WO2020049834A1 - Arrangement data preparation device and arrangement data preparation method - Google Patents

Arrangement data preparation device and arrangement data preparation method Download PDF

Info

Publication number
WO2020049834A1
WO2020049834A1 PCT/JP2019/024538 JP2019024538W WO2020049834A1 WO 2020049834 A1 WO2020049834 A1 WO 2020049834A1 JP 2019024538 W JP2019024538 W JP 2019024538W WO 2020049834 A1 WO2020049834 A1 WO 2020049834A1
Authority
WO
WIPO (PCT)
Prior art keywords
usable
parts
materials
yield rate
post
Prior art date
Application number
PCT/JP2019/024538
Other languages
French (fr)
Japanese (ja)
Inventor
考亮 大津
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2020049834A1 publication Critical patent/WO2020049834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D36/00Control arrangements specially adapted for machines for shearing or similar cutting, or for sawing, stock which the latter is travelling otherwise than in the direction of the cut
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD

Definitions

  • the present disclosure relates to an arrangement data creating apparatus and an arrangement data creating method for creating arrangement data used when a processing machine cuts a part having a plurality of lengths from a pipe or a steel material having a predetermined length.
  • processing machines that cut materials such as pipes or steel using a laser beam, for example.
  • This type of processing machine is controlled by an NC device.
  • the NC device controls a processing machine in accordance with a processing program that defines a procedure of a process of cutting a material.
  • a machine cuts a material to produce parts of multiple lengths, it selects which of the multiple lengths of material and how to assign each length part to the selected material. It is necessary to determine the arrangement of cutting the material.
  • the arrangement of parts relative to the material is called nesting.
  • the processing program is created based on the arrangement data indicating the nesting state of the component with respect to the material.
  • the yield is the ratio of the portion used as a part to the length of the material, and the higher the ratio of the residual material to the material, the lower the yield.
  • An object of one or more embodiments is to provide an arrangement data creating apparatus and an arrangement data creating method capable of improving a yield rate when manufacturing a part by cutting a material.
  • component data of a plurality of components including lengths as information on each component, and a plurality of materials including lengths and the number of owned components as information on each material are provided.
  • the plurality of materials that can be used for manufacturing the respective production target parts among the plurality of materials in the above are extracted as a plurality of usable materials, the plurality of the respective production target parts are set by the set number of members.
  • an arrangement data creating unit for creating arrangement data by arranging the plurality of usable materials from the usable materials selected from the plurality of usable materials. Selecting a first usable material that is the longest usable material among the possible materials, performing nesting for arranging the respective parts to be manufactured on the first usable material, and executing the first usable material; A second usable material shorter than the first usable material of the plurality of usable materials, while maintaining a state of the arrangement of the respective production target parts arranged in the second usable material. And an arrangement data generating apparatus for executing a first post-processing for arranging the parts to be produced on the second usable material when the parts can be arranged in the second usable material.
  • one or more components to be fabricated by the computer device by cutting the material and the number of components to be fabricated are set.
  • a plurality of usable materials that can be used to manufacture each of the parts to be manufactured are extracted, and a first usable material that is the longest usable material among the plurality of usable materials is extracted.
  • a nesting operation is performed in which a usable material is selected, and the production target parts are arranged in the first usable material by a set number of members, and the production target parts arranged in the first usable material are executed.
  • the respective parts to be manufactured can be arranged on a second usable material shorter than the first usable material of the plurality of usable materials while maintaining the arrangement state of Executing a first post-processing for arranging the respective production target parts on the second usable material, and, when the first post-processing is not executed, placing the respective production target parts in the first usable state
  • an arrangement data creating method for creating arrangement data arranged on a material and, when the first post-processing is executed, creating arrangement data arranged on each of the parts to be produced on the second usable material.
  • FIG. 1 is a block diagram showing a laser processing system including a computer device functioning as an arrangement data creating device according to one or more embodiments.
  • FIG. 2 is a diagram illustrating an example of a nesting plan image displayed on the display unit of the computer device.
  • FIG. 3 is a diagram illustrating an example 1 of input components input to the nesting plan and input materials extracted for manufacturing the components.
  • FIG. 4 is a diagram showing a state in which the input components of Example 1 are nested in input materials in one or more embodiments and comparative examples.
  • FIG. 5 is a diagram illustrating Example 2 of the input components input to the nesting plan and the input materials extracted for manufacturing the components.
  • FIG. 1 is a block diagram showing a laser processing system including a computer device functioning as an arrangement data creating device according to one or more embodiments.
  • FIG. 2 is a diagram illustrating an example of a nesting plan image displayed on the display unit of the computer device.
  • FIG. 3 is a diagram illustrating an example 1 of input components input to the
  • FIG. 6 is a diagram illustrating a state where the input component of Example 2 is nested in the input material in one or more embodiments.
  • FIG. 7 is a diagram illustrating a state in which the first post-processing has been performed in Example 2 of one or more embodiments.
  • FIG. 8 is a diagram illustrating Example 3 of the input components input to the nesting plan and the input materials extracted for manufacturing the components.
  • FIG. 9 is a diagram illustrating a state in which the input component of Example 3 is nested in the input material in one or more embodiments.
  • FIG. 10 is a diagram illustrating, in Example 3 of one or more embodiments, the input component to be subjected to the second post-processing, which is disposed on the lowest yield rate material, and the input material shorter than the lowest yield rate material.
  • FIG. 10 is a diagram illustrating, in Example 3 of one or more embodiments, the input component to be subjected to the second post-processing, which is disposed on the lowest yield rate material, and the input material shorter
  • FIG. 11 is a diagram illustrating a state where the second post-processing is executed in the third example of one or more embodiments.
  • FIG. 12 is a diagram illustrating a final nesting state in Example 3 of one or more embodiments.
  • FIG. 13A is a flowchart showing the operation of the arrangement data creation device of one or more embodiments, and the arrangement data creation method of one or more embodiments.
  • FIG. 13B is a flowchart illustrating the operation of the arrangement data creation device according to one or more embodiments, and the arrangement data creation method according to one or more embodiments.
  • FIG. 14 is a diagram illustrating a first example in which it is determined in step S8 in FIG. 13B that all input components to be subjected to the second post-processing cannot be arranged on the material.
  • FIG. 13A is a flowchart showing the operation of the arrangement data creation device of one or more embodiments, and the arrangement data creation method of one or more embodiments.
  • FIG. 13B is a flowchart illustrating the operation
  • FIG. 15 is a diagram illustrating a second example in which it is determined in step S8 in FIG. 13B that all input components to be subjected to the second post-processing cannot be arranged on the material.
  • FIG. 16 is a diagram illustrating an example of a case where the second post-processing is performed a plurality of times in FIG. 13B.
  • the computer device 10 the NC unit 20, and the laser beam machine 30 constitute a laser beam machining system.
  • the computer device 10 constitutes an arrangement data creation device of one or more embodiments, executes the arrangement data creation method of one or more embodiments, and stores an arrangement data creation program.
  • the computer device 10 creates a processing program for the laser processing machine 30 to process a material, and supplies the processing program to the NC device 20.
  • the NC device 20 controls the laser beam machine 30 based on the machining program
  • the laser beam machine 30 cuts the material.
  • the material is a metal pipe or steel material, the pipe having, for example, a cylindrical (cylindrical) or quadrangular prism shape
  • the steel material is, for example, an angle steel, a channel steel, a lightweight angle steel, a lightweight channel steel, a lip channel steel.
  • the processing program may be stored in a storage unit such as a server (not shown), and the NC device 20 may control the laser processing machine 30 based on the processing program read from the storage unit.
  • the computer device 10 may be located at a remote location remote from the NC device 20 and connected to the NC device 20 via a network.
  • the computer device 10 is a computer device that functions as a CAM (Computer Aided Manufacturing).
  • the computer device 10 includes a storage unit 11, a central processing unit (hereinafter, CPU) 12, an operation unit 13, and a display unit 14.
  • the storage unit 11 stores component data, material data, an arrangement data creation program that is a computer program for creating arrangement data, and a machining program creation program that is a computer program for creating a machining program. ing.
  • the component data is data on a plurality of components, and includes a length as information on each component.
  • the material data is data on a plurality of materials, and includes the length as information on each material and the number of materials owned.
  • the component data and the material data, and the arrangement data creation program and the machining program creation program may be stored in different storage units.
  • the arrangement data creation program and the machining program creation program are CAM programs.
  • the processing program creation unit 122 creates a processing program including NC data used when the laser processing machine 30 cuts a material, based on the arrangement data created by the arrangement data creation unit 121.
  • the NC data is a machine control code for controlling the laser beam machine 30.
  • a nesting plan image 140 is displayed on the display unit 14 as shown in FIG. .
  • the arrangement data creation unit 121 causes the display unit 14 to display the nesting plan image 140.
  • the nesting plan image 140 includes a parts list area 141 indicating a list of parts to be manufactured, and a materials list area 142 indicating a list of materials (input materials) that can be used to manufacture the parts in the parts list area 141. Including.
  • the nesting plan image 140 shown in FIG. 2 indicates that the operator selects the parts with the part numbers PX, XY, and PZ from the part data stored in the storage unit 11 and indicates the number of members to be manufactured. The case where two, two, and four are set respectively is shown.
  • a mark 143 indicating that each component of the component numbers PX, PY, and PZ is a component obtained by cutting a pipe is displayed.
  • the arrangement data creation unit 121 extracts materials that can be used to manufacture the parts having the part numbers PX, PY, and PZ from the material data and displays the extracted materials in the material list area 142. Since the parts having the part numbers PX, PY, and PZ are parts having a diameter of 100 mm and a plate thickness of 2 mm, a usable material is a pipe having a diameter of 100 mm and a plate thickness of 2 mm.
  • pipes with pipe material names MT-PA, MT-PB, MT-PX,... are extracted as usable materials.
  • the length of the material and the number of tubes owned are displayed.
  • a mark 144 indicating that the material is a pipe is displayed.
  • the mark 144 may be the same as the mark 143.
  • FIG. 3 shows an example 1 in which the input parts input to the nesting plan are the parts having the part numbers PA and PB, and the input materials usable for manufacturing those parts are the material names MT- A and MT-B materials are shown.
  • the parts having the part numbers PA and PB are the parts to be manufactured.
  • the materials having the material names MT-A and MT-B are usable materials that can be used to manufacture each component to be manufactured.
  • the part lengths of the parts having the part numbers PA and PB are 500 mm and 1600 mm, respectively, and the number of parts is one.
  • the material lengths of the materials with the material names MT-A and MT-B are 2000 mm and 2500 mm, respectively, and the number of each material is one.
  • the priority of the input materials is set by the operator, and the input materials are selected according to the priority and the nesting is performed.
  • a comparative example is a case where the material having the material name MT-A is set to the highest priority 1 and the material having the material name MT-B is set to the second priority which is lower in priority than the first priority.
  • the operator can arbitrarily set a priority order for a plurality of input materials.
