WO2020047898A1 - 一种扫频振镜式oct系统 - Google Patents

一种扫频振镜式oct系统 Download PDF

Info

Publication number
WO2020047898A1
WO2020047898A1 PCT/CN2018/106095 CN2018106095W WO2020047898A1 WO 2020047898 A1 WO2020047898 A1 WO 2020047898A1 CN 2018106095 W CN2018106095 W CN 2018106095W WO 2020047898 A1 WO2020047898 A1 WO 2020047898A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
galvanometer
sample
oct system
detection
Prior art date
Application number
PCT/CN2018/106095
Other languages
English (en)
French (fr)
Inventor
宋李烟
李百灵
高峻
梁为亮
明伟杰
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2020047898A1 publication Critical patent/WO2020047898A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Definitions

  • the utility model relates to the field of medical imaging systems, in particular to an optical coherence tomography (OCT, Optical Coherence Tomography) system.
  • OCT optical coherence tomography
  • Time-domain OCT is generally considered to be the first-generation OCT technology, and interference signals can be generated only if the optical signal reflected from the tissue exactly matches the optical path of the optical signal reflected from the reference mirror.
  • the scanning of the optical signal reflected by the reference mirror realizes the point-by-point acquisition of the longitudinal information (depth direction) inside the sample, which is widely used in cases where the anterior segment, coronary artery, etc. require a large range.
  • the OCT system used in ophthalmology collects the optical density information of different faults by matching the optical path difference of each position, and reflects the tissue structure of the eyeball in turn.
  • the frequency domain OCT technology uses the Fourier transform technology to convert the information in the time domain into the measurement in the frequency domain.
  • the optical path of the reference arm is fixed. To achieve imaging, it is necessary to ensure that the optical path difference between the sample arm optical path and the reference arm optical path at all collection points of the sample can interfere.
  • the coherence length is generally 20 mm. In order to better match the optical path difference between the reference path and the sample path, this technology is currently used in Imaging of tubular tissue.
  • the existing OCT technology cannot obtain high-resolution scan imaging for non-lumen tissue and achieve the best imaging effect.
  • an object of the present invention is to provide a frequency-scanning galvanometer OCT system to achieve the purpose of imaging detection of non-lumen-shaped tissue.
  • a frequency sweep galvanometer OCT system including
  • Sweep laser generating device to generate a detection beam and a reference beam coherent with the detection beam
  • the sample arm includes a scanning galvanometer and a flat field lens;
  • Reference arm for adjusting the optical path of the reference beam
  • the reference arm includes an adjustable optical delay device for adjusting the optical path of the reference arm
  • a light beam detection device that causes the reflected light beam and the reference light beam to interfere with each other to generate an interference light signal, and detects the interference light signal
  • the frequency sweep laser uses a frequency sweep laser with a line width of 110 nm.
  • a coherence length of the reflected beam and the reference beam is 20 mm.
  • the reflector group reflects the reference beam to the beam detection device.
  • the light beam detection device includes a detector, a photoelectric converter, and a data processing and display device.
  • the detector interferes the reflected light beam and the reference light beam with each other to form an interference light signal.
  • Interference light signals are converted into electrical signals, and the data processing and display shown convert the electrical signals into imaging of sample structure information.
  • the scanning galvanometer and the data processing and display are connected through a unified synchronization signal.
  • the utility model has the beneficial effect that the utility model provides a frequency-scanning galvanometer OCT system, which enables the detection beam after the frequency-scanning laser beam is split through a combination of a scanning laser generator and a field lens.
  • the scanning range can also be adjusted, the addition of the optical delay device can not change the distance between the imaging table and the sample, and only needs to adjust the optical path of the reference arm by adjusting the optical delay device To better match the optical path of the sample arm to achieve the best imaging results.
