WO2020049810A1 - Centrifugal impeller and centrifugal fluid machine - Google Patents

Centrifugal impeller and centrifugal fluid machine Download PDF

Info

Publication number
WO2020049810A1
WO2020049810A1 PCT/JP2019/021261 JP2019021261W WO2020049810A1 WO 2020049810 A1 WO2020049810 A1 WO 2020049810A1 JP 2019021261 W JP2019021261 W JP 2019021261W WO 2020049810 A1 WO2020049810 A1 WO 2020049810A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal
impeller
centrifugal impeller
shroud
blade
Prior art date
Application number
PCT/JP2019/021261
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 磯崎
西岡 卓宏
成瀬 友博
道宏 川下
博 青山
洋平 丹野
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2020049810A1 publication Critical patent/WO2020049810A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to a centrifugal impeller and a centrifugal fluid machine provided with the same.
  • a process centrifugal compressor which is an example of a centrifugal fluid machine
  • the sucked working fluid is discharged after passing through a flow path provided in a single-stage or multi-stage impeller.
  • rotational energy of the impeller is applied to the working fluid, and the working fluid is compressed.
  • Patent Document 1 As a centrifugal compressor provided with an impeller capable of increasing the peripheral speed, for example, there is one described in Patent Document 1.
  • Patent Literature 1 a blade having high strength is provided by devising the shape of the blade so that the peripheral speed can be increased.
  • the limit peripheral speed of the impeller has been improved from the viewpoint of changing the dimensions of the hub or shroud or devising the shape of the blade.
  • the present invention has been made by variously examining a method for improving the limit peripheral speed other than the conventional viewpoint.
  • An object of the present invention is to provide a centrifugal impeller having a structure capable of increasing the peripheral speed of the centrifugal impeller, and a centrifugal fluid machine including the same.
  • a hollow portion is provided in a blade of a centrifugal impeller of a centrifugal fluid machine including a hub, a plurality of blades, and a shroud.
  • the centrifugal force generated in the centrifugal impeller decreases, and in particular, the stress generated in the hub decreases.
  • the rotation speed of the centrifugal impeller at which the stress generated in the hub reaches the allowable limit stress increases, and the peripheral speed of the centrifugal impeller can be increased.
  • FIG. 1 is an external view of a centrifugal impeller according to one embodiment of the present invention. It is a figure which shows the shape which extracted one pitch of the blade in the centrifugal impeller shown in FIG.
  • FIG. 3 is a diagram in which wing portions of the centrifugal impeller shown in FIGS. 1 and 2 are extracted, and is a diagram illustrating an example of a method of providing a hollow portion.
  • FIG. 3 is a diagram in which a wing portion of the centrifugal impeller illustrated in FIGS. 1 and 2 is extracted, and is a diagram illustrating another example of a method of providing a hollow portion.
  • FIG. 3 is a diagram in which a wing portion of the centrifugal impeller illustrated in FIGS. 1 and 2 is extracted, and is a diagram illustrating another example of a method of providing a hollow portion. It is a figure showing an example of a centrifugal fluid machine to which the centrifugal impeller of the present invention is applied.
  • the peripheral speed of an impeller has been improved from the viewpoint of securing the structural strength at the time of high-speed rotation by changing the dimensions of a hub or a shroud, or devising the shape of the blade to obtain a high-strength blade.
  • the centrifugal force generated in the impeller can be reduced, the increase in the stress generated in the shroud and the hub can be suppressed even when the impeller is rotated at high speed, and damage to the impeller can be prevented. That is, the limit peripheral speed can be improved.
  • the impeller is composed of a hub, a plurality of blades, and a shroud.
  • the impeller is attached to the shaft by shrink fitting the hub to the shaft.
  • shrink fitting allowance when fixing the hub to the shaft due to reasons such as manufacturability. If the centrifugal force applied to the hub increases due to the high peripheral speed of the impeller, the hub expands and slides between the hub and the shaft. Occurs. Therefore, if the centrifugal force applied to the hub can be reduced, even if the impeller is rotated at a high speed, the expansion of the hub can be suppressed so that no slip occurs between the hub and the shaft. Can be improved. For example, it is conceivable to use a lightweight structural material in order to reduce the centrifugal force generated in the impeller.
  • blades of a gas turbine or a steam turbine have a hollow structure.
  • the hollow portion is used as a cooling air passage for cooling the blade.
  • a space is formed inside a stationary blade to collect droplets, and a moving blade is hollowed to reduce centrifugal force due to a longer blade.
  • centrifugal impellers of centrifugal fluid machines often have thin blades from the viewpoint of improving the fluid performance, and as described in Patent Document 1, the blades are arranged in consideration of securing the strength of the blades. It has an actual structure.
  • the technical problem of the centrifugal impeller is different from the technical problem of the blade of the gas turbine or the steam turbine.
  • the blades of a gas turbine or a steam turbine incorporate individually manufactured blades into a rotor or a casing, and the blades having a hollow structure are themselves manufactured by casting or bending.
  • the centrifugal impeller integrally manufactures a hub, a plurality of blades, and a shroud, and it is difficult to make the blades hollow in such an impeller structure. From these facts, it has not been considered that the blade of the centrifugal impeller has a hollow structure like the blade of a gas turbine or a steam turbine.
  • Japanese Patent Application Laid-Open No. 2016-37901 proposes that an impeller used for a turbocharger is formed by additive manufacturing.
  • a shell portion including a blade portion and a hub surface portion, a lattice-shaped skeleton and a space inside the shell portion are provided.
  • a structure having a core portion having a lower density than the shell portion to be formed is adopted, and this structure is formed by additive manufacturing.
  • This patent document 1 lowers the moment of inertia to improve the responsiveness as a turbocharger, but does not consider improving the peripheral speed limit or hollowing the blade portion.
  • the present invention focuses on the possibility of designing a centrifugal impeller having a hollow portion which has been difficult to process with the recent spread of 3D printers. By reducing the generated centrifugal force, the limit peripheral speed of the centrifugal impeller is improved.
  • the hollowness is a ratio of hollows in the blade (hollow volume per unit volume). Centrifugal force is calculated by the product of the square of the mass, the distance from the center of rotation, and the angular velocity. Therefore, the higher the hollowness is, and the more the hollow portion is provided at a position farther from the rotation center, the more the centrifugal force can be reduced.
  • the centrifugal impeller for a centrifugal compressor proposed in the embodiment of the present invention, the hollowness of the blade is minimized at a position where the curvature of the surface of the shroud flow path surface is maximum, and the shroud flow path surface is reduced.
  • a rational weight reduction in consideration of the strength margin is achieved, and a centrifugal impeller with significantly reduced centrifugal force can be obtained while ensuring structural strength.
  • FIG. 1 is an external view of a centrifugal impeller according to one embodiment of the present invention.
  • FIG. 2 is a view showing a shape obtained by extracting one pitch of the blade in the centrifugal impeller shown in FIG.
  • a centrifugal impeller 100 to which the present invention is applied has a disc-shaped hub 101 having a shape in which a central portion on the blade inlet side protrudes, and is provided on the hub 101 in a circumferential direction.
  • the centrifugal impeller 100 is fixed to a shaft (not shown) by shrink fitting at an inner diameter portion of the hub 101. In the centrifugal impeller 100, torque from a motor (not shown) is transmitted through a shaft at an inner diameter portion of the hub 101.
  • a region surrounded by the hub 101, the blade 102, the shroud 103, the blade inlet side end 104, and the blade outlet side end 105 serves as a working fluid flow path 106 inside the centrifugal impeller 100.
  • the working fluid flows in from the blade inlet side end 104 side, receives work from the centrifugal impeller 100 in the flow path 106, and is discharged from the blade outlet side end 105 side while being compressed.
  • FIG. 3 is a diagram showing extracted blades 102 in the centrifugal impeller shown in FIGS. 1 and 2.
  • FIG. 3 shows a shape in which the degree of hollowness of the blade is minimized at a position where the curvature of the side surface of the shroud flow channel is maximized, and is increased as the distance from the region where the curvature of the side surface of the shroud flow channel becomes maximum is increased.
  • a portion where the curvature is maximum on the shroud flow path side surface 107 is referred to as a maximum shroud curvature portion 108
  • a portion of the blade joined (opposed) to the maximum shroud curvature portion 108 is a wing portion 108a corresponding to the maximum shroud curvature portion.
  • the maximum shroud curvature portion 108 (the wing portion 108a corresponding to the maximum shroud curvature portion) is located at an intermediate portion between the blade inlet side end portion 104 and the blade outlet side end portion 105.
