WO2020048452A1 - 定位参考信号传输的方法和装置 - Google Patents
定位参考信号传输的方法和装置 Download PDFInfo
- Publication number
- WO2020048452A1 WO2020048452A1 PCT/CN2019/104204 CN2019104204W WO2020048452A1 WO 2020048452 A1 WO2020048452 A1 WO 2020048452A1 CN 2019104204 W CN2019104204 W CN 2019104204W WO 2020048452 A1 WO2020048452 A1 WO 2020048452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prs
- block
- sequence
- sequence number
- prs block
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- This application relates to positioning technology for wireless communication.
- the fifth generation mobile (5G, 5th Generation, mobile networks) communication system uses millimeter wave technology.
- Millimeter wave refers to electromagnetic waves with a wavelength in the order of millimeters, and its frequency is between 30 GHz and 300 GHz.
- a characteristic of the millimeter wave band is that it has severe attenuation in the air, weak diffraction ability, and a large impact on atmospheric and rain absorption.
- 5G uses a narrow beam after beamforming as a data transmission carrier, and the beam is transmitted by scanning.
- LTE Long term evolution
- PRS Positioning Reference Signal
- OTDOA Observed Time, Difference, Of Arrival
- the receiving node needs to measure the downlink signals transmitted from one or several cells, and the measurement results are further used to calculate the position.
- An embodiment of the present disclosure provides a PRS transmission method, which is applied to a PRS transmitting end.
- the method includes: presetting PRS blocks with the same number of shaped beams, using a preset sequence generation rule, and setting a PRS block in each PRS block.
- An embodiment of the present disclosure also provides a PRS transmission method, which is applied to a PRS receiver.
- the method includes: obtaining a first PRS block sent by a PRS sender; and when the first PRS block includes a block sequence number, The correspondence relationship is used to determine the transmission sequence number of the shaped beam corresponding to the first PRS block corresponding to the block sequence number; and when the block sequence number is not included in the first PRS block, the first PRS block correspondence is determined according to a preset calculation rule The transmission sequence number of the shaped beam; wherein the transmission sequence number of the shaped beam is used to determine a time domain position of the beam to be shaped.
- An embodiment of the present disclosure further provides a PRS transmission device, which is disposed at a PRS transmitting end.
- the device includes: a setting module and a sending module, wherein the setting module is set to preset PRS blocks with the same number of shaped beams as The preset sequence generation rule sets a PRS sequence corresponding to itself in each PRS block; and the sending module is set to send each PRS block containing the corresponding PRS sequence according to a preset PRS block sending order through a corresponding assignment. Beams are polled for transmission.
- An embodiment of the present disclosure further provides a positioning reference signal PRS transmission device disposed at a PRS receiving end.
- the device includes an acquisition module and a determination module, wherein the acquisition module is configured to acquire a first PRS sent by a PRS transmitting end.
- the determining module is configured to determine, when the first PRS block includes a block sequence number, a transmission sequence number of the shaped beam corresponding to the first PRS block corresponding to the block sequence number according to a preset correspondence; and When the block number is not included in the first PRS block, the transmission sequence number of the shaped beam corresponding to the first PRS block is determined according to a preset calculation rule; wherein the transmission sequence number of the shaped beam is used to determine the beam to be shaped. Time domain location.
- An embodiment of the present disclosure further provides a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, causes the processor to implement the above-mentioned PRS transmission method applied to a PRS sending end; or, the computer When the program is executed by the processor, the processor enables the processor to implement the PRS transmission method applied to the PRS receiving end.
- An embodiment of the present disclosure further provides a PRS transmission device, including a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the application when the computer program is run.
- FIG. 1 is a schematic flowchart of a PRS transmission method at a PRS transmitting end according to an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of a location of a PRS block according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of symbol allocation in a PRS block according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of symbol allocation in another two PRS blocks according to an embodiment of the present disclosure.
- FIG. 5 is a schematic flowchart of a PRS transmission method at a PRS receiver according to an embodiment of the present disclosure
- FIG. 6 is a schematic structural diagram of a PRS transmission device at a PRS transmitting end according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a PRS transmission device at a PRS receiving end according to an embodiment of the present disclosure.
- the downlink PRS signal used for measurement is usually transmitted in the form of broadcast.
- broadcast form transmission is no longer applicable.
- OTDOA positioning is clearly supported in the 5G standard.
- how to achieve downlink positioning in the 5G millimeter waveband is still blank.
- the PRS sender presets PRS blocks with the same number of shaped beams, uses preset sequence generation rules, and sets a PRS sequence corresponding to itself in each PRS block; and according to the preset PRS Block sending order, each PRS block is polled and sent through its corresponding shaped beam.
- the PRS receiver obtains the first PRS block sent by the PRS sender; and when the first PRS block includes a block sequence number, determines a corresponding beamformed beam of the first PRS block corresponding to the block sequence number according to a preset correspondence.
- An embodiment of the present disclosure provides a PRS transmission method, which is applied to a PRS sending end. As shown in FIG. 1, the method includes steps 101-102.
- step 101 PRS blocks with the same number of shaped beams are preset, a preset sequence generation rule is used, and a PRS sequence corresponding to itself is set in each PRS block.
- the PRS sending end may be a wireless communication base station, etc .
- a scheduling period may be first established to allocate time-frequency resources for positioning reference signals;
- Each slot is a scheduling period, and may also be a fixed time length as a scheduling period, such as 5 ms.
- the one scheduling period may be referred to as a PRS burst, and a time difference between the PRS bursts is recorded as T prs .
- T prs a time difference between the PRS bursts.
- Within a PRS burst divide the resources allocated to send PRS in the time domain PRS blocks. In this way, a PRS block in a PRS burst can support Shaped beam for polling; the PRS block can be set Symbols for the PRS sequence, It can be set according to requirements, such as 4, 8 and so on.
- the preset sequence generation rule can be set according to the downlink positioning requirements. Different PRS sequences can be set in each symbol in the PRS block, and a PRS sequence with different symbols can be generated by using a pseudo-random sequence or the like. The same PRS sequence is used in the PRS block.
- each PRS block can be set with a corresponding block sequence number according to the preset sending order.
- the preset sending order may be set according to the reading order of the PRS blocks, and may be the order of the PRS blocks in the PRS burst.
- the sequence number of the PRS blocks in the PRS burst may be used as the block number of the PRS block.
- the PRS block is polled and sent according to the block number of the PRS block.
- the sequence number of the PRS block can be written as
- each PRS block may use the same PRS sequence, or each PRS block may use a different PRS sequence.
- the same PRS sequence means that the expression used between the PRS blocks is the same, and the expression variable is only related to the internal symbol of the PRS block, and does not follow the PRS block.
- the two PRS blocks have the same sequence within the same symbol position, but the sequences within each symbol in the same PRS block are different.
- the different PRS sequences mean that the variables used in the expressions between PRS blocks vary with the PRS block. For example, if a slot number is used as a variable, the sequence of each PRS block is different.
- an existing PRS generation manner of LTE may be adopted to generate a PRS according to an embodiment of the present disclosure
- the PRS may be generated by Expression (1):
- c (2m) and c (2m + 1) can be expressed as c (n), that is, 2m or 2m + 1 is represented by n; c (n) can be expressed by expressions (2), ( 3) and (4) definitions:
- x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2 (3)
- x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) x 2 (n)) mod 2 (4)
- the initial value generation of the PRS sequence may use any one of the expressions (5), (6), (7), (8), and (9) generate:
- expression (9) can be applied to The range is 0 to 8191.
- the initial value of the PRS sequence can be generated using any one of the expressions (10), (11), (12), (13), and (14):
- c init represents an initial value of the PRS sequence
- n id represents the scrambling code sequence number
- ⁇ represents numerical numerology
- the value range of ⁇ is 0, 1 , 2, 3, 4, and
- n s, f represents the slot number, Represents the number of symbols contained in one PRS block;
- numerology includes: a subcarrier interval and a cyclic prefix (CP, Cyclic Prefix) length.
- the block serial number corresponding to the PRS block may be set and transmitted in a previous symbol or a next symbol of the PRS sequence in the PRS block.
- This symbol is used to send the positioning reference signal, and the last symbol is used to send the block sequence number, that is, the PRS block index. It may also be that the first symbol of the PRS block is used to send the block sequence number, and the remaining symbols send the PRS sequence. There may be a frequency division multiplexing relationship between PRS and PRS block index of different cells.
- Combination 1 Each PRS block sends the same content, and the PRS block contains obvious PRS block index information
- Combination 2 Each PRS block sends the same content, and the PRS block does not contain PRS blocks index information
- combination three each PRS block sends different content, the PRS block contains PRS index information
- combination four each PRS block sends different content, and the PRS block does not contain PRS block index information.
- each PRS block is polled and transmitted through its corresponding shaped beam according to the preset PRS block sending order.
- the PRS block sequence in the PRS burst is the preset PRS block sending order.
- the first PRS block in the sequence corresponds to the first shaped beam.
- the PRS block with the sequence number of 1 is sent by the first shaped beam; and so on, the PRS block with the sequence number of 2 is sent by the second shaped beam.
- the format of the block sequence number is not limited to a fixed one. It can be set in advance. It can be in the form of numbers, characters, and so on. In this way, a correspondence relationship is formed between the block sequence number of the PRS block and the transmission sequence number of the shaped beam.
- UE user equipment
- UE can identify the sequence number or time domain position of the shaped beam that sends the PRS according to the reception time, or can identify the sequence of the shaped beam that sends the PRS based on the read sequence number information.
- the serial number or time domain location is further processed.
- the length of a PRS burst is a half frame, that is, 5ms, and the maximum number of supported beam polls is 64.
- the value ranges from 0 to 63.
- a PRS block contains 4 symbols.
- the time domain position arrangement is the same as the SS / PBCH block in the same scenario.
- the PRS block is in the form of combination one, in a PRS block, the first three symbols are used to send a PRS reference signal, and the last symbol sends a PRS block index to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- the PRS signal is transmitted using 64 beams.
- each PRS block uses the same PRS sequence, and all four symbols are used to send the PRS sequence.
- the PRS block is in the form of combination three, in a PRS block, the first three symbols are used to send a PRS reference signal, and the last symbol is sent to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- each PRS block uses a different PRS sequence, and all four symbols are used to send the PRS sequence.
- each PRS block contains 7 symbols.
- each of the 7 symbols can send a PRS sequence, or 6 symbols can send a PRS sequence, and 1 symbol can send a PRS block index.
- the subcarrier interval is 30KHz, and a maximum of 8 PRS beams are supported for polling.
- An embodiment of the present disclosure further provides a PRS transmission method, which is applied to a PRS receiving end. As shown in FIG. 5, the method includes steps 501-502.
- step 501 a first PRS block sent by a PRS sending end is acquired.
- the PRS receiving end may be a UE such as a mobile terminal.
- the UE may receive a wireless communication signal sent by a PRS transmitting end such as a base station, and parse out a first PRS block sent through a shaped beam as a carrier.
- the content in the first PRS block can be parsed through a protocol or the like.
- step 502 when a block sequence number is included in the first PRS block, a transmission sequence number of a shaped beam corresponding to the first PRS block corresponding to the block sequence number is determined according to a preset correspondence; and in the first PRS When the block does not include a block sequence number, the transmission sequence number of the shaped beam corresponding to the first PRS block is determined according to a preset calculation rule; wherein the transmission sequence number of the shaped beam is used to determine a time domain position of the beam that should be shaped.
- the preset correspondence relationship is formed at the PRS transmitting end.
- the block number of the PRS block and the transmission sequence number of the beam to be shaped form a one-to-one correspondence relationship. Therefore, the received PRS
- the block sequence number of the block determines the transmission sequence number of the beam that should be shaped, thereby determining the time domain position of the beam that should be shaped corresponding to the PRS block in the shaped beam period.