  • the part with the part number PB is automatically placed on the material with the material name MT-A, and the part with the part number PA is replaced with the material with the material name MT-B. Placed automatically. It should be noted that if the part with the part number PB is placed on the material with the material name MT-A, the part with the part number PA cannot be placed on the material with the material name MT-A. It is placed on the material with the name MT-B.
  • the yield rate of the material with the material name MT-A is (1600/2000) ⁇ 100 and 80%
  • the yield rate of the material with the material name MT-B is (500/2500) ⁇ 100 and 20%. It is.
  • the average yield of the materials with the material names MT-A and MT-B is 50%.
  • the longest input material when there is more than one available input material, the longest input material (first available material) is preferentially selected and nesting is performed. As shown in FIG. 4, in one or more embodiments, the arrangement data creating unit 121 assigns the longest input material in Example 1 the material with the material name MT-B and the part numbers PB and PA to the material. Create placement data for placing parts. In one or more embodiments, the yield of material with material name MT-B is ⁇ (1600 + 500) / 2500 ⁇ ⁇ 100, which is 84%. The average yield is improved from 50% to 84%.
  • a part-to-part width which is a gap of about 5 to 10 mm, is provided between the part having the part number PB and the part having the part number PA.
  • the width between parts is ignored.
  • the width between parts can be set to zero. The calculation of the width between parts and the yield rate is the same in other drawings.
  • the yield rate may not be improved by preferentially selecting the longest material and performing nesting.
  • verification by the present inventors has confirmed that the yield rate is often improved by preferentially selecting the longest material and performing nesting. Therefore, it is preferable to perform nesting by preferentially selecting the longest input material.
  • FIG. 5 shows, as an example 2, that the input parts input to the nesting plan are the parts having the part numbers PB, and the input materials that can be used for manufacturing these parts are the material names MT-C and MT-C.
  • the case of the material A is shown.
  • the part with the part number PB is the part to be manufactured.
  • the materials with the material names MT-C and MT-A are usable materials that can be used to manufacture the component to be manufactured.
  • the part length of the part with the part number PB is 1600 mm and the number of parts is one.
  • the material lengths of the materials having the material names MT-C and MT-B are 3000 mm and 2000 mm, respectively, and the number of each material is one.
  • the arrangement data creating unit 121 assigns the part number to the material having the material name MT-C, which is the longest input material (first usable material) in Example 2.
  • the layout data for arranging the PB components is created.
  • the yield rate of the material having the material name MT-C is (1600/3000) ⁇ 100, which is 53%.
  • the arrangement data creating unit 121 allocates the input component to the short input material.
  • a first post-processing is performed.
  • the arrangement data creating unit 121 creates arrangement data for arranging the part having the part number PB on the material having the material name MT-A.
  • the arrangement data creation unit 121 changes the input material on which the input component is to be arranged, the arrangement state of the input component is maintained without being changed.
  • the arrangement data creation unit 121 creates the arrangement data for arranging the part with the part number PB on the material with the material name MT-A
  • the yield rate is (1600/2000) ⁇ 100 and 80%.
  • the average yield is improved from 53% to 84%.
  • Example 1 the reason that the arrangement data creating unit 121 does not execute the first post-processing is that the two parts having the part numbers PB and PA in FIG. This is because it cannot be arranged on the material of MT-A.
  • the arrangement data creating unit 121 executes a second post-process described later.
  • the arrangement data creating unit 121 executes the second post-processing regardless of whether the first post-processing has been executed. Using Example 3, how the arrangement data creating unit 121 executes the second post-processing will be described.
  • FIG. 8 shows, as Example 3, the input parts input to the nesting plan are the parts having the part numbers PA and PB, and the input materials that can be used to manufacture these input parts are the material names MT.
  • the parts with the part numbers PA and PB are the parts to be manufactured.
  • the materials with the material names MT-D and MT-A are usable materials that can be used to manufacture each component to be manufactured.
  • the part lengths of the parts having the part numbers PA and PB are 500 mm and 1600 mm, respectively, and the number of parts is 2 and 4, respectively.
  • the material lengths of the materials with the material names MT-D and MT-A are 6000 mm and 2000 mm, respectively, and the number of each material is 2.
  • the arrangement data creation unit 121 creates arrangement data for arranging the parts having the part numbers PA and PB on the material having the material name MT-D, which is the longest input material in Example 3.
  • the first material having the material name MT-D three parts having the part number PB are arranged.
  • the second material one part having the part number PB and one having the part number PA are arranged. Two parts are arranged.
  • the yield rate of the first material is ⁇ (3 ⁇ 1600) / 6000) ⁇ ⁇ 100 and 80%
  • the yield rate of the second material is ⁇ (1600 + 2 ⁇ 500) / 6000) ⁇ 100. 43%.
  • Example 3 since the first post-processing cannot be executed, the arrangement data creating unit 121 in a state where the input components are arranged in the longest input material, outputs a plurality of input materials in which the input components are arranged.
  • the second post-processing is performed on a material having the lowest yield rate and a yield rate less than a predetermined reference value. In one or more embodiments, the reference value is 80%.
  • the arrangement data creation unit 121 determines the parts arranged in the input material having the lowest yield rate and the yield rate less than the reference value (hereinafter, the lowest yield rate material) as the material of the lowest yield rate material. Perform nesting placing on unused material shorter than the length. When there are a plurality of materials shorter than the material length of the lowest yield rate material, the arrangement data creating unit 121 performs the nesting in order from the material having the longer material length to the material having the shorter material length.
  • the arrangement data creating unit 121 in a state where the input components are arranged in the input material shorter than the longest input material, outputs a plurality of input materials in which the input components are arranged.
  • the second post-processing may be performed on a material having the lowest yield rate and a yield rate less than a predetermined reference value.
  • the yield rate of the second material having the material name MT-D is the lowest, and the yield rate is less than 80%.
  • the input parts arranged in the second material have two parts with the part number PA and one part with the part number PB.
  • An unused material shorter than the material length of the lowest yield rate material is a material having a material name of MT-A, and two materials exist.
  • the arrangement data creating unit 121 arranges one part having the part number PB on the first material having the material name MT-A, and Nesting for arranging two parts with the part number PA is executed.
  • the yield rate of the first material is (1600/2000) ⁇ 100 and 80%
  • the yield rate of the second material is (2 ⁇ 500/2000) ⁇ 100 and 50%.
  • the average yield of the two materials is 65%.
  • the arrangement data creation unit 121 finally creates the arrangement data shown in FIG.
  • Three parts having the part number PB are arranged in one material having the material name MT-D, and one part having the part number PB is arranged in the first material having the material name MT-A.
  • Two parts with the part number PA are arranged in the second material of the MT-A.
  • step S1 the CPU 12 executes automatic nesting for automatically arranging the input components on the longest input material.
  • step S2 the CPU 12 determines whether the first post-processing can be executed. If the first post-processing is executable (YES), the CPU 12 executes the first post-processing in step S3, and shifts the processing to step S4. If the first post-processing cannot be executed in step S2 (NO), the CPU 12 shifts the processing to step S4.
  • step S4 the CPU 12 calculates the yield rate of each material on which the input components are arranged, and determines in step S5 whether the yield rate UTL of the material having the smallest yield rate is less than 80%. UTL is a variable. If the yield rate UTL is not less than 80% (NO), the CPU 12 ends the processing.
  • the CPU 12 determines in step S6 shown in FIG. 13B whether or not there is an input material that can be used in the second post-processing. If there is an input material that can be used in the second post-processing (YES), the CPU 12 executes the second post-processing in step S7. If there is no usable input material in the second post-processing (NO), the CPU 12 shifts the processing to step S13.
  • step S8 the CPU 12 determines whether or not all the input parts to be subjected to the second post-processing can be arranged on the input materials determined to be usable in the second post-processing. judge. If all the input components to be subjected to the second post-processing can be arranged in the input material (YES), the CPU 12 determines in step S9 the average of the input components to which the input components to be subjected to the second post-processing have been arranged. The yield rate UTLave is calculated. UTLave is a variable. In step S8, if it is not possible to arrange all the input parts to be subjected to the second post-processing on the input material (NO), the CPU 12 shifts the processing to step S13.
  • step S8 it is determined in step S8 that all the input components to be subjected to the second post-processing cannot be arranged on the input material in the case as shown in FIG. 14 or FIG.
  • FIG. 14 shows a case where the input material to be used in the second post-processing is shorter than the input component.
  • FIG. 15 shows, as an example, a case in which ten input components must be arranged in the input material, but only nine components can be arranged, and not all the input components can be arranged in the input material.
  • step S10 the CPU 12 determines whether the average yield rate UTLave is greater than the yield rate UTL. If the average yield rate UTLave is not larger than the yield rate UTL (NO), it means that the yield rate UTL of the input material having the smallest yield rate has not been improved, and the CPU 12 returns the processing to step S6 and returns to step S6 and thereafter. repeat.
  • the CPU 12 sequentially selects the material having the longer material length to the shorter material, and executes the second post-processing of Step S7. Therefore, the second post-processing may be executed a plurality of times.
  • FIG. 16 shows an example in which the second post-processing is executed a plurality of times.
  • the materials with the material names MT-A and MT-B were used, and the material with MT-B was the material with the lowest yield rate. I do.
  • materials having material names MT-D, MT-E, MT-F, and MT-G which are shorter than the lowest yield rate material, are input materials that can be used in the second post-processing. .
  • the material having the material name MT-D is selected and the second post-processing is executed. If the average yield rate UTLave is not larger than the yield rate UTL, the materials having the material names MT-F and MT-G, which are shorter than the material having the material name MT-D, can be used in the second second post-processing.
  • the material having the material name MT-F is selected and the second post-processing is executed. If the average yield rate UTLave is not larger than the yield rate UTL, a material having a material name MT-G shorter than the material having the material name MT-F becomes a material that can be used in the third second post-processing. As the third second post-processing, the material having the material name MT-G is selected and the second post-processing is executed.
  • step S10 if the average yield rate UTLave is larger than the yield rate UTL in step S10 (YES), the CPU 12 sets the yield rate UTL (variable UTL) to the average yield rate UTLave (variable UTLave) in step S11. I do.
  • step S12 the CPU 12 determines whether or not the yield rate UTL is 80% or more. If the yield rate UTL is not 80% or more (NO), the CPU 12 returns the processing to step S6 and repeats the processing from step S6.
  • step S13 the CPU 12 determines in step S13 whether the yield rate UTL is the same as the yield rate UTL in step S5. If there is no input material that can be used in the second post-processing, if not all the input components to be subjected to the second post-processing can be placed on the input material determined to be usable in the second post-processing, The yield rate UTL is the same as the yield rate UTL in step S5.
  • step S13 Even if the input materials usable in the second post-processing remain, there is no need to execute the second post-processing any more. Because. If the yield rate UTL is the same as the yield rate UTL in step S5 in step S13 (YES), the CPU 12 terminates the processing.
  • step S14 If the yield rate UTL is not the same as the yield rate UTL in step S5 in step S13 (NO), it means that the yield rate UTL of the material having the lowest yield rate has been improved, and the CPU 12 determines in step S14 that The state in which the post-processing has been executed is determined as the final nesting, and the processing ends.
  • the arrangement data creation program may be transmitted to the computer device 10 via a network such as the Internet or a private LAN.
  • the arrangement data creation program may be stored in a computer-readable storage medium and provided to the computer device 10.
  • a processing machine that cuts a material using a saw blade may be used instead of the laser processing machine 30 that cuts a material using a laser beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

