人工的に製造する際に用いられる。そのため、リチウム原子及びリチウム含有化合物の需要が急速に増加している。

Electric vehicles, which have less environmental impact than gasoline and diesel vehicles, have been widely used. Large lithium (Li) ion batteries mounted on electric vehicles include lithium-containing compounds such as Li 2 CO 3 (hereinafter, lithium-containing compounds, lithium atoms and / or lithium ions are collectively referred to as “lithium or the like”. Is used.) Lithium atoms are used when artificially producing tritium (tritium) as fuel for a nuclear fusion reactor. Therefore, the demand for lithium atoms and lithium-containing compounds is rapidly increasing.

 地球にはリチウム等が大量に存在している。しかし、地中にリチウム等が埋蔵されている地域には偏りがある。一方、リチウム等は海水に大量に含まれており、海水中のリチウム等の含有量は、地中におけるリチウム等の埋蔵量に対して膨大である。また、リチウム等は、豆腐作りに用いられる「にがり」、使用済みリチウムイオン電池の電解液、及び海水の淡水化処理時に排出される濃縮液等にも含まれる。しかし、海水、にがり、電解液、濃縮液等の各リチウム含有液には、リチウム(イオン)だけでなく、カリウム、ナトリウム、カルシウム等の他の金属(イオン)が含有されている。そのため、上述のリチウム含有液からリチウム等を回収するために、リチウムイオンを他の金属イオンから分離する膜(以下、リチウムイオン分離膜と称す。)の開発が進められている。

There is a large amount of lithium and the like on the earth. However, areas where lithium and the like are buried underground are uneven. On the other hand, lithium and the like are contained in large amounts in seawater, and the content of lithium and the like in seawater is enormous relative to the reserves of lithium and the like in the ground. Further, lithium and the like are also included in “Nigari” used for making tofu, an electrolyte for a used lithium ion battery, a concentrated solution discharged during desalination of seawater, and the like. However, each lithium-containing liquid such as seawater, bittern, an electrolytic solution, and a concentrated solution contains not only lithium (ion) but also other metals (ions) such as potassium, sodium, and calcium. Therefore, in order to recover lithium and the like from the above-described lithium-containing liquid, a membrane for separating lithium ions from other metal ions (hereinafter, referred to as a lithium ion separation membrane) is being developed.

 例えば、特許文献1には、樹脂粒子と、リチウムイオン伝導性を有する固体電解質粒子とを同一面に一層に配列し、上記樹脂の融点以上に加熱して、上記固体電解質粒子の一部を膜の両面に露出させた膜が記載されている。この膜は、リチウムイオンを選択的に透過させることができるとされる。また、リチウムイオン分離膜とは求められる特性は異なるが、リチウムイオンを伝導するシートとして、固体二次電池の固体電解質層の製造に適用される固体電解質シートが挙げられる。例えば、特許文献2には、リチウムイオン伝導性を有する固体電解質及び結着材を、フッ素系溶剤を含有する分散媒中に分散させてなる組成物を、基材上に塗工し、熱処理して得られる固体電解質シートが記載されている。

For example, in Patent Literature 1, resin particles and solid electrolyte particles having lithium ion conductivity are arranged in one layer on the same surface, and heated to a temperature equal to or higher than the melting point of the resin to form a part of the solid electrolyte particles into a film. The film exposed on both sides is described. This film is said to be capable of selectively transmitting lithium ions. In addition, although the required properties are different from those of the lithium ion separation membrane, a sheet that conducts lithium ions includes a solid electrolyte sheet applied to the production of a solid electrolyte layer of a solid secondary battery. For example, Patent Literature 2 discloses that a composition obtained by dispersing a solid electrolyte having lithium ion conductivity and a binder in a dispersion medium containing a fluorine-based solvent is coated on a substrate, and heat-treated. The solid electrolyte sheet obtained by the above method is described.

特開2017-216066号公報JP-A-2017-216066 特開2010-146823号公報JP 2010-146823 A

 リチウムイオンを選択的に透過する膜(以下、「リチウムイオン選択透過膜」と称す。)には、より高い選択性で迅速にリチウムイオン(以下、「Li」とも記す。)を回収するための特性が要求されている。さらに、このリチウムイオン選択透過膜は、リチウムイオン伝導体同士が結着されて膜の形状を維持できること、すなわち成膜性を有することが望ましい。上記成膜性を有すると、リチウムイオン伝導体間の空隙を減らすこと(例えば、リチウムイオン伝導体間の距離を短くすること)ができるため、単位膜面積あたりのリチウムイオンの透過性を向上させることが可能である。しかし、特許文献1記載の膜及び特許文献2記載のシートは、リチウムイオン選択透過膜としての必要な特性であるリチウムイオンの選択性及び回収速度(回収率)に優れた膜及びシートを調製しようとしたとき、成膜性が劣る。

A membrane that selectively permeates lithium ions (hereinafter, referred to as a “lithium ion selective permeation membrane”) is used to quickly recover lithium ions (hereinafter, also referred to as “Li + ”) with higher selectivity. Characteristics are required. Further, it is desirable that the lithium ion selective permeable membrane be capable of maintaining the shape of the membrane by binding lithium ion conductors to each other, that is, to have a film-forming property. With the above film forming property, the gap between the lithium ion conductors can be reduced (for example, the distance between the lithium ion conductors can be reduced), so that the permeability of lithium ions per unit film area can be improved. It is possible. However, the membrane described in Patent Literature 1 and the sheet described in Patent Literature 2 are intended to prepare membranes and sheets excellent in lithium ion selectivity and lithium ion selectivity and recovery rate (recovery rate), which are necessary properties as a lithium ion selective permeable membrane. , The film formability is inferior.

 本発明は、成膜性に優れ、かつ、リチウムイオンの選択性及び回収速度(以下、この2つの特性を併せて「Li選択特性」とも称す。)のいずれにも優れたリチウムイオン選択透過膜を提供することを課題とする。また本発明は、Li選択特性に優れたリチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法を提供することを課題とする。

INDUSTRIAL APPLICABILITY The present invention has excellent lithium ion selectivity and excellent lithium ion selectivity and recovery rate (hereinafter, these two properties are collectively referred to as "Li + selective properties"). It is an object to provide a membrane. It is another object of the present invention to provide a lithium ion recovery device, a lithium-containing compound recovery device, and a lithium ion recovery method that are excellent in Li + selection characteristics.

 上記課題に鑑み、本発明者は鋭意検討を行ったところ、リチウムイオン伝導体(A)と、リチウムイオンを対カチオンとするアニオン性基を有する特定の構造単位を有するポリマー(B)とを組み合わせ用いると膜を形成でき、しかも得られる膜は上記の成膜性及びLi選択特性に優れることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。

In view of the above problems, the present inventors have conducted intensive studies and have found that a combination of a lithium ion conductor (A) and a polymer (B) having a specific structural unit having an anionic group having a lithium ion as a counter cation is combined. It has been found that when used, a film can be formed, and the obtained film is excellent in the above-described film forming properties and Li + selectivity. The present invention has been further studied based on these findings, and has been completed.

 上記の課題は以下の手段により解決された。

<1>

 リチウムイオン伝導体(A)と、下記一般式(B1)で表される構造単位を有するポリマー(B)とを含有する、リチウムイオン選択透過膜。

Figure JPOXMLDOC01-appb-C000003

 上記式中、L及びLは各々独立に置換基を有していてもよいアルキレン基を示し、R~Rは各々独立に水素原子又はアルキル基を示し、Aは-NR-、-O-又は-S-を示し、Rは水素原子又はアルキル基を示し、YB1は対イオンとしてリチウムイオンを有するアニオン性基を示す。*はポリマーの構造単位としての結合部位を示す。

<2>

 上記一般式(B1)で表される構造単位のSP値が14以上24以下である、<1>に記載のリチウムイオン選択透過膜。

<3>

 上記一般式(B1)で表される構造単位が下記一般式(B2)で表される構造単位である、<1>又は<2>に記載のリチウムイオン選択透過膜。

Figure JPOXMLDOC01-appb-C000004

 上記式中、L21及びL22は各々独立に炭素数1~7のアルキレン基を示し、R21~R23は各々独立に水素原子又は炭素数1~4のアルキル基を示し、YB2は上記YB1と同義である。*はポリマーの構造単位としての結合部位を示す。

<4>

 上記アニオン性基が-SO Liである、<1>~<3>のいずれか1つに記載のリチウムイオン選択透過膜。

<5>

 上記ポリマー(B)とは異なる非水溶性ポリマー(C)であって、シアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれか1種以上を有し、かつ、ガラス転移温度が0℃以下である非水溶性ポリマー(C)を含有する、<1>~<4>のいずれか1つに記載のリチウムイオン選択透過膜。

<6>

 <1>~<5>のいずれか1つに記載のリチウムイオン選択透過膜を有する、リチウムイオン回収装置。

<7>

 <6>に記載のリチウムイオン回収装置を備える、リチウム含有化合物回収装置。

<8>

 <1>~<5>のいずれか1つに記載のリチウムイオン選択透過膜を用いてリチウムイオンを回収することを含む、リチウムイオンの回収方法。

The above problem has been solved by the following means.

<1>

A selectively permeable lithium ion membrane comprising a lithium ion conductor (A) and a polymer (B) having a structural unit represented by the following general formula (B1).

Figure JPOXMLDOC01-appb-C000003

In the above formula, L 1 and L 2 each independently represent an alkylene group which may have a substituent, R 1 to R 3 each independently represent a hydrogen atom or an alkyl group, and A represents —NR 4 − , —O— or —S—, R 4 represents a hydrogen atom or an alkyl group, and Y B1 represents an anionic group having a lithium ion as a counter ion. * Indicates a binding site as a structural unit of the polymer.

<2>

The lithium ion selective permeable membrane according to <1>, wherein the structural unit represented by the general formula (B1) has an SP value of 14 or more and 24 or less.

<3>

The lithium ion selective permeable membrane according to <1> or <2>, wherein the structural unit represented by the general formula (B1) is a structural unit represented by the following general formula (B2).

Figure JPOXMLDOC01-appb-C000004

In the above formula, L 21 and L 22 each independently represent an alkylene group having 1 to 7 carbon atoms, R 21 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Y B2 represents It has the same meaning as YB1 described above. * Indicates a binding site as a structural unit of the polymer.

<4>

The anionic group is -SO 3 - is a Li +, <1> ~ < 3> lithium ion permselective membrane according to any one of.

<5>

A water-insoluble polymer (C) different from the polymer (B), wherein at least one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond And the water-insoluble polymer (C) having a glass transition temperature of 0 ° C. or lower, wherein the lithium ion selective permeable membrane according to any one of <1> to <4>.

<6>

A lithium ion recovery device having the lithium ion selective permeable membrane according to any one of <1> to <5>.

<7>

A lithium-containing compound recovery device comprising the lithium ion recovery device according to <6>.

<8>

A method for recovering lithium ions, comprising recovering lithium ions using the lithium ion selective permeable membrane according to any one of <1> to <5>.

 本明細書において、特に断りがない限り、特定の符号又は式で表示された置換基、連結基、構造単位等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。

 本明細書において、各置換基の例として説明される各基の「基」は無置換の形態及び置換基を有する形態のいずれも包含する意味に用いる。例えば、「アルキル基」は置換基を有してもよいアルキル基を意味する。また、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。

 本発明において、化合物の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、構造の一部を変化させたものを含む意味である。更に、置換又は無置換を明記していない化合物については、本発明の効果を損なわない範囲で、任意の置換基を有していてもよい意味である。このことは、置換基及び連結基についても同様である。

 本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの両者を含む意味に用いる。このことは、「(メタ)アクリル酸」、「(メタ)アクリルアミド」、「(メタ)アクリロニトリル」及び「(メタ)アクリロイル基」についても同様である。

 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。

 本明細書において、SP値はその単位である(cal/cm1/2を省略して記載する。

In this specification, unless otherwise specified, when there are a plurality of substituents, linking groups, structural units, and the like (hereinafter, referred to as substituents) represented by a specific code or formula, or when a plurality of Alternatively, when they are alternatively specified, the respective substituents and the like may be the same or different from each other. This holds true for the definition of the number of substituents and the like.

In the present specification, the “group” of each group described as an example of each substituent is used to mean both an unsubstituted form and a form having a substituent. For example, “alkyl group” means an alkyl group which may have a substituent. Further, when the number of carbon atoms of the group is limited, the number of carbon atoms of the group means the total number of carbon atoms including the substituent unless otherwise specified.

In the present invention, the term “compound” is used to include not only the compound itself but also its salt and its ion. Also, it is meant to include a structure in which a part of the structure is changed, as long as the effects of the present invention are not impaired. Further, a compound that is not specified to be substituted or unsubstituted may have any substituent within a range that does not impair the effects of the present invention. This is the same for the substituent and the linking group.

In this specification, “(meth) acrylate” is used to mean both acrylate and methacrylate. The same applies to “(meth) acrylic acid”, “(meth) acrylamide”, “(meth) acrylonitrile” and “(meth) acryloyl group”.

In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.

In the present specification, the SP value is described by omitting the unit (cal / cm 3 ) 1/2 .

 本発明のリチウムイオン選択透過膜は、成膜性に優れ、かつ、リチウムイオンの選択性及び回収速度(Li選択特性)にも優れる。また、本発明の、リチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法は、リチウムイオン若しくはリチウム含有化合物を優れた回収速度かつ優れた選択性で回収することを可能にする。

The lithium ion permselective membrane of the present invention is excellent in film-forming properties, and is also excellent in lithium ion selectivity and recovery rate (Li + selectivity). Further, the lithium ion recovery device, the lithium-containing compound recovery device, and the lithium ion recovery method of the present invention enable lithium ions or lithium-containing compounds to be recovered at an excellent recovery rate and an excellent selectivity. .

図1は、本発明の一実施形態に係るリチウムイオン回収装置の模式図である。FIG. 1 is a schematic diagram of a lithium ion recovery device according to one embodiment of the present invention. 図2は、本発明の一実施形態に係るリチウム含有化合物回収装置の模式図である。FIG. 2 is a schematic diagram of a lithium-containing compound recovery device according to one embodiment of the present invention.