  • shroud-side wings 111 a portion on the hub 101 side from a line (dotted line shown in the figure) connecting the midpoint of the blade inlet side end 104 and the midpoint of the blade outlet side end 105 along the blade surface 109.
  • the side wing 110 and the shroud-side portion are referred to as shroud-side wings 111.
  • the wing 102 is provided with a hollow portion 112 as shown in FIG. In FIG. 3, the degree of hollowness is changed by changing the width of the hollow portion 112 in the thickness direction of the blade 102. Further, in order to maintain the strength of the blade 102, the hollow portion 112 is divided into a plurality in the direction from the blade inlet side end portion 104 to the blade outlet side end portion 105. The plurality of divided hollow portions 112 are provided radially with respect to the shroud channel side surface 107.
  • the degree of hollowness of the wing becomes minimum near the wing portion 108a corresponding to the maximum shroud curvature, and the degree of hollowness of the wing 102 increases as the distance from the wing portion 108a corresponding to the maximum shroud curvature increases. That is, the width of the hollow portion 112 is minimum near the wing portion 108a corresponding to the maximum shroud curvature portion, and becomes wider as it goes away from the vicinity of the wing portion 108a corresponding to the maximum shroud curvature portion.
  • the shape of the hollow portion 112 is not limited to the shape shown in FIG. Since the centrifugal impeller of the present embodiment is manufactured by an additive manufacturing method using a 3D printer or the like, the hollow portion 112 can have various shapes. For example, the degree of hollowness may be changed between the hub-side wing 110 and the shroud-side wing 111. For example, the width of the hollow portion in the hub-side wing portion 110 may be reduced, and the width of the hollow portion in the shroud-side wing portion 111 may be increased. Alternatively, the width of the hollow portion may be increased toward the shroud side. Is also good. Further, the hollow portion 112 may be provided only in the shroud-side wing portion 111.
  • the blade 102 provided with the hollow portion 112 is lighter in weight than a structure employing a solid blade, and the centrifugal force generated in the centrifugal impeller during rotation is reduced.
  • the stress generated in the hub 101 that receives the centrifugal force in the wings 102 and the shroud 103 is reduced, so that the centrifugal impeller 100 can be rotated at a higher speed as compared with a structure employing solid wings. . That is, the number of rotations that reaches the allowable limit stress is higher than that of a structure having a solid blade, and the limit peripheral speed can be increased.
  • the maximum shroud curvature at which the maximum stress occurs when the solid wing is used is used.
  • the hollowness is low and the amount of increase in stress is small. That is, since the hollow portion is set in consideration of the stress distribution caused by the blade shape generated on the blade of the centrifugal impeller during rotation, occurrence of a strength problem in the vicinity of the hollow portion can be avoided.
  • the blade 102 does not become a bottleneck of strength, and the critical peripheral speed of the centrifugal impeller 100 is not defined from the stress generated in the blade 102.
  • the size of the hollow portions can be set according to the gradient of the stress, and the stress can be optimized for each portion. Is possible.
  • centrifugal impeller 100 of the present embodiment Another advantage of the centrifugal impeller 100 of the present embodiment is that the reliability of the shrink-fit portion between the shaft and the centrifugal impeller inner diameter (hub) is improved.
  • the hollow portion 112 is provided in the blade 102 to reduce the centrifugal force, so that the amount of expansion of the centrifugal impeller inner diameter (hub) during rotation decreases.
  • the interference required at the shrink fitting portion between the inner diameter of the centrifugal impeller and the shaft may be reduced.
  • the risk of slippage between the centrifugal impeller and the shaft is reduced, so that the peripheral speed limit can be improved.
  • ⁇ ⁇ Advantages of adopting a hollow structure are that higher rigidity can be secured with the same mass and deformation can be suppressed as compared with a solid structure.
  • FIG. 4 shows another example of how to provide the hollow portion.
  • the hollow portion 212 when the hollow portion 212 is provided in the blade 202, the hollow portion 212 is provided only on the blade outlet side end portion 205 side. That is, the hollow part 212 is provided in the wing part between the wing part 208a corresponding to the shroud curvature maximum part and the wing outlet side end part 205.
  • the hollow portion 212 may be provided on any of the wing portions on the wing inlet side end portion 204 side or the wing outlet side end portion 205 side. Whether the hollow portion 212 is provided on the blade inlet side end portion 204 side or the blade outlet side end portion 205 side depends on the result of the strength analysis.
  • the wing In general, from the viewpoint of reducing the centrifugal force, it is shown in FIG. As described above, it is preferable to provide the wing on the wing outlet side end 205 side distant from the rotation center. Also in this example, the hollowness of the wing 202 is minimized in the vicinity of the wing 208a corresponding to the maximum shroud curvature, and the hollowness of the wing 202 is increased as the distance from the wing 208a corresponding to the maximum shroud curvature is increased. Therefore, in this example, the hollowness of the wing increases as the distance from the rotation center increases. In the centrifugal impeller provided with the blades 202 shown in FIG. 4, the same effects as those of the centrifugal impeller provided with the blades 102 shown in FIG. 3 can be obtained.
  • FIG. 5 shows another example of how to provide the hollow portion.
  • the hollow portion 312 when the hollow portion 312 is provided in the wing 302, the hollow portion 312 is formed in a lattice shape.
  • the other points are the same as those of the wing 102 shown in FIG.
  • the hollowness of the wing 302 becomes minimum near the wing portion 308a corresponding to the maximum shroud curvature portion, and the hollowness of the wing 302 increases as the distance from the wing portion 308a corresponding to the maximum shroud curvature portion increases.
  • the centrifugal impeller provided with the blade 302 shown in FIG. 5 the same effects as those of the centrifugal impeller provided with the blade 102 shown in FIG. 3 can be obtained.
  • the strength of the wing 302 can be increased.
  • FIG. 6 is a longitudinal sectional view showing the entire structure of the centrifugal compressor.
  • a centrifugal compressor 10 is formed in a cylindrical shape or the like to be a stationary portion (stator), and is rotatably provided in the casing 11 by being supported by radial bearings 12, 13 and a thrust bearing 14. And a plurality of (five in FIG. 6) centrifugal impellers 16 mounted on the rotating shaft 15.
  • the rotating shaft 15 and the centrifugal impeller 16 constitute a rotor 17.
  • a single-shaft multi-stage centrifugal compressor in which a single rotating shaft 15 is provided with centrifugal impellers 16 in multiple stages will be described as an example. Can be similarly applied.
  • the casing 11 has a suction passage 18 for introducing a gas, which is a working fluid, to the first-stage centrifugal impeller 16, and a diffuser 19 for converting kinetic energy of gas discharged from each stage of the centrifugal impeller 16 into pressure energy. And a return flow path 20 for introducing the compressed gas from the diffuser 19 to the next-stage centrifugal impeller 16, and a discharge flow for discharging the gas discharged from the final-stage centrifugal impeller 16 to the outside of the casing 11.
  • a road 21 and the like are provided.
  • a driving device such as a motor is connected to the discharge side end of the rotating shaft 15, and the driving device drives the rotor 17 to rotate. Further, as the rotor 17 rotates, the gas is sucked from the suction flow channel 18, is sequentially compressed by the centrifugal impellers 16 in a plurality of stages, and is finally discharged from the discharge flow channel 21.
  • the centrifugal impeller of the above-described embodiment is used as the centrifugal impeller 16.
  • the centrifugal impeller of the present invention described above, the number of stages of the centrifugal impeller of the centrifugal compressor and the outer diameter of the centrifugal impeller can be reduced, and the centrifugal compressor can be downsized and the efficiency can be improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • 100 centrifugal impeller, 101: hub, 102, 202, 302: blade, 103: shroud, 104, 204: blade inlet side end, 105, 205: blade outlet side end, 106: flow path, 107: shroud Flow path side surface, 108, 208, 308: Shroud curvature maximum part, 108a, 208a, 308a: Shroud curvature maximum part corresponding wing part, 109: Blade surface, 110: Hub side wing part, 111: Shroud side wing part, 112, 212, 312: Hollow part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided are a centrifugal impeller having a structure enabling an increase in peripheral speed thereof, and a centrifugal fluid machine provided with the same. A hollow part 112 is provided in a blade 102 of a centrifugal impeller of a centrifugal fluid machine constituted by a hub, a plurality of blades, and a shroud. The hollow part 112 is formed in the blade 102 in such a way that the hollowness of the blade 102 becomes minimum at a portion opposing a portion having a maximum curvature on the flow path side surface of the shroud and becomes higher with increasing distance from the portion having the maximum curvature on the flow path side surface of the shroud.