- the content in the first PRS block can be parsed through a protocol or the like to determine whether the first PRS block includes a block sequence number.
- the block sequence number of each PRS block in the PRS burst, and PRS block index The value ranges from 0 to 63.
- a PRS block contains 4 symbols.
- the time domain position arrangement is the same as the SS / PBCH block in the same scenario.
- the PRS block is in the form of combination one, in a PRS block, the first three symbols are used to send a PRS reference signal, and the last symbol sends a PRS block index to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- the PRS signal is transmitted using 64 beams.
- the UE performs detection during the entire polling cycle, and determines the transmission sequence number and the position in the domain of the shaped beam according to the block sequence number of the detected PRS block. According to the position in the time domain of the PRS block corresponding to the shaped beam, the time difference between the arrivals of the two PRS blocks can be calculated, so that OTDOA and other methods are used for positioning.
- the preset calculation rule may be set according to a beam polling period and the like, and a transmission sequence number of the shaped beam corresponding to the received first PRS block may be estimated from a known reception time of the transmission sequence number of the shaped beam.
- the transmission sequence number of the shaped beam is used to determine the time domain position of the beam to be shaped, and to determine the time domain position of the shaped beam, that is, the transmission time of the corresponding PRS block is determined.
- the difference between the reception time difference and the transmission time difference is used to determine the time difference between the two PRS blocks.
- each PRS block received may be distinguished according to a preset sequence generation rule obtained in advance from the PRS sender, and the position of the corresponding shaped beam of the first PRS block may be determined according to the position of the first PRS block. Transmission sequence number.
- each PRS block contains 4 symbols, and the 8 PRS blocks send different PRS sequences.
- the initial value can be expressed by expression (10); in In these 5ms, the initial value of PRS generated by any symbol is different, and the sequence is also different; the receiving end can know the rules such as the initial value expression through auxiliary information such as communication with the serving cell. If it detects that the sequence corresponds to 9 Symbol, then you can know its position in the time domain, or you can know the corresponding second PRS block. In this way, it can be known that the transmission sequence number of the shaped beam corresponding to the PRS block is a corresponding value.
- positioning can be performed by using OTDOA or the like.
- the difference between the reception time of the first PRS block and the obtained second PRS block is divided by a symbol duration, and the quotient of the division is rounded down to obtain the serial number of the first PRS corresponding shaped beam transmission.
- the transmitting terminal uses a combination of two blocks as an example.
- a PRS block four symbols are used to send a PRS sequence.
- each cell is synchronized, and the UE receives a signal from the serving cell at time t 1 .
- the PRS signal and the communication between the serving cells are known.
- the beam transmission sequence number is 3.
- T the length of a symbol (including CP) is T symb .
- the beam is transmitted. Duration is less than T symb , assuming It can be inferred as the signal transmitted by the adjacent fourth beam. That is, when the second PRS block sending cell is a serving cell, the beam number corresponding to the first PRS block may be determined by using the symbol interval value corresponding to the beam number.
- the reception time difference, 4 is a symbol interval value of the corresponding shaped beams of the first PRS block and the second PRS block.
- the arrival time difference can be used for OTDOA positioning.
- An embodiment of the present disclosure provides a PRS transmission device, which is disposed at a PRS transmitting end. As shown in FIG. 6, the device includes a setting module 61 and a sending module 62.
- the setting module 61 is set to preset PRS blocks with the same number of shaped beams, and uses a preset sequence generation rule to set a PRS sequence corresponding to itself in each PRS block.
- the PRS sending end which may be a wireless communication base station, may first establish a scheduling period to allocate time-frequency resources for positioning reference signals; Each slot is a scheduling period, and it can also be a fixed period of time, such as 5ms.
- the one scheduling period may be referred to as a PRS burst, and a time difference between the PRS bursts is recorded as T prs .
- Within a PRS burst divide the resources allocated to send PRS in the time domain PRS blocks. In this way, a PRS block in a PRS burst can support Shaped beam for polling; the PRS block can be set Symbols for the PRS sequence, It can be set according to requirements, such as 4, 8 and so on.
- the preset sequence generation rule can be set according to the downlink positioning requirements. Different PRS sequences can be set in each symbol in the PRS block, and a PRS sequence with different symbols can be generated by using a pseudo-random sequence or the like. The same PRS sequence is used in the PRS block.
- each PRS block can be set with a corresponding block sequence number according to the preset sending order.
- the preset sending order may be set according to the reading order of the PRS blocks, and may be the order of the PRS blocks in the PRS burst.
- the sequence number of the PRS blocks in the PRS burst may be used as the block number of the PRS block.
- the PRS block is polled and sent according to the block number of the PRS block.
- the sequence number of the PRS block can be written as
- each PRS block may use the same PRS sequence, or each PRS block may use a different PRS sequence.
- the same PRS sequence means that the expression used between the PRS blocks is the same, and the expression variable is only related to the internal symbol of the PRS block, and does not follow the PRS block.
- the two PRS blocks have the same sequence within the same symbol position, but the sequences within each symbol in the same PRS block are different.
- the different PRS sequences mean that the variables used in the expressions between PRS blocks vary with the PRS block. For example, if a slot number is used as a variable, the sequence of each PRS block is different.
- the existing PRS generation manner of LTE may be used to generate the PRS in the embodiment of the present disclosure;
- the PRS may be generated by Expression (1);
- the expressions of c (2m) and c (2m + 1) can be expressed as c (n), that is, 2m or 2m + 1 is represented by n;
- the initial value generation of the PRS sequence may use any one of expressions (5), (6), (7), (8), and (9) Produces; where expressions (5), (6), (7), and (8) can be applied to Range 0 to 4095, expression (9) can be applied to The range is 0 to 8191.
- the initial value of the PRS sequence may be generated by using any one of expressions (10), (11), (12), (13), and (14); wherein, the c init represents the initial value of the PRS sequence, Represents the PRS sequence number, n id represents the scrambling code sequence number, ⁇ represents numerology, and the value range of ⁇ is 0, 1 , 2, 3, 4, and n s, f represents the slot number, Indicates the number of symbols contained in one PRS block; where numerology includes: subcarrier interval and CP length.
- the block serial number corresponding to the PRS block may be set and transmitted in a previous symbol or a next symbol of the PRS sequence in the PRS block.
- This symbol is used to send the positioning reference signal, and the last symbol is used to send the block sequence number, that is, the PRS block index. It may also be that the first symbol of the PRS block is used to send the block sequence number, and the remaining symbols send the PRS sequence. There may be a frequency division multiplexing relationship between PRS and PRS block index of different cells.
- Combination 1 Each PRS block sends the same content, and the PRS block contains obvious PRS block index information
- Combination 2 Each PRS block sends the same content, and the PRS block does not contain PRS blocks index information
- combination three each PRS block sends different content, the PRS block contains PRS index information
- combination four each PRS block sends different content, and the PRS block does not contain PRS block index information.
- the sending module 62 is configured to send each PRS block in a polling manner by using a corresponding shaped beam according to a preset PRS block sending order.
- the PRS block sequence in the PRS burst is the preset PRS block sending order.
- the first PRS block in the sequence corresponds to the first shaped beam. That is, the PRS block with the sequence number of 1 is sent by the first shaped beam; and so on, the PRS block with the sequence number of 2 is sent by the second shaped beam.
- the format of the block sequence number is not limited to a fixed one. It can be set in advance. It can be in the form of numbers, characters, and so on. In this way, a correspondence relationship is formed between the block sequence number of the PRS block and the transmission sequence number of the shaped beam.
- UE user equipment
- UE can identify the sequence number or time domain position of the shaped beam that sends the PRS according to the reception time, or can identify the sequence of the shaped beam that sends the PRS based on the read sequence number information.
- the serial number or time domain location is further processed.
- the setting module 61 and the sending module 62 may each be a CPU, a microprocessor (MCU), a digital signal processor (DSP), or a field programmable gate array (FPGA) in a signal transmitting device such as a base station. And so on.
- MCU microprocessor
- DSP digital signal processor
- FPGA field programmable gate array
- An embodiment of the present disclosure provides a PRS transmission device, which is disposed at a PRS receiving end. As shown in FIG. 7, the device includes an obtaining module 71 and a determining module 72.
- the obtaining module 71 is configured to obtain a first PRS block sent by a PRS sending end.
- the PRS receiver may be a UE such as a mobile terminal.
- the UE may receive a wireless communication signal sent by a PRS transmitter such as a base station, and parse out a first PRS block sent through a shaped beam as a carrier.
- the content in the first PRS block is parsed through a protocol or the like.
- the determining module 72 is configured to determine, when the first PRS block includes a block sequence number, a transmission sequence number of the shaped beam corresponding to the first PRS block corresponding to the block sequence number according to a preset correspondence; and When the first PRS block does not include a block sequence number, the transmission sequence number of the shaped beam corresponding to the first PRS block is determined according to a preset calculation rule; wherein the transmission sequence number of the shaped beam is used to determine the time when the beam should be shaped. Domain location.
- the preset correspondence relationship is formed at the PRS transmitting end.
- the block number of the PRS block and the transmission sequence number of the beam to be shaped form a one-to-one correspondence relationship. Therefore, the received PRS
- the block sequence number of the block determines the transmission sequence number of the beam that should be shaped, thereby determining the time domain position of the beam that should be shaped corresponding to the PRS block in the shaped beam period.
- the content in the first PRS block can be parsed through a protocol or the like to determine whether the first PRS block includes a block sequence number.
- the block sequence number of each PRS block in the PRS burst, and PRS block index The value ranges from 0 to 63.
- a PRS block contains 4 symbols.
- the time domain position arrangement is the same as the SS / PBCH block in the same scenario.
- the PRS block is in the form of combination one, in a PRS block, the first three symbols are used to send a PRS reference signal, and the last symbol sends a PRS block index to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- the PRS signal is transmitted using 64 beams.
- the UE performs detection during the entire polling cycle, and determines the transmission sequence number of the shaped beam and the position in the time domain according to the block sequence number of the detected PRS block. According to the position in the time domain of the PRS block corresponding to the shaped beam, the time difference between the arrivals of the two PRS blocks can be calculated, so that OTDOA and other methods are used for positioning.
- the preset calculation rule may be set according to a beam polling period and the like, and a transmission sequence number of the shaped beam corresponding to the received first PRS block may be estimated from a known reception time of the transmission sequence number of the shaped beam.
- the transmission sequence number of the shaped beam is used to determine the time domain position of the beam to be shaped, and to determine the time domain position of the shaped beam, that is, the transmission time of the corresponding PRS block is determined.
- the difference between the reception time difference and the transmission time difference is used to determine the time difference between the two PRS blocks.
- each PRS block received may be distinguished according to a preset sequence generation rule obtained in advance from the PRS sender, and the position of the corresponding shaped beam of the first PRS block may be determined according to the position of the first PRS block. Transmission sequence number.
- each PRS block contains 4 symbols, and the 8 PRS blocks send different PRS sequences.
- the initial value can be expressed by expression (10); in In these 5ms, the initial value of PRS generated by any symbol is different, and the sequence is also different; the receiving end can know the rules such as the initial value expression through auxiliary information such as communication with the serving cell. If it detects that the sequence corresponds to 9 Symbol, then you can know its position in the time domain, or you can know the corresponding second PRS block. In this way, it can be known that the transmission sequence number of the shaped beam corresponding to the PRS block is a corresponding value.
- positioning can be performed by using OTDOA or the like.
- the difference between the reception time of the first PRS block and the obtained second PRS block is divided by a symbol duration, and the quotient of the division is rounded down to obtain the serial number of the first PRS corresponding shaped beam transmission.
- the transmitter to use a combination of two, for example, in a PRS block, four symbols are used to transmit the PRS sequence, the OTDOA positioning in each cell synchronization, the UE receives from the serving cell at time t 1
- the PRS signal and the communication between the serving cells are known.