<リチウムイオン選択透過膜>

 本発明のリチウムイオン選択透過膜は、リチウムイオン伝導体(A)と、下記一般式(B1)で表される構造単位を有するポリマー(B)(以下、単に「ポリマー(B)」とも称す。)とを含有する。本発明のリチウムイオン選択透過膜の形態は、成膜性を有し、リチウムイオンの伝導性を有する形態であればよい。本発明のリチウムイオン選択透過膜を構成するリチウムイオン伝導体(A)及びポリマー(B)は共にリチウムイオン伝導性を有する。このため、膜の一形態としては、リチウムイオン伝導体(A)がポリマー(B)中に分散した形態(例えば複合膜の形態)が挙げられる。この分散は、ランダム、規則的等いずれであってもよい。

 本発明のリチウムイオン選択透過膜は上記構成を有することにより、成膜性、並びに、リチウムイオンの選択性及び回収速度に優れる。この理由は定かではないが以下のように推定される。

 ポリマー(B)は、リチウムイオン(以下、「Li」とも記す。)を対カチオンとするアニオン性基を、-L-A-L-で表される特定の鎖長以上の連結基を介して炭素鎖に有する、特定の構造単位を有する。ポリマー(B)がこのアニオン性基を有するため、本発明のリチウムイオン選択透過膜において、リチウムイオン選択性の高いリチウムイオン伝導体(A)がポリマー(B)中に分散した状態で、イオン伝導体(A)とポリマー(B)とが相互作用して、リチウムイオン伝導体(A)同士を十分に結着させ、更に、リチウムイオン伝導体(A)とポリマー(B)との密着性をも高めることができ、優れた成膜性を示すと考えられる。しかも、ポリマー(B)中のアニオン性基は上記の様に特定の鎖長以上の連結基を介して炭素鎖に結合しているため、適度な運動性を有している。そのため、ポリマー(B)は、共存するリチウムイオン伝導体(A)のイオン伝導性を阻害しないばかりか、自身が示すリチウムイオン伝導性によりリチウムイオン伝導体(A)のリチウムイオン伝導性を補強できる。その結果、本発明のリチウムイオン選択透過膜はリチウムイオンの透過性が高められ、優れたリチウムイオンの回収速度を示すと考えられる。

<Lithium ion selective permeable membrane>

The lithium ion selective permeable membrane of the present invention is a lithium ion conductor (A) and a polymer (B) having a structural unit represented by the following general formula (B1) (hereinafter, also simply referred to as “polymer (B)”). ). The form of the lithium ion selective permeable membrane of the present invention may be any form that has film-forming properties and has lithium ion conductivity. Both the lithium ion conductor (A) and the polymer (B) constituting the lithium ion selective permeable membrane of the present invention have lithium ion conductivity. Therefore, one form of the membrane includes a form in which the lithium ion conductor (A) is dispersed in the polymer (B) (for example, a form of a composite film). This variance may be random, regular, or the like.

The lithium ion selective permeable membrane of the present invention having the above-described configuration is excellent in film forming property, lithium ion selectivity and recovery rate. The reason for this is not clear, but is presumed as follows.

The polymer (B) is formed by linking an anionic group having a lithium ion (hereinafter also referred to as “Li + ”) as a counter cation to a linking group having a specific chain length or more represented by —L 1 -AL 2 —. And has a specific structural unit having a carbon chain. Since the polymer (B) has the anionic group, in the lithium ion selective permeable membrane of the present invention, the lithium ion conductor (A) having a high lithium ion selectivity is dispersed in the polymer (B) in the state where the ion conductivity is high. The body (A) and the polymer (B) interact with each other to sufficiently bind the lithium ion conductors (A) to each other, and further to improve the adhesion between the lithium ion conductor (A) and the polymer (B). Can be increased, and it is considered that excellent film-forming properties are exhibited. In addition, since the anionic group in the polymer (B) is bonded to the carbon chain via a linking group having a specific length or more as described above, the polymer has an appropriate mobility. Therefore, the polymer (B) not only does not inhibit the ionic conductivity of the coexisting lithium ion conductor (A) but also reinforces the lithium ion conductivity of the lithium ion conductor (A) by its own lithium ion conductivity. . As a result, it is considered that the lithium ion selective permeable membrane of the present invention has enhanced lithium ion permeability and exhibits an excellent lithium ion recovery rate.

 本発明のリチウムイオン選択透過膜の膜厚は、目的とする態様及び組み込まれる装置の大きさ等に応じて適宜選択することができる。例えば、1~1000μmであり、10~500μmとしてもよい。

 本発明のリチウムイオン選択透過膜は、支持体及び基板を有する形態でもよい。本発明のリチウムイオン選択透過膜は、優れた成膜性を有するため支持体及び基板を用いずとも膜単独で扱うこともできる。

 本発明のリチウムイオン選択透過膜をリチウムイオン回収装置又はリチウム含有化合物回収装置に組み込み際には、膜面積は、目的とする態様及び組み込まれる装置の大きさ等に応じて適宜選択することができる。例えば、0.5~500000cmであり、1~100000cmとしてもよい。

The thickness of the lithium ion selective permeable membrane of the present invention can be appropriately selected according to the intended mode, the size of the device to be incorporated, and the like. For example, it is 1 to 1000 μm, and may be 10 to 500 μm.

The lithium ion selective permeable membrane of the present invention may be in a form having a support and a substrate. Since the lithium ion selective permeable membrane of the present invention has excellent film-forming properties, it can be handled alone without using a support or a substrate.

When incorporating the lithium ion selective permeable membrane of the present invention into a lithium ion recovery device or a lithium-containing compound recovery device, the membrane area can be appropriately selected depending on the intended mode, the size of the device to be incorporated, and the like. . For example, it is 0.5 to 500,000 cm 2 and may be 1 to 100,000 cm 2 .

(リチウムイオン伝導体(A))

 本発明に用いられるリチウムイオン伝導体(A)は、リチウムイオンの伝導性(リチウムイオンを伝導し、カリウム、ナトリウム等の他の金属イオンを伝導しにくい(望ましくは伝導しない))を示す化合物であれば特に制限されない。また、リチウムイオン伝導体(A)は、後述する、リチウム含有液及び回収液に対する耐性(例えば後述する「非水溶性」)を有するものが好ましい。リチウムイオン伝導体(A)の具体例としては、酸化物系無機固体電解質が挙げられる。酸化物系無機固体電解質は、酸素原子を含有し、かつ、リチウムイオン伝導性を有する化合物が好ましい。

 なお、本発明に用いられるリチウムイオン伝導体(A)は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、水、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している、リチウム塩とは明確に区別される。すなわち、リチウムイオン伝導体(A)はリチウム塩を含まない意味で使用する。ここで、リチウム塩とは、低分子量の無機若しくは有機リチウム塩化合物(例えば後述する実施例の試験No.c11で用いたCFSOLi)をいう。

(Lithium ion conductor (A))

The lithium ion conductor (A) used in the present invention is a compound exhibiting lithium ion conductivity (conducts lithium ions and does not easily conduct other metal ions such as potassium and sodium (preferably does not conduct)). If it is, there is no particular limitation. Further, the lithium ion conductor (A) preferably has resistance to a lithium-containing liquid and a recovery liquid described later (for example, “water-insoluble” described later). Specific examples of the lithium ion conductor (A) include an oxide-based inorganic solid electrolyte. The oxide-based inorganic solid electrolyte is preferably a compound containing an oxygen atom and having lithium ion conductivity.

Since the lithium ion conductor (A) used in the present invention is a solid in a steady state, it is generally not dissociated or released into cations and anions. In this regard, it is clearly distinguished from water or lithium salts, in which cations and anions are dissociated or free in the polymer. That is, the lithium ion conductor (A) is used in the sense that it does not contain a lithium salt. Here, the lithium salt refers to a low-molecular weight inorganic or organic lithium salt compound (for example, CF 3 SO 3 Li used in Test No. c11 in Examples described later).

 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等のうちの少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等のうちの少なくとも1種)等も好ましく用いることができる。

Specific examples of the compound include, for example, Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ≦ xb ≦ 10, and yb satisfies 1 ≦ yb Satisfies ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20), Li xc Byc M cc zc O nc (M cc is Xc satisfies 0 <xc ≦ 5, yc satisfies 0 <yc ≦ 1, and zc satisfies 0 <zc ≦ C, S, Al, Si, Ga, Ge, In and Sn. met 1, nc satisfies 0 <nc ≦ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7, 3 ≦ nd ≦ 13), Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, .D ee M ee is representative of a divalent metal atom is a halogen atom or Represents a combination of two or more halogen atoms.), Li xf Si yf O zf (1 ≦ xf ≦ 5, 0 <yf ≦ 3, 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3, 0 <yg ≦ 2, 1 ≦ zg ≦ 10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w <1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure LiTi 2 P 3 O 12 , Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), garnet Li 7 La 3 Zr 2 O 12 (LLZ) having a type crystal structure is exemplified. Further, a phosphorus compound containing Li, P and O is also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON in which a part of oxygen of lithium phosphate is substituted by nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). Further, LiA 1 ON (A 1 is at least one of Si, B, Ge, Al, C, Ga, and the like) and the like can also be preferably used.

 リチウムイオン伝導体(A)は粒子であることが好ましい。この場合、リチウムイオン伝導体粒子のメジアン径D50は、特に限定されないが、膜強度を向上させるため、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。下限としては、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.6μm以上であることがさらに好ましい。

 リチウムイオン伝導体(A)は、リチウムイオン選択透過膜の成膜前後において、その粒子径は大きく変化せず、製膜後はポリマー(B)中に分散して存在する形態が好ましい。そのため、リチウムイオン選択透過膜を成膜する際の原料として、粒子状のリチウムイオン伝導体(A)を使用することが好ましい。

 リチウムイオン伝導体(A)の粒子の平均粒子径の測定は、以下の手順で行う。リチウムイオン伝導体粒子を、ヘプタンを用いて20mLサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。

The lithium ion conductor (A) is preferably a particle. In this case, the median diameter D50 of the lithium ion conductor particles is not particularly limited, but is preferably 30 μm or less, more preferably 20 μm or less, and more preferably 15 μm or less, in order to improve the film strength. preferable. The lower limit is preferably 0.1 μm or more, more preferably 0.3 μm or more, and even more preferably 0.6 μm or more.

The lithium ion conductor (A) preferably has a form in which the particle size does not largely change before and after the formation of the lithium ion selective permeable membrane, and is dispersed in the polymer (B) after the film is formed. Therefore, it is preferable to use the particulate lithium ion conductor (A) as a raw material for forming the lithium ion selective permeable membrane.

The measurement of the average particle diameter of the particles of the lithium ion conductor (A) is performed according to the following procedure. The lithium ion conductor particles are diluted with 1% by weight of a dispersion of 1% by mass in a 20 mL sample bottle using heptane. The dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test. Using this dispersion liquid sample, data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement. Obtain the volume average particle size. For other detailed conditions, refer to the description of JIS Z 8828: 2013 “Particle size analysis-dynamic light scattering method” as necessary. Five samples are prepared for each level, and the average value is adopted.

 本発明のリチウムイオン選択透過膜は、リチウムイオン伝導体(A)を1種含有していてもよく、2種以上を含有していてもよい。

 本発明のリチウムイオン選択透過膜中のリチウムイオン伝導体(A)の含有量は、リチウムイオンの回収速度及び選択性を向上させるため、全固形分中、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。上限は、成膜性の点で、90質量%以下が好ましく、80質量%以下がさらに好ましい。

 本発明において固形分とは、50℃で5時間送風乾燥し、100℃で5時間真空乾燥してリチウムイオン選択透過膜を形成した際に、膜中に残る成分、具体的には後述する溶媒以外の成分を意味する。

The lithium ion selective permeable membrane of the present invention may contain one type of lithium ion conductor (A), or may contain two or more types.

The content of the lithium ion conductor (A) in the lithium ion selective permeable membrane of the present invention is preferably 20% by mass or more, and more preferably 30% by mass in the total solid content in order to improve the recovery rate and selectivity of lithium ions. The above is more preferable, and 40% by mass or more is further preferable. The upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less, from the viewpoint of film formability.

In the present invention, the solid content refers to a component remaining in the film when a lithium ion selective permeable membrane is formed by drying by blowing air at 50 ° C. for 5 hours and vacuum drying at 100 ° C. for 5 hours, specifically, a solvent described below. Means other components.

(式(B)で表される構造単位を有するポリマー)

 下記一般式(B)で表される構造単位を有するポリマーは、アニオン性基における対カチオンが水素原子又はアルカリ金属イオンであるポリマーであり、対カチオンをリチウムイオンに限定した、本発明のリチウムイオン選択透過膜の構成材料であるポリマー(B)と、対カチオンをナトリウムイオン若しくはカリウムイオンに限定したポリマー(b)とを包含する。

 下記一般式(B)で表される構造単位を有するポリマーは、下記構造単位を有していればその種類は特に制限されないが、高い柔軟性を示し、上述の作用効果を高い水準で実現できる点で、(水素化)脂肪族炭化水素ポリマー等が好ましく、(水素化)脂肪族非環式炭化水素ポリマーがより好ましい。

 脂肪族炭化水素ポリマー及び脂肪族非環式炭化水素ポリマーとしては、飽和でも不飽和でもよく、ポリマー主鎖が主に炭素-炭素結合で形成されていることが好ましい。例えば、主鎖に二重結合を有するジエン系ポリマー、及び主鎖に二重結合を有しない非ジエン系ポリマーが挙げられる。具体的には、ポリブタジエン、ポリイソプレン、ブチルゴム、アクリロニトリル-ブタジエン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、又は、後述する芳香族炭化水素ポリマーの水素還元体が挙げられる。

(Polymer having structural unit represented by formula (B))

The polymer having a structural unit represented by the following general formula (B) is a polymer in which the counter cation in the anionic group is a hydrogen atom or an alkali metal ion, and the lithium cation of the present invention in which the counter cation is limited to lithium ion. It includes a polymer (B) which is a constituent material of the permselective membrane and a polymer (b) in which the counter cation is limited to sodium ion or potassium ion.

The type of the polymer having the structural unit represented by the following general formula (B) is not particularly limited as long as it has the following structural unit, but the polymer has high flexibility and can achieve the above-described effects at a high level. In this respect, (hydrogenated) aliphatic hydrocarbon polymers and the like are preferable, and (hydrogenated) aliphatic acyclic hydrocarbon polymers are more preferable.

The aliphatic hydrocarbon polymer and the aliphatic acyclic hydrocarbon polymer may be saturated or unsaturated, and preferably have a polymer main chain mainly formed of carbon-carbon bonds. For example, a diene-based polymer having a double bond in the main chain and a non-diene-based polymer having no double bond in the main chain are exemplified. Specific examples thereof include polybutadiene, polyisoprene, butyl rubber, acrylonitrile-butadiene copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, or a hydrogen reduced product of an aromatic hydrocarbon polymer described later. Can be

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

 上記式中、L及びLは各々独立に置換基を有していてもよいアルキレン基を示し、R~Rは各々独立に水素原子又はアルキル基を示し、Aは-NR-、-O-又は-S-を示し、Rは水素原子又はアルキル基を示し、Yは対イオンとして水素原子又はアルカリ金属イオン(好ましくは、リチウムイオン、ナトリウムイオン又はカリウムイオン)を有するアニオン性基を示す。*はポリマーの構造単位としての結合部位を示す。

In the above formula, L 1 and L 2 each independently represent an alkylene group which may have a substituent, R 1 to R 3 each independently represent a hydrogen atom or an alkyl group, and A represents —NR 4 − , -O- or -S-, R 4 represents a hydrogen atom or an alkyl group, and Y B represents an anion having a hydrogen atom or an alkali metal ion (preferably a lithium ion, a sodium ion or a potassium ion) as a counter ion. Represents a functional group. * Indicates a binding site as a structural unit of the polymer.

 本発明において、アニオン性基とは、アニオンを形成し、ポリマー自体にリチウムイオン伝導性を付与し得る基であればよい。このようなアニオン性基としては、-C(=O)OM、-S(=O)OM、-OS(=O)OM、-P(=O)(OM)又は-OP(=O)(OM)等が挙げられる。

 Mは水素原子又はアルカリ金属イオンを示す。本発明のリチウムイオン選択透過膜中において、上記Mは乖離(遊離)していても、乖離(遊離)していなくてもよい。Mは、リチウムイオン選択透過膜の構成材料であるポリマー(B)においてはリチウムイオンであり、ポリマー(b)においては水素原子、又は、リチウムイオンを除くアルカリ金属イオンである。

 上記アニオン性基は、-C(=O)OM又は-S(=O)OMが好ましく、より優れたリチウムイオンの回収速度を得る点から、イオン解離定数が大きい-S(=O)OMが好ましい。

 上記ポリマーは、上記式(B)で表される構造単位中に、式中で明記するY以外のYを有していてもよい。

 Y以外の各置換基については、以下、本発明のリチウムイオン選択透過膜の構成材料であるポリマー(B)で説明する。

In the present invention, the anionic group may be any group that can form an anion and impart lithium ion conductivity to the polymer itself. Such anionic groups, -C (= O) OM, -S (= O) 2 OM, -OS (= O) 2 OM, -P (= O) (OM) 2 or -OP (= O) (OM) 2 and the like.