  • FIG. 1 is a schematic diagram of a frequency sweep galvanometer OCT system of the present invention
  • FIG. 2 is a schematic diagram of scanning by a scanning galvanometer to change a beam direction
  • FIG. 3 is a schematic diagram of a scanning galvanometer circuit control
  • FIG. 1 is a schematic diagram of a specific embodiment of a frequency sweep galvanometer OCT system according to the present invention, including a frequency sweeping laser generating device, a sample arm, a reference arm, and a beam detecting device.
  • the frequency sweeping laser generating device includes a frequency sweeping A laser and a beam splitter;
  • the sample arm includes a circulator, a scanning galvanometer, and a field lens;
  • the reference arm includes an adjustable optical delay device that includes a stepper motor and a reflector group;
  • the beam detection device includes Detectors, photoelectric conversion devices and data processing and displays.
  • the frequency sweeping laser beam emitted by the frequency sweeping laser is divided into a detection beam and a reference beam in the beam splitter.
  • the reference beam is reflected to the detector by the mirror group in the reference arm, and the detection beam enters the plane after being adjusted by the scanning galvanometer in the sample arm.
  • a field lens which is irradiated by the detection beam of the flat field lens on the sample to be detected, and generates a reflected light beam that carries the information of the scanned sample.
  • the reflected light beam passes through the flat field lens, the scanning galvanometer, and then enters the detector through the circulator.
  • the reflected light beam and the reference light beam interfere with each other in the detector to generate an interference light signal.
  • the interference light signal is converted into an electrical signal by a photoelectric converter.
  • the data processing and display process the electrical signal and display the final sample structure information.
  • the sample arm includes a circulator, a scanning galvanometer, and a field lens.
  • the detection beam enters the scanning galvanometer from one side of the scanning galvanometer. It is practical, flexible and convenient in the actual imaging and scanning of subcutaneous tissue, and can accurately control the angle described by the detection beam. As well as increasing the scanning speed, thereby improving the quality of scanning imaging, the scanning galvanometer and data processing and display are connected through a unified synchronization signal, which can effectively obtain the imaging of the sample to be scanned in real time.
  • the detection beam passing through the scanning galvanometer is irradiated onto the sample to be detected through a flat field lens.
  • a spherical lens is generally only suitable for imaging on a circular plane, while a flat field lens can solve this problem and make the detection imaging focus of the detection beam be the same
  • a flat-field lens deflects a certain incident light at a certain scanning speed, so linear scanning can be achieved with incident light of constant angular velocity.
  • the flat-field lens can ensure that the reflected beam and reference beam reflected by the sample in the same scanning plane area
  • the difference in optical path length is within a coherent length, so that planar tissue can be scanned and imaged.
  • the scanning laser and the flat field lens adopted by the utility model can better solve the limitation of the optical path of the reference arm and the optical path of the sample arm due to the short coherence length, and also effectively ensure the resolution of the planar tissue scanning imaging.
  • the reference arm contains an adjustable optical delay device.
  • the optical delay device can be used to adjust the optical path of the reference arm.
  • the optical delay device can be a stepper motor, Michelson interferometer, optical delay grating, etc.
  • the optical delay device includes a stepping motor and a reflector group, and the reflector group has at least two reflectors.
  • the number of reflectors is preferably two for adjusting the reference beam. Angle so that the reference beam can enter the detector.
  • the driving of the stepping motor is used to adjust the relative distance and the relative angle between the reflectors, and then adjust the optical path difference between the reference beam and the reflected beam.
  • the stepping motor is set in the optical path of the reference arm.
  • the optical path difference of the sample arm needs to be adjusted by adjusting the optical path of the reference arm by adjusting the stepper motor drive. Adjust the quality of the scanned image.