Description

遠心羽根車および遠心式流体機械Centrifugal impeller and centrifugal fluid machine
 本発明は、遠心羽根車およびこれを備える遠心式流体機械に関する。 The present invention relates to a centrifugal impeller and a centrifugal fluid machine provided with the same.
 遠心式流体機械の一例であるプロセス用遠心圧縮機では、吸入した作動流体は単段あるいは多段の羽根車に設けられた流路を通過した後、吐出される。作動流体が羽根車の流路を通過する過程で、羽根車の回転エネルギーが作動流体に付与され、作動流体が圧縮される。羽根車を高速回転させて高周速化することにより、単位重量あたりの流体エネルギー増大分(ヘッド)が増え、必要ヘッドを満足するための羽根車段数が低減可能となる。さらに、羽根車段数の低減によりエネルギー損失が減り、圧縮機の効率向上を見込むことができる。また、羽根車を高速回転させて高周速化することにより、従来と比べ外径の小さな羽根車で、従来と同等量の流体エネルギーを与えることが可能となる。羽根車を高速回転させて高周速化するためには羽根車の限界周速を向上させることが必要である。羽根車の限界周速を向上することにより、羽根車の段数の低減や羽根車外径の低減が可能となり、プロセス用遠心圧縮機の小型化・高効率化が実現する。 で は In a process centrifugal compressor, which is an example of a centrifugal fluid machine, the sucked working fluid is discharged after passing through a flow path provided in a single-stage or multi-stage impeller. In the process of the working fluid passing through the flow path of the impeller, rotational energy of the impeller is applied to the working fluid, and the working fluid is compressed. By increasing the peripheral speed by rotating the impeller at high speed, the amount of increase in fluid energy per unit weight (head) increases, and the number of impeller stages for satisfying the required head can be reduced. Furthermore, energy loss is reduced by reducing the number of impeller stages, and an improvement in compressor efficiency can be expected. In addition, by rotating the impeller at a high speed to increase the peripheral speed, it is possible to give the same amount of fluid energy as the conventional one using an impeller having a smaller outer diameter than the conventional one. In order to increase the peripheral speed by rotating the impeller at high speed, it is necessary to improve the limit peripheral speed of the impeller. By improving the peripheral speed of the impeller, the number of stages of the impeller and the outer diameter of the impeller can be reduced, and the centrifugal compressor for a process can be reduced in size and increased in efficiency.
 羽根車の限界周速向上にあたり、高速回転時における構造強度の確保が課題となる。すなわち、羽根車の高周速化に伴い羽根車に発生する遠心応力が増大し、回転数が過大となるとシュラウドやハブに過大な応力が発生し、羽根車が損傷する。このように、羽根車の限界周速は、構造強度による制約を受ける。そのため、羽根車の限界周速を向上させるためには、遠心力に対し、構造強度の高い構造とする必要がある。従来は、羽根車のハブやシュラウドの寸法を変えることで、応力を抑制している。 向上 In improving the peripheral speed of the impeller, it is important to secure the structural strength during high-speed rotation. That is, the centrifugal stress generated in the impeller increases as the peripheral speed of the impeller increases, and when the rotation speed becomes excessive, excessive stress is generated in the shroud and the hub, and the impeller is damaged. As described above, the limit peripheral speed of the impeller is restricted by the structural strength. Therefore, in order to improve the limit peripheral speed of the impeller, it is necessary to provide a structure having high structural strength against centrifugal force. Conventionally, stress is suppressed by changing the dimensions of the hub and shroud of the impeller.
 なお、周速度を大きくできるようにした羽根車を備えた遠心圧縮機としては、例えば、特許文献1に記載のものがある。特許文献1では羽根の形状を工夫することにより、高い強度の羽根とし、周速度を大きくできるようにしている。 遠 心 As a centrifugal compressor provided with an impeller capable of increasing the peripheral speed, for example, there is one described in Patent Document 1. In Patent Literature 1, a blade having high strength is provided by devising the shape of the blade so that the peripheral speed can be increased.
特開2010-151126号公報JP 2010-151126 A
 従来、ハブやシュラウドの寸法を変える、あるいは羽根の形状を工夫するなどの観点で羽根車の限界周速を向上させている。 
 本発明は従来の観点以外に限界周速を向上させる方法がないか種々検討してなされたものである。
Conventionally, the limit peripheral speed of the impeller has been improved from the viewpoint of changing the dimensions of the hub or shroud or devising the shape of the blade.
The present invention has been made by variously examining a method for improving the limit peripheral speed other than the conventional viewpoint.
 本発明の目的は、遠心羽根車を高周速化することが可能な構造を有する遠心羽根車およびそれを備えた遠心式流体機械を提供することにある。 An object of the present invention is to provide a centrifugal impeller having a structure capable of increasing the peripheral speed of the centrifugal impeller, and a centrifugal fluid machine including the same.
 本発明は、ハブ、複数の翼及びシュラウドにより構成される遠心式流体機械の遠心羽根車の翼に中空部を設けるようにしたものである。 In the present invention, a hollow portion is provided in a blade of a centrifugal impeller of a centrifugal fluid machine including a hub, a plurality of blades, and a shroud.
 本発明によれば、遠心羽根車に発生する遠心力が低下し、特にハブに発生する応力が低下する。その結果、ハブに発生する応力が許容限界応力に達する遠心羽根車の回転数が高くなり、遠心羽根車を高周速化することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the centrifugal force generated in the centrifugal impeller decreases, and in particular, the stress generated in the hub decreases. As a result, the rotation speed of the centrifugal impeller at which the stress generated in the hub reaches the allowable limit stress increases, and the peripheral speed of the centrifugal impeller can be increased.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の一実施例に係る遠心羽根車の外観図である。1 is an external view of a centrifugal impeller according to one embodiment of the present invention. 図1に示す遠心羽根車における翼1ピッチ分を抜き出した形状を示す図である。It is a figure which shows the shape which extracted one pitch of the blade in the centrifugal impeller shown in FIG. 図1及び図2に示す遠心羽根車における翼部を抽出した図であり、中空部の設け方の一例を説明する図である。FIG. 3 is a diagram in which wing portions of the centrifugal impeller shown in FIGS. 1 and 2 are extracted, and is a diagram illustrating an example of a method of providing a hollow portion. 図1及び図2に示す遠心羽根車における翼部を抽出した図であり、中空部の設け方の他の一例を説明する図である。FIG. 3 is a diagram in which a wing portion of the centrifugal impeller illustrated in FIGS. 1 and 2 is extracted, and is a diagram illustrating another example of a method of providing a hollow portion. 図1及び図2に示す遠心羽根車における翼部を抽出した図であり、中空部の設け方の他の一例を説明する図である。FIG. 3 is a diagram in which a wing portion of the centrifugal impeller illustrated in FIGS. 1 and 2 is extracted, and is a diagram illustrating another example of a method of providing a hollow portion. 本発明の遠心羽根車を適用した遠心式流体機械の一例を示す図である。It is a figure showing an example of a centrifugal fluid machine to which the centrifugal impeller of the present invention is applied.
 以下、本発明を実施する上で好適な実施例について図面を用いて説明する。 
 先ず、本発明の実施例を詳細に説明する前に、本発明に至った経緯について説明する。
 
 従来、ハブやシュラウドの寸法を変えて高速回転時における構造強度の確保する、あるいは羽根の形状を工夫して高い強度の羽根とするなどの観点で羽根車の限界周速を向上させている。しかしながら、羽根車に発生する遠心力を小さくすることができれば、羽根車を高速回転させてもシュラウドやハブに発生する応力の増大を抑えることができ、羽根車の損傷を防止することができる。すなわち、限界周速を向上させることができる。
Preferred embodiments for implementing the present invention will be described below with reference to the drawings.
First, before describing the embodiments of the present invention in detail, the background to the present invention will be described.