M represents a hydrogen atom or an alkali metal ion. In the selectively permeable lithium ion membrane of the present invention, the M may be separated (free) or not separated (free). M is a lithium ion in the polymer (B) which is a constituent material of the lithium ion selective permeable membrane, and is a hydrogen atom or an alkali metal ion excluding the lithium ion in the polymer (b).

The anionic group is preferably —C (= O) OM or —S (= O) 2 OM, and —S (= O) 2 having a large ion dissociation constant from the viewpoint of obtaining a better lithium ion recovery rate. OM is preferred.

The polymer, in the structural unit represented by the above formula (B), may have a Y B except Meikisuru Y B in the formula.

For each substituent group other than Y B, hereinafter described polymer (B) is a structural material of a lithium ion selective permeable membrane of the present invention.

(ポリマー(B))

 - 式(B1)で表される構造単位 -

 本発明に用いられるポリマー(B)は、下記一般式(B1)で表される構造単位を有する。このポリマー(B)は、リチウムイオン伝導性を有している。

Figure JPOXMLDOC01-appb-C000006

(Polymer (B))

-Structural unit represented by formula (B1)-

The polymer (B) used in the present invention has a structural unit represented by the following general formula (B1). This polymer (B) has lithium ion conductivity.

Figure JPOXMLDOC01-appb-C000006

 上記式中、L及びLは各々独立に置換基を有していてもよいアルキレン基を示す。Lにおける置換基を有していてもよいアルキレン基の炭素数は、1~10が好ましく、1~7がより好ましく、1~5がさらに好ましく、1~3が特に好ましく、1又は2が最も好ましい。Lにおける置換基を有していてもよいアルキレン基の炭素数は、1~10が好ましく、1~7がより好ましく、1~5がさらに好ましく、1~3が最も好ましい。

 L及びLが有していてもよい置換基としては、本発明の効果を損なわない限り特に限定されないが、例えばヒドロキシ基、オキソ基(=O)又はYB1が挙げられる。

 また、L及びLにおける置換基を有していてもよいアルキレン基は、直鎖状、分岐状のいずれであってもよく、環構造(例えば、5又は6員環構造が挙げられ、環構成原子は炭素原子であることが好ましい。)を有していてもよい。L及びLが環構造を有するアルキレン基である場合、この環構造を構成する結合は、アニオン性基の運動性を損なわない観点から、-L-A-L-で示される基のうち下記の最短鎖中にないことが好ましく、この最短鎖中に、環構造を形成する原子の1つが4級炭素原子として存在することがより好ましい。

In the above formula, L 1 and L 2 each independently represent an alkylene group which may have a substituent. The carbon number of the alkylene group which may have a substituent in L 1 is preferably 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, particularly preferably 1 to 3, and 1 or 2 Most preferred. The number of carbon atoms of the alkylene group which may have a substituent in L 2 is preferably 1 to 10, more preferably from 1 to 7, more preferably 1 to 5, and most preferably 1-3.

The L 1 and L 2 substituents which may have is not particularly limited as long as it does not impair the effects of the present invention, such as hydroxy group, and oxo group (= O) or Y B1.

The alkylene group which may have a substituent in L 1 and L 2 may be linear or branched, and may have a ring structure (for example, a 5- or 6-membered ring structure, The ring-constituting atom is preferably a carbon atom.). When L 1 and L 2 are an alkylene group having a ring structure, the bond constituting the ring structure is a group represented by -L 1 -AL 2 -from the viewpoint of not impairing the mobility of the anionic group. Of these, it is preferable that the atom is not in the following shortest chain, and it is more preferable that one of the atoms forming the ring structure be present as a quaternary carbon atom in the shortest chain.

 R~Rは各々独立に水素原子又はアルキル基を示す。R~Rにおけるアルキル基の炭素数は、1~4が好ましく、1又は2がより好ましく、1がさらに好ましい。Rは水素原子又はメチルが好ましく、水素原子がより好ましい。R及びRはいずれも水素原子が好ましい。

 Aは-NR-、-O-又は-S-を示し、Rは水素原子又はアルキル基を示す。Rにおけるアルキル基は、上記R~Rにおけるアルキル基の記載を好ましく適用することができる。Rは水素原子がより好ましい。

 Aは-O-又は-S-が好ましく、-S-がより好ましい。

 YB1は対カチオンとしてリチウムイオンを有するアニオン性基を示す。好ましいアニオン性基については、前述のアニオン性基の記載を適用することができる。

 *はポリマーの構造単位としての結合部位を示す。

R 1 to R 3 each independently represent a hydrogen atom or an alkyl group. The alkyl group in R 1 to R 3 preferably has 1 to 4 carbon atoms, more preferably 1 or 2, and still more preferably 1. R 1 is preferably a hydrogen atom or methyl, and more preferably a hydrogen atom. Each of R 2 and R 3 is preferably a hydrogen atom.

A -NR 4 is -, - O-or -S- shown, R 4 represents a hydrogen atom or an alkyl group. As the alkyl group for R 4 , the description of the alkyl group for R 1 to R 3 can be preferably applied. R 4 is more preferably a hydrogen atom.

A is preferably -O- or -S-, and more preferably -S-.

Y B1 represents an anionic group having a lithium ion as a counter cation. As for preferable anionic groups, the description of the above-described anionic groups can be applied.

* Indicates a binding site as a structural unit of the polymer.

 上記一般式(B1)で表される構造単位において、Rが結合する炭素原子とアニオン性基YB1とを連結する鎖は、ポリマー(B)中におけるアニオン性基の比率を考慮すると長すぎないことが好ましい。具体的には、-L-A-L-で示される基のうち、最短鎖を構成する原子の結合数(以下、単に「最短原子数」とも称す。)は10以下が好ましく、8以下がより好ましく、7以下がさらに好ましく、6以下が最も好ましい。最短原子数の下限値は、アニオン性基に運動性を付与してリチウムイオンの透過性を高め、優れたリチウムイオンの回収速度を示す点から3以上であり、4以上が好ましく、5以上がより好ましい。

 例えば、実施例におけるポリマー(P1-1)が有する一般式(B1)で表される構造単位においては、エチレン基中の炭素原子2個、硫黄原子1個及びプロピレン基中の炭素原子3個の合計6が最短原子数となる。

 また、上記の最短鎖を主鎖として捉えた場合の側鎖、すなわちL、Lにおける分岐鎖、のうち最長鎖を構成する原子の結合数(以下、単に「最長原子数」とも称す。)は、5以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。

In the structural unit represented by the general formula (B1), the chain connecting the carbon atom to which R 1 is bonded and the anionic group Y B1 is too long in consideration of the ratio of the anionic group in the polymer (B). Preferably not. Specifically, among the groups represented by -L 1 -AL 2- , the number of bonds of atoms constituting the shortest chain (hereinafter, also simply referred to as "the shortest atom number") is preferably 10 or less, and 8 or less. The following is more preferable, the value of 7 or less is further preferable, and the value of 6 or less is most preferable. The lower limit of the minimum number of atoms is 3 or more, preferably 4 or more, more preferably 5 or more from the viewpoint of imparting mobility to the anionic group to increase the permeability of lithium ions and exhibit an excellent lithium ion recovery rate. More preferred.

For example, in the structural unit represented by the general formula (B1) in the polymer (P1-1) in the examples, two carbon atoms in the ethylene group, one sulfur atom and three carbon atoms in the propylene group are used. A total of 6 is the shortest atom number.

Further, the side chain when the shortest chain is regarded as the main chain, that is, the number of bonds of atoms constituting the longest chain among the branched chains in L 1 and L 2 (hereinafter, also simply referred to as “longest atom number”). ) Is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.

 一般式(B1)で表される構造単位のSP値の上限値は、アニオン性基を有する構造単位の疎水性を向上させ、水和イオンの透過を抑制し、リチウムイオン選択膜の透水性を抑制する点から、24以下が好ましく、22以下がより好ましい。このSP値の下限値は、14以上が好ましく、16以上がより好ましい。すなわち、上記SP値は14以上24以下であることが好ましく、16以上22以下がより好ましい。

 一般式(B1)で表される構造単位のSP値は以下のようにして求める。

The upper limit of the SP value of the structural unit represented by the general formula (B1) improves the hydrophobicity of the structural unit having an anionic group, suppresses the permeation of hydrated ions, and increases the water permeability of the lithium ion selective membrane. In respect of suppression, 24 or less is preferable, and 22 or less is more preferable. The lower limit of the SP value is preferably 14 or more, more preferably 16 or more. That is, the SP value is preferably from 14 to 24, and more preferably from 16 to 22.

The SP value of the structural unit represented by the general formula (B1) is determined as follows.

[SP値算出方法]

 本発明において「SP値」は、HSPiP 5th Edition 5.0.04(https://hansen-solubility.com/downloads.php)を用いて計算により決定される値である。ポリマー構造を計算する際には、繰り返し単位構造の両末端を*として計算する。

[SP value calculation method]

"SP value" as used herein is a value determined by calculation using the HSPiP 5 th Edition 5.0.04 (https://hansen-solubility.com/downloads.php) . In calculating the polymer structure, the calculation is made by setting both ends of the repeating unit structure to *.

 - 式(B2)で表される構造単位 -

 上記一般式(B1)で表される構造単位は、下記一般式(B2)で表される構造単位であることが好ましい。

Figure JPOXMLDOC01-appb-C000007

-Structural unit represented by formula (B2)-

The structural unit represented by the general formula (B1) is preferably a structural unit represented by the following general formula (B2).

Figure JPOXMLDOC01-appb-C000007

 上記式中、L21及びL22は各々独立に炭素数1~7のアルキレン基を示す。L21におけるアルキレン基の炭素数は、1~5が好ましく、1~3がより好ましく、1又は2がさらに好ましい。L22におけるアルキレン基の炭素数は、1~5が好ましく、1~3がより好ましい。

 L21及びL22における炭素数1~7のアルキレン基は、上記L及びLにおける置換基を有していてもよいアルキレン基の炭素数以外の記載を好ましく適用することができる。

 R21~R23は各々独立に水素原子又は炭素数1~4のアルキル基を示す。R21~R23におけるアルキル基の炭素数は、1又は2が好ましく、1がより好ましい。R21は水素原子又はメチルが好ましく、水素原子がより好ましい。R22及びR23はいずれも水素原子が好ましい。

 YB2は式(B1)中のYB1と同義であり、対カチオンとしてリチウムイオンを有するアニオン性基を示す。好ましいアニオン性基については、前述のアニオン性基の記載を適用することができる。

 *はポリマーの構造単位としての結合部位を示す。

In the above formula, L 21 and L 22 each independently represent an alkylene group having 1 to 7 carbon atoms. The carbon number of the alkylene group in L 21 is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1 or 2. The alkylene group in L 22 is preferably 1 to 5, 1 to 3 more preferred.

As the alkylene group having 1 to 7 carbon atoms in L 21 and L 22 , description other than the carbon number of the alkylene group which may have a substituent in L 1 and L 2 can be preferably applied.

R 21 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The number of carbon atoms of the alkyl group in R 21 to R 23 is preferably 1 or 2, more preferably 1. R 21 is preferably a hydrogen atom or methyl, and more preferably a hydrogen atom. Each of R 22 and R 23 is preferably a hydrogen atom.

Y B2 has the same meaning as Y B1 in Formula (B1), and represents an anionic group having a lithium ion as a counter cation. As for preferable anionic groups, the description of the above-described anionic groups can be applied.

* Indicates a binding site as a structural unit of the polymer.

 -L21-S-L22-で示される基のうち、最短鎖を構成する原子の結合原子数(以下、単に「最短原子数」とも称す。)は3~10であることが好ましい。この最短原子数、及び、この最短鎖を主鎖として捉えた場合の側鎖、すなわちL21、L22における分岐鎖、のうち最長鎖を構成する原子の結合数(以下、単に「最長原子数」とも称す。)については、上記一般式(B1)中の-L-A-L-で示される基における最短原子数及び最長原子数の記載を好ましく適用することができる。

-L 21 -S-L 22 - Of the groups represented, coupled atoms of the atoms that constitute the shortest chain (. Hereinafter, simply also referred to as "shortest number atoms") is preferably 3-10. The shortest number of atoms and the side chain when the shortest chain is regarded as the main chain, that is, the bond number of the atoms constituting the longest chain among the branched chains in L 21 and L 22 (hereinafter simply referred to as the “longest atom number The description of the shortest atom number and the longest atom number in the group represented by -L 1 -AL 2 -in the general formula (B1) can be preferably applied.

 - 式(b1)で表される構造単位 -

 ポリマー(B)とはアニオン性基における対カチオンが異なるポリマー(b)は、下記式(b1)で表される構造単位を有する。

Figure JPOXMLDOC01-appb-C000008

-Structural unit represented by formula (b1)-

The polymer (b) having a counter cation in the anionic group different from that of the polymer (B) has a structural unit represented by the following formula (b1).

Figure JPOXMLDOC01-appb-C000008

 上記式中、L、L、R~R及びAは、上記式(B1)におけるL、L、R~R及びAと同義である。

 Yb1は対イオンとして水素原子又はアルカリ金属イオン(好ましくは、ナトリウムイオン又はカリウムイオン)を有するアニオン性基を示す。ただし、Yb1中のアルカリ金属イオンにリチウムイオンは含まれない。好ましいアニオン性基については、前述のアニオン性基の記載を適用することができる。

 *はポリマーの構造単位としての結合部位を示す。

In the above formulas, L 1, L 2, R 1 ~ R 3 and A have the same meanings as L 1, L 2, R 1 ~ R 3 and A in the formula (B1).

Y b1 represents an anionic group having a hydrogen atom or an alkali metal ion (preferably a sodium ion or a potassium ion) as a counter ion. However, the lithium ions are not included in the alkali metal ions in the Y b1. As for preferable anionic groups, the description of the above-described anionic groups can be applied.

* Indicates a binding site as a structural unit of the polymer.

 上記一般式(B)、(B1)及び(b1)で表される構造単位としては、例えば、下記構造単位が挙げられる。ただし、これらの構造単位に限定されることはない。

 なお、下記化学構造式中、Mは水素原子又はアルカリ金属イオンを示し、式(B)、(B1)及び(b1)でそれぞれ定義する対カチオンに対応する。下記化学構造式のアニオン性基として、-COOM又は-SOMを示しているが、-P(=O)(OM)又は-OP(=O)(OM)である構造も挙げられる。*はポリマーの構造単位としての結合部位を示す。

Examples of the structural units represented by the general formulas (B), (B1) and (b1) include the following structural units. However, it is not limited to these structural units.

In the following chemical structural formula, M represents a hydrogen atom or an alkali metal ion, and corresponds to the counter cation defined by the formulas (B), (B1) and (b1). As the anionic group of the following chemical structural formula, -COOM or -SO 3 M is shown, but a structure in which -P (= O) (OM) 2 or -OP (= O) (OM) 2 is also exemplified. . * Indicates a binding site as a structural unit of the polymer.