- the beam transmission sequence number is 3.
- a PRS signal from a neighboring cell is received.
- the length of a symbol is T symb .
- the beam is transmitted. Duration is less than T symb , assuming It can be inferred as the signal transmitted by the adjacent fourth beam. That is, when the second PRS block sending cell is a serving cell, the beam number corresponding to the first PRS block may be determined by using the symbol interval value corresponding to the beam number.
- the reception time difference, 4 is a symbol interval value of the corresponding shaped beams of the first PRS block and the second PRS block.
- the arrival time difference can be used for OTDOA positioning.
- both the obtaining module 71 and the determining module 72 may be implemented by a CPU, MCU, DSP, or FPGA in a signal receiving device such as a UE.
- a storage medium provided in an embodiment of the present disclosure stores an executable program stored thereon, and when the executable program is executed by a processor, the processor implements a PRS transmission method, and the method may be applied to a PRS transmitting end, as shown in FIG. 1 As shown, the method may include steps 101-102.
- step 101 PRS blocks with the same number of shaped beams are preset, a preset sequence generation rule is used, and a PRS sequence corresponding to itself is set in each PRS block.
- the PRS sending end which may be a wireless communication base station, may first establish a scheduling period to allocate time-frequency resources for positioning reference signals; Each slot is a scheduling period, and it can also be a fixed period of time, such as 5ms.
- the one scheduling period may be referred to as a PRS burst, and a time difference between the PRS bursts is recorded as T prs .
- Within a PRS burst divide the resources allocated to send PRS in the time domain P RS blocks. In this way, a PRS block in a PRS burst can support Shaped beam for polling; the PRS block can be set Symbols for the PRS sequence, It can be set according to requirements, such as 4, 8 and so on.
- the preset sequence generation rule can be set according to the downlink positioning requirements. Different PRS sequences can be set in each symbol in the PRS block, and a PRS sequence with different symbols can be generated by using a pseudo-random sequence or the like. The same PRS sequence is used in the PRS block.
- each PRS block can be set with a corresponding block sequence number according to the preset sending order.
- the preset sending order may be set according to the reading order of the PRS blocks, and may be the order of the PRS blocks in the PRS burst.
- the sequence number of the PRS blocks in the PRS burst may be used as the block number of the PRS block.
- the PRS block is polled and sent according to the block number of the PRS block.
- the sequence number of the PRS block can be written as
- each PRS block may use the same PRS sequence, or each PRS block may use a different PRS sequence.
- the same PRS sequence means that the expression used between the PRS blocks is the same, and the expression variable is only related to the internal symbol of the PRS block, and does not follow the PRS block.
- the two PRS blocks have the same sequence within the same symbol position, but the sequences within each symbol in the same PRS block are different.
- the different PRS sequences mean that the variables used in the expressions between PRS blocks vary with the PRS block. For example, if a slot number is used as a variable, the sequence of each PRS block is different.
- an existing PRS generation manner of LTE may be adopted to generate a PRS according to an embodiment of the present disclosure
- the PRS may be generated by Expression (1)
- l represents the sequence number of the symbol in the time slot where the PRS sequence is located
- n s represents the sequence number of the time slot corresponding to the PRS sequence, Indicates the maximum downlink bandwidth.
- the expressions of c (2m) and c (2m + 1) can be expressed as c (n), that is, 2m or 2m + 1 is represented by n
- the initial value generation of the PRS sequence may use any one of the expressions (5), (6), (7), (8), and (9) Produces; where expressions (5), (6), (7), and (8) can be applied to Range 0 to 4095, expression (9) can be applied to The range is 0 to 8191.
- the initial value of the PRS sequence may be generated by using any one of expressions (10), (11), (12), (13), and (14); wherein, the c init represents the initial value of the PRS sequence, Represents the PRS sequence number, n id represents the scrambling code sequence number, ⁇ represents numerology, and the value range of ⁇ is 0, 1 , 2, 3, 4, and n s, f represents the slot number, Indicates the number of symbols contained in one PRS block; where numerology includes: subcarrier interval and CP length.
- the block serial number corresponding to the PRS block may be set and transmitted in a previous symbol or a next symbol of the PRS sequence in the PRS block.
- This symbol is used to send the positioning reference signal, and the last symbol is used to send the block sequence number, that is, the PRS block index. It may also be that the first symbol of the PRS block is used to send the block sequence number, and the remaining symbols send the PRS sequence. There may be a frequency division multiplexing relationship between PRS and PRS block index of different cells.
- Combination 1 The PRS block sends the same content, and the PRS block contains obvious PRS block index information
- Combination 2 The PRS block sends the same content, and the PRS block does not include the PRS block index information
- combination three each PRS block sends different content, the PRS block contains PRS index information
- combination four each PRS block sends different content, and the PRS block does not contain PRS block index information.
- each PRS block is polled and transmitted through its corresponding shaped beam according to the preset PRS block sending order.
- the PRS block sequence in the PRS burst is the preset PRS block sending order.
- the first PRS block in the sequence corresponds to the first shaped beam.
- the serial number form is not limited to a fixed form, and may be set in advance, and may be in the form of numbers, characters, and the like, which can be determined and corresponded to the transmission order of the shaped beam. In this way, a correspondence relationship is formed between the block sequence number of the PRS block and the transmission sequence number of the shaped beam.
- UE user equipment
- UE can identify the sequence number or time domain position of the shaped beam that sends the PRS according to the reception time, or can identify the sequence of the shaped beam that sends the PRS based on the read sequence number information.
- the serial number or time domain location is further processed.
- An executable program may be stored on the storage medium, and when the executable program is executed by a processor, the processor implements a PRS transmission method, and the method may be applied to a PRS receiving end, as shown in FIG. 5.
- the method may include steps 501-502.
- step 501 a first PRS block sent by a PRS sending end is acquired.
- the PRS receiving end may be a UE such as a mobile terminal.
- the UE may receive a wireless communication signal sent by a PRS transmitting end such as a base station, and parse out a first PRS block sent through a shaped beam as a carrier.
- the content in the first PRS block is parsed through a protocol or the like.
- step 502 when a block sequence number is included in the first PRS block, a transmission sequence number of a shaped beam corresponding to the first PRS block corresponding to the block sequence number is determined according to a preset correspondence relationship; in the first PRS block When the block sequence number is not included, the transmission sequence number of the shaped beam corresponding to the first PRS block is determined according to a preset calculation rule; wherein the transmission sequence number of the shaped beam is used to determine a time domain position of the beam to be shaped.
- the preset correspondence relationship is formed at the PRS transmitting end.
- the block number of the PRS block and the transmission sequence number of the beam to be shaped form a one-to-one correspondence relationship. Therefore, the received PRS
- the block sequence number of the block determines the transmission sequence number of the beam that should be shaped, thereby determining the time domain position of the beam that should be shaped corresponding to the PRS block in the shaped beam period.
- the content in the first PRS block can be parsed through a protocol or the like to determine whether the first PRS block includes a block sequence number.
- the block sequence number of each PRS block in the PRS burst, and PRS block index The value ranges from 0 to 63.
- a PRS block contains 4 symbols.
- the time domain position arrangement is the same as the SS / PBCH block in the same scenario.
- the PRS block is in the form of combination one, in a PRS block, the first three symbols are used to send a PRS reference signal, and the last symbol sends a PRS block index to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- the PRS signal is transmitted using 64 beams.
- the UE performs detection during the entire polling cycle, and determines the transmission sequence number of the shaped beam and the position in the time domain according to the block sequence number of the detected PRS block. According to the position in the time domain of the PRS block corresponding to the shaped beam, the time difference between the arrivals of the two PRS blocks can be calculated, so that OTDOA and other methods are used for positioning.
- the preset calculation rule may be set according to a beam polling period and the like, and a transmission sequence number of the shaped beam corresponding to the received first PRS block may be estimated from a known reception time of the transmission sequence number of the shaped beam.
- the transmission sequence number of the shaped beam is used to determine the time domain position of the beam to be shaped, and to determine the time domain position of the shaped beam, that is, the transmission time of the corresponding PRS block is determined.
- the difference between the reception time difference and the transmission time difference is used to determine the time difference between the two PRS blocks.
- each PRS block received may be distinguished according to a preset sequence generation rule obtained in advance from the PRS sender, and the position of the corresponding shaped beam of the first PRS block may be determined according to the position of the first PRS block. Transmission sequence number.
- each PRS block contains 4 symbols, and the 8 PRS blocks send different PRS sequences.
- the initial value can be expressed by expression (10); in In these 5ms, the initial value of PRS generated by any symbol is different, and the sequence is also different; the receiving end can know the rules such as the initial value expression through auxiliary information such as communication with the serving cell. If it detects that the sequence corresponds to 9 Symbol, then you can know its position in the time domain, or you can know the corresponding second PRS block. In this way, it can be known that the transmission sequence number of the shaped beam corresponding to the PRS block is a corresponding value.
- positioning can be performed by using OTDOA or the like.
- the difference between the receiving time of the first PRS block and the obtained second PRS block is divided by 1 symbol duration, and the quotient of the division is rounded down to obtain the serial number corresponding to the first PRS shaped beam.
- the transmitting terminal uses a combination of two blocks as an example.
- a PRS block four symbols are used to send a PRS sequence.
- each cell is synchronized, and the UE receives a signal from the serving cell at time t 1 .
- the PRS signal and the communication between the serving cells are known.
- the beam transmission sequence number is 3.
- T the length of a symbol (including CP) is T symb .
- the beam is transmitted. Duration is less than T symb , assuming It can be inferred as the signal transmitted by the adjacent fourth beam. That is, when the second PRS block sending cell is a serving cell, the beam number corresponding to the first PRS block may be determined by using the symbol interval value corresponding to the beam number.
- the reception time difference, 4 is the symbol interval value of the shaped beam corresponding to each of the first PRS block and the second PRS block.
- the arrival time difference can be used for OTDOA positioning.
- An embodiment of the present disclosure provides a PRS transmission device, including a processor, a memory, and an executable program stored on the memory and capable of running by the processor. When the processor runs the executable program, the PRS transmission is performed. Method. The method may be applied to a PRS sender. As shown in FIG. 1, the method includes steps 101-102.
- step 101 PRS blocks with the same number of shaped beams are preset, a preset sequence generation rule is used, and a PRS sequence corresponding to itself is set in each PRS block.
- the PRS sending end which may be a wireless communication base station, may first establish a scheduling period to allocate time-frequency resources for positioning reference signals; Each slot is a scheduling period, and it can also be a fixed period of time, such as 5ms.
- the one scheduling period may be referred to as a PRS burst, and a time difference between the PRS bursts is recorded as T prs .
- Within a PRS burst divide the resources allocated to send PRS in the time domain PRS blocks. In this way, a PRS block in a PRS burst can support Shaped beam for polling; the PRS block can be set Symbols for the PRS sequence, It can be set according to requirements, such as 4, 8 and so on.
- the preset sequence generation rule can be set according to the downlink positioning requirements. Different PRS sequences can be set in each symbol in the PRS block, and a PRS sequence with different symbols can be generated by using a pseudo-random sequence or the like. The same PRS sequence is used in the PRS block.
- each PRS block can be set with a corresponding block sequence number according to the preset sending order.
- the preset sending order may be set according to the reading order of the PRS blocks, and may be the order of the PRS blocks in the PRS burst.
- the sequence number of the PRS blocks in the PRS burst may be used as the block number of the PRS block.
- the PRS block is polled and sent according to the block number of the PRS block.
- the sequence number of the PRS block can be written as
- each PRS block may use the same PRS sequence, or each PRS block may use a different PRS sequence.
- the same PRS sequence means that the expression used between the PRS blocks is the same, and the expression variable is only related to the internal symbol of the PRS block, and does not follow the PRS block.