  • the stepping motor can be connected to the data processing and display to adjust the optical path difference more accurately and in time, and improve the quality of imaging.
  • a point detector is preferably used.
  • the point detector records the time-resolved interference beam and the low-coherence interference signal generated by the detection beam.
  • the detector is connected to a photoelectric converter.
  • the photoelectric converter is used to convert a spectral signal into a processable signal.
  • the electrical signal is sent to a data processing and display connected to the photoelectric converter.
  • the data processing and display processes the electrical signal through a Fourier transform and displays an image of sample structure information for diagnosis by a doctor.
  • the light fields of the reference beam and the reflected beam are expressed as with Where E 0 , k, r, s, They are the initial amplitude of the light field, wave vector, reference beam path length, reference beam initial phase, reflected beam path length, and reflected beam initial phase. Coherent signals from both are entering the detector
  • the first two terms are the non-coherent terms of the reference beam and the reflected beam, which show that the size does not change with the optical path difference (r-s) and is directly magnified in numerical processing.
  • the latter two terms are coherent terms, which show that the size changes with the change of the optical path difference (r-s), which is also the part that carries sample information in numerical processing.
  • the latter two terms are simplified as
  • the intensity of the coherent signal depends only on the optical path difference (rs) of the reference beam and the reflected beam.
  • the optical path length r of the reference beam is a fixed value, and the optical path length s of the sample carrying different tomographic information and k at this time are a pair of parameters that determine the optical signal.
  • FIG. 2 is a principle diagram of a scanning galvanometer OCT system of a scanning galvanometer of the present utility model to change a beam direction to realize scanning.
  • the frequency-sweeping laser beam 1 emits a frequency-sweeping laser beam. After the frequency-sweeping laser beam passes through the beam splitter, it is divided into a detection beam and a reference beam.
  • the detection beam After the detection beam enters the frequency-sweeping galvanometer from one side, it first passes through the deflection lens carried by the motor 2 in the X axis direction The detection beam is reflected to the deflection lens carried by the Y-axis direction motor 3, and the deflection lens carried by the Y-axis direction motor 3 completes a scan of the sample 5 to achieve a one-dimensional linear scan, and then adjusts the X-axis direction motor 2's The deflection angle realizes another linear scan of the sample 5. Both the X-axis direction and the Y-axis direction must pass through the flat field lens 4 and continuously scan in this manner. A two-dimensional plane scan can be achieved to obtain a complete skin. Imaging of the underlying tissue.
  • the scanning galvanometer is not only flexible and convenient to use, but also can improve the accuracy of the scanning of the detection beam, which is beneficial to the quality of scanning imaging.
  • FIG. 3 is a schematic diagram of a scanning galvanometer circuit control diagram of a frequency sweep galvanometer OCT system of the present invention.
  • the scanning galvanometer includes a dual-axis scanning galvanometer drive.
  • the dual-axis scanning galvanometer drive includes an X-axis servo controller and a Y-axis servo controller.
  • the X-axis servo controller is used to control the X-axis voltage input and the X-axis detection signal output. Adjust the deflection angle of the motor in the X-axis direction;
  • the Y-axis servo controller is used to control the Y-axis voltage input and the Y-axis detection signal output to adjust the deflection angle of the Y-axis motor.
  • the frequency-scanning galvanometer and the data processing and display device are connected through a unified synchronization signal, and a scanning imaging of the subcutaneous tissue can be obtained in real time.
  • the servo controller of the scanning galvanometer can run at high speed, and the scanning imaging speed can be increased by controlling the scanning galvanometer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种扫频振镜式OCT系统,包括:扫频激光发生装置,其用于生成探测光束以及与探测光束相干的参考光束;样品臂,其包括扫描振镜和平场透镜,使得探测光束扫描到待扫描的样品上,探测光束照射到样品上发生反射产生反射光束;参考臂,用于调节参考光束的光路,所述参考臂中设置有光学延迟装置,用于调整参考臂光程;光束检测装置,使所述反射光束与参考光束相互干涉以生成干涉光信号,并对干涉光信号进行检测。该系统可用于对平面型的组织或样品进行扫描,实现对平面型对象的高分辨率扫描成像。

