WO2020049717A1 - Signal processing circuit, radar device, signal processing method, and signal processing program - Google Patents

Signal processing circuit, radar device, signal processing method, and signal processing program Download PDF

Info

Publication number
WO2020049717A1
WO2020049717A1 PCT/JP2018/033218 JP2018033218W WO2020049717A1 WO 2020049717 A1 WO2020049717 A1 WO 2020049717A1 JP 2018033218 W JP2018033218 W JP 2018033218W WO 2020049717 A1 WO2020049717 A1 WO 2020049717A1
Authority
WO
WIPO (PCT)
Prior art keywords
target detection
detection information
signal processing
latest
unit
Prior art date
Application number
PCT/JP2018/033218
Other languages
French (fr)
Japanese (ja)
Inventor
廣愛 浅見
將 白石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/033218 priority Critical patent/WO2020049717A1/en
Priority to JP2020540970A priority patent/JP6887571B2/en
Publication of WO2020049717A1 publication Critical patent/WO2020049717A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals

Definitions

  • the present invention relates to radar technology, and more particularly to receiving an incoming wave reflected by a target object using an antenna array including a plurality of antenna elements, and estimating a direction of arrival (Direction-Of-Arrival, DOA) of the incoming wave.
  • DOA Direction-Of-Arrival
  • the radar technology there is a technology for estimating the arrival direction of an incoming wave reflected by a target object by using an antenna array including a plurality of spatially arranged antenna elements.
  • super resolution algorithms such as ESPRIT (Estimation of Signal, Parameters, Via, Rotation, Innovation, Technologies) and MUSIC (Multiple Signal, Classification) are widely known.
  • Both the ESPRIT method and the MUSIC method form a correlation matrix based on outputs of a plurality of antenna elements forming an antenna array, estimate eigenvalues and eigenvectors of the correlation matrix, and use the estimated eigenvalues and eigenvectors.
  • This is a technique capable of estimating the number and direction of arrival of one or a plurality of incoming waves with high resolution.
  • Non-Patent Document 1 discloses a TLS-ESPRIT (Total-Least-Squares @ ESPRIT) method which is a kind of the ESPRIT method.
  • an object of the present invention is to provide a signal processing circuit, a radar device, a signal processing method, and a signal processing program that can estimate an arrival direction with a low calculation load using an antenna array.
  • a signal processing device is an antenna array including a plurality of receiving antenna elements that receive an incoming wave reflected by a target object, and a plurality of received signals based on outputs of the plurality of receiving antenna elements.
  • a signal processing circuit in a radar apparatus comprising: a receiving circuit that generates a plurality of frequency domain signals; and a domain conversion unit configured to convert the plurality of received signals into a plurality of frequency domain signals; and target detection information based on the plurality of frequency domain signals.
  • a direction estimating unit that calculates a correlation matrix based on the plurality of frequency domain signals, and estimates a direction of arrival of one or more incoming waves using a set of eigenvalues and eigenvectors of the correlation matrix.
  • Comprising a storage unit when the target detection unit detects the latest target detection information based on the plurality of frequency domain signals, the arrival direction estimation unit, the latest correlation matrix based on the plurality of frequency domain signals Is obtained from the information storage unit, a plurality of previous eigenvectors corresponding to the target detection information that matches or is similar to the latest target detection information, and the obtained plurality of previous eigenvectors and the latest An eigenvalue and a set of eigenvectors of the latest correlation matrix are estimated by performing an iterative operation based on a predetermined eigenvalue decomposition algorithm using the correlation matrix.
  • the arrival direction estimating unit obtains a plurality of previous eigenvectors corresponding to the target detection information that matches or is similar to the latest target detection information from the information storage unit, and obtains the eigenvectors of the destination and the latest eigenvectors.
  • the latest set of the eigenvalues and eigenvectors of the correlation matrix is estimated, so that the eigenvalues can be estimated with high precision with a small number of iterations. Therefore, it is possible to suppress the calculation load required for eigenvalue estimation. Therefore, even if the number of receiving antenna elements forming the antenna array increases, the direction of arrival can be estimated with high accuracy in a short calculation time without increasing the circuit scale of the signal processing circuit.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a radar device according to a first embodiment of the present invention.
  • FIG. 2A is a graph showing an example of the time change of each of the frequency of the transmission wave and the frequency of the reception wave
  • FIG. 2B is a graph showing an example of the frequency spectrum of the first frequency domain signal.
  • FIG. 3 is a diagram schematically illustrating an example of an arrangement of reception antenna elements forming an antenna array according to the first embodiment.
  • FIG. 3 is a block diagram schematically illustrating a hardware configuration example of a signal processing circuit according to the first embodiment.
  • FIG. 3 is a block diagram schematically illustrating a configuration example of an area conversion unit according to the first embodiment.
  • 5 is a diagram illustrating an example of target information stored in an information storage unit according to the first embodiment.
  • 5 is a flowchart illustrating an example of radar processing in the radar device according to the first embodiment.
  • 5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1.
  • 5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1.
  • 5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1.
  • FIG. 9 is a block diagram illustrating a schematic configuration of a radar device according to a second embodiment of the present invention.
  • 15 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 2.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a radar device 1 according to a first embodiment of the present invention.
  • the radar device 1 includes a transmission circuit 11 that periodically generates a frequency modulation wave in a high frequency band such as a millimeter wave band or a microwave band, and a frequency modulation wave input from the transmission circuit 11.
  • a transmitting antenna 10 for transmitting, the antenna array of the receiving antenna elements 20 0-20 3 for receiving the frequency-modulated wave reflected by a target object existing in the external space (not shown.) as the incoming wave (signal wave) 20, a receiving circuit 21 for generating a receive antenna elements 20 0 to the digital reception signal of the four reception channels based on the high frequency band of the signals outputted in parallel from 20 3 (digital beat signals), these digital reception signal To the target object, the relative speed of the target object, and the direction of arrival of the arriving wave reflected by the target object (Direction). -Of-Arrival, and a signal processing circuit 30 for calculating values such as DOA).
  • the transmission circuit 11 includes a signal generator 12, a distributor 13, and a transmission amplifier 14.
  • the signal generator 12 generates a frequency-modulated signal by repeatedly generating a frequency-modulated wave modulated by a predetermined frequency modulation method according to the control signal supplied from the signal processing circuit 30.
  • a frequency modulation method a frequency modulation continuous wave (Frequency Modulated Continuous Wave, FMCW) method can be used.
  • the signal generator 12 can generate a frequency modulation signal (chirp signal) by repeatedly generating a frequency modulation wave (chirp wave) by the FMCW method.
  • the frequency of the frequency modulation signal that is, the transmission frequency, may be swept so as to repeatedly increase or decrease continuously with time within a certain frequency bandwidth. Alternatively, the transmission frequency may be swept so as to repeatedly increase and then continuously decrease with time within a certain frequency bandwidth.
  • Distributor 13 distributes the frequency modulation signal input from signal generator 12 into a transmission signal and local signal LO.
  • the distributor 13 outputs a transmission signal to the transmission amplifier 14 and outputs a local signal LO to the reception circuit 21.
  • the transmission amplifier 14 amplifies the transmission signal and outputs the amplified transmission signal to the transmission antenna 10. Then, the transmission antenna 10 radiates the amplified transmission signal to an external space.
  • the transmitting circuit 11 continuously transmits M frequency modulated waves as one frame. More specifically, when the transmission circuit 11 continuously outputs the 0th to M ⁇ 1th frequency modulated waves within a certain frame period, the transmission circuit 11 outputs the 0th to M ⁇ 1th frequency modulation waves within a next frame period after a certain time interval. It is assumed that the (M-1) th frequency modulated wave is continuously output.
  • M is an integer of 2 or more.
  • FIG. 2A is a graph showing an example of a time change of each of the frequency Tf of the transmission wave and the frequency Rf of the reception wave when a fast chirp modulation (FCM) system, which is a kind of the FMCW system, is adopted.
  • FCM fast chirp modulation
  • the frequency Tf of the transmitted wave straight line as varied as sawtooth, from the lower limit frequency f 1 that is specified, continuously change with to a specified upper limit frequency f 2 Time Modulated.
  • M frequency-modulated waves chirp waves
  • FIG. 1 when receiving antenna elements 20 0 to 203 3 receive an incoming wave reflected by a target object, the receiving antenna elements 20 0 to 203 output signals of high frequency bands of four reception channels to receivers 21 0 to 21 3 , respectively.
  • Figure 3 is a diagram schematically showing an arrangement example of the receiving antenna elements 20 0-20 3 constituting the antenna array 20.
  • Receive antenna elements 20 0-20 3 shown in FIG. 3 are arranged at equal intervals d along the x-axis direction in a linear base line.
  • the installation position of the receiving antenna element 20 3 as the origin (reference point), along the x-axis positive direction, the receiving antenna element 20 3, 20 2, 20 1, 20 0 are arranged in this order.
  • FIG. 1 the example of FIG.
  • a state is shown in which an incoming wave is incident at an incident angle ⁇ with respect to a y-axis direction orthogonal to the x-axis direction.
  • the y-axis direction is perpendicular to the antenna surface of the antenna array 20.
  • the receiving circuit 21 has four receivers 21 0 to 21 3 connected to the receiving antenna elements 20 0 to 20 3 , respectively.
  • Each receiver 21 ch includes a reception amplifier 22 ch such as a low noise amplifier (LNA) that amplifies the output of the reception antenna element 20 ch , and an amplified signal output from the reception amplifier 22 ch as a local signal LO. by mixing it includes a mixer circuit 23 ch for generating an analog beat signal in the intermediate frequency band, and the a / D converter for converting the analog beat signal into a digital beat signal (ADC) 24 ch.
  • the subscript ch is a reception channel number and is an integer in the range of 0 to 3.
  • m is a chirp number (chirp index) indicating the number of a chirp wave
  • N is the number of sampling points.
  • the subscript k is an integer representing the current time, that is, the time of the current frame period. For example, a time one frame period before the time of the current frame period is represented by k-1.
  • the ADC 24 ch has a function of outputting the digital beat signal B k (ch, m, n) as a complex signal including a quadrature component and an in-phase component.
  • the ADC 24 ch outputs the digital beat signal B k (ch, m, n) to the signal processing circuit 30 as a digital reception signal.
  • filter circuit for removing unnecessary signal components of the analog beat signal may be disposed.
  • the signal processing circuit 30 converts the digital reception signals B k (0, m, n) to B k (3, m, n) in the time domain into the frequency domain signal D in the two-dimensional frequency domain.
  • a correlation matrix Cxx based on the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr), and a predetermined eigenvalue
  • An arrival direction estimating unit 35 that estimates the eigenvalues and eigenvectors of the correlation matrix Cxx by executing a decomposition algorithm, and estimates the arrival directions of one or more arriving waves using the estimated eigenvalues and eigenvectors;
  • Target detection information, estimation Information storage unit 34 in which the set of the obtained eigenvalues and
  • the control unit 39 controls the operation of the signal generator 12 in the transmission circuit 11 and controls the operations of the area conversion unit 31, the target detection unit 32, the information storage unit 34, the arrival direction estimation unit 35, and the information output unit 38. It has the function of controlling individually.
  • the control unit 39 is connected to the transmission circuit 11, the area conversion unit 31, the target detection unit 32, the information storage unit 34, the arrival direction estimation unit 35, and the information output unit 38 via signal paths such as a system bus and control signal lines. Have been.
  • the hardware configuration of such a signal processing circuit 30 is, for example, a semiconductor integrated circuit using a processor such as a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or a processor including a processor (Field-Programmable Gate Array) having an FPGA (Field-Programmable Gate Array). It should be done.
  • the hardware configuration of the signal processing circuit 30 may be a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes a program code (instruction group) of signal processing software or firmware read from the memory. May be realized by using a processor including the arithmetic unit.
  • each of the area conversion unit 31, the target detection unit 32, the arrival direction estimation unit 35, the information output unit 38, and the control unit 39 may be configured by dedicated hardware, or may be configured by one or a plurality of hardware. It may be configured.
  • FIG. 4 is a block diagram schematically showing an example of a hardware configuration of the signal processing circuit 30.
  • the signal processing circuit 30 includes a processor 71, a memory 72, an input / output interface unit 73, and a signal path 74.
  • the signal path 74 is a bus for interconnecting the processor 71, the memory 72, and the input / output interface unit 73.
  • the input / output interface unit 73 has a function of transferring the digital reception signal input from the reception circuit 21 to the processor 71 via the signal path 74.
  • Processor 71 performs digital signal processing on the transferred digital reception signal.
  • the processor 71 can output the target information Dc obtained as a result of the digital signal processing to an external device (not shown) via the signal path 74 and the input / output interface unit 73.
  • the memory 72 is for realizing the functions of the non-volatile memory forming the storage area of the information storage unit 34 and the functions of the area conversion unit 31, the target detection unit 32, the arrival direction estimation unit 35, the information output unit 38, and the control unit 39.
  • a non-volatile memory storing a signal processing program such as software or firmware for signal processing, a work memory used when the processor 71 executes digital signal processing, and data used in the digital signal processing are developed.
  • a temporary storage memory for example, the memory 72 may be configured by a semiconductor memory such as a flash memory, a ROM (Read Only Memory), and an SDRAM (Synchronous Dynamic Random Access Memory).
  • the number of the processors 71 is one, but the number is not limited to one.
  • the hardware configuration of the signal processing circuit 30 may be realized using a plurality of processors operating in cooperation with each other.
  • fr is a frequency bin number (hereinafter, referred to as “distance frequency bin number”) assigned to a frequency corresponding to the distance to the target object (hereinafter, referred to as “distance frequency”)
  • fv is a target object.
  • a frequency bin number hereinafter, referred to as a “speed frequency bin number” assigned to a frequency corresponding to the relative speed (hereinafter, referred to as a “speed frequency”).
  • a two-dimensional orthogonal transform a two-dimensional discrete Fourier transform may be used, but the present invention is not limited to this.
  • the frequency domain signal D k (ch, fv, fr) is a three-dimensional data signal having an amplitude distribution related to a distance frequency and a speed frequency for each reception channel number ch.
  • FIG. 5 is a block diagram schematically illustrating a configuration example of the area conversion unit 31 according to the first embodiment.
  • the region converter 31 a window function processing unit 41 0, 41 1, 41 2, 41 a first pre-processing unit 41 consisting of three chirp in the orthogonal transform unit 42 0, 42 1, 42 and 2, 42 3 the first orthogonal transformation unit 42 consisting of a window function processing unit 43 0, 43 1, 43 2, 43 a second pre-processing unit 43 consisting of three chirp between orthogonal transform unit 44 0, 44 1 , and a second orthogonal transformation unit 44 consisting of 44 2, 44 3.
  • a known window function such as a hamming window function or a Blackman-Harris window function may be used.
  • Each of the intra-chirp orthogonal transform units 42 ch in the first orthogonal transform unit 42 performs orthogonal transform on the N-point signal input from the window function processing unit 41 ch, thereby forming the N-point first frequency-domain signal T k.
  • a discrete Fourier transform such as a fast Fourier transform (FFT) can be used.
  • the window function processing in the above-described window function processing unit 41ch is processing for suppressing the distortion of the spectrum that occurs at the time of the orthogonal transformation to achieve both improvement in the spectral resolution and expansion of the dynamic range.
  • a signal at M points is output.
  • a known window function such as a Hamming window function or a Blackman-Harris window function may be used.
  • the inter-chirp orthogonal transform unit 44 ch in the second orthogonal transform unit 44 performs orthogonal transform on the signal at M points input from the window function processing unit 43 ch for each distance frequency bin number fr, thereby obtaining the second frequency.
  • a discrete Fourier transform such as a fast Fourier transform can be used.
  • the window function processing in the above-described window function processing unit 43ch is processing for suppressing the distortion of the spectrum that occurs at the time of the orthogonal transformation to achieve both improvement in the spectral resolution and expansion of the dynamic range.
  • the integration signal I k (fv, fr) may be generated by adding (incoherent integration) for the channel number ch.
  • the target detection unit 32 detects a peak value from the distribution of the integrated signal I k (fv, fr), and a distance frequency bin number indicating the position of the detected peak value (hereinafter, referred to as “peak position”). And a set of velocity frequency bin numbers (fv p , fr p ).
  • the threshold value th0 is a threshold value capable of excluding a signal of power corresponding to the noise level.
  • Target detection unit 32 the distance frequency bin number fr p from it is possible to calculate the distance between the target object, it is possible to calculate the relative velocity of the target object from the speed frequency bin number fv p.
  • the target detection unit 32 may identify the target object and generate an identification result. Then, the target detection unit 32 sends the arrival direction estimation unit 35 the target detection information such as the time information, the peak position (a set of the distance frequency bin number and the speed frequency bin number), the distance to the target object, and the relative speed of the target object.
  • the information is supplied and stored in the information storage unit 34.
  • the target detection unit 32 performs incoherent integration to calculate the integration signal I k (fv, fr), but is not limited thereto.
  • incoherent integration other processing including coherent integration may be employed.
  • the threshold th0 may be determined using a method such as CFAR (Constant False False Alarm) used in general radar technology, instead of the above method.
  • CFAR Constant False False Alarm
  • the arrival direction estimating unit 35 shown in FIG. 1 includes a correlation calculating unit 52 that calculates a correlation matrix Cxx based on the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr), An eigenvalue calculation unit 53 that estimates an eigenvalue of the correlation matrix Cxx by executing an iterative operation based on an eigenvalue decomposition algorithm of Eq., An eigenvector calculation unit 54 that estimates an eigenvector of the correlation matrix Cxx, and Direction-of-arrival calculation unit 55 for estimating the direction of arrival of one or more incoming waves.
  • the arrival direction estimation unit 35 stores the estimated arrival direction together with the estimated eigenvalue and eigenvector in the information storage unit 34 in association with the target detection information detected by the target detection unit 32.
  • FIG. 6 is a diagram illustrating an example of the target information DD k (p) stored in the information storage unit 34.
  • the target information DD k (p) is information on the p-th incoming wave (p is an integer of 1 or more) detected at the current time k.
  • the target information DD k (p) includes an identifier, the number of consecutive detections N k indicating the frequency of detection of the target object, time information indicating the time k, and the peak position (distance frequency bin number and speed frequency bin number). ), The distance to the target object, the relative speed of the target object, the eigenvalue, the eigenvector, and the direction of arrival.
  • the target detection information in the target information DD k (p) includes time information, a peak position (a set of a distance frequency bin number and a speed frequency bin number), a distance, and a relative speed.
  • the information storage unit 34 also stores target information DD k-1 (1), DD k-1 (2),... Regarding time k-1 before current time k. I have.
  • the direction-of-arrival estimating unit 35 of the present embodiment includes a comparison search unit 51.
  • the comparison search unit 51 searches for the target information stored in the information storage unit 34, and searches for the target detection information that matches or is similar to the latest target detection information detected at the current time k, and The destination eigenvector corresponding to the detection information can be acquired from the information storage unit 34.
  • the previous target detection information is the target detection information detected at time ki (i is an integer of 1 or more) before the current time k.
  • the comparison search unit 51 supplies the eigenvector obtained from the information storage unit 34 to the eigenvalue calculation unit 53.
  • the eigenvalue calculation unit 53 can execute an iterative operation based on the eigenvalue decomposition algorithm using the preceding eigenvector and the correlation matrix Cxx.
  • the eigenvalue of the correlation matrix Cxx can be estimated in a shorter operation time than in a case where an iterative operation based on a decomposition algorithm is executed.
  • the arrival direction estimation unit 35 can estimate the arrival direction of the arrival wave reflected by the target object in a short calculation time.
  • FIG. 7 is a flowchart illustrating an example of radar processing in the radar device 1 according to the first embodiment.
  • 8 to 10 are flowcharts illustrating an example of the arrival direction estimation processing executed by the arrival direction estimation unit 35.
  • the flowchart of FIG. 8 is connected to the flowchart of FIG. 9 via the connector C0, and is connected to the flowchart of FIG. 10 via the connector C1.
  • the flowchart of FIG. 10 is combined with the flowchart of FIG. 9 via the connector C2.
  • transmission circuit 11 when receiving a control signal indicating a transmission start command from control unit 39, transmits the signal.
  • a modulated wave (chirp wave) is transmitted (step ST10).
  • step ST13 the next step ST14 is executed.
  • the target detection unit 32 generates the integrated signal I k (fv, fr) by integrating the frequency domain signal D k (ch, fv, fr) input from the domain conversion unit 31 with respect to the reception channel number ch. (Step ST15). Subsequently, the target detection unit 32 attempts to detect target detection information (peak position, distance to the target object, and relative speed of the target object) based on the integration signal I k (fv, fr) (step ST16). When the target detection information is not detected (NO in step ST17), the control unit 39 determines whether or not to continue the radar processing (step ST22). When it is determined that the radar processing is to be continued (YES in step ST22), the control unit 39 returns the procedure of the radar processing to step ST10. On the other hand, when it is determined that the radar processing is not continued (NO in step ST22), the control unit 39 ends the radar processing.
  • the target detection unit 32 stores the target detection information in the information storage unit 34 (step ST18). At this time, the target detection unit 32 sets the value of the number of continuous detections Nk shown in FIG. 6 to zero.
  • the direction-of-arrival estimation unit 35 performs a direction-of-arrival estimation process (step ST20).
  • the correlation calculation unit 52 converts the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr) based on the Spatial Smoothing Preprocessing (SSP).
  • SSP Spatial Smoothing Preprocessing
  • a correlation matrix (latest correlation matrix) Cxx is calculated (step ST30).
  • the correlation calculation unit 52 uses a correlation matrix Rxx expressed by the following equation (7) for calculating the correlation matrix Cxx.
  • the dot symbol “•” represents a matrix product
  • the superscript H represents Hermite conjugate (conjugate transpose).
  • the correlation matrix Rxx is a Hermitian matrix having the same number of rows as the number of reception channels and the same number of columns as the number of reception channels.
  • X k in equation (7) is a four-row, one-column element having frequency domain signals D k (0, fv, fr) to D k (3, fv, fr) as shown in the following equation (8). Is a vector.
  • Equation (9) is an equation for executing the averaging process of the Q point.
  • the correlation matrix Rxx is a square matrix of K rows and K columns (K is an integer of 3 or more)
  • the correlation matrix Cxx is (K ⁇ Q + 1) rows (K ⁇ Q + 1) square matrix.
  • the correlation matrix Cxx may be calculated using not only the above-described spatial averaging method but also another spatial averaging method.
  • the comparison search unit 51 determines in step ST16 from the target detection information detected at the time ki preceding the current time k and stored in the information storage unit 34.
  • the target detection information that matches or is similar to the latest detected target detection information is searched (step ST31).
  • the time ki is a time preceding the current time k by an i-frame period (i is, for example, an integer in the range of 1 to 9). The smaller the difference between the current time k at which the latest target detection information was detected and the time ki at which the previous target detection information stored in the information storage unit 34 was detected, the smaller the latest target detection information. It can be expected that the correlation between the target detection information and the target detection information is high.
  • the comparison search unit 51 selects the latest target detection information from the previous target detection information detected at a time earlier than time k ⁇ 1.
  • the target detection information that matches or is similar to the target detection information may be searched.
  • the comparison search unit 51 determines, for each of the latest target detection information, the degree of similarity or difference between the previous target detection information stored in the information storage unit 34 and the latest target detection information. (E.g., a value inversely proportional to the similarity) is calculated and, based on the similarity or the difference, matches the latest target detection information from the previous target detection information stored in the information storage unit 34. Alternatively, one similar target detection information can be found.
  • the target detection information includes a plurality of elements such as time information, a peak position (a set of a distance frequency bin number and a speed frequency bin number), a distance to a detected target object, and a relative speed. Therefore, a vector composed of all or some of the plurality of elements can be configured based on the target detection information.
  • the comparison search unit 51 determines a vector-to-vector distance (norm) such as a Euclidean distance or a Manhattan distance between a vector configured based on the latest target detection information and a vector configured based on the previous target detection information. The square of the distance between the vectors can be calculated as the degree of difference. Alternatively, the comparison search unit 51 may calculate the reciprocal of the degree of difference as the degree of similarity.
  • p k-th detected at time k (p k is an integer of 1 or more) the distance between the target object r k of (p k), the relative velocity of the detected p k-th target object at time k v k (p k), the distance indicating the p k-th peak position detected at time k frequency bin number and speed frequency bin number, respectively fr k (p k), and represents the fv k (p k) .
  • the relative speed of the detected pt- th target object is v t ( pt )
  • the distance frequency bin number and the speed frequency bin number indicating the pt- th peak position detected at time t are fr t ( pt ), it shall be expressed as fv t (p t).
  • the comparison search unit 51 uses one of the set of the formulas (10A) and (11A) or the set of the formulas (10B) and (11B) to express the following formula (12A) or (12B).
  • the difference ⁇ (k, pk , t, pt ) can be calculated.
  • comparison search unit 51 the dissimilarity ⁇ using the weight coefficients w 1, w 2 as shown in the following equation (13A) or (13B) (k, p k , t, p t) be calculated Good.
  • the values of the weight coefficients w 1 and w 2 may be set or calculated in advance based on past measurement results. By adjusting the values of the weight coefficients w 1 and w 2 , the comparison search unit 51 can perform a search that emphasizes either the relative speed or the distance.
  • the comparison search unit 51 for each of the latest target detection information, from among the previous target detection information stored in the information storage unit 34, the degree of similarity with the latest target detection information is equal to or more than a certain value, In addition, it is sufficient to find only one having the maximum similarity. Alternatively, for each of the latest target detection information, the comparison search unit 51 determines, from among the previous target detection information stored in the information storage unit 34, that the degree of difference from the latest target detection information is equal to or less than a certain value. It is only necessary to find one that has the least difference.
  • the comparison search unit 51 and the eigenvalue calculation The unit 53 and the eigenvector calculation unit 54 execute steps ST34, ST41 to ST49, and ST61 to ST66 (FIG. 9).
  • the comparison search unit 51 and the eigenvalue calculation unit 53 can execute steps ST35 and ST36 (FIG. 8), steps ST37 to ST39, ST51 to ST59 (FIG.
  • steps ST49 and ST61 to ST66 are executed.
  • steps ST34, ST41 to ST49, and ST61 to ST66 are executed, and the target detection information of the destination that matches or is similar to the second latest target detection information among the detected latest target detection information.