Conventionally, the peripheral speed of an impeller has been improved from the viewpoint of securing the structural strength at the time of high-speed rotation by changing the dimensions of a hub or a shroud, or devising the shape of the blade to obtain a high-strength blade. However, if the centrifugal force generated in the impeller can be reduced, the increase in the stress generated in the shroud and the hub can be suppressed even when the impeller is rotated at high speed, and damage to the impeller can be prevented. That is, the limit peripheral speed can be improved.
 また、羽根車は、ハブ、複数の翼及びシュラウドにより構成される。羽根車はハブをシャフトに焼き嵌めてシャフトに取り付けられる。ハブをシャフトに固定する際の焼き嵌め代には製作性などの理由により限界があるため、羽根車の高周速化によりハブに加わる遠心力が増大すると、ハブが拡がりシャフトとの間にすべりが生じる。したがって、ハブに加わる遠心力を小さくすることができれば、羽根車を高速回転させてもハブの拡がりを抑えてハブとシャフトとの間にすべりが生じないようにすることができるので、限界周速を向上させることができる。例えば、羽根車に発生する遠心力を小さくするために、軽量の構造材を用いることが考えられる。 羽 The impeller is composed of a hub, a plurality of blades, and a shroud. The impeller is attached to the shaft by shrink fitting the hub to the shaft. There is a limit to the shrink fitting allowance when fixing the hub to the shaft due to reasons such as manufacturability.If the centrifugal force applied to the hub increases due to the high peripheral speed of the impeller, the hub expands and slides between the hub and the shaft. Occurs. Therefore, if the centrifugal force applied to the hub can be reduced, even if the impeller is rotated at a high speed, the expansion of the hub can be suppressed so that no slip occurs between the hub and the shaft. Can be improved. For example, it is conceivable to use a lightweight structural material in order to reduce the centrifugal force generated in the impeller.
 一方、遠心羽根車以外の分野では、例えば、ガスタービンや蒸気タービンの翼を中空構造としている。ガスタービンの翼では、中空部は翼を冷却するための冷却空気通路として用いられる。蒸気タービンでは液滴回収のため静翼内部に空間を形成したり、動翼の長翼化に起因して遠心力を低減するために動翼を中空化したりしている。しかし、遠心式流体機械の遠心羽根車は流体性能を向上させるという観点から翼を薄く構成することが多く、また、特許文献1に記載のように、羽根の強度確保も考慮して翼を中実構造としている。
このように、遠心羽根車における技術的課題は、ガスタービンや蒸気タービンの翼における技術的課題とは異なる。 
 さらに、ガスタービンや蒸気タービンの翼は、個々に製造した翼をロータやケーシングに組み込むものであり、中空構造の翼自体は鋳造や曲げ加工などで製造される。しかし、遠心羽根車は、ハブ、複数の翼及びシュラウドを一体的に製造するものであり、このような羽根車構造では翼を中空構造とすることが困難である。これらのことから、遠心羽根車の翼をガスタービンや蒸気タービンの翼ように中空構造にするということは考えられていなかった。
On the other hand, in fields other than the centrifugal impeller, for example, blades of a gas turbine or a steam turbine have a hollow structure. In a gas turbine blade, the hollow portion is used as a cooling air passage for cooling the blade. In a steam turbine, a space is formed inside a stationary blade to collect droplets, and a moving blade is hollowed to reduce centrifugal force due to a longer blade. However, centrifugal impellers of centrifugal fluid machines often have thin blades from the viewpoint of improving the fluid performance, and as described in Patent Document 1, the blades are arranged in consideration of securing the strength of the blades. It has an actual structure.
Thus, the technical problem of the centrifugal impeller is different from the technical problem of the blade of the gas turbine or the steam turbine.
Further, the blades of a gas turbine or a steam turbine incorporate individually manufactured blades into a rotor or a casing, and the blades having a hollow structure are themselves manufactured by casting or bending. However, the centrifugal impeller integrally manufactures a hub, a plurality of blades, and a shroud, and it is difficult to make the blades hollow in such an impeller structure. From these facts, it has not been considered that the blade of the centrifugal impeller has a hollow structure like the blade of a gas turbine or a steam turbine.
 しかし、遠心羽根車の限界周速を向上させるためには、上述したように、羽根車に発生する遠心力を小さくすることがハブなどに発生する応力の低減や、シャフト焼き嵌め部の変形低減に有効である。そして、近年の3Dプリンタの普及に伴い、従来は加工が困難であった構造の設計が可能となりつつある。例えば、特開2016-37901号公報には、ターボチャージャーに用いられる羽根車を積層造形することが提案されている。なお、この特許文献では、必要な強度を確保しつつ慣性力を低減するため、羽根車として、ブレード部とハブ面部を含むシェル部と、シェル部の内側にあって格子状の骨格と空隙で形成される、シェル部よりも密度の低いコア部を有する構造を採用し、この構造を積層造形により形成している。この特許文献1は、慣性モーメントを下げてターボチャージャーとしての応答性の向上させるものであり、限界周速を向上させることやブレード部の中空化については考慮されていない。 However, in order to improve the peripheral speed limit of the centrifugal impeller, as described above, reducing the centrifugal force generated in the impeller reduces the stress generated in the hub and the like and the deformation of the shaft shrink fitting portion. It is effective for With the spread of 3D printers in recent years, it has become possible to design structures that have conventionally been difficult to process. For example, Japanese Patent Application Laid-Open No. 2016-37901 proposes that an impeller used for a turbocharger is formed by additive manufacturing. In this patent document, in order to reduce the inertial force while securing the required strength, as an impeller, a shell portion including a blade portion and a hub surface portion, a lattice-shaped skeleton and a space inside the shell portion are provided. A structure having a core portion having a lower density than the shell portion to be formed is adopted, and this structure is formed by additive manufacturing. This patent document 1 lowers the moment of inertia to improve the responsiveness as a turbocharger, but does not consider improving the peripheral speed limit or hollowing the blade portion.
 本発明は、近年の3Dプリンタの普及に伴い、従来は加工が困難であった中空部を有する遠心羽根車の設計が可能であることに着目し、翼に中空部を設け、遠心羽根車に生じる遠心力を低下させることで、遠心羽根車の限界周速を向上させるようにしたものである。 The present invention focuses on the possibility of designing a centrifugal impeller having a hollow portion which has been difficult to process with the recent spread of 3D printers. By reducing the generated centrifugal force, the limit peripheral speed of the centrifugal impeller is improved.
 また、本発明者等の検討によれば、遠心羽根車に生じる遠心力低減のため中空部を設けるにあたり、中空部を設ける場所と中空度を適切に選定することが重要である。中空度とは翼における中空の割合(単位体積あたりの中空の体積)である。遠心力は質量、回転中心からの距離、角速度の二乗の積により計算される。よって、中空度が高く、なおかつ回転中心から離れた位置に中空部を設ける程、遠心力を大きく低減することが可能である。
しかし、高い応力が発生している部位で中空度を高くした場合、中空部を設けた部位の応力が一層高まり、耐用可能な周速が低下する可能性がある。遠心圧縮機向けの羽根車では、仕様に応じ、羽根車の軸方向長さや入口幅、出口幅などが大きく異なる。これに伴い、遠心力負荷時の応力の分布傾向や最大応力の発生部は異なる。そのため、仕様の異なる種々の羽根車の応力分布傾向を考慮した上で、中空度を設定することが重要である。このような点を考慮し、本発明の好適な実施例では、構造強度を考慮しつつ中空部を設けることにより遠心力を低下させた遠心圧縮機向けの遠心羽根車の構造を提案する。
According to the study of the present inventors, it is important to appropriately select a place where the hollow part is provided and the degree of hollowness when providing the hollow part for reducing the centrifugal force generated in the centrifugal impeller. The hollowness is a ratio of hollows in the blade (hollow volume per unit volume). Centrifugal force is calculated by the product of the square of the mass, the distance from the center of rotation, and the angular velocity. Therefore, the higher the hollowness is, and the more the hollow portion is provided at a position farther from the rotation center, the more the centrifugal force can be reduced.
However, when the degree of hollowness is increased in a portion where a high stress is generated, the stress in the portion where the hollow portion is provided is further increased, and the usable peripheral speed may be reduced. In an impeller for a centrifugal compressor, the axial length, inlet width, outlet width, and the like of the impeller greatly differ depending on specifications. Along with this, the distribution tendency of the stress when the centrifugal force is applied and the portion where the maximum stress occurs are different. Therefore, it is important to set the hollowness in consideration of the stress distribution tendency of various impellers having different specifications. In view of such points, in a preferred embodiment of the present invention, a structure of a centrifugal impeller for a centrifugal compressor in which a centrifugal force is reduced by providing a hollow portion while considering structural strength is proposed.
 遠心圧縮機向けの遠心羽根車では、翼部において、シュラウド流路側表面の曲率が最大となる部位で高い応力が生じるが、シュラウド流路側表面の曲率が最大となる部位から離れると、応力は低下してゆく。よって、シュラウド流路側表面の曲率が最大となる部位では、翼の強度裕度が低く、中空度を高く設定することが難しい。一方、シュラウド流路側面の曲率が最大となる部位から離れにつれ、翼の強度裕度は高く、中空度を高く設定することが可能である。 In centrifugal impellers for centrifugal compressors, high stress occurs in the blade section where the curvature of the surface of the shroud flow path side is maximum, but the stress decreases when the distance from the area where the curvature of the surface of the shroud flow path becomes maximum is reduced. I will do it. Therefore, in a portion where the curvature of the shroud flow path side surface is maximum, the strength margin of the blade is low, and it is difficult to set the hollowness high. On the other hand, as the distance from the portion where the curvature of the side surface of the shroud flow channel becomes maximum is increased, the strength margin of the blade is higher, and the hollowness can be set higher.