Description

一种扫频振镜式OCT系统 技术领域
本实用新型涉及一种医学成像系统领域,尤其涉及一种光学相干断层扫描成像(OCT,Optical Coherence Tomography)系统。
背景技术
目前,市场上的OCT技术依据成像原理可以分为时域(TD-OCT)和频域(FD-OCT)。时域OCT一般认为是第一代OCT技术,当且仅当从组织中反射回来的光信号与参照反光镜反射回来的光信号的光程完全匹配的情况下才能产生干涉信号。通过参考反射镜反射回来的光信号的扫描,实现样品内部纵向信息(深度方向)的逐点获取,广泛应用于眼前节、冠状动脉等需要大量程的情况。例如用于眼科的OCT系统,通过匹配每个位置的光程差来搜集不同断层的光学密度信息,依次反映眼球的组织结构,此系统适用于各断层有明显的光学性质区别(如玻璃体和晶状体)的组织。频域OCT技术则采用了傅里叶变换技术,将时域的信息转换成频率域的测量。一般而言,对于频域OCT来说,参考臂光程都是固定的,要实现成像则需要保证样品的所有采集点的样品臂光程与参考臂光程的光程差在能够发生干涉的相干长度以内,由于频域OCT所采用的是宽频谱光源,其相干长度一般为20mm,为了更好地匹配参考臂光程和样品臂光程之间的光程差,目前该技术主要用于管状组织的成像。但是,现有的OCT技术对于非管腔的组织则不能得到高分辨率的扫描成像并达到最佳的成像效果。
实用新型内容
为了克服现有技术的不足,本实用新型的目的在于提供一种扫频振镜式OCT系统,以实现非管腔状组织的成像检测的目的。
本实用新型的目的采用如下技术方案实现:
一种扫频振镜式OCT系统,包括
扫频激光发生装置,生成探测光束以及与探测光束相干的参考光束;
样品臂,使得探测光束扫描到待扫描的样品上,探测光束照射到样品上发生反射产生反射光束,所述样品臂包括扫描振镜和平场透镜;
参考臂,用于调节参考光束的光路;
所述参考臂中包含一个可调的光学延迟装置,用于调节参考臂光程;
光束检测装置,使所述反射光束与所述参考光束相互干涉以生成干涉光信号,并对所述干涉光信号进行检测;
进一步地,所述扫频激光发生装置包括扫频激光器和分光镜,所述分光镜将所述扫频激光束分为所述探测光束和所述参考光束。
进一步地,所述扫频激光器采用线宽为110nm的扫频激光器。
进一步地,所述反射光束与所述参考光束的相干长度为20mm。
进一步地,所述光学延迟装置包括步进电机和设置于参考臂中的反光镜组,所述反光镜组至少有两个反光镜,反光镜之间的相对角度随步进电机的驱动而调整。
进一步地,所述反光镜组将所述参考光束反射至所述光束检测装置。
进一步地,所述光束检测装置包括探测器、光电转换器和数据处理及显示器,所述探测器将所述反射光束和所述参考光束相互干涉形成干涉光信号,所述光电转换器将所述干涉光信号转换为电信号,所示数据处理及显示器将所述电信号转换成样品结构信息的成像。
进一步地,所述扫描振镜和所述数据处理及显示器通过统一的同步信号进行连接。
相比现有技术,本实用新型的有益效果在于:本实用新型提供一种扫频振镜式OCT系统,通过扫描激光发生装置和平场透镜的结合,使扫频激光束分光后的探测光束能够聚焦到同一平面上,并且保证样品臂光程和参考臂光程的光程差在能够产生干涉的相干长度范围内,因而可以对皮肤表面等非管腔类平面型样品表面以下的结构进行扫描成像,并且成像的分辨率高,扫描的范围也可以进行调整,光学延迟装置的加入可以不改变成像台和样品之间的距离,而只需要通过调节该光学延迟装置即可调整参考臂光程以更佳地和样品臂光程相匹配,从而达到最佳的成像效果。
附图说明
图1为本实用新型一种扫频振镜式OCT系统的示意图;
图2为扫描振镜改变光束方向实现扫描的原理图;
图3为扫描振镜电路控制示意图;
图中:1、扫频激光器;2、X轴方向电机;3、Y轴方向电机;4、平场透镜;5、样品。
具体实施方式
下面,结合附图以及具体实施方式,对本实用新型做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
图1为本实用新型一种扫频振镜式OCT系统的一具体实施例的示意图,包括扫频激光发生装置、样品臂、参考臂、光束检测装置,所述扫频激光发生装置包括扫频激光器和分光镜;所述样品臂包括环形器、扫描振镜和平场透镜;参考臂包括一个可调的光学延迟装置,该光学延迟装置包含步进电机和反光镜 组;所述光束检测装置包括探测器、光电转换装置和数据处理及显示器。扫频激光器发出扫频激光束在分光镜被分为探测光束和参考光束,参考光束在参考臂中经反光镜组反射到探测器中,探测光束在样品臂中经扫描振镜调节后进入平场透镜,通过平场透镜的探测光束照射到待检测的样品上反射产生携带扫描样品信息的反射光束,反射光束反向依次通过平场透镜、扫描振镜后经环形器进入探测器,所述反射光束与参考光束在探测器中相互干涉产生干涉光信号,干涉光信号通过光电转换器后转换成电信号,数据处理及显示器处理该电信号并显示最终的样品结构信息。
本实施中,扫频激光器为具有较短的相干长度的激光器,优选地选用线宽为110nm的扫频激光器,更优地,采用该类型扫频激光器通过分光镜生成的探测光束经样品臂照射到待检测的样品后反射产生的反射光束和参考光束相互干涉的干涉长度为20mm。采用该类型的扫频激光器因其相干长度比较短,所以OCT系统扫描成像的分辨率比较高。