A storage unit (11) stores: component data, including length, for each of a plurality of components as information relating to each component; and material data, including length and the number possessed, for each of a plurality of materials, as information relating to each material. A arrangement data preparation unit (121) selects a first usable material, which is the longest usable material among a plurality of usable materials, and performs nesting in which each component to be produced is arranged in the first usable material. When it is possible to arrange each component to be produced in a second usable material that is shorter than the first usable material, among the plurality of usable materials, while maintaining the condition of the disposition of the components to be produced disposed in the first usable material, the arrangement data preparation unit (121) performs a first post-process in which each component to be produced is arranged in the second usable material.

Description

配置データ作成装置及び配置データ作成方法Arrangement data creation device and arrangement data creation method
 本開示は、加工機によって所定長さのパイプまたは鋼材から複数の長さの部品を切断する際に用いる配置データを作成する配置データ作成装置及び配置データ作成方法に関する。 The present disclosure relates to an arrangement data creating apparatus and an arrangement data creating method for creating arrangement data used when a processing machine cuts a part having a plurality of lengths from a pipe or a steel material having a predetermined length.
 例えばレーザビームを用いてパイプまたは鋼材である材料を切断する加工機がある。この種の加工機は、NC装置によって制御される。NC装置は、材料を切断する処理の手順を規定する加工プログラムに従って加工機を制御する。加工機が材料を切断して複数の長さの部品を製作するとき、複数の長さの材料のうちのどの材料を選択して、選択した材料にそれぞれの長さの部品をどのように割り当てて材料を切断するかという配置を決める必要がある。材料に対する部品の配置はネスティングと称される。加工プログラムは、材料に対する部品のネスティングの状態を示す配置データに基づいて作成される。 加工 There are processing machines that cut materials such as pipes or steel using a laser beam, for example. This type of processing machine is controlled by an NC device. The NC device controls a processing machine in accordance with a processing program that defines a procedure of a process of cutting a material. When a machine cuts a material to produce parts of multiple lengths, it selects which of the multiple lengths of material and how to assign each length part to the selected material. It is necessary to determine the arrangement of cutting the material. The arrangement of parts relative to the material is called nesting. The processing program is created based on the arrangement data indicating the nesting state of the component with respect to the material.
特開2014-85743号公報JP 2014-85743 A
 加工機によって材料を切断して部品を製作するとき、材料の歩留まり率を極力よくすることが求められる。ここでの歩留まり率とは、材料の長さに対する部品として使用された部分の割合であり、材料に対して残材の割合が多ければ歩留まり率が悪いということである。 切断 When manufacturing parts by cutting material with a processing machine, it is required to maximize the material yield rate. The yield here is the ratio of the portion used as a part to the length of the material, and the higher the ratio of the residual material to the material, the lower the yield.
 1またはそれ以上の実施形態は、材料を切断して部品を製作するときの歩留まり率を向上させることができる配置データ作成装置及び配置データ作成方法を提供することを目的とする。 An object of one or more embodiments is to provide an arrangement data creating apparatus and an arrangement data creating method capable of improving a yield rate when manufacturing a part by cutting a material.
 1またはそれ以上の実施形態の第1の態様によれば、各部品に関する情報として長さを含む複数の部品の部品データと、各材料に関する情報としての長さ及び所有する本数を含む複数の材料の材料データとを記憶する記憶部と、前記部品データにおける複数の部品のうち製作しようとする1または複数の部品が製作対象部品として選択されて各製作対象部品の員数が設定され、前記材料データにおける複数の材料のうち前記各製作対象部品を製作するために使用することができる複数の材料が複数の使用可能材料として抽出されているとき、前記各製作対象部品を設定された員数だけ前記複数の使用可能材料より選択された使用可能材料に配置して配置データを作成する配置データ作成部とを備え、前記配置データ作成部は、前記複数の使用可能材料のうち最長の使用可能材料である第1の使用可能材料を選択して、前記第1の使用可能材料に前記各製作対象部品を配置するネスティングを実行し、前記第1の使用可能材料に配置された前記各製作対象部品の配置の状態を維持したまま、前記各製作対象部品を、前記複数の使用可能材料のうちの前記第1の使用可能材料よりも短い第2の使用可能材料に配置することができるときに、前記各製作対象部品を前記第2の使用可能材料に配置する第1の後処理を実行する配置データ作成装置が提供される。 According to a first aspect of one or more embodiments, component data of a plurality of components including lengths as information on each component, and a plurality of materials including lengths and the number of owned components as information on each material are provided. A storage unit for storing the material data of one or more of the plurality of parts in the part data, one or more parts to be manufactured are selected as the parts to be manufactured, and the number of parts to be manufactured is set; When a plurality of materials that can be used for manufacturing the respective production target parts among the plurality of materials in the above are extracted as a plurality of usable materials, the plurality of the respective production target parts are set by the set number of members. And an arrangement data creating unit for creating arrangement data by arranging the plurality of usable materials from the usable materials selected from the plurality of usable materials. Selecting a first usable material that is the longest usable material among the possible materials, performing nesting for arranging the respective parts to be manufactured on the first usable material, and executing the first usable material; A second usable material shorter than the first usable material of the plurality of usable materials, while maintaining a state of the arrangement of the respective production target parts arranged in the second usable material. And an arrangement data generating apparatus for executing a first post-processing for arranging the parts to be produced on the second usable material when the parts can be arranged in the second usable material.
 1またはそれ以上の実施形態の第2つの態様によれば、コンピュータ機器が、材料を切断することによって製作しようとする1または複数の製作対象部品と、各製作対象部品の員数とが設定されたとき、複数の材料のうち、前記各製作対象部品を製作するために使用することができる複数の使用可能材料を抽出し、前記複数の使用可能材料のうち最長の使用可能材料である第1の使用可能材料を選択して、前記第1の使用可能材料に前記各製作対象部品を設定された員数だけ配置するネスティングを実行し、前記第1の使用可能材料に配置された前記各製作対象部品の配置の状態を維持したまま、前記各製作対象部品を、前記複数の使用可能材料のうちの前記第1の使用可能材料よりも短い第2の使用可能材料に配置することができるときに、前記各製作対象部品を前記第2の使用可能材料に配置する第1の後処理を実行し、前記第1の後処理が実行されなかったときには前記各製作対象部品を前記第1の使用可能材料に配置した配置データを作成し、前記第1の後処理が実行されたときには前記各製作対象部品を前記第2の使用可能材料に配置した配置データを作成する配置データ作成方法が提供される。 According to a second aspect of one or more embodiments, one or more components to be fabricated by the computer device by cutting the material and the number of components to be fabricated are set. At this time, among a plurality of materials, a plurality of usable materials that can be used to manufacture each of the parts to be manufactured are extracted, and a first usable material that is the longest usable material among the plurality of usable materials is extracted. A nesting operation is performed in which a usable material is selected, and the production target parts are arranged in the first usable material by a set number of members, and the production target parts arranged in the first usable material are executed. When the respective parts to be manufactured can be arranged on a second usable material shorter than the first usable material of the plurality of usable materials while maintaining the arrangement state of Executing a first post-processing for arranging the respective production target parts on the second usable material, and, when the first post-processing is not executed, placing the respective production target parts in the first usable state There is provided an arrangement data creating method for creating arrangement data arranged on a material and, when the first post-processing is executed, creating arrangement data arranged on each of the parts to be produced on the second usable material. .
 1またはそれ以上の実施形態の配置データ作成装置及び配置データ作成方法によれば、材料を切断して部品を製作するときの歩留まり率を向上させることができる。 According to the arrangement data creating apparatus and the arrangement data creating method of one or more embodiments, it is possible to improve a yield rate when a component is manufactured by cutting a material.
図1は、1またはそれ以上の実施形態の配置データ作成装置として機能するコンピュータ機器を含むレーザ加工システムを示すブロック図である。FIG. 1 is a block diagram showing a laser processing system including a computer device functioning as an arrangement data creating device according to one or more embodiments. 図2は、コンピュータ機器の表示部に表示されるネスティング計画画像の一例を示す図である。FIG. 2 is a diagram illustrating an example of a nesting plan image displayed on the display unit of the computer device. 図3は、ネスティング計画に投入された投入部品及びその部品を製作するために抽出された投入材料の例1を示す図である。FIG. 3 is a diagram illustrating an example 1 of input components input to the nesting plan and input materials extracted for manufacturing the components. 図4は、1またはそれ以上の実施形態及び比較例において、例1の投入部品を投入材料にネスティングした状態を示す図である。FIG. 4 is a diagram showing a state in which the input components of Example 1 are nested in input materials in one or more embodiments and comparative examples. 図5は、ネスティング計画に投入された投入部品及びその部品を製作するために抽出された投入材料の例2を示す図である。FIG. 5 is a diagram illustrating Example 2 of the input components input to the nesting plan and the input materials extracted for manufacturing the components. 図6は、1またはそれ以上の実施形態において、例2の投入部品を投入材料にネスティングした状態を示す図である。FIG. 6 is a diagram illustrating a state where the input component of Example 2 is nested in the input material in one or more embodiments. 図7は、1またはそれ以上の実施形態の例2において、第1の後処理を実行した状態を示す図である。FIG. 7 is a diagram illustrating a state in which the first post-processing has been performed in Example 2 of one or more embodiments. 図8は、ネスティング計画に投入された投入部品及びその部品を製作するために抽出された投入材料の例3を示す図である。FIG. 8 is a diagram illustrating Example 3 of the input components input to the nesting plan and the input materials extracted for manufacturing the components. 図9は、1またはそれ以上の実施形態において、例3の投入部品を投入材料にネスティングした状態を示す図である。FIG. 9 is a diagram illustrating a state in which the input component of Example 3 is nested in the input material in one or more embodiments. 図10は、1またはそれ以上の実施形態の例3において、歩留まり率最低材料に配置された第2の後処理の対象の投入部品と、歩留まり率最低材料より短い投入材料を示す図である。FIG. 10 is a diagram illustrating, in Example 3 of one or more embodiments, the input component to be subjected to the second post-processing, which is disposed on the lowest yield rate material, and the input material shorter than the lowest yield rate material. 図11は、1またはそれ以上の実施形態の例3において、第2の後処理を実行した状態を示す図である。FIG. 11 is a diagram illustrating a state where the second post-processing is executed in the third example of one or more embodiments. 図12は、1またはそれ以上の実施形態の例3における最終的なネスティングの状態を示す図である。FIG. 12 is a diagram illustrating a final nesting state in Example 3 of one or more embodiments. 図13Aは、1またはそれ以上の実施形態の配置データ作成装置の動作、及び、1またはそれ以上の実施形態の配置データ作成方法を示すフローチャートである。FIG. 13A is a flowchart showing the operation of the arrangement data creation device of one or more embodiments, and the arrangement data creation method of one or more embodiments. 図13Bは、1またはそれ以上の実施形態の配置データ作成装置の動作、及び、1またはそれ以上の実施形態の配置データ作成方法を示すフローチャートである。FIG. 13B is a flowchart illustrating the operation of the arrangement data creation device according to one or more embodiments, and the arrangement data creation method according to one or more embodiments. 図14は、図13BのステップS8において、第2の後処理の対象の全ての投入部品を材料に配置できないと判定される第1の例を示す図である。FIG. 14 is a diagram illustrating a first example in which it is determined in step S8 in FIG. 13B that all input components to be subjected to the second post-processing cannot be arranged on the material. 図15は、図13BのステップS8において、第2の後処理の対象の全ての投入部品を材料に配置できないと判定される第2の例を示す図である。FIG. 15 is a diagram illustrating a second example in which it is determined in step S8 in FIG. 13B that all input components to be subjected to the second post-processing cannot be arranged on the material. 図16は、図13Bにおいて、第2の後処理が複数回実行される場合の一例を示す図である。FIG. 16 is a diagram illustrating an example of a case where the second post-processing is performed a plurality of times in FIG. 13B.