  • steps ST35 and ST36 are executed, steps ST37 to ST39, ST51 to ST59 (FIG. 10), and steps ST49 and ST61 to ST66 (FIG. 9) are executed.
  • the eigenvalue calculation unit 53 and the eigenvector calculation unit 54 calculate the correlation matrix Cxx calculated in step ST30.
  • the eigenvalue and the eigenvector of the correlation matrix Cxx are calculated by executing an iterative operation based on an eigenvalue decomposition (Eigenvalue @ Decomposition) algorithm using as an initial matrix (steps ST34 and ST41 to ST48 in FIG. 9).
  • eigenvalue calculation section 53 converts correlation matrix Cxx to Hessenberg matrix A (0) using conversion matrix H 0 based on, for example, the known Householder method (step ST34), and iteratively.
  • the value of the number j is set to zero (step ST41).
  • eigenvalue calculation section 53 decomposed into a product of a unitary matrix matrix A (j) based on known QR decomposition (QR decomposition) method Q j and an upper triangular matrix R j (step ST42).
  • eigenvalue calculation section 53 the matrix A (j) as shown in the following equation (14) calculating a similarity transformation matrix T by similarity transformation with a unitary matrix Q j (step ST43).
  • the eigenvalue calculation unit 53 determines whether or not the similarity transformation matrix T has converged, that is, whether or not the similarity transformation matrix T satisfies a predetermined convergence condition (step ST44). When it is determined that the similarity transformation matrix T has not converged (NO in step ST44), the eigenvalue calculation unit 53 increments the number of iterations j by 1 (step ST45), and replaces the elements of the similarity transformation matrix T with the matrix A ( j) (step ST46). Subsequently, the eigenvalue calculation unit 53 executes steps ST42, ST43, and ST44.
  • the eigenvalue calculation unit 53 converts the diagonal elements of the similarity transformation matrix T into the eigenvalues ⁇ (0), ..., of the correlation matrix Cxx. ⁇ (n ⁇ 1) (n is a positive integer) can be estimated (step ST47).
  • the eigenvector calculation unit 54 After the execution of step ST47, the eigenvector calculation unit 54 performs an inverse transformation using the unitary matrices Q 0 , Q 1 ,..., Q Nq ⁇ 1 used in step ST43 and the transformation matrix H 0 used in step ST34. By executing, the eigenvectors v (0),..., V (n-1) of the correlation matrix Cxx are calculated (step ST48).
  • the eigenvectors v (0), ..., v (n-1) correspond to the eigenvalues ⁇ (0), ..., ⁇ (n-1), respectively.
  • the eigenvector calculation unit 54 can calculate the eigenvectors v (0), ..., v (n-1) based on the following equation (15).
  • Nq is the number of iterations required until the similarity transformation matrix T converges.
  • the arrival direction calculation unit 55 rearranges the eigenvalues ⁇ (0),..., ⁇ (n ⁇ 1) and the eigenvectors v (0),..., V (n ⁇ 1) of the correlation matrix Cxx (Ste ST49). Specifically, the arrival direction calculation unit 55 rearranges the eigenvalues ⁇ (0),..., ⁇ (n ⁇ 1) in descending order (in descending order), so that the eigenvalue ⁇ ( 0),..., ⁇ (n-1).
  • Equation (16) means that ⁇ ( ⁇ ) ⁇ ⁇ ( ⁇ ) always holds for arbitrary integers ⁇ and ⁇ that satisfy ⁇ ⁇ . Further, the arrival direction calculation unit 55 rearranges the eigenvectors v (0),..., V (n ⁇ 1), and thereby the eigenvectors vc (0) respectively corresponding to the eigenvalues ⁇ (0),. ),..., Vc (n-1).
  • the direction-of-arrival calculating section 55 estimates the number Ni of incoming waves based on the magnitudes of the eigenvalues ⁇ (0) to ⁇ (n-1) obtained in step ST49 (step ST61 in FIG. 9). Specifically, the direction-of-arrival calculation unit 55 uses the assumed value ⁇ 2 of the noise level as a threshold, and among the eigen values ⁇ (0) to ⁇ (n ⁇ 1), the eigen value ⁇ (0) larger than the threshold ⁇ 2 ,..., ⁇ (Ni ⁇ 1) (Ni is a positive integer) can be estimated as the number of incoming waves Ni.
  • DOA computation unit 55 the eigenvalue ⁇ (0), ..., ⁇ a value obtained by multiplying a preset factor to a large eigenvalue k z th of (n-1) is used as a threshold th1 , ⁇ (n ⁇ 1), the number of eigenvalues ⁇ (0),..., ⁇ (Ni ⁇ 1) larger than the threshold th1 may be estimated as the number of arriving waves Ni.
  • kz is an integer less than or equal to n, and is a number of an eigenvalue that is larger than the assumed number of incoming waves and can be estimated to be equivalent to a noise level.
  • the direction-of-arrival calculating unit 55 executes an algorithm based on the ESPRIT method to estimate the direction of arrival of one or more arriving waves reflected by the target object (steps ST62 to ST65).
  • the direction-of-arrival calculation unit 55 firstly selects, from among the eigenvectors vc (0),..., Vc (n-1), the eigenvectors vc (0),. 1) is extracted, and partial matrices Ex and Ey are generated from a partial space matrix Es composed of these eigenvectors vc (0),..., Vc (Ni-1) (step ST62).
  • the subspace matrix Es is given by the following equation (17).
  • the ⁇ subspace matrix Es is a matrix having the eigenvectors vc (0),..., Vc (Ni-1) as column elements (column vectors), as shown in Expression (17).
  • the arrival direction calculation unit 55 can generate the submatrix Ex with eigenvectors from the first row to the L-1 row (L is the number of receiving antenna elements) of the subspace matrix Es, for example.
  • the sub-matrix Ex can be generated using the eigenvectors from the second row to the L-th row.
  • the arrival direction calculating unit 55 calculates a matrix ⁇ ⁇ ⁇ ⁇ that satisfies the following equation (18) (step ST63), and calculates an eigenvalue of the matrix ⁇ (step ST64).
  • an LS (Least Squares) -ESPRIT method using a pseudo inverse matrix corresponding to an inverse matrix of the sub-matrix Ex, and a TLS (Minimizing the influence of errors included in the sub-matrices Ex and Ey) Total-Least-Squares) -ESPRIT method is known.
  • the arrival direction calculation unit 55 may calculate the matrix ⁇ based on a known ESPRIT method such as the LS-ESPRIT method or the TLS-ESPRIT method. Since the size of the columns of the sub-matrix Ey changes according to the number Ni of incoming waves, the sub-matrix Ey is not always a square matrix.
  • a matrix ⁇ can be calculated by multiplying a partial matrix Ey by a pseudo inverse matrix of the partial matrix Ex.
  • the matrix ⁇ is not necessarily a Hermitian matrix.
  • the same method as in steps ST34 and ST41 to ST47 can be used, but is not particularly limited.
  • the direction-of-arrival calculating unit 55 calculates the direction of arrival of each arriving wave using the complex argument (phase) ⁇ of each eigenvalue of the matrix ⁇ obtained in step ST64 (step ST65).
  • the incident angle ⁇ indicating the direction of arrival of the incoming wave, For example, it can be calculated based on the following equation (19).
  • Arcsin () is a function for obtaining an inverse sine
  • is a signal wavelength
  • the direction-of-arrival calculation unit 55 calculates the latest eigenvectors vc (0) to vc (n-1), the eigenvalues ⁇ (0) to ⁇ (n-1) and the directions of arrival ⁇ 1 to ⁇ Ni of the correlation matrix Cxx.
  • the information is stored in the information storage unit 34 in association with the target detection information (step ST66).
  • the information output unit 38 reads out the target information Dc such as the distance to the target object, the relative speed and the arrival direction of the target object from the information storage unit 34, and outputs the target information Dc to the outside (step ST21 in FIG. 7). ).
  • the target information Dc output to the outside is used, for example, for tracking processing in a subsequent processing device, or is used as information displayed on a display device.
  • the control unit 39 returns the procedure of the radar process to step ST10.
  • the control unit 39 ends the radar processing.
  • step ST32 if the previous target detection information that matches or is similar to the latest target detection information has been found in step ST31 (YES in step ST32), the comparison search unit 51 returns to the latest search target.
  • the eigenvalue calculation unit 53 and the eigenvector calculation unit 54 perform the repetition using the target detection information with high reliability. Operations can be performed.
  • the threshold value N th for example, it is possible to set two.
  • step ST37 the eigenvalue calculation unit 53 determines, based on the following equation (20), the previous eigenvectors vb (0),..., Vb (n ⁇ A transformation matrix B is calculated based on 1).
  • the correlation matrix Cxx is a square matrix with n rows and n columns.
  • the transformation matrix B is a matrix having the above eigenvectors vb (0) to vb (n-1) as column elements (column vectors) as shown in Expression (20). Since the correlation matrix Cxx is a Hermitian matrix, the column vectors vb (0) to vb (n-1) are generally orthogonal to each other, and the transformation matrix B is a unitary matrix having n rows and n columns.
  • the eigenvalue calculation unit 53 executes similarity conversion using the conversion matrix B (step ST38). That is, the intrinsic value calculation unit 53, as shown in the following equation (21), multiplied from the right side of the transformation matrix B in the correlation matrix Cxx, and multiplication from the left to the correlation matrix Cxx the adjoint matrix B H of the transformation matrix B Then, a similarity transformation matrix ⁇ is calculated.
  • the eigenvalue calculation unit 53 converts, based on a known Householder method, the similarity transformation matrix ⁇ using the transformation matrix H 1 in Hessenberg matrix A (0) (step ST39), the number of iterations The value of j is set to zero (step ST51).
  • step ST42 the matrix A (j) based on the QR decomposition method decomposes the product of the unitary matrix Q j and an upper triangular matrix R j (step ST52), and step ST43 Similarly, the matrix a and (j) calculating a similarity transformation matrix T by similarity transformation with a unitary matrix Q j (step ST53).
  • step ST44 the eigenvalue calculation unit 53 determines whether the similarity transformation matrix T has converged, that is, whether the similarity transformation matrix T satisfies a predetermined convergence condition (step ST54).
  • the eigenvalue calculation unit 53 increments the number of iterations j by 1 (step ST55), and replaces the elements of the similarity transformation matrix T with the matrix A ( j) (step ST56). Subsequently, the eigenvalue calculation unit 53 executes steps ST52, ST53, and ST54.
  • the eigenvalue calculation unit 53 converts the diagonal elements of the similarity transformation matrix T into the eigenvalues ⁇ (0),. ⁇ (n ⁇ 1) (n is a positive integer) can be estimated (step ST57).
  • step ST57 After execution of step ST57, the eigenvector computing section 54, similarly to the step ST48, by performing the inverse transformation using the transformation matrix H 1 used in the unitary matrix Q j and the step ST39, which is used in step ST53, The eigenvectors x (0),..., X (n-1) of the transformation matrix ⁇ are calculated (step ST58).
  • the eigenvector calculation unit 54 uses the transformation matrix B used in step ST38 to convert the eigenvector x ( ⁇ ) of the transformation matrix ⁇ to the eigenvector v ( ⁇ ) of the correlation matrix Cxx. Is calculated (step ST59).
  • is an arbitrary integer in the range of 0 to n ⁇ 1.
  • the eigenvectors v (0), ..., v (n-1) correspond to the eigenvalues ⁇ (0), ..., ⁇ (n-1), respectively.
  • the eigenvectors v (0) to v (n-1) corresponding to the eigenvalues ⁇ (0) to ⁇ (n-1) are generally n linearly independent vectors. is there. Further, even when the eigenvalues ⁇ (0) to ⁇ (n ⁇ 1) are degenerated, it is possible to select linearly independent eigenvectors v (0) to v (n ⁇ 1). Similarly, the above eigenvectors vb (0) to vb (n-1) are also n linearly independent eigenvectors, and the transformation matrix B generated from the above eigenvectors vb (0) to vb (n-1) Is a unitary matrix.
  • the eigenvalue of the correlation matrix Cxx matches the eigenvalue of the similarity transformation matrix ⁇ ⁇ even when the similarity transformation as shown in Expression (21) is performed.
  • the eigenvectors x (0) to x (n-1) of the similarity transformation matrix ⁇ are different from the eigenvectors v (0) to v (n-1) of the correlation matrix Cxx, the eigenvectors x ( By multiplying the unitary matrix B by (0) to x (n-1), eigenvectors v (0) to v (n-1) can be obtained.
  • the direction-of-arrival calculating unit 55 calculates the eigenvalues ⁇ (0),..., ⁇ (n ⁇ 1) and the eigenvectors v (0),. By rearranging 1), eigenvalues ⁇ (0),..., ⁇ (n ⁇ 1) and eigenvectors vc (0),..., Vc (n ⁇ 1) are obtained (step ST49).
  • the direction-of-arrival calculating unit 55 estimates the number Ni of incoming waves based on the magnitude of the eigenvalues ⁇ (0) to ⁇ (n-1) (step ST61).
  • the direction-of-arrival calculation unit 55 executes an algorithm based on the ESPRIT method to estimate the direction of arrival of one or more arriving waves reflected by the target object (steps ST62 to ST65).
  • the direction-of-arrival calculation unit 55 calculates the latest eigenvectors vc (0) to vc (n-1), the eigenvalues ⁇ (0) to ⁇ (n-1) and the directions of arrival ⁇ 1 to ⁇ Ni of the correlation matrix Cxx.
  • the information is stored in the information storage unit 34 in association with the target detection information (step ST66).
  • the information output unit 38 reads out the target information Dc such as the distance to the target object, the relative speed and the arrival direction of the target object from the information storage unit 34, and outputs the target information Dc to the outside (step ST21 in FIG. 7). ). Thereafter, when it is determined that the radar process is to be continued (YES in step ST22), the control unit 39 returns the procedure of the radar process to step ST10. On the other hand, when it is determined that the radar processing is not continued (NO in step ST22), the control unit 39 ends the radar processing.
  • the target information Dc such as the distance to the target object, the relative speed and the arrival direction of the target object from the information storage unit 34
  • the eigenvalue calculation unit 53 sets the eigenvalue calculation unit 53 before the current time k. Is calculated from the previous eigenvectors vb (0) to vb (n-1) estimated at the time (step ST37 in FIG. 10), and the correlation matrix Cxx is subjected to similarity transformation using the transformation matrix B. Generates a similarity transformation matrix ⁇ (step ST38).
  • the eigenvalue calculation unit 53 and the eigenvector calculation unit 54 calculate an eigenvalue and an eigenvector of the correlation matrix Cxx by executing an iterative operation based on an eigenvalue decomposition algorithm using the similarity transformation matrix ⁇ ⁇ ⁇ as an initial matrix (steps ST39, ST51 to ST59). ). For this reason, the iterative operation shown in FIG. 10 requires a shorter operation time than the iterative operation using the correlation matrix Cxx as it is as the initial matrix (steps ST34 and ST41 to ST48 in FIG. 9). T can be made to converge, whereby the eigenvalue of the correlation matrix Cxx can be calculated in a short time.
  • the target detection information based on the previous eigenvectors vb (0) to vb (n-1) and the latest target detection information based on the correlation matrix Cxx are mutually different.
  • the latest target detection information and the target detection information ahead are detected based on an incoming wave (signal wave) reflected by the same target object. Information can be expected.
  • the physical position and relative position of the target object detected as the latest target detection information is a value that is substantially close to the physical position and relative velocity of the target object detected as the target detection information
  • the eigenvectors vc (0) to vc (n ⁇ 1) are the eigenvectors vb ( 0) to vb (n-1).
  • the similarity transformation matrix ⁇ It is a diagonal matrix having diagonal elements.
  • the similarity transformation matrix ⁇ It can be assumed that the matrix is close to a diagonal matrix.
  • step ST32 even if the determination result of step ST32 is incorrect in the processing of the comparison search unit 51 and the conversion matrix B is generated from the previous target detection information on a physically different target object, the similarity Since the eigenvalue of the transformation matrix ⁇ and the eigenvalue of the correlation matrix Cxx theoretically match, the output result finally obtained does not substantially change.
  • the comparison search unit 51 may determine that the latest target detection information and the preceding target detection information are similar to each other (YES in steps ST31 and ST32 in FIG. 8).
  • the information storage unit 34 may store not only the target information generated by the target detection unit 32 and the arrival direction estimation unit 35 but also target information created by the user in advance. For example, when the arrangement state of a specific target object is likely to occur from the terrain information, the target storage information, eigenvalues and eigenvectors of the correlation matrix, which are calculated in advance from the arrangement of the specific target object, are converted into a database and stored in an information storage unit. 34. In this case, the arrival direction estimating unit 35 can generate the transformation matrix B from such database-based target information.
  • the arrival direction estimating unit 35 refers to the information storage unit 34 and refers to the information storage unit 34, and the eigenvector vb () corresponding to the target detection information that matches or is similar to the latest target detection information. 0) to vb (n-1) are obtained from the information storage unit 34, and an iterative operation based on the eigenvalue decomposition algorithm is performed using the eigenvectors vb (0) to vb (n-1) and the latest correlation matrix Cxx. Since it is executed (steps ST37 to ST39 and ST51 to ST59 in FIG.
  • FIG. 11 is a block diagram illustrating a schematic configuration of the radar device 1A according to the first embodiment of the present invention.
  • the configuration of the radar device 1A of the present embodiment is different from that of the first embodiment except that the signal processing circuit 30A is provided instead of the signal processing circuit 30A of the first embodiment.
  • the configuration of the signal processing circuit 30A is the same as the arrival direction estimating unit 35 of the first embodiment, except that the signal processing circuit 30A has an arrival direction estimating unit 35A instead of the arrival direction estimating unit 35 of the first embodiment.
  • FIG. 11 is a block diagram illustrating a schematic configuration of the radar device 1A according to the first embodiment of the present invention.
  • the configuration of the radar device 1A of the present embodiment is different from that of the first embodiment except that the signal processing circuit 30A is provided instead of the signal processing circuit 30A of the first embodiment.
  • the configuration of the signal processing circuit 30A is the same as the arrival direction estimating unit 35 of the first embodiment, except that the signal processing circuit 30A has an arrival direction estimating unit 35A
  • the configuration of the arrival direction estimating unit 35A is different from the eigenvalue calculating unit 53, the eigenvector calculating unit 54, and the arriving direction calculating unit 55 in the first embodiment in that the eigenvalue calculating unit 53A, the eigenvector calculating unit 54A
  • the configuration is the same as that of the arrival direction estimating unit 35 of the first embodiment, except that it has an arrival direction calculating unit 55A.
  • the direction-of-arrival estimation unit 35 calculates the destination eigenvectors vb (0) to vb (n-1) acquired from the information storage unit 34 as shown in the above equation (20). Is used to calculate the transformation matrix B.
  • the arrival direction estimating unit 35A includes h number of eigenvectors vb (0) to vb (n ⁇ 1) obtained from the information storage unit 34, which are described later.
  • the transformation matrix E is calculated using the vectors vb (0) to vb (h-1).
  • h is a positive integer smaller than n.
  • FIG. 12 is a flowchart illustrating an example of an arrival direction estimation process performed by the arrival direction estimation unit 35A.
  • the flowchart of FIG. 12 is combined with the flowchart of FIG. 8 via the connector C1, and is combined with the flowchart of FIG. 9 via the connector C0.
  • Steps ST51 to ST57 shown in FIG. 12 are the same as steps ST51 to ST57 shown in FIG.
  • step ST36 when the continuous detection number N k-i is determined to be the threshold value N th or more in step ST36 (YES in step ST36), eigenvalue calculation section 53A and the eigenvector calculator 54A is of the destination target
  • eigenvectors vb (0),..., Vb (n-1) (n is a positive integer) corresponding to the detection information and the correlation matrix Cxx an iterative operation based on an eigenvalue decomposition algorithm is performed to obtain a correlation matrix.
  • the eigenvalues and eigenvectors of Cxx are calculated (steps ST37A to ST39A, ST51 to ST57, ST58A, ST59A in FIG. 12).
  • the eigenvalue calculation unit 53A forms a part of the previous eigenvectors vb (0),..., Vb (n ⁇ 1) corresponding to the target detection information based on the following equation (23).
  • the transformation matrix E is calculated based on the vectors vb (0),..., Vb (h ⁇ 1) (step ST37A in FIG. 12).
  • the correlation matrix Cxx is a square matrix having n rows and n columns
  • the transformation matrix E is a matrix having the above eigenvectors vb (0) to vb (h-1) as column elements (column vectors).
  • the number h of vectors may be the same value as the assumed number of incoming waves.
  • k z-th incoming waves Ni with large eigenvalues may be set to the number of the vector h is k z.
  • eigenvalue calculating section 53A After performing step ST37A, eigenvalue calculating section 53A performs similarity conversion using conversion matrix E (step ST38A). That is, the intrinsic value calculation unit 53A, as shown in the following equation (24), multiplied from the right transformation matrix E into the correlation matrix Cxx, and multiplying the adjoint matrix E H of the transformation matrix E from the left to the correlation matrix Cxx Then, a similarity transformation matrix ⁇ is calculated.
  • eigenvalue calculation section 53A converts similarity transformation matrix ⁇ to Hessenberg matrix A (0) using a transformation matrix, for example, based on the well-known Householder method (step ST36A).
  • the processing contents of the following steps ST51 to ST57 are the same as the processing contents of steps ST51 to ST57 shown in FIG.
  • the eigenvalue calculation unit 53A estimates the diagonal elements of the similarity transformation matrix T determined to have converged as the eigenvalues ⁇ (0),..., ⁇ (h ⁇ 1) of the correlation matrix Cxx.
  • step ST58A the eigenvector calculator 54A uses the conversion was used matrix with the unitary matrix Q j steps ST39A used in step ST53, eigenvector y (0) of the similarity transformation matrix Omega, ..., y ( h-1) is calculated.
  • step ST58A the eigenvector calculation unit 54A uses the transformation matrix E used in step ST35A to convert the eigenvector y ( ⁇ ) of the similarity transformation matrix ⁇ into the correlation matrix Cxx as shown in the following equation (25).
  • An eigenvector v ( ⁇ ) is calculated (step ST59A).
  • E ⁇ y ( ⁇ ) (25)
  • is an integer in the range of 0 to h ⁇ 1.
  • the direction-of-arrival calculation unit 55A calculates the correlation matrix Cxx, the eigenvalues ⁇ (0) to ⁇ (h ⁇ 1) calculated in step ST57, and the eigenvectors v (0) to v (h ⁇ 1) calculated in step ST59A. ) Is used to verify whether or not the preceding target detection information can be trusted based on a predetermined verification formula (step ST60). If the preceding target detection information is sufficiently reliable, the product of the correlation matrix Cxx and its eigenvector v ( ⁇ ) should match the product of the eigenvector v ( ⁇ ) and the eigenvalue ⁇ ( ⁇ ). . Therefore, the arrival direction calculation unit 55A can perform verification using the following verification formula (26).
  • the arrival direction calculation unit 55A calculates the verification vector s ( ⁇ ) on the left side of Expression (26), and determines whether the target detection information is reliable based on the norm of the verification vector s ( ⁇ ). Can be performed (step ST60A). For example, the direction-of-arrival calculating unit 55A can trust the previous target detection information if the norm of the verification vector s ( ⁇ ) is less than a predetermined threshold value for all of the eigenvalues ⁇ (0) to ⁇ (h ⁇ 1). (YES in step ST60A), and if the norm of the verification vector s ( ⁇ ) is equal to or greater than a predetermined threshold, it can be determined that the target detection information is not reliable (NO in step ST60A).
  • the arrival direction calculation section 55A executes steps ST49 and ST61 to ST66 shown in FIG.
  • the arrival direction calculation unit 55A sets the value of the number Nk of consecutive detections of the latest target detection information to zero. (Step ST60B).
  • the eigenvalue calculation unit 53A and the eigenvector calculation unit 54A execute steps ST34 and ST41 to ST48 shown in FIG.
  • the direction-of-arrival calculation unit 55A executes steps ST49, ST61 to ST66 shown in FIG.
  • the information output unit 38 reads the target information Dc such as the distance to the target object, the relative speed of the target object, and the arrival direction from the information storage unit 34, similarly to step ST21 of FIG. Output to the outside.
  • the target information Dc output to the outside is used, for example, for tracking processing in a subsequent processing device, or is used as information displayed on a display device.
  • the control unit 39 returns the procedure of the radar process to the first step when determining to continue the radar process, and terminates the radar process when determining not to continue the radar process.
  • the eigenvalue calculation unit 53A of the present embodiment calculates the h vectors vb forming a part of the previous eigenvectors vb (0) to vb (n-1) acquired from the information storage unit.
  • the transformation matrix E is calculated using (0) to vb (h-1) (step ST37A in FIG. 12). The technical meaning of the number h of vectors will be described below.
  • the eigenvalue having a value equal to or higher than the noise level among the eigenvalues ⁇ (0) to ⁇ (n ⁇ 1) of the correlation matrix Cxx corresponds to a value proportional to the power of the reflected wave from the specific target object.
  • the eigenvalues ⁇ (Ni + 1) to ⁇ (n ⁇ 1) whose magnitude is equal to or smaller than the (Ni + 1) th are noise level. It can be expected that the value will be a considerable value or a value of almost 0 caused by a calculation error.
  • the rank of the correlation matrix Rxx before the spatial averaging process is performed is 1 or less, and it is generally considered that the correlation matrix Rxx has at most one non-zero eigenvalue.
  • the rank of the correlation matrix Cxx is also about the spatial average score Q. Therefore, even when the spatial average score Q is smaller than the size n of the correlation matrix Cxx, the correlation matrix Cxx is degenerate, and the eigenvalues ⁇ (Q + 1) to ⁇ (n ⁇ 1) whose size is the (Q + 1) th or less are used. ) Can be expected to be a value of almost 0 caused by an arithmetic error. Therefore, it can be inferred that the correlation matrix Cxx is in a degenerate state or a state having an almost zero eigenvalue close to the degenerated state.
  • the DOA estimating method according to the present embodiment approximately calculates the eigenvalues and eigenvectors of the correlation matrix Cxx with a smaller amount of calculation than the DOA estimating method according to the first embodiment. be able to. Therefore, even if the number of receiving antenna elements constituting the antenna array 20 is large, the arrival direction can be estimated in a short calculation time without increasing the circuit scale of the signal processing circuit 30. Therefore, it is possible to achieve both the reduction in size and weight of the signal processing circuit 30 and the reduction in cost.
  • the arrival direction calculation unit 55A is based on a predetermined verification equation using the correlation matrix Cxx, the estimated eigenvalues ⁇ (0) to ⁇ (n-1) and the eigenvectors vc (0) to vc (n-1). Then, it verifies whether or not the target detection information can be trusted (steps ST60 and ST60A).
  • the arrival direction calculation unit 55A determines that the previous target detection information is unreliable, it does not use the estimated eigenvalues and eigenvectors, so that it is possible to avoid an unreliable arrival direction estimation.
  • the hardware configuration of the signal processing circuit 30A of the second embodiment may be realized by a processor having a semiconductor integrated circuit such as a DSP, an ASIC, or an FPGA, as in the signal processing circuit 30 of the first embodiment.
  • the hardware configuration of the signal processing circuit 30 ⁇ / b> A is realized by a processor including a processing unit such as a CPU or a GPU that executes program codes (instructions) of software or firmware for signal processing read from a memory. Is also good.
  • the hardware configuration of the signal processing circuit 30A can be realized by a processor having a combination of the semiconductor integrated circuit and the arithmetic device.
  • the receiving antenna elements 20 0-20 3 number the number of the reception channel but are both 4, but is not limited thereto.
  • the receiving arrangement of the antenna elements 20 0-20 3 is also not limited to the arrangement shown in FIG.
  • the iterative operation based on the eigenvalue decomposition algorithm using the Householder method and the QR decomposition method is executed, but the present invention is not limited to this. Iterative operations based on eigenvalue decomposition algorithms other than the eigenvalue decomposition algorithm described above can be used.
  • the signal processing circuit, the radar device, the signal processing method, and the signal processing program according to the present invention can estimate the direction of arrival of an incoming wave from a single or a plurality of target objects with high resolution using an antenna array.
  • the present invention can be applied to a radar device mounted on a moving body such as a vehicle. Further, the signal processing circuit, the radar apparatus, the signal processing method, and the signal processing program according to the present invention can estimate the direction of arrival with high resolution with a low calculation load, and therefore can be applied to a small-sized radar device that operates with low power consumption. Applicable.
  • 1,1A radar apparatus 10 transmission antenna 11 transmitting circuit, 12 a signal generator, 13 a distributor, 14 a transmission amplifier, 20 an antenna array, 20 0-20 3 receive antenna elements, 21 receiving circuit, 21 0-21 3 received vessel, 22 0-22 3 receiving amplifier, 23 0 to 23 3 mixer circuit, 24 0 ⁇ 24 3 A / D converter (ADC), 30, 30A signal processing circuit, 31 domain transforming section, 32 target detection unit, 34 Information storage unit, 35, 35A arrival direction estimation unit, 38 information output unit, 39 control unit, 41 first preprocessing unit, 42 first orthogonal transformation unit, 43 second preprocessing unit, 44 second orthogonal transformation unit, 51 Comparison search section, 52 correlation calculation section, 53, 53A eigenvalue calculation section, 54, 54A eigenvector calculation section, 55, 55A arrival direction calculation section, 71 processor, 72 memory, 73 input / output Interface section, 74 signal path.
  • ADC A / D converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar device (1), wherein a signal processing circuit (30) comprises: a region conversion unit (31) that respectively converts a plurality of reception signals inputted from a reception circuit (21) into a plurality of frequency region signals; a target detection unit (32) that senses latest target detection information on the basis of the plurality of frequency region signals; and an arrival direction estimation unit (35). The arrival direction estimation unit (35): calculates a latest correlation matrix on the basis of the plurality of frequency region signals; acquires, from an information storage unit (34), a previous eigenvector corresponding to previous target detection information that coincides with or resembles the latest target detection information; and executes an iterative operation based on an eigenvalue decomposition algorithm using the previous eigenvector and the latest correlation matrix, thereby estimating an eigenvalue and an eigenvector of the latest correlation matrix. The arrival direction estimation unit (35) estimates the arrival direction of one or a plurality of arriving waves using the estimated eigenvalue and eigenvector.