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

 上記ポリマー(B)は、一般式(B1)で表される構造単位以外の構造単位(以下、その他の構造単位と称す。)を有していてもよい。その他の構造単位は、一般式(B1)で表される構造単位と共重合可能なものであれば特に制限されない。好ましくは、上述の脂肪族炭化水素ポリマーを形成可能な構造単位が挙げられ、具体的には、エチレン、1,3-ブタジエン、イソブチレン、イソプレン、アクリロニトリル、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン及び1,4-ヘキサジエン等をモノマー成分とする構造単位、並びにこれらの構造単位の酸化体及び水素化体が挙げられる。

 上記ポリマー(b)も上記ポリマー(B)と同様に、一般式(b1)で表される構造単位以外の構造単位を有していてもよく、この構造単位としては、上記その他の構造単位として記載する構造単位が挙げられる。

The polymer (B) may have a structural unit other than the structural unit represented by the general formula (B1) (hereinafter, referred to as other structural units). Other structural units are not particularly limited as long as they are copolymerizable with the structural unit represented by the general formula (B1). Preferably, a structural unit capable of forming the above-mentioned aliphatic hydrocarbon polymer is mentioned, and specifically, ethylene, 1,3-butadiene, isobutylene, isoprene, acrylonitrile, 5-ethylidene-2-norbornene, dicyclopentadiene And structural units containing 1,4-hexadiene and the like as monomer components, and oxidized and hydrogenated forms of these structural units.

Like the polymer (B), the polymer (b) may have a structural unit other than the structural unit represented by the general formula (b1). The structural units to be described are mentioned.

 ポリマー(B)中の上記一般式(B1)で表される構造単位の割合及び上記一般式(B2)で表される構造単位の割合は、特に制限されないが、5~95mol%が好ましく、10~90mol%がより好ましく、20~80mol%がさらに好ましい。

 ポリマー(B)中の上記その他の構造単位の割合は、特に制限されないが、5~95mol%が好ましく、10~90mol%がより好ましく、20~80mol%がさらに好ましい。

 ポリマー(b)中の上記一般式(b1)で表される構造単位の割合は、特に制限されないが、5~100mol%が好ましく、10~90mol%がより好ましく、20~80mol%がさらに好ましい。

 ポリマー(b)中の上記その他の構造単位の割合は、特に制限されないが、0~95mol%が好ましく、10~90mol%がより好ましく、20~80mol%がさらに好ましい。

The ratio of the structural unit represented by the general formula (B1) and the ratio of the structural unit represented by the general formula (B2) in the polymer (B) are not particularly limited, but are preferably from 5 to 95 mol%, preferably from 10 to 95 mol%. 9090 mol% is more preferable, and 20-80 mol% is still more preferable.

The ratio of the other structural units in the polymer (B) is not particularly limited, but is preferably from 5 to 95 mol%, more preferably from 10 to 90 mol%, even more preferably from 20 to 80 mol%.

The proportion of the structural unit represented by the general formula (b1) in the polymer (b) is not particularly limited, but is preferably 5 to 100 mol%, more preferably 10 to 90 mol%, and further preferably 20 to 80 mol%.

The ratio of the other structural units in the polymer (b) is not particularly limited, but is preferably 0 to 95 mol%, more preferably 10 to 90 mol%, and further preferably 20 to 80 mol%.

 ポリマー(B)は、上記一般式(B1)で表される構造単位及び上記その他の構造単位について、各々独立に、1種有していてもよく、2種以上有していてもよい。

 ポリマー(b)は、上記一般式(b1)で表される構造単位及び上記その他の構造単位について、各々独立に、1種有していてもよく、2種以上有していてもよい。

 ポリマー(B)及びポリマー(b)の形態は特に制限されず、本発明の効果を損なわない範囲で、ランダム、ブロック及びグラフト等のいずれの形態であってもよい。

The polymer (B) may independently have one type of the structural unit represented by the general formula (B1) and the other structural units, or may have two or more types.

The polymer (b) may have one or two or more types of the structural unit represented by the general formula (b1) and the other structural units independently.

The form of the polymer (B) and the polymer (b) is not particularly limited, and may be any form such as random, block, and graft as long as the effects of the present invention are not impaired.

 ポリマー(B)及び(b)は繰り返し構造単位を有するポリマーである点で、上述するリチウム塩とは異なる。ポリマー(B)及び(b)の数平均分子量(Mn)は、上記点から、800以上が好ましく、1000以上がより好ましく、1000~10000がさらに好ましく、1500~8000が特に好ましい。数平均分子量を上記好ましい数値範囲内とすることで、成膜性を向上することができる。数平均分子量は、ゲル透過クロマトグラフ(GPC)を用いて、公知の方法で測定できる。

The polymers (B) and (b) are different from the above-mentioned lithium salts in that they are polymers having a repeating structural unit. From the above point, the number average molecular weight (Mn) of the polymers (B) and (b) is preferably 800 or more, more preferably 1,000 or more, further preferably 1,000 to 10,000, and particularly preferably 1500 to 8,000. By setting the number average molecular weight within the above preferable numerical range, film formability can be improved. The number average molecular weight can be measured by a known method using gel permeation chromatography (GPC).

 本発明のリチウムイオン選択透過膜は、ポリマー(B)を1種含有していてもよく、2種以上を含有していてもよい。

 本発明のリチウムイオン選択透過膜中のポリマー(B)の含有量は、全固形分に対し、5~50質量%が好ましく、7~40質量%がより好ましく、10~30質量%がさらに好ましく、15~25質量%が最も好ましい。

The lithium ion selective permeable membrane of the present invention may contain one kind of polymer (B) or two or more kinds.

The content of the polymer (B) in the selectively permeable membrane for lithium ion of the present invention is preferably 5 to 50% by mass, more preferably 7 to 40% by mass, and still more preferably 10 to 30% by mass based on the total solid content. , 15 to 25% by mass.

 ポリマー(B)及びポリマー(b)の末端構造は、特に制限はなく、他の構造単位の有無、合成時に使用した基質の種類、又は、合成時のクエンチ剤(反応停止剤)の種類により、一義的に決定されない。末端の構造としては、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、アルキル基、芳香族複素環基(チオフェン環が好ましい。)又は芳香族炭化水素基(ベンゼン環が好ましい。)が挙げられる。

The terminal structure of the polymer (B) and the polymer (b) is not particularly limited, and depends on the presence or absence of other structural units, the type of a substrate used during synthesis, or the type of a quenching agent (reaction terminator) during synthesis. Not uniquely determined. The terminal structure is, for example, a hydrogen atom, a hydroxy group, a halogen atom, an ethylenically unsaturated group, an alkyl group, an aromatic heterocyclic group (preferably a thiophene ring) or an aromatic hydrocarbon group (preferably a benzene ring). ).

 ポリマー(B)の合成方法

 ポリマー(B)の合成方法としては、反応性基aを有するポリマーに対して、反応性基aと反応して結合形成可能な反応性基bとアニオン性基とを有する化合物を反応させてアニオン性基を導入する方法、アニオン性基を有するモノマーを重合してポリマーを得る方法が挙げられる。これらの方法において、アニオン性基は、対カチオンとしてリチウムイオンを有するアニオン性基を意味する。

 反応性基a及び反応性基bは、化学反応により、-L-A-L-で表される連結基又はその一部を形成し得る基であり、当業者であれば、所望の連結基又はその一部の構造を形成するために、適宜選択することができる。

 これらの合成法に使用される、アニオン性基を有する化合物及びアニオン性基を有するモノマーは、特に制限されることなく常法により合成することができ、例えば、通常のイオン交換(LiOH等のリチウム塩基、イオン交換膜を、ナトリウムイオン等を対カチオンとするアニオン性基を有する化合物又はモノマーに接触させる等)により合成することができる。その他の反応条件についても、通常用いられる方法を適宜選択することができる。

Method for synthesizing polymer (B)

As a method for synthesizing the polymer (B), a polymer having a reactive group a is reacted with a compound having a reactive group b capable of forming a bond by reacting with the reactive group a and an anionic group to form an anion. And a method of polymerizing a monomer having an anionic group to obtain a polymer. In these methods, the anionic group means an anionic group having a lithium ion as a counter cation.

The reactive group a and the reactive group b are groups capable of forming a linking group represented by -L 1 -AL 2 -or a part thereof by a chemical reaction. In order to form a linking group or a partial structure thereof, it can be appropriately selected.

The compound having an anionic group and the monomer having an anionic group used in these synthesis methods can be synthesized by a conventional method without any particular limitation. For example, a conventional ion exchange (lithium such as LiOH) A base or an ion exchange membrane is brought into contact with a compound or monomer having an anionic group having a sodium ion or the like as a counter cation, etc.). As for other reaction conditions, a commonly used method can be appropriately selected.

 ポリマーの合成方法自体は、通常用いられる方法を使用することができ、例えば、ラジカル重合を挙げることができ、重合開始剤、反応停止剤等も、使用するモノマー、オリゴマー等に併せて通常用いられる剤を適宜使用することができる。なお、ポリマーとして市販のポリマーを使用することもできる。

The method for synthesizing the polymer itself can be a commonly used method, for example, a radical polymerization can be mentioned, and a polymerization initiator, a reaction terminator, and the like are also usually used in combination with the monomers, oligomers, and the like to be used. Agents can be used as appropriate. In addition, a commercially available polymer can also be used as the polymer.

(非水溶性ポリマー(C))

 本発明のリチウムイオン選択透過膜に優れた膜強度を付与する点からは、本発明のリチウムイオン選択透過膜は非水溶性ポリマー(C)を含有することも好ましい。非水溶性ポリマー(C)は、シアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれか1種以上を有し、かつ、ガラス転移温度(以下、Tgとも記す。)が0℃以下であるポリマーである。このポリマー(C)は、-L-A-L-で表される特定の鎖長以上の連結基を介したアニオン性基を有しない点で、上記ポリマー(B)とは異なるポリマー(非水溶性ポリマー)である。

 非水溶性ポリマー(C)における非水溶性とは、水100gに対するポリマーの溶解度が、液温25℃の条件下で0.1g以下であることを意味する。

(Water-insoluble polymer (C))

From the viewpoint of imparting excellent membrane strength to the lithium ion selective permeable membrane of the present invention, the lithium ion selective permeable membrane of the present invention also preferably contains a water-insoluble polymer (C). The water-insoluble polymer (C) has one or more of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond, and has a glass transition temperature ( Hereinafter, the polymer is also referred to as Tg). The polymer (C) is different from the polymer (B) in that it does not have an anionic group via a linking group having a specific chain length or more represented by -L 1 -AL 2-. Water-insoluble polymer).

The water-insoluble in the water-insoluble polymer (C) means that the solubility of the polymer in 100 g of water is 0.1 g or less under the condition of a liquid temperature of 25 ° C.

 非水溶性ポリマー(C)は、連鎖重合型ポリマー、重付加型ポリマー及び重縮合型ポリマーのいずれでもよく、連鎖重合型ポリマー及び重付加型ポリマーが好ましい。以下、連鎖重合型ポリマーである非水溶性ポリマー(C)を「連鎖重合型ポリマー(C)」と称し、重付加型ポリマーである非水溶性ポリマー(C)を「重付加型ポリマー(C)」と称する。

The water-insoluble polymer (C) may be any of a chain polymerizable polymer, a polyaddition polymer and a polycondensation polymer, and is preferably a chain polymerizable polymer and a polyaddition polymer. Hereinafter, the water-insoluble polymer (C) that is a chain-polymerized polymer is referred to as “chain-polymerized polymer (C)”, and the water-insoluble polymer (C) that is a polyaddition-type polymer is referred to as “polyaddition-type polymer (C)”. ".

-連鎖重合型ポリマー(C)-

 連鎖重合型ポリマー(C)は、非芳香族性の炭素-炭素二重結合を有する1種又は2種以上のモノマーが連鎖重合してなるポリマーである。例えば、ビニル重合体が挙げられ、より具体的には、(メタ)アクリルポリマー及び炭化水素ポリマー(脂肪族炭化水素ポリマー及び芳香族炭化水素ポリマー)等が挙げられる。脂肪族炭化水素ポリマーとしては上記ポリマー(B)で説明したものが挙げられ、芳香族炭化水素ポリマーとしてはスチレン化合物等の芳香族ビニル化合物に由来する構造単位を有するポリマー、例えばスチレン-ブタジエン共重合体が挙げられる。

 連鎖重合型ポリマー(C)の合成において、シアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれかを導入するためのモノマー(モノマー(a1))の具体例として、(メタ)アクリロニトリル、ヒドロキシ基含有(メタ)アクリレート(例えば、ヒドロキシエチル(メタ)アクリレート)、スルファニル基含有(メタ)アクリレート(例えば、スルファニルエチル(メタ)アクリレート)、(メタ)アクリルアミド、ビニルアルコール、アリルアミン、スルフィド結合含有(メタ)アクリレート(例えば、(メタ)アクリル酸2-メチルチオエチル、(メタ)アクリル酸2-(2-エトキシエトキシ)エチル)が挙げられる。これらのうち、アクリロニトリル及びアクリルアミドが好ましく、アクリロニトリルが最も好ましい。モノマー(a1)は1種単独で用いてもよく、2種以上を用いてもよい。

 連鎖重合型ポリマー(C)の合成において、シアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれかを有する構造単位に対する、共重合成分を導入するためのモノマー(モノマー(b1))として、1,3-ブタジエン、イソプレン、アルキル(メタ)アクリレート(好ましくは、エチルアクリレート、ブチルアクリレート、(2-エチルヘキシル)アクリレート)が挙げられる。これらのうち、1,3-ブタジエン、イソプレン又はブチルアクリレートが好ましく、1,3-ブタジエン又はイソプレンがより好ましい。モノマー(b1)は1種単独で用いてもよく、2種以上を用いてもよい。

 また、ポリイソプレン等を含む天然ゴムに対してエポキシ化等を行うことにより、エーテル結合等を導入することも好ましい。

 また、連鎖重合型ポリマー(C)は、その機能を損なわない程度に、第3のモノマー(上記以外のモノマー)を用いてもよい。

-Chain polymerization type polymer (C)-

The chain polymerization type polymer (C) is a polymer obtained by chain-polymerizing one or more monomers having a non-aromatic carbon-carbon double bond. For example, a vinyl polymer is mentioned, and more specifically, a (meth) acrylic polymer and a hydrocarbon polymer (aliphatic hydrocarbon polymer and aromatic hydrocarbon polymer) are mentioned. Examples of the aliphatic hydrocarbon polymer include those described above for the polymer (B). Examples of the aromatic hydrocarbon polymer include polymers having a structural unit derived from an aromatic vinyl compound such as a styrene compound, for example, styrene-butadiene copolymer. Coalescence.

In the synthesis of the chain polymerization type polymer (C), a monomer (monomer (a1)) for introducing any one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond Specific examples of ()) include (meth) acrylonitrile, hydroxy group-containing (meth) acrylate (for example, hydroxyethyl (meth) acrylate), sulfanyl group-containing (meth) acrylate (for example, sulfanylethyl (meth) acrylate), and (meth) Examples thereof include acrylamide, vinyl alcohol, allylamine, and sulfide bond-containing (meth) acrylates (eg, 2-methylthioethyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate). Of these, acrylonitrile and acrylamide are preferred, and acrylonitrile is most preferred. The monomer (a1) may be used alone or in combination of two or more.

In the synthesis of the chain polymerization type polymer (C), a copolymerization component is introduced into a structural unit having any one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond. Examples of the monomer (monomer (b1)) include 1,3-butadiene, isoprene, and alkyl (meth) acrylate (preferably, ethyl acrylate, butyl acrylate, and (2-ethylhexyl) acrylate). Of these, 1,3-butadiene, isoprene or butyl acrylate is preferred, and 1,3-butadiene or isoprene is more preferred. One kind of the monomer (b1) may be used alone, or two or more kinds may be used.