样品臂中包括环形器、扫描振镜和平场透镜,所述探测光束从扫描振镜一侧进入扫描振镜,在实际的皮下组织扫描成像工作中实用灵活方便,能够精准控制探测光束描述的角度以及提高扫描的速度,从而提高扫描成像的质量,扫描振镜和数据处理及显示器通过统一的同步信号进行连接,可以实时有效地得到待扫描样品的成像。经过扫描振镜的探测光束通过平场透镜照射到待检测的样品上,球面透镜一般只适用于圆形平面上成像,而平场透镜则能解决该问题,使探测光束的探测成像焦点在同一平面上,平场透镜对于一定的入射光偏转速度对应着一定的扫描速度,因此可用等角速度的入射光实现线性扫描,平场透镜可以保证在同一扫描平面区域内经样品反射的反射光束与参考光束的光程差在相干的长度内,因而可以对平面型组织进行扫描成像。本实用新型采用的扫 频激光器和平场透镜较好地解决了由于短相干长度带来的参考臂光路和样品臂光路的限制,同时还有效地保障了平面型组织扫描成像的分辨率。
参考臂中包含一个可调的光学延迟装置,光学延迟装置可用于调整参考臂光程,该光学延迟装置可以为步进电机、迈克尔逊干涉仪、光学延迟光栅等。本实施例优选地,所述光学延迟装置包括步进电机和反光镜组,所述反光镜组至少有两块反光镜,本实施例优选地反光镜的数量为两块,用于调整参考光束的角度,使得参考光束能够进入探测器中。所述步进电机的驱动用于调整反光镜之间的相对距离和相对角度,进而调整参考光束与反射光束的光程差。步进电机设置在参考臂光路中,可以在不改变成像台以及样品之间的距离的条件下,只需要通过调节步进电机驱动调整参考臂光程来匹配样品臂的光程差,从而可以调整扫描成像的质量。优选地,步进电机可以连接到数据处理及显示器,更加精准和及时地调整光程差,提高成像的质量。
实施例探测器优选地选用点探测器,点探测器分时记录反射光束和探测光束产生的低相干干涉信号,所述探测器连接光电转换器,光电转换器用于将光谱信号转化成可以处理的电信号并将该电信号发送至与光电转换器连接的数据处理及显示器,数据处理及显示器通过傅里叶变换处理该电信号,并显示样品结构信息的图像以供医生进行诊断。
理论上,参考光束和反射光束的光场分别表示为
Figure PCTCN2018106095-appb-000001
Figure PCTCN2018106095-appb-000002
Figure PCTCN2018106095-appb-000003
其中E 0,k,r,
Figure PCTCN2018106095-appb-000004
s,
Figure PCTCN2018106095-appb-000005
分别为光场的初振幅、波矢、参考光束光程、参考光束初相位、反射光束光程、反射光束初相位。进入探测器的是两者的相干信号
I=(Er+Es)(Er+Es)*=ErEr*+EsEs*+ErEs*+EsEr*
其中,前两项为参考光束和反射光束的非相干项,表现为大小不随光程差 (r-s)改变,在数值处理中直接倍率出。而后两项为相干项,表现为大小随光程差(r-s)的改变而改变,也是数值处理中携带样品信息的部分,后两项简化为
Figure PCTCN2018106095-appb-000006
其中
Figure PCTCN2018106095-appb-000007
称为相位差,是在激光分束的时候就确定下来的,不会在后续的过程中发生改变,此时相干信号的强度只取决于参考光束和反射光束的光程差(r-s),而参考光束的光程r是一个固定值,则携带不同断层信息的样品光程s和此时的k是一对决定光信号的参数。由于本技术方案采用了扫频激光,则探测器每个时刻搜集到的光信号对应不同的光频率的信息,即形成了I 相干(k,s),其中k和s是一对傅里叶互变换的关系,即可以通过对I进行相应的傅里叶变换,可以得到样品的断层信息。
图2为本实用新型一种扫频振镜OCT系统的扫描振镜改变光束方向实现扫描的原理图。扫频激光器1发出扫频激光束,扫频激光束通过分光镜后分为探测光束和参考光束,探测光束从一侧进入扫频振镜后,首先通过X轴方向电机2所携带的偏转镜片将探测光束反射至Y轴方向电机3所携带的偏转镜片,Y轴方向电机3所携带的偏转镜片完成对样品5的一次扫描则实现一维的线性扫描,再通过调整X轴方向电机2的偏转角度,实现对样品5的另一行线性扫描,无论X轴方向还是Y轴方向均要通过平场透镜4,并不断以此方式依次扫描,即可实现二维平面的扫描以得到完整的表皮下组织的成像。扫描振镜不仅使用灵活方便,还能够很好地提高探测光束扫描的精准度,有利于提高扫描成像的质量。
图3为本实用新型的一种扫频振镜OCT系统的扫描振镜电路控制图示意图。扫描振镜包括了双轴扫描振镜驱动,双轴扫描振镜驱动包括X轴伺服控制 器和Y轴伺服控制器,X轴伺服控制器用于控制X轴电压输入和X轴检测信号输出,从而调整X轴方向电机的偏转角度;Y轴伺服控制器用于控制Y轴电压输入和Y轴检测信号输出,从而调整Y轴方向电机的偏转角度。扫频振镜和数据处理及显示装置通过统一的同步信号进行连接,可以实时得到皮下组织的扫描成像。扫描振镜的伺服控制器能够高速运转,通过控制扫描振镜可以提升扫描成像的速度。
上述实施方式仅为本实用新型的优选实施方式,不能以此来限定本实用新型保护的范围,本领域的技术人员在本实用新型的基础上所做的任何非实质性的变化及替换均属于本实用新型所要求保护的范围。