Description

信号処理回路、レーダ装置、信号処理方法及び信号処理プログラムSignal processing circuit, radar device, signal processing method, and signal processing program
 本発明は、レーダ技術に関し、特に、複数のアンテナ素子からなるアンテナアレイを用いて目標物体で反射された到来波を受信し、その到来波の到来方向(Direction-Of-Arrival,DOA)を推定するレーダ技術に関するものである。 The present invention relates to radar technology, and more particularly to receiving an incoming wave reflected by a target object using an antenna array including a plurality of antenna elements, and estimating a direction of arrival (Direction-Of-Arrival, DOA) of the incoming wave. Radar technology.
 レーダ技術においては、空間的に配置された複数のアンテナ素子からなるアンテナアレイを用いて、目標物体で反射された到来波の到来方向を推定する技術が存在する。到来方向を高い分解能で推定可能な技術としては、ESPRIT(Estimation of Signal Parameters via Rotation Invariance Techniques)法及びMUSIC(Multiple Signal Classification)法などの超分解能アルゴリズムが広く知られている。 In the radar technology, there is a technology for estimating the arrival direction of an incoming wave reflected by a target object by using an antenna array including a plurality of spatially arranged antenna elements. As techniques capable of estimating the direction of arrival with high resolution, super resolution algorithms such as ESPRIT (Estimation of Signal, Parameters, Via, Rotation, Innovation, Technologies) and MUSIC (Multiple Signal, Classification) are widely known.
 ESPRIT法及びMUSIC法は、ともに、アンテナアレイを構成する複数のアンテナ素子の出力に基づいて相関行列を構成し、当該相関行列の固有値及び固有ベクトルを推定し、当該推定された固有値及び固有ベクトルを用いて単数または複数の到来波の数及び到来方向を高分解能で推定することができる技術である。たとえば、以下の非特許文献1には、ESPRIT法の一種であるTLS-ESPRIT(Total-Least-Squares ESPRIT)法が開示されている。 Both the ESPRIT method and the MUSIC method form a correlation matrix based on outputs of a plurality of antenna elements forming an antenna array, estimate eigenvalues and eigenvectors of the correlation matrix, and use the estimated eigenvalues and eigenvectors. This is a technique capable of estimating the number and direction of arrival of one or a plurality of incoming waves with high resolution. For example, Non-Patent Document 1 below discloses a TLS-ESPRIT (Total-Least-Squares @ ESPRIT) method which is a kind of the ESPRIT method.
 しかしながら、従来のESPRIT法及びMUSIC法のような、相関行列の固有値及び固有ベクトルを使用する超分解能アルゴリズムでは、到来波数及び到来方向の推定精度向上のためにアンテナ素子の数を増やすと、相関行列のサイズも大きくなり、固有値推定に必要な演算量が膨大になる。かかる場合には、演算時間が増大し、所望の限られた時間内に到来方向の推定値を算出することが困難になるという課題がある。あるいは、短い演算時間で推定値を算出する信号処理回路を実現しようとすれば、当該信号処理回路の回路規模の増大が必要となり、製造コストの増大を招くという課題がある。 However, in the conventional super-resolution algorithm using the eigenvalues and eigenvectors of the correlation matrix, such as the ESPRIT method and the MUSIC method, when the number of antenna elements is increased to improve the estimation accuracy of the number of incoming waves and the direction of arrival, the correlation matrix The size also increases, and the amount of calculation required for eigenvalue estimation becomes enormous. In such a case, there is a problem that the calculation time increases and it becomes difficult to calculate an estimated value of the arrival direction within a desired limited time. Alternatively, in order to realize a signal processing circuit that calculates an estimated value in a short operation time, it is necessary to increase the circuit scale of the signal processing circuit, which causes a problem that the manufacturing cost is increased.
 上記に鑑みて本発明の目的は、アンテナアレイを用いて低い演算負荷で到来方向を推定することができる信号処理回路、レーダ装置、信号処理方法及び信号処理プログラムを提供することにある。 In view of the above, an object of the present invention is to provide a signal processing circuit, a radar device, a signal processing method, and a signal processing program that can estimate an arrival direction with a low calculation load using an antenna array.
 本発明の一態様による信号処理装置は、目標物体で反射された到来波を受信する複数の受信アンテナ素子からなるアンテナアレイと、前記複数の受信アンテナ素子の出力に基づいて複数の受信信号をそれぞれ生成する受信回路とを備えたレーダ装置における信号処理回路であって、前記複数の受信信号を複数の周波数領域信号にそれぞれ変換する領域変換部と、前記複数の周波数領域信号に基づいて目標探知情報を検出する目標探知部と、前記複数の周波数領域信号に基づいて相関行列を算出し、前記相関行列の固有値及び固有ベクトルの組を用いて単数または複数の到来波の到来方向を推定する到来方向推定部と、過去に検出された先の目標探知情報と過去に推定された複数の先の固有ベクトルとの組が少なくとも1つ記憶されている情報記憶部とを備え、前記目標探知部が前記複数の周波数領域信号に基づいて最新の目標探知情報を検出したとき、前記到来方向推定部は、前記複数の周波数領域信号に基づいて最新の相関行列を算出し、前記最新の目標探知情報と一致または類似する先の目標探知情報に対応する複数の先の固有ベクトルを前記情報記憶部から取得し、当該取得された複数の先の固有ベクトルと前記最新の相関行列とを用いて所定の固有値分解アルゴリズムに基づく反復演算を実行することにより前記最新の相関行列の固有値及び固有ベクトルの組を推定することを特徴とする。 A signal processing device according to one aspect of the present invention is an antenna array including a plurality of receiving antenna elements that receive an incoming wave reflected by a target object, and a plurality of received signals based on outputs of the plurality of receiving antenna elements. A signal processing circuit in a radar apparatus comprising: a receiving circuit that generates a plurality of frequency domain signals; and a domain conversion unit configured to convert the plurality of received signals into a plurality of frequency domain signals; and target detection information based on the plurality of frequency domain signals. And a direction estimating unit that calculates a correlation matrix based on the plurality of frequency domain signals, and estimates a direction of arrival of one or more incoming waves using a set of eigenvalues and eigenvectors of the correlation matrix. And at least one set of previously detected target detection information detected in the past and a plurality of previous eigenvectors estimated in the past. Comprising a storage unit, when the target detection unit detects the latest target detection information based on the plurality of frequency domain signals, the arrival direction estimation unit, the latest correlation matrix based on the plurality of frequency domain signals Is obtained from the information storage unit, a plurality of previous eigenvectors corresponding to the target detection information that matches or is similar to the latest target detection information, and the obtained plurality of previous eigenvectors and the latest An eigenvalue and a set of eigenvectors of the latest correlation matrix are estimated by performing an iterative operation based on a predetermined eigenvalue decomposition algorithm using the correlation matrix.
 本発明によれば、到来方向推定部は、最新の目標探知情報と一致または類似する先の目標探知情報に対応する複数の先の固有ベクトルを情報記憶部から取得し、それら先の固有ベクトルと最新の相関行列とを用いて固有値分解アルゴリズムに基づく反復演算を実行することにより最新の相関行列の固有値及び固有ベクトルの組を推定するので、少ない反復回数で固有値を高精度に推定することができる。よって、固有値推定に要する演算負荷を抑制することが可能である。したがって、アンテナアレイを構成する受信アンテナ素子の数が増えても、信号処理回路の回路規模を増大させることなく、短い演算時間で到来方向を高精度に推定することができる。 According to the present invention, the arrival direction estimating unit obtains a plurality of previous eigenvectors corresponding to the target detection information that matches or is similar to the latest target detection information from the information storage unit, and obtains the eigenvectors of the destination and the latest eigenvectors. By performing an iterative operation based on the eigenvalue decomposition algorithm using the correlation matrix, the latest set of the eigenvalues and eigenvectors of the correlation matrix is estimated, so that the eigenvalues can be estimated with high precision with a small number of iterations. Therefore, it is possible to suppress the calculation load required for eigenvalue estimation. Therefore, even if the number of receiving antenna elements forming the antenna array increases, the direction of arrival can be estimated with high accuracy in a short calculation time without increasing the circuit scale of the signal processing circuit.
本発明に係る実施の形態1のレーダ装置の概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of a radar device according to a first embodiment of the present invention. 図2Aは、送信波の周波数及び受信波の周波数のそれぞれの時間変化の例を示すグラフであり、図2Bは、第1の周波数領域信号の周波数スペクトラムの例を示すグラフである。FIG. 2A is a graph showing an example of the time change of each of the frequency of the transmission wave and the frequency of the reception wave, and FIG. 2B is a graph showing an example of the frequency spectrum of the first frequency domain signal. 実施の形態1のアンテナアレイを構成する受信アンテナ素子の配置例を概略的に示す図である。FIG. 3 is a diagram schematically illustrating an example of an arrangement of reception antenna elements forming an antenna array according to the first embodiment. 実施の形態1の信号処理回路のハードウェア構成例を概略的に示すブロック図である。FIG. 3 is a block diagram schematically illustrating a hardware configuration example of a signal processing circuit according to the first embodiment. 実施の形態1の領域変換部の構成例を概略的に示すブロック図である。FIG. 3 is a block diagram schematically illustrating a configuration example of an area conversion unit according to the first embodiment. 実施の形態1の情報記憶部に記憶された目標情報の一例を示す図である。FIG. 5 is a diagram illustrating an example of target information stored in an information storage unit according to the first embodiment. 実施の形態1のレーダ装置におけるレーダ処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of radar processing in the radar device according to the first embodiment. 実施の形態1に係る到来方向推定処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1. 実施の形態1に係る到来方向推定処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1. 実施の形態1に係る到来方向推定処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 1. 本発明に係る実施の形態2のレーダ装置の概略構成を示すブロック図である。FIG. 9 is a block diagram illustrating a schematic configuration of a radar device according to a second embodiment of the present invention. 実施の形態2に係る到来方向推定処理の一例を示すフローチャートである。15 is a flowchart illustrating an example of an arrival direction estimation process according to Embodiment 2.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. Note that components denoted by the same reference numerals throughout the drawings have the same configuration and the same function.
実施の形態1.
 図1は、本発明に係る実施の形態1のレーダ装置1の概略構成を示すブロック図である。図1に示されるように、レーダ装置1は、ミリ波帯またはマイクロ波帯などの高周波帯の周波数変調波を周期的に生成する送信回路11と、送信回路11から入力された周波数変調波を送信する送信アンテナ10と、外部空間内に存在する目標物体(図示せず。)で反射された周波数変調波を到来波(信号波)として受信する受信アンテナ素子20~20からなるアンテナアレイ20と、受信アンテナ素子20~20から並列に出力された高周波帯の信号に基づいて4個の受信チャネルのディジタル受信信号(ディジタルビート信号)を生成する受信回路21と、これらディジタル受信信号にディジタル信号処理を施して目標物体との距離、目標物体の相対速度、及び目標物体で反射された到来波の到来方向(Direction-Of-Arrival,DOA)などの値を算出する信号処理回路30とを備える。
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a schematic configuration of a radar device 1 according to a first embodiment of the present invention. As shown in FIG. 1, the radar device 1 includes a transmission circuit 11 that periodically generates a frequency modulation wave in a high frequency band such as a millimeter wave band or a microwave band, and a frequency modulation wave input from the transmission circuit 11. a transmitting antenna 10 for transmitting, the antenna array of the receiving antenna elements 20 0-20 3 for receiving the frequency-modulated wave reflected by a target object existing in the external space (not shown.) as the incoming wave (signal wave) 20, a receiving circuit 21 for generating a receive antenna elements 20 0 to the digital reception signal of the four reception channels based on the high frequency band of the signals outputted in parallel from 20 3 (digital beat signals), these digital reception signal To the target object, the relative speed of the target object, and the direction of arrival of the arriving wave reflected by the target object (Direction). -Of-Arrival, and a signal processing circuit 30 for calculating values such as DOA).
 送信回路11は、信号発生器12、分配器13及び送信アンプ14を含む。信号発生器12は、信号処理回路30から供給された制御信号に従い、所定の周波数変調方式で変調された周波数変調波を繰り返し生成することで周波数変調信号を生成する。周波数変調方式としては、周波数変調連続波(Frequency Modulated Continuous Wave,FMCW)方式が使用可能である。信号発生器12は、FMCW方式で周波数変調波(チャープ波)を繰り返し生成することで周波数変調信号(チャープ信号)を生成することができる。周波数変調信号の周波数すなわち送信周波数は、ある周波数帯域幅内で時間とともに連続的に増加または減少することを繰り返すように掃引されればよい。あるいは、送信周波数は、ある周波数帯域幅内で時間とともに連続的に増加した後に連続的に減少することを繰り返すように掃引されてもよい。 The transmission circuit 11 includes a signal generator 12, a distributor 13, and a transmission amplifier 14. The signal generator 12 generates a frequency-modulated signal by repeatedly generating a frequency-modulated wave modulated by a predetermined frequency modulation method according to the control signal supplied from the signal processing circuit 30. As a frequency modulation method, a frequency modulation continuous wave (Frequency Modulated Continuous Wave, FMCW) method can be used. The signal generator 12 can generate a frequency modulation signal (chirp signal) by repeatedly generating a frequency modulation wave (chirp wave) by the FMCW method. The frequency of the frequency modulation signal, that is, the transmission frequency, may be swept so as to repeatedly increase or decrease continuously with time within a certain frequency bandwidth. Alternatively, the transmission frequency may be swept so as to repeatedly increase and then continuously decrease with time within a certain frequency bandwidth.
 分配器13は、信号発生器12から入力された周波数変調信号を送信信号と局部信号LOとに分配する。分配器13は、送信信号を送信アンプ14に出力し、局部信号LOを受信回路21に出力する。送信アンプ14は、送信信号を増幅し、当該増幅された送信信号を送信アンテナ10に出力する。そして、送信アンテナ10は、当該増幅された送信信号を外部空間に放射する。 Distributor 13 distributes the frequency modulation signal input from signal generator 12 into a transmission signal and local signal LO. The distributor 13 outputs a transmission signal to the transmission amplifier 14 and outputs a local signal LO to the reception circuit 21. The transmission amplifier 14 amplifies the transmission signal and outputs the amplified transmission signal to the transmission antenna 10. Then, the transmission antenna 10 radiates the amplified transmission signal to an external space.
 このような送信回路11は、M個の周波数変調波を1フレームとして連続的に送信する。より具体的には、送信回路11は、あるフレーム期間内に0番目~M-1番目の周波数変調波を連続的に出力すると、一定の時間間隔の後の次のフレーム期間内に0番目~M-1番目の周波数変調波を連続的に出力するものとする。ここで、Mは、2以上の整数である。 送信 The transmitting circuit 11 continuously transmits M frequency modulated waves as one frame. More specifically, when the transmission circuit 11 continuously outputs the 0th to M−1th frequency modulated waves within a certain frame period, the transmission circuit 11 outputs the 0th to M−1th frequency modulation waves within a next frame period after a certain time interval. It is assumed that the (M-1) th frequency modulated wave is continuously output. Here, M is an integer of 2 or more.
 図2Aは、FMCW方式の一種である高速チャープ変調(Fast Chirp Modulation,FCM)方式が採用された場合の送信波の周波数Tf及び受信波の周波数Rfのそれぞれの時間変化の例を示すグラフである。図2Aに示されるように、送信波の周波数Tfは、ノコギリ波のように変化し、指定された下限周波数fから、指定された上限周波数fまで時間とともに連続的に変化するように直線状に変調されている。図2Aの例では、1フレーム期間内にM個の周波数変調波(チャープ波)が連続的に送信され、受信波は、送信された周波数変調波に対して遅延時間Δtだけ遅れて受信されている。 FIG. 2A is a graph showing an example of a time change of each of the frequency Tf of the transmission wave and the frequency Rf of the reception wave when a fast chirp modulation (FCM) system, which is a kind of the FMCW system, is adopted. . As shown in FIG. 2A, the frequency Tf of the transmitted wave, straight line as varied as sawtooth, from the lower limit frequency f 1 that is specified, continuously change with to a specified upper limit frequency f 2 Time Modulated. In the example of FIG. 2A, M frequency-modulated waves (chirp waves) are continuously transmitted within one frame period, and a received wave is received with a delay of Δt from the transmitted frequency-modulated wave. I have.
 図1を参照すると、受信アンテナ素子20~20は、目標物体で反射された到来波を受信すると、4個の受信チャネル分の高周波帯の信号を受信器21~21にそれぞれ出力する。図3は、アンテナアレイ20を構成する受信アンテナ素子20~20の配置例を概略的に示す図である。図3に示される受信アンテナ素子20~20は、直線状のベースライン上にx軸方向に沿って等間隔dで配置されている。受信アンテナ素子20の設置された位置を原点(基準点)として、x軸正方向に沿って、受信アンテナ素子20,20,20,20がこの順番で配置されている。図3の例では、x軸方向に直交するy軸方向に対して入射角θで到来波が入射する様子が示されている。y軸方向は、アンテナアレイ20のアンテナ面に対して垂直である。 Referring to FIG. 1, when receiving antenna elements 20 0 to 203 3 receive an incoming wave reflected by a target object, the receiving antenna elements 20 0 to 203 output signals of high frequency bands of four reception channels to receivers 21 0 to 21 3 , respectively. I do. Figure 3 is a diagram schematically showing an arrangement example of the receiving antenna elements 20 0-20 3 constituting the antenna array 20. Receive antenna elements 20 0-20 3 shown in FIG. 3, are arranged at equal intervals d along the x-axis direction in a linear base line. The installation position of the receiving antenna element 20 3 as the origin (reference point), along the x-axis positive direction, the receiving antenna element 20 3, 20 2, 20 1, 20 0 are arranged in this order. In the example of FIG. 3, a state is shown in which an incoming wave is incident at an incident angle θ with respect to a y-axis direction orthogonal to the x-axis direction. The y-axis direction is perpendicular to the antenna surface of the antenna array 20.
 受信回路21は、受信アンテナ素子20~20にそれぞれ接続された4個の受信器21~21を有する。各受信器21chは、受信アンテナ素子20chの出力を増幅する低雑音増幅器(Low Noise Amplifier,LNA)などの受信アンプ22chと、受信アンプ22chから出力された増幅信号を局部信号LOと混合することにより中間周波数帯のアナログビート信号を生成するミキサ回路23chと、そのアナログビート信号をディジタルビート信号に変換するA/D変換回路(ADC)24chとを含む。ここで、下付き添字chは、受信チャネル番号であり、0~3の範囲内の整数である。 The receiving circuit 21 has four receivers 21 0 to 21 3 connected to the receiving antenna elements 20 0 to 20 3 , respectively. Each receiver 21 ch includes a reception amplifier 22 ch such as a low noise amplifier (LNA) that amplifies the output of the reception antenna element 20 ch , and an amplified signal output from the reception amplifier 22 ch as a local signal LO. by mixing it includes a mixer circuit 23 ch for generating an analog beat signal in the intermediate frequency band, and the a / D converter for converting the analog beat signal into a digital beat signal (ADC) 24 ch. Here, the subscript ch is a reception channel number and is an integer in the range of 0 to 3.
 ADC24chは、チャープ波ごとにアナログビート信号を所定のサンプリング間隔でサンプリングすることによりディジタルビート信号B(ch,m,n)(n=0~N-1)を生成する。ここで、mは、チャープ波の番号を示すチャープ番号(chirp index)、Nは、サンプリング点数である。また、下付き添え字kは、現在時刻、すなわち現在のフレーム期間の時刻を表す整数である。たとえば、現在のフレーム期間の時刻よりも1フレーム期間だけ過去の時刻は、k-1で表現される。ADC24chは、ディジタルビート信号B(ch,m,n)を、直交成分と同相成分とからなる複素信号として出力可能な機能を有する。 The ADC 24 ch generates a digital beat signal B k (ch, m, n) (n = 0 to N−1) by sampling the analog beat signal at a predetermined sampling interval for each chirp wave. Here, m is a chirp number (chirp index) indicating the number of a chirp wave, and N is the number of sampling points. The subscript k is an integer representing the current time, that is, the time of the current frame period. For example, a time one frame period before the time of the current frame period is represented by k-1. The ADC 24 ch has a function of outputting the digital beat signal B k (ch, m, n) as a complex signal including a quadrature component and an in-phase component.
 ADC24chは、ディジタルビート信号B(ch,m,n)をディジタル受信信号として信号処理回路30に出力する。なお、ミキサ回路23chとADC24chとの間に、アナログビート信号の不要な信号成分を除去するフィルタ回路が配置されてもよい。 The ADC 24 ch outputs the digital beat signal B k (ch, m, n) to the signal processing circuit 30 as a digital reception signal. Between the mixer circuit 23 ch and ADC 24 ch, filter circuit for removing unnecessary signal components of the analog beat signal may be disposed.
 次に、図1を参照すると、信号処理回路30は、時間領域のディジタル受信信号B(0,m,n)~B(3,m,n)を2次元周波数領域の周波数領域信号D(0,fv,fr)~D(3,fv,fr)にそれぞれ変換する領域変換部31と、周波数領域信号D(0,fv,fr)~D(3,fv,fr)に基づいて目標探知情報を検出する目標探知部32と、周波数領域信号D(0,fv,fr)~D(3,fv,fr)に基づいて相関行列Cxxを算出し、所定の固有値分解アルゴリズムを実行して当該相関行列Cxxの固有値及び固有ベクトルを推定し、当該推定された固有値及び固有ベクトルを用いて単数または複数の到来波の到来方向を推定する到来方向推定部35と、検出された目標探知情報、推定された固有値及び固有ベクトルの組及び推定された到来方向の組合せが記憶される情報記憶部34と、情報記憶部34から読み出された目標情報Dcを外部に出力する情報出力部38と、制御部39とを備えて構成されている。制御部39は、送信回路11における信号発生器12の動作を制御するとともに、領域変換部31、目標探知部32、情報記憶部34、到来方向推定部35及び情報出力部38のそれぞれの動作を個別に制御する機能を有している。制御部39は、システムバス及び制御信号線などの信号路を介して、送信回路11、領域変換部31、目標探知部32、情報記憶部34、到来方向推定部35及び情報出力部38と接続されている。 Next, referring to FIG. 1, the signal processing circuit 30 converts the digital reception signals B k (0, m, n) to B k (3, m, n) in the time domain into the frequency domain signal D in the two-dimensional frequency domain. a domain conversion unit 31 for converting k (0, fv, fr) to D k (3, fv, fr), respectively, and a frequency domain signal D k (0, fv, fr) to D k (3, fv, fr) And a correlation matrix Cxx based on the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr), and a predetermined eigenvalue An arrival direction estimating unit 35 that estimates the eigenvalues and eigenvectors of the correlation matrix Cxx by executing a decomposition algorithm, and estimates the arrival directions of one or more arriving waves using the estimated eigenvalues and eigenvectors; Target detection information, estimation Information storage unit 34 in which the set of the obtained eigenvalues and eigenvectors and the combination of the estimated direction of arrival are stored; information output unit 38 for outputting target information Dc read from information storage unit 34 to the outside; 39 are provided. The control unit 39 controls the operation of the signal generator 12 in the transmission circuit 11 and controls the operations of the area conversion unit 31, the target detection unit 32, the information storage unit 34, the arrival direction estimation unit 35, and the information output unit 38. It has the function of controlling individually. The control unit 39 is connected to the transmission circuit 11, the area conversion unit 31, the target detection unit 32, the information storage unit 34, the arrival direction estimation unit 35, and the information output unit 38 via signal paths such as a system bus and control signal lines. Have been.
 このような信号処理回路30のハードウェア構成は、たとえば、DSP(Digital Signal Processor),ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などの半導体集積回路を有するプロセッサを用いて実現されればよい。あるいは、信号処理回路30のハードウェア構成は、メモリから読み出された信号処理用のソフトウェアまたはファームウェアのプログラムコード(命令群)を実行する、CPU(Central Processing Unit)またはGPU(Graphics Processing Unit)などの演算装置を含むプロセッサを用いて実現されてもよい。前記半導体集積回路と前記演算装置との組合せを有するプロセッサを用いて信号処理回路30のハードウェア構成を実現することも可能である。さらには、領域変換部31、目標探知部32、到来方向推定部35、情報出力部38及び制御部39はそれぞれ専用のハードウェアで構成されてもよいし、あるいは、単数または複数のハードウェアで構成されてもよい。 The hardware configuration of such a signal processing circuit 30 is, for example, a semiconductor integrated circuit using a processor such as a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or a processor including a processor (Field-Programmable Gate Array) having an FPGA (Field-Programmable Gate Array). It should be done. Alternatively, the hardware configuration of the signal processing circuit 30 may be a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes a program code (instruction group) of signal processing software or firmware read from the memory. May be realized by using a processor including the arithmetic unit. It is also possible to realize the hardware configuration of the signal processing circuit 30 using a processor having a combination of the semiconductor integrated circuit and the arithmetic device. Furthermore, each of the area conversion unit 31, the target detection unit 32, the arrival direction estimation unit 35, the information output unit 38, and the control unit 39 may be configured by dedicated hardware, or may be configured by one or a plurality of hardware. It may be configured.
 図4は、信号処理回路30のハードウェア構成例を概略的に示すブロック図である。信号処理回路30は、プロセッサ71、メモリ72、入出力インタフェース部73及び信号路74を含んで構成されている。信号路74は、プロセッサ71、メモリ72及び入出力インタフェース部73を相互に接続するためのバスである。入出力インタフェース部73は、受信回路21から入力されたディジタル受信信号を信号路74を介してプロセッサ71に転送する機能を有する。プロセッサ71は、転送されたディジタル受信信号にディジタル信号処理を施す。プロセッサ71は、ディジタル信号処理の結果として得られた目標情報Dcを信号路74及び入出力インタフェース部73を介して外部機器(図示せず。)に出力することができる。 FIG. 4 is a block diagram schematically showing an example of a hardware configuration of the signal processing circuit 30. The signal processing circuit 30 includes a processor 71, a memory 72, an input / output interface unit 73, and a signal path 74. The signal path 74 is a bus for interconnecting the processor 71, the memory 72, and the input / output interface unit 73. The input / output interface unit 73 has a function of transferring the digital reception signal input from the reception circuit 21 to the processor 71 via the signal path 74. Processor 71 performs digital signal processing on the transferred digital reception signal. The processor 71 can output the target information Dc obtained as a result of the digital signal processing to an external device (not shown) via the signal path 74 and the input / output interface unit 73.