It is also preferable to introduce an ether bond or the like by subjecting a natural rubber containing polyisoprene or the like to epoxidation or the like.

The chain polymerization type polymer (C) may use a third monomer (a monomer other than the above) to such an extent that its function is not impaired.

 連鎖重合型ポリマー(C)を構成する各モノマー由来の全構造単位中、モノマー(a1)由来の構造単位の含有量は26質量%以上が好ましく、上限は70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。また、上記ポリイソプレン等を含む天然ゴムに対するエポキシ化等により合成された連鎖重合型ポリマー(C)の場合、連鎖重合型ポリマー(C)を構成する全構造単位中のエーテル結合等を有する構造単位の含有量は、26質量%以上が好ましく、上限は70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。

 なお、連鎖重合型ポリマー(C)は、モノマー(a1)1種とモノマー(b1)1種とを用いて合成されたポリマーであることが、膜強度の点から好ましい。

Among all the structural units derived from the monomers constituting the chain polymerization type polymer (C), the content of the structural unit derived from the monomer (a1) is preferably 26% by mass or more, and the upper limit is preferably 70% by mass or less, and 60% by mass. Is more preferably, and particularly preferably 50% by mass or less. In the case of the chain polymerizable polymer (C) synthesized by epoxidation of natural rubber containing the above polyisoprene or the like, structural units having an ether bond or the like in all structural units constituting the chain polymerizable polymer (C) Is preferably 26% by mass or more, and the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.

The chain polymerization type polymer (C) is preferably a polymer synthesized using one kind of the monomer (a1) and one kind of the monomer (b1) from the viewpoint of film strength.

-重付加型ポリマー(C)-

 重付加型ポリマー(C)として、例えば、ポリウレタン及びポリウレアが挙げられる。

 重付加型ポリマー(C)にシアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれかを導入するためのモノマーの具体例としては、4,4’-メチレンビス(フェニルイソシアネート)、4,4’-メチレンビス(シクロヘキシルイソシアネート)、ジイソシアン酸イソホロン、エチレングリコール、ジ(プロピレングリコール)及びテトラメチレングリコール、又は、これらのモノマーにシアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれかを導入したモノマーが挙げられる。

-Polyaddition polymer (C)-

Examples of the polyaddition polymer (C) include polyurethane and polyurea.

Specific examples of monomers for introducing any one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond into the polyaddition polymer (C) include 4,4 4'-methylenebis (phenylisocyanate), 4,4'-methylenebis (cyclohexylisocyanate), isophorone diisocyanate, ethylene glycol, di (propylene glycol) and tetramethylene glycol, or a monomer such as cyano group, amide group, amino group And a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond.

 非水溶性ポリマー(C)のTgの下限は、-60℃以上が実際的であり、-40℃以上が好ましい。

 モノマーの種類及び合成する際に用いる量により非水溶性ポリマー(C)自体のTgを調整することができる。非水溶性ポリマー(C)の形態は特に制限されず、ランダム、ブロック及びグラフトのうち上記の各ポリマーが採り得る形態を含む。

 非水溶性ポリマー(C)のTgは以下のようにして求める。

The lower limit of the Tg of the water-insoluble polymer (C) is practically −60 ° C. or higher, and preferably −40 ° C. or higher.

The Tg of the water-insoluble polymer (C) itself can be adjusted by the type of the monomer and the amount used in the synthesis. The form of the water-insoluble polymer (C) is not particularly limited, and includes forms that each of the above polymers can take among random, block, and graft.

The Tg of the water-insoluble polymer (C) is determined as follows.

[ガラス転移温度]

 示差走査熱量計(DSC)を用いて、約10mgの試料(非水溶性ポリマー(C))を窒素雰囲気下で30℃から降温速度50℃/minで-50℃まで冷却し、その温度で15分間保持する。-50℃から昇温速度10℃/minで100℃まで昇温し、その温度で5分間保持する。さらに降温速度50℃/minで-50℃まで冷却し、その温度で15分間保持した後、昇温速度10℃/minで100℃まで昇温する。

 ガラス転移温度(Tg)は、上記2度目の昇温の際に、比熱の変化によりDSC曲線が屈曲し、ベースラインが平行移動する形で感知される。この屈曲より低温のベースラインの接線と、屈曲した部分で傾きが最大となる点の接線との交点の温度をガラス転移温度(Tg)とする。

 なお、文献値やカタログ値において、本発明における閾値である0℃から40℃以上外れるポリマーについては、それらの値を採用する。データがないポリマー、又は、0℃付近であるポリマーについては、上記方法で測定する。

[Glass-transition temperature]

Using a differential scanning calorimeter (DSC), about 10 mg of the sample (water-insoluble polymer (C)) was cooled from 30 ° C. under a nitrogen atmosphere to −50 ° C. at a temperature lowering rate of 50 ° C./min. Hold for a minute. The temperature is raised from −50 ° C. to 100 ° C. at a rate of 10 ° C./min, and kept at that temperature for 5 minutes. Further, the temperature is lowered to −50 ° C. at a cooling rate of 50 ° C./min, kept at that temperature for 15 minutes, and then raised to 100 ° C. at a heating rate of 10 ° C./min.

The glass transition temperature (Tg) is sensed at the time of the second temperature increase in such a manner that the DSC curve is bent due to a change in specific heat and the base line moves in parallel. The temperature at the intersection of the tangent to the base line at a temperature lower than this bend and the tangent to the point where the slope is maximum at the bent portion is defined as the glass transition temperature (Tg).

In the literature values and catalog values, for polymers deviating from the threshold value of 0 ° C. in the present invention of 40 ° C. or more, those values are adopted. For a polymer having no data or a polymer having a temperature around 0 ° C., the measurement is performed by the above method.

 本発明のリチウムイオン選択透過膜は、非水溶性ポリマー(C)を1種含有していてもよく、2種以上含有していてもよい。

 本発明のリチウムイオン選択透過膜中の非水溶性ポリマー(C)の含有量は、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましい。下限は1質量%以上が好ましく、5質量%以上がさらに好ましい。

The lithium ion selective permeable membrane of the present invention may contain one type of water-insoluble polymer (C), or may contain two or more types.

The content of the water-insoluble polymer (C) in the lithium ion selective permeable membrane of the present invention is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 40% by mass or less. The lower limit is preferably 1% by mass or more, and more preferably 5% by mass or more.

 本発明のリチウムイオン選択透過膜は、本発明の効果を損なわない範囲で、上記のリチウムイオン伝導体(A)、ポリマー(B)及び非水溶性ポリマー(C)以外の成分を含んでもよい。このような成分として、例えば、国際公開第2017/199821号に記載のイオン液体が挙げられる。

The lithium ion selective permeable membrane of the present invention may contain components other than the above-mentioned lithium ion conductor (A), polymer (B) and water-insoluble polymer (C) as long as the effects of the present invention are not impaired. Such components include, for example, ionic liquids described in WO 2017/199821.

-リチウムイオン選択透過膜の製造方法-

 本発明のリチウムイオン選択透過膜の製造方法は特に制限されない。例えば、リチウムイオン伝導体(A)とポリマー(B)と溶媒とを20℃~溶媒の沸点の温度範囲で1~5時間撹拌し、リチウムイオン伝導体(A)とポリマー(B)との混合物を得る。この混合物を通常の方法で塗布し40~100℃で3~24時間乾燥することにより、本発明のリチウムイオン選択透過膜を膜として、得ることができる。

 上記溶媒は特に限定されないが、SP値15以上の溶媒が好ましい。上記溶媒の具体例として、水、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリル、酢酸エチル、ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、クロロホルム、ジクロロメタンが挙げられる。これらの中でも、水、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド及びN-メチル-2-ピロリドンが好ましい。溶媒は1種用いてもよく、2種以上用いてもよい。

-Manufacturing method of lithium ion selective permeable membrane-

The method for producing the lithium ion selective permeable membrane of the present invention is not particularly limited. For example, the lithium ion conductor (A), the polymer (B) and the solvent are stirred for 1 to 5 hours in a temperature range from 20 ° C. to the boiling point of the solvent, and the mixture of the lithium ion conductor (A) and the polymer (B) is stirred. Get. This mixture is applied by a usual method and dried at 40 to 100 ° C. for 3 to 24 hours to obtain the lithium ion selective permeable membrane of the present invention as a membrane.

The solvent is not particularly limited, but a solvent having an SP value of 15 or more is preferable. Specific examples of the solvent include water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, ethyl acetate, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and dichloromethane. Among them, water, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and N-methyl-2-pyrrolidone are preferred. One type of solvent may be used, or two or more types may be used.

 以下、本発明のリチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法について説明する。

Hereinafter, the lithium ion recovery device, the lithium-containing compound recovery device, and the lithium ion recovery method of the present invention will be described.

<リチウムイオン回収装置>

 本発明のリチウムイオン回収装置は、本発明のリチウムイオン選択透過膜を備えている。このリチウムイオン回収装置は、上述のリチウム含有液から、リチウムイオンを回収する装置であり、後述する本発明のリチウムイオンの回収方法を好適に実施できる。

 図1に示すリチウムイオン回収装置1Aについて、以下に説明する。

<Lithium ion recovery device>

The lithium ion recovery device of the present invention includes the lithium ion selective permeable membrane of the present invention. This lithium ion recovery device is a device for recovering lithium ions from the above-mentioned lithium-containing liquid, and can suitably carry out the lithium ion recovery method of the present invention described later.

The lithium ion recovery device 1A shown in FIG. 1 will be described below.

 リチウムイオン回収装置1Aは、リチウムイオン選択透過膜10を備える。このリチウムイオン回収装置1Aは、図1に示されるように、略U字形状の処理槽2と、この処理槽2の底部に配置され、処理槽2を2つの空間に隔てるリチウムイオン選択透過膜10とを備えている。このリチウムイオン選択透過膜10は、その端縁が上記底部の内面に接して配置され、上記2つの空間を隔絶している。また、リチウムイオン回収装置1Aは、リチウムイオン選択透過膜10に隔絶された一方の空間内にリチウムイオン選択透過膜10と離間して対面配置された負極4と、もう一方の空間内にリチウムイオン選択透過膜10と離間して対面配置された正極3とを有している。正極3及び負極4はリード線によって電源16の-端子又は+端子と電気的に接続されている。また、処理槽2は、撹拌機能を有する装置(撹拌装置)が装備されている。具体的には、処理槽2における2つの隔絶空間内に配置された撹拌子17と、処理槽2の外部下方に設置され、上記撹拌子17それぞれを回転させる回転台(駆動部及び制御部を含む)18とを有するマグネチックスターラーを備えている。

 リチウムイオン回収装置1Aは、リチウムイオン選択透過膜10に隔絶された一方の空間(正極3が配置された空間)にリチウムイオンを含む原液5が投入され、もう一方の空間(負極4が配置された空間)にこの原液5からリチウムイオンを回収するための回収液6が投入される。

 原液5は、リチウムイオンの他に、カリウムイオン及びナトリウムイオン等の他の金属イオンを含む液が用いられ、具体的には、海水、濃縮海水及びにがり等の上記リチウム含有液が用いられる。回収液6は、リチウムイオン回収装置として運転を開始する前の段階では、リチウムイオンをはじめ他の金属イオンを含有しない液であることが好ましく、具体的には、希塩酸及び水(好ましくは純水)等を用いることができる。

The lithium ion recovery device 1A includes a lithium ion selective permeable membrane 10. As shown in FIG. 1, the lithium ion recovery device 1A includes a substantially U-shaped processing tank 2 and a lithium ion selective permeable membrane disposed at the bottom of the processing tank 2 and separating the processing tank 2 into two spaces. 10 is provided. The lithium ion selective permeable membrane 10 is arranged such that its edge is in contact with the inner surface of the bottom portion, and separates the two spaces. In addition, the lithium ion recovery device 1A includes a negative electrode 4 disposed in a space separated from the lithium ion selective permeable membrane 10 in a space facing the lithium ion selective permeable membrane 10 and a lithium ion selective permeable membrane in the other space. It has a permselective membrane 10 and a positive electrode 3 spaced apart and facing each other. The positive electrode 3 and the negative electrode 4 are electrically connected to a negative terminal or a positive terminal of the power supply 16 by lead wires. Further, the processing tank 2 is equipped with a device having a stirring function (stirring device). Specifically, a stirrer 17 disposed in the two isolated spaces in the processing tank 2 and a turntable (a driving unit and a control unit, which are installed below the processing tank 2 and rotate the stirrer 17 respectively). 18).

In the lithium ion recovery device 1A, the undiluted solution 5 containing lithium ions is charged into one space (the space where the positive electrode 3 is disposed) separated by the lithium ion selective permeable membrane 10, and the other space (the negative electrode 4 is disposed). The recovered liquid 6 for recovering lithium ions from the undiluted solution 5 is charged into the space (the space).

As the stock solution 5, a liquid containing other metal ions such as potassium ions and sodium ions in addition to lithium ions is used. Specifically, the above-mentioned lithium-containing liquid such as seawater, concentrated seawater, and bittern is used. The recovery liquid 6 is preferably a liquid that does not contain lithium ions and other metal ions at the stage before the operation as a lithium ion recovery apparatus is started. Specifically, dilute hydrochloric acid and water (preferably pure water) ) Etc. can be used.

 リチウムイオン回収装置1Aによりリチウムイオンを回収する方法は、リチウムイオン選択透過膜10を用いていること以外は、通常のリチウムイオン分離膜を用いる方法と同様にして、行うことができる。具体的には、このリチウムイオン回収装置1Aは、上記リチウムイオン選択透過膜10を備えることにより、後述するように、原液5と回収液6とのリチウムイオンの濃度差(勾配)によって(両電極間に電圧を印加しなくても)、リチウムイオン選択透過膜10を介して、原液5中に含まれるリチウムイオン(図示せず)を選択的に回収液6へ迅速に透過(移動)させることができる。このとき、リチウムイオンの回収に加え、リチウムイオンの透過(移動)に伴い電極間に流れる電流を電力として取り出すことができる。すなわち、リチウムイオン回収装置1Aの正極3及び負極4に電圧を印加せずに、電池として用いることができる。

 一方、本発明のリチウムイオン回収装置1Aは、両電極間に電圧を印加して電気透析を行うことにより、リチウムイオンの回収効率を更に高めることができる。

 このように、本発明のリチウムイオン選択透過膜は、リチウムイオン回収装置に用いられることにより、また本発明のリチウムイオン選択透過膜を備えたリチウムイオン回収装置は、リチウムイオンを優れた回収速度かつ優れた選択性で回収することができる。

The method of recovering lithium ions by the lithium ion recovery device 1A can be performed in the same manner as the method using a normal lithium ion separation membrane, except that the lithium ion selective permeable membrane 10 is used. Specifically, the lithium ion recovery device 1A includes the above-mentioned lithium ion selective permeable membrane 10 so that, as described later, the concentration difference (gradient) of the lithium ions between the stock solution 5 and the recovery solution 6 (both electrodes). The lithium ions (not shown) contained in the stock solution 5 can be selectively transmitted (moved) to the recovery solution 6 quickly and selectively through the lithium ion selective permeable membrane 10 even if no voltage is applied therebetween. Can be. At this time, in addition to the recovery of lithium ions, a current flowing between the electrodes due to the transmission (movement) of lithium ions can be taken out as electric power. That is, it can be used as a battery without applying a voltage to the positive electrode 3 and the negative electrode 4 of the lithium ion recovery device 1A.