 そこで、本発明の実施例で提案する遠心圧縮機向け遠心羽根車は、翼の中空度を、シュラウド流路側表面の曲率が最大となる部位に接合された位置で最小とし、シュラウド流路側表面の曲率が最大となる部位から離れるほど高く設定する。これにより、強度裕度を考慮した合理的な軽量化が達成され、構造強度を確保しつつも、大幅に遠心力を低減した遠心羽根車を得ることが出来る。 Therefore, the centrifugal impeller for a centrifugal compressor proposed in the embodiment of the present invention, the hollowness of the blade is minimized at a position where the curvature of the surface of the shroud flow path surface is maximum, and the shroud flow path surface is reduced. The higher the distance from the part where the curvature is maximized, the higher the setting. As a result, a rational weight reduction in consideration of the strength margin is achieved, and a centrifugal impeller with significantly reduced centrifugal force can be obtained while ensuring structural strength.
 以下、図面を参照しながら本発明の実施例を詳細に説明する。 
 先ず、図1及び図2を用いて本発明が適用される遠心羽根車の構成を説明する。図1は本発明の一実施例に係る遠心羽根車の外観図である。図2は図1に示す遠心羽根車における翼1ピッチ分を抜き出した形状を示す図である。 
 図1及び図2に示すように、本発明が適用される遠心羽根車100は、翼入口側の中央部が突出した形状となっている円盤状のハブ101と、ハブ101上に周方向に間隔を置いて配置されている複数の翼102と、翼102を挟んでハブ101に対向して配置されるシュラウド103により構成される。ハブ101、翼102、シュラウド103は3Dプリンタ等を用いた積層造形法により一体物として成型される。遠心羽根車100はハブ101の内径部にてシャフト(図示省略)に焼き嵌めにより固定される。遠心羽根車100はハブ101の内径部にてシャフトを介してモータ(図示省略)からのトルクが伝達される。ハブ101、翼102、シュラウド103、翼入口側端部104、翼出口側端部105により囲われる領域が、遠心羽根車100内部における、作動流体の流路106となる。作動流体は、翼入口側端部104側より流入し、流路106内で遠心羽根車100より仕事を受け、圧縮されつつ翼出口側端部105側より吐出される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, the configuration of a centrifugal impeller to which the present invention is applied will be described with reference to FIGS. FIG. 1 is an external view of a centrifugal impeller according to one embodiment of the present invention. FIG. 2 is a view showing a shape obtained by extracting one pitch of the blade in the centrifugal impeller shown in FIG.
As shown in FIGS. 1 and 2, a centrifugal impeller 100 to which the present invention is applied has a disc-shaped hub 101 having a shape in which a central portion on the blade inlet side protrudes, and is provided on the hub 101 in a circumferential direction. It is composed of a plurality of wings 102 arranged at intervals and a shroud 103 arranged to face the hub 101 with the wings 102 interposed therebetween. The hub 101, the wings 102, and the shroud 103 are molded as a single body by a layered manufacturing method using a 3D printer or the like. The centrifugal impeller 100 is fixed to a shaft (not shown) by shrink fitting at an inner diameter portion of the hub 101. In the centrifugal impeller 100, torque from a motor (not shown) is transmitted through a shaft at an inner diameter portion of the hub 101. A region surrounded by the hub 101, the blade 102, the shroud 103, the blade inlet side end 104, and the blade outlet side end 105 serves as a working fluid flow path 106 inside the centrifugal impeller 100. The working fluid flows in from the blade inlet side end 104 side, receives work from the centrifugal impeller 100 in the flow path 106, and is discharged from the blade outlet side end 105 side while being compressed.
 次に図3を用いて翼102に中空部を設ける際の中空部の設け方の一例を説明する。図3は図1及び図2に示す遠心羽根車における翼102を抽出して表した図である。図3は、翼の中空度をシュラウド流路側面の曲率が最大となる部位に接合された位置で最小とし、シュラウド流路側面の曲率が最大となる部位から離れるほど高く設定した形状を示す。
以降、シュラウド流路側表面107で曲率が最大となる部位を、シュラウド曲率最大部108と呼称し、シュラウド曲率最大部108に接合される(対向する)翼の部位をシュラウド曲率最大部対応翼部108aと呼称する。シュラウド曲率最大部108(シュラウド曲率最大部対応翼部108a)は、翼入口側端部104と翼出口側端部105の中間部に位置する。また、翼102において、翼入口側端部104の中点と、翼出口側端部105の中点を翼面109に沿って結んだ線(図に示す点線)よりハブ101側の部位をハブ側翼部110、シュラウド側の部位を、シュラウド側翼部111と呼称する。
Next, an example of a method of providing a hollow portion when the hollow portion is provided in the wing 102 will be described with reference to FIG. FIG. 3 is a diagram showing extracted blades 102 in the centrifugal impeller shown in FIGS. 1 and 2. FIG. 3 shows a shape in which the degree of hollowness of the blade is minimized at a position where the curvature of the side surface of the shroud flow channel is maximized, and is increased as the distance from the region where the curvature of the side surface of the shroud flow channel becomes maximum is increased.
Hereinafter, a portion where the curvature is maximum on the shroud flow path side surface 107 is referred to as a maximum shroud curvature portion 108, and a portion of the blade joined (opposed) to the maximum shroud curvature portion 108 is a wing portion 108a corresponding to the maximum shroud curvature portion. Called. The maximum shroud curvature portion 108 (the wing portion 108a corresponding to the maximum shroud curvature portion) is located at an intermediate portion between the blade inlet side end portion 104 and the blade outlet side end portion 105. Further, in the blade 102, a portion on the hub 101 side from a line (dotted line shown in the figure) connecting the midpoint of the blade inlet side end 104 and the midpoint of the blade outlet side end 105 along the blade surface 109. The side wing 110 and the shroud-side portion are referred to as shroud-side wings 111.
 翼102には、図3に示すように、中空部112が設けられている。図3においては翼102の厚さ方向における中空部112の幅を変えることにより中空度を変えている。また、翼102の強度を維持するため、中空部112は翼入口側端部104から翼出口側端部105の方向において複数に分割されて設けられている。また、複数に分割された中空部112はシュラウド流路側表面107に対し放射状に設けられている。そして、本実施例では、シュラウド曲率最大部対応翼部108a近傍で翼の中空度が最小となり、シュラウド曲率最大部対応翼部108a近傍を離れるにつれて翼102の中空度が高くなっている。すなわち、中空部112の幅がシュラウド曲率最大部対応翼部108a近傍で最小、シュラウド曲率最大部対応翼部108a近傍を離れるにつれて広くなっている。 The wing 102 is provided with a hollow portion 112 as shown in FIG. In FIG. 3, the degree of hollowness is changed by changing the width of the hollow portion 112 in the thickness direction of the blade 102. Further, in order to maintain the strength of the blade 102, the hollow portion 112 is divided into a plurality in the direction from the blade inlet side end portion 104 to the blade outlet side end portion 105. The plurality of divided hollow portions 112 are provided radially with respect to the shroud channel side surface 107. In the present embodiment, the degree of hollowness of the wing becomes minimum near the wing portion 108a corresponding to the maximum shroud curvature, and the degree of hollowness of the wing 102 increases as the distance from the wing portion 108a corresponding to the maximum shroud curvature increases. That is, the width of the hollow portion 112 is minimum near the wing portion 108a corresponding to the maximum shroud curvature portion, and becomes wider as it goes away from the vicinity of the wing portion 108a corresponding to the maximum shroud curvature portion.
 なお、中空部112の形状は図3に示す形状に限定されるものではない。本実施例の遠心羽根車は3Dプリンタ等を用いた積層造形法により製造されているので、様々な形状の中空部112とするこができる。例えば、ハブ側翼部110とシュラウド側翼部111で中空度を変えても良い。例えば、ハブ側翼部110における中空部の幅を小さくし、シュラウド側翼部111における中空部の幅を大きくするようにしても良く、また、中空部の幅をシュラウド側に向かうに従い大きくするようにしても良い。さらに、中空部112をシュラウド側翼部111のみに設けてもよい。 The shape of the hollow portion 112 is not limited to the shape shown in FIG. Since the centrifugal impeller of the present embodiment is manufactured by an additive manufacturing method using a 3D printer or the like, the hollow portion 112 can have various shapes. For example, the degree of hollowness may be changed between the hub-side wing 110 and the shroud-side wing 111. For example, the width of the hollow portion in the hub-side wing portion 110 may be reduced, and the width of the hollow portion in the shroud-side wing portion 111 may be increased. Alternatively, the width of the hollow portion may be increased toward the shroud side. Is also good. Further, the hollow portion 112 may be provided only in the shroud-side wing portion 111.
 中空部112を設けた翼102は、中実翼を採用した構造と比べ軽量となり、回転時に遠心羽根車に生じる遠心力は低下する。これにより、特に翼102、シュラウド103における遠心力を受けるハブ101で生じる応力が低減されるため、遠心羽根車100は中実翼を採用した構造と比べ、より高速に回転させることが可能となる。すなわち、許容限界応力に達する回転数が、翼を中実とした構造と比べ高くなり、限界周速を上昇させることができる。 翼 The blade 102 provided with the hollow portion 112 is lighter in weight than a structure employing a solid blade, and the centrifugal force generated in the centrifugal impeller during rotation is reduced. As a result, the stress generated in the hub 101 that receives the centrifugal force in the wings 102 and the shroud 103 is reduced, so that the centrifugal impeller 100 can be rotated at a higher speed as compared with a structure employing solid wings. . That is, the number of rotations that reaches the allowable limit stress is higher than that of a structure having a solid blade, and the limit peripheral speed can be increased.
 一方、翼102では、回転時に発生する応力が中空部112を設けたことにより中実翼を用いた場合と比べ概ね上昇するものの、中実翼を用いた場合に最大応力が発生するシュラウド曲率最大部対応翼部108a近傍では中空度が低く応力の増大量が小さい。すなわち、回転時における遠心羽根車の翼に生じる翼形状に起因する応力分布を考慮して中空部が設定されているため、中空部近傍における強度問題の発生を回避できる。このため、翼102は強度のボトルネックとならず、翼102で生じる応力からは、遠心羽根車100の限界周速は規定されない。なお、放射状に複数の中空部に分割して中空部112を翼102に設けることにより、応力の勾配に応じて中空部の大きさを設定することができ、応力を部分毎に最適化することが可能である。 On the other hand, in the wing 102, although the stress generated during rotation generally rises compared to the case of using the solid wing due to the provision of the hollow portion 112, the maximum shroud curvature at which the maximum stress occurs when the solid wing is used is used. In the vicinity of the part corresponding wing 108a, the hollowness is low and the amount of increase in stress is small. That is, since the hollow portion is set in consideration of the stress distribution caused by the blade shape generated on the blade of the centrifugal impeller during rotation, occurrence of a strength problem in the vicinity of the hollow portion can be avoided. For this reason, the blade 102 does not become a bottleneck of strength, and the critical peripheral speed of the centrifugal impeller 100 is not defined from the stress generated in the blade 102. In addition, by radially dividing into a plurality of hollow portions and providing the hollow portions 112 on the blade 102, the size of the hollow portions can be set according to the gradient of the stress, and the stress can be optimized for each portion. Is possible.