- the two PRS blocks have the same sequence within the same symbol position, but the sequences within each symbol in the same PRS block are different.
- the different PRS sequences mean that the variables used in the expressions between PRS blocks vary with the PRS block. For example, if a slot number is used as a variable, the sequence of each PRS block is different.
- an existing PRS generation manner of LTE may be adopted to generate a PRS according to an embodiment of the present disclosure
- the PRS may be generated by Expression (1)
- l represents the sequence number of the symbol in the time slot where the PRS sequence is located
- n s represents the sequence number of the time slot corresponding to the PRS sequence, Indicates the maximum downlink bandwidth.
- the expressions of c (2m) and c (2m + 1) can be expressed as c (n), that is, 2m or 2m + 1 is represented by n
- the initial value generation of the PRS sequence may use any one of the expressions (5), (6), (7), (8), and (9) Produces; where expressions (5), (6), (7), and (8) can be applied to Range 0 to 4095, expression (9) can be applied to The range is 0 to 8191.
- the initial value of the PRS sequence can be generated by using any one of the expressions (10), (11), (12), (13), and (14);
- c init represents the initial value of the PRS sequence, Represents the PRS sequence number, n id represents the scrambling code sequence number, ⁇ represents numerology, and the value range of ⁇ is 0, 1 , 2, 3, 4, and n s, f represents the slot number, Indicates the number of symbols contained in one PRS block; where numerology includes: subcarrier interval and CP length.
- the block serial number corresponding to the PRS block may be set and transmitted in a previous symbol or a next symbol of the PRS sequence in the PRS block.
- This symbol is used to send the positioning reference signal, and the last symbol is used to send the block sequence number, that is, the PRS block index. It may also be that the first symbol of the PRS block is used to send the block sequence number, and the remaining symbols send the PRS sequence. There may be a frequency division multiplexing relationship between PRS and PRS block index of different cells.
- each PRS block is polled and transmitted through its corresponding shaped beam according to the preset PRS block sending order.
- the PRS block sequence in the PRS burst is the preset PRS block sending order.
- the first PRS block in the sequence corresponds to the first shaped beam.
- the serial number form is not limited to a fixed form, and may be set in advance, and may be in the form of numbers, characters, and the like, which can be determined and corresponded to the transmission order of the shaped beam. In this way, a correspondence relationship is formed between the block sequence number of the PRS block and the transmission sequence number of the shaped beam.
- UE user equipment
- UE can identify the sequence number or time domain position of the shaped beam that sends the PRS according to the reception time, or can identify the sequence of the shaped beam that sends the PRS based on the read sequence number information.
- the serial number or time domain location is further processed.
- An executable program may be stored in a memory of the data transmission device, and when the executable program is executed by the processor, the processor implements a PRS transmission method, and the method may be applied to a PRS receiving end, as shown in FIG. 5.
- the method includes: steps 501-502.
- step 501 a first PRS block sent by a PRS sending end is acquired.
- the PRS receiving end may be a UE such as a mobile terminal.
- the UE may receive a wireless communication signal sent by a PRS transmitting end such as a base station, and parse out a first PRS block sent through a shaped beam as a carrier.
- the content in the first PRS block is parsed through a protocol or the like.
- step 502 when a block sequence number is included in the first PRS block, a transmission sequence number of a shaped beam corresponding to the first PRS block corresponding to the block sequence number is determined according to a preset correspondence; and in the first PRS When the block does not include a block sequence number, the transmission sequence number of the shaped beam corresponding to the first PRS block is determined according to a preset calculation rule; wherein the transmission sequence number of the shaped beam is used to determine a time domain position of the beam that should be shaped.
- the preset correspondence relationship is formed at the PRS transmitting end.
- the block number of the PRS block and the transmission sequence number of the beam to be shaped form a one-to-one correspondence relationship. Therefore, the received PRS
- the block sequence number of the block determines the transmission sequence number of the beam that should be shaped, thereby determining the time domain position of the beam that should be shaped corresponding to the PRS block in the shaped beam period.
- the content in the first PRS block can be parsed through a protocol or the like to determine whether the first PRS block includes a block sequence number.
- the block sequence number of each PRS block in the PRS burst, and PRS block index The value ranges from 0 to 63.
- a PRS block contains 4 symbols.
- the time domain position arrangement is the same as the SS / PBCH block in the same scenario.
- the PRS block takes the form of combination one.
- a PRS block the first three symbols are used to send a PRS reference signal, and the last symbol sends a PRS block index to indicate the block number of the current PRS block.
- the PRS sequence and the PRS block index are mapped in the frequency domain in a mod6 manner.
- the PRS signal is transmitted using 64 beams.
- the UE performs detection during the entire polling cycle, and determines the transmission sequence number of the shaped beam and the position in the time domain according to the block sequence number of the detected PRS block. According to the position in the time domain of the PRS block corresponding to the shaped beam, the time difference between the arrivals of the two PRS blocks can be calculated, so that OTDOA and other methods are used for positioning.
- the preset calculation rule may be set according to a beam polling period and the like, and a transmission sequence number of the shaped beam corresponding to the received first PRS block may be estimated from a known reception time of the transmission sequence number of the shaped beam.
- the transmission sequence number of the shaped beam is used to determine the time domain position of the beam to be shaped, and to determine the time domain position of the shaped beam, that is, the transmission time of the corresponding PRS block is determined.
- the difference between the reception time difference and the transmission time difference is used to determine the time difference between the two PRS blocks.
- each PRS block received may be distinguished according to a preset sequence generation rule obtained in advance from the PRS sender, and the position of the corresponding shaped beam of the first PRS block may be determined according to the position of the first PRS block. Transmission sequence number.