Claims (8)

  1. 一种扫频振镜式OCT系统,其特征在于:包括
    扫频激光发生装置,生成探测光束以及与探测光束相干的参考光束;
    样品臂,使得探测光束扫描到待扫描的样品上,探测光束照射到样品上发生反射产生反射光束,所述样品臂包括扫描振镜和平场透镜;
    参考臂,用于调节参考光束的光路;
    所述参考臂中包含一个可调的光学延迟装置,用于调节参考臂光程;
    光束检测装置,使所述反射光束与所述参考光束相互干涉以生成干涉光信号,并对所述干涉光信号进行检测。
  2. 如权利要求1所述的扫频振镜式OCT系统,其特征在于:所述扫频激光发生装置包括扫频激光器和分光镜,所述分光镜将所述扫频激光束分为所述探测光束和所述参考光束。
  3. 如权利要求2所述的扫频振镜式OCT系统,其特征在于:所述扫频激光器采用线宽为110nm的扫频激光器。
  4. 如权利要求1所述的扫频振镜式OCT系统,其特征在于:所述反射光束与所述参考光束的相干长度为20mm。
  5. 如权利要求1所述的扫频振镜式OCT系统,其特征在于:所述光学延迟装置包括步进电机和设置于参考臂中的反光镜组,所述反光镜组至少有两个反光镜,反光镜之间的相对角度随步进电机的驱动而调整。
  6. 如权利要求5所述的扫频振镜式OCT系统,其特征在于:所述反光镜组将所述参考光束反射至所述光束检测装置。
  7. 如权利要求1所述的扫频振镜式OCT系统,其特征在于:所述光束检测装置包括探测器、光电转换器和数据处理及显示器,所述探测器将所述反射光束和所述参考光束相互干涉形成干涉光信号,所述光电转换器将所述干涉光 信号转换为电信号,所示数据处理及显示器将所述电信号转换成样品结构信息的成像。
  8. 如权利要求7所述的扫频振镜式OCT系统,其特征在于:所述扫描振镜和所述数据处理及显示器通过统一的同步信号进行连接。
PCT/CN2018/106095 2018-09-05 2018-09-18 一种扫频振镜式oct系统 WO2020047898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821455551.7U CN209220283U (zh) 2018-09-05 2018-09-05 一种扫频振镜式oct系统
CN201821455551.7 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020047898A1 true WO2020047898A1 (zh) 2020-03-12