 以下、1またはそれ以上の実施形態の配置データ作成装置及び配置データ作成方法について、添付図面を参照して説明する。 Hereinafter, an arrangement data creation device and an arrangement data creation method according to one or more embodiments will be described with reference to the accompanying drawings.
 図1において、コンピュータ機器10と、NC装置20と、レーザ加工機30は、レーザ加工システムを構成する。コンピュータ機器10は、1またはそれ以上の実施形態の配置データ作成装置を構成し、1またはそれ以上の実施形態の配置データ作成方法を実行し、配置データ作成プログラムを記憶している。 In FIG. 1, the computer device 10, the NC unit 20, and the laser beam machine 30 constitute a laser beam machining system. The computer device 10 constitutes an arrangement data creation device of one or more embodiments, executes the arrangement data creation method of one or more embodiments, and stores an arrangement data creation program.
 コンピュータ機器10は、レーザ加工機30が材料を加工するための加工プログラムを作成して、NC装置20に供給する。NC装置20が加工プログラムに基づいてレーザ加工機30を制御することにより、レーザ加工機30は材料を切断する。材料は金属のパイプまたは鋼材であり、パイプは例えば円柱(円筒)状または四角柱状の形状を有し、鋼材は例えば山形鋼、溝形鋼、軽量山形鋼、軽量溝形鋼、リップ溝形鋼のいずれかである。 The computer device 10 creates a processing program for the laser processing machine 30 to process a material, and supplies the processing program to the NC device 20. When the NC device 20 controls the laser beam machine 30 based on the machining program, the laser beam machine 30 cuts the material. The material is a metal pipe or steel material, the pipe having, for example, a cylindrical (cylindrical) or quadrangular prism shape, and the steel material is, for example, an angle steel, a channel steel, a lightweight angle steel, a lightweight channel steel, a lip channel steel. Is one of
 加工プログラムが図示していないサーバ等の記憶部に保存され、NC装置20が記憶部より読み出した加工プログラムに基づいてレーザ加工機30を制御してもよい。コンピュータ機器10がNC装置20と離れた遠隔地に配置されていて、ネットワークによってNC装置20と接続されていてもよい。 (4) The processing program may be stored in a storage unit such as a server (not shown), and the NC device 20 may control the laser processing machine 30 based on the processing program read from the storage unit. The computer device 10 may be located at a remote location remote from the NC device 20 and connected to the NC device 20 via a network.
 コンピュータ機器10は、CAM(Computer Aided Manufacturing)として機能するコンピュータ機器である。コンピュータ機器10は、記憶部11と、中央処理装置(以下、CPU)12と、操作部13と、表示部14とを備える。記憶部11には、部品データと、材料データと、配置データを作成するためのコンピュータプログラムである配置データ作成プログラムと、加工プログラムを作成するためのコンピュータプログラムである加工プログラム作成プログラムとが記憶されている。 The computer device 10 is a computer device that functions as a CAM (Computer Aided Manufacturing). The computer device 10 includes a storage unit 11, a central processing unit (hereinafter, CPU) 12, an operation unit 13, and a display unit 14. The storage unit 11 stores component data, material data, an arrangement data creation program that is a computer program for creating arrangement data, and a machining program creation program that is a computer program for creating a machining program. ing.
 部品データは複数の部品に関するデータであり、各部品に関する情報としての長さを含む。材料データは複数の材料に関するデータであり、各材料に関する情報としての長さ及び所有する本数を含む。 The component data is data on a plurality of components, and includes a length as information on each component. The material data is data on a plurality of materials, and includes the length as information on each material and the number of materials owned.
 部品データ及び材料データと、配置データ作成プログラム及び加工プログラム作成プログラムとが異なる記憶部に記憶されていてもよい。配置データ作成プログラム及び加工プログラム作成プログラムは、CAMプログラムである。 The component data and the material data, and the arrangement data creation program and the machining program creation program may be stored in different storage units. The arrangement data creation program and the machining program creation program are CAM programs.
 CPU12が配置データ作成プログラムを実行すると、CPU12は配置データ作成部121として機能する。CPU12が加工プログラム作成プログラムを実行すると、CPU12は加工プログラム作成部122として機能する。加工プログラム作成部122は、配置データ作成部121によって作成された配置データに基づいて、レーザ加工機30が材料を切断する際に用いるNCデータよりなる加工プログラムを作成する。NCデータはレーザ加工機30を制御する機械制御コードである。 When the CPU 12 executes the placement data creation program, the CPU 12 functions as the placement data creation unit 121. When the CPU 12 executes the machining program creation program, the CPU 12 functions as a machining program creation unit 122. The processing program creation unit 122 creates a processing program including NC data used when the laser processing machine 30 cuts a material, based on the arrangement data created by the arrangement data creation unit 121. The NC data is a machine control code for controlling the laser beam machine 30.
 材料を切断して所定の部品を製作しようとするとき、オペレータが操作部13によってネスティング計画を実行するよう操作すると、図2に示すように、表示部14にはネスティング計画画像140が表示される。配置データ作成部121は、表示部14にネスティング計画画像140を表示させる。ネスティング計画画像140は、製作しようとする部品の一覧を示す部品一覧領域141と、部品一覧領域141の部品を製作するために使用可能な材料(投入材料)の一覧を示す材料一覧領域142とを含む。 When an operator operates the operation unit 13 to execute a nesting plan when cutting a material to produce a predetermined part, a nesting plan image 140 is displayed on the display unit 14 as shown in FIG. . The arrangement data creation unit 121 causes the display unit 14 to display the nesting plan image 140. The nesting plan image 140 includes a parts list area 141 indicating a list of parts to be manufactured, and a materials list area 142 indicating a list of materials (input materials) that can be used to manufacture the parts in the parts list area 141. Including.
 図2に示すネスティング計画画像140は、オペレータが、記憶部11に記憶されている部品データのうち、部品番号P-X、P-Y、及びP-Zの部品を選択し、製作する員数をそれぞれ2個、2個、及び4個に設定した場合を示している。部品一覧領域141には、部品番号P-X、P-Y、及びP-Zの各部品がパイプを切断した部品であることを示すマーク143が表示されている。 The nesting plan image 140 shown in FIG. 2 indicates that the operator selects the parts with the part numbers PX, XY, and PZ from the part data stored in the storage unit 11 and indicates the number of members to be manufactured. The case where two, two, and four are set respectively is shown. In the component list area 141, a mark 143 indicating that each component of the component numbers PX, PY, and PZ is a component obtained by cutting a pipe is displayed.
 配置データ作成部121は、部品番号P-X、P-Y、及びP-Zの各部品を製作するために使用可能な材料を材料データより抽出して、材料一覧領域142に表示させる。部品番号P-X、P-Y、及びP-Zの各部品は直径100mm、板厚2mmの部品であるから、使用可能な材料は直径100mmで板厚2mmのパイプである。 (4) The arrangement data creation unit 121 extracts materials that can be used to manufacture the parts having the part numbers PX, PY, and PZ from the material data and displays the extracted materials in the material list area 142. Since the parts having the part numbers PX, PY, and PZ are parts having a diameter of 100 mm and a plate thickness of 2 mm, a usable material is a pipe having a diameter of 100 mm and a plate thickness of 2 mm.
 図2に示す例では、パイプ材料名称MT-PA、MT-PB、MT-PX、…のパイプが使用可能な材料として抽出されている。パイプ材料名称ごとに、材料の長さと所有する本数が表示されている。材料一覧領域142には、材料がパイプであることを示すマーク144が表示されている。マーク144はマーク143と同じでよい。 In the example shown in FIG. 2, pipes with pipe material names MT-PA, MT-PB, MT-PX,... Are extracted as usable materials. For each pipe material name, the length of the material and the number of tubes owned are displayed. In the material list area 142, a mark 144 indicating that the material is a pipe is displayed. The mark 144 may be the same as the mark 143.
 図3~図12を用いて、歩留まり率を向上させるために、配置データ作成部121がどのようにネスティングを実行して配置データを作成するかを説明する。図3は、例1として、ネスティング計画に投入された投入部品が部品番号P-A及びP-Bの部品であって、それらの部品を製作するために使用可能な投入材料が材料名称MT-A及びMT-Bの材料であった場合を示している。部品番号P-A及びP-Bの部品が製作しようとする製作対象部品である。材料名称MT-A及びMT-Bの材料が、各製作対象部品を製作するために使用することができる使用可能材料である。 ~ With reference to FIGS. 3 to 12, a description will be given of how the arrangement data creation unit 121 executes nesting to create arrangement data in order to improve the yield rate. FIG. 3 shows an example 1 in which the input parts input to the nesting plan are the parts having the part numbers PA and PB, and the input materials usable for manufacturing those parts are the material names MT- A and MT-B materials are shown. The parts having the part numbers PA and PB are the parts to be manufactured. The materials having the material names MT-A and MT-B are usable materials that can be used to manufacture each component to be manufactured.
 部品番号P-A及びP-Bの部品の部品長さはそれぞれ500mm及び1600mmであり、各部品の員数は1である。材料名称MT-A及びMT-Bの材料の材料長さはそれぞれ2000mm及び2500mmであり、各材料の本数は1である。 部品 The part lengths of the parts having the part numbers PA and PB are 500 mm and 1600 mm, respectively, and the number of parts is one. The material lengths of the materials with the material names MT-A and MT-B are 2000 mm and 2500 mm, respectively, and the number of each material is one.
 従来においては、使用可能な複数の投入材料が存在するときにオペレータによって投入材料の優先順位が設定され、優先順位に従って投入材料が選択されてネスティングが実行される。材料名称MT-Aの材料が優先順位の最も高い優先順位1、材料名称MT-Bの材料が優先順位1よりも優先順位の低い優先順位2に設定されている場合を比較例とする。なお、オペレータは複数の投入材料に対して任意に優先順位を設定することができる。 Conventionally, when there are a plurality of usable input materials, the priority of the input materials is set by the operator, and the input materials are selected according to the priority and the nesting is performed. A comparative example is a case where the material having the material name MT-A is set to the highest priority 1 and the material having the material name MT-B is set to the second priority which is lower in priority than the first priority. The operator can arbitrarily set a priority order for a plurality of input materials.
 図4に示すように、比較例においては、部品番号P-Bの部品が材料名称MT-Aの材料に自動的に配置され、部品番号P-Aの部品が材料名称MT-Bの材料に自動的に配置される。なお、材料名称MT-Aの材料に部品番号P-Bの部品を配置すると材料名称MT-Aの材料には部品番号P-Aの部品を配置できないため、部品番号P-Aの部品は材料名称MT-Bの材料に配置される。 As shown in FIG. 4, in the comparative example, the part with the part number PB is automatically placed on the material with the material name MT-A, and the part with the part number PA is replaced with the material with the material name MT-B. Placed automatically. It should be noted that if the part with the part number PB is placed on the material with the material name MT-A, the part with the part number PA cannot be placed on the material with the material name MT-A. It is placed on the material with the name MT-B.
 比較例においては、材料名称MT-Aの材料の歩留まり率は(1600/2000)×100で80%であり、材料名称MT-Bの材料の歩留まり率は(500/2500)×100で20%である。材料名称MT-A及びMT-Bの材料の平均歩留まり率は50%である。 In the comparative example, the yield rate of the material with the material name MT-A is (1600/2000) × 100 and 80%, and the yield rate of the material with the material name MT-B is (500/2500) × 100 and 20%. It is. The average yield of the materials with the material names MT-A and MT-B is 50%.