- each PRS block contains 4 symbols, and the 8 PRS blocks send different PRS sequences.
- the initial value can be expressed by expression (10); in In these 5ms, the initial value of PRS generated by any symbol is different, and the sequence is also different; the receiving end can know the rules such as the initial value expression through auxiliary information such as communication with the serving cell. If it detects that the sequence corresponds to 9 Symbol, then you can know its position in the time domain, or you can know the corresponding second PRS block. In this way, it can be known that the transmission sequence number of the shaped beam corresponding to the PRS block is a corresponding value.
- positioning can be performed by using OTDOA or the like.
- the difference between the reception time of the first PRS block and the obtained second PRS block is divided by a symbol duration, and the quotient of the division is rounded down to obtain the serial number of the first PRS corresponding shaped beam transmission.
- the transmitting terminal uses a combination of two blocks as an example.
- a PRS block four symbols are used to send a PRS sequence.
- each cell is synchronized, and the UE receives a signal from the serving cell at time t 1 .
- the PRS signal and the communication between the serving cells are known.
- the beam transmission sequence number is 3.
- T the length of a symbol (including CP) is T symb .
- the beam is transmitted. Duration is less than T symb , assuming It can be inferred as the signal transmitted by the adjacent fourth beam. That is, when the second PRS block sending cell is a serving cell, the beam number corresponding to the first PRS block may be determined by using the symbol interval value corresponding to the beam number.
- the reception time difference, 4 is the symbol interval value of the shaped beam corresponding to each of the first PRS block and the second PRS block.
- the arrival time difference can be used for OTDOA positioning.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
提供了一种定位参考信号(PRS)传输方法、PRS传输的装置、和存储介质。PRS发送端预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。PRS接收端获取PRS发送端发送的第一PRS块;在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号。
Description
本申请涉及无线通信的定位技术。
第五代移动(5G,5th Generation mobile networks)通信系统为了实现更快的数据传输速率,选择使用毫米波技术。毫米波是指波长在毫米数量级的电磁波,其频率大约在30GHz~300GHz之间;毫米波频段的一个特性是在空气中衰减严重,绕射能力弱,大气和雨水吸收影响较大。为了克服这些影响传播的因素,5G采用波束赋形后的窄波束作为数据传输载体,波束通过扫描方式发射。
长期演进(LTE,Long Term Evolution)自第9版(release 9)开始引入了对定位的支持,定位参考信号(PRS,Positioning Reference Signal)也被引入来实现下行定位,一种典型的方法是可观察到达时间差(OTDOA,Observed Time Difference Of Arrival)定位。通常,接收节点需要测量从一个或者几个小区发射的下行信号,测量结果进一步会用来计算位置。
发明内容
本公开实施例提供了一种PRS传输方法,应用于PRS发送端,所述方法包括:预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及按预设PRS块发送次序,将包含对应PRS序列的每个PRS块通过各自对应的赋形波束进行轮询发送。
本公开实施例还提供了一种PRS传输方法,应用于PRS接收端,所述方法包括:获取PRS发送端发送的第一PRS块;在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域 位置。
本公开实施例还提供了一种PRS传输装置,设置于PRS发送端,所述装置包括:设置模块和发送模块,其中所述设置模块设置为预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及所述发送模块设置为按预设PRS块发送次序,将包含对应PRS序列的每个PRS块通过各自对应的赋形波束进行轮询发送。
本公开实施例还提供了一种定位参考信号PRS传输装置,设置于PRS接收端,所述装置包括:获取模块和确定模块,其中,所述获取模块设置为获取PRS发送端发送的第一PRS块;以及所述确定模块设置为在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时使得所述处理器实现上述应用于PRS发送端的PRS传输方法;或者,该计算机程序被处理器执行时使得所述处理器实现上述应用于PRS接收端的PRS传输方法。
本公开实施例还提供了一种PRS传输装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述应用于PRS发送端的PRS传输方法;或者,所述处理器用于运行所述计算机程序时,执行上述应用于PRS接收端的PRS传输方法。
图1为根据本公开实施例的PRS发送端的PRS传输方法的流程示意图;
图2为根据本公开实施例的PRS块的位置示意图;
图3为根据本公开实施例一种PRS块中的符号分配示意图;
图4为根据本公开实施例另二种PRS块中的符号分配示意图;
图5为根据本公开实施例的PRS接收端的PRS传输方法的流程示意图;
图6为根据本公开实施例的PRS发送端的PRS传输装置组成结构示意图;以及
图7为根据本公开实施例的PRS接收端的PRS传输装置组成结构示意图。
在LTE中,用作测量的下行PRS信号通常以广播的形式发射。但是,在5G波束扫描的情况下,广播形式发射不再适用。当前,5G标准中已经明确支持OTDOA定位的目标,但是,对5G毫米波段如何实现下行定位依然是空白。
因此,如何实现在波束扫描场景发送定位参考信号,实现5G下行定位,是亟待解决的问题。
对此,本公开实施例中,PRS发送端预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。PRS接收端获取PRS发送端发送的第一PRS块;在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
下面结合实施例对本公开再作进一步详细的说明。
本公开实施例提供了一种PRS传输方法,应用于PRS发送端,如图1所示,所述方法包括:步骤101-102。
在步骤101,预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列。
具体的,所述PRS发送端可以是无线通信基站等;可以首先建 立一个调度周期,为定位参考信号分配时频资源;可以以
个时隙(slot)为调度周期,也可以是固定的时间长度作为调度周期,比如5ms。所述一个调度周期可以称为一个PRS突发(burst),所述PRS burst之间的时间差记作T
prs。在一个PRS burst内,将分配给发送PRS的资源在时域上分为
个PRS块(PRS block)。如此,一个PRS burst内的PRS块可以支持对
赋形波束进行轮询;所述PRS块可以设置
个符号用于PRS序列,
可以根据需求设置,如4、8等。
所述预设序列生成规则,可以根据下行定位需求设置,可以采用在PRS块中各符号内设置不同的PRS序列,可以采用伪随机序列等产生各符号均不相同的PRS序列,也可以在各PRS块中使用相同的PRS序列。
在一个实施例中,在预设与赋形波束数量相同的PRS块之后,可以根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
具体的,所述预设发送次序可以根据PRS块读取顺序设置,可以是PRS burst内PRS块的顺序次序,可以将PRS burst内PRS块的顺序号作为PRS块的块序号,在赋形波束轮询时,根据PRS块的块序号轮询发送所述PRS块。这里,PRS块的序号可以记作
在一个实施例中,所述PRS burst内,所述每个PRS块可以采用相同的PRS序列,或所述每个PRS块可以采用不同PRS序列。
这里,所述相同的PRS序列是指PRS块之间采用的表达式相同,并且表达式变量仅与PRS块内部符号相关,不跟随PRS块不同而不同。如两个PRS块相同位置符号内序列相同,但同一PRS块内各符号内序列不同。所述不同的PRS序列是指PRS块之间采用的表达式中有变量跟随PRS块不同而不同,如采用时隙号作为变量,如此,每个PRS块的序列均不相同。
这里,可以采用LTE现有的PRS生成方式来生成根据本公开实施例的PRS;所述PRS可以由表达式(1)生成:
其中,
表示PRS值,l表示PRS序列所处时隙内符号的序号,n
s表示PRS序列对应的时隙序号,
表示最大下行带宽,c(2m)和c(2m+1)函数表达式可以用c(n)表示,即由n表示2m或2m+1;c(n)可以由表达式(2)、(3)和(4)定义:
c(n)=(x
1(n+N
c)+x
2(n+N
c))mod 2 (2)
x
1(n+31)=(x
1(n+3)+x
1(n))mod 2 (3)
x
2(n+31)=(x
2(n+3)+x
2(n+2)+x
2(n+1)x
2(n))mod 2 (4)
在一个实施例中,各个PRS块采用相同PRS序列时,所述PRS序列的初始值生成可以采用表达式(5)、(6)、(7)、(8)和(9)中的任一个生成:
每个PRS块采用不同PRS序列时,所述PRS序列的初始值可以采用表达式(10)、(11)、(12)、(13)和(14)中的任一个生成:
c
init=(2
10·(14n
s,f+l+1)(2n
id+1)+n
id)mod 2
31 (13)
其中,所述c
init表示PRS序列初始值,
表示PRS序列号,n
id表示扰码序列号,μ表示数字命理学(numerology),μ的取值范围为0、1、2、3、4,n
s,f表示时隙号,
表示一个所述PRS块里包含的符号数;其中numerology包括:子载波间隔和循环前缀(CP,Cyclic Prefix)长度。
在一个实施例中,可以在所述PRS块中所述PRS序列的前一个符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
具体的,在将PRS序列加入PRS块时,可以在所述PRS块内前
个符号用于发送定位参考信号,最后一个符号用来发送块序号,即PRS block index。也可以是PRS块第一个符号用来发送块序号,其余符号发送PRS序列。不同小区的PRS和PRS block index可以存在频分复用关系。
以一个PRS块中有4个符号分配用于发送PRS相关信号为例,如图3所示的一个资源块(RB,Resource Block)中,4个符号全部用于发送PRS序列;图中A表示PRS序列;如图4所示的一个RB中,分配的4个符号中,前面三个用于发送PRS序列,最后一个用于发送PRS块的块序号,图中A表示PRS序列,B表示块序号,即PRS block index。
如此,PRS块中可出现四种组合情况:组合一:各PRS块发送内容相同,PRS块内包含明显的PRS block index信息;组合二:各PRS块发送内容相同,PRS块内不包含PRS block index信息;组合三:各PRS块发送内容不同,PRS块内包含PRS block index信息;以及组合四:各PRS块内发送内容不同,PRS块内不包含PRS block index信息。
在步骤102,按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。
具体的,以所述PRS burst中PRS块顺序为所述预设PRS块发送次序,在赋形波束进行轮询发送周期中,顺序位第1位的PRS块,对应于第1各赋形波束,即由第1个赋形波束发送块序号为1的PRS 块;以此类推第2个赋形波束发送块序号为2的PRS块。这里,也可以用“0”开始设置块序号,块序号形式不限于固定形式,可以预先设定,可以采用数字、字符等形式,以可以确定和赋形波束发送次序对应关系为准。如此,PRS块的块序号和赋形波束的发射序号之间形成了对应关系。
可以如此完成PRS的发送。移动终端等用户设备(UE)在进行定位时,可以根据接收时间识别发送PRS的赋形波束序号或时域位置做进一步处理,或可以根据读取块序号信息来识别发送PRS的赋形波束的序号或时域位置做进一步处理。
下面结合不同场景对本公开产生的积极效果作进一步详细的描述。
在场景一,在子载波间隔为120KHz时,一个PRS burst长度为半帧,即5ms,最大支持波束轮询个数为64,则该PRS burst内各个PRS块的块序号及PRS block index
取值范围为0-63,一个PRS块包含4个符号,时域位置安排与同场景下SS/PBCH block相同。
若PRS块采用组合一的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式在频域上进行映射。采用64个波束发射PRS信号。
若PRS块采用组合二的形式,各PRS block采用相同PRS序列,四个符号都用来发送PRS序列。
若PRS块采用组合三的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式在频域上进行映射。
若PRS块采用组合四来发送PRS,各PRS block采用不同同PRS序列,四个符号都用来发送PRS序列。
在场景二,与场景一的区别是每个PRS块含7个符号,相应组合中可以7各符号都发送PRS序列,或者6个符号发送PRS序列,1个符号发送PRS block index。
在场景三,子载波间隔为30KHz,则最大支持8个PRS波束进行轮询。
本公开实施例还提供了一种PRS传输方法,应用于PRS接收端,如图5所示,所述方法包括:步骤501-502。
在步骤501,获取PRS发送端发送的第一PRS块。
这里,所述PRS接收端可以是移动终端等UE,在5G通信中,可以由UE接收基站等PRS发送端发送的无线通信信号,并解析出通过赋形波束作为载体发送的第一PRS块。可以通过协议等解析出第一PRS块中的内容。
在步骤502,在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