 メモリ72は、情報記憶部34の記憶領域を構成する不揮発性メモリと、領域変換部31,目標探知部32、到来方向推定部35,情報出力部38及び制御部39の機能を実現するための信号処理用のソフトウェアまたはファームウェアなどの信号処理プログラムを記憶する不揮発性メモリと、プロセッサ71がディジタル信号処理を実行する際に使用されるワークメモリと、当該ディジタル信号処理で使用されるデータが展開される一時記憶メモリとを含む。たとえば、メモリ72は、フラッシュメモリ,ROM(Read Only Memory)及びSDRAM(Synchronous Dynamic Random Access Memory)などの半導体メモリで構成されればよい。 The memory 72 is for realizing the functions of the non-volatile memory forming the storage area of the information storage unit 34 and the functions of the area conversion unit 31, the target detection unit 32, the arrival direction estimation unit 35, the information output unit 38, and the control unit 39. A non-volatile memory storing a signal processing program such as software or firmware for signal processing, a work memory used when the processor 71 executes digital signal processing, and data used in the digital signal processing are developed. And a temporary storage memory. For example, the memory 72 may be configured by a semiconductor memory such as a flash memory, a ROM (Read Only Memory), and an SDRAM (Synchronous Dynamic Random Access Memory).
 なお、図4の例では、プロセッサ71の個数は1つであるが、これに限定されるものではない。互いに連携して動作する複数個のプロセッサを用いて信号処理回路30のハードウェア構成が実現されてもよい。 In the example of FIG. 4, the number of the processors 71 is one, but the number is not limited to one. The hardware configuration of the signal processing circuit 30 may be realized using a plurality of processors operating in cooperation with each other.
 次に、図1に示される信号処理回路30の構成を詳細に説明する。領域変換部31は、各受信チャネルについて、ディジタル受信信号B(ch,m,n)(m=0~M-1,n=0~N-1)に2次元直交変換を施すことにより、時間領域におけるM×N点のディジタル受信信号B(ch,m,n)を、2次元周波数領域におけるM×N点の周波数領域信号D(ch,fv,fr)(fv=0~M-1,fr=0~N-1)に変換する。ここで、frは、目標物体との距離に相当する周波数(以下「距離周波数」という。)に割り当てられた周波数ビン番号(以下「距離周波数ビン番号」という。)であり、fvは、目標物体の相対速度に相当する周波数(以下「速度周波数」という。)に割り当てられた周波数ビン番号(以下「速度周波数ビン番号」という。)である。2次元直交変換としては、2次元離散フーリエ変換を使用すればよいが、これに限定されるものではない。周波数領域信号D(ch,fv,fr)は、各受信チャネル番号chごとに、距離周波数及び速度周波数に関する振幅分布を有する3次元的なデータ信号である。 Next, the configuration of the signal processing circuit 30 shown in FIG. 1 will be described in detail. The domain conversion unit 31 performs a two-dimensional orthogonal transform on the digital reception signal B k (ch, m, n) (m = 0 to M−1, n = 0 to N−1) for each reception channel. A digital received signal B k (ch, m, n) at M × N points in the time domain is converted into a frequency domain signal D k (ch, fv, fr) at M × N points in the two-dimensional frequency domain (fv = 0 to M -1, fr = 0 to N-1). Here, fr is a frequency bin number (hereinafter, referred to as “distance frequency bin number”) assigned to a frequency corresponding to the distance to the target object (hereinafter, referred to as “distance frequency”), and fv is a target object. Is a frequency bin number (hereinafter, referred to as a “speed frequency bin number”) assigned to a frequency corresponding to the relative speed (hereinafter, referred to as a “speed frequency”). As the two-dimensional orthogonal transform, a two-dimensional discrete Fourier transform may be used, but the present invention is not limited to this. The frequency domain signal D k (ch, fv, fr) is a three-dimensional data signal having an amplitude distribution related to a distance frequency and a speed frequency for each reception channel number ch.
 図5は、実施の形態1の領域変換部31の構成例を概略的に示すブロック図である。図5に示されるように、領域変換部31は、窓関数処理部41,41,41,41からなる第1前処理部41と、チャープ内直交変換部42,42,42,42からなる第1直交変換部42と、窓関数処理部43,43,43,43からなる第2前処理部43と、チャープ間直交変換部44,44,44,44からなる第2直交変換部44とを有する。 FIG. 5 is a block diagram schematically illustrating a configuration example of the area conversion unit 31 according to the first embodiment. As shown in FIG. 5, the region converter 31, a window function processing unit 41 0, 41 1, 41 2, 41 a first pre-processing unit 41 consisting of three chirp in the orthogonal transform unit 42 0, 42 1, 42 and 2, 42 3 the first orthogonal transformation unit 42 consisting of a window function processing unit 43 0, 43 1, 43 2, 43 a second pre-processing unit 43 consisting of three chirp between orthogonal transform unit 44 0, 44 1 , and a second orthogonal transformation unit 44 consisting of 44 2, 44 3.
 第1前処理部41における各窓関数処理部41chは、チャープ波ごとに入力されたN点のディジタル受信信号B(ch,m,n)(n=1~N)に対して窓関数処理を実行することによりN点の信号を出力する。この窓関数処理では、たとえば、ハミング窓(hamming window)関数またはブラックマン・ハリス窓(Blackman-Harris window)関数などの公知の窓関数が使用されればよい。 Each window function processing unit 41 ch in the first pre-processing unit 41 performs a window function on N digital reception signals B k (ch, m, n) (n = 1 to N) input for each chirp wave. By executing the processing, signals at N points are output. In this window function process, for example, a known window function such as a hamming window function or a Blackman-Harris window function may be used.
 第1直交変換部42における各チャープ内直交変換部42chは、窓関数処理部41chから入力されたN点の信号に直交変換を施すことにより、N点の第1の周波数領域信号T(ch,m,fr)(fr=1~N)を生成する。直交変換としては、高速フーリエ変換(Fast Fourier Transform,FFT)などの離散フーリエ変換が使用可能である。前述の窓関数処理部41chにおける窓関数処理は、直交変換の際に生じるスペクトルの歪みを抑制してスペクトル分解能の向上とダイナミックレンジの拡大とを両立させるための処理である。図2Bは、第1の周波数領域信号T(ch,m,fr)の周波数スペクトラム|T(ch,0,fr)|,|T(ch,1,fr)|,…,|T(ch,M-1,fr)|の例を示すグラフである。 Each of the intra-chirp orthogonal transform units 42 ch in the first orthogonal transform unit 42 performs orthogonal transform on the N-point signal input from the window function processing unit 41 ch, thereby forming the N-point first frequency-domain signal T k. (Ch, m, fr) (fr = 1 to N) is generated. As the orthogonal transform, a discrete Fourier transform such as a fast Fourier transform (FFT) can be used. The window function processing in the above-described window function processing unit 41ch is processing for suppressing the distortion of the spectrum that occurs at the time of the orthogonal transformation to achieve both improvement in the spectral resolution and expansion of the dynamic range. FIG. 2B shows a frequency spectrum | T k (ch, 0, fr) |, | T k (ch, 1, fr) |,..., | T of the first frequency domain signal T k (ch, m, fr). It is a graph which shows the example of k (ch, M-1, fr) |.
 次に、第2前処理部43における各窓関数処理部43chは、各距離周波数ビン番号frについて入力されたM点の第1の周波数領域信号T(ch,m,fr)(m=0~M-1)に対して窓関数処理を実行することにより、M点の信号を出力する。この窓関数処理では、たとえば、ハミング窓関数またはブラックマン・ハリス窓関数などの公知の窓関数が使用されればよい。 Next, each window function processing unit 43 ch in the second preprocessing unit 43 outputs the first frequency domain signal T k (ch, m, fr) (m = m) at M points input for each distance frequency bin number fr. By executing the window function processing on 0 to M−1), a signal at M points is output. In this window function processing, for example, a known window function such as a Hamming window function or a Blackman-Harris window function may be used.
 第2直交変換部44における各チャープ間直交変換部44chは、各距離周波数ビン番号frについて窓関数処理部43chから入力されたM点の信号に直交変換を施すことにより、第2の周波数領域信号としてM点の周波数領域信号D(ch,fv,fr)(fv=0~M-1)を生成する。直交変換としては、高速フーリエ変換などの離散フーリエ変換が使用可能である。また、前述の窓関数処理部43chにおける窓関数処理は、直交変換の際に生じるスペクトルの歪みを抑制してスペクトル分解能の向上とダイナミックレンジの拡大とを両立させるための処理である。 The inter-chirp orthogonal transform unit 44 ch in the second orthogonal transform unit 44 performs orthogonal transform on the signal at M points input from the window function processing unit 43 ch for each distance frequency bin number fr, thereby obtaining the second frequency. A frequency domain signal D k (ch, fv, fr) (fv = 0 to M−1) at M points is generated as a domain signal. As the orthogonal transform, a discrete Fourier transform such as a fast Fourier transform can be used. The window function processing in the above-described window function processing unit 43ch is processing for suppressing the distortion of the spectrum that occurs at the time of the orthogonal transformation to achieve both improvement in the spectral resolution and expansion of the dynamic range.
 図1を参照すると、目標探知部32は、4個の受信チャネル分の周波数領域信号D(ch,fv,fr)(ch=0~3)を入力とし、これら周波数領域信号D(ch,fv,fr)を受信チャネル番号chについて積分することにより、2次元周波数(距離周波数及び速度周波数)に関する積分信号I(fv,fr)を生成する。たとえば、目標探知部32は、次式(1)に示されるように、周波数領域信号D(ch,fv,fr)の絶対値の2乗|D(ch,fv,fr)|をチャネル番号chについて加算(インコヒーレント積分)することにより積分信号I(fv,fr)を生成すればよい。 Referring to FIG. 1, the target detection unit 32 receives frequency domain signals D k (ch, fv, fr) (ch = 0 to 3) for four reception channels as inputs, and receives these frequency domain signals D k (ch , Fv, fr) with respect to the reception channel number ch, to generate an integrated signal I k (fv, fr) related to a two-dimensional frequency (distance frequency and velocity frequency). For example, the target detection unit 32 calculates the square | D k (ch, fv, fr) | 2 of the absolute value of the frequency domain signal D k (ch, fv, fr) as shown in the following equation (1). The integration signal I k (fv, fr) may be generated by adding (incoherent integration) for the channel number ch.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 次に、目標探知部32は、積分信号I(fv,fr)の分布からピーク値を検出し、当該検出されたピーク値の位置(以下「ピーク位置」という。)を示す距離周波数ビン番号及び速度周波数ビン番号の組(fv,fr)を得ることができる。たとえば、閾値th0を用いて、次の条件式(2)~(6)を全て満たす積分信号I(fv,fr)をピーク値として検出することができる。ここで、閾値th0は、ノイズレベル相当の電力の信号を除外することを可能とする閾値である。 Next, the target detection unit 32 detects a peak value from the distribution of the integrated signal I k (fv, fr), and a distance frequency bin number indicating the position of the detected peak value (hereinafter, referred to as “peak position”). And a set of velocity frequency bin numbers (fv p , fr p ). For example, using the threshold th0, the integrated signal I k (fv, fr) that satisfies all of the following conditional expressions (2) to (6) can be detected as a peak value. Here, the threshold value th0 is a threshold value capable of excluding a signal of power corresponding to the noise level.
  I(fv,fr-1) < I(fv,fr)      (2)
  I(fv,fr) > I(fv,fr+1)      (3)
  I(fv-1,fr) < I(fv,fr)      (4)
  I(fv,fr) > I(fv+1,fr)      (5)
  I(fv,fr) > th0              (6)
I k (fv, fr−1) <I k (fv, fr) (2)
I k (fv, fr)> I k (fv, fr + 1) (3)
I k (fv−1, fr) <I k (fv, fr) (4)
I k (fv, fr)> I k (fv + 1, fr) (5)
I k (fv, fr)> th0 (6)
 目標探知部32は、距離周波数ビン番号frから当該目標物体との距離を算出することができ、速度周波数ビン番号fvから当該目標物体の相対速度を算出することができる。なお、目標探知部32は、当該目標物体を識別し、その識別結果を生成してもよい。そして、目標探知部32は、時刻情報、ピーク位置(距離周波数ビン番号及び速度周波数ビン番号の組)、目標物体との距離及び目標物体の相対速度などの目標探知情報を到来方向推定部35に供給し、情報記憶部34に記憶させる。 Target detection unit 32, the distance frequency bin number fr p from it is possible to calculate the distance between the target object, it is possible to calculate the relative velocity of the target object from the speed frequency bin number fv p. Note that the target detection unit 32 may identify the target object and generate an identification result. Then, the target detection unit 32 sends the arrival direction estimation unit 35 the target detection information such as the time information, the peak position (a set of the distance frequency bin number and the speed frequency bin number), the distance to the target object, and the relative speed of the target object. The information is supplied and stored in the information storage unit 34.
 なお、上記のとおり、目標探知部32は、積分信号I(fv,fr)を算出するためにインコヒーレント積分を実行するが、これに限定されるものではない。インコヒーレント積分に代えて、コヒーレント積分を含む他の処理が採用されてもよい。 Note that, as described above, the target detection unit 32 performs incoherent integration to calculate the integration signal I k (fv, fr), but is not limited thereto. Instead of incoherent integration, other processing including coherent integration may be employed.
 また、閾値th0については、上記の手法に代えて、一般的なレーダ技術で使われているCFAR(Constant False Alarm Rate)などの手法を採用して閾値th0が決定されてもよい。 Also, as for the threshold th0, the threshold th0 may be determined using a method such as CFAR (Constant False False Alarm) used in general radar technology, instead of the above method.
 図1に示される到来方向推定部35は、周波数領域信号D(0,fv,fr)~D(3,fv,fr)に基づいて相関行列Cxxを算出する相関算出部52と、所定の固有値分解アルゴリズムに基づく反復演算を実行することにより相関行列Cxxの固有値を推定する固有値算出部53と、相関行列Cxxの固有ベクトルを推定する固有ベクトル算出部54と、当該推定された固有値及び固有ベクトルを用いて単数または複数の到来波の到来方向を推定する到来方向算出部55とを有する。到来方向推定部35は、当該推定された固有値及び固有ベクトルとともに当該推定された到来方向を、目標探知部32で検出された目標探知情報と関連付けて情報記憶部34に記憶させる。 The arrival direction estimating unit 35 shown in FIG. 1 includes a correlation calculating unit 52 that calculates a correlation matrix Cxx based on the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr), An eigenvalue calculation unit 53 that estimates an eigenvalue of the correlation matrix Cxx by executing an iterative operation based on an eigenvalue decomposition algorithm of Eq., An eigenvector calculation unit 54 that estimates an eigenvector of the correlation matrix Cxx, and Direction-of-arrival calculation unit 55 for estimating the direction of arrival of one or more incoming waves. The arrival direction estimation unit 35 stores the estimated arrival direction together with the estimated eigenvalue and eigenvector in the information storage unit 34 in association with the target detection information detected by the target detection unit 32.
 図6は、情報記憶部34に記憶された目標情報DD(p)の一例を示す図である。目標情報DD(p)は、現在時刻kに検出されたp番目の到来波(pは1以上の整数)に関する情報である。図6に示されるように目標情報DD(p)は、識別子、目標物体の検出頻度を表す連続検出回数N、時刻kを表す時刻情報、ピーク位置(距離周波数ビン番号と速度周波数ビン番号)、目標物体との距離、目標物体の相対速度、固有値、固有ベクトル及び到来方向の組み合わせを含む。目標情報DD(p)における目標探知情報は、時刻情報、ピーク位置(距離周波数ビン番号及び速度周波数ビン番号の組)、距離及び相対速度を含んで構成される。図1に示されるように、情報記憶部34には、現在時刻kよりも前の時刻k-1に関する目標情報DDk-1(1),DDk-1(2),…も記憶されている。 FIG. 6 is a diagram illustrating an example of the target information DD k (p) stored in the information storage unit 34. The target information DD k (p) is information on the p-th incoming wave (p is an integer of 1 or more) detected at the current time k. As shown in FIG. 6, the target information DD k (p) includes an identifier, the number of consecutive detections N k indicating the frequency of detection of the target object, time information indicating the time k, and the peak position (distance frequency bin number and speed frequency bin number). ), The distance to the target object, the relative speed of the target object, the eigenvalue, the eigenvector, and the direction of arrival. The target detection information in the target information DD k (p) includes time information, a peak position (a set of a distance frequency bin number and a speed frequency bin number), a distance, and a relative speed. As shown in FIG. 1, the information storage unit 34 also stores target information DD k-1 (1), DD k-1 (2),... Regarding time k-1 before current time k. I have.
 さらに、本実施の形態の到来方向推定部35は、比較検索部51を有する。比較検索部51は、情報記憶部34に記憶されている目標情報を検索して、現在時刻kに検出された最新の目標探知情報と一致または類似する先の目標探知情報と、当該先の目標探知情報に対応する先の固有ベクトルとを情報記憶部34から取得することができる。ここで、先の目標探知情報とは、現在時刻kよりも前の時刻k-i(iは1以上の整数)に検出されている目標探知情報である。 Furthermore, the direction-of-arrival estimating unit 35 of the present embodiment includes a comparison search unit 51. The comparison search unit 51 searches for the target information stored in the information storage unit 34, and searches for the target detection information that matches or is similar to the latest target detection information detected at the current time k, and The destination eigenvector corresponding to the detection information can be acquired from the information storage unit 34. Here, the previous target detection information is the target detection information detected at time ki (i is an integer of 1 or more) before the current time k.
 比較検索部51は、情報記憶部34から取得した先の固有ベクトルを、固有値算出部53に供給する。以下に説明するように、固有値算出部53は、当該先の固有ベクトルと相関行列Cxxとを用いて固有値分解アルゴリズムに基づく反復演算を実行することができるので、当該先の固有ベクトルを使用せずに固有値分解アルゴリズムに基づく反復演算を実行する場合と比べると、短い演算時間で相関行列Cxxの固有値を推定することができる。これにより、到来方向推定部35は、短い演算時間で、目標物体で反射された到来波の到来方向を推定することが可能である。 The comparison search unit 51 supplies the eigenvector obtained from the information storage unit 34 to the eigenvalue calculation unit 53. As described below, the eigenvalue calculation unit 53 can execute an iterative operation based on the eigenvalue decomposition algorithm using the preceding eigenvector and the correlation matrix Cxx. The eigenvalue of the correlation matrix Cxx can be estimated in a shorter operation time than in a case where an iterative operation based on a decomposition algorithm is executed. Accordingly, the arrival direction estimation unit 35 can estimate the arrival direction of the arrival wave reflected by the target object in a short calculation time.
 以下、図7~図10を参照しつつ、実施の形態1のレーダ装置1の動作を説明するとともに、到来方向推定部35の動作及び構成を詳細に説明する。 Hereinafter, the operation of the radar device 1 according to the first embodiment will be described with reference to FIGS. 7 to 10, and the operation and configuration of the arrival direction estimating unit 35 will be described in detail.
 図7は、実施の形態1のレーダ装置1におけるレーダ処理の一例を示すフローチャートである。図8~図10は、到来方向推定部35によって実行される到来方向推定処理の一例を示すフローチャートである。図8のフローチャートは、結合子C0を介して図9のフローチャートと結合しており、結合子C1を介して図10のフローチャートと結合している。図10のフローチャートは、結合子C2を介して図9のフローチャートと結合している。 FIG. 7 is a flowchart illustrating an example of radar processing in the radar device 1 according to the first embodiment. 8 to 10 are flowcharts illustrating an example of the arrival direction estimation processing executed by the arrival direction estimation unit 35. The flowchart of FIG. 8 is connected to the flowchart of FIG. 9 via the connector C0, and is connected to the flowchart of FIG. 10 via the connector C1. The flowchart of FIG. 10 is combined with the flowchart of FIG. 9 via the connector C2.
 図7を参照すると、上記のとおり、送信回路11は、制御部39から送信開始命令を示す制御信号を受けると、この送信開始命令に応じて、FMCW方式などの所定の周波数変調方式に従い、周波数変調波(チャープ波)を送信する(ステップST10)。その後、受信アンテナ素子20~20が目標物体で反射された到来波を受信すると(ステップST11)、受信回路21は、受信アンテナ素子20~20の出力に基づいて、ディジタル受信信号B(0,0,n),B(1,0,n),B(2,0,n),B(3,0,n)(n=0~N-1)を生成する(ステップST12)。その後、1フレーム分のM個の周波数変調波が送信されるまで(ステップST13のNO)、ステップST10,ST11,ST12が繰り返し実行される。この結果、1フレーム期間内にM個の周波数変調波が連続して送信され、受信回路21は、M×N点のディジタル受信信号B(0,m,n),B(1,m,n),B(2,m,n),B(3,m,n)(m=0~M-1,n=0~N-1)を生成する。送信を終了するとの判定(ステップST13のYES)がなされると、次のステップST14が実行される。 Referring to FIG. 7, as described above, when receiving a control signal indicating a transmission start command from control unit 39, transmission circuit 11 receives a control signal indicating a transmission start command, and in accordance with a predetermined frequency modulation scheme such as the FMCW scheme in accordance with the transmission start command, transmits the signal. A modulated wave (chirp wave) is transmitted (step ST10). Thereafter, the receiving antenna elements 20 0-20 3 When receiving the incoming waves reflected by the target object (step ST11), the reception circuit 21 based on the output of the receiving antenna elements 20 0-20 3, the digital reception signal B k (0,0, n), B k (1,0, n), B k (2,0, n), B k (3,0, n) (n = 0 to N−1) (Step ST12). Thereafter, steps ST10, ST11, and ST12 are repeatedly executed until M frequency modulated waves for one frame are transmitted (NO in step ST13). As a result, M frequency-modulated waves are continuously transmitted within one frame period, and the receiving circuit 21 receives the digital reception signals B k (0, m, n) and B k (1, m) at M × N points. , N), B k (2, m, n) and B k (3, m, n) (m = 0 to M−1, n = 0 to N−1). When it is determined that the transmission is to be ended (YES in step ST13), the next step ST14 is executed.
 ステップST14では、上記のとおり、領域変換部31は、各受信チャネル番号chについてM×N点の周波数領域信号D(ch,fv,fr)(fv=0~M-1,fr=0~N-1)を生成する。 In step ST14, as described above, the domain conversion unit 31 sets the frequency domain signals D k (ch, fv, fr) at M × N points (fv = 0 to M−1, fr = 0 to N-1).
 次に、目標探知部32は、領域変換部31から入力された周波数領域信号D(ch,fv,fr)を受信チャネル番号chについて積分することにより積分信号I(fv,fr)を生成する(ステップST15)。続けて、目標探知部32は、積分信号I(fv,fr)に基づいて目標探知情報(ピーク位置、目標物体との距離及び目標物体の相対速度)の検出を試みる(ステップST16)。目標探知情報が検出されなかった場合(ステップST17のNO)、制御部39はレーダ処理を続行するか否かを判定する(ステップST22)。レーダ処理を続行すると判定した場合には(ステップST22のYES)、制御部39はレーダ処理の手順をステップST10に戻す。一方、レーダ処理を続行しないと判定した場合には(ステップST22のNO)、制御部39はレーダ処理を終了させる。 Next, the target detection unit 32 generates the integrated signal I k (fv, fr) by integrating the frequency domain signal D k (ch, fv, fr) input from the domain conversion unit 31 with respect to the reception channel number ch. (Step ST15). Subsequently, the target detection unit 32 attempts to detect target detection information (peak position, distance to the target object, and relative speed of the target object) based on the integration signal I k (fv, fr) (step ST16). When the target detection information is not detected (NO in step ST17), the control unit 39 determines whether or not to continue the radar processing (step ST22). When it is determined that the radar processing is to be continued (YES in step ST22), the control unit 39 returns the procedure of the radar processing to step ST10. On the other hand, when it is determined that the radar processing is not continued (NO in step ST22), the control unit 39 ends the radar processing.
 ところで、ステップST17にて目標探知情報が検出された場合(ステップST17のYES)、目標探知部32は、その目標探知情報を情報記憶部34に記憶させる(ステップST18)。このとき、目標探知部32は、図6に示した連続検出回数Nの値を零に設定する。 When the target detection information is detected in step ST17 (YES in step ST17), the target detection unit 32 stores the target detection information in the information storage unit 34 (step ST18). At this time, the target detection unit 32 sets the value of the number of continuous detections Nk shown in FIG. 6 to zero.
 その後、到来方向推定部35は、到来方向推定処理を実行する(ステップST20)。図8を参照すると、先ず、相関算出部52は、空間平均法(SSP:Spatial Smoothing Preprocessing)に基づき、周波数領域信号D(0,fv,fr)~D(3,fv,fr)を用いて相関行列(最新の相関行列)Cxxを算出する(ステップST30)。具体的には、相関算出部52は、相関行列Cxxの算出のために、次式(7)に示される相関行列Rxxを利用する。 Thereafter, the direction-of-arrival estimation unit 35 performs a direction-of-arrival estimation process (step ST20). Referring to FIG. 8, first, the correlation calculation unit 52 converts the frequency domain signals D k (0, fv, fr) to D k (3, fv, fr) based on the Spatial Smoothing Preprocessing (SSP). Then, a correlation matrix (latest correlation matrix) Cxx is calculated (step ST30). Specifically, the correlation calculation unit 52 uses a correlation matrix Rxx expressed by the following equation (7) for calculating the correlation matrix Cxx.
   Rxx=X・X               (7) Rxx = X k · X k H (7)
 式(7)において、ドット記号「・」は、行列の積を表し、上付き添字Hは、エルミート共役(共役転置)を表す。相関行列Rxxは、受信チャネル数と同一の行数と受信チャネル数と同一の列数とを有するエルミート行列である。式(7)におけるXは、次式(8)に示されるように、周波数領域信号D(0,fv,fr)~D(3,fv,fr)を要素とする4行1列のベクトルである。 In equation (7), the dot symbol “•” represents a matrix product, and the superscript H represents Hermite conjugate (conjugate transpose). The correlation matrix Rxx is a Hermitian matrix having the same number of rows as the number of reception channels and the same number of columns as the number of reception channels. X k in equation (7) is a four-row, one-column element having frequency domain signals D k (0, fv, fr) to D k (3, fv, fr) as shown in the following equation (8). Is a vector.
Figure JPOXMLDOC01-appb-I000002
 ここで、上付き添字Tは、転置を表す。
Figure JPOXMLDOC01-appb-I000002
Here, the superscript T indicates transposition.
 相関算出部52は、たとえば、次式(9)に示すように、式(7)に示した相関行列Rxxから抽出されたQ個の部分相関行列Rxx(q)(q=1,…,Q)に係数z(=1/Q)を重み付けし、重み付けされた部分相関行列z×Rxx(q)を加算することで、空間平均法に基づく相関行列Cxxを算出することができる。 For example, as shown in the following equation (9), the correlation calculating unit 52 calculates the Q partial correlation matrices Rxx (q) (q = 1,..., Q) extracted from the correlation matrix Rxx shown in the equation (7). ) Is weighted by a coefficient z q (= 1 / Q), and the weighted partial correlation matrix z q × Rxx (q) is added, whereby a correlation matrix Cxx based on the spatial average method can be calculated.