 1またはそれ以上の実施形態においては、使用可能な複数の投入材料が存在するときに、最長の投入材料(第1の使用可能材料)が優先的に選択されて、ネスティングが実行される。図4に示すように、1またはそれ以上の実施形態においては、配置データ作成部121は例1における最長の投入材料である材料名称MT-Bの材料に部品番号P-B及びP-Aの部品を配置する配置データを作成する。1またはそれ以上の実施形態においては、材料名称MT-Bの材料の歩留まり率は{(1600+500)/2500}×100で84%である。平均歩留まり率は50%から84%に改善される。 In one or more embodiments, when there is more than one available input material, the longest input material (first available material) is preferentially selected and nesting is performed. As shown in FIG. 4, in one or more embodiments, the arrangement data creating unit 121 assigns the longest input material in Example 1 the material with the material name MT-B and the part numbers PB and PA to the material. Create placement data for placing parts. In one or more embodiments, the yield of material with material name MT-B is {(1600 + 500) / 2500} × 100, which is 84%. The average yield is improved from 50% to 84%.
 図4に示すように、部品番号P-Bの部品と部品番号P-Aの部品との間には、5~10mm程度の隙間である部品間さん巾を設けている。歩留まり率の計算においては部品間さん巾を無視している。部品間さん巾は0に設定することも可能である。部品間さん巾及び歩留まり率の計算については他の図面においても同様である。 (4) As shown in FIG. 4, a part-to-part width, which is a gap of about 5 to 10 mm, is provided between the part having the part number PB and the part having the part number PA. In calculating the yield rate, the width between parts is ignored. The width between parts can be set to zero. The calculation of the width between parts and the yield rate is the same in other drawings.
 なお、部品長さまたは員数と材料長さとの関係によっては、最長の材料を優先的に選択してネスティングを実行することにより歩留まり率が改善されないことが起こり得る。しかしながら、本発明者による検証によって、最長の材料を優先的に選択してネスティングを実行することにより歩留まり率が改善されることが多いことが確認されている。よって、最長の投入材料を優先的に選択してネスティングを実行するのがよい。 Depending on the relationship between the component length or the number of members and the material length, the yield rate may not be improved by preferentially selecting the longest material and performing nesting. However, verification by the present inventors has confirmed that the yield rate is often improved by preferentially selecting the longest material and performing nesting. Therefore, it is preferable to perform nesting by preferentially selecting the longest input material.
 なお、最長の材料を優先的に選択しても歩留まり率が改善されない場合の歩留まり率の改善の処理については、後述する例2及び例3を用いて説明する。 The process of improving the yield rate when the yield rate is not improved even if the longest material is selected preferentially will be described using Examples 2 and 3 described later.
 図5は、例2として、ネスティング計画に投入された投入部品が部品番号P-Bの部品であって、それらの部品を製作するために使用可能な投入材料が材料名称MT-C及びMT-Aの材料であった場合を示している。部品番号P-Bの部品が製作対象部品である。材料名称MT-C及びMT-Aの材料が、製作対象部品を製作するために使用することができる使用可能材料である。 FIG. 5 shows, as an example 2, that the input parts input to the nesting plan are the parts having the part numbers PB, and the input materials that can be used for manufacturing these parts are the material names MT-C and MT-C. The case of the material A is shown. The part with the part number PB is the part to be manufactured. The materials with the material names MT-C and MT-A are usable materials that can be used to manufacture the component to be manufactured.
 部品番号P-Bの部品の部品長さは1600mmであり、員数は1である。材料名称MT-C及びMT-Bの材料の材料長さはそれぞれ3000mm及び2000mmであり、各材料の本数は1である。 部品 The part length of the part with the part number PB is 1600 mm and the number of parts is one. The material lengths of the materials having the material names MT-C and MT-B are 3000 mm and 2000 mm, respectively, and the number of each material is one.
 1またはそれ以上の実施形態においては、図6に示すように、配置データ作成部121は例2における最長の投入材料(第1の使用可能材料)である材料名称MT-Cの材料に部品番号P-Bの部品を配置する配置データを作成する。このとき、材料名称MT-Cの材料の歩留まり率は(1600/3000)×100で53%である。 In one or more embodiments, as shown in FIG. 6, the arrangement data creating unit 121 assigns the part number to the material having the material name MT-C, which is the longest input material (first usable material) in Example 2. The layout data for arranging the PB components is created. At this time, the yield rate of the material having the material name MT-C is (1600/3000) × 100, which is 53%.
 続けて、配置データ作成部121は、未使用の材料であって最長の投入材料よりも短い投入材料(第2の使用可能材料)が存在するときには、その短い投入材料に対して投入部品を配置する第1の後処理を実行する。例2では、配置データ作成部121は、材料名称MT-Aの材料に部品番号P-Bの部品を配置する配置データを作成する。配置データ作成部121が投入部品を配置する投入材料を変更するとき、投入部品の配置の状態を変更せず維持する。 Subsequently, when there is an input material (a second usable material) that is an unused material and is shorter than the longest input material, the arrangement data creating unit 121 allocates the input component to the short input material. A first post-processing is performed. In Example 2, the arrangement data creating unit 121 creates arrangement data for arranging the part having the part number PB on the material having the material name MT-A. When the arrangement data creation unit 121 changes the input material on which the input component is to be arranged, the arrangement state of the input component is maintained without being changed.
 図7に示すように、配置データ作成部121が材料名称MT-Aの材料に部品番号P-Bの部品を配置する配置データを作成すると、歩留まり率は(1600/2000)×100で80%となり、平均歩留まり率は53%から84%に改善される。 As shown in FIG. 7, when the arrangement data creation unit 121 creates the arrangement data for arranging the part with the part number PB on the material with the material name MT-A, the yield rate is (1600/2000) × 100 and 80%. And the average yield is improved from 53% to 84%.
 例1において、配置データ作成部121が第1の後処理を実行しないのは、図4における部品番号P-B及びP-Aの2つ部品を、それらの配置の状態を変更しないで材料名称MT-Aの材料に配置することができないからである。 In Example 1, the reason that the arrangement data creating unit 121 does not execute the first post-processing is that the two parts having the part numbers PB and PA in FIG. This is because it cannot be arranged on the material of MT-A.
 さらに、配置データ作成部121は、後述する第2の後処理を実行することが好ましい。配置データ作成部121は、第1の後処理を実行したか否かにかかわらず、第2の後処理を実行する。例3を用いて、配置データ作成部121が第2の後処理をどのように実行するかを説明する。 Furthermore, it is preferable that the arrangement data creating unit 121 executes a second post-process described later. The arrangement data creating unit 121 executes the second post-processing regardless of whether the first post-processing has been executed. Using Example 3, how the arrangement data creating unit 121 executes the second post-processing will be described.
 図8は、例3として、ネスティング計画に投入された投入部品が部品番号P-A及びP-Bの部品であって、それらの投入部品を製作するために使用可能な投入材料が材料名称MT-D及びMT-Aの材料であった場合を示している。部品番号P-A及びP-Bの部品が製作対象部品である。材料名称MT-D及びMT-Aの材料が、各製作対象部品を製作するために使用することができる使用可能材料である。 FIG. 8 shows, as Example 3, the input parts input to the nesting plan are the parts having the part numbers PA and PB, and the input materials that can be used to manufacture these input parts are the material names MT. This shows the case where the materials were -D and MT-A. The parts with the part numbers PA and PB are the parts to be manufactured. The materials with the material names MT-D and MT-A are usable materials that can be used to manufacture each component to be manufactured.
 部品番号P-A及びP-Bの部品の部品長さはそれぞれ500mm及び1600mmであり、員数はそれぞれ2及び4である。材料名称MT-D及びMT-Aの材料の材料長さはそれぞれ6000mm及び2000mmであり、各材料の本数は2である。 部品 The part lengths of the parts having the part numbers PA and PB are 500 mm and 1600 mm, respectively, and the number of parts is 2 and 4, respectively. The material lengths of the materials with the material names MT-D and MT-A are 6000 mm and 2000 mm, respectively, and the number of each material is 2.
 図9に示すように、配置データ作成部121は例3における最長の投入材料である材料名称MT-Dの材料に部品番号P-A及びP-Bの部品を配置する配置データを作成する。材料名称MT-Dの1本目の材料には、部品番号P-Bの部品が3つ配置され、2本目の材料には、部品番号P-Bの部品が1つ、部品番号P-Aの部品が2つ配置される。このとき、1本目の材料の歩留まり率は{(3×1600)/6000)}×100で80%であり、2本目の材料の歩留まり率は{(1600+2×500)/6000)}×100で43%である。 As shown in FIG. 9, the arrangement data creation unit 121 creates arrangement data for arranging the parts having the part numbers PA and PB on the material having the material name MT-D, which is the longest input material in Example 3. In the first material having the material name MT-D, three parts having the part number PB are arranged. In the second material, one part having the part number PB and one having the part number PA are arranged. Two parts are arranged. At this time, the yield rate of the first material is {(3 × 1600) / 6000)} × 100 and 80%, and the yield rate of the second material is {(1600 + 2 × 500) / 6000) × 100. 43%.
 例3においては第1の後処理を実行することができないため、最長の投入材料に投入部品が配置された状態で、配置データ作成部121は、投入部品が配置されている複数の投入材料のうち、歩留まり率が最も低く、かつ、歩留まり率が所定の基準値未満の材料に対して、第2の後処理を実行する。1またはそれ以上の実施形態においては、基準値を80%とする。 In Example 3, since the first post-processing cannot be executed, the arrangement data creating unit 121 in a state where the input components are arranged in the longest input material, outputs a plurality of input materials in which the input components are arranged. The second post-processing is performed on a material having the lowest yield rate and a yield rate less than a predetermined reference value. In one or more embodiments, the reference value is 80%.
 具体的には、配置データ作成部121は、歩留まり率が最も低く、かつ、歩留まり率が基準値未満の投入材料(以下、歩留まり率最低材料)に配置された部品を、歩留まり率最低材料の材料長さより短い未使用の材料に配置するネスティングを実行する。配置データ作成部121は、歩留まり率最低材料の材料長さより短い材料が複数存在する場合には、材料長さが長い材料から短い材料へと順にネスティングを実行する。 More specifically, the arrangement data creation unit 121 determines the parts arranged in the input material having the lowest yield rate and the yield rate less than the reference value (hereinafter, the lowest yield rate material) as the material of the lowest yield rate material. Perform nesting placing on unused material shorter than the length. When there are a plurality of materials shorter than the material length of the lowest yield rate material, the arrangement data creating unit 121 performs the nesting in order from the material having the longer material length to the material having the shorter material length.
 第1の後処理が実行された場合には、最長の投入材料より短い投入材料に投入部品が配置された状態で、配置データ作成部121は、投入部品が配置されている複数の投入材料のうち、歩留まり率が最も低く、かつ、歩留まり率が所定の基準値未満の材料に対して、第2の後処理を実行すればよい。 When the first post-processing is executed, the arrangement data creating unit 121, in a state where the input components are arranged in the input material shorter than the longest input material, outputs a plurality of input materials in which the input components are arranged. The second post-processing may be performed on a material having the lowest yield rate and a yield rate less than a predetermined reference value.
 図9に示すように、例3において、材料名称MT-Dの2本目の材料の歩留まり率が最も低く、かつ、歩留まり率が80%未満である。図10に示すように、2本目の材料に配置された投入部品は、部品番号P-Aの部品が2つ、部品番号P-Bの部品が1つである。歩留まり率最低材料の材料長さより短い未使用の材料は、材料名称MT-Aの材料であり、2本存在している。 As shown in FIG. 9, in Example 3, the yield rate of the second material having the material name MT-D is the lowest, and the yield rate is less than 80%. As shown in FIG. 10, the input parts arranged in the second material have two parts with the part number PA and one part with the part number PB. An unused material shorter than the material length of the lowest yield rate material is a material having a material name of MT-A, and two materials exist.
 図11に示すように、配置データ作成部121は、第2の後処理として、材料名称MT-Aの1本目の材料に部品番号P-Bの部品を1つ配置し、2本目の材料に部品番号P-Aの部品を2つ配置するネスティングを実行する。このとき、1本目の材料の歩留まり率は(1600/2000)×100で80%であり、2本目の材料の歩留まり率は(2×500/2000)×100で50%である。2本の材料の平均歩留まり率は65%である。 As shown in FIG. 11, as a second post-process, the arrangement data creating unit 121 arranges one part having the part number PB on the first material having the material name MT-A, and Nesting for arranging two parts with the part number PA is executed. At this time, the yield rate of the first material is (1600/2000) × 100 and 80%, and the yield rate of the second material is (2 × 500/2000) × 100 and 50%. The average yield of the two materials is 65%.