这里,所述预设对应关系是在PRS发送端形成的,进行PRS块发射时,PRS块的块序号和应赋形波束的发射序号形成了一一对应关系,因此,可以通过接收到的PRS块的块序号确定应赋形波束的发射序号,从而在赋形波束周期中确定PRS块对应的应赋形波束的时域位置。可以通过协议等解析出第一PRS块中的内容,确定第一PRS块中是否包含块序号。
以场景一为例,假设在子载波间隔为120KHz场景下,一个PRS burst长度为半帧,即5ms,最大支持波束轮询个数为64,则该PRS burst内各个PRS块的块序号,及PRS block index
取值范围为0-63,一个PRS块包含4个符号,时域位置安排与同场景下SS/PBCH block相同。
若PRS块采用组合一的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式在频域上进行映射。采用64个波束发射PRS信号。
UE在整个轮询周期内做检测,根据所检测到的PRS块的块序号 来确定赋形波束的发射序号及时域上的位置。根据PRS块对应赋形波束时域上的位置,可以计算两个PRS块的到达时间差,从而采用OTDOA等方式进行定位。
所述预设计算规则,可以根据波束轮询周期等设置,可以通过已知赋形波束发射序号接收时间等推算接收到的第一PRS块对应赋形波束的发射序号。
所述赋形波束的发射序号用于确定所述应赋形波束的时域位置,确定所述赋形波束的时域位置,即确定了对应PRS块的发送时间,如此可以通过两个PRS块接收时间差减去发送时间差的方式来确定两个PRS块的到达时间差。
在一个实施例中,可以根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
具体的,假设在30KHz子载波间隔,即5ms内,有8个PRS块,每个PRS块包含4个符号,8个PRS块发送不同的PRS序列,初始值可以采用表达式(10);在这5ms内,任何一个符号生成的PRS初始值都是不同的,序列也不同;接收端可以通过与服务小区的通信等辅助信息知道初始值表达式等规则,如果检测到序列对应的是9个符号,那么可以知道它的时域位置,也可以知道对应的第二个PRS块。如此,可以得知PRS块对应赋形波束的发射序号为对应的值。
如此,可以根据应赋形波束的发射序号差值,采用OTDOA等方式进行定位。
在一个实施例中,将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
具体的,以发射端采用组合二形式的块为例,在一个PRS块内,4个符号都用来发送PRS序列,OTDOA定位中,各小区同步,UE在t
1时 刻接收到来自服务小区的PRS信号,并且服务小区的相互通信已知该波束发射序号为3,经过时间T后,接收到来自某相邻小区的PRS信号,此时一个符号(含CP)长度为T
symb,通常波束传输时长小于T
symb,假设
则可推断为相邻第4个波束发送的信号。即当第二PRS块发送小区为服务小区时,可以通过第二PRS块对应波束序号,通过符号间隔值确定第一PRS块对应波束序号。
可以用表达式Δt=T-4×T
symb来表示所述第一PRS块与所述第二PRS块的到达时间差;其中Δt表示到达时间差,T表示第一PRS块与所述第二PRS块的接收时间差,4是第一PRS块与所述第二PRS块各自对应赋形波束的符号间隔值。所述到达时间差可以用于OTDOA定位。
本公开实施例提供了一种PRS传输装置,设置于PRS发送端,如图6所示,所述装置包括:设置模块61和发送模块62。
所述设置模块61设置为预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列。
具体的,所述PRS发送端,其可以是无线通信基站等,可以首先建立一个调度周期,为定位参考信号分配时频资源;可以以
个slot为调度周期,也可以是固定的时间长度作为调度周期,比如5ms。所述一个调度周期可以称为一个PRS burst,所述PRS burst之间的时间差记作T
prs。在一个PRS burst内,将分配给发送PRS的资源在时域上分为
个PRS块(PRS block)。如此,一个PRS burst内的PRS块可以支持对
赋形波束进行轮询;所述PRS块可以设置
个符号用于PRS序列,
可以根据需求设置,如4、8等。
所述预设序列生成规则,可以根据下行定位需求设置,可以采用在PRS块中各符号内设置不同的PRS序列,可以采用伪随机序列等产生各符号均不相同的PRS序列,也可以在各PRS块中使用相同的PRS序列。
在一个实施例中,在预设与赋形波束数量相同的PRS块之后,可以根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
具体的,所述预设发送次序可以根据PRS块读取顺序设置,可以是PRS burst内PRS块的顺序次序,可以将PRS burst内PRS块的顺序号作为PRS块的块序号,在赋形波束轮询时,根据PRS块的块序号轮询发送所述PRS块。这里,PRS块的序号可以记作
在一个实施例中,所述PRS burst内,所述每个PRS块可以采用相同的PRS序列,或所述每个PRS块可以采用不同PRS序列。
这里,所述相同的PRS序列是指PRS块之间采用的表达式相同,并且表达式变量仅与PRS块内部符号相关,不跟随PRS块不同而不同。如两个PRS块相同位置符号内序列相同,但同一PRS块内各符号内序列不同。所述不同的PRS序列是指PRS块之间采用的表达式中有变量跟随PRS块不同而不同,如采用时隙号作为变量,如此,每个PRS块的序列均不相同。
这里,可以采用LTE现有的PRS生成方式来生成本公开实施例的PRS;所述PRS可以由表达式(1)生成;其中,
表示PRS值,l表示PRS序列所处时隙内符号的序号,n
s表示PRS序列对应的时隙序号,
表示最大下行带宽,c(2m)和c(2m+1)函数表达式可以用c(n)表示,即由n表示2m或2m+1;c(n)可以由表达式(2)、(3)和(4)定义;其中,N
c可以取1600;x
1(0)=1,x
1(n)=0,n=1,2...30;x
2(n)根据PRS序列的初始值
产生。
在一个实施例中,各个PRS块采用相同PRS序列时,所述PRS序列的初始值生成可以采用表达式(5)、(6)、(7)、(8)和(9)中的任一个生成;其中表达式(5)、(6)、(7)和(8)可以适用于
范围0到4095,表达式(9)可以适用于
范围0到8191。
每个PRS块采用不同PRS序列时,所述PRS序列的初始值可以采用表达式(10)、(11)、(12)、(13)和(14)中的任一个生成;其中,所述c
init表示PRS序列初始值,
表示PRS序列号,n
id表示扰码序列号,μ表示numerology,μ的取值范围为0、1、2、3、4,n
s,f表示时隙号,
表示一个所述PRS块里包含的符号数;其中numerology包括:子载波间隔和CP长度。
在一个实施例中,可以在所述PRS块中所述PRS序列的前一个 符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
具体的,在将PRS序列加入PRS块时,可以在所述PRS块内前
个符号用于发送定位参考信号,最后一个符号用来发送块序号,即PRS block index。也可以是PRS块第一个符号用来发送块序号,其余符号发送PRS序列。不同小区的PRS和PRS block index可以存在频分复用关系。
以一个PRS块中有4个符号分配用于发送PRS相关信号为例,如图3所示的一个RB中,4个符号全部用于发送PRS序列;图中A表示PRS序列;如图4所示的一个RB中,分配的4个符号中,前面三个用于发送PRS序列,最后一个用于发送PRS块的块序号,图中A表示PRS序列,B表示块序号,即PRS block index。
如此,PRS块中可出现四种组合情况:组合一:各PRS块发送内容相同,PRS块内包含明显的PRS block index信息;组合二:各PRS块发送内容相同,PRS块内不包含PRS block index信息;组合三:各PRS块发送内容不同,PRS块内包含PRS block index信息;以及组合四:各PRS块内发送内容不同,PRS块内不包含PRS block index信息。
所述发送模块62设置为按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。
具体的,以所述PRS burst中PRS块顺序为所述预设PRS块发送次序,在赋形波束进行轮询发送周期中,顺序位第1位的PRS块,对应于第1各赋形波束,即由第1个赋形波束发送块序号为1的PRS块;以此类推第2个赋形波束发送块序号为2的PRS块。这里,也可以用“0”开始设置块序号,块序号形式不限于固定形式,可以预先设定,可以采用数字、字符等形式,以可以确定和赋形波束发送次序对应关系为准。如此,PRS块的块序号和赋形波束的发射序号之间形成了对应关系。
可以如此完成PRS的发送。移动终端等用户设备(UE)在进行定位时,可以根据接收时间识别发送PRS的赋形波束序号或时域位置做进一步处理,或可以根据读取块序号信息来识别发送PRS的赋形波 束的序号或时域位置做进一步处理。
在实际应用中,所述设置模块61和发送模块62均可以由基站等信号发送设备中的CPU、微处理器(MCU)、数字信号处理器(DSP)、或现场可编程门阵列(FPGA)等实现。
本公开实施例提供了一种PRS传输装置,设置于PRS接收端,如图7所示,所述装置包括:获取模块71和确定模块72。
所述获取模块71设置为获取PRS发送端发送的第一PRS块。
这里,所述PRS接收端可以是移动终端等UE,在5G通信中,可以由UE接收基站等PRS发送端发送的无线通信信号,并解析出通过赋形波束作为载体发送的第一PRS块,并通过协议等解析出第一PRS块中的内容。
所述确定模块72设置为在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
这里,所述预设对应关系是在PRS发送端形成的,进行PRS块发射时,PRS块的块序号和应赋形波束的发射序号形成了一一对应关系,因此,可以通过接收到的PRS块的块序号确定应赋形波束的发射序号,从而在赋形波束周期中确定PRS块对应的应赋形波束的时域位置。可以通过协议等解析出第一PRS块中的内容,确定第一PRS块中是否包含块序号。
以场景一为例,假设在子载波间隔为120KHz场景下,一个PRS burst长度为半帧,即5ms,最大支持波束轮询个数为64,则该PRS burst内各个PRS块的块序号,及PRS block index
取值范围为0-63,一个PRS块包含4个符号,时域位置安排与同场景下SS/PBCH block相同。
若PRS块采用组合一的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式 在频域上进行映射。采用64个波束发射PRS信号。
UE在整个轮询周期内做检测,根据所检测到的PRS块的块序号来确定赋形波束的发射序号及时域上的位置。根据PRS块对应赋形波束时域上的位置,可以计算两个PRS块的到达时间差,从而采用OTDOA等方式进行定位。
所述预设计算规则,可以根据波束轮询周期等设置,可以通过已知赋形波束发射序号接收时间等推算接收到的第一PRS块对应赋形波束的发射序号。
所述赋形波束的发射序号用于确定所述应赋形波束的时域位置,确定所述赋形波束的时域位置,即确定了对应PRS块的发送时间,如此可以通过两个PRS块接收时间差减去发送时间差的方式来确定两个PRS块的到达时间差。
在一个实施例中,可以根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
具体的,假设在30KHz子载波间隔,即5ms内,有8个PRS块,每个PRS块包含4个符号,8个PRS块发送不同的PRS序列,初始值可以采用表达式(10);在这5ms内,任何一个符号生成的PRS初始值都是不同的,序列也不同;接收端可以通过与服务小区的通信等辅助信息知道初始值表达式等规则,如果检测到序列对应的是9个符号,那么可以知道它的时域位置,也可以知道对应的第二个PRS块。如此,可以得知PRS块对应赋形波束的发射序号为对应的值。
如此,可以根据应赋形波束的发射序号差值,采用OTDOA等方式进行定位。
在一个实施例中,将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
具体的,以发射端采用组合二形式的块为例,在一个PRS块内,4个符号都用来发送PRS序列,OTDOA定位中,各小区同步,UE在t
1时刻接收到来自服务小区的PRS信号,并且服务小区的相互通信已知该波束发射序号为3,经过时间T后,接收到来自某相邻小区的PRS信号,此时一个符号(含CP)长度为T
symb,通常波束传输时长小于T
symb,假设
则可推断为相邻第4个波束发送的信号。即当第二PRS块发送小区为服务小区时,可以通过第二PRS块对应波束序号,通过符号间隔值确定第一PRS块对应波束序号。
可以用表达式Δt=T-4×T
symb来表示所述第一PRS块与所述第二PRS块的到达时间差;其中Δt表示到达时间差,T表示第一PRS块与所述第二PRS块的接收时间差,4是第一PRS块与所述第二PRS块各自对应赋形波束的符号间隔值。所述到达时间差可以用于OTDOA定位。
在实际应用中,所述获取模块71和确定模块72均可以由UE等信号接收设备中的CPU、MCU、DSP、或FPGA等实现。
本公开实施例提供的存储介质,其上存储由可执行程序,所述可执行程序被处理器执行时使得所述处理器实现PRS传输方法,所述方法可以应用于PRS发送端,如图1所示,所述方法可以包括:步骤101-102。
在步骤101,预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列。
具体的,所述PRS发送端,其可以是无线通信基站等,可以首先建立一个调度周期,为定位参考信号分配时频资源;可以以
个slot为调度周期,也可以是固定的时间长度作为调度周期,比如5ms。所述一个调度周期可以称为一个PRS burst,所述PRS burst之间的时间差记作T
prs。在一个PRS burst内,将分配给发送PRS的资源在时域上分为
个P RS块(PRS block)。如此,一个PRS burst内的PRS块可以支持对
赋形波束进行轮询;所述PRS块可以设置
个符号用于PRS序列,
可以根据需求设置,如4、8等。
所述预设序列生成规则,可以根据下行定位需求设置,可以采 用在PRS块中各符号内设置不同的PRS序列,可以采用伪随机序列等产生各符号均不相同的PRS序列,也可以在各PRS块中使用相同的PRS序列。
在一个实施例中,在预设与赋形波束数量相同的PRS块之后,可以根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
具体的,所述预设发送次序可以根据PRS块读取顺序设置,可以是PRS burst内PRS块的顺序次序,可以将PRS burst内PRS块的顺序号作为PRS块的块序号,在赋形波束轮询时,根据PRS块的块序号轮询发送所述PRS块。这里,PRS块的序号可以记作
在一个实施例中,所述PRS burst内,所述每个PRS块可以采用相同的PRS序列,或所述每个PRS块可以采用不同PRS序列。
这里,所述相同的PRS序列是指PRS块之间采用的表达式相同,并且表达式变量仅与PRS块内部符号相关,不跟随PRS块不同而不同。如两个PRS块相同位置符号内序列相同,但同一PRS块内各符号内序列不同。所述不同的PRS序列是指PRS块之间采用的表达式中有变量跟随PRS块不同而不同,如采用时隙号作为变量,如此,每个PRS块的序列均不相同。
这里,可以采用LTE现有的PRS生成方式来生成根据本公开实施例的PRS;所述PRS可以由表达式(1)生成;其中,
表示PRS值,l表示PRS序列所处时隙内符号的序号,n
s表示PRS序列对应的时隙序号,
表示最大下行带宽,c(2m)和c(2m+1)函数表达式可以用c(n)表示,即由n表示2m或2m+1;c(n)可以由表达式(2)、(3)和(4)定义;其中,N
c可以取1600;x
1(0)=1,x
1(n)=0,n=1,2...30;x
2(n)根据PRS序列的初始值
产生。
在一个实施例中,各个PRS块采用相同PRS序列时,所述PRS序列的初始值生成可以采用表达式(5)、(6)、(7)、(8)和(9)中的任一个生成;其中表达式(5)、(6)、(7)和(8)可以适用于
范围0到4095,表达式(9)可以适用于
范围0到8191。
每个PRS块采用不同PRS序列时,所述PRS序列的初始值可以 采用表达式(10)、(11)、(12)、(13)和(14)中的任一个生成;其中,所述c
init表示PRS序列初始值,
表示PRS序列号,n
id表示扰码序列号,μ表示numerology,μ的取值范围为0、1、2、3、4,n
s,f表示时隙号,
表示一个所述PRS块里包含的符号数;其中numerology包括:子载波间隔和CP长度。
在一个实施例中,可以在所述PRS块中所述PRS序列的前一个符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