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000003
 式(9)は、Q点の平均化処理を実行する式である。一般に、Q点の平均化処理が行われる場合、相関行列RxxがK行K列の正方行列であれば(Kは3以上の整数)、相関行列Cxxは、(K-Q+1)行(K-Q+1)列の正方行列となる。本実施の形態では、4行4列の相関行列Rxxから、当該相関行列Rxxの対角線に沿って3行3列の部分相関行列Rxx(1),Rxx(2)を2個抽出することが可能である。式(7)の相関行列Rxxをそのまま使用せずに、式(9)の相関行列Cxxを使用することで、到来波間の相互相関を抑圧することができるという利点がある。なお、上記した空間平均法に限らず、他の空間平均法を使用して相関行列Cxxが算出されてもよい。 Equation (9) is an equation for executing the averaging process of the Q point. Generally, when the averaging process of the Q points is performed, if the correlation matrix Rxx is a square matrix of K rows and K columns (K is an integer of 3 or more), the correlation matrix Cxx is (K−Q + 1) rows (K− Q + 1) square matrix. In the present embodiment, it is possible to extract two 3-row, 3-column partial correlation matrices Rxx (1) and Rxx (2) from the 4-row, 4-column correlation matrix Rxx along the diagonal of the correlation matrix Rxx. It is. By using the correlation matrix Cxx of Expression (9) without using the correlation matrix Rxx of Expression (7) as it is, there is an advantage that the cross-correlation between arriving waves can be suppressed. The correlation matrix Cxx may be calculated using not only the above-described spatial averaging method but also another spatial averaging method.
 上記ステップST30の実行後、比較検索部51は、情報記憶部34に記憶されている、現在時刻kよりも前の時刻k-iに検出された先の目標探知情報の中から、ステップST16で検出された最新の目標探知情報と一致または類似する先の目標探知情報を検索する(ステップST31)。ここで、時刻k-iは、現在時刻kに対してiフレーム期間だけ前の時刻である(iは、たとえば1~9の範囲内の整数)。最新の目標探知情報が検出された現在時刻kと、情報記憶部34に記憶されている先の目標探知情報が検出された時刻k-iとの間の差が小さいほど、最新の目標探知情報と当該先の目標探知情報との間の相関が高いと期待することができる。そこで、比較検索部51は、時刻k-iを、現在時刻kに対して直前の時刻k-1(i=1)に限定することができる。比較検索部51は、時刻k-1に検出された先の目標探知情報が存在しない場合には、時刻k-1よりも前の時刻に検出された先の目標探知情報の中から、最新の目標探知情報と一致または類似する先の目標探知情報を検索してもよい。 After the execution of step ST30, the comparison search unit 51 determines in step ST16 from the target detection information detected at the time ki preceding the current time k and stored in the information storage unit 34. The target detection information that matches or is similar to the latest detected target detection information is searched (step ST31). Here, the time ki is a time preceding the current time k by an i-frame period (i is, for example, an integer in the range of 1 to 9). The smaller the difference between the current time k at which the latest target detection information was detected and the time ki at which the previous target detection information stored in the information storage unit 34 was detected, the smaller the latest target detection information. It can be expected that the correlation between the target detection information and the target detection information is high. Therefore, the comparison search unit 51 can limit the time ki to a time k−1 (i = 1) immediately before the current time k. When there is no previous target detection information detected at time k−1, the comparison search unit 51 selects the latest target detection information from the previous target detection information detected at a time earlier than time k−1. The target detection information that matches or is similar to the target detection information may be searched.
 より具体的には、比較検索部51は、最新の目標探知情報の各々について、情報記憶部34に記憶されている先の目標探知情報と最新の目標探知情報との間の類似度または相違度(たとえば、類似度と逆比例する値)を算出し、当該類似度または相違度に基づき、情報記憶部34に記憶されている先の目標探知情報の中から、当該最新の目標探知情報と一致または類似する先の目標探知情報を1つ探し出すことができる。 More specifically, the comparison search unit 51 determines, for each of the latest target detection information, the degree of similarity or difference between the previous target detection information stored in the information storage unit 34 and the latest target detection information. (E.g., a value inversely proportional to the similarity) is calculated and, based on the similarity or the difference, matches the latest target detection information from the previous target detection information stored in the information storage unit 34. Alternatively, one similar target detection information can be found.
 図6に例示したように、目標探知情報は、時刻情報、ピーク位置(距離周波数ビン番号及び速度周波数ビン番号の組)、検出された目標物体との距離及び相対速度などの複数の要素からなるので、目標探知情報に基づいてそれら複数の要素の全部または一部からなるベクトルを構成することができる。比較検索部51は、最新の目標探知情報に基づいて構成されたベクトルと、先の目標探知情報に基づいて構成されたベクトルとの間のユークリッド距離またはマンハッタン距離などのベクトル間距離(ノルム)またはそのベクトル間距離の2乗を相違度として算出することができる。あるいは、比較検索部51は、相違度の逆数を類似度として算出してもよい。 As illustrated in FIG. 6, the target detection information includes a plurality of elements such as time information, a peak position (a set of a distance frequency bin number and a speed frequency bin number), a distance to a detected target object, and a relative speed. Therefore, a vector composed of all or some of the plurality of elements can be configured based on the target detection information. The comparison search unit 51 determines a vector-to-vector distance (norm) such as a Euclidean distance or a Manhattan distance between a vector configured based on the latest target detection information and a vector configured based on the previous target detection information. The square of the distance between the vectors can be calculated as the degree of difference. Alternatively, the comparison search unit 51 may calculate the reciprocal of the degree of difference as the degree of similarity.
 たとえば、時刻kで検出されたp番目(pは1以上の整数)の目標物体との距離をr(p)、時刻kで検出されたp番目の目標物体の相対速度をv(p)、時刻kで検出されたp番目のピーク位置を示す距離周波数ビン番号及び速度周波数ビン番号をそれぞれfr(p),fv(p)と表すものとする。また、時刻kよりも前の時刻t(t=k-i)で検出されたp番目(pは1以上の整数)の目標物体との距離をr(p)、時刻tで検出されたp番目の目標物体の相対速度をv(p)、時刻tで検出されたp番目のピーク位置を示す距離周波数ビン番号及び速度周波数ビン番号をそれぞれfr(p),fv(p)と表すものとする。このとき、最新の目標探知情報に基づいて構成されるp番目のベクトルV(p)と、前の時刻tに検出された先の目標探知情報に基づいて構成されるベクトルV(p)とは、たとえば、次式(10A),(11A)の組、または次式(10B),(11B)の組によって表現可能である。 For example, p k-th detected at time k (p k is an integer of 1 or more) the distance between the target object r k of (p k), the relative velocity of the detected p k-th target object at time k v k (p k), the distance indicating the p k-th peak position detected at time k frequency bin number and speed frequency bin number, respectively fr k (p k), and represents the fv k (p k) . Further, p t th detected at than time k before time t (t = k-i) the distance between the target object (p t is an integer of 1 or more) r t (p t), at time t The relative speed of the detected pt- th target object is v t ( pt ), and the distance frequency bin number and the speed frequency bin number indicating the pt- th peak position detected at time t are fr t ( pt ), it shall be expressed as fv t (p t). At this time, it constructed based on the latest target detection information p k-th vector V k (p k) and configured based on the target detection information of the detected previously before time t vector V t ( p k ) can be expressed by, for example, a set of the following equations (10A) and (11A) or a set of the following equations (10B) and (11B).

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000004
 この場合、比較検索部51は、式(10A),(11A)の組、または式(10B),(11B)の組のいずれか一方を用いて、次式(12A)または(12B)に示すように相違度Δ(k,p,t,p)を算出することができる。 In this case, the comparison search unit 51 uses one of the set of the formulas (10A) and (11A) or the set of the formulas (10B) and (11B) to express the following formula (12A) or (12B). Thus, the difference Δ (k, pk , t, pt ) can be calculated.

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000005
 あるいは、比較検索部51は、重み係数w,wを用いて次式(13A)または(13B)に示すように相違度Δ(k,p,t,p)を算出してもよい。 Alternatively, comparison search unit 51, the dissimilarity Δ using the weight coefficients w 1, w 2 as shown in the following equation (13A) or (13B) (k, p k , t, p t) be calculated Good.