 以上によって、配置データ作成部121は、例3において最終的に図12に示す配置データを作成する。材料名称MT-Dの1本の材料に部品番号P-Bの部品が3つ配置され、材料名称MT-Aの1本目の材料に部品番号P-Bの部品が1つ配置され、材料名称MT-Aの2本目の材料に部品番号P-Aの部品が2つ配置される。第2の後処理を実行することにより平均歩留まり率は61.5%から70%に改善される。 {As a result, the arrangement data creation unit 121 finally creates the arrangement data shown in FIG. Three parts having the part number PB are arranged in one material having the material name MT-D, and one part having the part number PB is arranged in the first material having the material name MT-A. Two parts with the part number PA are arranged in the second material of the MT-A. By performing the second post-processing, the average yield is improved from 61.5% to 70%.
 図13A及び図13Bに示すフローチャートを用いて、CPU12(配置データ作成部121)が実行する配置データの作成処理を説明する。図13Aにおいて、CPU12は、ステップS1にて、最長の投入材料に投入部品を自動的に配置する自動ネスティングを実行する。CPU12は、ステップS2にて、第1の後処理が実行可能か否かを判定する。第1の後処理が実行可能であれば(YES)、CPU12は、ステップS3にて、第1の後処理を実行して、処理をステップS4に移行させる。ステップS2にて第1の後処理が実行可能でなければ(NO)、CPU12は処理をステップS4に移行させる。 A description will be given, with reference to the flowcharts shown in FIGS. In FIG. 13A, in step S1, the CPU 12 executes automatic nesting for automatically arranging the input components on the longest input material. In step S2, the CPU 12 determines whether the first post-processing can be executed. If the first post-processing is executable (YES), the CPU 12 executes the first post-processing in step S3, and shifts the processing to step S4. If the first post-processing cannot be executed in step S2 (NO), the CPU 12 shifts the processing to step S4.
 CPU12は、ステップS4にて、投入部品が配置された各材料の歩留まり率を算出し、ステップS5にて、歩留まり率最小の材料の歩留まり率UTLが80%未満であるか否かを判定する。UTLは変数である。歩留まり率UTLが80%未満でなければ(NO)、CPU12は処理を終了させる。 (4) In step S4, the CPU 12 calculates the yield rate of each material on which the input components are arranged, and determines in step S5 whether the yield rate UTL of the material having the smallest yield rate is less than 80%. UTL is a variable. If the yield rate UTL is not less than 80% (NO), the CPU 12 ends the processing.
 歩留まり率UTLが80%未満であれば(YES)、CPU12は、図13Bに示すステップS6にて、第2の後処理で使用可能な投入材料があるか否かを判定する。第2の後処理で使用可能な投入材料があれば(YES)、CPU12は、ステップS7にて、第2の後処理を実行する。第2の後処理で使用可能な投入材料がなければ(NO)、CPU12は処理をステップS13に移行させる。 If the yield rate UTL is less than 80% (YES), the CPU 12 determines in step S6 shown in FIG. 13B whether or not there is an input material that can be used in the second post-processing. If there is an input material that can be used in the second post-processing (YES), the CPU 12 executes the second post-processing in step S7. If there is no usable input material in the second post-processing (NO), the CPU 12 shifts the processing to step S13.
 CPU12は、ステップS7に続けてステップS8にて、第2の後処理の対象の全ての投入部品を、第2の後処理で使用可能と判定された投入材料に配置可能であるか否かを判定する。第2の後処理の対象の全ての投入部品を投入材料に配置可能であれば(YES)、CPU12は、ステップS9にて、第2の後処理の対象の投入部品を配置した投入材料における平均歩留まり率UTLaveを算出する。UTLaveは変数である。ステップS8にて、第2の後処理の対象の全ての投入部品を投入材料に配置可能でなければ(NO)、CPU12は処理をステップS13に移行させる。 In step S8 following step S7, the CPU 12 determines whether or not all the input parts to be subjected to the second post-processing can be arranged on the input materials determined to be usable in the second post-processing. judge. If all the input components to be subjected to the second post-processing can be arranged in the input material (YES), the CPU 12 determines in step S9 the average of the input components to which the input components to be subjected to the second post-processing have been arranged. The yield rate UTLave is calculated. UTLave is a variable. In step S8, if it is not possible to arrange all the input parts to be subjected to the second post-processing on the input material (NO), the CPU 12 shifts the processing to step S13.
 ステップS8にて第2の後処理の対象の全ての投入部品を投入材料に配置可能でないと判定されるのは、図14または図15のような場合である。図14は、第2の後処理で使用しようとする投入材料が投入部品よりも短い場合を示している。図15は、一例として、投入部品を投入材料に10個配置しなければならないのに9個しか配置できず、全ての投入部品を投入材料に配置できない場合を示している。 に て It is determined in step S8 that all the input components to be subjected to the second post-processing cannot be arranged on the input material in the case as shown in FIG. 14 or FIG. FIG. 14 shows a case where the input material to be used in the second post-processing is shorter than the input component. FIG. 15 shows, as an example, a case in which ten input components must be arranged in the input material, but only nine components can be arranged, and not all the input components can be arranged in the input material.
 図13Bに戻り、CPU12は、ステップS10にて、平均歩留まり率UTLaveが歩留まり率UTLより大きいか否かを判定する。平均歩留まり率UTLaveが歩留まり率UTLより大きくなければ(NO)、歩留まり率最小の投入材料の歩留まり率UTLは改善していないということであり、CPU12は、処理をステップS6に戻して、ステップS6以降を繰り返す。 13B, in step S10, the CPU 12 determines whether the average yield rate UTLave is greater than the yield rate UTL. If the average yield rate UTLave is not larger than the yield rate UTL (NO), it means that the yield rate UTL of the input material having the smallest yield rate has not been improved, and the CPU 12 returns the processing to step S6 and returns to step S6 and thereafter. repeat.
 CPU12は、歩留まり率最低材料より短い投入材料が複数存在する場合には、材料長さが長い材料から短い材料へと順に選択してステップS7の第2の後処理を実行する。よって、第2の後処理は、複数回実行されることがある。 If there are a plurality of input materials that are shorter than the lowest yield rate material, the CPU 12 sequentially selects the material having the longer material length to the shorter material, and executes the second post-processing of Step S7. Therefore, the second post-processing may be executed a plurality of times.
 図16は、第2の後処理が複数回実行される場合の一例を示している。図13AのステップS1における自動ネスティング及びステップS3における第1の後処理を実行した結果、材料名称MT-A及びMT-Bの材料が使用され、MT-Bの材料が歩留まり率最低材料であったとする。この場合、未使用の材料のうち、歩留まり率最低材料より短い材料名称MT-D、MT-E、MT-F、及びMT-Gの材料が第2の後処理で使用可能な投入材料となる。 FIG. 16 shows an example in which the second post-processing is executed a plurality of times. As a result of executing the automatic nesting in step S1 of FIG. 13A and the first post-processing in step S3, the materials with the material names MT-A and MT-B were used, and the material with MT-B was the material with the lowest yield rate. I do. In this case, among the unused materials, materials having material names MT-D, MT-E, MT-F, and MT-G, which are shorter than the lowest yield rate material, are input materials that can be used in the second post-processing. .
 1回目の第2の後処理として、例えば材料名称MT-Dの材料が選択されて第2の後処理が実行される。平均歩留まり率UTLaveが歩留まり率UTLより大きくなければ、材料名称MT-Dの材料より短い材料名称MT-F及びMT-Gの材料が2回目の第2の後処理で使用可能な材料となる。 (4) As the first second post-processing, for example, the material having the material name MT-D is selected and the second post-processing is executed. If the average yield rate UTLave is not larger than the yield rate UTL, the materials having the material names MT-F and MT-G, which are shorter than the material having the material name MT-D, can be used in the second second post-processing.
 2回目の第2の後処理として、材料名称MT-Fの材料が選択されて第2の後処理が実行される。平均歩留まり率UTLaveが歩留まり率UTLより大きくなければ、材料名称MT-Fの材料より短い材料名称MT-Gの材料が3回目の第2の後処理で使用可能な材料となる。3回目の第2の後処理として、材料名称MT-Gの材料が選択されて第2の後処理が実行される。 材料 As the second post-processing, the material having the material name MT-F is selected and the second post-processing is executed. If the average yield rate UTLave is not larger than the yield rate UTL, a material having a material name MT-G shorter than the material having the material name MT-F becomes a material that can be used in the third second post-processing. As the third second post-processing, the material having the material name MT-G is selected and the second post-processing is executed.
 図13Bに戻り、ステップS10にて平均歩留まり率UTLaveが歩留まり率UTLより大きければ(YES)、CPU12は、ステップS11にて、歩留まり率UTL(変数UTL)を平均歩留まり率UTLave(変数UTLave)に設定する。CPU12は、ステップS11に続けてステップS12にて、歩留まり率UTLが80%以上であるか否かを判定する。歩留まり率UTLが80%以上でなければ(NO)、CPU12は、処理をステップS6に戻して、ステップS6以降を繰り返す。 Returning to FIG. 13B, if the average yield rate UTLave is larger than the yield rate UTL in step S10 (YES), the CPU 12 sets the yield rate UTL (variable UTL) to the average yield rate UTLave (variable UTLave) in step S11. I do. In step S12 following step S11, the CPU 12 determines whether or not the yield rate UTL is 80% or more. If the yield rate UTL is not 80% or more (NO), the CPU 12 returns the processing to step S6 and repeats the processing from step S6.
 ステップS12にて歩留まり率UTLが80%以上であれば(YES)、CPU12は、ステップS13にて、歩留まり率UTLがステップS5における歩留まり率UTLと同じであるか否かを判定する。第2の後処理で使用可能な投入材料がない場合、第2の後処理の対象の全ての投入部品を第2の後処理で使用可能と判定された投入材料に配置可能でない場合には、歩留まり率UTLはステップS5における歩留まり率UTLと同じとなる。 If the yield rate UTL is 80% or more in step S12 (YES), the CPU 12 determines in step S13 whether the yield rate UTL is the same as the yield rate UTL in step S5. If there is no input material that can be used in the second post-processing, if not all the input components to be subjected to the second post-processing can be placed on the input material determined to be usable in the second post-processing, The yield rate UTL is the same as the yield rate UTL in step S5.
 歩留まり率UTLが80%以上であるときステップS13に移行させるのは、仮に第2の後処理で使用可能な投入材料が残っていたとしても、それ以上第2の後処理を実行する必要はないからである。ステップS13にて歩留まり率UTLがステップS5における歩留まり率UTLと同じであれば(YES)、CPU12は処理を終了させる。 When the yield rate UTL is 80% or more, the process proceeds to step S13. Even if the input materials usable in the second post-processing remain, there is no need to execute the second post-processing any more. Because. If the yield rate UTL is the same as the yield rate UTL in step S5 in step S13 (YES), the CPU 12 terminates the processing.
 ステップS13にて歩留まり率UTLがステップS5における歩留まり率UTLと同じでなければ(NO)、歩留まり率最低材料の歩留まり率UTLが改善したということであり、CPU12は、ステップS14にて、第2の後処理を実行した状態を最終的なネスティングと決定して処理を終了させる。 If the yield rate UTL is not the same as the yield rate UTL in step S5 in step S13 (NO), it means that the yield rate UTL of the material having the lowest yield rate has been improved, and the CPU 12 determines in step S14 that The state in which the post-processing has been executed is determined as the final nesting, and the processing ends.
 本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。配置データ作成プログラムをインターネットまたは構内LAN等のネットワークを介してコンピュータ機器10に伝送してもよい。配置データ作成プログラムをコンピュータで読み取り可能な記憶媒体に記憶して、コンピュータ機器10に提供してもよい。図1において、レーザビームを用いて材料を切断するレーザ加工機30の代わりに、鋸刃を用いて材料を切断する加工機であってもよい。 The present invention is not limited to one or more embodiments described above, and can be variously changed without departing from the gist of the present invention. The arrangement data creation program may be transmitted to the computer device 10 via a network such as the Internet or a private LAN. The arrangement data creation program may be stored in a computer-readable storage medium and provided to the computer device 10. In FIG. 1, instead of the laser processing machine 30 that cuts a material using a laser beam, a processing machine that cuts a material using a saw blade may be used.
 本願の開示は、2018年9月6日に出願された特願2018-166573号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2018-166573 filed on Sep. 6, 2018, the entire disclosures of which are incorporated herein by reference.