具体的,在将PRS序列加入PRS块时,可以在所述PRS块内前
个符号用于发送定位参考信号,最后一个符号用来发送块序号,即PRS block index。也可以是PRS块第一个符号用来发送块序号,其余符号发送PRS序列。不同小区的PRS和PRS block index可以存在频分复用关系。
以一个PRS块中有4个符号分配用于发送PRS相关信号为例,如图3所示的一个RB中,4个符号全部用于发送PRS序列;图中A表示PRS序列;如图4所示的一个RB中,分配的4个符号中,前面三个用于发送PRS序列,最后一个用于发送PRS块的块序号,图中A表示PRS序列,B表示块序号,即PRS block index。
如此,PRS块中可出现四中组合情况:组合一:各PRS块发送内容相同,PRS块内包含明显的PRS block index信息;组合二:各PRS块发送内容相同,PRS块内不包含PRS block index信息;组合三:各PRS块发送内容不同,PRS块内包含PRS block index信息;以及组合四:各PRS块内发送内容不同,PRS块内不包含PRS block index信息。
在步骤102,按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。
具体的,以所述PRS burst中PRS块顺序为所述预设PRS块发送次序,在赋形波束进行轮询发送周期中,顺序位第1位的PRS块,对应于第1各赋形波束,即由第1个赋形波束发送块序号为1的PRS块;以此类推第2个赋形波束发送块序号为2的PRS块;这里,也可以用“0”开始设置块序号,块序号形式不限于固定形式,可以预先 设定,可以采用数字、字符等形式,以可以确定和赋形波束发送次序对应关系为准。如此,PRS块的块序号和赋形波束的发射序号之间形成了对应关系。
可以如此完成PRS的发送。移动终端等用户设备(UE)在进行定位时,可以根据接收时间识别发送PRS的赋形波束序号或时域位置做进一步处理,或可以根据读取块序号信息来识别发送PRS的赋形波束的序号或时域位置做进一步处理。
所述存储介质上或者可以存储可执行程序,所述可执行程序被处理器执行时使得所述处理器实现PRS传输方法,所述方法可以应用于PRS接收端,如图5所示,所述方法可以包括:步骤501-502。
在步骤501,获取PRS发送端发送的第一PRS块。
这里,所述PRS接收端可以是移动终端等UE,在5G通信中,可以由UE接收基站等PRS发送端发送的无线通信信号,并解析出通过赋形波束作为载体发送的第一PRS块。并通过协议等解析出第一PRS块中的内容。
在步骤502,在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
这里,所述预设对应关系是在PRS发送端形成的,进行PRS块发射时,PRS块的块序号和应赋形波束的发射序号形成了一一对应关系,因此,可以通过接收到的PRS块的块序号确定应赋形波束的发射序号,从而在赋形波束周期中确定PRS块对应的应赋形波束的时域位置。可以通过协议等解析出第一PRS块中的内容,确定第一PRS块中是否包含块序号。
以场景一为例,假设在子载波间隔为120KHz场景下,一个PRS burst长度为半帧,即5ms,最大支持波束轮询个数为64,则该PRS burst内各个PRS块的块序号,及PRS block index
取值范围为0-63,一个PRS块包含4个符号,时域位置安排与同场景下 SS/PBCH block相同。
若PRS块采用组合一的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式在频域上进行映射。采用64个波束发射PRS信号。
UE在整个轮询周期内做检测,根据所检测到的PRS块的块序号来确定赋形波束的发射序号及时域上的位置。根据PRS块对应赋形波束时域上的位置,可以计算两个PRS块的到达时间差,从而采用OTDOA等方式进行定位。
所述预设计算规则,可以根据波束轮询周期等设置,可以通过已知赋形波束发射序号接收时间等推算接收到的第一PRS块对应赋形波束的发射序号。
所述赋形波束的发射序号用于确定所述应赋形波束的时域位置,确定所述赋形波束的时域位置,即确定了对应PRS块的发送时间,如此可以通过两个PRS块接收时间差减去发送时间差的方式来确定两个PRS块的到达时间差。
在一个实施例中,可以根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
具体的,假设在30KHz子载波间隔,即5ms内,有8个PRS块,每个PRS块包含4个符号,8个PRS块发送不同的PRS序列,初始值可以采用表达式(10);在这5ms内,任何一个符号生成的PRS初始值都是不同的,序列也不同;接收端可以通过与服务小区的通信等辅助信息知道初始值表达式等规则,如果检测到序列对应的是9个符号,那么可以知道它的时域位置,也可以知道对应的第二个PRS块。如此,可以得知PRS块对应赋形波束的发射序号为对应的值。
如此,可以根据应赋形波束的发射序号差值,采用OTDOA等方式进行定位。
在一个实施例中,将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS 对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
具体的,以发射端采用组合二形式的块为例,在一个PRS块内,4个符号都用来发送PRS序列,OTDOA定位中,各小区同步,UE在t
1时刻接收到来自服务小区的PRS信号,并且服务小区的相互通信已知该波束发射序号为3,经过时间T后,接收到来自某相邻小区的PRS信号,此时一个符号(含CP)长度为T
symb,通常波束传输时长小于T
symb,假设
则可推断为相邻第4个波束发送的信号。即当第二PRS块发送小区为服务小区时,可以通过第二PRS块对应波束序号,通过符号间隔值确定第一PRS块对应波束序号。
可以用表达式Δt=T-4×T
symb表示所述第一PRS块与所述第二PRS块的到达时间差;其中Δt表示到达时间差,T表示第一PRS块与所述第二PRS块的接收时间差,4是第一PRS块与所述第二PRS块各自对应赋形波束的符号间隔值。所述到达时间差可以用于OTDOA定位。
本公开实施例提供了一种PRS传输装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行实现PRS传输方法,所述方法可以应用于PRS发送端,如图1所示,所述方法包括:步骤101-102。
在步骤101,预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列。
具体的,所述PRS发送端,其可以是无线通信基站等,可以首先建立一个调度周期,为定位参考信号分配时频资源;可以以
个slot为调度周期,也可以是固定的时间长度作为调度周期,比如5ms。所述一个调度周期可以称为一个PRS burst,所述PRS burst之间的时间差记作T
prs。在一个PRS burst内,将分配给发送PRS的资源在时域上分为
个PRS块(PRS block)。如此,一个PRS burst内的PRS块可以支持对
赋形波束进行轮询;所述PRS块可以设置
个符号用于PRS序列,
可以根据需求设置,如4、8 等。
所述预设序列生成规则,可以根据下行定位需求设置,可以采用在PRS块中各符号内设置不同的PRS序列,可以采用伪随机序列等产生各符号均不相同的PRS序列,也可以在各PRS块中使用相同的PRS序列。
在一个实施例中,在预设与赋形波束数量相同的PRS块之后,可以根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
具体的,所述预设发送次序可以根据PRS块读取顺序设置,可以是PRS burst内PRS块的顺序次序,可以将PRS burst内PRS块的顺序号作为PRS块的块序号,在赋形波束轮询时,根据PRS块的块序号轮询发送所述PRS块。这里,PRS块的序号可以记作
在一个实施例中,所述PRS burst内,所述每个PRS块可以采用相同的PRS序列,或所述每个PRS块可以采用不同PRS序列。
这里,所述相同的PRS序列是指PRS块之间采用的表达式相同,并且表达式变量仅与PRS块内部符号相关,不跟随PRS块不同而不同。如两个PRS块相同位置符号内序列相同,但同一PRS块内各符号内序列不同。所述不同的PRS序列是指PRS块之间采用的表达式中有变量跟随PRS块不同而不同,如采用时隙号作为变量,如此,每个PRS块的序列均不相同。
这里,可以采用LTE现有的PRS生成方式来生成根据本公开实施例的PRS;所述PRS可以由表达式(1)生成;其中,
表示PRS值,l表示PRS序列所处时隙内符号的序号,n
s表示PRS序列对应的时隙序号,
表示最大下行带宽,c(2m)和c(2m+1)函数表达式可以用c(n)表示,即由n表示2m或2m+1;c(n)可以由表达式(2)、(3)和(4)定义;其中,N
c可以取1600;x
1(0)=1,x
1(n)=0,n=1,2...30;x
2(n)根据PRS序列的初始值
产生。
在一个实施例中,各个PRS块采用相同PRS序列时,所述PRS序列的初始值生成可以采用表达式(5)、(6)、(7)、(8)和(9)中的任一个生成;其中表达式(5)、(6)、(7)和(8)可以适用 于
范围0到4095,表达式(9)可以适用于
范围0到8191。
每个PRS块采用不同PRS序列时,所述PRS序列的初始值可以采用表达式(10)、(11)、(12)、(13)和(14)中的任一个生成;其中,所述c
init表示PRS序列初始值,
表示PRS序列号,n
id表示扰码序列号,μ表示numerology,μ的取值范围为0、1、2、3、4,n
s,f表示时隙号,
表示一个所述PRS块里包含的符号数;其中numerology包括:子载波间隔和CP长度。
在一个实施例中,可以在所述PRS块中所述PRS序列的前一个符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
具体的,在将PRS序列加入PRS块时,可以在所述PRS块内前
个符号用于发送定位参考信号,最后一个符号用来发送块序号,即PRS block index。也可以是PRS块第一个符号用来发送块序号,其余符号发送PRS序列。不同小区的PRS和PRS block index可以存在频分复用关系。
以一个PRS块中有4个符号分配用于发送PRS相关信号为例,如图3所示的一个RB中,4个符号全部用于发送PRS序列;图中A表示PRS序列;如图4所示的一个RB中,分配的4个符号中,前面三个用于发送PRS序列,最后一个用于发送PRS块的块序号,图中A表示PRS序列,B表示块序号,即PRS block index。
如此,由于PRS块中可出现四种组合情况:组合一:各PRS块发送内容相同,PRS块内包含明显的PRS block index信息;组合二:各PRS块发送内容相同,PRS块内不包含PRS block index信息;组合三:各PRS块发送内容不同,PRS块内包含PRS block index信息;以及组合四:各PRS块内发送内容不同,PRS块内不包含PRS block index信息。
在步骤102,按预设PRS块发送次序,将每个PRS块通过各自对应的赋形波束进行轮询发送。
具体的,以所述PRS burst中PRS块顺序为所述预设PRS块发送次序,在赋形波束进行轮询发送周期中,顺序位第1位的PRS块,对应于第1各赋形波束,即由第1个赋形波束发送块序号为1的PRS 块;以此类推第2个赋形波束发送块序号为2的PRS块;这里,也可以用“0”开始设置块序号,块序号形式不限于固定形式,可以预先设定,可以采用数字、字符等形式,以可以确定和赋形波束发送次序对应关系为准。如此,PRS块的块序号和赋形波束的发射序号之间形成了对应关系。
可以如此完成PRS的发送。移动终端等用户设备(UE)在进行定位时,可以根据接收时间识别发送PRS的赋形波束序号或时域位置做进一步处理,或可以根据读取块序号信息来识别发送PRS的赋形波束的序号或时域位置做进一步处理。
数据传输装置的存储器上或者可以存储可执行程序,所述可执行程序被处理器执行时使得所述处理器实现PRS传输方法,所述方法可以应用于PRS接收端,如图5所示,所述方法包括:步骤501-502。
在步骤501,获取PRS发送端发送的第一PRS块。
这里,所述PRS接收端可以是移动终端等UE,在5G通信中,可以由UE接收基站等PRS发送端发送的无线通信信号,并解析出通过赋形波束作为载体发送的第一PRS块。并通过协议等解析出第一PRS块中的内容。
在步骤502,在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
这里,所述预设对应关系是在PRS发送端形成的,进行PRS块发射时,PRS块的块序号和应赋形波束的发射序号形成了一一对应关系,因此,可以通过接收到的PRS块的块序号确定应赋形波束的发射序号,从而在赋形波束周期中确定PRS块对应的应赋形波束的时域位置。可以通过协议等解析出第一PRS块中的内容,确定第一PRS块中是否包含块序号。
以场景一为例,假设在子载波间隔为120KHz场景下,一个PRS burst长度为半帧,即5ms,最大支持波束轮询个数为64,则该PRS burst内各个PRS块的块序号,及PRS block index
取值范围为0-63,一个PRS块包含4个符号,时域位置安排与同场景下SS/PBCH block相同。
PRS块采用组合一的形式,在一个PRS block内,前三个符号用来发送PRS参考信号,最后一个符号发送PRS block index来指示当前PRS块的块序号。PRS序列和PRS block index以mod6方式在频域上进行映射。采用64个波束发射PRS信号。
UE在整个轮询周期内做检测,根据所检测到的PRS块的块序号来确定赋形波束的发射序号及时域上的位置。根据PRS块对应赋形波束时域上的位置,可以计算两个PRS块的到达时间差,从而采用OTDOA等方式进行定位。
所述预设计算规则,可以根据波束轮询周期等设置,可以通过已知赋形波束发射序号接收时间等推算接收到的第一PRS块对应赋形波束的发射序号。
所述赋形波束的发射序号用于确定所述应赋形波束的时域位置,确定所述赋形波束的时域位置,即确定了对应PRS块的发送时间,如此可以通过两个PRS块接收时间差减去发送时间差的方式来确定两个PRS块的到达时间差。
在一个实施例中,可以根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
具体的,假设在30KHz子载波间隔,即5ms内,有8个PRS块,每个PRS块包含4个符号,8个PRS块发送不同的PRS序列,初始值可以采用表达式(10);在这5ms内,任何一个符号生成的PRS初始值都是不同的,序列也不同;接收端可以通过与服务小区的通信等辅助信息知道初始值表达式等规则,如果检测到序列对应的是9个符号,那么可以知道它的时域位置,也可以知道对应的第二个PRS块。如此,可以得知PRS块对应赋形波束的发射序号为对应的值。
如此,可以根据应赋形波束的发射序号差值,采用OTDOA等方式进行定位。
在一个实施例中,将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
具体的,以发射端采用组合二形式的块为例,在一个PRS块内,4个符号都用来发送PRS序列,OTDOA定位中,各小区同步,UE在t
1时刻接收到来自服务小区的PRS信号,并且服务小区的相互通信已知该波束发射序号为3,经过时间T后,接收到来自某相邻小区的PRS信号,此时一个符号(含CP)长度为T
symb,通常波束传输时长小于T
symb,假设
则可推断为相邻第4个波束发送的信号。即当第二PRS块发送小区为服务小区时,可以通过第二PRS块对应波束序号,通过符号间隔值确定第一PRS块对应波束序号。
可以用表达式Δt=T-4×T
symb表示所述第一PRS块与所述第二PRS块的到达时间差;其中Δt表示到达时间差,T表示第一PRS块与所述第二PRS块的接收时间差,4是第一PRS块与所述第二PRS块各自对应赋形波束的符号间隔值。所述到达时间差可以用于OTDOA定位。
以上所述仅为本公开的示例性实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
Claims (18)
- 一种定位参考信号PRS传输方法,应用于PRS发送端,包括:预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及按预设PRS块发送次序,将包含对应PRS序列的每个PRS块通过各自对应的赋形波束进行轮询发送。
- 根据权利要求1所述的方法,其中,所述预设与赋形波束数量相同的PRS块的步骤后,所述方法还包括:根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
- 根据权利要求2所述的方法,其中,所述方法还包括:在所述PRS块中所述PRS序列的前一个符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