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
 重み係数w,wの値は、過去の測定結果に基づいて予め設定または算出されたものでよい。重み係数w,wの値を調整することで、比較検索部51は、相対速度または距離のいずれか一方を重視した検索を行うことが可能となる。 The values of the weight coefficients w 1 and w 2 may be set or calculated in advance based on past measurement results. By adjusting the values of the weight coefficients w 1 and w 2 , the comparison search unit 51 can perform a search that emphasizes either the relative speed or the distance.
 比較検索部51は、最新の目標探知情報の各々について、情報記憶部34に記憶されている先の目標探知情報の中から、当該最新の目標探知情報との類似度が一定値以上であり、かつ、最大の類似度を有するものを1つだけ探し出せばよい。あるいは、比較検索部51は、最新の目標探知情報の各々について、情報記憶部34に記憶されている先の目標探知情報の中から、当該最新の目標探知情報との相違度が一定値以下であり、かつ、最小の相違度を有するものを1つだけ探し出せばよい。 The comparison search unit 51, for each of the latest target detection information, from among the previous target detection information stored in the information storage unit 34, the degree of similarity with the latest target detection information is equal to or more than a certain value, In addition, it is sufficient to find only one having the maximum similarity. Alternatively, for each of the latest target detection information, the comparison search unit 51 determines, from among the previous target detection information stored in the information storage unit 34, that the degree of difference from the latest target detection information is equal to or less than a certain value. It is only necessary to find one that has the least difference.
 次に、最新の目標探知情報の各々について、当該最新の目標探知情報と一致または類似する先の目標探知情報が探し出されなかった場合は(ステップST32のNO)、比較検索部51、固有値算出部53及び固有ベクトル算出部54は、ステップST34,ST41~ST49,ST61~ST66(図9)を実行する。一方、最新の目標探知情報の各々について、当該最新の目標探知情報と一致または類似する先の目標探知情報が探し出された場合は(ステップST32のYES)、比較検索部51、固有値算出部53及び固有ベクトル算出部54は、ステップST35,ST36(図8),ステップST37~ST39,ST51~ST59(図10)、及び、ステップST49,ST61~ST66(図9)を実行することができる。たとえば、最新の目標探知情報が2つ検出された場合、検出された最新の目標探知情報のうちの第1の最新の目標探知情報と一致または類似する先の目標探知情報が探し出されなかったときは、ステップST34,ST41~ST49,ST61~ST66(図9)が実行され、検出された最新の目標探知情報のうちの第2の最新の目標探知情報と一致または類似する先の目標探知情報が探し出されたときは、ステップST35,ST36(図8),ステップST37~ST39,ST51~ST59(図10),及び、ステップST49,ST61~ST66(図9)が実行される。 Next, for each of the latest target detection information, if the previous target detection information that matches or is similar to the latest target detection information is not found (NO in step ST32), the comparison search unit 51 and the eigenvalue calculation The unit 53 and the eigenvector calculation unit 54 execute steps ST34, ST41 to ST49, and ST61 to ST66 (FIG. 9). On the other hand, when the target detection information that matches or is similar to the latest target detection information is found for each of the latest target detection information (YES in step ST32), the comparison search unit 51 and the eigenvalue calculation unit 53. In addition, the eigenvector calculation unit 54 can execute steps ST35 and ST36 (FIG. 8), steps ST37 to ST39, ST51 to ST59 (FIG. 10), and steps ST49 and ST61 to ST66 (FIG. 9). For example, when two latest target detection information are detected, the target detection information that matches or is similar to the first latest target detection information among the detected latest target detection information is not found. At this time, steps ST34, ST41 to ST49, and ST61 to ST66 (FIG. 9) are executed, and the target detection information of the destination that matches or is similar to the second latest target detection information among the detected latest target detection information. Are found, steps ST35 and ST36 (FIG. 8), steps ST37 to ST39, ST51 to ST59 (FIG. 10), and steps ST49 and ST61 to ST66 (FIG. 9) are executed.
 最新の目標探知情報と一致または類似する先の目標探知情報が探し出されなかった場合は(ステップST32のNO)、固有値算出部53及び固有ベクトル算出部54は、ステップST30で算出された相関行列Cxxを初期行列として用いた固有値分解(Eigenvalue Decomposition)アルゴリズムに基づく反復演算を実行することにより相関行列Cxxの固有値及び固有ベクトルを算出する(図9のステップST34,ST41~ST48)。 If the target detection information that matches or is similar to the latest target detection information has not been found (NO in step ST32), the eigenvalue calculation unit 53 and the eigenvector calculation unit 54 calculate the correlation matrix Cxx calculated in step ST30. The eigenvalue and the eigenvector of the correlation matrix Cxx are calculated by executing an iterative operation based on an eigenvalue decomposition (Eigenvalue @ Decomposition) algorithm using as an initial matrix (steps ST34 and ST41 to ST48 in FIG. 9).
 具体的には、固有値算出部53は、たとえば公知のハウスホルダー(Householder)法に基づき、変換行列Hを用いて相関行列Cxxをヘッセンベルグ行列A(0)に変換し(ステップST34)、反復回数jの値を零に設定する(ステップST41)。次いで、固有値算出部53は、公知のQR分解(QR decomposition)法に基づいて行列A(j)をユニタリ行列Qと上三角行列Rとの積に分解する(ステップST42)。続いて、固有値算出部53は、ユニタリ行列Qを用いて次式(14)に示すように行列A(j)を相似変換することで相似変換行列Tを算出する(ステップST43)。 Specifically, eigenvalue calculation section 53 converts correlation matrix Cxx to Hessenberg matrix A (0) using conversion matrix H 0 based on, for example, the known Householder method (step ST34), and iteratively. The value of the number j is set to zero (step ST41). Then, eigenvalue calculation section 53, decomposed into a product of a unitary matrix matrix A (j) based on known QR decomposition (QR decomposition) method Q j and an upper triangular matrix R j (step ST42). Then, eigenvalue calculation section 53, the matrix A (j) as shown in the following equation (14) calculating a similarity transformation matrix T by similarity transformation with a unitary matrix Q j (step ST43).
  T=Q ・A(j)・Q             (14) T = Q j H · A (j) · Q j (14)
 次に、固有値算出部53は、相似変換行列Tが収束したか否か、すなわち相似変換行列Tが所定の収束条件を満たすか否かを判定する(ステップST44)。相似変換行列Tが収束していないと判定された場合(ステップST44のNO)、固有値算出部53は、反復回数jを1だけインクリメントし(ステップST45)、相似変換行列Tの要素を行列A(j)に代入する(ステップST46)。続けて、固有値算出部53は、ステップST42,ST43,ST44を実行する。最終的に、相似変換行列Tが収束したと判定された場合(ステップST44のYES)、固有値算出部53は、相似変換行列Tの対角要素を相関行列Cxxの固有値Λ(0),…,Λ(n-1)(nは正整数)と推定することができる(ステップST47)。 Next, the eigenvalue calculation unit 53 determines whether or not the similarity transformation matrix T has converged, that is, whether or not the similarity transformation matrix T satisfies a predetermined convergence condition (step ST44). When it is determined that the similarity transformation matrix T has not converged (NO in step ST44), the eigenvalue calculation unit 53 increments the number of iterations j by 1 (step ST45), and replaces the elements of the similarity transformation matrix T with the matrix A ( j) (step ST46). Subsequently, the eigenvalue calculation unit 53 executes steps ST42, ST43, and ST44. Finally, when it is determined that the similarity transformation matrix T has converged (YES in step ST44), the eigenvalue calculation unit 53 converts the diagonal elements of the similarity transformation matrix T into the eigenvalues Λ (0), ..., of the correlation matrix Cxx. Λ (n−1) (n is a positive integer) can be estimated (step ST47).
 ステップST47の実行後、固有ベクトル算出部54は、ステップST43で使用されたユニタリ行列Q,Q,…,QNq-1とステップST34で使用された変換行列Hとを用いた逆変換を実行して、相関行列Cxxの固有ベクトルv(0),…,v(n-1)を算出する(ステップST48)。固有ベクトルv(0),…,v(n-1)は、固有値Λ(0),…,Λ(n-1)にそれぞれ対応するものである。具体的には、固有ベクトル算出部54は、次式(15)に基づいて、固有ベクトルv(0),…,v(n-1)を算出することができる。 After the execution of step ST47, the eigenvector calculation unit 54 performs an inverse transformation using the unitary matrices Q 0 , Q 1 ,..., Q Nq−1 used in step ST43 and the transformation matrix H 0 used in step ST34. By executing, the eigenvectors v (0),..., V (n-1) of the correlation matrix Cxx are calculated (step ST48). The eigenvectors v (0), ..., v (n-1) correspond to the eigenvalues Λ (0), ..., Λ (n-1), respectively. Specifically, the eigenvector calculation unit 54 can calculate the eigenvectors v (0), ..., v (n-1) based on the following equation (15).
Figure JPOXMLDOC01-appb-I000007
 ここで、Nqは、相似変換行列Tが収束するまでに要した反復回数である。
Figure JPOXMLDOC01-appb-I000007
Here, Nq is the number of iterations required until the similarity transformation matrix T converges.
 ステップST48の実行後、到来方向算出部55は、相関行列Cxxの固有値Λ(0),…,Λ(n-1)及び固有ベクトルv(0),…,v(n-1)を並べ替える(ステップST49)。具体的には、到来方向算出部55は、固有値Λ(0),…,Λ(n-1)を降順(大きい方から順)に並べ替えることによって、次式(16)を満たす固有値λ(0),…,λ(n-1)を得る。 After the execution of step ST48, the arrival direction calculation unit 55 rearranges the eigenvalues Λ (0),..., Λ (n−1) and the eigenvectors v (0),..., V (n−1) of the correlation matrix Cxx ( Step ST49). Specifically, the arrival direction calculation unit 55 rearranges the eigenvalues Λ (0),..., Λ (n−1) in descending order (in descending order), so that the eigenvalue λ ( 0),..., Λ (n-1).
  λ(0)≧ … ≧λ(n-1)           (16) {Λ (0) ≧... ≧ λ (n−1)}
 式(16)は、α<βを満たす任意の整数α,βに対して、λ(α)≧λ(β)が常に成立することを意味する。また到来方向算出部55は、固有ベクトルv(0),…,v(n-1)を並べ替えることで、固有値λ(0),…,λ(n-1)にそれぞれ対応する固有ベクトルvc(0),…,vc(n-1)を得る。 Equation (16) means that λ (α) ≧ λ (β) always holds for arbitrary integers α and β that satisfy α <β. Further, the arrival direction calculation unit 55 rearranges the eigenvectors v (0),..., V (n−1), and thereby the eigenvectors vc (0) respectively corresponding to the eigenvalues λ (0),. ),..., Vc (n-1).
 次に、到来方向算出部55は、ステップST49で得られた固有値λ(0)~λ(n-1)の大きさに基づいて到来波数Niを推定する(図9のステップST61)。具体的には、到来方向算出部55は、ノイズレベルの想定値σを閾値として使用し、固有値λ(0)~λ(n-1)のうち閾値σよりも大きな固有値λ(0),…,λ(Ni-1)の個数(Niは正整数)を到来波数Niとして推定することができる。あるいは、到来方向算出部55は、固有値λ(0),…,λ(n-1)のうちk番目に大きな固有値に予め設定された係数を乗算して得た値を閾値th1として使用し、固有値λ(0),…,λ(n-1)のうち閾値th1よりも大きな固有値λ(0),…,λ(Ni-1)の個数を到来波数Niと推定してもよい。ここで、kは、n以下の整数であり、想定される到来波の数よりも大きく、かつノイズレベル相当と推定できる固有値の番号である。 Next, the direction-of-arrival calculating section 55 estimates the number Ni of incoming waves based on the magnitudes of the eigenvalues λ (0) to λ (n-1) obtained in step ST49 (step ST61 in FIG. 9). Specifically, the direction-of-arrival calculation unit 55 uses the assumed value σ 2 of the noise level as a threshold, and among the eigen values λ (0) to λ (n−1), the eigen value λ (0) larger than the threshold σ 2 ,..., Λ (Ni−1) (Ni is a positive integer) can be estimated as the number of incoming waves Ni. Alternatively, DOA computation unit 55, the eigenvalue λ (0), ..., λ a value obtained by multiplying a preset factor to a large eigenvalue k z th of (n-1) is used as a threshold th1 , Λ (n−1), the number of eigenvalues λ (0),..., Λ (Ni−1) larger than the threshold th1 may be estimated as the number of arriving waves Ni. Here, kz is an integer less than or equal to n, and is a number of an eigenvalue that is larger than the assumed number of incoming waves and can be estimated to be equivalent to a noise level.
 次に、到来方向算出部55は、ESPRIT法に基づくアルゴリズムを実行して、目標物体で反射された単数または複数の到来波の到来方向を推定する(ステップST62~ST65)。 Next, the direction-of-arrival calculating unit 55 executes an algorithm based on the ESPRIT method to estimate the direction of arrival of one or more arriving waves reflected by the target object (steps ST62 to ST65).
 具体的には、到来方向算出部55は、先ず、固有ベクトルvc(0),…,vc(n-1)の中から、到来波数Niに対応する固有ベクトルvc(0),…,vc(Ni-1)を抽出し、これら固有ベクトルvc(0),…,vc(Ni-1)で構成される部分空間行列Esから、部分行列Ex,Eyを生成する(ステップST62)。部分空間行列Esは、次式(17)で与えられる。 Specifically, the direction-of-arrival calculation unit 55 firstly selects, from among the eigenvectors vc (0),..., Vc (n-1), the eigenvectors vc (0),. 1) is extracted, and partial matrices Ex and Ey are generated from a partial space matrix Es composed of these eigenvectors vc (0),..., Vc (Ni-1) (step ST62). The subspace matrix Es is given by the following equation (17).
    Es=[vc(0),…,vc(Ni-1)]     (17) {Es = [vc (0), ..., vc (Ni-1)]} (17)
 部分空間行列Esは、式(17)に示したように、固有ベクトルvc(0),…,vc(Ni-1)を列の要素(列ベクトル)とする行列である。到来方向算出部55は、たとえば、部分空間行列Esの1行目からL-1行目(Lは受信アンテナ素子の個数)までの固有ベクトルで部分行列Exを生成することができ、部分空間行列Esの2行目からL行目までの固有ベクトルで部分行列Exを生成することができる。 The 空間 subspace matrix Es is a matrix having the eigenvectors vc (0),..., Vc (Ni-1) as column elements (column vectors), as shown in Expression (17). The arrival direction calculation unit 55 can generate the submatrix Ex with eigenvectors from the first row to the L-1 row (L is the number of receiving antenna elements) of the subspace matrix Es, for example. , The sub-matrix Ex can be generated using the eigenvectors from the second row to the L-th row.
 ステップST62の実行後、到来方向算出部55は、次式(18)を満たす行列ψを算出し(ステップST63)、行列ψの固有値を算出する(ステップST64)。 {After performing step ST62, the arrival direction calculating unit 55 calculates a matrix を 満 た す that satisfies the following equation (18) (step ST63), and calculates an eigenvalue of the matrix ψ (step ST64).
    Ey=Ex・ψ                  (18) Ey = Ex · ψ (18)
 行列ψの算出法としては、部分行列Exの逆行列に相当する擬似逆行列を使用するLS(Least Squares)-ESPRIT法と、部分行列Ex,Eyに含まれる誤差の影響を最小化するTLS(Total-Least-Squares)-ESPRIT法とが知られている。到来方向算出部55は、LS-ESPRIT法またはTLS-ESPRIT法などの公知のESPRIT法に基づいて行列ψを算出すればよい。到来波数Niに応じて部分行列Eyの列のサイズは変わるため、部分行列Eyは正方行列であるとは限らない。LS-ESPRIT法では、部分行列Exの擬似逆行列を部分行列Eyに乗算することで、行列ψが算出可能である。また、行列ψはエルミート行列とは限らない。行列ψの固有値の算出法としては、たとえば、上記ステップST34,ST41~ST47と同様の方法を使用することができるが、特に限定されるものではない。 As a method of calculating the matrix ψ, an LS (Least Squares) -ESPRIT method using a pseudo inverse matrix corresponding to an inverse matrix of the sub-matrix Ex, and a TLS (Minimizing the influence of errors included in the sub-matrices Ex and Ey) Total-Least-Squares) -ESPRIT method is known. The arrival direction calculation unit 55 may calculate the matrix ψ based on a known ESPRIT method such as the LS-ESPRIT method or the TLS-ESPRIT method. Since the size of the columns of the sub-matrix Ey changes according to the number Ni of incoming waves, the sub-matrix Ey is not always a square matrix. In the LS-ESPRIT method, a matrix ψ can be calculated by multiplying a partial matrix Ey by a pseudo inverse matrix of the partial matrix Ex. Also, the matrix ψ is not necessarily a Hermitian matrix. As a method of calculating the eigenvalue of the matrix ψ, for example, the same method as in steps ST34 and ST41 to ST47 can be used, but is not particularly limited.
 次に、到来方向算出部55は、ステップST64で得られた、行列ψの各固有値の複素偏角(位相)φを用いて各到来波の到来方向を算出する(ステップST65)。図3に示したように受信アンテナ素子20~20が等間隔で配列されている場合には、行列ψの固有値λが与えられたとき、到来波の到来方向を示す入射角θは、たとえば次式(19)に基づいて算出可能である。 Next, the direction-of-arrival calculating unit 55 calculates the direction of arrival of each arriving wave using the complex argument (phase) φ of each eigenvalue of the matrix 得 obtained in step ST64 (step ST65). When the receiving antenna elements 20 0-20 3 as shown in FIG. 3 are arranged at equal intervals, when the eigenvalues λ of the matrix ψ is given, the incident angle θ indicating the direction of arrival of the incoming wave, For example, it can be calculated based on the following equation (19).
   θ=Arcsin(λ・φ/(2πd))       (19)
 ここで、Arcsin()は、逆正弦を求める関数であり、λは、信号波長である。
θ = Arcsin (λ · φ / (2πd)) (19)
Here, Arcsin () is a function for obtaining an inverse sine, and λ is a signal wavelength.
 そして、到来方向算出部55は、相関行列Cxxの固有ベクトルvc(0)~vc(n-1)、固有値λ(0)~λ(n-1)及び到来方向θ~θNiを、最新の目標探知情報と関連付けて情報記憶部34に記憶させる(ステップST66)。 Then, the direction-of-arrival calculation unit 55 calculates the latest eigenvectors vc (0) to vc (n-1), the eigenvalues λ (0) to λ (n-1) and the directions of arrival θ 1 to θ Ni of the correlation matrix Cxx. The information is stored in the information storage unit 34 in association with the target detection information (step ST66).
 ステップST66の実行後、情報出力部38は、情報記憶部34から、目標物体との距離、目標物体の相対速度及び到来方向などの目標情報Dcを読み出して外部に出力する(図7のステップST21)。外部に出力された目標情報Dcは、たとえば、後段の処理装置で追尾処理に使用されるか、あるいは、表示装置に表示される情報として使用される。その後、制御部39は、レーダ処理を続行すると判定した場合には(ステップST22のYES)、レーダ処理の手順をステップST10に戻す。一方、レーダ処理を続行しないと判定した場合には(ステップST22のNO)、制御部39はレーダ処理を終了させる。 After the execution of step ST66, the information output unit 38 reads out the target information Dc such as the distance to the target object, the relative speed and the arrival direction of the target object from the information storage unit 34, and outputs the target information Dc to the outside (step ST21 in FIG. 7). ). The target information Dc output to the outside is used, for example, for tracking processing in a subsequent processing device, or is used as information displayed on a display device. Thereafter, when it is determined that the radar process is to be continued (YES in step ST22), the control unit 39 returns the procedure of the radar process to step ST10. On the other hand, when it is determined that the radar processing is not continued (NO in step ST22), the control unit 39 ends the radar processing.
 一方、図8を参照すると、ステップST31で最新の目標探知情報と一致または類似する先の目標探知情報が探し出されていた場合は(ステップST32のYES)、比較検索部51は、当該最新の目標探知情報の連続検出回数Nを、探し出された先の目標探知情報の連続検出回数Nk-iを1だけインクリメントして得た値(=Nk-i+1)に設定する(ステップST35)。そして、比較検索部51は、連続検出回数Nk-iが所定の閾値Nth以上であるか否かを判定する(ステップST36)。連続検出回数Nk-iが閾値Nth以上であると判定されたとき(ステップST36のYES)、固有値算出部53及び固有ベクトル算出部54は、当該先の目標探知情報に対応する先の固有ベクトルvb(0),…,vb(n-1)(nは正整数)と相関行列Cxxとを用いて、固有値分解アルゴリズムに基づく反復演算を実行することにより相関行列Cxxの固有値及び固有ベクトルを算出する(図10のステップST37~ST39,ST51~ST59)。連続検出回数Nk-iが閾値Nth未満であると判定されたときは(ステップST36のNO)、ステップST34(図9)が実行される。このように、目標物体の検出頻度を表す連続検出回数Nが所定の閾値Nth以上のとき、固有値算出部53及び固有ベクトル算出部54は、信頼度の高い先の目標探知情報を用いた反復演算を実行することができる。閾値Nthの値としては、たとえば、2を設定することができる。 On the other hand, referring to FIG. 8, if the previous target detection information that matches or is similar to the latest target detection information has been found in step ST31 (YES in step ST32), the comparison search unit 51 returns to the latest search target. the continuous detection number N k of target detection information is set to the found previous continuous detection number N k-i was obtained by incrementing by 1 the value of the target detection information (= N k-i +1) ( step ST35). Then, comparing the search unit 51, the continuous detection number N k-i determines whether a predetermined threshold N th or more (step ST36). When the continuous detection number N k-i is determined to be the threshold value N th or more (YES in step ST36), eigenvalue calculation section 53 and the eigenvector computing section 54, ahead of eigenvectors vb corresponding to the target detection information of the destination By using (0),..., Vb (n−1) (n is a positive integer) and the correlation matrix Cxx, an eigenvalue and an eigenvector of the correlation matrix Cxx are calculated by executing an iterative operation based on an eigenvalue decomposition algorithm ( Steps ST37 to ST39 and ST51 to ST59 in FIG. 10). When the continuous detection number N k-i is determined to be less than the threshold value N th (NO in step ST36), steps ST34 (FIG. 9) is executed. As described above, when the number of consecutive detections Nk indicating the detection frequency of the target object is equal to or greater than the predetermined threshold Nth, the eigenvalue calculation unit 53 and the eigenvector calculation unit 54 perform the repetition using the target detection information with high reliability. Operations can be performed. For the threshold value N th, for example, it is possible to set two.
 次に、図10を参照すると、ステップST37において、固有値算出部53は、次式(20)に基づき、当該先の目標探知情報に対応する先の固有ベクトルvb(0),…,vb(n-1)に基づいて変換行列Bを算出する。 Next, referring to FIG. 10, in step ST37, the eigenvalue calculation unit 53 determines, based on the following equation (20), the previous eigenvectors vb (0),..., Vb (n− A transformation matrix B is calculated based on 1).
   B=[vb(0),…,vb(n-1)]      (20) {B = [vb (0), ..., vb (n-1)]} (20)
 相関行列Cxxはn行n列の正方行列である。変換行列Bは、式(20)に示したような、先の固有ベクトルvb(0)~vb(n-1)を列の要素(列ベクトル)とする行列である。相関行列Cxxはエルミート行列であるので、一般的に、列ベクトルvb(0)~vb(n-1)は互いに直交し、変換行列Bはn行n列のユニタリ行列である。 The correlation matrix Cxx is a square matrix with n rows and n columns. The transformation matrix B is a matrix having the above eigenvectors vb (0) to vb (n-1) as column elements (column vectors) as shown in Expression (20). Since the correlation matrix Cxx is a Hermitian matrix, the column vectors vb (0) to vb (n-1) are generally orthogonal to each other, and the transformation matrix B is a unitary matrix having n rows and n columns.
 次いで、固有値算出部53は、変換行列Bを用いた相似変換を実行する(ステップST38)。すなわち、固有値算出部53は、次式(21)に示すように、変換行列Bを相関行列Cxxに右方から乗算し、かつ変換行列Bの随伴行列Bを相関行列Cxxに左方から乗算して、相似変換行列Γを算出する。 Next, the eigenvalue calculation unit 53 executes similarity conversion using the conversion matrix B (step ST38). That is, the intrinsic value calculation unit 53, as shown in the following equation (21), multiplied from the right side of the transformation matrix B in the correlation matrix Cxx, and multiplication from the left to the correlation matrix Cxx the adjoint matrix B H of the transformation matrix B Then, a similarity transformation matrix Γ is calculated.
   Γ=B・Cxx・B               (21) Γ = B H・ Cxx ・ B (21)
 ステップST38の実行後、固有値算出部53は、たとえば公知のハウスホルダー法に基づき、変換行列Hを用いて相似変換行列Γをヘッセンベルグ行列A(0)に変換し(ステップST39)、反復回数jの値を零に設定する(ステップST51)。 After step ST38, the eigenvalue calculation unit 53, for example, converts, based on a known Householder method, the similarity transformation matrix Γ using the transformation matrix H 1 in Hessenberg matrix A (0) (step ST39), the number of iterations The value of j is set to zero (step ST51).
 次いで、固有値算出部53は、ステップST42と同様に、QR分解法に基づいて行列A(j)をユニタリ行列Qと上三角行列Rとの積に分解し(ステップST52)、ステップST43と同様に、ユニタリ行列Qを用いて行列A(j)を相似変換することで相似変換行列Tを算出する(ステップST53)。次に、固有値算出部53は、ステップST44と同様に、相似変換行列Tが収束したか否か、すなわち相似変換行列Tが所定の収束条件を満たすか否かを判定する(ステップST54)。相似変換行列Tが収束していないと判定された場合(ステップST54のNO)、固有値算出部53は、反復回数jを1だけインクリメントし(ステップST55)、相似変換行列Tの要素を行列A(j)に代入する(ステップST56)。続けて、固有値算出部53は、ステップST52,ST53,ST54を実行する。 Then, eigenvalue calculation section 53, as in step ST42, the matrix A (j) based on the QR decomposition method decomposes the product of the unitary matrix Q j and an upper triangular matrix R j (step ST52), and step ST43 Similarly, the matrix a and (j) calculating a similarity transformation matrix T by similarity transformation with a unitary matrix Q j (step ST53). Next, as in step ST44, the eigenvalue calculation unit 53 determines whether the similarity transformation matrix T has converged, that is, whether the similarity transformation matrix T satisfies a predetermined convergence condition (step ST54). When it is determined that the similarity transformation matrix T has not converged (NO in step ST54), the eigenvalue calculation unit 53 increments the number of iterations j by 1 (step ST55), and replaces the elements of the similarity transformation matrix T with the matrix A ( j) (step ST56). Subsequently, the eigenvalue calculation unit 53 executes steps ST52, ST53, and ST54.
 最終的に、相似変換行列Tが収束したと判定された場合(ステップST54のYES)、固有値算出部53は、相似変換行列Tの対角要素を相関行列Cxxの固有値Λ(0),…,Λ(n-1)(nは正整数)と推定することができる(ステップST57)。 Finally, when it is determined that the similarity transformation matrix T has converged (YES in step ST54), the eigenvalue calculation unit 53 converts the diagonal elements of the similarity transformation matrix T into the eigenvalues Λ (0),. Λ (n−1) (n is a positive integer) can be estimated (step ST57).
 ステップST57の実行後、固有ベクトル算出部54は、ステップST48と同様に、ステップST53で使用されたユニタリ行列QとステップST39で使用された変換行列Hとを用いた逆変換を実行して、変換行列Γの固有ベクトルx(0),…,x(n-1)を算出する(ステップST58)。 After execution of step ST57, the eigenvector computing section 54, similarly to the step ST48, by performing the inverse transformation using the transformation matrix H 1 used in the unitary matrix Q j and the step ST39, which is used in step ST53, The eigenvectors x (0),..., X (n-1) of the transformation matrix Γ are calculated (step ST58).
 その後、固有ベクトル算出部54は、次式(22)に示すように、ステップST38で使用された変換行列Bを用いて、変換行列Γの固有ベクトルx(κ)から相関行列Cxxの固有ベクトルv(κ)を算出する(ステップST59)。 After that, as shown in the following equation (22), the eigenvector calculation unit 54 uses the transformation matrix B used in step ST38 to convert the eigenvector x (κ) of the transformation matrix Γ to the eigenvector v (κ) of the correlation matrix Cxx. Is calculated (step ST59).
   v(κ)=B・x(κ)           (22) {V (κ) = B · x (κ)} (22)
 式(22)中、κは、0~n-1の範囲内の任意の整数である。固有ベクトルv(0),…,v(n-1)は、固有値Λ(0),…,Λ(n-1)にそれぞれ対応するものである。 Κ In the formula (22), κ is an arbitrary integer in the range of 0 to n−1. The eigenvectors v (0), ..., v (n-1) correspond to the eigenvalues Λ (0), ..., Λ (n-1), respectively.
 相関行列Cxxは、エルミート行列であるので、固有値Λ(0)~Λ(n-1)に対応する固有ベクトルv(0)~v(n-1)は、一般に、n個の線形独立なベクトルである。また、固有値Λ(0)~Λ(n-1)が縮退している場合であっても、線形独立な固有ベクトルv(0)~v(n-1)を選ぶことは可能である。同様に、先の固有ベクトルvb(0)~vb(n-1)も、n個の線形独立な固有ベクトルであり、先の固有ベクトルvb(0)~vb(n-1)から生成された変換行列Bは、ユニタリ行列である。また、一般的に、式(21)で示したような相似変換が実行されても、相関行列Cxxの固有値は、相似変換行列Γの固有値と一致することが知られている。ただし、相似変換行列Γの固有ベクトルx(0)~x(n-1)と相関行列Cxxの固有ベクトルv(0)~v(n-1)とは相違するため、相似変換行列Γの固有ベクトルx(0)~x(n-1)にユニタリ行列Bを乗算することで、固有ベクトルv(0)~v(n-1)を得ることができる。 Since the correlation matrix Cxx is a Hermitian matrix, the eigenvectors v (0) to v (n-1) corresponding to the eigenvalues Λ (0) to Λ (n-1) are generally n linearly independent vectors. is there. Further, even when the eigenvalues Λ (0) to Λ (n−1) are degenerated, it is possible to select linearly independent eigenvectors v (0) to v (n−1). Similarly, the above eigenvectors vb (0) to vb (n-1) are also n linearly independent eigenvectors, and the transformation matrix B generated from the above eigenvectors vb (0) to vb (n-1) Is a unitary matrix. In general, it is known that the eigenvalue of the correlation matrix Cxx matches the eigenvalue of the similarity transformation matrix て も even when the similarity transformation as shown in Expression (21) is performed. However, since the eigenvectors x (0) to x (n-1) of the similarity transformation matrix Γ are different from the eigenvectors v (0) to v (n-1) of the correlation matrix Cxx, the eigenvectors x ( By multiplying the unitary matrix B by (0) to x (n-1), eigenvectors v (0) to v (n-1) can be obtained.
 次に、図9を参照すると、到来方向算出部55は、ステップST57~ST59で得た固有値Λ(0),…,Λ(n-1)及び固有ベクトルv(0),…,v(n-1)を並べ替えることで、固有値λ(0),…,λ(n-1)及び固有ベクトルvc(0),…,vc(n-1)を得る(ステップST49)。次いで、到来方向算出部55は、固有値λ(0)~λ(n-1)の大きさに基づいて到来波数Niを推定する(ステップST61)。次に、到来方向算出部55は、ESPRIT法に基づくアルゴリズムを実行して、目標物体で反射された単数または複数の到来波の到来方向を推定する(ステップST62~ST65)。 Next, referring to FIG. 9, the direction-of-arrival calculating unit 55 calculates the eigenvalues Λ (0),..., Λ (n−1) and the eigenvectors v (0),. By rearranging 1), eigenvalues λ (0),..., Λ (n−1) and eigenvectors vc (0),..., Vc (n−1) are obtained (step ST49). Next, the direction-of-arrival calculating unit 55 estimates the number Ni of incoming waves based on the magnitude of the eigenvalues λ (0) to λ (n-1) (step ST61). Next, the direction-of-arrival calculation unit 55 executes an algorithm based on the ESPRIT method to estimate the direction of arrival of one or more arriving waves reflected by the target object (steps ST62 to ST65).
 そして、到来方向算出部55は、相関行列Cxxの固有ベクトルvc(0)~vc(n-1)、固有値λ(0)~λ(n-1)及び到来方向θ~θNiを、最新の目標探知情報と関連付けて情報記憶部34に記憶させる(ステップST66)。 Then, the direction-of-arrival calculation unit 55 calculates the latest eigenvectors vc (0) to vc (n-1), the eigenvalues λ (0) to λ (n-1) and the directions of arrival θ 1 to θ Ni of the correlation matrix Cxx. The information is stored in the information storage unit 34 in association with the target detection information (step ST66).
 ステップST66の実行後、情報出力部38は、情報記憶部34から、目標物体との距離、目標物体の相対速度及び到来方向などの目標情報Dcを読み出して外部に出力する(図7のステップST21)。その後、制御部39は、レーダ処理を続行すると判定した場合には(ステップST22のYES)、レーダ処理の手順をステップST10に戻す。一方、レーダ処理を続行しないと判定した場合には(ステップST22のNO)、制御部39はレーダ処理を終了させる。 After the execution of step ST66, the information output unit 38 reads out the target information Dc such as the distance to the target object, the relative speed and the arrival direction of the target object from the information storage unit 34, and outputs the target information Dc to the outside (step ST21 in FIG. 7). ). Thereafter, when it is determined that the radar process is to be continued (YES in step ST22), the control unit 39 returns the procedure of the radar process to step ST10. On the other hand, when it is determined that the radar processing is not continued (NO in step ST22), the control unit 39 ends the radar processing.
 上記したとおり、最新の目標の探知情報と一致または類似する先の目標探知情報が探し出された場合には(図8のステップST32のYES)、固有値算出部53は、現在時刻kよりも前の時刻に推定された先の固有ベクトルvb(0)~vb(n-1)から変換行列Bを算出し(図10のステップST37)、この変換行列Bを用いて相関行列Cxxを相似変換することで相似変換行列Γを生成する(ステップST38)。固有値算出部53及び固有ベクトル算出部54は、相似変換行列Γを初期行列として用いた固有値分解アルゴリズムに基づく反復演算を実行することにより相関行列Cxxの固有値及び固有ベクトルを算出する(ステップST39,ST51~ST59)。このため、相関行列Cxxをそのまま初期行列として用いた反復演算を実行する場合(図9のステップST34,ST41~ST48)と比べると、図10に示した反復演算は、短い演算時間で相似変換行列Tを収束させることができ、これにより短時間で相関行列Cxxの固有値を算出することができる。 As described above, when target detection information that matches or is similar to the latest target detection information is found (YES in step ST32 of FIG. 8), the eigenvalue calculation unit 53 sets the eigenvalue calculation unit 53 before the current time k. Is calculated from the previous eigenvectors vb (0) to vb (n-1) estimated at the time (step ST37 in FIG. 10), and the correlation matrix Cxx is subjected to similarity transformation using the transformation matrix B. Generates a similarity transformation matrix Γ (step ST38). The eigenvalue calculation unit 53 and the eigenvector calculation unit 54 calculate an eigenvalue and an eigenvector of the correlation matrix Cxx by executing an iterative operation based on an eigenvalue decomposition algorithm using the similarity transformation matrix と し て as an initial matrix (steps ST39, ST51 to ST59). ). For this reason, the iterative operation shown in FIG. 10 requires a shorter operation time than the iterative operation using the correlation matrix Cxx as it is as the initial matrix (steps ST34 and ST41 to ST48 in FIG. 9). T can be made to converge, whereby the eigenvalue of the correlation matrix Cxx can be calculated in a short time.
 ところで、比較検索部51の処理において、先の固有ベクトルvb(0)~vb(n-1)の基となる先の目標探知情報と、相関行列Cxxの基となる最新の目標探知情報とが互いに一致または類似すると判断された場合には(ステップST32のYES)、最新の目標探知情報と当該先の目標探知情報とは、同一の目標物体で反射された到来波(信号波)に基づいて検出された情報であると期待できる。特に、先の目標探知情報が、現在時刻kから時間的に大きな開きがない時刻に検出された情報である場合には、最新の目標探知情報として検出された目標物体の物理的な位置及び相対速度は、先の目標探知情報として検出された目標物体の物理的な位置及び相対速度と概ね近い値になり、かつ、固有ベクトルvc(0)~vc(n-1)は、先の固有ベクトルvb(0)~vb(n-1)と同じようなベクトルになることが期待できる。 By the way, in the processing of the comparison search unit 51, the target detection information based on the previous eigenvectors vb (0) to vb (n-1) and the latest target detection information based on the correlation matrix Cxx are mutually different. When it is determined that they match or are similar (YES in step ST32), the latest target detection information and the target detection information ahead are detected based on an incoming wave (signal wave) reflected by the same target object. Information can be expected. In particular, if the previous target detection information is information detected at a time when there is no large difference in time from the current time k, the physical position and relative position of the target object detected as the latest target detection information The velocity is a value that is substantially close to the physical position and relative velocity of the target object detected as the target detection information, and the eigenvectors vc (0) to vc (n−1) are the eigenvectors vb ( 0) to vb (n-1).