 本実施例の遠心羽根車100におけるその他の利点として、シャフトと遠心羽根車内径(ハブ)との間の焼き嵌め部の信頼性向上が挙げられる。遠心羽根車100では、翼102に中空部112を設け遠心力を低減したことにより、回転時における遠心羽根車内径(ハブ)の拡がり量が低下する。その結果、遠心羽根車内径とシャフト間の焼き嵌め部で必要となる締め代を小さくしても良い。また、遠心羽根車とシャフトの間で滑りが生じるリスクが低くなるので、限界周速を向上させることができる。 Another advantage of the centrifugal impeller 100 of the present embodiment is that the reliability of the shrink-fit portion between the shaft and the centrifugal impeller inner diameter (hub) is improved. In the centrifugal impeller 100, the hollow portion 112 is provided in the blade 102 to reduce the centrifugal force, so that the amount of expansion of the centrifugal impeller inner diameter (hub) during rotation decreases. As a result, the interference required at the shrink fitting portion between the inner diameter of the centrifugal impeller and the shaft may be reduced. Further, the risk of slippage between the centrifugal impeller and the shaft is reduced, so that the peripheral speed limit can be improved.
 また、中空構造を採用する利点として、中実構造と比べ、同一の質量でより高い剛性を確保でき、変形を抑制可能な点が挙げられる。 利 点 Advantages of adopting a hollow structure are that higher rigidity can be secured with the same mass and deformation can be suppressed as compared with a solid structure.
 図4に中空部の設け方の他の一例を示す。図4では、翼202に中空部212を設けるにあたって、翼出口側端部205側のみに中空部212を設けている。すなわち、シュラウド曲率最大部対応翼部208aと翼出口側端部205との間の翼部に中空部212を設けている。中空部212は、翼入口側端部204側または翼出口側端部205側のいずれかの翼部に設けられていればよい。中空部212を翼入口側端部204側または翼出口側端部205側のどちらに設けるかは強度解析の結果にもよるが、一般的に、遠心力の低減という観点では、図4に示すように、回転中心から離れている翼出口側端部205側の翼部に設けるのが良い。この例においても、シュラウド曲率最大部対応翼部208a近傍で翼202の中空度が最小となり、シュラウド曲率最大部対応翼部208a近傍を離れるにつれて翼202の中空度が高くなっている。したがって、この例では、回転中心から離れるほど翼の中空度が上がっている。この図4に示す翼202を備えた遠心羽根車においても、上述の図3に示す翼102を備えた遠心羽根車と同様な効果が得られる。 FIG. 4 shows another example of how to provide the hollow portion. In FIG. 4, when the hollow portion 212 is provided in the blade 202, the hollow portion 212 is provided only on the blade outlet side end portion 205 side. That is, the hollow part 212 is provided in the wing part between the wing part 208a corresponding to the shroud curvature maximum part and the wing outlet side end part 205. The hollow portion 212 may be provided on any of the wing portions on the wing inlet side end portion 204 side or the wing outlet side end portion 205 side. Whether the hollow portion 212 is provided on the blade inlet side end portion 204 side or the blade outlet side end portion 205 side depends on the result of the strength analysis. In general, from the viewpoint of reducing the centrifugal force, it is shown in FIG. As described above, it is preferable to provide the wing on the wing outlet side end 205 side distant from the rotation center. Also in this example, the hollowness of the wing 202 is minimized in the vicinity of the wing 208a corresponding to the maximum shroud curvature, and the hollowness of the wing 202 is increased as the distance from the wing 208a corresponding to the maximum shroud curvature is increased. Therefore, in this example, the hollowness of the wing increases as the distance from the rotation center increases. In the centrifugal impeller provided with the blades 202 shown in FIG. 4, the same effects as those of the centrifugal impeller provided with the blades 102 shown in FIG. 3 can be obtained.
 図5に中空部の設け方の他の一例を示す。図5では、翼302に中空部312を設けるにあたって、中空部312を格子状としている。その他の点は、図3に示す翼102と同様である。例えば、シュラウド曲率最大部対応翼部308a近傍で翼302の中空度が最小となり、シュラウド曲率最大部対応翼部308a近傍を離れるにつれて翼302の中空度が高くなっている。この図5に示す翼302を備えた遠心羽根車においても、上述の図3に示す翼102を備えた遠心羽根車と同様な効果が得られる。また、中空部312を格子状とすることにより、翼302の強度を高めることができる。 FIG. 5 shows another example of how to provide the hollow portion. In FIG. 5, when the hollow portion 312 is provided in the wing 302, the hollow portion 312 is formed in a lattice shape. The other points are the same as those of the wing 102 shown in FIG. For example, the hollowness of the wing 302 becomes minimum near the wing portion 308a corresponding to the maximum shroud curvature portion, and the hollowness of the wing 302 increases as the distance from the wing portion 308a corresponding to the maximum shroud curvature portion increases. In the centrifugal impeller provided with the blade 302 shown in FIG. 5, the same effects as those of the centrifugal impeller provided with the blade 102 shown in FIG. 3 can be obtained. Further, by forming the hollow portion 312 in a lattice shape, the strength of the wing 302 can be increased.
 <遠心式流体機械の構成例>
 次に、図6を用いて本発明の遠心羽根車を適用した遠心式流体機械の構成例を説明する。遠心式流体機械としては、遠心ポンプ、遠心圧縮機などがあるが、図6は遠心圧縮機の全体構造を示す縦断面図である。 
 図6において、遠心圧縮機10は、円筒状などに形成され静止部(ステータ)となるケーシング11と、このケーシング11内にラジアル軸受12、13及びスラスト軸受14により支持されて回転可能に設けられた回転軸15と、この回転軸15に装着された複数段(図6では5段)の遠心羽根車16とを備えている。回転軸15と遠心羽根車16によりロータ17を構成している。なお、本実施例では、1本の回転軸15に遠心羽根車16を多段に設けた一軸多段遠心圧縮機を例に説明するが、遠心羽根車16が1段のみの単段遠心圧縮機にも同様に適用できるものである。
<Configuration example of centrifugal fluid machine>
Next, a configuration example of a centrifugal fluid machine to which the centrifugal impeller of the present invention is applied will be described with reference to FIG. Examples of the centrifugal fluid machine include a centrifugal pump and a centrifugal compressor. FIG. 6 is a longitudinal sectional view showing the entire structure of the centrifugal compressor.
In FIG. 6, a centrifugal compressor 10 is formed in a cylindrical shape or the like to be a stationary portion (stator), and is rotatably provided in the casing 11 by being supported by radial bearings 12, 13 and a thrust bearing 14. And a plurality of (five in FIG. 6) centrifugal impellers 16 mounted on the rotating shaft 15. The rotating shaft 15 and the centrifugal impeller 16 constitute a rotor 17. In the present embodiment, a single-shaft multi-stage centrifugal compressor in which a single rotating shaft 15 is provided with centrifugal impellers 16 in multiple stages will be described as an example. Can be similarly applied.
 ケーシング11には、1段目の遠心羽根車16に作動流体である気体を導入する吸込流路18と、各段の遠心羽根車16から出た気体の運動エネルギーを圧力エネルギーに変換するディフューザ19と、このディフューザ19からの圧縮された気体を次段の遠心羽根車16に導入する戻り流路20と、最終段の遠心羽根車16から出た気体をケーシング11外に吐出するための吐出流路21などが設けられている。 The casing 11 has a suction passage 18 for introducing a gas, which is a working fluid, to the first-stage centrifugal impeller 16, and a diffuser 19 for converting kinetic energy of gas discharged from each stage of the centrifugal impeller 16 into pressure energy. And a return flow path 20 for introducing the compressed gas from the diffuser 19 to the next-stage centrifugal impeller 16, and a discharge flow for discharging the gas discharged from the final-stage centrifugal impeller 16 to the outside of the casing 11. A road 21 and the like are provided.
 回転軸15の吐出側端部には、モータ等の駆動機(図示省略)が連結されており、この駆動機によってロータ17を回転駆動する。また、ロータ17が回転することにより、気体が吸込流路18から吸い込まれて、複数段の遠心羽根車16で順次圧縮され、最終的に吐出流路21から吐出されるようになっている。 駆 動 A driving device (not shown) such as a motor is connected to the discharge side end of the rotating shaft 15, and the driving device drives the rotor 17 to rotate. Further, as the rotor 17 rotates, the gas is sucked from the suction flow channel 18, is sequentially compressed by the centrifugal impellers 16 in a plurality of stages, and is finally discharged from the discharge flow channel 21.
 上述の構成において、遠心羽根車16に上述の実施例の遠心羽根車が用いられている。
上述した本発明の遠心羽根車を用いることにより、遠心圧縮機の遠心羽根車の段数低減や遠心羽根車外径の低減が実現し、遠心圧縮機の小型化や効率向上を実現することができる。
In the above-described configuration, the centrifugal impeller of the above-described embodiment is used as the centrifugal impeller 16.
By using the centrifugal impeller of the present invention described above, the number of stages of the centrifugal impeller of the centrifugal compressor and the outer diameter of the centrifugal impeller can be reduced, and the centrifugal compressor can be downsized and the efficiency can be improved.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。
Note that the present invention is not limited to the above-described embodiment, and includes various modifications.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
 また、特許請求の範囲の記載は、引用関係を簡潔化するために、単項引用としているが、多項引用とした場合、さらには、多項引用する請求項を多項引用する場合も本発明は含む。 記載 Also, in the description of the claims, a single citation is used for simplification of the citation relationship. However, the present invention includes a case where a multiple citation is used, and a case where a multiple citation is cited.
100:遠心羽根車、101:ハブ、102、202、302:翼、103:シュラウド、104、204:翼入口側端部、105、205:翼出口側端部、106:流路、107:シュラウド流路側表面、108、208、308:シュラウド曲率最大部、108a、208a、308a:シュラウド曲率最大部対応翼部、109:翼面、110:ハブ側翼部、111:シュラウド側翼部、112、212、312:中空部 100: centrifugal impeller, 101: hub, 102, 202, 302: blade, 103: shroud, 104, 204: blade inlet side end, 105, 205: blade outlet side end, 106: flow path, 107: shroud Flow path side surface, 108, 208, 308: Shroud curvature maximum part, 108a, 208a, 308a: Shroud curvature maximum part corresponding wing part, 109: Blade surface, 110: Hub side wing part, 111: Shroud side wing part, 112, 212, 312: Hollow part