- 根据权利要求2或3所述的方法,其中,所述采用预设序列生成规则,在每个PRS块中设置对应的PRS序列的步骤包括:所述每个PRS块采用相同的PRS序列,或所述每个PRS块采用不同PRS序列。
- 一种PRS传输方法,应用于PRS接收端,包括:获取PRS发送端发送的第一PRS块;在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
- 根据权利要求6所述的方法,其中,所述根据预设计算规则确定第一PRS块对应赋形波束的发射序号的步骤包括:根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
- 根据权利要求6所述的方法,还包括通过以下操作进行定位:将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
- 一种PRS传输装置,设置于PRS发送端,包括:设置模块和发送模块,其中所述设置模块设置为预设与赋形波束数量相同的PRS块,采用预设序列生成规则,在每个PRS块中设置与自身对应的PRS序列;以及所述发送模块设置为按预设PRS块发送次序,将包含对应PRS序列的每个PRS块通过各自对应的赋形波束进行轮询发送。
- 根据权利要求9所述的装置,其中,所述设置模块还设置为在预设与赋形波束数量相同的PRS块后,根据所述预设发送次序,分别为每个PRS块设置各自对应的块序号。
- 根据权利要求10所述的装置,其中,所述设置模块还设置为:在所述PRS块中所述PRS序列的前一个符号或后一个符号内设置并发送所述PRS块对应的所述块序号。
- 根据权利要求9或10所述的装置,其中,所述设置模块还设置为:所述每个PRS块采用相同的PRS序列,或所述每个PRS块采用不同PRS序列。
- 一种定位参考信号PRS传输装置,设置于PRS接收端,包括:获取模块和确定模块,其中,所述获取模块设置为获取PRS发送端发送的第一PRS块;以及所述确定模块设置为在所述第一PRS块中包含块序号时,根据预设对应关系确定所述块序号对应的所述第一PRS块对应赋形波束的发射序号;以及在所述第一PRS块中不包含块序号时,根据预设计算规则确定第一PRS块对应赋形波束的发射序号;其中,所述赋形波束的发射序号用于确定所述应赋形波束的时域位置。
- 根据权利要求14所述的装置,其中,所述确定模块还设置为:根据预先从PRS发送端获取的预设序列生成规则,区分接收到的每个PRS块,根据所述第一PRS块位置确定所述第一PRS块对应赋形波束的发射序号。
- 根据权利要求14所述的装置,其中,所述确定模块还设置为:将所述第一PRS块与获取的第二PRS块的接收时间差除以1个符号时长,对相除之商向下取整,得到第一PRS对应赋形波束发射序号与第二PRS块对应赋形波束发射序号的符号间隔值;以及将所述第一PRS块与第二PRS块的接收时间差,与所述符号间隔值乘以1个符号时长之积相减,将所述相减之差确定为所述第一PRS块与所述第二PRS块的到达时间差。
- 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时使得所述处理器实现权利要求1至5中任一项所述的方法;或者,该计算机程序被处理器执行时使得所述处理器实现权利要求6至8中任一项所述的方法。
- 一种PRS传输装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至5中任一项所述的方法;或者所述处理器用于运行所述计算机程序时,执行权利要求6至8中任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/273,344 US20210345130A1 (en) | 2018-09-04 | 2019-09-03 | Positioning reference signal transmission method and apparatus, device, and storage medium |
EP19857362.8A EP3849098A4 (en) | 2018-09-04 | 2019-09-03 | METHOD AND DEVICE FOR POSITIONING REFERENCE SIGNAL TRANSMISSION |
KR1020217009770A KR20210053959A (ko) | 2018-09-04 | 2019-09-03 | 포지셔닝 참조 신호 전송 방법 및 기기, 장치, 및 저장매체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811026575.5 | 2018-09-04 | ||
CN201811026575.5A CN110535511B (zh) | 2018-09-04 | 2018-09-04 | 一种定位参考信号传输方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020048452A1 true WO2020048452A1 (zh) | 2020-03-12 |
Family
ID=68657958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/104204 WO2020048452A1 (zh) | 2018-09-04 | 2019-09-03 | 定位参考信号传输的方法和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210345130A1 (zh) |
EP (1) | EP3849098A4 (zh) |
KR (1) | KR20210053959A (zh) |
CN (1) | CN110535511B (zh) |
WO (1) | WO2020048452A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110535578B (zh) * | 2018-05-25 | 2021-08-03 | 大唐移动通信设备有限公司 | 信号传输方法及装置 |
GB2583454B (en) * | 2019-04-02 | 2021-10-13 | Samsung Electronics Co Ltd | Improvements in and relating to positioning in a telecommunication network |
US11044693B1 (en) * | 2020-05-08 | 2021-06-22 | Qualcomm Incorporated | Efficient positioning enhancement for dynamic spectrum sharing |
CN114339987B (zh) * | 2020-09-30 | 2023-10-24 | 展讯通信(上海)有限公司 | 定位参考信号的传输方法及装置、存储介质、终端 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812546A (zh) * | 2012-11-07 | 2014-05-21 | 华为技术有限公司 | 一种基于天线阵列的参考信号映射方法、装置及系统 |
WO2015096809A1 (en) * | 2013-12-26 | 2015-07-02 | Mediatek Singapore Pte. Ltd. | A localization-based beamforming scheme for systems with multiple antennas |
CN106341882A (zh) * | 2015-07-17 | 2017-01-18 | 北京信威通信技术股份有限公司 | 一种lte系统的终端定位方法 |
WO2017164925A1 (en) * | 2016-03-24 | 2017-09-28 | Intel Corporation | Method of positioning for 5g systems |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101616360B (zh) * | 2009-07-24 | 2012-05-09 | 中兴通讯股份有限公司 | 一种定位参考信号的发送方法及系统 |
CN103856894B (zh) * | 2012-12-06 | 2019-05-07 | 北京三星通信技术研究有限公司 | 基于波束的定位方法及设备 |
US10033449B2 (en) * | 2014-12-16 | 2018-07-24 | Lg Electronics Inc. | Method for receiving reference signal in wireless communication system, and apparatus therefor |
EP3306337A1 (en) * | 2016-10-10 | 2018-04-11 | Fraunhofer Gesellschaft zur Förderung der Angewand | User equipment localization in a mobile communication network |
US11316633B2 (en) * | 2018-02-08 | 2022-04-26 | Qualcomm Incorporated | Bandwidth-dependent positioning reference signal (PRS) transmission for narrowband internet of things (NB-IoT) observed time difference of arrival (OTDOA) positioning |
-
2018
- 2018-09-04 CN CN201811026575.5A patent/CN110535511B/zh active Active
-
2019
- 2019-09-03 US US17/273,344 patent/US20210345130A1/en active Pending
- 2019-09-03 KR KR1020217009770A patent/KR20210053959A/ko not_active Application Discontinuation
- 2019-09-03 WO PCT/CN2019/104204 patent/WO2020048452A1/zh unknown
- 2019-09-03 EP EP19857362.8A patent/EP3849098A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812546A (zh) * | 2012-11-07 | 2014-05-21 | 华为技术有限公司 | 一种基于天线阵列的参考信号映射方法、装置及系统 |
WO2015096809A1 (en) * | 2013-12-26 | 2015-07-02 | Mediatek Singapore Pte. Ltd. | A localization-based beamforming scheme for systems with multiple antennas |
CN106341882A (zh) * | 2015-07-17 | 2017-01-18 | 北京信威通信技术股份有限公司 | 一种lte系统的终端定位方法 |
WO2017164925A1 (en) * | 2016-03-24 | 2017-09-28 | Intel Corporation | Method of positioning for 5g systems |
Non-Patent Citations (1)
Title |
---|
See also references of EP3849098A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN110535511B (zh) | 2022-08-19 |
US20210345130A1 (en) | 2021-11-04 |
EP3849098A1 (en) | 2021-07-14 |
CN110535511A (zh) | 2019-12-03 |
EP3849098A4 (en) | 2022-06-15 |
KR20210053959A (ko) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020048452A1 (zh) | 定位参考信号传输的方法和装置 | |
US10212680B2 (en) | Synchronization signal sending and receiving method, apparatus, and device | |
US10314063B2 (en) | Method and apparatus for transmitting adaptive partial subframe in unlicensed frequency band, method and apparatus for identifying a frame structure, and method and apparatus for transmitting signal | |
CN105684324B (zh) | 用于传输同步信号的系统和方法 | |
WO2018228492A1 (zh) | 参考信号、消息的传输方法、传输资源确定方法和装置 | |
US20180097678A1 (en) | Method for transmitting information in communication system, base station and user equipment | |
CN112492623B (zh) | 一种同步信号的发送方法、接收方法和装置 | |
EP3579469B1 (en) | Wireless communication method and device | |
WO2018214940A1 (zh) | 信道侦听方法、网络侧设备及终端 | |
JP2019505145A5 (zh) | ||
CN110139290B (zh) | 一种远端干扰测量信号的处理方法及基站、存储介质 | |
EP3041307A1 (en) | Data transmission scheduling method, device and system | |
CN114697903A (zh) | 副链路sl上的定位方法、终端及网络侧设备 | |
WO2017000233A1 (zh) | 传输导频序列的方法和装置 | |
WO2016119687A1 (zh) | 一种信号发送方法、接收方法及装置 | |
WO2019028793A1 (zh) | 随机接入前导码传输方法及装置 | |
US20200229213A1 (en) | Carrier switching method on unlicensed spectrum, base station, and terminal device | |
WO2018145302A1 (zh) | 无线通信方法、终端设备和网络设备 | |
US9974056B2 (en) | Method and apparatus for transmitting and receiving information in wireless distributed system | |
WO2018064909A1 (zh) | 干扰源小区定位方法和装置以及对应的基站 | |
WO2021063315A1 (zh) | 一种雷达与通信一体化系统的协同工作方法及系统 | |
CN105530712A (zh) | 直连链路调度方法、接入点和终端设备 | |
CN110557235B (zh) | 定位参考信号的发送、接收方法、装置、收发节点 | |
JP6350837B2 (ja) | データ送信方法および端末 | |
JP2010041637A (ja) | ランダムアクセス信号検出機能を備えた無線通信装置、及び無線通信システム並びにランダムアクセス信号検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857362 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217009770 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019857362 Country of ref document: EP Effective date: 20210406 |