 固有ベクトルvb(0)~vb(n-1)と先の固有ベクトルvc(0)~vc(n-1)とが完全に同じ要素を有するベクトルである場合には、相似変換行列Γは、固有値を対角要素として有する対角行列となる。一方、固有ベクトルvb(0)~vb(n-1)の要素と先の固有ベクトルvc(0)~vc(n-1)の要素とが互いに近い値を有する場合には、相似変換行列Γは、対角行列に近い行列になることが想定できる。これは、固有値分解アルゴリズムに基づく反復演算により固有値を算出する際に、ある程度相似変換行列Tが収束している状態と同じである。このため、相似変換行列Γから反復演算により固有値を算出する場合は、相関行列Cxxから固有値を算出する場合に比べて、少ない反復回数で相似変換行列Tを収束させることができると期待できる。 If the eigenvectors vb (0) to vb (n-1) and the previous eigenvectors vc (0) to vc (n-1) are vectors having completely the same elements, the similarity transformation matrix 、 It is a diagonal matrix having diagonal elements. On the other hand, if the elements of the eigenvectors vb (0) to vb (n-1) and the elements of the previous eigenvectors vc (0) to vc (n-1) have values close to each other, the similarity transformation matrix Γ It can be assumed that the matrix is close to a diagonal matrix. This is the same as the state where the similarity transformation matrix T has converged to some extent when the eigenvalue is calculated by an iterative operation based on the eigenvalue decomposition algorithm. For this reason, when eigenvalues are calculated from the similarity transformation matrix 反復 by iterative calculation, it can be expected that the similarity transformation matrix T can be converged with a smaller number of iterations than in the case where eigenvalues are calculated from the correlation matrix Cxx.
 また、仮に、比較検索部51の処理において、ステップST32の判定結果が誤っており、物理的に別の目標物体に関する先の目標探知情報から変換行列Bが生成された場合であっても、相似変換行列Γの固有値と相関行列Cxxの固有値とは理論的に一致するので、最終的に得られる出力結果は実質的に変わらない。 Further, even if the determination result of step ST32 is incorrect in the processing of the comparison search unit 51 and the conversion matrix B is generated from the previous target detection information on a physically different target object, the similarity Since the eigenvalue of the transformation matrix Γ and the eigenvalue of the correlation matrix Cxx theoretically match, the output result finally obtained does not substantially change.
 ところで、最新の目標探知情報が検出された時刻kと、変換行列Bの算出に利用される先の目標探知情報が検出された時刻との間の時間差が小さいほど、最新の目標探知情報と当該先の目標探知情報との間の相関が高いことが期待できる。ただし、その時間差が大きい場合であっても、最新の目標探知情報の距離及び相対速度の組と、先の目標探知情報の距離及び相対速度の組との間の類似度が高い場合には、比較検索部51は、最新の目標探知情報と当該先の目標探知情報とが互いに類似すると決定してもよい(図8のステップST31,ST32のYES)。これにより、目標物体からの到来波(信号波)の強度が微弱である場合、あるいは、比較検索部51が直前の時刻k-1に検出された先の目標探知情報を探し出すことができなかった場合でも、変換行列Bを生成することができるという利点がある。 By the way, the smaller the time difference between the time k at which the latest target detection information is detected and the time at which the target detection information used for calculating the transformation matrix B is detected, the more the latest target detection information and the time It can be expected that the correlation with the previous target detection information is high. However, even when the time difference is large, when the similarity between the pair of the distance and relative speed of the latest target detection information and the pair of the distance and relative speed of the previous target detection information is high, The comparison search unit 51 may determine that the latest target detection information and the preceding target detection information are similar to each other (YES in steps ST31 and ST32 in FIG. 8). As a result, when the intensity of the arriving wave (signal wave) from the target object is weak, or the comparison search unit 51 cannot find the previous target detection information detected at the previous time k-1. Even in this case, there is an advantage that the transformation matrix B can be generated.
 また、情報記憶部34には、目標探知部32及び到来方向推定部35によって生成された目標情報だけでなく、ユーザが予め作成した目標情報が記憶されていてもよい。たとえば、地形情報から特定の目標物体の配置状況が発生しやすい場合には、その特定の目標物体の配置から予め算出された、目標探知情報、相関行列の固有値及び固有ベクトルをデータベース化して情報記憶部34に記録しておくことが望ましい。この場合、到来方向推定部35は、そのようなデータベース化された目標情報から変換行列Bを生成することができる。 The information storage unit 34 may store not only the target information generated by the target detection unit 32 and the arrival direction estimation unit 35 but also target information created by the user in advance. For example, when the arrangement state of a specific target object is likely to occur from the terrain information, the target storage information, eigenvalues and eigenvectors of the correlation matrix, which are calculated in advance from the arrangement of the specific target object, are converted into a database and stored in an information storage unit. 34. In this case, the arrival direction estimating unit 35 can generate the transformation matrix B from such database-based target information.
 以上に説明したように実施の形態1では、到来方向推定部35は、情報記憶部34を参照して最新の目標探知情報と一致または類似する先の目標探知情報に対応する先の固有ベクトルvb(0)~vb(n-1)を情報記憶部34から取得し、先の固有ベクトルvb(0)~vb(n-1)と最新の相関行列Cxxとを用いて固有値分解アルゴリズムに基づく反復演算を実行するので(図10のステップST37~ST39,ST51~ST59)、先の固有ベクトルvb(0)~vb(n-1)を使用せずに反復演算を実行する場合(図9のステップST34,ST41~ST48)と比べると、少ない反復回数で固有値を推定することができる。よって、固有値推定に要する演算負荷を抑制することが可能である。したがって、アンテナアレイ20を構成する受信アンテナ素子の本数が多くても、信号処理回路30の回路規模を増大させることなく、短い演算時間で到来方向を推定することができる。また、信号処理回路30の小型軽量化と低コスト化との両立を実現することもできる。 As described above, in the first embodiment, the arrival direction estimating unit 35 refers to the information storage unit 34 and refers to the information storage unit 34, and the eigenvector vb () corresponding to the target detection information that matches or is similar to the latest target detection information. 0) to vb (n-1) are obtained from the information storage unit 34, and an iterative operation based on the eigenvalue decomposition algorithm is performed using the eigenvectors vb (0) to vb (n-1) and the latest correlation matrix Cxx. Since it is executed (steps ST37 to ST39 and ST51 to ST59 in FIG. 10), when an iterative operation is executed without using the above eigenvectors vb (0) to vb (n-1) (steps ST34 and ST41 in FIG. 9). -ST48), the eigenvalue can be estimated with a smaller number of repetitions. Therefore, it is possible to suppress the calculation load required for eigenvalue estimation. Therefore, even if the number of receiving antenna elements constituting the antenna array 20 is large, the arrival direction can be estimated in a short calculation time without increasing the circuit scale of the signal processing circuit 30. In addition, it is possible to achieve both the reduction in size and weight of the signal processing circuit 30 and the reduction in cost.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。図11は、本発明に係る実施の形態1のレーダ装置1Aの概略構成を示すブロック図である。図11に示されるように、本実施の形態のレーダ装置1Aの構成は、実施の形態1の信号処理回路30Aに代えて信号処理回路30Aを備える点を除いて、実施の形態1のレーダ装置1の構成と同じである。また、信号処理回路30Aの構成は、実施の形態1の到来方向推定部35に代えて到来方向推定部35Aを有する点を除いて、実施の形態1の到来方向推定部35と同じである。図11に示されるように到来方向推定部35Aの構成は、実施の形態1の固有値算出部53、固有ベクトル算出部54及び到来方向算出部55に代えて、固有値算出部53A、固有ベクトル算出部54A及び到来方向算出部55Aを有する点を除いて、実施の形態1の到来方向推定部35の構成と同じである。
Embodiment 2 FIG.
Next, a second embodiment according to the present invention will be described. FIG. 11 is a block diagram illustrating a schematic configuration of the radar device 1A according to the first embodiment of the present invention. As shown in FIG. 11, the configuration of the radar device 1A of the present embodiment is different from that of the first embodiment except that the signal processing circuit 30A is provided instead of the signal processing circuit 30A of the first embodiment. This is the same as the configuration of FIG. The configuration of the signal processing circuit 30A is the same as the arrival direction estimating unit 35 of the first embodiment, except that the signal processing circuit 30A has an arrival direction estimating unit 35A instead of the arrival direction estimating unit 35 of the first embodiment. As shown in FIG. 11, the configuration of the arrival direction estimating unit 35A is different from the eigenvalue calculating unit 53, the eigenvector calculating unit 54, and the arriving direction calculating unit 55 in the first embodiment in that the eigenvalue calculating unit 53A, the eigenvector calculating unit 54A The configuration is the same as that of the arrival direction estimating unit 35 of the first embodiment, except that it has an arrival direction calculating unit 55A.
 上記のとおり、実施の形態1では、到来方向推定部35は、上式(20)に示したように、情報記憶部34から取得された先の固有ベクトルvb(0)~vb(n-1)の全てを用いて変換行列Bを算出する。これに対し、本実施の形態の到来方向推定部35Aは、後述するように、情報記憶部34から取得された先の固有ベクトルvb(0)~vb(n-1)の一部をなすh個のベクトルvb(0)~vb(h-1)を用いて変換行列Eを算出している。ここで、hは、nよりも小さい正整数である。 As described above, in the first embodiment, the direction-of-arrival estimation unit 35 calculates the destination eigenvectors vb (0) to vb (n-1) acquired from the information storage unit 34 as shown in the above equation (20). Is used to calculate the transformation matrix B. On the other hand, as described later, the arrival direction estimating unit 35A according to the present embodiment includes h number of eigenvectors vb (0) to vb (n−1) obtained from the information storage unit 34, which are described later. The transformation matrix E is calculated using the vectors vb (0) to vb (h-1). Here, h is a positive integer smaller than n.
 実施の形態2のレーダ装置1Aの全体動作は、到来方向推定処理を除いて、実施の形態1のレーダ装置1の全体動作と同じである。以下、図8,図9及び図12を参照しつつ、実施の形態2の到来方向推定部35Aの動作及び構成を詳細に説明する。図12は、到来方向推定部35Aによって実行される到来方向推定処理の一例を示すフローチャートである。図12のフローチャートは、結合子C1を介して図8のフローチャートと結合し、結合子C0を介して図9のフローチャートと結合している。図12に示されるステップST51~ST57は、図10に示されるステップST51~ST57と同じである。 The entire operation of the radar apparatus 1A according to the second embodiment is the same as the entire operation of the radar apparatus 1 according to the first embodiment, except for an arrival direction estimation process. Hereinafter, the operation and configuration of the arrival direction estimation unit 35A according to the second embodiment will be described in detail with reference to FIGS. 8, 9 and 12. FIG. 12 is a flowchart illustrating an example of an arrival direction estimation process performed by the arrival direction estimation unit 35A. The flowchart of FIG. 12 is combined with the flowchart of FIG. 8 via the connector C1, and is combined with the flowchart of FIG. 9 via the connector C0. Steps ST51 to ST57 shown in FIG. 12 are the same as steps ST51 to ST57 shown in FIG.
 図8を参照すると、ステップST36で連続検出回数Nk-iが閾値Nth以上であると判定されたとき(ステップST36のYES)、固有値算出部53A及び固有ベクトル算出部54Aは、当該先の目標探知情報に対応する先の固有ベクトルvb(0),…,vb(n-1)(nは正整数)と相関行列Cxxとを用いて、固有値分解アルゴリズムに基づく反復演算を実行することにより相関行列Cxxの固有値及び固有ベクトルを算出する(図12のステップST37A~ST39A,ST51~ST57,ST58A,ST59A)。 Referring to FIG. 8, when the continuous detection number N k-i is determined to be the threshold value N th or more in step ST36 (YES in step ST36), eigenvalue calculation section 53A and the eigenvector calculator 54A is of the destination target By using the eigenvectors vb (0),..., Vb (n-1) (n is a positive integer) corresponding to the detection information and the correlation matrix Cxx, an iterative operation based on an eigenvalue decomposition algorithm is performed to obtain a correlation matrix. The eigenvalues and eigenvectors of Cxx are calculated (steps ST37A to ST39A, ST51 to ST57, ST58A, ST59A in FIG. 12).
 具体的には、固有値算出部53Aは、次式(23)に基づき、当該先の目標探知情報に対応する先の固有ベクトルvb(0),…,vb(n-1)の一部をなすh個のベクトルvb(0),…,vb(h-1)に基づいて変換行列Eを算出する(図12のステップST37A)。 Specifically, the eigenvalue calculation unit 53A forms a part of the previous eigenvectors vb (0),..., Vb (n−1) corresponding to the target detection information based on the following equation (23). The transformation matrix E is calculated based on the vectors vb (0),..., Vb (h−1) (step ST37A in FIG. 12).
   E=[vb(0),…,vb(h-1)]      (23) {E = [vb (0), ..., vb (h-1)]} (23)
 相関行列Cxxはn行n列の正方行列であり、変換行列Eは、先の固有ベクトルvb(0)~vb(h-1)を列の要素(列ベクトル)とする行列である。ベクトルの個数hは、想定される到来波数と同じ値としてもよい。あるいは、上記したようにk番目に大きな固有値を用いて到来波数Niが推定される場合には、ベクトルの個数hはkに設定されてもよい。 The correlation matrix Cxx is a square matrix having n rows and n columns, and the transformation matrix E is a matrix having the above eigenvectors vb (0) to vb (h-1) as column elements (column vectors). The number h of vectors may be the same value as the assumed number of incoming waves. Alternatively, when the above-mentioned manner k z-th incoming waves Ni with large eigenvalues are estimated, may be set to the number of the vector h is k z.
 ステップST37Aの実行後、固有値算出部53Aは、変換行列Eを用いた相似変換を実行する(ステップST38A)。すなわち、固有値算出部53Aは、次式(24)に示すように、変換行列Eを相関行列Cxxに右方から乗算し、かつ変換行列Eの随伴行列Eを相関行列Cxxに左方から乗算して、相似変換行列Ωを算出する。 After performing step ST37A, eigenvalue calculating section 53A performs similarity conversion using conversion matrix E (step ST38A). That is, the intrinsic value calculation unit 53A, as shown in the following equation (24), multiplied from the right transformation matrix E into the correlation matrix Cxx, and multiplying the adjoint matrix E H of the transformation matrix E from the left to the correlation matrix Cxx Then, a similarity transformation matrix Ω is calculated.
    Ω=E・Cxx・E              (24) Ω = E H · Cxx · E (24)
 ステップST38Aの実行後、固有値算出部53Aは、たとえば公知のハウスホルダー法に基づき、変換行列を用いて相似変換行列Ωをヘッセンベルグ行列A(0)に変換する(ステップST36A)。続くステップST51~ST57の処理内容は、図10に示したステップST51~ST57の処理内容と同じである。ステップST57では、固有値算出部53Aは、収束したと判定された相似変換行列Tの対角要素を相関行列Cxxの固有値Λ(0),…,Λ(h-1)と推定する。 After execution of step ST38A, eigenvalue calculation section 53A converts similarity transformation matrix Ω to Hessenberg matrix A (0) using a transformation matrix, for example, based on the well-known Householder method (step ST36A). The processing contents of the following steps ST51 to ST57 are the same as the processing contents of steps ST51 to ST57 shown in FIG. In step ST57, the eigenvalue calculation unit 53A estimates the diagonal elements of the similarity transformation matrix T determined to have converged as the eigenvalues Λ (0),..., Λ (h−1) of the correlation matrix Cxx.
 続くステップST58Aでは、固有ベクトル算出部54Aは、ステップST53で使用されたユニタリ行列QとステップST39Aで使用された変換行列とを用いて、相似変換行列Ωの固有ベクトルy(0),…,y(h-1)を算出する。 In step ST58A, the eigenvector calculator 54A uses the conversion was used matrix with the unitary matrix Q j steps ST39A used in step ST53, eigenvector y (0) of the similarity transformation matrix Omega, ..., y ( h-1) is calculated.
 ステップST58Aの実行後、固有ベクトル算出部54Aは、次式(25)に示すように、ステップST35Aで使用された変換行列Eを用いて、相似変換行列Ωの固有ベクトルy(κ)から相関行列Cxxの固有ベクトルv(κ)を算出する(ステップST59A)。 After execution of step ST58A, the eigenvector calculation unit 54A uses the transformation matrix E used in step ST35A to convert the eigenvector y (κ) of the similarity transformation matrix Ω into the correlation matrix Cxx as shown in the following equation (25). An eigenvector v (κ) is calculated (step ST59A).
    v(κ)=E・y(κ)           (25)
 ここで、κは、0~h-1の範囲内の整数である。
v (κ) = E · y (κ) (25)
Here, κ is an integer in the range of 0 to h−1.
 そして、到来方向算出部55Aは、相関行列Cxx、ステップST57で算出された固有値Λ(0)~Λ(h-1)、及びステップST59Aで算出された固有ベクトルv(0)~v(h-1)を用いて、予め定められた検証式に基づいて当該先の目標探知情報を信頼することができるか否かを検証する(ステップST60)。当該先の目標探知情報が十分に信頼できる場合には、相関行列Cxxとその固有ベクトルv(κ)との積は、固有ベクトルv(κ)と固有値Λ(κ)との積と一致すべきである。そこで、到来方向算出部55Aは、次の検証式(26)を用いた検証を行うことができる。 Then, the direction-of-arrival calculation unit 55A calculates the correlation matrix Cxx, the eigenvalues Λ (0) to Λ (h−1) calculated in step ST57, and the eigenvectors v (0) to v (h−1) calculated in step ST59A. ) Is used to verify whether or not the preceding target detection information can be trusted based on a predetermined verification formula (step ST60). If the preceding target detection information is sufficiently reliable, the product of the correlation matrix Cxx and its eigenvector v (κ) should match the product of the eigenvector v (κ) and the eigenvalue Λ (κ). . Therefore, the arrival direction calculation unit 55A can perform verification using the following verification formula (26).
  s(κ)=Λ(κ)・v(κ)-Cxx・v(κ)  (26) {S (κ) = {(κ) · v (κ) −Cxx · v (κ)} (26)
 到来方向算出部55Aは、式(26)の左辺の検証ベクトルs(κ)を算出し、当該検証ベクトルs(κ)のノルムに基づいて、先の目標探知情報が信頼できるか否かを判定することができる(ステップST60A)。たとえば、到来方向算出部55Aは、固有値Λ(0)~Λ(h-1)のすべてについて、検証ベクトルs(κ)のノルムが所定の閾値未満であれば、先の目標探知情報は信頼できると判定し(ステップST60AのYES)、検証ベクトルs(κ)のノルムが所定の閾値以上であれば、先の目標探知情報は信頼できないと判定することができる(ステップST60AのNO)。 The arrival direction calculation unit 55A calculates the verification vector s (κ) on the left side of Expression (26), and determines whether the target detection information is reliable based on the norm of the verification vector s (κ). Can be performed (step ST60A). For example, the direction-of-arrival calculating unit 55A can trust the previous target detection information if the norm of the verification vector s (κ) is less than a predetermined threshold value for all of the eigenvalues Λ (0) to Λ (h−1). (YES in step ST60A), and if the norm of the verification vector s (κ) is equal to or greater than a predetermined threshold, it can be determined that the target detection information is not reliable (NO in step ST60A).
 先の目標探知情報は信頼できると判定された場合には(ステップST60AのYES)、到来方向算出部55Aは、図9に示されるステップST49,ST61~ST66を実行する。一方、先の目標探知情報は信頼できないと判定された場合には(ステップST60AのNO)、到来方向算出部55Aは、当該最新の目標探知情報の連続検出回数Nの値を零に設定する(ステップST60B)。その後、固有値算出部53A及び固有ベクトル算出部54Aは、図9に示されるステップST34,ST41~ST48を実行する。その後、到来方向算出部55Aは、図9に示されるステップST49,ST61~ST66を実行する。 If it is determined that the preceding target detection information is reliable (YES in step ST60A), the arrival direction calculation section 55A executes steps ST49 and ST61 to ST66 shown in FIG. On the other hand, when it is determined that the previous target detection information is not reliable (NO in step ST60A), the arrival direction calculation unit 55A sets the value of the number Nk of consecutive detections of the latest target detection information to zero. (Step ST60B). After that, the eigenvalue calculation unit 53A and the eigenvector calculation unit 54A execute steps ST34 and ST41 to ST48 shown in FIG. Thereafter, the direction-of-arrival calculation unit 55A executes steps ST49, ST61 to ST66 shown in FIG.
 ステップST66の実行後は、図7のステップST21と同様に、情報出力部38は、情報記憶部34から、目標物体との距離、目標物体の相対速度及び到来方向などの目標情報Dcを読み出して外部に出力する。外部に出力された目標情報Dcは、たとえば、後段の処理装置で追尾処理に使用されるか、あるいは、表示装置に表示される情報として使用される。その後、制御部39は、レーダ処理を続行すると判定した場合には、レーダ処理の手順を最初のステップに戻し、レーダ処理を続行しないと判定した場合には、レーダ処理を終了させる。 After the execution of step ST66, the information output unit 38 reads the target information Dc such as the distance to the target object, the relative speed of the target object, and the arrival direction from the information storage unit 34, similarly to step ST21 of FIG. Output to the outside. The target information Dc output to the outside is used, for example, for tracking processing in a subsequent processing device, or is used as information displayed on a display device. Thereafter, the control unit 39 returns the procedure of the radar process to the first step when determining to continue the radar process, and terminates the radar process when determining not to continue the radar process.
 以上に説明したように、本実施の形態の固有値算出部53Aは、情報記憶部34から取得された先の固有ベクトルvb(0)~vb(n-1)の一部をなすh個のベクトルvb(0)~vb(h-1)を用いて変換行列Eを算出する(図12のステップST37A)。ベクトルの個数hの技術的な意味を以下に説明する。 As described above, the eigenvalue calculation unit 53A of the present embodiment calculates the h vectors vb forming a part of the previous eigenvectors vb (0) to vb (n-1) acquired from the information storage unit. The transformation matrix E is calculated using (0) to vb (h-1) (step ST37A in FIG. 12). The technical meaning of the number h of vectors will be described below.
 同一時刻にて、等距離だけ離れた位置で等相対速度で移動し、かつ異なる方位(角度)に存在する2つの目標物体が同時に発生することは、稀である。到来波数Niは、たかだか2もしくは3程度の値であることが通常である場合を想定すると、レーダ装置1Aを搭載するプラットフォームが前方に移動している場合、当該プラットフォームからみたときの地上の固定物の相対速度は、視線方向に応じて異なる。また、複数の目標物体が等距離だけ離れた位置に存在していても、それら目標物体の観測される相対速度は、それら目標物体が存在する方位に応じて異なる。よって、等距離だけ離れた位置に存在し、等相対速度で移動する目標物体が3つ以上存在する可能性は低いと考えられる。 移動 At the same time, it is rare that two target objects that move at the same distance from each other at the same distance and that exist in different directions (angles) at the same time are generated at the same time. Assuming that the number of arriving waves Ni is usually at most about 2 or 3, when the platform on which the radar device 1A is mounted is moving forward, a fixed object on the ground as viewed from the platform is considered. Is different depending on the line of sight. Further, even if a plurality of target objects are present at the same distance from each other, the relative speed at which the target objects are observed differs depending on the direction in which the target objects exist. Therefore, it is considered that there is a low possibility that three or more target objects exist at positions separated by the same distance and move at the same relative speed.
 また、相関行列Cxxの固有値λ(0)~λ(n-1)のうちノイズレベル以上の値を有する固有値は、特定の目標物体からの反射波の電力に比例する値に相当する。このため、相関行列Cxxのn個の固有値λ(0)~λ(n-1)のうち、大きさが(Ni+1)番目以下の固有値λ(Ni+1)~λ(n-1)は、ノイズレベル相当の値、もしくは、演算誤差で生じるほぼ0の値となることが期待できる。 の う ち In addition, the eigenvalue having a value equal to or higher than the noise level among the eigenvalues λ (0) to λ (n−1) of the correlation matrix Cxx corresponds to a value proportional to the power of the reflected wave from the specific target object. For this reason, among the n eigenvalues λ (0) to λ (n−1) of the correlation matrix Cxx, the eigenvalues λ (Ni + 1) to λ (n−1) whose magnitude is equal to or smaller than the (Ni + 1) th are noise level. It can be expected that the value will be a considerable value or a value of almost 0 caused by a calculation error.
 また、ステップST30において、空間平均処理が実行される前の相関行列Rxxのランクは1以下であり、相関行列Rxxは、一般に非零の固有値をたかだか1つしか持たないと考えられる。相関行列Cxxに関しても、そのランクは空間平均点数Q程度である。このため、相関行列Cxxの大きさnよりも空間平均点数Qが小さい場合でも、相関行列Cxxは縮退しており、大きさが(Q+1)番目以下の固有値λ(Q+1)~λ(n-1)は、演算誤差で生じるほぼ0の値であると期待できる。したがって、相関行列Cxxは、縮退しているか、もしくは、縮退状態に近いほぼ0の固有値をもつ状態であると推測することができる。 In addition, in step ST30, the rank of the correlation matrix Rxx before the spatial averaging process is performed is 1 or less, and it is generally considered that the correlation matrix Rxx has at most one non-zero eigenvalue. The rank of the correlation matrix Cxx is also about the spatial average score Q. Therefore, even when the spatial average score Q is smaller than the size n of the correlation matrix Cxx, the correlation matrix Cxx is degenerate, and the eigenvalues λ (Q + 1) to λ (n−1) whose size is the (Q + 1) th or less are used. ) Can be expected to be a value of almost 0 caused by an arithmetic error. Therefore, it can be inferred that the correlation matrix Cxx is in a degenerate state or a state having an almost zero eigenvalue close to the degenerated state.
 これに対し、式(24)に示したように相関行列Cxxに変換行列E,Eを作用させることは、n次元ベクトル空間からh次元ベクトル空間への射影に相当する。相似変換行列Ωは、大きさがhの行列なので、相似変換行列Ωの算出では、大きさがnの相似変換行列Γの固有値を算出する場合と比べて、大幅に演算負荷を削減することができる。固有値分解アルゴリズムの反復演算では、行列の乗算が多用される。一般的に、行列の乗算では、大きさの3乗のオーダで演算量が増えるため、行列の大きさが1だけ小さくなる程度でも演算量を削減することができる。 On the other hand, applying the transformation matrices E and E H to the correlation matrix Cxx as shown in Expression (24) corresponds to the projection from the n-dimensional vector space to the h-dimensional vector space. Since the similarity transformation matrix Ω is a matrix having a size of h, the calculation load of the similarity transformation matrix Ω can be significantly reduced as compared with the case of calculating the eigenvalue of the similarity transformation matrix の having a size of n. it can. In the iterative operation of the eigenvalue decomposition algorithm, matrix multiplication is frequently used. Generally, in matrix multiplication, the amount of calculation increases in the order of the cube of the size, so that the amount of calculation can be reduced even if the size of the matrix is reduced by one.
 以上に説明したように本実施の形態に係る到来方向推定方法は、実施の形態1に係る到来方向推定方法と比べると、さらに少ない演算量で相関行列Cxxの固有値及び固有ベクトルを近似的に算出することができる。よって、アンテナアレイ20を構成する受信アンテナ素子の本数が多くても、信号処理回路30の回路規模を増大させることなく、短い演算時間で到来方向を推定することができる。したがって、信号処理回路30の小型軽量化と低コスト化との両立を実現することが可能である。 As described above, the DOA estimating method according to the present embodiment approximately calculates the eigenvalues and eigenvectors of the correlation matrix Cxx with a smaller amount of calculation than the DOA estimating method according to the first embodiment. be able to. Therefore, even if the number of receiving antenna elements constituting the antenna array 20 is large, the arrival direction can be estimated in a short calculation time without increasing the circuit scale of the signal processing circuit 30. Therefore, it is possible to achieve both the reduction in size and weight of the signal processing circuit 30 and the reduction in cost.
 また、先の固有ベクトルvb(0)~vb(n-1)の一部をなすベクトルvb(0)~vb(h-1)に基づいて相関行列Cxxが算出された場合は、到来方向算出部55Aは、その相関行列Cxxと、推定された固有値λ(0)~λ(n-1)及び固有ベクトルvc(0)~vc(n-1)とを用いて、予め定められた検証式に基づき、当該先の目標探知情報を信頼することができるか否かを検証する(ステップST60,ST60A)。到来方向算出部55Aは、先の目標探知情報が信頼できないと判定したときは、当該推定された固有値及び固有ベクトルを使用しないので、信頼性の低い到来方向推定を回避することができる。 When the correlation matrix Cxx is calculated based on the vectors vb (0) to vb (h-1) forming a part of the eigenvectors vb (0) to vb (n-1), the arrival direction calculation unit 55A is based on a predetermined verification equation using the correlation matrix Cxx, the estimated eigenvalues λ (0) to λ (n-1) and the eigenvectors vc (0) to vc (n-1). Then, it verifies whether or not the target detection information can be trusted (steps ST60 and ST60A). When the arrival direction calculation unit 55A determines that the previous target detection information is unreliable, it does not use the estimated eigenvalues and eigenvectors, so that it is possible to avoid an unreliable arrival direction estimation.
 なお、実施の形態2の信号処理回路30Aのハードウェア構成は、実施の形態1の信号処理回路30と同様に、DSP,ASICまたはFPGAなどの半導体集積回路を有するプロセッサで実現されればよい。あるいは、信号処理回路30Aのハードウェア構成は、メモリから読み出された信号処理用のソフトウェアまたはファームウェアのプログラムコード(命令群)を実行する、CPUまたはGPUなどの演算装置を含むプロセッサで実現されてもよい。前記半導体集積回路と前記演算装置との組合せを有するプロセッサで信号処理回路30Aのハードウェア構成を実現することも可能である。 Note that the hardware configuration of the signal processing circuit 30A of the second embodiment may be realized by a processor having a semiconductor integrated circuit such as a DSP, an ASIC, or an FPGA, as in the signal processing circuit 30 of the first embodiment. Alternatively, the hardware configuration of the signal processing circuit 30 </ b> A is realized by a processor including a processing unit such as a CPU or a GPU that executes program codes (instructions) of software or firmware for signal processing read from a memory. Is also good. The hardware configuration of the signal processing circuit 30A can be realized by a processor having a combination of the semiconductor integrated circuit and the arithmetic device.
 以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。たとえば、実施の形態1,2では、受信アンテナ素子20~20の本数と受信チャネル数はともに4であるが、これに限定されるものではない。また、受信アンテナ素子20~20の配置も、図3に示した配置に限定されるものではない。 As described above, various embodiments according to the present invention have been described with reference to the drawings. However, these embodiments are merely examples of the present invention, and various embodiments other than these embodiments can be adopted. For example, in the first and second embodiments, the receiving antenna elements 20 0-20 3 number the number of the reception channel but are both 4, but is not limited thereto. The receiving arrangement of the antenna elements 20 0-20 3 is also not limited to the arrangement shown in FIG.
 また、実施の形態1,2では、ハウスホルダー法及びQR分解法を用いた固有値分解アルゴリズムに基づく反復演算が実行されるが、これに限定されるものではない。上記した固有値分解アルゴリズム以外の固有値分解アルゴリズムに基づく反復演算が使用可能である。 Also, in the first and second embodiments, the iterative operation based on the eigenvalue decomposition algorithm using the Householder method and the QR decomposition method is executed, but the present invention is not limited to this. Iterative operations based on eigenvalue decomposition algorithms other than the eigenvalue decomposition algorithm described above can be used.
 本発明の範囲内において、実施の形態1,2の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 に お い て Within the scope of the present invention, any combination of the first and second embodiments, modification of any component of each embodiment, or omission of any component of each embodiment is possible.
 本発明に係る信号処理回路、レーダ装置、信号処理方法及び信号処理プログラムは、アンテナアレイを用いて単数または複数の目標物体からの到来波の到来方向を高分解能で推定することができるので、たとえば、車両などの移動体に搭載されるレーダ機器に適用可能である。また、本発明に係る信号処理回路、レーダ装置、信号処理方法及び信号処理プログラムは、低い演算負荷で到来方向を高分解能で推定することができるので、低消費電力で動作する小型のレーダ機器に適用可能である。 The signal processing circuit, the radar device, the signal processing method, and the signal processing program according to the present invention can estimate the direction of arrival of an incoming wave from a single or a plurality of target objects with high resolution using an antenna array. The present invention can be applied to a radar device mounted on a moving body such as a vehicle. Further, the signal processing circuit, the radar apparatus, the signal processing method, and the signal processing program according to the present invention can estimate the direction of arrival with high resolution with a low calculation load, and therefore can be applied to a small-sized radar device that operates with low power consumption. Applicable.
 1,1A レーダ装置、10 送信アンテナ、11 送信回路、12 信号発生器、13 分配器、14 送信アンプ、20 アンテナアレイ、20~20 受信アンテナ素子、21 受信回路、21~21 受信器、22~22 受信アンプ、23~23 ミキサ回路、24~24 A/D変換回路(ADC)、30,30A 信号処理回路、31 領域変換部、32 目標探知部、34 情報記憶部、35,35A 到来方向推定部、38 情報出力部、39 制御部、41 第1前処理部、42 第1直交変換部、43 第2前処理部、44 第2直交変換部、51 比較検索部、52 相関算出部、53,53A 固有値算出部、54,54A 固有ベクトル算出部、55,55A 到来方向算出部、71 プロセッサ、72 メモリ、73 入出力インタフェース部、74 信号路。 1,1A radar apparatus, 10 transmission antenna 11 transmitting circuit, 12 a signal generator, 13 a distributor, 14 a transmission amplifier, 20 an antenna array, 20 0-20 3 receive antenna elements, 21 receiving circuit, 21 0-21 3 received vessel, 22 0-22 3 receiving amplifier, 23 0 to 23 3 mixer circuit, 24 0 ~ 24 3 A / D converter (ADC), 30, 30A signal processing circuit, 31 domain transforming section, 32 target detection unit, 34 Information storage unit, 35, 35A arrival direction estimation unit, 38 information output unit, 39 control unit, 41 first preprocessing unit, 42 first orthogonal transformation unit, 43 second preprocessing unit, 44 second orthogonal transformation unit, 51 Comparison search section, 52 correlation calculation section, 53, 53A eigenvalue calculation section, 54, 54A eigenvector calculation section, 55, 55A arrival direction calculation section, 71 processor, 72 memory, 73 input / output Interface section, 74 signal path.