On the other hand, the lithium ion recovery device 1A of the present invention can further increase the recovery efficiency of lithium ions by applying a voltage between both electrodes and performing electrodialysis.

As described above, the lithium ion selective permeable membrane of the present invention is used in a lithium ion collecting apparatus, and the lithium ion collecting apparatus including the lithium ion selective permeable membrane of the present invention has an excellent lithium ion collecting speed and It can be recovered with excellent selectivity.

 本発明のリチウムイオン回収装置は上記リチウムイオン回収装置1Aに限定されない。例えば、上記リチウムイオン回収装置1Aにおいて、処理槽2は略U字形状をしているが、本発明において、処理槽2の形状は通常採用される形状を特に制限されることなく適用できる。また、リチウムイオン回収装置1Aは、撹拌装置としてマグネチックスターラーを備えているが、本発明において、撹拌装置は備えていなくてもよく、またマグネチックスターラー以外の公知の撹拌装置(例えばメカニカルスターラー、振とう機)、後述する図2に示す循環機構を備えていてもよい。リチウムイオン回収装置1Aにおける、処理槽2、正極3及び負極4の大きさ、構造、材質等は、特に制限されることなく、通常用いられる構成を適宜選択することができる。

The lithium ion recovery device of the present invention is not limited to the lithium ion recovery device 1A. For example, in the above-described lithium ion recovery device 1A, the processing tank 2 has a substantially U shape, but in the present invention, the shape of the processing tank 2 can be applied without any particular limitation to a generally adopted shape. In addition, the lithium ion recovery device 1A includes a magnetic stirrer as a stirring device. However, in the present invention, a stirring device may not be provided, and a known stirring device other than the magnetic stirrer (for example, a mechanical stirrer, (Shaker) and a circulation mechanism shown in FIG. 2 to be described later. The size, structure, material, and the like of the treatment tank 2, the positive electrode 3, and the negative electrode 4 in the lithium ion recovery device 1A are not particularly limited, and a commonly used configuration can be appropriately selected.

<リチウム含有化合物回収装置>

 本発明のリチウム含有化合物回収装置は、本発明のリチウムイオン回収装置を備え、更に回収したリチウムイオンを中和してリチウム含有化合物に変換する装置を備えている。

以下、図2に示すリチウム含有化合物回収装置100を例にとって、本発明のリチウムイオンの回収方法と合わせて説明する。

<Lithium-containing compound recovery device>

The lithium-containing compound recovery device of the present invention includes the lithium-ion recovery device of the present invention, and further includes a device that neutralizes the recovered lithium ions to convert the lithium ions into a lithium-containing compound.

Hereinafter, the lithium-containing compound recovery apparatus 100 shown in FIG. 2 will be described as an example, together with the lithium ion recovery method of the present invention.

 図2に示すリチウム含有化合物回収装置100は、本発明のリチウムイオン選択透過膜10を有するリチウムイオン回収装置1Bを備えている。このリチウムイオン回収装置1Bは、筒状の処理槽2と、処理槽2内に配置され、処理槽2内に2つの隔絶空間を画成するリチウムイオン選択透過膜10と、リチウムイオン選択透過膜10の一方の表面に接して配置された正極3と、リチウムイオン選択透過膜10の他方の表面に接して配置された負極4とを備えている。正極3及び負極4はそれぞれ電源の+端子又は-端子に接続されている。このリチウムイオン選択透過膜10は撹拌装置として原液又は回収液を循環させる循環機構を備えている。この循環機構は、原液又は回収液を撹拌する機能に加えて、それらを交換又は回収する機能も奏することができる。具体的には、原液5を貯蔵(貯留)する原液貯蔵槽11と、原液貯蔵槽11と正極3が配置されている隔絶空間とを接続して原液貯蔵槽11から隔絶空間に原液5を移送する配管(原液移送管)13aと、原液貯蔵槽11と正極3が配置されている隔絶空間とを接続して隔絶空間から原液貯蔵槽11に原液5を排出する配管(原液排出管)13bと、原液移送管13a及び原液排出管13bそれぞれに設けられたポンプ14a及び14bとを備えている。一方、回収液6を貯蔵(貯留)する回収貯蔵槽12と、回収貯蔵槽12と負極4が配置されている隔絶空間とを接続して回収貯蔵槽12から隔絶空間に回収液6を移送する配管(回収液移送管)13cと、回収液貯蔵槽12と負極4が配置されている隔絶空間とを接続して隔絶空間から回収液貯蔵槽12に回収液6を排出する配管(回収液排出管)13dと、回収液移送管13c及び回収液排出管13dそれぞれに設けられたポンプ14c及び14dとを備えている。また、この回収液貯蔵槽12にはリチウム含有化合物回収部(槽)15が併設されている。リチウム含有化合物回収部15は、回収液6を貯蔵し、リチウムイオンをリチウム含有化合物に変換する反応槽を有し、更に、リチウムイオンをリチウム含有化合物に変換する化合物を投入する、ホッパー等の投入部(図示しない。)を有している。この反応槽は回収貯蔵槽12に延びる配管(回収液移送管)13eと、配管13eの途中にポンプ14eとを備えている。

The lithium-containing compound recovery device 100 shown in FIG. 2 includes a lithium ion recovery device 1B having the lithium ion selective permeable membrane 10 of the present invention. The lithium ion recovery apparatus 1B includes a cylindrical processing tank 2, a lithium ion selective permeable membrane 10 disposed in the processing tank 2, and defining two isolated spaces in the processing tank 2, and a lithium ion selective permeable membrane. A positive electrode 3 is disposed in contact with one surface of the positive electrode 10, and a negative electrode 4 is disposed in contact with the other surface of the lithium ion selective permeable membrane 10. The positive electrode 3 and the negative electrode 4 are connected to the + terminal or the − terminal of the power supply, respectively. The lithium ion selective permeable membrane 10 is provided with a circulation mechanism for circulating the undiluted or recovered liquid as a stirring device. This circulating mechanism can perform not only the function of stirring the stock solution or the recovered solution, but also the function of exchanging or recovering them. Specifically, the stock solution storage tank 11 for storing (storing) the stock solution 5 is connected to the isolated space in which the stock solution storage tank 11 and the positive electrode 3 are arranged, and the stock solution 5 is transferred from the stock solution storage tank 11 to the isolated space. Pipe (stock solution transfer pipe) 13a, a stock solution stock pipe 11b connecting the stock solution storage tank 11 and the isolated space in which the positive electrode 3 is disposed, and discharging the stock solution 5 from the isolated space to the stock solution storage tank 11. , And pumps 14a and 14b provided in the stock solution transfer pipe 13a and the stock solution discharge pipe 13b, respectively. On the other hand, a recovery storage tank 12 that stores (retains) the recovery liquid 6 is connected to an isolated space in which the recovery storage tank 12 and the negative electrode 4 are arranged, and the recovery liquid 6 is transferred from the recovery storage tank 12 to the isolated space. A pipe (collected liquid transfer pipe) for connecting the collected liquid storage tank 12 and the isolated space in which the negative electrode 4 is disposed to discharge the collected liquid 6 from the isolated space to the collected liquid storage tank 12 (collected liquid discharge pipe) 13d), and pumps 14c and 14d provided in the recovered liquid transfer pipe 13c and the recovered liquid discharge pipe 13d, respectively. In addition, a lithium-containing compound recovery unit (tank) 15 is provided in the recovery liquid storage tank 12. The lithium-containing compound recovery unit 15 has a reaction tank that stores the recovery liquid 6 and converts lithium ions into lithium-containing compounds, and further inputs a compound that converts lithium ions into lithium-containing compounds, such as a hopper. (Not shown). This reaction tank is provided with a pipe (collected liquid transfer pipe) 13e extending to the collection storage tank 12, and a pump 14e in the middle of the pipe 13e.

 リチウム含有化合物回収装置100によりリチウム含有化合物を回収する方法は、リチウムイオン選択透過膜10を用いてリチウムイオンを回収すること以外は、通常のリチウムイオン分離膜を用いて回収したリチウムイオンをリチウム含有化合物に変換する方法と同様にして、行うことができる。具体的には、原液貯蔵槽11に原液5が貯められている。原液5は、ポンプ14aにより配管13aを通り処理槽2の、正極3が配置されている隔絶空間に送られ、ポンプ14bにより配管13bを通り原液貯蔵槽11に戻される。このようにして、原液5は、原液貯蔵槽11と処理槽2間を循環している。一方、回収液貯蔵槽12には、回収液6(希塩酸等)が貯められている。回収液6は、ポンプ14cにより配管13cを通り処理槽2の、負極4が配置されている隔絶空間に送られ、ポンプ14dにより配管13dを通り回収液貯蔵槽12に戻される。このようにして、回収液6は、回収液貯蔵槽12と処理槽2間を循環している。リチウム含有化合物回収装置100において、必要により原液5と回収液6を循環させながら、リチウムイオン回収装置1Bにより、回収液6中にリチウムイオン(図示せず)を回収する。このリチウムイオン回収装置1Bを用いてリチウムイオンを回収する方法は、上記リチウムイオン回収装置1Aを用いて回収する方法と同じである。

The method of recovering a lithium-containing compound by the lithium-containing compound recovery apparatus 100 is the same as the method of recovering lithium ions by using the lithium ion selective permeable membrane 10 except that the lithium ions recovered using a normal lithium ion separation membrane contain lithium ions. It can be carried out in the same manner as in the method of converting into a compound. Specifically, the stock solution 5 is stored in the stock solution storage tank 11. The undiluted solution 5 is sent by the pump 14a through the pipe 13a to the isolated space of the processing tank 2 where the positive electrode 3 is arranged, and returned to the undiluted solution storage tank 11 by the pump 14b through the pipe 13b. Thus, the stock solution 5 is circulating between the stock solution storage tank 11 and the processing tank 2. On the other hand, the recovery liquid storage tank 12 stores the recovery liquid 6 (dilute hydrochloric acid or the like). The recovered liquid 6 is sent by the pump 14c through the pipe 13c to the isolated space of the processing tank 2 where the negative electrode 4 is disposed, and returned to the recovered liquid storage tank 12 through the pipe 13d by the pump 14d. Thus, the recovery liquid 6 is circulating between the recovery liquid storage tank 12 and the processing tank 2. In the lithium-containing compound recovery apparatus 100, lithium ions (not shown) are recovered in the recovery liquid 6 by the lithium ion recovery apparatus 1B while circulating the stock solution 5 and the recovery liquid 6 as necessary. The method of recovering lithium ions using the lithium ion recovery device 1B is the same as the method of recovering lithium ions using the lithium ion recovery device 1A.

 こうしてリチウムイオンの回収を行い、回収液貯蔵槽12中の回収液6のリチウムイオンの濃度が所望の値になった後、回収液6は、ポンプ14eにより配管13eを通り、リチウム含有化合物回収部15に送られる。このリチウム含有化合物回収部15において、回収液6中に、リチウムイオンをリチウム含有化合物に変換する化合物、例えば炭酸ナトリウム(NaCO)水溶液が添加され、リチウム含有化合物(LiCO)の沈殿を得ることができる。この沈殿を、定法により固液分離、必要により精製、乾燥して、リチウム含有化合物、例えばLiCOの粉末を得ることができる。

 このように、リチウムイオン回収装置1Bを備えたリチウム含有化合物回収装置100は、リチウムイオン純度が高いリチウム含有化合物を高生産性で回収できる。

After the lithium ions are recovered in this way and the concentration of lithium ions in the recovery liquid 6 in the recovery liquid storage tank 12 reaches a desired value, the recovery liquid 6 is passed through the pipe 13e by the pump 14e, and is returned to the lithium-containing compound recovery section. 15 In the lithium-containing compound recovery section 15, a compound that converts lithium ions into a lithium-containing compound, for example, an aqueous solution of sodium carbonate (Na 2 CO 3 ) is added to the recovery liquid 6, and the lithium-containing compound (Li 2 CO 3 ) A precipitate can be obtained. The precipitate is solid-liquid separated by a conventional method, and if necessary, purified and dried to obtain a lithium-containing compound, for example, a powder of Li 2 CO 3 .

As described above, the lithium-containing compound recovery device 100 including the lithium-ion recovery device 1B can recover a lithium-containing compound having a high lithium ion purity with high productivity.

 本発明のリチウム含有化合物回収装置は上記リチウム含有化合物回収装置100に限定されない。例えば、リチウム含有化合物回収装置が備えるリチウムイオン回収装置はリチウムイオン回収装置1B以外にも、リチウムイオン回収装置1A、更にはその上記変更を適用できる。

The lithium-containing compound recovery device of the present invention is not limited to the lithium-containing compound recovery device 100 described above. For example, in addition to the lithium ion recovery device 1B, the lithium ion recovery device 1A provided in the lithium-containing compound recovery device can be applied to the lithium ion recovery device 1A, and further the above-mentioned changes can be applied.

 上記リチウムイオン回収装置及びリチウム含有化合物回収装置、並びに、リチウムイオンの回収方法について、必要により、例えば、特開2015-34315号公報及び特許第5765850号公報を参照することができる。

Regarding the lithium ion recovery device, the lithium-containing compound recovery device, and the lithium ion recovery method, for example, JP-A-2015-34315 and JP-A-5765850 can be referred to as needed.

 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。また、「室温」は25℃を意味する。以下で記載する化学構造式中、*はポリマーの構造単位としての結合部位を示す。

Hereinafter, the present invention will be described in more detail based on examples. It should be noted that the present invention is not construed as being limited thereto. “Room temperature” means 25 ° C. In the chemical structural formulas described below, * indicates a binding site as a polymer structural unit.

[実施例1]

(1)ポリマー(B)の合成

[合成例1-1]ポリマー(P1-1)の合成

 下記スキームに従い、ポリマー(P1-1)を合成した。

Figure JPOXMLDOC01-appb-C000010

[Example 1]

(1) Synthesis of polymer (B)

[Synthesis Example 1-1] Synthesis of polymer (P1-1)

According to the following scheme, a polymer (P1-1) was synthesized.

Figure JPOXMLDOC01-appb-C000010

 3-メルカプト-1-プロパンスルホン酸ナトリウム(東京化成工業社製)を、予め酢酸リチウム水溶液でLi置換したAmberlite(登録商標、イオン交換樹脂、Aldrich社製)を用いてイオン交換することで、3-メルカプト-1-プロパンスルホン酸リチウムを得た。

 50mlフラスコに、3-メルカプト-1-プロパンスルホン酸リチウム2.4gとジメチルアセトアミド(DMAc)6.4gとを添加し、60℃で30分撹拌した。その後、更に、NISSO-PB B-1000(商品名、1,2-ポリブタジエンホモポリマー、日本曹達社製)1.0g、V-601(商品名、油溶性アゾ重合開始剤、和光純薬工業社製)1.4g、及び、DMAc3.2gを添加し、窒素雰囲気下で60℃30分撹拌し、さらに80℃で8時間撹拌した。反応液の温度を室温に戻した後、この反応液をイソプロピルアルコール(IPA)135g中に加え、析出物をIPA135gで洗浄することで、ポリマー(P1-1)を1.7g得ることができた(Mn3700、ポリマー中の一般式(B1)で表される構造単位の割合:70mol%)。

Ion exchange of sodium 3-mercapto-1-propanesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) using Amberlite (registered trademark, ion exchange resin, manufactured by Aldrich), which has been previously Li-substituted with an aqueous solution of lithium acetate, yields 3 -Lithium mercapto-1-propanesulfonate was obtained.