Family

ID=67498465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106095 WO2020047898A1 (zh) 2018-09-05 2018-09-18 一种扫频振镜式oct系统

Country Status (2)

Country Link
CN (1) CN209220283U (zh)
WO (1) WO2020047898A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646809B (zh) * 2019-08-27 2023-04-18 广州中国科学院先进技术研究所 一种火灾环境透烟雾探测方法、系统及其使用方法
CN112711029B (zh) * 2020-12-21 2024-10-11 武汉光目科技有限公司 一种面阵扫频测量装置和方法
CN118009916A (zh) * 2024-02-04 2024-05-10 深圳市九州智焊未来科技有限公司 一种基于高速高精度电机具有自动光程补偿的激光熔深实时检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083147A1 (en) * 2011-12-09 2013-06-13 Wavelight Gmbh Focusing lens and system for optical coherence tomography
US20140368792A1 (en) * 2013-06-18 2014-12-18 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
WO2014205007A1 (en) * 2013-06-17 2014-12-24 Invenio Imaging Inc. Methods and systems for coherent raman scattering
CN104755908A (zh) * 2012-07-27 2015-07-01 统雷有限公司 敏捷成像系统
CN107346050A (zh) * 2017-07-31 2017-11-14 美国通用光电公司 一种紧凑型光学延迟器
WO2018000036A1 (en) * 2016-07-01 2018-01-04 Cylite Pty Ltd Apparatus and method for confocal microscopy using dispersed structured illumination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083147A1 (en) * 2011-12-09 2013-06-13 Wavelight Gmbh Focusing lens and system for optical coherence tomography
CN104755908A (zh) * 2012-07-27 2015-07-01 统雷有限公司 敏捷成像系统
WO2014205007A1 (en) * 2013-06-17 2014-12-24 Invenio Imaging Inc. Methods and systems for coherent raman scattering
US20140368792A1 (en) * 2013-06-18 2014-12-18 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
WO2018000036A1 (en) * 2016-07-01 2018-01-04 Cylite Pty Ltd Apparatus and method for confocal microscopy using dispersed structured illumination
CN107346050A (zh) * 2017-07-31 2017-11-14 美国通用光电公司 一种紧凑型光学延迟器

Also Published As

Publication number Publication date
CN209220283U (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
US8384908B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
JP4344829B2 (ja) 偏光感受光画像計測装置
US6813030B2 (en) Optical interference tomographic image observing apparatus
US6325512B1 (en) Retinal tracking assisted optical coherence tomography
JP3479069B2 (ja) 光学的イメージ形成および測定の方法および装置
JP3809208B2 (ja) 血液の速度を測定する装置及び方法
US6726325B2 (en) Tracking assisted optical coherence tomography
US20110032479A1 (en) Image sensing apparatus using optical coherence tomography and control method therefor
US20120053904A1 (en) Information processing apparatus in oct system
US7973940B2 (en) Optical object measurement apparatus
WO2020047898A1 (zh) 一种扫频振镜式oct系统
CN103439295A (zh) 全深度频域多普勒光学相干层析成像方法
CN104523239A (zh) 全深度谱域光学相干层析成像装置及方法
CN103097855A (zh) 用于提高眼测量的方法和装置
JP2017047110A (ja) 撮像装置
JP2018175258A (ja) 画像生成装置、画像生成方法、及びプログラム
JP2012510610A (ja) スペクトル光コヒーレンス断層映像法を用いて構造データを収集する方法および装置
CN108784644A (zh) 一种眼科光学参数测量系统
US20120013909A1 (en) Apparatus and method of monitoring and measurement using spectral low coherence interferometry
WO2002084259A1 (fr) Procede de generation d'un retard optique a grande vitesse par reflecteur de rotation dans une tomographie par coherence optique et dispositif de tomographie par coherence optique
CN116849625B (zh) 一种基于光计算的强度调制式光学相干层析成像系统
WO2021192117A1 (ja) 光干渉断層撮像装置
CN210130811U (zh) 基于光学相干断层扫描的多参数、多功能眼睛测量仪
WO2024040779A1 (zh) 偏振敏感型光学相干层析成像系统、方法
CN106872407B (zh) 一种提高扫频光学相干层析成像分辨率方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932778

Country of ref document: EP

Kind code of ref document: A1