Claims (14)

  1.  目標物体で反射された到来波を受信する複数の受信アンテナ素子からなるアンテナアレイと、前記複数の受信アンテナ素子の出力に基づいて複数の受信信号をそれぞれ生成する受信回路とを備えたレーダ装置における信号処理回路であって、
     前記複数の受信信号を複数の周波数領域信号にそれぞれ変換する領域変換部と、
     前記複数の周波数領域信号に基づいて目標探知情報を検出する目標探知部と、
     前記複数の周波数領域信号に基づいて相関行列を算出し、前記相関行列の固有値及び固有ベクトルの組を用いて単数または複数の到来波の到来方向を推定する到来方向推定部と、
     過去に検出された先の目標探知情報と過去に推定された複数の先の固有ベクトルとの組が少なくとも1つ記憶されている情報記憶部と
    を備え、
     前記目標探知部が前記複数の周波数領域信号に基づいて最新の目標探知情報を検出したとき、前記到来方向推定部は、前記複数の周波数領域信号に基づいて最新の相関行列を算出し、前記最新の目標探知情報と一致または類似する先の目標探知情報に対応する複数の先の固有ベクトルを前記情報記憶部から取得し、当該取得された複数の先の固有ベクトルと前記最新の相関行列とを用いて所定の固有値分解アルゴリズムに基づく反復演算を実行することにより前記最新の相関行列の固有値及び固有ベクトルの組を推定する
    ことを特徴とする信号処理回路。
    An antenna array including a plurality of receiving antenna elements for receiving an incoming wave reflected by a target object, and a radar device including a receiving circuit configured to generate a plurality of received signals based on outputs of the plurality of receiving antenna elements, respectively. A signal processing circuit,
    A domain conversion unit configured to convert the plurality of reception signals into a plurality of frequency domain signals,
    A target detection unit that detects target detection information based on the plurality of frequency domain signals,
    Calculating a correlation matrix based on the plurality of frequency domain signals, an arrival direction estimating unit that estimates an arrival direction of one or more arriving waves using a set of eigenvalues and eigenvectors of the correlation matrix,
    An information storage unit in which at least one pair of a previously detected target detection information detected in the past and a plurality of previously eigenvectors estimated in the past is stored,
    When the target detection unit detects the latest target detection information based on the plurality of frequency domain signals, the arrival direction estimation unit calculates the latest correlation matrix based on the plurality of frequency domain signals, and calculates the latest correlation matrix. Obtain a plurality of previous eigenvectors corresponding to the target detection information that matches or is similar to the target detection information from the information storage unit, using the obtained plurality of previous eigenvectors and the latest correlation matrix. A signal processing circuit which estimates an eigenvalue and an eigenvector set of the latest correlation matrix by executing an iterative operation based on a predetermined eigenvalue decomposition algorithm.
  2.  請求項1に記載の信号処理回路であって、前記到来方向推定部は、前記情報記憶部から取得された当該複数の先の固有ベクトルを用いて変換行列を算出し、前記変換行列を用いて前記最新の相関行列を相似変換することにより相似変換行列を算出し、前記相似変換行列を用いて前記反復演算を実行することを特徴とする信号処理回路。 2. The signal processing circuit according to claim 1, wherein the direction-of-arrival estimating unit calculates a transformation matrix using the plurality of eigenvectors obtained from the information storage unit, and uses the transformation matrix to calculate the transformation matrix. A signal processing circuit, wherein a similarity transformation matrix is calculated by performing similarity transformation on a latest correlation matrix, and the iterative operation is performed using the similarity transformation matrix.
  3.  請求項2に記載の信号処理回路であって、前記到来方向推定部は、前記情報記憶部から取得された当該複数の先の固有ベクトルの一部をなす複数のベクトルに基づいて前記変換行列を算出することを特徴とする信号処理回路。 3. The signal processing circuit according to claim 2, wherein the direction-of-arrival estimating unit calculates the transformation matrix based on a plurality of vectors forming a part of the plurality of eigenvectors obtained from the information storage unit. A signal processing circuit.
  4.  請求項3に記載の信号処理回路であって、前記到来方向推定部は、前記最新の相関行列と当該推定された固有値及び固有ベクトルの組とを用いて、予め定められた検証式に基づき、前記最新の目標探知情報と一致または類似する当該先の目標探知情報を信頼することができるか否かを判定し、当該先の目標探知情報を信頼することができないと判定したときは、当該推定された固有値及び固有ベクトルの組を用いて到来方向を推定しないことを特徴とする信号処理回路。 The signal processing circuit according to claim 3, wherein the arrival direction estimating unit uses the latest correlation matrix and a set of the estimated eigenvalue and eigenvector based on a predetermined verification equation, It is determined whether or not the previous target detection information that matches or is similar to the latest target detection information can be trusted. If it is determined that the previous target detection information cannot be trusted, the estimated A signal processing circuit that does not estimate a direction of arrival using a set of eigenvalues and eigenvectors.
  5.  請求項4に記載の信号処理回路であって、前記検証式は、前記最新の相関行列と当該推定された固有ベクトルとの積と、当該推定された固有値と当該推定された固有ベクトルとの積との間の差を算出する式を有することを特徴とする信号処理回路。 5. The signal processing circuit according to claim 4, wherein the verification formula is a product of the product of the latest correlation matrix and the estimated eigenvector, and a product of the estimated eigenvalue and the estimated eigenvector. A signal processing circuit having an equation for calculating a difference between the two.
  6.  請求項1から請求項5のうちのいずれか1項に記載の信号処理回路であって、前記所定の固有値分解アルゴリズムは、QR分解法に基づくアルゴリズムを含むことを特徴とする信号処理回路。 (6) The signal processing circuit according to any one of (1) to (5), wherein the predetermined eigenvalue decomposition algorithm includes an algorithm based on a QR decomposition method.
  7.  請求項1から請求項5のうちのいずれか1項に記載の信号処理回路であって、
     前記到来方向推定部は、前記最新の目標探知情報と前記情報記憶部に記憶されている先の目標探知情報との間の類似度または相違度を算出する比較検索部を含み、
     前記比較検索部は、前記類似度または前記相違度に基づいて前記情報記憶部に記憶されている先の目標探知情報が前記最新の目標探知情報と一致または類似するか否かを決定する、
    ことを特徴とする信号処理回路。
    The signal processing circuit according to any one of claims 1 to 5, wherein
    The arrival direction estimation unit includes a comparison search unit that calculates a similarity or a difference between the latest target detection information and the previous target detection information stored in the information storage unit.
    The comparison search unit determines whether the previous target detection information stored in the information storage unit matches or is similar to the latest target detection information based on the similarity or the difference.
    A signal processing circuit characterized by the above-mentioned.
  8.  請求項7に記載の信号処理回路であって、前記比較検索部は、前記最新の目標探知情報に含まれる距離及び相対速度の組と、前記情報記憶部に記憶されている先の目標探知情報に含まれる距離及び相対速度の組との間で前記類似度または前記相違度を算出することを特徴とする信号処理回路。 8. The signal processing circuit according to claim 7, wherein the comparison and search unit is configured to include a set of a distance and a relative speed included in the latest target detection information and a target search information stored in the information storage unit. 9. A signal processing circuit for calculating the similarity or the difference between a pair of a distance and a relative speed included in the above.
  9.  請求項1から請求項5のうちのいずれか1項に記載の信号処理回路であって、
     前記レーダ装置は、
     時間とともに周期的に変化する送信周波数を有するチャープ信号を前記周波数変調信号として生成する信号生成器と、
     前記周波数変調信号を送信信号と局部信号とに分配する分配器と、
     前記複数の受信アンテナ素子から並列に出力された信号を前記局部信号と混合することにより前記複数の受信信号として複数のビート信号を生成する受信回路と
    を含むことを特徴とする信号処理回路。
    The signal processing circuit according to any one of claims 1 to 5, wherein
    The radar device includes:
    A signal generator that generates a chirp signal having a transmission frequency that periodically changes with time as the frequency modulation signal,
    A distributor that distributes the frequency-modulated signal into a transmission signal and a local signal;
    A signal processing circuit that mixes signals output in parallel from the plurality of reception antenna elements with the local signal to generate a plurality of beat signals as the plurality of reception signals.
  10.  請求項9に記載の信号処理回路であって、
     前記信号生成器は、各フレーム期間内にM個の周波数変調波(Mは2以上の整数)を連続して生成することで前記チャープ信号を生成し、
     前記領域変換部は、フレーム期間ごとに前記複数の受信信号を前記複数の周波数変調信号に変換し、
     前記到来方向推定部は、前記最新の目標探知情報が検出された時刻に対して、1フレーム期間から9フレーム期間までの範囲内の時間だけ前の時刻に検出された先の目標探知情報から、前記最新の目標探知情報と一致または類似する当該先の目標探知情報を探し出す、
    ことを特徴とする信号処理回路。
    The signal processing circuit according to claim 9,
    The signal generator generates the chirp signal by continuously generating M frequency-modulated waves (M is an integer of 2 or more) within each frame period,
    The area conversion unit converts the plurality of reception signals into the plurality of frequency modulation signals for each frame period,
    The direction-of-arrival estimating unit calculates, based on the previous target detection information detected at a time earlier than the time at which the latest target detection information was detected by a time within a range from 1 frame period to 9 frame periods, Finding out the previous target detection information that matches or is similar to the latest target detection information,
    A signal processing circuit characterized by the above-mentioned.
  11.  請求項1から請求項5のうちのいずれか1項に記載の信号処理回路であって、前記到来方向推定部は、前記最新の目標探知情報で特定される目標物体の検出頻度が所定の閾値以上のときに前記反復演算を実行することを特徴とする信号処理回路。 6. The signal processing circuit according to claim 1, wherein the arrival direction estimating unit is configured to set a detection frequency of a target object specified by the latest target detection information to a predetermined threshold value. 7. A signal processing circuit which performs the iterative operation at the time described above.
  12.  請求項1から請求項11のうちのいずれか1項に記載の信号処理回路と、
     前記アンテナアレイと、
     前記受信回路と
    を備えることを特徴とするレーダ装置。
    A signal processing circuit according to any one of claims 1 to 11,
    Said antenna array;
    A radar device comprising the receiving circuit.
  13.  目標物体で反射された到来波を受信する複数の受信アンテナ素子からなるアンテナアレイと、前記複数の受信アンテナ素子の出力に基づいて複数の受信信号をそれぞれ生成する受信回路とを備えたレーダ装置において実行される信号処理方法であって、
     前記複数の受信信号を複数の周波数領域信号にそれぞれ変換するステップと、
     前記複数の周波数領域信号に基づいて最新の目標探知情報を検出するステップと、
     前記複数の周波数領域信号を用いて最新の相関行列を算出するステップと、
     過去に検出された先の目標探知情報と過去に推定された複数の先の固有ベクトルとの組が少なくとも1つ記憶されている情報記憶部を参照して、前記最新の目標探知情報と一致または類似する先の目標探知情報に対応する複数の先の固有ベクトルを前記情報記憶部から取得するステップと、
     当該取得された複数の先の固有ベクトルと前記最新の相関行列とを用いて所定の固有値分解アルゴリズムに基づく反復演算を実行することにより前記最新の相関行列の固有値及び固有ベクトルの組を推定するステップと、
     当該推定された固有値及び固有ベクトルの組を用いて単数または複数の到来波の到来方向を推定するステップと
    を備えることを特徴とする信号処理方法。
    An antenna array including a plurality of receiving antenna elements for receiving an incoming wave reflected by a target object, and a receiving apparatus that generates a plurality of received signals based on outputs of the plurality of receiving antenna elements, respectively. A signal processing method to be performed,
    Converting the plurality of received signals into a plurality of frequency domain signals,
    Detecting the latest target detection information based on the plurality of frequency domain signals,
    Calculating the latest correlation matrix using the plurality of frequency domain signals,
    By referring to an information storage unit in which at least one set of previously detected previous target detection information and a plurality of previously estimated previous eigenvectors is stored, it matches or is similar to the latest target detection information. Acquiring a plurality of previous eigenvectors corresponding to the target detection information to be performed from the information storage unit,
    Estimating a set of eigenvalues and eigenvectors of the latest correlation matrix by executing an iterative operation based on a predetermined eigenvalue decomposition algorithm using the obtained plurality of previous eigenvectors and the latest correlation matrix,
    Estimating the direction of arrival of one or more arriving waves using the set of the estimated eigenvalues and eigenvectors.
  14.  目標物体で反射された到来波を受信する複数の受信アンテナ素子からなるアンテナアレイと、前記複数の受信アンテナ素子の出力に基づいて複数の受信信号をそれぞれ生成する受信回路と、信号処理プログラムを記憶するメモリと、前記メモリから読み出された当該信号処理プログラムを実行するプロセッサとを備えたレーダ装置において、前記信号処理プログラムは、
     前記複数の受信信号を複数の周波数領域信号にそれぞれ変換するステップと、
     前記複数の周波数領域信号に基づいて最新の目標探知情報を検出するステップと、
     前記複数の周波数領域信号を用いて最新の相関行列を算出するステップと、
     過去に検出された先の目標探知情報と過去に推定された複数の先の固有ベクトルとの組が少なくとも1つ記憶されている情報記憶部を参照して、前記最新の目標探知情報と一致または類似する先の目標探知情報に対応する複数の先の固有ベクトルを前記情報記憶部から取得するステップと、
     当該取得された複数の先の固有ベクトルと前記最新の相関行列とを用いて所定の固有値分解アルゴリズムに基づく反復演算を実行することにより前記最新の相関行列の固有値及び固有ベクトルの組を推定するステップと、
     当該推定された固有値及び固有ベクトルの組を用いて単数または複数の到来波の到来方向を推定するステップと
    を前記プロセッサに実行させることを特徴とする信号処理プログラム。
    An antenna array including a plurality of receiving antenna elements that receive an incoming wave reflected by a target object, a receiving circuit that generates a plurality of received signals based on outputs of the plurality of receiving antenna elements, and a signal processing program are stored. And a processor that executes the signal processing program read from the memory, the signal processing program includes:
    Converting the plurality of received signals into a plurality of frequency domain signals,
    Detecting the latest target detection information based on the plurality of frequency domain signals,
    Calculating the latest correlation matrix using the plurality of frequency domain signals,
    By referring to an information storage unit in which at least one set of previously detected previous target detection information and a plurality of previously estimated previous eigenvectors is stored, it matches or is similar to the latest target detection information. Acquiring a plurality of previous eigenvectors corresponding to the target detection information to be performed from the information storage unit,
    Estimating a set of eigenvalues and eigenvectors of the latest correlation matrix by executing an iterative operation based on a predetermined eigenvalue decomposition algorithm using the obtained plurality of previous eigenvectors and the latest correlation matrix,
    Estimating the direction of arrival of one or more incoming waves using the set of the estimated eigenvalues and eigenvectors.
PCT/JP2018/033218 2018-09-07 2018-09-07 Signal processing circuit, radar device, signal processing method, and signal processing program WO2020049717A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/033218 WO2020049717A1 (en) 2018-09-07 2018-09-07 Signal processing circuit, radar device, signal processing method, and signal processing program
JP2020540970A JP6887571B2 (en) 2018-09-07 2018-09-07 Signal processing circuits, radar devices, signal processing methods and signal processing programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033218 WO2020049717A1 (en) 2018-09-07 2018-09-07 Signal processing circuit, radar device, signal processing method, and signal processing program

Publications (1)

Publication Number Publication Date
WO2020049717A1 true WO2020049717A1 (en) 2020-03-12

Family

ID=69722057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033218 WO2020049717A1 (en) 2018-09-07 2018-09-07 Signal processing circuit, radar device, signal processing method, and signal processing program

Country Status (2)

Country Link
JP (1) JP6887571B2 (en)
WO (1) WO2020049717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087237A1 (en) * 2022-10-27 2024-05-02 苏州大学 Harmonic and inter-harmonic detection method for power grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030054845A1 (en) * 2001-08-30 2003-03-20 Leonid Krasny Enhanced time of arrival estimation using reduced complexity optimal processing
JP2006284182A (en) * 2005-03-31 2006-10-19 Denso It Laboratory Inc Radar signal processing apparatus
JP2007040806A (en) * 2005-08-02 2007-02-15 Denso Corp Radar system
JP2011038837A (en) * 2009-08-07 2011-02-24 Denso Corp Signal processor
JP2012127689A (en) * 2010-12-13 2012-07-05 Mitsubishi Electric Corp Radar apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030054845A1 (en) * 2001-08-30 2003-03-20 Leonid Krasny Enhanced time of arrival estimation using reduced complexity optimal processing
JP2006284182A (en) * 2005-03-31 2006-10-19 Denso It Laboratory Inc Radar signal processing apparatus
JP2007040806A (en) * 2005-08-02 2007-02-15 Denso Corp Radar system
JP2011038837A (en) * 2009-08-07 2011-02-24 Denso Corp Signal processor
JP2012127689A (en) * 2010-12-13 2012-07-05 Mitsubishi Electric Corp Radar apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ODACHI, NARIAKI ET AL.: "High-speed DOA Estimation using Beamspace MUSIC", 2000 IEEE 51ST VEHICULAR TECHNOLOGY CONFERENCE PROCEEDINGS, VTC2000-SPRING, 15 May 2002 (2002-05-15), pages 1050 - 1054, XP000968030, ISSN: 1090-3038 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087237A1 (en) * 2022-10-27 2024-05-02 苏州大学 Harmonic and inter-harmonic detection method for power grid

Also Published As

Publication number Publication date
JP6887571B2 (en) 2021-06-16
JPWO2020049717A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5675285B2 (en) Radar equipment
EP2293094B1 (en) Method of estimating direction of arrival and apparatus thereof
US9507018B2 (en) Detection and ranging apparatus and ranging method
US9041596B2 (en) Multibeam radar apparatus for vehicle, multibeam radar method and multibeam radar program
JP5600866B2 (en) Detecting and ranging apparatus and detecting and ranging method
US8816898B2 (en) Radar apparatus
JP2009162688A (en) Electronic scanning radar device, and received wave direction estimation method and program
JP6395677B2 (en) Direction of arrival estimation device
JP5114217B2 (en) Electronic scanning radar apparatus, received wave direction estimation method, and received wave direction estimation program
US20190280740A1 (en) Wireless receiver, wireless receiving method, and wireless system
JP5553980B2 (en) Radio wave direction detecting device and beam forming device
KR102099388B1 (en) Method of estimating direction of arrival of radar signal based on antenna array extrapolation and apparatus for the same
JP7154494B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
US11754671B2 (en) Incoming wave count estimation apparatus and incoming wave count incoming direction estimation apparatus
WO2020049717A1 (en) Signal processing circuit, radar device, signal processing method, and signal processing program
JPH11166965A (en) Angle measurement signal processing device and angle measurement signal processing method in it
JP5695930B2 (en) Electronic scanning radar apparatus, received wave direction estimation method, and received wave direction estimation program
JP5992129B2 (en) Calibration device
JPH11133130A (en) Radio wave incoming direction detecting apparatus and fm-cw radar
JP2002048853A (en) Radio wave arrival direction estimator and directivity variable transmitter-receiver
JP2018048978A (en) Radar device and arrival direction estimation method
JPH1031065A (en) Fm-cw radar
JP7495248B2 (en) Radar device, object detection method and program
Zhou et al. Modified DOA estimation methods with unknown source number based on projection pretransformation
JP2005201798A (en) Arrival azimuth measuring system and arrival azimuth measuring method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932812

Country of ref document: EP

Kind code of ref document: A1