Claims (6)

  1.  各部品に関する情報として長さを含む複数の部品の部品データと、各材料に関する情報としての長さ及び所有する本数を含む複数の材料の材料データとを記憶する記憶部と、
     前記部品データにおける複数の部品のうち製作しようとする1または複数の部品が製作対象部品として選択されて各製作対象部品の員数が設定され、前記材料データにおける複数の材料のうち前記各製作対象部品を製作するために使用することができる複数の材料が複数の使用可能材料として抽出されているとき、前記各製作対象部品を設定された員数だけ前記複数の使用可能材料より選択された使用可能材料に配置して配置データを作成する配置データ作成部と、
     を備え、
     前記配置データ作成部は、
     前記複数の使用可能材料のうち最長の使用可能材料である第1の使用可能材料を選択して、前記第1の使用可能材料に前記各製作対象部品を配置するネスティングを実行し、
     前記第1の使用可能材料に配置された前記各製作対象部品の配置の状態を維持したまま、前記各製作対象部品を、前記複数の使用可能材料のうちの前記第1の使用可能材料よりも短い第2の使用可能材料に配置することができるときに、前記各製作対象部品を前記第2の使用可能材料に配置する第1の後処理を実行する
     配置データ作成装置。
    A storage unit that stores component data of a plurality of components including a length as information on each component, and material data of a plurality of materials including a length and the number of owned components as information on each material;
    One or more parts to be manufactured among the plurality of parts in the part data are selected as the parts to be manufactured, the number of the parts to be manufactured is set, and the parts to be manufactured among the plurality of materials in the material data are set. When a plurality of materials that can be used for manufacturing a plurality of usable materials are extracted as a plurality of usable materials, the usable materials selected from the plurality of usable materials by the set number of the respective production target parts A placement data creation unit that creates placement data by placing
    With
    The arrangement data creating unit,
    Selecting a first usable material, which is the longest usable material among the plurality of usable materials, and performing nesting for arranging the respective production target parts on the first usable material;
    While maintaining the state of the arrangement of the respective production target parts arranged on the first usable material, the respective production target parts are made to be higher than the first usable material of the plurality of usable materials. An arrangement data creation device that executes a first post-process of arranging each of the parts to be manufactured on the second usable material when the parts can be arranged on a short second usable material.
  2.  前記配置データ作成部は、
     前記第1の後処理が実行されなかったときには前記各製作対象部品を前記第1の使用可能材料に配置した状態で、前記第1の後処理が実行されたときには前記各製作対象部品を前記第2の使用可能材料に配置した状態で、前記各製作対象部品が配置されている複数の使用可能材料のうち、歩留まり率が最も低く、かつ、歩留まり率が所定の基準値未満の使用可能材料である歩留まり率最低材料に配置されている製作対象部品を、前記歩留まり率最低材料よりも短い使用可能材料に配置する第2の後処理を実行する
     請求項1に記載の配置データ作成装置。
    The arrangement data creating unit,
    When the first post-processing is not executed, the respective production target parts are arranged on the first usable material. When the first post-processing is executed, the respective production target parts are placed in the first usable material. In the state of being placed in the second usable material, among the plurality of usable materials in which the respective parts to be manufactured are arranged, the usable material having the lowest yield rate and the yield rate being less than a predetermined reference value is used. The arrangement data creation device according to claim 1, wherein a second post-processing is performed for arranging a production target component arranged in a certain lowest yield rate material on a usable material shorter than the lowest yield rate material.
  3.  前記配置データ作成部は、
     前記歩留まり率最低材料に配置されている製作対象部品を、前記歩留まり率最低材料よりも短い複数の使用可能材料のうち、長い使用可能材料から短い使用可能材料へと順に選択して前記第2の後処理を実行する
     請求項2に記載の配置データ作成装置。
    The arrangement data creating unit,
    The part to be fabricated arranged in the lowest yield rate material is selected from a plurality of usable materials shorter than the lowest yield rate material in order from a long usable material to a short usable material, and the second component is selected. The arrangement data creation device according to claim 2, wherein the arrangement data creation device performs post-processing.
  4.  コンピュータ機器が、
     材料を切断することによって製作しようとする1または複数の製作対象部品と、各製作対象部品の員数とが設定されたとき、複数の材料のうち、前記各製作対象部品を製作するために使用することができる複数の使用可能材料を抽出し、
     前記複数の使用可能材料のうち最長の使用可能材料である第1の使用可能材料を選択して、前記第1の使用可能材料に前記各製作対象部品を設定された員数だけ配置するネスティングを実行し、
     前記第1の使用可能材料に配置された前記各製作対象部品の配置の状態を維持したまま、前記各製作対象部品を、前記複数の使用可能材料のうちの前記第1の使用可能材料よりも短い第2の使用可能材料に配置することができるときに、前記各製作対象部品を前記第2の使用可能材料に配置する第1の後処理を実行し、
     前記第1の後処理が実行されなかったときには前記各製作対象部品を前記第1の使用可能材料に配置した配置データを作成し、前記第1の後処理が実行されたときには前記各製作対象部品を前記第2の使用可能材料に配置した配置データを作成する
     配置データ作成方法。
    Computer equipment
    When one or a plurality of production target parts to be produced by cutting a material and the number of each production target part are set, they are used for producing the respective production target parts among a plurality of materials. Can extract multiple usable materials,
    A first usable material which is the longest usable material among the plurality of usable materials is selected, and nesting for arranging the respective production target parts in the first usable material by the set number of members is performed. And
    While maintaining the state of the arrangement of the respective production target parts arranged on the first usable material, the respective production target parts are made to be higher than the first usable material of the plurality of usable materials. Performing a first post-process of placing each of said workpieces on said second usable material when it can be placed on a short second usable material;
    When the first post-processing has not been executed, arrangement data in which the respective production target parts are arranged on the first usable material is created, and when the first post-processing is executed, the respective production target parts have been generated. A placement data creation method for creating placement data in which is placed on the second usable material.
  5.  前記コンピュータ機器が、
     前記第1の後処理が実行されなかったときには前記各製作対象部品を前記第1の使用可能材料に配置した状態で、前記第1の後処理が実行されたときには前記各製作対象部品を前記第2の使用可能材料に配置した状態で、前記各製作対象部品が配置されている複数の使用可能材料のうち、歩留まり率が最も低い使用可能材料である歩留まり率最低材料の歩留まり率が所定の基準値未満であるか否かを判定し、
     前記歩留まり率最低材料の歩留まり率が前記基準値未満であると判定されたとき、前記歩留まり率最低材料に配置されている製作対象部品を、前記歩留まり率最低材料よりも短い使用可能材料に配置する第2の後処理を実行する
     請求項4に記載の配置データ作成方法。
    The computer device is:
    When the first post-processing is not executed, the respective production target parts are arranged on the first usable material. When the first post-processing is executed, the respective production target parts are placed in the first usable material. In the state of being placed in the second usable material, the yield rate of the lowest yield rate material, which is the usable material having the lowest yield rate, among the plurality of usable materials in which the parts to be manufactured are arranged is a predetermined standard. Judge whether it is less than the value,
    When it is determined that the yield rate of the lowest yield rate material is less than the reference value, the parts to be manufactured arranged in the lowest yield rate material are arranged in a usable material shorter than the lowest yield rate material. The arrangement data creation method according to claim 4, wherein the second post-processing is performed.
  6.  前記コンピュータ機器が、
     前記歩留まり率最低材料に配置されている製作対象部品を、前記歩留まり率最低材料よりも短い複数の使用可能材料のうち、長い使用可能材料から短い使用可能材料へと順に選択して前記第2の後処理を実行する
     請求項5に記載の配置データ作成方法。
    The computer device is:
    The part to be fabricated arranged in the lowest yield rate material is selected from a plurality of usable materials shorter than the lowest yield rate material in order from a long usable material to a short usable material, and the second component is selected. The arrangement data creation method according to claim 5, wherein post-processing is performed.
PCT/JP2019/024538 2018-09-06 2019-06-20 Arrangement data preparation device and arrangement data preparation method WO2020049834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166573 2018-09-06
JP2018166573A JP6572356B1 (en) 2018-09-06 2018-09-06 Arrangement data creation device and arrangement data creation method