2.4 g of lithium 3-mercapto-1-propanesulfonate and 6.4 g of dimethylacetamide (DMAc) were added to a 50 ml flask, and the mixture was stirred at 60 ° C. for 30 minutes. Thereafter, 1.0 g of NISSO-PB B-1000 (trade name, 1,2-polybutadiene homopolymer, manufactured by Nippon Soda Co., Ltd.) and V-601 (trade name, oil-soluble azo polymerization initiator, Wako Pure Chemical Industries, Ltd.) 1.4 g) and 3.2 g of DMAc were added, and the mixture was stirred under a nitrogen atmosphere at 60 ° C. for 30 minutes, and further at 80 ° C. for 8 hours. After the temperature of the reaction solution was returned to room temperature, the reaction solution was added to 135 g of isopropyl alcohol (IPA), and the precipitate was washed with 135 g of IPA to obtain 1.7 g of a polymer (P1-1). (Mn3700, ratio of structural unit represented by general formula (B1) in polymer: 70 mol%).

[合成例1-2]ポリマー(P1-2)の合成

 上記ポリマー(P1-1)の合成において、3-メルカプト-1-プロパンスルホン酸リチウムを、対応する化合物に変えた以外は同様にして、下記ポリマー(P1-2)を合成した(Mn2900、ポリマー中の一般式(B1)で表される構造単位の割合:70mol%)。

Figure JPOXMLDOC01-appb-C000011

[Synthesis Example 1-2] Synthesis of polymer (P1-2)

The following polymer (P1-2) was synthesized in the same manner as in the synthesis of polymer (P1-1) except that lithium 3-mercapto-1-propanesulfonate was changed to the corresponding compound (Mn2900, polymer Of the structural unit represented by the general formula (B1): 70 mol%).

Figure JPOXMLDOC01-appb-C000011

[合成例1-3]ポリマー(P1-3)の合成

 上記ポリマー(P1-1)の合成において、NISSO-PB B-1000をNISSO-PB JP-100(商品名、エポキシ化ポリブタジエン、日本曹達社製)に変えた以外は同様にして、下記ポリマー(P1-3)を合成した(Mn4300、ポリマー中の一般式(B1)で表される構造単位の割合:70mol%)

Figure JPOXMLDOC01-appb-C000012

[Synthesis Example 1-3] Synthesis of polymer (P1-3)

In the synthesis of the polymer (P1-1), the following polymer (P1) was prepared in the same manner except that NISSO-PB B-1000 was changed to NISSO-PB JP-100 (trade name, epoxidized polybutadiene, manufactured by Nippon Soda Co., Ltd.). -3) was synthesized (Mn4300, proportion of the structural unit represented by the general formula (B1) in the polymer: 70 mol%)

Figure JPOXMLDOC01-appb-C000012

[合成例1-4]ポリマー(P1-4)の合成

 上記ポリマー(P1-1)の合成において、3-メルカプト-1-プロパンスルホン酸リチウムの使用量を0.8gに変えた以外は同様にして、ポリマー(P1-4)を合成した(Mn3000、ポリマー中の一般式(B1)で表される構造単位の割合:50mol%)

[Synthesis Example 1-4] Synthesis of polymer (P1-4)

Polymer (P1-4) was synthesized in the same manner as in the synthesis of polymer (P1-1) except that the amount of lithium 3-mercapto-1-propanesulfonate was changed to 0.8 g (Mn3000, polymer (Ratio of the structural unit represented by the general formula (B1) in the above: 50 mol%)

[合成例2-1]ポリマー(P1-5)の合成

 下記スキームに従い、ポリマー(P1-5)を合成した。

Figure JPOXMLDOC01-appb-C000013

[Synthesis Example 2-1] Synthesis of polymer (P1-5)

According to the following scheme, a polymer (P1-5) was synthesized.

Figure JPOXMLDOC01-appb-C000013

 100mlフラスコに、水酸化リチウム・一水和物(和光純薬工業社製) 0.8g、水15g、IPA15g、及び、3-アミノプロパンスルホン酸(Aldrich社製)

2.5gを添加し、78℃まで撹拌しながら昇温した。更に、NISSO-PB JP-100(商品名、エポキシ化ポリブタジエン、日本曹達社製)5.0gをゆっくり添加し、そのままの温度で20時間反応させた。得られた反応液を濃縮することで、ポリマー(P1-5)を7.6g得ることができた(Mn2200、ポリマー中の一般式(B1)で表される構造単位の割合:20mol%)

In a 100 ml flask, 0.8 g of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries), 15 g of water, 15 g of IPA, and 3-aminopropanesulfonic acid (manufactured by Aldrich)

2.5 g was added, and the temperature was raised to 78 ° C. while stirring. Further, 5.0 g of NISSO-PB JP-100 (trade name, epoxidized polybutadiene, manufactured by Nippon Soda Co., Ltd.) was slowly added, and the mixture was reacted at the same temperature for 20 hours. By concentrating the obtained reaction solution, 7.6 g of a polymer (P1-5) was obtained (Mn2200, ratio of the structural unit represented by the general formula (B1) in the polymer: 20 mol%).

[合成例2-2]ポリマー(P1-6)の合成

 上記ポリマー(P1-5)の合成において、3-アミノプロパンスルホン酸を、対応する化合物に変えた以外は同様にして、下記ポリマー(P1-6)を合成した(Mn2000、ポリマー中の一般式(B1)で表される構造単位の割合:20mol%)。

Figure JPOXMLDOC01-appb-C000014

[Synthesis Example 2-2] Synthesis of polymer (P1-6)

The following polymer (P1-6) was synthesized in the same manner as in the synthesis of the polymer (P1-5) except that 3-aminopropanesulfonic acid was changed to the corresponding compound (Mn2000, a compound represented by the general formula ( (Ratio of structural unit represented by B1): 20 mol%).

Figure JPOXMLDOC01-appb-C000014

(2)リチウムイオン選択透過膜の作製

 上記ポリマー(P1-1)0.12gをジメチルスルホキシド(DMSO)0.8gに溶解させ、ポリ(アクリロニトリル-co-ブタジエン)(後記表1に記載のP1、Tg-20℃、Aldrich社製)の11質量%テトラヒドロフラン(THF)溶液2.6gを加えた後、室温で30分混合した。この混合液に、Li1.5Al0.5Ge1.512(メジアン径10μm、和光純薬工業社製)0.4gを加え、室温で1時間混合し、懸濁液を調整した。この懸濁液を直径4.9cmのシャーレ上に塗布し、室温で一晩静置した後、さらに、50℃5時間送風乾燥、100℃5時間真空乾燥することで、試験No.101のリチウムイオン選択透過膜(厚さ200μm)を作製した。

 また、リチウムイオン選択透過膜の構成材料(リチウムイオン伝導体(A)、ポリマー

(B)、ポリマー(C)、有機溶媒)を、試験No.101の組成に代えて後記表1の組成を採用したこと以外は、試験No.101のリチウムイオン選択透過膜の作製と同様にして、試験No.102~108、c11~c14のリチウムイオン選択透過膜を作製した。厚さはいずれも200μmであった。なお、試験No.c11、c12及びc14のリチウムイオン選択透過膜は、後記成膜性の評価で示す通り、結着性が十分でなく、膜として取出すことができなかった。また、試験No.c13のリチウムイオン選択透過膜は、成膜できたものの、欠陥が多く、以下のリチウムイオン選択透過膜の評価を行うことができなかった。

 試験No.101~108が本発明のリチウムイオン選択透過膜であり、試験No.c11~c14が比較のためのリチウムイオン選択透過膜である。

(2) Preparation of lithium ion selective permeable membrane

0.12 g of the above polymer (P1-1) was dissolved in 0.8 g of dimethyl sulfoxide (DMSO), and poly (acrylonitrile-co-butadiene) (P1, Tg-20 ° C. shown in Table 1 below, manufactured by Aldrich) was prepared. After adding 2.6 g of a 11% by mass tetrahydrofuran (THF) solution, the mixture was mixed at room temperature for 30 minutes. To this mixture, 0.4 g of Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (median diameter 10 μm, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was mixed at room temperature for 1 hour. It was adjusted. This suspension was applied on a Petri dish having a diameter of 4.9 cm, allowed to stand at room temperature overnight, and further dried by blowing air at 50 ° C. for 5 hours and vacuum-dried at 100 ° C. for 5 hours. A lithium ion selective permeable membrane 101 (thickness: 200 μm) was manufactured.

Further, the constituent materials of the lithium ion selective permeable membrane (lithium ion conductor (A), polymer

(B), the polymer (C), and the organic solvent) were subjected to Test No. Test No. 101 except that the composition of Table 1 described below was used instead of the composition of Test No. 101. Test No. 101 in the same manner as in the preparation of the lithium ion selective permeable membrane of No. 101. Lithium ion selective permeable membranes of 102 to 108 and c11 to c14 were produced. Each thickness was 200 μm. In addition, the test No. As shown in the evaluation of film forming properties described below, the lithium ion selective permeable films of c11, c12 and c14 did not have sufficient binding properties and could not be taken out as films. Test No. Although the lithium ion selective permeable membrane of c13 was formed, it had many defects, and the following lithium ion selective permeable membrane could not be evaluated.

Test No. Test Nos. 101 to 108 are the lithium ion selective permeable membranes of the present invention. c11 to c14 are lithium ion selective permeable membranes for comparison.

(3)リチウムイオン選択透過膜の評価

 上記で作製した各リチウムイオン選択透過膜について、成膜性、膜強度、リチウムイオンの回収速度及び選択性、並びに、透水性について評価を行った。結果を後記表1にまとめて示す。

(3) Evaluation of lithium ion selective permeable membrane

With respect to each of the lithium ion selective permeable membranes prepared above, evaluation was made on film formability, membrane strength, lithium ion recovery rate and selectivity, and water permeability. The results are summarized in Table 1 below.

[成膜性]

 作製した膜について、下記評価基準に当てはめ、成膜性を評価した。膜におけるひび割れ等の欠陥は、膜表面について観測した。

-評価基準-

A:膜にひび割れ等の欠陥がなく、シャーレから膜として取出すことができた。

B:膜にひび割れ等の欠陥が1個あったが、シャーレから膜として取出すことができた。

C:膜にひび割れ等の欠陥が2個以上あったが、シャーレから膜として取出すことができた。

D:粒子同士が十分に結着せず、シャーレから膜として取出すことができなかった。

[Film formation property]

The prepared film was applied to the following evaluation criteria, and the film forming property was evaluated. Defects such as cracks in the film were observed on the film surface.

-Evaluation criteria-

A: The film had no defects such as cracks, and could be taken out of the petri dish as a film.

B: The film had one defect such as a crack, but could be taken out of the petri dish as a film.

C: The film had two or more defects such as cracks, but could be taken out of the petri dish as a film.

D: The particles were not sufficiently bound to each other and could not be taken out of the petri dish as a film.

[膜強度試験:参考試験]

 作製した膜について、縦3cm、横3cm、厚さ200μmの試験片を作製した。この試験片について、90°折り曲げ試験を繰り返した。90°の角度で折り曲げた後、元の状態(角度0°)に戻す操作を1回と計数し、試験片が破断するまでの回数を求め、下記評価基準に当てはめ膜強度を評価した。なお、試験片の破断とは、ひび割れ等の欠陥が生じた状態を意味する。

-評価基準-

A:21回以上

B:11~20回

C:6~10回

D:5回以下

[Film strength test: Reference test]

With respect to the produced film, a test piece having a length of 3 cm, a width of 3 cm and a thickness of 200 μm was produced. The 90 ° bending test was repeated for this test piece. After bending at an angle of 90 °, the operation of returning to the original state (angle 0 °) was counted as one, the number of times until the test piece was broken was determined, and the film strength was evaluated by applying the following evaluation criteria. In addition, the fracture of the test piece means a state in which defects such as cracks have occurred.

-Evaluation criteria-

A: 21 times or more

B: 11-20 times

C: 6 to 10 times

D: 5 times or less

[電気透析試験]

 作製した膜を直径1.7cm、厚さ200μmの大きさに切り出し、リチウムイオン選択透過膜を用意した。図1に示す、正極3及び負極4を備える装置(テクノシグマ社製)において、用意したリチウムイオン選択透過膜10を配置し、陽極側にLiOH及びNaOHを各々0.1Mの濃度で含む原液5(溶媒:水)を10ml注いだ。次いで、陰極側に水(回収液6)を10ml注ぎ、電圧3V、25℃で3時間電気透析を行った。

[Electrodialysis test]

The produced membrane was cut into a size of 1.7 cm in diameter and 200 μm in thickness to prepare a lithium ion selective permeable membrane. In a device (manufactured by Techno Sigma) having a positive electrode 3 and a negative electrode 4 shown in FIG. 1, a prepared lithium ion selective permeable membrane 10 is arranged, and a stock solution 5 containing LiOH and NaOH at a concentration of 0.1 M each on the anode side. 10 ml of (solvent: water) was poured. Next, 10 ml of water (recovery solution 6) was poured into the cathode side, and electrodialysis was performed at a voltage of 3 V and 25 ° C. for 3 hours.

(リチウムイオン回収速度)

 3時間電気透析を行った後の回収液6のリチウムイオン濃度を測定することにより、原液5から回収液6に移動したリチウムイオンの割合を求め、下記評価基準に当てはめリチウムイオン回収速度を評価した。

-評価基準-

A:10%以上

B:5%以上10%未満

C:検出限界を超え5%未満

D:検出限界以下

(Lithium ion recovery rate)

By measuring the lithium ion concentration of the recovery solution 6 after performing the electrodialysis for 3 hours, the ratio of lithium ions transferred from the stock solution 5 to the recovery solution 6 was determined, and the lithium ion recovery rate was evaluated by applying the following evaluation criteria. .

-Evaluation criteria-

A: 10% or more

B: 5% or more and less than 10%

C: Exceeding detection limit and less than 5%

D: below detection limit

(リチウムイオン選択性)

 3時間電気透析を行った後の回収液6の、リチウムイオン及びナトリウムイオン全量中のリチウムイオンの比率(Liの含有量(mol)/[Li及びNaの合計含有量(mol)])を求め、下記評価基準に当てはめリチウムイオン選択性を評価した。

-評価基準-

A:0.7以上

B:0.5以上0.7未満

C:0.3以上0.5未満

D:0.3未満

(Lithium ion selectivity)

Ratio of lithium ions in the total amount of lithium ions and sodium ions in the recovered solution 6 after electrodialysis for 3 hours (content of Li + (mol) / [total content of Li + and Na + (mol)]) ) Was determined, and lithium ion selectivity was evaluated by applying the following evaluation criteria.

-Evaluation criteria-

A: 0.7 or more

B: 0.5 or more and less than 0.7

C: 0.3 or more and less than 0.5

D: less than 0.3

(透水性:参考試験)

 3時間電気透析を行った前後での回収液6中の水の重量の増加率(([W3h-W]/W)×100%)を求め、下記評価基準に当てはめ透水性を評価した。なお、Wは3時間電気透析を行う前の回収液6中の水の重量(g)を、W3hは3時間電気透析を行った後の回収液6中の水の重量(g)をそれぞれ示す。

-評価基準-

A:0.3%未満

B:0.3%以上0.6%未満

C:0.6%以上1.0%未満

D:1.0%以上

(Water permeability: Reference test)

The rate of increase in the weight of water in the recovered solution 6 before and after electrodialysis for 3 hours (([W 3h -W 0 ] / W 0 ) × 100%) was determined, and the water permeability was evaluated by applying the following evaluation criteria. did. W 0 represents the weight (g) of water in the recovered solution 6 before electrodialysis for 3 hours, and W 3h represents the weight (g) of water in the recovered solution 6 after electrodialysis for 3 hours. Shown respectively.