Claims (8)

  1.  ハブ、複数の翼及びシュラウドにより構成される遠心式流体機械の遠心羽根車であって、
     前記翼は中空部が設けられていることを特徴とする遠心羽根車。
    A centrifugal impeller of a centrifugal fluid machine including a hub, a plurality of blades, and a shroud,
    A centrifugal impeller, wherein the wing has a hollow portion.
  2.  請求項1に記載の遠心羽根車において、
     前記中空部は、前記翼として中実翼を用いた場合に最大応力が発生する翼の部位の中空度が他の部位の中空度よりも小さくなるように設けられていることを特徴とする遠心羽根車。
    The centrifugal impeller according to claim 1,
    The centrifugal cavity, wherein the hollow portion is provided such that the hollowness of a portion of the wing where maximum stress occurs when a solid wing is used as the wing is smaller than the hollowness of other portions. Impeller.
  3.  請求項2に記載の遠心羽根車において、
     前記中空部は、前記シュラウドの流路側表面にて曲率が最大となる部位に対向する翼の部位で中空度が最小となるように設けられていることを特徴とする遠心羽根車。
    The centrifugal impeller according to claim 2,
    The centrifugal impeller, wherein the hollow portion is provided so as to have a minimum hollowness at a portion of the blade facing a portion having a maximum curvature on the flow path side surface of the shroud.
  4.  請求項3に記載の遠心羽根車において、
     前記中空部は、前記シュラウドの流路側表面にて曲率が最大となる部位より離れるほど翼の中空度が高くなるように設けられていることを特徴とする遠心羽根車。
    The centrifugal impeller according to claim 3,
    The centrifugal impeller is characterized in that the hollow portion is provided such that the hollowness of the blade increases with distance from a portion where the curvature is maximum on the flow path side surface of the shroud.
  5.  請求項1に記載の遠心羽根車において、
     前記中空部は、複数に分割して設けられており、かつ、前記シュラウドの流路側表面に対し放射状に設けられていることを特徴とする遠心羽根車。
    The centrifugal impeller according to claim 1,
    The centrifugal impeller is characterized in that the hollow portion is provided by being divided into a plurality of portions, and is provided radially with respect to a flow path side surface of the shroud.
  6.  請求項1乃至5の何れか一項に記載の遠心羽根車において、
     前記ハブ、前記複数の翼及び前記シュラウドは、積層造形により一体成型されていることを特徴とする遠心羽根車。
    The centrifugal impeller according to any one of claims 1 to 5,
    The centrifugal impeller, wherein the hub, the plurality of blades, and the shroud are integrally formed by additive manufacturing.
  7.  回転軸と、前記回転軸に焼き嵌めされた遠心羽根車とを備えた遠心式流体機械であって、
     前記遠心羽根車として請求項1乃至5の何れか一項に記載の遠心羽根車を用いたことを特徴とする遠心式流体機械。
    A rotary shaft, a centrifugal fluid machine including a centrifugal impeller shrink-fit to the rotary shaft,
    A centrifugal fluid machine using the centrifugal impeller according to any one of claims 1 to 5 as the centrifugal impeller.
  8.  回転軸と、前記回転軸に焼き嵌めされた遠心羽根車とを備えた遠心式流体機械であって、
     前記遠心羽根車として請求項6に記載の遠心羽根車を用いたことを特徴とする遠心式流体機械。
    A rotary shaft, a centrifugal fluid machine including a centrifugal impeller shrink-fit to the rotary shaft,
    A centrifugal fluid machine using the centrifugal impeller according to claim 6 as the centrifugal impeller.
PCT/JP2019/021261 2018-09-04 2019-05-29 Centrifugal impeller and centrifugal fluid machine WO2020049810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018164973A JP6995719B2 (en) 2018-09-04 2018-09-04 Centrifugal impeller and centrifugal fluid machine
JP2018-164973 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020049810A1 true WO2020049810A1 (en) 2020-03-12

Family

ID=69722055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021261 WO2020049810A1 (en) 2018-09-04 2019-05-29 Centrifugal impeller and centrifugal fluid machine

Country Status (2)

Country Link
JP (1) JP6995719B2 (en)
WO (1) WO2020049810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506209B2 (en) * 2019-10-25 2022-11-22 Mitsubishi Heavy Industries Compressor Corporation Charge gas compressor train for ethylene plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500608A (en) * 1978-08-25 1980-09-04
JPS6018243A (en) * 1983-07-12 1985-01-30 Daikin Ind Ltd Production of hollow vane
JP2011127572A (en) * 2009-12-21 2011-06-30 Miura Co Ltd Centrifugal fluid machine
JP2015055219A (en) * 2013-09-12 2015-03-23 三菱電機株式会社 Centrifugal blower and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500608A (en) * 1978-08-25 1980-09-04
JPS6018243A (en) * 1983-07-12 1985-01-30 Daikin Ind Ltd Production of hollow vane
JP2011127572A (en) * 2009-12-21 2011-06-30 Miura Co Ltd Centrifugal fluid machine
JP2015055219A (en) * 2013-09-12 2015-03-23 三菱電機株式会社 Centrifugal blower and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506209B2 (en) * 2019-10-25 2022-11-22 Mitsubishi Heavy Industries Compressor Corporation Charge gas compressor train for ethylene plant

Also Published As

Publication number Publication date
JP6995719B2 (en) 2022-01-17
JP2020037900A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
US20180202451A1 (en) Centrifugal compressor
US10358929B2 (en) Composite airfoil
EP2520763B1 (en) Impeller
CN108026935B (en) High hardness turbine impeller, turbine comprising said impeller and method of manufacture
US20100284794A1 (en) Low pressure turbine rotor disk
JP6124787B2 (en) Lightweight shroud for rotor blades
JP4554189B2 (en) Centrifugal impeller
CA2731092A1 (en) Axial turbomachine with low tip clearance losses
JP2017082784A (en) Compressor incorporating splitters
US5071312A (en) Turbines
EP2971570B1 (en) Fan blade dovetail and spacer
JP2006226199A (en) Centrifugal impeller
CN109695480B (en) Turbine engine including straightening assembly
US10927676B2 (en) Rotor disk for gas turbine engine
WO2020049810A1 (en) Centrifugal impeller and centrifugal fluid machine
JPS6056882B2 (en) Impeller element of an inward radial flow gas turbine
CN110582649A (en) Reinforced axial diffuser
EP1825105B1 (en) A wheel for a rotating flow machine
CN110778367B (en) Ribbed blade segment
CN211573859U (en) Impeller and turbo compressor equipped with the same
JP7374190B2 (en) Impeller and turbocompressor with such an impeller and method for making such an impeller
JP7435164B2 (en) Turbines and superchargers
JP6302172B2 (en) Turbine and method for reducing impact loss in a turbine
EP4350149A1 (en) Impeller with preloading bands
JP6237077B2 (en) Centrifugal compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857285

Country of ref document: EP

Kind code of ref document: A1