Publications (1)

Publication Number Publication Date
WO2020049834A1 true WO2020049834A1 (en) 2020-03-12

Family

ID=67909488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024538 WO2020049834A1 (en) 2018-09-06 2019-06-20 Arrangement data preparation device and arrangement data preparation method

Country Status (2)

Country Link
JP (1) JP6572356B1 (en)
WO (1) WO2020049834A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253559A (en) * 2006-03-24 2007-10-04 Hit Sogo Kenkyusho:Kk Timber-conversion method of employed material
WO2009038196A1 (en) * 2007-09-21 2009-03-26 Osaka Prefecture University Public Corporation Precut material allocating method, computer program for the precut material allocating method, and computer-readable recording media
JP2010266991A (en) * 2009-05-13 2010-11-25 Mie Univ Blanking system and blanking program
JP2011028612A (en) * 2009-07-28 2011-02-10 Sumitomo Forestry Co Ltd Material combination system
JP2014085743A (en) * 2012-10-22 2014-05-12 Amada Co Ltd Arrangement data generation device, arrangement data generation method, and arrangement data generation program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253559A (en) * 2006-03-24 2007-10-04 Hit Sogo Kenkyusho:Kk Timber-conversion method of employed material
WO2009038196A1 (en) * 2007-09-21 2009-03-26 Osaka Prefecture University Public Corporation Precut material allocating method, computer program for the precut material allocating method, and computer-readable recording media
JP2010266991A (en) * 2009-05-13 2010-11-25 Mie Univ Blanking system and blanking program
JP2011028612A (en) * 2009-07-28 2011-02-10 Sumitomo Forestry Co Ltd Material combination system
JP2014085743A (en) * 2012-10-22 2014-05-12 Amada Co Ltd Arrangement data generation device, arrangement data generation method, and arrangement data generation program

Also Published As

Publication number Publication date
JP2020038591A (en) 2020-03-12
JP6572356B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP5269258B1 (en) Machining program generation device, machining program generation method, and recording medium
US20140310052A1 (en) Method And Apparatus For Generating An Engineering Workflow
JP2014123227A (en) Production schedule creation method and device
WO2020049834A1 (en) Arrangement data preparation device and arrangement data preparation method
JP6295010B2 (en) Nesting method, nesting apparatus and nesting program
CN112236730B (en) Process determination support device, process determination support method, and storage medium
KR101333768B1 (en) Machining path generating method
TW457443B (en) Lot carrier control system and carrier controlling method thereof
JP5872101B1 (en) Face material cutting processing instruction device, face material cutting machine and face material
JP2014065059A (en) Sheet metal working process designing system, and method for the system
JP6562083B2 (en) Information processing apparatus, processing system, and information processing method
JP2022171749A (en) Processing control apparatus, processing control method, and program
JP5108260B2 (en) Method and apparatus for utilizing bending machine mold layout
CN110770734A (en) Method, apparatus and system for part build
JP2014235586A (en) Planning date generation device, planning data generation method and planning data generation program
JP5961096B2 (en) Machining program creation system and machining program creation method
JP5169483B2 (en) Nesting order generator for plate processing
JP6507521B2 (en) Sequence generation method
KR20180068864A (en) Nc program transfer apparatus
JP2013134651A (en) Product allocation method and product allocation device for inventory intermediate product
JP5781465B2 (en) Construction date plan creation system and creation program
US10152045B2 (en) Automatic programming device and method therefor
JP2007140761A (en) Material requirements calculation method
JP3409297B2 (en) Manufacturing instruction creation device
JP2022135431A (en) Mold setup information creation device, mold setup information creation method, and program for mold setup information creation

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857385

Country of ref document: EP

Kind code of ref document: A1