-Evaluation criteria-

A: less than 0.3%

B: 0.3% or more and less than 0.6%

C: 0.6% or more and less than 1.0%

D: 1.0% or more

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

<表1の注>

(1)リチウムイオン伝導体(A)

 LAGP:Li1.5Al0.5Ge1.512(メジアン径10μm、和光純薬工業社製)

(2)ポリマー(B)

 (P1-1)~(P1-6):上記で合成したポリマー(P1-1)~(P1-6)

 (cP1-1):ポリ(エチレン-co-アクリル酸) (Aldrich社製)

 (cP1-2):ポリマー(cP1-1)を調液の際にNaOHで中和(中和率90%以上)したもの。

 SP値:一般式(B1)で表される構造単位のSP値を示す。ただし、ポリマー(cP1-1)および(cP1-2)については、アクリル酸成分の構造単位のSP値を示す。

(3)ポリマー(C)

 (P1):ポリ(アクリロニトリル-co-ブタジエン)(Tg-20℃、アクリロニトリル含有量37-39質量%、Aldrich社製)

 (P2):ポリアクリロニトリル(Tg≧50℃、Aldrich社製)

 (P3):エポキシ化天然ゴム(Tg-15℃、エポキシ化率50%、三洋貿易社より入手)

 表中の「-」は、その成分を含有しないことを示す。

<Note for Table 1>

(1) Lithium ion conductor (A)

LAGP: Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (median diameter 10 μm, manufactured by Wako Pure Chemical Industries, Ltd.)

(2) Polymer (B)

(P1-1) to (P1-6): Polymers (P1-1) to (P1-6) synthesized above.

(CP1-1): poly (ethylene-co-acrylic acid) (manufactured by Aldrich)

(CP1-2): a polymer (cP1-1) neutralized with NaOH (neutralization ratio of 90% or more) at the time of liquid preparation.

SP value: Shows the SP value of the structural unit represented by the general formula (B1). However, for polymers (cP1-1) and (cP1-2), the SP value of the structural unit of the acrylic acid component is shown.

(3) Polymer (C)

(P1): poly (acrylonitrile-co-butadiene) (Tg-20 ° C., acrylonitrile content 37-39% by mass, manufactured by Aldrich)

(P2): polyacrylonitrile (Tg ≧ 50 ° C., manufactured by Aldrich)

(P3): Epoxidized natural rubber (Tg-15 ° C., epoxidation rate 50%, obtained from Sanyo Trading Co., Ltd.)

"-" In the table indicates that the component is not contained.

 上記表1から明らかなように、No.c11は低分子の有機リチウム塩化合物と非水溶性ポリマー(C)とを用い、No.c12はカルボキシ基が直接ポリマー主鎖に結合したアニオン性基含有ポリマーを使用して、No.14はこのアニオン性基含有ポリマーのNa塩を使用して、リチウムイオン選択透過膜の作製を行っており、いずれも、本発明における一般式(B1)で表される構造単位を有するポリマー(B)を含有していない。これらNo.c11、c12及びc14は、いずれも、シャーレから膜として取出すことができなかった。また、No.c13はカルボキシ基が直接ポリマー主鎖に結合したアニオン性基含有ポリマーと非水溶性ポリマー(C)とを用いてリチウムイオン選択透過膜の作製を行っており、本発明における一般式(B1)で表される構造単位を有するポリマー(B)を含有していない。このNo.c13は、シャーレから膜として取出すことができたものの、得られた膜は欠陥が多く、リチウムイオン選択透過膜としての性能評価を行うことはできなかった。

 これに対して、一般式(B1)で表される構造単位を有するポリマー(B)を有する本発明のリチウムイオン選択透過膜は成膜性に優れていた。しかも、このリチウムイオン選択透過膜は、優れたリチウムイオン回収速度及びリチウムイオン選択性を示していた。さらに、本発明のリチウムイオン選択透過膜は、膜強度及び透水性のいずれにも優れていた。

As is apparent from Table 1 above, No. c11 uses a low molecular weight organic lithium salt compound and a water-insoluble polymer (C). For c12, an anionic group-containing polymer having a carboxy group bonded directly to the polymer main chain was used. No. 14 manufactures a lithium ion selective permeable membrane using the Na salt of the anionic group-containing polymer, and in each case, the polymer (B) having a structural unit represented by the general formula (B1) in the present invention (B1) ) Is not contained. These Nos. All of c11, c12 and c14 could not be taken out from the petri dish as a film. In addition, No. In c13, a lithium ion selective permeable membrane is prepared using an anionic group-containing polymer in which a carboxy group is directly bonded to a polymer main chain and a water-insoluble polymer (C). It does not contain the polymer (B) having the represented structural unit. This No. Although c13 could be taken out from the petri dish as a film, the obtained film had many defects and could not be evaluated for performance as a lithium ion selective permeable film.

On the other hand, the lithium ion selective permeable membrane of the present invention having the polymer (B) having the structural unit represented by the general formula (B1) was excellent in film formability. Moreover, this lithium ion selective permeable membrane showed an excellent lithium ion recovery rate and lithium ion selectivity. Furthermore, the selectively permeable lithium ion membrane of the present invention was excellent in both membrane strength and water permeability.

1A、1B リチウムイオン回収装置

2 処理槽

3 正極

4 負極

5 原液

6 回収液

10 リチウムイオン選択透過膜

11 原液貯蔵槽

12 回収液貯蔵槽

13a~e 配管

14a~e ポンプ

15 リチウム含有化合物回収部

16 電源

17 撹拌子

18 回転台

100 リチウム含有化合物回収装置

1A, 1B Lithium ion recovery device

2 Processing tank

3 Positive electrode

4 Negative electrode

5 undiluted solution

6 Recovered liquid

10 Lithium ion selective permeable membrane

11 Stock solution storage tank

12 Recovery liquid storage tank

13a-e piping

14a-e pump

15 Lithium-containing compound recovery department

16 Power supply

17 stirrer

18 Turntable

100 Lithium-containing compound recovery device

Claims (8)


  1.  リチウムイオン伝導体(A)と、下記一般式(B1)で表される構造単位を有するポリマー(B)とを含有する、リチウムイオン選択透過膜。

    Figure JPOXMLDOC01-appb-C000001

     上記式中、L及びLは各々独立に置換基を有していてもよいアルキレン基を示し、R~Rは各々独立に水素原子又はアルキル基を示し、Aは-NR-、-O-又は-S-を示し、Rは水素原子又はアルキル基を示し、YB1は対イオンとしてリチウムイオンを有するアニオン性基を示す。*はポリマーの構造単位としての結合部位を示す。

    A selectively permeable lithium ion membrane comprising a lithium ion conductor (A) and a polymer (B) having a structural unit represented by the following general formula (B1).

    Figure JPOXMLDOC01-appb-C000001

    In the above formula, L 1 and L 2 each independently represent an alkylene group which may have a substituent, R 1 to R 3 each independently represent a hydrogen atom or an alkyl group, and A represents —NR 4 − , —O— or —S—, R 4 represents a hydrogen atom or an alkyl group, and Y B1 represents an anionic group having a lithium ion as a counter ion. * Indicates a binding site as a structural unit of the polymer.

  2.  前記一般式(B1)で表される構造単位のSP値が14以上24以下である、請求項1に記載のリチウムイオン選択透過膜。

    The lithium ion selective permeable membrane according to claim 1, wherein the SP value of the structural unit represented by the general formula (B1) is 14 or more and 24 or less.

  3.  前記一般式(B1)で表される構造単位が下記一般式(B2)で表される構造単位である、請求項1又は2に記載のリチウムイオン選択透過膜。

    Figure JPOXMLDOC01-appb-C000002

     上記式中、L21及びL22は各々独立に炭素数1~7のアルキレン基を示し、R21~R23は各々独立に水素原子又は炭素数1~4のアルキル基を示し、YB2は前記YB1と同義である。*はポリマーの構造単位としての結合部位を示す。

    The lithium ion selective permeable membrane according to claim 1 or 2, wherein the structural unit represented by the general formula (B1) is a structural unit represented by the following general formula (B2).

    Figure JPOXMLDOC01-appb-C000002

    In the above formula, L 21 and L 22 each independently represent an alkylene group having 1 to 7 carbon atoms, R 21 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Y B2 represents It has the same meaning as YB1. * Indicates a binding site as a structural unit of the polymer.

  4.  前記アニオン性基が-SO Liである、請求項1~3のいずれか1項に記載のリチウムイオン選択透過膜。

    The anionic group is -SO 3 - Li is +, the lithium ion permselective membrane according to any one of claims 1 to 3.

  5.  前記ポリマー(B)とは異なる非水溶性ポリマー(C)であって、シアノ基、アミド基、アミノ基、ヒドロキシ基、スルファニル基、エーテル結合、スルフィド結合及びウレタン結合のうちのいずれか1種以上を有し、かつ、ガラス転移温度が0℃以下である非水溶性ポリマー(C)を含有する、請求項1~4のいずれか1項に記載のリチウムイオン選択透過膜。

    A water-insoluble polymer (C) different from the polymer (B), wherein at least one of a cyano group, an amide group, an amino group, a hydroxy group, a sulfanyl group, an ether bond, a sulfide bond, and a urethane bond is provided. The lithium ion selective permeable membrane according to any one of claims 1 to 4, wherein the membrane comprises a water-insoluble polymer (C) having a glass transition temperature of 0 ° C or lower.

  6.  請求項1~5のいずれか1項に記載のリチウムイオン選択透過膜を有する、リチウムイオン回収装置。

    A lithium ion recovery device comprising the lithium ion selective permeable membrane according to any one of claims 1 to 5.

  7.  請求項6に記載のリチウムイオン回収装置を備える、リチウム含有化合物回収装置。

    A lithium-containing compound recovery device comprising the lithium ion recovery device according to claim 6.

  8.  請求項1~5のいずれか1項に記載のリチウムイオン選択透過膜を用いてリチウムイオンを回収することを含む、リチウムイオンの回収方法。

    A method for recovering lithium ions, comprising recovering lithium ions using the lithium ion selective permeable membrane according to any one of claims 1 to 5.
PCT/JP2019/028953 2018-09-07 2019-07-24 Lithium ion permselective membrane, lithium ion recovery device and lithium-containing compound recovery device using same, and lithium ion recovery method WO2020049884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018167867A JP2022001341A (en) 2018-09-07 2018-09-07 Lithium ion permselective membrane, lithium ion recovery apparatus and lithium-including compound recovery apparatus using the membrane, and lithium ion recovery method
JP2018-167867 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020049884A1 true WO2020049884A1 (en) 2020-03-12

Family

ID=69723083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028953 WO2020049884A1 (en) 2018-09-07 2019-07-24 Lithium ion permselective membrane, lithium ion recovery device and lithium-containing compound recovery device using same, and lithium ion recovery method

Country Status (2)

Country Link
JP (1) JP2022001341A (en)
WO (1) WO2020049884A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026607A1 (en) * 2019-08-12 2021-02-18 Monash University Lithium ion conductor-polymer-ceramic membrane
WO2021206126A1 (en) 2020-04-08 2021-10-14 出光興産株式会社 Ion selective permeable membrane and ion recovery device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102272A (en) * 1996-09-26 1998-04-21 Ngk Spark Plug Co Ltd Li extractor
WO2015020121A1 (en) * 2013-08-08 2015-02-12 独立行政法人日本原子力研究開発機構 Metal ion recovery device and metal ion recovery method
JP2015059059A (en) * 2013-09-18 2015-03-30 株式会社クラレ Method for recovering lithium salt
JP2016119284A (en) * 2014-12-19 2016-06-30 三星電子株式会社Samsung Electronics Co.,Ltd. Composite membrane, preparation method thereof, and anode structure and lithium secondary battery including the same
CN106110890A (en) * 2016-07-03 2016-11-16 温州大学 The segregation apparatus of a kind of magnesium lithium ion and separation method thereof
WO2017131051A1 (en) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 Lithium-selective permeable membrane, lithium recovery device, lithium recovery method and hydrogen production method
JP2018521173A (en) * 2015-06-24 2018-08-02 クアンタムスケイプ コーポレイション Composite electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102272A (en) * 1996-09-26 1998-04-21 Ngk Spark Plug Co Ltd Li extractor
WO2015020121A1 (en) * 2013-08-08 2015-02-12 独立行政法人日本原子力研究開発機構 Metal ion recovery device and metal ion recovery method
JP2015059059A (en) * 2013-09-18 2015-03-30 株式会社クラレ Method for recovering lithium salt
JP2016119284A (en) * 2014-12-19 2016-06-30 三星電子株式会社Samsung Electronics Co.,Ltd. Composite membrane, preparation method thereof, and anode structure and lithium secondary battery including the same
JP2018521173A (en) * 2015-06-24 2018-08-02 クアンタムスケイプ コーポレイション Composite electrolyte
WO2017131051A1 (en) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 Lithium-selective permeable membrane, lithium recovery device, lithium recovery method and hydrogen production method
CN106110890A (en) * 2016-07-03 2016-11-16 温州大学 The segregation apparatus of a kind of magnesium lithium ion and separation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026607A1 (en) * 2019-08-12 2021-02-18 Monash University Lithium ion conductor-polymer-ceramic membrane
WO2021206126A1 (en) 2020-04-08 2021-10-14 出光興産株式会社 Ion selective permeable membrane and ion recovery device

Also Published As

Publication number Publication date
JP2022001341A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
Zhang et al. Angstrom-scale ion channels towards single-ion selectivity
CN110582869B (en) Battery separator and battery using the same
KR102287715B1 (en) A novel cross-linker for the preparation of a new family of single ion conduction polymers for electrochemical devices and such polymers
JP5889907B2 (en) Method for producing a monomer solution for producing a cation exchange membrane
JP6292906B2 (en) Anion conductive material and battery
KR101661404B1 (en) Modified sulfonated block copolymers and the preparation thereof
TWI516513B (en) Anion exchange block copolymers, their manufacture and their use
US20100137460A1 (en) Electrochemical devices containing anionic-exchange membranes and polymeric ionomers
WO2020049884A1 (en) Lithium ion permselective membrane, lithium ion recovery device and lithium-containing compound recovery device using same, and lithium ion recovery method
JPH08512358A (en) Copolymer composition of trifluorostyrene and substituted trifluorostyrene and ion exchange resin made therefrom
KR20180134869A (en) Bipolar membrane
CN111518353B (en) MXene/polymer composite material and preparation method and application thereof
DE102014001816A1 (en) Redox flow cell for storing electrical energy and its use
KR20130113469A (en) Method for producing a sulfonated block copolymer composition
JP5000109B2 (en) Binder for electrode preparation, electrode and polymer battery
WO2019189592A1 (en) Lithium ion permselective membrane, electrodialysis device, lithium-containing compound recovery device, and method for recovering lithium-containing compound
US20220052371A1 (en) Aqueous electrolyte, redox flow battery and use thereof
WO2007123268A1 (en) Vinyl polymer of sulfone group-containing monomer, method for producing the same, polymer electrolyte, polymer electrolyte membrane, and fuel cell
JP4140453B2 (en) Method for producing diallylamine acetate polymer
JPS6324565A (en) Diaphragm for redox flow cell
JP5522618B2 (en) Monolithic organic porous anion exchanger and method for producing the same
KR101872121B1 (en) Battery Desalination System capable of desalination during charging/discharging
TW201943132A (en) Binder for electrode, composition for electrode, electrode for energy device, energy device, resin for energy device, carbon material dispersion and method of producing carbon material dispersion
JPS6353861A (en) Diaphgram for redox flow cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP