WO2020045544A1 - Method for starting continuous casting of steel - Google Patents

Method for starting continuous casting of steel Download PDF

Info

Publication number
WO2020045544A1
WO2020045544A1 PCT/JP2019/033828 JP2019033828W WO2020045544A1 WO 2020045544 A1 WO2020045544 A1 WO 2020045544A1 JP 2019033828 W JP2019033828 W JP 2019033828W WO 2020045544 A1 WO2020045544 A1 WO 2020045544A1
Authority
WO
WIPO (PCT)
Prior art keywords
tundish
molten steel
gas
atmosphere
hole
Prior art date
Application number
PCT/JP2019/033828
Other languages
French (fr)
Japanese (ja)
Inventor
晃史 原田
章敏 松井
佑介 渡邉
敬一 東
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020539569A priority Critical patent/JP6841386B2/en
Priority to CN201980052761.2A priority patent/CN112584947B/en
Priority to BR112021001763-1A priority patent/BR112021001763A2/en
Publication of WO2020045544A1 publication Critical patent/WO2020045544A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/106Shielding the molten jet

Definitions

  • the present invention relates to a method for starting continuous casting of steel, and more particularly to a method for starting continuous casting through appropriate replacement of an atmosphere gas in a tundish prior to the start of pouring into a mold.
  • inclusions in steel materials greatly affect quality and characteristics, and thus reduction is required. Inclusions present in steel include sulfides and nitrides, but most are oxides generated during the deoxidation process of the steelmaking process.
  • molten steel after secondary refining passes through a tundish for dispensing into a continuous casting mold, but if there is air in the tundish before molten steel injection, the injected molten steel and air The oxides react with oxygen to generate oxide-based inclusions, so that there is a problem that the tundish is again contaminated despite the reduction of inclusions in the steel during the secondary refining.
  • Patent Document 1 the inside of the tundish is purged with an inert gas, and when the oxygen concentration in the tundish becomes 1 vol% or less, molten steel is injected into the tundish. Suggests how to get started.
  • Patent 3642284 Japanese Patent Application Laid-Open No. 2002-254148
  • Patent Document 1 According to the technology disclosed in Patent Document 1, it is unclear how to reduce the oxygen concentration in the tundish to 1 vol%, and depending on the flow rate of the inert gas and the form of the tundish at that time, the atmosphere in the atmosphere may be reduced. There is a problem that it takes a long time to lower the oxygen concentration and the operation efficiency is poor.
  • the present invention has been developed in view of the above problems of the prior art, and aims to efficiently reduce the oxygen concentration in the atmosphere in a tundish before injecting molten steel in a continuous casting process. It is another object of the present invention to propose a method that can easily reduce the amount.
  • the method according to the present invention developed in order to solve the above-mentioned problems, Injecting the molten steel into the tundish interposed between the ladle holding the molten steel and the continuous casting mold of the molten steel, the oxygen concentration in the atmosphere was reduced by replacing the gas in the atmosphere in the tundish before starting the injection.
  • the oxygen concentration in the atmosphere was reduced by replacing the gas in the atmosphere in the tundish before starting the injection.
  • the distance L to the hole is arranged so as to satisfy the following expression (1), and an inert gas for atmosphere replacement is supplied into the tundish space from one or more supply pipes installed around the molten steel injection hole.
  • a method for starting continuous casting of steel characterized in that a flow rate Q is supplied such that a flow rate Q satisfies the following expression (2) with respect to the total area A of the gas discharge holes and the volume V of the tundish.
  • W Inner length (m) of the long side of the tundish
  • L Shortest distance (m) between the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas
  • Q total blowing flow rate of the inert gas for atmosphere replacement per unit time (Nm 3 / min)
  • A Total area of gas discharge holes (m 2 )
  • V Internal volume of the tundish (m 3 ).
  • the shortest distance from the center of the molten steel injection hole provided on the lid of the tundish to the center of the gas replacement hole of the atmosphere replacement gas is further defined by the range of the above formula (1).
  • the inert gas is blown from at least one or more positions within a range of 2 L / 3 when L is expressed as It is more preferable that the inert gas is blown into the gas discharge hole at an inclination of 10 to 80 °.
  • the molten steel in the ladle is started to be injected into the tundish after the oxygen concentration in the tundish atmosphere satisfies the following expression (3).
  • M Amount of molten steel in a tundish when full (ton)
  • V Tundish inner volume (m 3 )
  • O 2 ) oxygen concentration in tundish atmosphere (vol%)
  • the installation position of the gas discharge hole for the atmosphere replacement gas provided on the lid of the tundish, the total area of the gas discharge hole, and the inertness By properly controlling the gas injection angle, etc., it is possible to effectively prevent the contamination of molten steel due to reoxidation, and to provide an extremely effective method especially for continuous casting of highly clean steel. Can be.
  • FIG. 3 is a schematic diagram of a tundish for explaining an inert gas blowing angle.
  • the inventors of the present invention have prepared various types (a) to (d) of the tundish 1 as shown in FIG. 1 as a process prior to continuous casting.
  • a preferred method for preventing molten steel contamination by re-oxidation by blowing was investigated.
  • 2 and 3 show the specifications (I type) of the tundish used as the premise of this experiment.
  • gas sampling holes were installed, and the oxygen concentration in the tundish atmosphere was measured by a gas oxygen concentration meter using a vibration type suction pump and an electrochemical oxygen sensor.
  • the inventors determined the presence or absence of the gas discharge hole 3 for the atmosphere replacement gas in the tundish 1, its size and installation position, the blowing angle and the blowing flow rate of the replacement inert gas.
  • the replacement time for reducing the oxygen concentration in the atmosphere in the tundish 1 was changed.
  • an argon gas, a nitrogen gas, or the like can be used as the inert gas for replacing the atmosphere in the tundish.
  • a weir for controlling the flow of molten steel for accelerating the floating of inclusions may be installed in the tundish 1, especially when the weir plate 6 is installed downward from the tundish lid 1 t, the tundish 1 Even if the storage amount of the molten steel in the inside increases and the lower end of the weir plate 6 is immersed in the molten steel, the flow of gas in the tundish 1 is not obstructed so that the flow of gas in the tundish 1 is not obstructed. It is desirable to provide a gap in at least a part of the tundish 1 so as to communicate the space inside the tundish 1 before and after the weir plate 6.
  • the inert gas used for atmosphere replacement was simply blown in, and if the gas exhaust hole for properly discharging the gas was not provided, the blown inert gas was used. And the like remain in the tundish 1 and are eventually discharged from the molten steel injection hole 2. As a result, unexpected movement and stagnation of gas occur in the tundish 1, resulting in a decrease in oxygen concentration. On the contrary, it was found that it was impossible to proceed, and that a long time was required for atmosphere replacement.
  • a gas discharge hole 3 for discharging the atmosphere replacement gas is provided at an appropriate position on the tundish lid 1t, that is, the gas discharge hole 3 is placed on the tundish lid 1t at a position satisfying the following expression (1).
  • the gas discharge hole 3 is placed on the tundish lid 1t at a position satisfying the following expression (1).
  • Equation 1 W / 4 ⁇ L ⁇ 2W / 3 (1) here, W is the inner length of the long side of the tundish (m), L is the shortest distance (m) between the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas. Note that the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas are the positions of the centers of gravity of the respective tundish lid openings in the horizontal plane.
  • the gas discharge hole 3 for the atmosphere replacement gas when the gas discharge hole 3 for the atmosphere replacement gas is provided at a position outside the condition of the above formula (1), that is, when L ⁇ W / 4, the inert gas blown for the atmosphere replacement is provided.
  • the gas does not reach the entire area of the tundish 1 and the short-circuit gas flow toward the gas discharge hole 3 increases. Therefore, it is preferable that L ⁇ W / 4.
  • L ⁇ W / 3 when L> 2W / 3, the installation position of the gas discharge hole 3 for discharging the atmosphere replacement gas is on the end side (outside) of the tundish, and there is a possibility that an appropriate opening area cannot be secured. , L ⁇ 2W / 3.
  • the present invention it is effective to control the total flow rate of the inert gas for atmosphere replacement blown into the tundish 1 per unit time. That is, the flow rate of the inert gas blown into the tundish from one or more supply pipes installed around the molten steel injection hole per unit time should satisfy the following equation (2). is necessary.
  • the reason is that when replacing the atmosphere in the tundish before casting, particularly when replacing a ladle during continuous casting, it is necessary to efficiently perform gas replacement within a limited time. That is, in order to perform the atmosphere replacement from the air atmosphere to a low oxygen concentration in a short time, especially within about several minutes, the gas discharge hole area and the tundish inner volume should satisfy the following expression (2).
  • Equation 2 2.0 ⁇ Q 2 / (A ⁇ V) (2) here, Q is the total blowing flow rate (Nm 3 / min) of the inert gas for atmosphere replacement per unit time, A is the total area of the gas exhaust holes (m 2 ) V is the volume in the tundish (m 3 ). Note that N in Nm 3 represents the standard state of the gas.
  • the reason for limiting the total blowing flow rate of the inert gas for atmosphere replacement is that it is necessary to satisfy Q 2 /(A ⁇ V) ⁇ 2.0 in order to realize sufficient atmosphere replacement.
  • Q 2 /(A ⁇ V) ⁇ 6.0 Preferably, it is effective to install one or more inert gas blowing pipes 4 described later in appropriate places.
  • the gas discharge hole 3 for the atmosphere-replacement inert gas satisfies the expression (1), not only the tundish lid 1t but also an overflow gutter opening 5 for emergency use (FIG. 1D) ) May be substituted.
  • L indicates the distance between the molten steel injection hole 2 and the overflow gutter opening 5.
  • the overflow gutter opening 5 is not used as a discharge hole, it is desirable to cure the steel sheet with a heat-resistant sheet or the like so as not to hinder the flow of molten steel in an emergency.
  • the inventors of the present invention have proposed a method of blowing an inert gas into the tundish 1, in particular, one or a plurality of inert gas blowing pipes 4 provided separately from the blowing of the inert gas along the molten steel injection hole 2.
  • the blowing angle ( ⁇ ) was also examined.
  • was also examined.
  • the blowing angle ⁇ of the inert gas is based on a straight line ab in a plane passing vertically through the inert gas blowing point a and the center b of the gas discharging hole 3. This is a downward angle toward the gas discharge hole 3.
  • the inert gas is blown downward, but a part of the gas is inclined by 10 to 80 ° toward the gas discharge hole 3 so that the gas flow in the tundish 1 can be reduced. Propulsion is applied, and atmosphere adjustment (substitution of gas) can be performed more efficiently.
  • the reason why the blowing angle of the inert gas from the blowing pipe 4 is inclined by 10 to 80 ° is that when the blowing angle is smaller than 10 ° ( ⁇ ), the blown gas is Flows along the lid and does not work effectively.
  • the blowing angle is larger than 80 °, the water flows almost directly below, and this is not effective from the viewpoint of the propulsion.
  • the position of the inclined inert gas injection pipe 4 is defined as L, where L is the shortest distance between the center of the molten steel injection hole 2 of the tundish lid 1t and the center of the atmosphere replacement gas gas discharge hole 3. It is desirable to install it within a range of 2 L / 3 or less from the center of the molten steel injection hole 2. If the installation location is larger than 2 L / 3, the gas discharge hole 3 is not provided before the inert gas blown through the inert blow pipe 4 ′ from around the molten steel injection hole 2 is given a propulsive force. And the expected effect cannot be obtained.
  • the opening area of the gas discharge hole 3 for the atmosphere replacement gas provided in the tundish lid 1t is not particularly defined, the opening area of the gas discharge hole 3 is set to ⁇ (H / 4).
  • the opening area of the gas discharge hole 3 is preferably set to ⁇ (H / 4) 2 or less.
  • H is the internal length (m) on the short side of the tundish.
  • the reoxidation amount of the molten steel was affected by the oxygen concentration in the tundish, the weight of the molten steel in the tundish when full, and the volume in the tundish. That is, when the oxygen concentration in the tundish when the molten steel in the ladle is started to be injected into the tundish satisfies the following equation (3), the increase in oxygen in the molten steel due to reoxidation can be greatly reduced, and the oxygen concentration in the molten steel can be reduced. It is possible to increase the amount below 1 mass ppm.
  • Equation 3 0.3 ⁇ M / V ⁇ (O 2 ) (3)
  • M Amount of molten steel in a tundish when full (ton)
  • V Tundish inner volume (m 3 ) (O 2 ): oxygen concentration in tundish atmosphere (vol%)
  • full refers to the case where the amount of molten steel contained in the tundish is maximum during steady casting of the continuous casting machine.
  • the reoxidation amount of the molten steel was affected by the oxygen concentration in the tundish, the weight of the molten steel in the tundish when full, and the volume in the tundish. That is, when the oxygen concentration in the tundish when the molten steel in the ladle is started to be injected into the tundish satisfies the following equation (3), the increase in oxygen in the molten steel due to reoxidation can be greatly reduced, and the oxygen concentration in the molten steel can be reduced. It is possible for the increase to be below 1 mass ppm.
  • the molten steel amount per charge is about 200 tons on a real machine, and it is listed as a representative of high cleanliness steel through each process of converter, ladle refining furnace, RH vacuum degassing furnace, and continuous casting. This is an example of producing bearing steel.
  • the composition of the bearing steel is as follows: a carbon concentration of 0.90% by mass to 1.10% by mass; a silicon concentration of 0.15% by mass to 0.25% by mass; a manganese concentration of 0.45% by mass; 0.020 mass% or less, sulfur concentration 0.0050 mass% or less, aluminum concentration 0.030 mass% or less, chromium concentration 1.4 mass% or more and 1.7 mass% or less, nitrogen concentration 0.0050 mass% or less It is.
  • a ladle, a tundish and a curved continuous caster (no vertical section directly under the mold) through a tundish
  • the cross section perpendicular to the direction was 300 mm thick x 400 mm wide) at a slab drawing speed of about 0.70 m / min.
  • tundishes of various forms T type in FIG. 1 (a), I type in FIGS. 1 (b), (c) and (d) were used, and were first provided at the heating position on the casting floor.
  • the inside of the tank was heated to about 1000 ° C. by a flame obtained by burning coke oven gas with a burner.
  • the burner was extinguished and the inert gas was started to be blown into the tundish through a gas blowing pipe provided separately from the molten steel injection hole while moving the tundish to the casting position.
  • the injection of molten steel in the ladle into the tundish was started through a long nozzle attached to a sliding nozzle on the bottom of the ladle.
  • the index of the total oxygen concentration in the slab when the sum of the total oxygen concentration in the molten steel before the injection of the tundish was set to 1.
  • the sample for total oxygen analysis was collected from the center of the width of the bottom of the slab, which was cut at a position corresponding to about 3 tons from the casting start end, at the center of the width on the top side, and the inert gas was melted.
  • the samples were analyzed according to the infrared absorption method.
  • Table 1 shows the form of the tundish, the total flow rate of the inert gas, and the oxygen concentration in the tundish atmosphere 3 minutes after the start of the blowing of the inert gas for the present invention example and the comparative example.
  • the oxygen concentration in the atmosphere in the tundish at the start of the injection into the tundish is reduced to 2 vol% or less, and almost no reoxidation occurs even after the molten steel is injected. In addition to reaching the level, good results were also obtained regarding the total oxygen concentration in the slab.
  • the oxygen concentration at the start of injecting molten steel into the tundish was as high as 2.9 vol to 6.2 vol%. .
  • the distance between the molten steel injection hole and the inert gas discharge hole is shorter than the condition of the present invention, or the total flow of the inert gas blown is smaller than the tundish volume or gas.
  • the oxygen concentration at the start of molten steel injection into the tundish was 3 vol% or more, which did not reach a level at which reoxidation of molten steel could be suppressed.
  • the total oxygen concentration in the slab was higher than before the injection of the tundish, and good results could not be obtained.
  • Example 2 shows the form of the tundish, the weight of the molten steel when the tundish is full, the total flow rate of the inert gas blown, and the oxygen concentration in the tundish atmosphere at the start of injecting the molten steel into the tundish of the present invention.
  • an index of the total oxygen concentration in the cast slab when the total oxygen concentration in the molten steel before the injection of the tundish was set to 1.
  • the sampling position of the slab sample for the total oxygen concentration and the analysis method are the same as those in the first embodiment.
  • the oxygen concentration in the atmosphere in the tundish at the start of injecting molten steel into the tundish was reduced to 2 vol% or less, and the total oxygen concentration in the slab was good. Results were obtained.
  • the oxygen concentration in the tundish atmosphere at the start of injecting molten steel into the tundish was such that there was no slanting blow. Was able to be reduced more stably than the case of.
  • the oxygen concentration in the tundish atmosphere at the start of injecting the molten steel into the tundish is 0.3 ⁇ M / V (M: weight of the molten steel when the tundish is full (ton), V: internal volume of the tundish (M 3 ))
  • M weight of the molten steel when the tundish is full (ton)
  • V internal volume of the tundish (M 3 )
  • the effect of the present invention is not limited by the composition and concentration of the steel, and the present invention can be applied to steels of any composition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

In order to reduce the oxygen concentration of the atmosphere in a tundish efficiently and in a simple manner before injection of molten steel, provided is a method for starting continuous casting of steel in which continuous casting is started by injecting molten steel into the tundish in a state in which the oxygen concentration of the atmosphere has been reduced by replacing the gas in the atmosphere in the tundish before injection begins, wherein one or more gas discharge holes for replacing the gas in the atmosphere in the tundish are provided in the tundish cover in addition to a hole for injecting molten steel from the ladle, the molten steel injection hole and the gas discharge holes are arranged such that the distance therebetween satisfies a fixed relationship in relation to the long-side length of the tundish, and an inert gas for atmosphere replacement is supplied so as to satisfy a prescribed flow rate with respect to the volume V in the tundish.

Description

鋼の連続鋳造開始方法How to start continuous casting of steel
 本発明は、鋼の連続鋳造開始方法、特に鋳型への注湯開始に先立つタンディッシュ内雰囲気ガスの適正な置換処理を経て、連続鋳造を開始する方法に関する。 (4) The present invention relates to a method for starting continuous casting of steel, and more particularly to a method for starting continuous casting through appropriate replacement of an atmosphere gas in a tundish prior to the start of pouring into a mold.
 近年、鉄鋼材料の品質や特性については、要求が年々に高くなっており、より清浄性の高い鋼を製造するための技術が求められている。とくに、鉄鋼材料中の非金属介在物(以下、「介在物」という)は品質や特性に大きく影響するため、その低減が求められている。鋼中に存在する介在物としては、硫化物や窒化物等もあるが、大半は製鋼プロセスの脱酸過程において生成する酸化物である。 In recent years, the requirements for the quality and characteristics of steel materials have been increasing year by year, and techniques for producing more clean steel are required. In particular, non-metallic inclusions (hereinafter, referred to as “inclusions”) in steel materials greatly affect quality and characteristics, and thus reduction is required. Inclusions present in steel include sulfides and nitrides, but most are oxides generated during the deoxidation process of the steelmaking process.
 そのため、従来、脱酸過程において生成する介在物を除去するため、二次精錬プロセスにおける様々な技術開発がなされてきた。その結果、軸受鋼に代表されるような高い清浄性が求められる材料においても、シングルppm程度の鋼中酸素レベルのものが安定的に製造できるようになってきた。 Therefore, conventionally, various technologies have been developed in the secondary refining process to remove inclusions generated in the deoxidation process. As a result, even for materials requiring high cleanliness, such as bearing steel, those having a single oxygen level of about 1 ppm in steel can be stably manufactured.
 一方で、二次精錬後の溶鋼は、連続鋳造鋳型に分注するためのタンディッシュを通過させるが、溶鋼注入前のタンディッシュ内に大気が存在していると、注入された溶鋼と大気中の酸素と反応して酸化物系の介在物を生成するため、二次精錬時に鋼中介在物を低減させたにも拘わらず、タンディッシュにおいて再び汚染されてしまうという問題があった。 On the other hand, molten steel after secondary refining passes through a tundish for dispensing into a continuous casting mold, but if there is air in the tundish before molten steel injection, the injected molten steel and air The oxides react with oxygen to generate oxide-based inclusions, so that there is a problem that the tundish is again contaminated despite the reduction of inclusions in the steel during the secondary refining.
 このような問題に対して、従来、特許文献1では、タンディッシュ内を不活性ガスでパージし、該タンディッシュ内の酸素濃度が1vol%以下になった時点で、タンディッシュへの溶鋼注入を開始する方法を提案している。 Conventionally, in Patent Document 1, the inside of the tundish is purged with an inert gas, and when the oxygen concentration in the tundish becomes 1 vol% or less, molten steel is injected into the tundish. Suggests how to get started.
特許3642284(特開2002-254148号公報)Patent 3642284 (Japanese Patent Application Laid-Open No. 2002-254148)
 しかしながら、上記従来技術には次のような問題点があった。それは、特許文献1に開示の技術では、タンディッシュ内の酸素濃度を1vol%まで下げる具体的な方法が不明確であり、不活性ガスの流量やその際のタンディッシュの形態によっては、雰囲気中酸素濃度を下げるのに長時間を要し、操業効率が悪いという問題があった。 However, the above prior art has the following problems. According to the technology disclosed in Patent Document 1, it is unclear how to reduce the oxygen concentration in the tundish to 1 vol%, and depending on the flow rate of the inert gas and the form of the tundish at that time, the atmosphere in the atmosphere may be reduced. There is a problem that it takes a long time to lower the oxygen concentration and the operation efficiency is poor.
 本発明は、従来技術が抱えている上記の問題に鑑みて開発したものであって、その目的とするところは、連続鋳造工程における溶鋼注入前のタンディッシュ内雰囲気中の酸素濃度を効率的にかつ簡便に低減させることのできる方法を提案することにある。 The present invention has been developed in view of the above problems of the prior art, and aims to efficiently reduce the oxygen concentration in the atmosphere in a tundish before injecting molten steel in a continuous casting process. It is another object of the present invention to propose a method that can easily reduce the amount.
 上記課題を解決するために開発した本発明に係る方法は、
 溶鋼を保持する取鍋と溶鋼の連続鋳造鋳型との間に介在させるタンディッシュ内に溶鋼を注入するに当たり、注入開始前の該タンディッシュ内雰囲気中ガスの置換を通じて雰囲気中酸素濃度を低減させた状態で溶鋼の注入を行って連続鋳造を開始するのに際し、
 該タンディッシュの蓋に、取鍋からの溶鋼注入用孔の他に、該タンディッシュ内雰囲気ガス置換のための、1以上のガス排出用孔を設け、前記溶鋼注入用孔と前記ガス排出用孔との距離Lを下記(1)式を満足するように配置するとともに、前記溶鋼注入用孔周りに設置した1つ以上の供給管から前記タンディッシュ内空間に、雰囲気置換用不活性ガスを前記ガス排出用孔の総面積Aおよびタンディッシュ内体積Vに対して流量Qが下記(2)式を満足するように供給することを特徴とする、鋼の連続鋳造開始方法である。
                記
          W/4≦L≦2W/3    ・・・(1)
          2.0≦Q/(A・V)   ・・・(2)
 ただし、
  W:タンディッシュ長辺の内法長さ(m)、
  L:溶鋼注入用孔中心と雰囲気置換ガスのガス排出用孔中心との最短距離(m)、
  Q:雰囲気置換用不活性ガスの単位時間あたりの合計吹き込み流量(Nm/min)、
  A:ガス排出用孔の総面積(m
  V:タンディッシュ内体積(m)。
The method according to the present invention developed in order to solve the above-mentioned problems,
Injecting the molten steel into the tundish interposed between the ladle holding the molten steel and the continuous casting mold of the molten steel, the oxygen concentration in the atmosphere was reduced by replacing the gas in the atmosphere in the tundish before starting the injection. When injecting molten steel in the state and starting continuous casting,
In the lid of the tundish, in addition to the hole for injecting molten steel from the ladle, one or more gas exhaust holes for replacing atmospheric gas in the tundish are provided, and the hole for injecting molten steel and the gas exhaust hole are provided. The distance L to the hole is arranged so as to satisfy the following expression (1), and an inert gas for atmosphere replacement is supplied into the tundish space from one or more supply pipes installed around the molten steel injection hole. A method for starting continuous casting of steel, characterized in that a flow rate Q is supplied such that a flow rate Q satisfies the following expression (2) with respect to the total area A of the gas discharge holes and the volume V of the tundish.
W / 4 ≦ L ≦ 2W / 3 (1)
2.0 ≦ Q 2 / (A · V) (2)
However,
W: Inner length (m) of the long side of the tundish,
L: Shortest distance (m) between the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas,
Q: total blowing flow rate of the inert gas for atmosphere replacement per unit time (Nm 3 / min),
A: Total area of gas discharge holes (m 2 )
V: Internal volume of the tundish (m 3 ).
 なお、本発明に係る上記の方法については、さらに、タンディッシュの蓋に設けた前記溶鋼注入用孔の中心から雰囲気置換ガスのガス排出用孔中心との最短距離を上記(1)式の範囲を満たすLで表すとき、2L/3以内の範囲で、該タンディッシュの蓋の溶鋼注入用孔に沿うその周りから吹き込む不活性ガスとは別に、少なくとも1箇所以上の位置から不活性ガスの吹き込みを行うと共に、該不活性ガス吹き込み角度を前記ガス排出用孔へ向かって10~80°の傾きをもって吹き込むこと、がより好ましい実施の形態となり得る。 In the above method according to the present invention, the shortest distance from the center of the molten steel injection hole provided on the lid of the tundish to the center of the gas replacement hole of the atmosphere replacement gas is further defined by the range of the above formula (1). In addition to the inert gas blown from around the molten steel injection hole of the lid of the tundish, the inert gas is blown from at least one or more positions within a range of 2 L / 3 when L is expressed as It is more preferable that the inert gas is blown into the gas discharge hole at an inclination of 10 to 80 °.
 さらに、本発明に係る上記の方法については、タンディッシュ雰囲気中酸素濃度が、下記(3)式を満たした時点以降で、取鍋内溶鋼をタンディッシュへ注入開始することがより好ましい実施の形態となり得る。
                記
          0.3×M/V≧(O)  ・・・(3)
  M:タンディッシュ内満杯時溶鋼量(ton)
  V:タンディッシュ内体積(m
  (O):タンディッシュ雰囲気中酸素濃度(vol%)
Further, in the above method according to the present invention, it is more preferable that the molten steel in the ladle is started to be injected into the tundish after the oxygen concentration in the tundish atmosphere satisfies the following expression (3). Can be
0.3 × M / V ≧ (O 2 ) (3)
M: Amount of molten steel in a tundish when full (ton)
V: Tundish inner volume (m 3 )
(O 2 ): oxygen concentration in tundish atmosphere (vol%)
 前記のような構成を有する本発明に係る鋼の連続鋳造開始方法によれば、タンディッシュの蓋に設けた雰囲気置換ガスのガス排出用孔の設置位置やガス排出用孔の総面積、不活性ガスの吹き込み角度等を適切に制御するようにしたことで、再酸化による溶鋼の汚染を効果的に防ぐことができ、とくに高清浄鋼の連続鋳造などに対して極めて有効な方法を提供することができる。 According to the method of starting continuous casting of steel according to the present invention having the above-described configuration, the installation position of the gas discharge hole for the atmosphere replacement gas provided on the lid of the tundish, the total area of the gas discharge hole, and the inertness By properly controlling the gas injection angle, etc., it is possible to effectively prevent the contamination of molten steel due to reoxidation, and to provide an extremely effective method especially for continuous casting of highly clean steel. Can be.
(a),(b),(c),(d)はタンディッシュ形態例を示す略線図である。(A), (b), (c), (d) is a schematic diagram showing a tundish embodiment. タンディッシュの部分横断面図である。It is a partial cross section of a tundish. 不活性ガス吹込み角度を説明するためのタンディッシュの略線図である。FIG. 3 is a schematic diagram of a tundish for explaining an inert gas blowing angle.
 発明者らは、図1に示すような種々の形態(a)~(d)のタンディッシュ1について、連続鋳造に先立つ処理として、該タンディッシュ1内に雰囲気置換用ガスとして予め不活性ガスの吹き込みを行うことによって、再酸化による溶鋼の汚染を防ぐための好ましい方法について調査した。図2、図3は、この実験の前提として用いたタンディッシュの仕様(I型)を示すものである。これら種々のタンディッシュにおいて、ガス用のサンプリング孔を設置し、振動式吸引ポンプと電気化学式酸素センサーを用いたガス中酸素濃度計によりタンディッシュ雰囲気中酸素濃度の計測を行った。なお、この検討の段階において、発明者らは、タンディッシュ1内の雰囲気置換ガスのためのガス排出用孔3の有無、その大きさや設置位置、置換用不活性ガスの吹き込み角度や吹き込み流量によって、タンディッシュ1内雰囲気中の酸素濃度を低濃度にするための置換時間が変化することを確認した。タンディッシュ内雰囲気置換のための不活性ガスとしては、アルゴンガスや窒素ガス等を用いることができる。
 なお、タンディッシュ1内に介在物浮上促進のための溶鋼流動制御用の堰を設置してもよいが、特にタンディッシュ蓋1tから下方に向かって堰板6を設置する場合は、タンディッシュ1内の溶鋼の貯留量が増して堰板6の下端が溶鋼に浸漬した状態になっても、タンディッシュ1内のガスの流れを阻害しないように、該堰板6とタンディッシュ蓋1tの間には、該堰板6の前後のタンディッシュ1内空間を連通するように少なくとも一部に間隙を設けることが望ましい。
The inventors of the present invention have prepared various types (a) to (d) of the tundish 1 as shown in FIG. 1 as a process prior to continuous casting. A preferred method for preventing molten steel contamination by re-oxidation by blowing was investigated. 2 and 3 show the specifications (I type) of the tundish used as the premise of this experiment. In these various tundishes, gas sampling holes were installed, and the oxygen concentration in the tundish atmosphere was measured by a gas oxygen concentration meter using a vibration type suction pump and an electrochemical oxygen sensor. At the stage of this examination, the inventors determined the presence or absence of the gas discharge hole 3 for the atmosphere replacement gas in the tundish 1, its size and installation position, the blowing angle and the blowing flow rate of the replacement inert gas. It was confirmed that the replacement time for reducing the oxygen concentration in the atmosphere in the tundish 1 was changed. As the inert gas for replacing the atmosphere in the tundish, an argon gas, a nitrogen gas, or the like can be used.
In addition, although a weir for controlling the flow of molten steel for accelerating the floating of inclusions may be installed in the tundish 1, especially when the weir plate 6 is installed downward from the tundish lid 1 t, the tundish 1 Even if the storage amount of the molten steel in the inside increases and the lower end of the weir plate 6 is immersed in the molten steel, the flow of gas in the tundish 1 is not obstructed so that the flow of gas in the tundish 1 is not obstructed. It is desirable to provide a gap in at least a part of the tundish 1 so as to communicate the space inside the tundish 1 before and after the weir plate 6.
 このときの発明者が行った実験によると、雰囲気置換用に用いる不活性ガスを単に吹き込むだけで、もしそのガスを適正に排出するためのガス排出用孔を設けなければ、吹き込んだ不活性ガス等がタンディッシュ1内に滞留したままとなり、やがて溶鋼注入用孔2から排出されることになり、その結果として、タンディッシュ1内ではガスの予期しない動きや滞留が起こり、酸素濃度の低下が却って進まなくなり、雰囲気置換に長い時間を要するという結果を招くことが分かった。 According to an experiment conducted by the inventor at this time, the inert gas used for atmosphere replacement was simply blown in, and if the gas exhaust hole for properly discharging the gas was not provided, the blown inert gas was used. And the like remain in the tundish 1 and are eventually discharged from the molten steel injection hole 2. As a result, unexpected movement and stagnation of gas occur in the tundish 1, resulting in a decrease in oxygen concentration. On the contrary, it was found that it was impossible to proceed, and that a long time was required for atmosphere replacement.
 これに対し、タンディッシュ蓋1tの適所に雰囲気置換ガス排出のためのガス排出用孔3を設けること、即ちタンディッシュの蓋1tに下記(1)式を満足する条件の位置に、そのガス排出用孔3を1以上設けると、雰囲気置換のための不活性ガスの吹き込み位置から前記ガス排出用孔3までのガスの流れを停滞させることなく一定方向へ向って安定した流れが形成されるようになり、タンディッシュ内雰囲気を短時間のうちに低酸素濃度へと置換させることができることが分かった。 On the other hand, a gas discharge hole 3 for discharging the atmosphere replacement gas is provided at an appropriate position on the tundish lid 1t, that is, the gas discharge hole 3 is placed on the tundish lid 1t at a position satisfying the following expression (1). When one or more holes 3 are provided, a stable flow is formed in a certain direction without stopping the flow of gas from the position where the inert gas is blown for replacing the atmosphere to the gas discharge hole 3. It was found that the atmosphere in the tundish could be replaced with a low oxygen concentration in a short time.
 (数1)
          W/4≦L≦2W/3  ・・・(1)
 ここで、
  Wは、タンディッシュ長辺の内法長さ(m)、
  Lは、溶鋼注入用孔中心と雰囲気置換ガスのガス排出用孔中心との最短距離(m)。
  なお、溶鋼注入用孔中心および雰囲気置換ガスのガス排出用孔中心とは、それぞれのタンディッシュ蓋開口部の水平面内形状における重心位置とする。
(Equation 1)
W / 4 ≦ L ≦ 2W / 3 (1)
here,
W is the inner length of the long side of the tundish (m),
L is the shortest distance (m) between the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas.
Note that the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas are the positions of the centers of gravity of the respective tundish lid openings in the horizontal plane.
 本発明において、上記(1)式の条件を外れる位置に雰囲気置換ガスのためのガス排出用孔3を設けた場合、即ち、L<W/4のときは、雰囲気置換用に吹き込んだ不活性ガスがタンディッシュ1の全域にまで届かず、前記ガス排出用孔3に向かう短絡的なガスの流れが多くなる。そのため、L≧W/4であることが好ましい。一方、L>2W/3のときは、雰囲気置換ガスを排出するためのガス排出用孔3の設置位置がタンディッシュ端部側(外側)になり、適切な開口面積を確保できないおそれがあるため、L≦2W/3であることが好ましい。 In the present invention, when the gas discharge hole 3 for the atmosphere replacement gas is provided at a position outside the condition of the above formula (1), that is, when L <W / 4, the inert gas blown for the atmosphere replacement is provided. The gas does not reach the entire area of the tundish 1 and the short-circuit gas flow toward the gas discharge hole 3 increases. Therefore, it is preferable that L ≧ W / 4. On the other hand, when L> 2W / 3, the installation position of the gas discharge hole 3 for discharging the atmosphere replacement gas is on the end side (outside) of the tundish, and there is a possibility that an appropriate opening area cannot be secured. , L ≦ 2W / 3.
 また、本発明においては、タンディッシュ1内に吹き込む雰囲気置換用の不活性ガスの単位時間あたりの合計吹き込み流量についても制御することが有効である。即ち、溶鋼注入用孔周りに設置した1つ以上の供給管からタンディッシュ内へ供給される不活性ガスの単位時間あたりの吹き込み流量については、下記(2)式の条件を満たすようにすることが必要である。その理由は、鋳造前におけるタンディッシュ内の雰囲気置換、特に連々鋳時の取鍋交換のときには、時間が限られた中で効率よくガス置換を行う必要がある。即ち、大気雰囲気から低酸素濃度になるまでの雰囲気置換を、短時間とくに数分以内程度で行うためには、ガス排出用孔面積およびタンディッシュ内体積について、下記(2)式を満足するような単位時間あたりの不活性ガスの流量を、タンディッシュ内に供給する必要があるためである。もし、かかる(2)式の条件を外れて、Q/(A・V)<2.0になると、ガス排出用孔総面積およびタンディッシュ内体積に対して、雰囲気置換に用いる不活性ガスの流量が不足すると共に、ガス排出用孔における不活性ガスの流出速度が確保できなくなるため、大気の流入を招いてその影響が大きくなり、雰囲気置換が効率的に進まなくなる。 Further, in the present invention, it is effective to control the total flow rate of the inert gas for atmosphere replacement blown into the tundish 1 per unit time. That is, the flow rate of the inert gas blown into the tundish from one or more supply pipes installed around the molten steel injection hole per unit time should satisfy the following equation (2). is necessary. The reason is that when replacing the atmosphere in the tundish before casting, particularly when replacing a ladle during continuous casting, it is necessary to efficiently perform gas replacement within a limited time. That is, in order to perform the atmosphere replacement from the air atmosphere to a low oxygen concentration in a short time, especially within about several minutes, the gas discharge hole area and the tundish inner volume should satisfy the following expression (2). This is because it is necessary to supply the flow rate of the inert gas per unit time into the tundish. If the condition of the formula (2) is not satisfied and Q 2 /(A·V)<2.0, the inert gas used for the atmosphere replacement is replaced with respect to the total area of the gas discharge hole and the volume of the tundish. And the flow rate of the inert gas in the gas discharge hole cannot be secured, so that the influence of the inflow of the atmosphere is increased and the atmosphere replacement does not proceed efficiently.
 (数2)
          2.0≦Q/(A・V)     ・・・(2)
 ここで、
  Qは、雰囲気置換用不活性ガスの単位時間あたりの合計吹き込み流量(Nm/min)、
  Aは、ガス排出用孔の総面積(m
  Vは、タンディッシュ内体積(m)。
  なお、NmのNは、ガスの標準状態を表す。
(Equation 2)
2.0 ≦ Q 2 / (A · V) (2)
here,
Q is the total blowing flow rate (Nm 3 / min) of the inert gas for atmosphere replacement per unit time,
A is the total area of the gas exhaust holes (m 2 )
V is the volume in the tundish (m 3 ).
Note that N in Nm 3 represents the standard state of the gas.
 ここで、雰囲気置換用不活性ガスの合計吹き込み流量を限定する理由は、十分な雰囲気置換を実現するためには、Q/(A・V)≧2.0を満足することが必要であり、好ましくは、Q/(A・V)≧6.0であり、そのためには、後述する1つ以上の不活性ガス吹き込みパイプ4の適所設置が有効となる。 Here, the reason for limiting the total blowing flow rate of the inert gas for atmosphere replacement is that it is necessary to satisfy Q 2 /(A·V)≧2.0 in order to realize sufficient atmosphere replacement. Preferably, Q 2 /(A·V)≧6.0. For that purpose, it is effective to install one or more inert gas blowing pipes 4 described later in appropriate places.
 なお、雰囲気置換用不活性ガスのガス排出用孔3は、前記(1)式を満たしていれば、タンディッシュ蓋1tだけでなく、非常時に利用するオーバーフロー樋開口部5(図1(d))などで代用してもよい。この場合、前記Lは、溶鋼注入用孔2とオーバーフロー樋開口部5の距離を示す。また、実際のタンディッシュにおいては、蓋と蓋あるいは蓋とタンディッシュ鉄皮等との間に隙間が存在することがあるが、そのために大気流入が生じたり、吹き込んだ不活性ガスがその隙間から流出して、適正なガスフロー形成ができなかったりするため、本発明の効果を十分に得られない場合がある。そのため、耐熱シートや不定形耐火物による養生を鋳造前に実施しておくことが望ましい。前記オーバーフロー樋開口部5を排出用孔として用いない場合は、耐熱シート等で非常時に溶鋼流れを阻害しない程度に養生しておくことが望ましい。 If the gas discharge hole 3 for the atmosphere-replacement inert gas satisfies the expression (1), not only the tundish lid 1t but also an overflow gutter opening 5 for emergency use (FIG. 1D) ) May be substituted. In this case, L indicates the distance between the molten steel injection hole 2 and the overflow gutter opening 5. Also, in an actual tundish, there may be a gap between the lid and the lid or between the lid and the tundish skin, which may cause inflow of air or blown inert gas from the gap. Since the gas flows out and an appropriate gas flow cannot be formed, the effect of the present invention may not be sufficiently obtained. For this reason, it is desirable to carry out curing with a heat-resistant sheet or an amorphous refractory before casting. When the overflow gutter opening 5 is not used as a discharge hole, it is desirable to cure the steel sheet with a heat-resistant sheet or the like so as not to hinder the flow of molten steel in an emergency.
 次に、発明者らは、タンディッシュ1内部への不活性ガスの吹き込み方、とくに溶鋼注入用孔2に沿う不活性ガスの吹き込みとは別に設けた1つまたは複数の不活性ガス吹き込みパイプ4の吹き込み角度(θ)についても検討した。その結果、例えば、図2に示す例において、少なくとも一箇所から、雰囲気ガス(不活性ガス)のガス排出用孔3に向かって所定の傾斜を与えることにより、雰囲気中の酸素濃度をより効率的に低減させ得ることができた。ここで、不活性ガスの吹き込み角度θは、図3に示すように、不活性ガス吹き込み点aとガス排出用孔3の中心bを鉛直方向に通る平面において、直線a-bを基準としたガス排出用孔3へ向かう下向きの角度である。基本的には、不活性ガスの吹き込みは、下方に向けて吹き込むが、その一部についてはガス排出用孔3に向って10~80°傾斜させることで、タンディッシュ1内におけるガスの流れに推進力が付与され、より効率的に雰囲気調整(ガスの置換)を行うことができるようになる。 Next, the inventors of the present invention have proposed a method of blowing an inert gas into the tundish 1, in particular, one or a plurality of inert gas blowing pipes 4 provided separately from the blowing of the inert gas along the molten steel injection hole 2. The blowing angle (θ) was also examined. As a result, for example, in the example shown in FIG. 2, by giving a predetermined inclination from at least one location toward the gas discharge hole 3 of the atmosphere gas (inert gas), the oxygen concentration in the atmosphere can be more efficiently reduced. Could be reduced. Here, as shown in FIG. 3, the blowing angle θ of the inert gas is based on a straight line ab in a plane passing vertically through the inert gas blowing point a and the center b of the gas discharging hole 3. This is a downward angle toward the gas discharge hole 3. Basically, the inert gas is blown downward, but a part of the gas is inclined by 10 to 80 ° toward the gas discharge hole 3 so that the gas flow in the tundish 1 can be reduced. Propulsion is applied, and atmosphere adjustment (substitution of gas) can be performed more efficiently.
 このときの、前記吹き込みパイプ4からの不活性ガスの吹き込み角度を10~80°傾斜させるようにした理由は、吹き込み角度が10°より小さい傾き(θ)では、吹き込んだガスがタンディッシュ1の蓋沿いを流れ、有効に作用しない。一方、その吹き込み角度が、80°より大きいと、ほぼ真下に向かって流れるため、こちらも推進力付与の観点からは有効でない。また、吹き込み位置によっては却って溶鋼注入用孔2の周りから吹き込んだ不活性ガスの流れを阻害するように作用するため、80°より小さい傾斜角に設定することが好ましい。 At this time, the reason why the blowing angle of the inert gas from the blowing pipe 4 is inclined by 10 to 80 ° is that when the blowing angle is smaller than 10 ° (θ), the blown gas is Flows along the lid and does not work effectively. On the other hand, if the blowing angle is larger than 80 °, the water flows almost directly below, and this is not effective from the viewpoint of the propulsion. Further, depending on the blowing position, it is preferable to set the inclination angle to be smaller than 80 ° in order to act to obstruct the flow of the inert gas blown from around the molten steel injection hole 2.
 また、傾斜を付与した不活性ガス吹き込みパイプ4の位置は、タンディッシュ蓋1tの溶鋼注入用孔2の中心と雰囲気置換ガスのガス排出用孔3の中心との最短距離をLとするとき、溶鋼注入用孔2の中心から2L/3以内の範囲に設置することが望ましい。もし、その設置箇所が、2L/3より大きくなると、溶鋼注入用孔2のまわりからの不活性吹き込みパイプ4’を介して吹き込んだ不活性ガスに推進力を付与する前にガス排出用孔3から排出されてしまうため、期待する効果が得られない。 The position of the inclined inert gas injection pipe 4 is defined as L, where L is the shortest distance between the center of the molten steel injection hole 2 of the tundish lid 1t and the center of the atmosphere replacement gas gas discharge hole 3. It is desirable to install it within a range of 2 L / 3 or less from the center of the molten steel injection hole 2. If the installation location is larger than 2 L / 3, the gas discharge hole 3 is not provided before the inert gas blown through the inert blow pipe 4 ′ from around the molten steel injection hole 2 is given a propulsive force. And the expected effect cannot be obtained.
 したがって、タンディッシュ蓋1tの溶鋼注入用孔2の中心から2L/3以内の範囲において、該溶鋼注入用孔2のまわりから吹き込む不活性ガスとは別に、少なくとも1箇所以上から不活性ガス吹き込みパイプ4を通じて不活性ガスの吹き込みを行う。また、不活性ガス吹き込みの水平成分については、直線abに対して、左右に20°以内であれば、本発明の効果を得ることができる。 Therefore, in a range of 2 L / 3 or less from the center of the molten steel injection hole 2 of the tundish lid 1t, apart from the inert gas injected from around the molten steel injection hole 2, at least one or more inert gas injection pipes are provided. Inert gas is blown through 4. In addition, the effect of the present invention can be obtained if the horizontal component of the inert gas injection is within 20 ° left and right with respect to the straight line ab.
 なお、前述の説明において、タンディッシュ蓋1tに設けた雰囲気置換ガスのガス排出用孔3の開口面積については特には定めないが、前記ガス排出用孔3の開口面積をπ(H/4)よりも大きくした場合、大気流入の影響が大きくなる。そのため、本発明をより効率的に実施するためには、該ガス排出用孔3の開口面積をπ(H/4)以下にするのがよい。ここで、Hはタンディッシュ短辺における内法長さ(m)である。このとき、タンディッシュ1に設けられた非常用のオーバーフロー樋を、前記ガス排出用孔3の1つとして用いる場合には、その開口面積がπ(H/4)以下であれば同様の効果を得ることが可能である。 In the above description, although the opening area of the gas discharge hole 3 for the atmosphere replacement gas provided in the tundish lid 1t is not particularly defined, the opening area of the gas discharge hole 3 is set to π (H / 4). When it is larger than 2 , the influence of the air inflow becomes large. Therefore, in order to carry out the present invention more efficiently, the opening area of the gas discharge hole 3 is preferably set to π (H / 4) 2 or less. Here, H is the internal length (m) on the short side of the tundish. At this time, when the emergency overflow gutter provided in the tundish 1 is used as one of the gas discharge holes 3, the same effect can be obtained if the opening area is π (H / 4) 2 or less. It is possible to obtain
 さらに、種々の実験・検討の結果、溶鋼の再酸化量は、タンディッシュ中酸素濃度、満杯時のタンディッシュ中溶鋼重量、およびタンディッシュ内体積に影響を受けることを見出した。すなわち、タンディッシュへ取鍋内溶鋼を注入開始する際のタンディッシュ中酸素濃度が、下記(3)式を満足するとき、再酸化による溶鋼中酸素の増加を大きく低減でき、溶鋼中の酸素濃度増加量を1mass ppmより低位にすることが可能である。一方で、(3)式を満足しない場合、タンディッシュ雰囲気中酸素濃度の溶鋼への影響が大きくなり、再酸化による介在物が増加するおそれがある。
 したがって、タンディッシュ雰囲気中酸素濃度が(3)式を満足した時点で、取鍋からタンディッシュへの溶鋼注入を開始するのが良い。
Furthermore, as a result of various experiments and studies, it was found that the reoxidation amount of the molten steel was affected by the oxygen concentration in the tundish, the weight of the molten steel in the tundish when full, and the volume in the tundish. That is, when the oxygen concentration in the tundish when the molten steel in the ladle is started to be injected into the tundish satisfies the following equation (3), the increase in oxygen in the molten steel due to reoxidation can be greatly reduced, and the oxygen concentration in the molten steel can be reduced. It is possible to increase the amount below 1 mass ppm. On the other hand, when the expression (3) is not satisfied, the influence of the oxygen concentration in the tundish atmosphere on the molten steel increases, and there is a possibility that inclusions due to reoxidation increase.
Therefore, when the oxygen concentration in the tundish atmosphere satisfies the expression (3), it is preferable to start injecting molten steel from the ladle into the tundish.
 (数3)
          0.3×M/V≧(O)  ・・・(3)
  M:タンディッシュ内満杯時溶鋼量(ton)
  V:タンディッシュ内体積(m
  (O):タンディッシュ雰囲気中酸素濃度(vol%)
  ここで、「満杯」とは当該連続鋳造機の定常鋳込み中に、タンディッシュ内に収容している溶鋼量が最大の場合をいう。
(Equation 3)
0.3 × M / V ≧ (O 2 ) (3)
M: Amount of molten steel in a tundish when full (ton)
V: Tundish inner volume (m 3 )
(O 2 ): oxygen concentration in tundish atmosphere (vol%)
Here, “full” refers to the case where the amount of molten steel contained in the tundish is maximum during steady casting of the continuous casting machine.
 さらに、種々の実験・検討の結果、溶鋼の再酸化量は、タンディッシュ中酸素濃度、満杯時のタンディッシュ中溶鋼重量、およびタンディッシュ内体積に影響を受けることを見出した。すなわち、タンディッシュへ取鍋内溶鋼を注入開始する際のタンディッシュ中酸素濃度が、下記(3)式を満足するとき、再酸化による溶鋼中酸素の増加を大きく低減でき、溶鋼中の酸素濃度増加量を1massppmより低位にすることが可能である。一方で、(3)式を満足しない場合、タンディッシュ雰囲気中酸素濃度の溶鋼への影響が大きくなり、再酸化による介在物が増加するおそれがある。
 したがって、タンディッシュ雰囲気中酸素濃度が(3)式を満足した時点で、取鍋からタンディッシュへの溶鋼注入を開始するのが良い。
Furthermore, as a result of various experiments and studies, it was found that the reoxidation amount of the molten steel was affected by the oxygen concentration in the tundish, the weight of the molten steel in the tundish when full, and the volume in the tundish. That is, when the oxygen concentration in the tundish when the molten steel in the ladle is started to be injected into the tundish satisfies the following equation (3), the increase in oxygen in the molten steel due to reoxidation can be greatly reduced, and the oxygen concentration in the molten steel can be reduced. It is possible for the increase to be below 1 mass ppm. On the other hand, when the expression (3) is not satisfied, the influence of the oxygen concentration in the tundish atmosphere on the molten steel increases, and there is a possibility that inclusions due to reoxidation increase.
Therefore, when the oxygen concentration in the tundish atmosphere satisfies the expression (3), it is preferable to start injecting molten steel from the ladle into the tundish.
 (数4)
          0.3×M/V≧(O)  ・・・(3)
  M:タンディッシュ内満杯時溶鋼量(ton)
  V:タンディッシュ内体積(m
  (O):タンディッシュ雰囲気中酸素濃度(vol%)
(Equation 4)
0.3 × M / V ≧ (O 2 ) (3)
M: Amount of molten steel in a tundish when full (ton)
V: Tundish inner volume (m 3 )
(O 2 ): oxygen concentration in tundish atmosphere (vol%)
 以下に、本発明の実施例について比較例と対比して説明する。この実施例は、1チャージの溶鋼量が約200トン規模の実機にて、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造の各工程を経て高清浄度鋼の代表として挙げられる軸受け鋼を製造した例である。かかる軸受け鋼の成分組成は、炭素濃度0.90質量%以上1.10質量%以下、けい素濃度0.15質量%以上0.25質量%以下、マンガン濃度0.45質量%以下、リン濃度0.020質量%以下、イオウ濃度0.0050質量%以下、アルミニウム濃度0.030質量%以下、クロム濃度1.4質量%以上1.7質量%以下、窒素濃度0.0050質量%以下のものである。それぞれの方法では、取鍋精錬炉での加熱撹拌処理、RH真空脱ガス処理を経て、取鍋からタンディッシュを経て湾曲型連続鋳造機(鋳型直下垂直部無し)によりブルーム鋳片(鋳片引抜き方向に垂直な断面寸法は厚み300mm×幅400mm)を、約0.70m/minの鋳片引抜き速度で鋳造した。このとき、種々の形態(図1(a)のT型、図1(b),(c),(d)のI型)のタンディッシュを用い、まず、鋳造床にある加熱位置に設けたバーナーでコークス炉ガスを燃焼させた火炎で、槽内を約1000℃に加熱した。次に、前記バーナーを消火し、タンディッシュを鋳込み位置へ移動しつつ、不活性ガスを溶鋼注入用孔からのものとは別に設けたガス吹き込みパイプを通じてタンディッシュ内への吹き込みを開始した。その後、取鍋底面のスライディングノズルに取り付けたロングノズルを通じて、取鍋内の溶鋼のタンディッシュ内への注入を開始した。また、併せて、タンディッシュ注入前の溶鋼中トータル酸素濃度すなわち溶存酸素濃度と介在物相当の酸素濃度の和を1としたときの、鋳片中トータル酸素濃度の指数を示した。なお、トータル酸素分析用のサンプルは、鋳込み開始端から約3トンに当たる位置で切断された鋳片最ボトム部のトップ側断面における幅中央の厚み1/4位置から採取し、不活性ガス融解-赤外線吸収法に従う分析に供した。 実 施 Hereinafter, examples of the present invention will be described in comparison with comparative examples. In this example, the molten steel amount per charge is about 200 tons on a real machine, and it is listed as a representative of high cleanliness steel through each process of converter, ladle refining furnace, RH vacuum degassing furnace, and continuous casting. This is an example of producing bearing steel. The composition of the bearing steel is as follows: a carbon concentration of 0.90% by mass to 1.10% by mass; a silicon concentration of 0.15% by mass to 0.25% by mass; a manganese concentration of 0.45% by mass; 0.020 mass% or less, sulfur concentration 0.0050 mass% or less, aluminum concentration 0.030 mass% or less, chromium concentration 1.4 mass% or more and 1.7 mass% or less, nitrogen concentration 0.0050 mass% or less It is. In each method, after heating and stirring in a ladle refining furnace and RH vacuum degassing, a ladle, a tundish and a curved continuous caster (no vertical section directly under the mold) through a tundish The cross section perpendicular to the direction was 300 mm thick x 400 mm wide) at a slab drawing speed of about 0.70 m / min. At this time, tundishes of various forms (T type in FIG. 1 (a), I type in FIGS. 1 (b), (c) and (d)) were used, and were first provided at the heating position on the casting floor. The inside of the tank was heated to about 1000 ° C. by a flame obtained by burning coke oven gas with a burner. Next, the burner was extinguished and the inert gas was started to be blown into the tundish through a gas blowing pipe provided separately from the molten steel injection hole while moving the tundish to the casting position. Thereafter, the injection of molten steel in the ladle into the tundish was started through a long nozzle attached to a sliding nozzle on the bottom of the ladle. In addition, the index of the total oxygen concentration in the slab when the sum of the total oxygen concentration in the molten steel before the injection of the tundish, that is, the sum of the dissolved oxygen concentration and the oxygen concentration corresponding to inclusions, was set to 1. The sample for total oxygen analysis was collected from the center of the width of the bottom of the slab, which was cut at a position corresponding to about 3 tons from the casting start end, at the center of the width on the top side, and the inert gas was melted. The samples were analyzed according to the infrared absorption method.
 表1に、本発明例及び比較例についての、タンディッシュの形態、不活性ガス総流量、不活性ガス吹き込み開始3分後のタンディッシュ雰囲気中酸素濃度を示す。
Table 1 shows the form of the tundish, the total flow rate of the inert gas, and the oxygen concentration in the tundish atmosphere 3 minutes after the start of the blowing of the inert gas for the present invention example and the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、本発明例についてはいずれも、タンディッシュへの注入開始時のタンディッシュ内雰囲気中の酸素濃度は2vol%以下に低減しており、溶鋼注入後もほぼ再酸化が起きないレベルに到達していると共に、鋳片におけるトータル酸素濃度についても良好な結果であった。一方、雰囲気置換ガスのガス排出用孔を未設置のタンディッシュを用いた試験を行ったところ、タンディッシュへの溶鋼注入開始時の酸素濃度は2.9vol~6.2vol%と高位であった。また、たとえガス排出用孔を用いた場合でも、溶鋼注入用孔と不活性ガスのガス排出用孔の距離が本発明条件よりも短かったり、不活性ガスの吹き込み合計流量がタンディッシュ容積やガス排出用孔面積に対して不十分であった場合においては、タンディッシュへの溶鋼注入開始時の酸素濃度はいずれも3vol%以上と、溶鋼の再酸化を抑制できるレベルまでは達しなかった。結果として、鋳片におけるトータル酸素濃度は、タンディッシュ注入前よりも増加する結果であり、良好な結果を得ることは出来なかった。 As shown in Table 1, in each of the examples of the present invention, the oxygen concentration in the atmosphere in the tundish at the start of the injection into the tundish is reduced to 2 vol% or less, and almost no reoxidation occurs even after the molten steel is injected. In addition to reaching the level, good results were also obtained regarding the total oxygen concentration in the slab. On the other hand, when a test using a tundish having no gas exhaust hole for the atmosphere replacement gas was performed, the oxygen concentration at the start of injecting molten steel into the tundish was as high as 2.9 vol to 6.2 vol%. . Further, even when the gas discharge hole is used, the distance between the molten steel injection hole and the inert gas discharge hole is shorter than the condition of the present invention, or the total flow of the inert gas blown is smaller than the tundish volume or gas. In the case where the discharge hole area was insufficient, the oxygen concentration at the start of molten steel injection into the tundish was 3 vol% or more, which did not reach a level at which reoxidation of molten steel could be suppressed. As a result, the total oxygen concentration in the slab was higher than before the injection of the tundish, and good results could not be obtained.
 実施例1と同様に、1チャージの溶鋼量が約200トンの規模の実機にて、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造の各工程で実施例1と同組成の軸受け鋼を製造した。このとき、LとWで規定される種々の形態のタンディッシュを用いて、タンディッシュ内へ溶鋼の注入を開始した。
 表2に、本発明例の、タンディッシュ形態、タンディッシュ満杯時の溶鋼重量、不活性ガスの吹き込み合計流量、タンディッシュへの溶鋼注入開始時のタンディッシュ雰囲気中酸素濃度を示した。また、併せて、タンディッシュ注入前の溶鋼中トータル酸素濃度すなわち溶存酸素濃度と介在物相当の酸素濃度の和を1としたときの、鋳片中トータル酸素濃度の指数を示した。トータル酸素濃度用の鋳片サンプルの採取位置、および分析方法は実施例1と同様である。
In the same manner as in Example 1, the same composition as in Example 1 was used in each process of the converter, the ladle refining furnace, the RH vacuum degassing furnace, and the continuous casting in an actual machine having a molten steel amount of about 200 tons per charge. Bearing steel was manufactured. At this time, injection of molten steel into the tundish was started using various types of tundishes defined by L and W.
Table 2 shows the form of the tundish, the weight of the molten steel when the tundish is full, the total flow rate of the inert gas blown, and the oxygen concentration in the tundish atmosphere at the start of injecting the molten steel into the tundish of the present invention. In addition, an index of the total oxygen concentration in the cast slab when the total oxygen concentration in the molten steel before the injection of the tundish, that is, the sum of the dissolved oxygen concentration and the oxygen concentration corresponding to inclusions, was set to 1. The sampling position of the slab sample for the total oxygen concentration and the analysis method are the same as those in the first embodiment.
 表2に示すとおり、本発明例のいずれにおいても、タンディッシュへの溶鋼注入開始時のタンディッシュ内雰囲気中の酸素濃度は2vol%以下に低減しており、鋳片中トータル酸素濃度についても良好な結果が得られた。不活性ガスのガス排出孔の設置および不活性ガスの傾斜吹き込みを適切に行った本発明例15~18については、タンディッシュへの溶鋼注入開始時のタンディッシュ雰囲気中酸素濃度が、傾斜吹き無しの場合よりも安定的に低減させることができた。さらに、傾斜吹き込みに加えて、タンディッシュへの溶鋼注入開始時のタンディッシュ雰囲気中酸素濃度が0.3×M/V(M:タンディッシュ満杯時溶鋼重量(ton)、V:タンディッシュ内体積(m))以下を満たす本発明例19~22については、タンディッシュ内雰囲気中の酸素濃度が1vol%以下に低減しており、鋳片中トータル酸素濃度についても、タンディッシュ注入前の約7割以下と大変良好な結果が得られた。
As shown in Table 2, in each of the examples of the present invention, the oxygen concentration in the atmosphere in the tundish at the start of injecting molten steel into the tundish was reduced to 2 vol% or less, and the total oxygen concentration in the slab was good. Results were obtained. In Examples 15 to 18 of the present invention in which the gas discharge holes for the inert gas were installed and the inert gas was properly blown, the oxygen concentration in the tundish atmosphere at the start of injecting molten steel into the tundish was such that there was no slanting blow. Was able to be reduced more stably than the case of. Further, in addition to the oblique blowing, the oxygen concentration in the tundish atmosphere at the start of injecting the molten steel into the tundish is 0.3 × M / V (M: weight of the molten steel when the tundish is full (ton), V: internal volume of the tundish (M 3 )) In Examples 19 to 22 of the present invention satisfying the following, the oxygen concentration in the atmosphere in the tundish was reduced to 1 vol% or less. Very good results were obtained with 70% or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、本発明は鋼の成分や濃度により効果が制限されるものではなく、あらゆる成分系の鋼に適用することが可能である。 The effect of the present invention is not limited by the composition and concentration of the steel, and the present invention can be applied to steels of any composition.
1 タンディッシュ
1t タンディッシュ蓋
2 溶鋼注入用孔
3 ガス排出用孔
4 不活性ガス吹き込みパイプ
5 オーバーフロー樋開口部
6 堰
Reference Signs List 1 tundish 1t tundish lid 2 molten steel injection hole 3 gas exhaust hole 4 inert gas injection pipe 5 overflow gutter opening 6 weir

Claims (3)

  1.  溶鋼を保持する取鍋と溶鋼の連続鋳造鋳型との間に介在させるタンディッシュ内に溶鋼を注入するに当たり、注入開始前の該タンディッシュ内雰囲気中ガスの置換を通じて雰囲気中酸素濃度を低減させた状態で溶鋼の注入を行って連続鋳造を開始するのに際し、
     該タンディッシュの蓋に、取鍋からの溶鋼注入用孔の他に、該タンディッシュ内雰囲気ガス置換のための、1以上のガス排出用孔を設け、前記溶鋼注入用孔と前記ガス排出用孔との距離Lを下記(1)式を満足するように配置するとともに、前記溶鋼注入用孔周りに設置した1つ以上の供給管から前記タンディッシュ内空間に、雰囲気置換用不活性ガスを前記ガス排出用孔の総面積Aおよびタンディッシュ内体積Vに対して流量Qが下記(2)式を満足するように供給することを特徴とする、鋼の連続鋳造開始方法。
                    記
              W/4≦L≦2W/3   ・・・(1)
              2.0≦Q/(A・V)  ・・・(2)
     ただし、
      W:タンディッシュ長辺の内法長さ(m)、
      L:溶鋼注入用孔中心と雰囲気置換ガスのガス排出用孔中心との最短距離(m)、
      Q:雰囲気置換用不活性ガスの単位時間あたりの合計吹き込み流量(Nm/min)、
      A:ガス排出用孔の総面積(m
      V:タンディッシュ内体積(m)。
    Injecting the molten steel into the tundish interposed between the ladle holding the molten steel and the continuous casting mold of the molten steel, the oxygen concentration in the atmosphere was reduced by replacing the gas in the atmosphere in the tundish before starting the injection. When injecting molten steel in the state and starting continuous casting,
    In the lid of the tundish, in addition to the hole for injecting molten steel from the ladle, one or more gas exhaust holes for replacing atmospheric gas in the tundish are provided, and the hole for injecting molten steel and the gas exhaust hole are provided. The distance L to the hole is arranged so as to satisfy the following expression (1), and an inert gas for atmosphere replacement is supplied into the tundish space from one or more supply pipes installed around the molten steel injection hole. A method for starting continuous casting of steel, characterized in that the gas is supplied so that the flow rate Q satisfies the following expression (2) with respect to the total area A of the gas discharge holes and the internal volume V of the tundish.
    W / 4 ≦ L ≦ 2W / 3 (1)
    2.0 ≦ Q 2 / (A · V) (2)
    However,
    W: Inner length (m) of the long side of the tundish,
    L: Shortest distance (m) between the center of the molten steel injection hole and the center of the gas discharge hole of the atmosphere replacement gas,
    Q: total blowing flow rate of the inert gas for atmosphere replacement per unit time (Nm 3 / min),
    A: Total area of gas discharge holes (m 2 )
    V: Internal volume of the tundish (m 3 ).
  2.  タンディッシュの蓋に設けた前記溶鋼注入用孔の中心から雰囲気置換ガスのガス排出用孔中心との最短距離を上記(1)式の範囲を満たすLで表すとき、2L/3以内の範囲で、該タンディッシュの蓋の溶鋼注入用孔に沿うその周りから吹き込む不活性ガスとは別に、少なくとも1箇所以上の位置から不活性ガスの吹き込みを行うと共に、該不活性ガス吹き込み角度を前記ガス排出用孔へ向かって10~80°の傾きをもって吹き込むことを特徴とする、請求項1に記載の鋼の連続鋳造開始方法。 When the shortest distance from the center of the molten steel injection hole provided in the lid of the tundish to the center of the gas discharge hole of the atmosphere replacement gas is represented by L satisfying the range of the above formula (1), the shortest distance is within a range of 2 L / 3. In addition to the inert gas blown from around the molten steel injection hole of the lid of the tundish, the inert gas is blown from at least one or more positions, and the inert gas blow angle is adjusted by the gas discharge. 2. The method for starting continuous casting of steel according to claim 1, wherein the steel is blown into the hole with an inclination of 10 to 80 °.
  3.  タンディッシュ雰囲気中酸素濃度が、下記(3)式を満たした時点以降で、取鍋内溶鋼をタンディッシュへ注入開始することを特徴とする、請求項1または2に記載の鋼の連続鋳造開始方法。
                    記
              0.3×M/V≧(O)  ・・・(3)
      M:タンディッシュ内満杯時溶鋼量(ton)
      V:タンディッシュ内体積(m
      (O):タンディッシュ雰囲気中酸素濃度(vol%)
    3. The continuous casting of steel according to claim 1 or 2, wherein the molten steel in the ladle is started to be injected into the tundish after the oxygen concentration in the tundish atmosphere satisfies the following formula (3). Method.
    0.3 × M / V ≧ (O 2 ) (3)
    M: Amount of molten steel in a tundish when full (ton)
    V: Tundish inner volume (m 3 )
    (O 2 ): oxygen concentration in tundish atmosphere (vol%)
PCT/JP2019/033828 2018-08-31 2019-08-29 Method for starting continuous casting of steel WO2020045544A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020539569A JP6841386B2 (en) 2018-08-31 2019-08-29 How to start continuous steel casting
CN201980052761.2A CN112584947B (en) 2018-08-31 2019-08-29 Method for starting continuous casting of steel
BR112021001763-1A BR112021001763A2 (en) 2018-08-31 2019-08-29 method for starting continuous steel casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163014 2018-08-31
JP2018163014 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045544A1 true WO2020045544A1 (en) 2020-03-05

Family

ID=69644414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033828 WO2020045544A1 (en) 2018-08-31 2019-08-29 Method for starting continuous casting of steel

Country Status (4)

Country Link
JP (1) JP6841386B2 (en)
CN (1) CN112584947B (en)
BR (1) BR112021001763A2 (en)
WO (1) WO2020045544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922309A (en) * 2020-07-17 2020-11-13 中天钢铁集团有限公司 Method for protecting pouring of continuous casting tundish

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300058A (en) * 1991-03-28 1992-10-23 Nippon Furnace Kogyo Kaisha Ltd Inert gas supply device for tandish
JPH08155599A (en) * 1994-12-02 1996-06-18 Kawasaki Steel Corp Method for holding heat under nonoxidation in tundish
JP2002254148A (en) * 2001-02-28 2002-09-10 Kawasaki Steel Corp Method for preventing contamination of molten steel in tundish

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9506724A (en) * 1994-12-02 1997-09-23 Kawasaki Stell Corp Non-oxidizing heating method and apparatus
WO2013190799A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Method for manufacturing high-purity steel casting, and tundish
CN103949628B (en) * 2014-04-30 2016-01-20 北京科技大学 A kind of casting process stops the devices and methods therefor of tundish secondary oxidation
CN207479546U (en) * 2017-11-06 2018-06-12 江阴兴澄特种钢铁有限公司 A kind of airway applied to continuous casting production blowing argon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300058A (en) * 1991-03-28 1992-10-23 Nippon Furnace Kogyo Kaisha Ltd Inert gas supply device for tandish
JPH08155599A (en) * 1994-12-02 1996-06-18 Kawasaki Steel Corp Method for holding heat under nonoxidation in tundish
JP2002254148A (en) * 2001-02-28 2002-09-10 Kawasaki Steel Corp Method for preventing contamination of molten steel in tundish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922309A (en) * 2020-07-17 2020-11-13 中天钢铁集团有限公司 Method for protecting pouring of continuous casting tundish

Also Published As

Publication number Publication date
BR112021001763A2 (en) 2021-04-27
CN112584947B (en) 2022-01-11
JP6841386B2 (en) 2021-03-10
JPWO2020045544A1 (en) 2021-03-11
CN112584947A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
BRPI0904814A2 (en) METHOD OF MANUFACTURING A STEEL PRODUCT, MANUFACTURED STEEL PRODUCT AND WELDING STEEL PIPE
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
CN112430707A (en) Method for improving castability of molten low-carbon aluminum killed steel
WO2020045544A1 (en) Method for starting continuous casting of steel
JP4772798B2 (en) Method for producing ultra-low carbon slab
JP5910578B2 (en) Steel continuous casting method
US20160214166A1 (en) Continuous casting method
US5524119A (en) Taphole design and pouring method
JP6969707B2 (en) Method of casting molten steel, method of manufacturing continuously cast slabs, and method of manufacturing steel materials for bearings.
KR101969111B1 (en) Casting apparatus and the method thereof
WO2015029106A1 (en) Continuous casting method
JP2020139180A (en) Slag discharging method and molten metal producing method in an arc-type electric furnace
US20160107226A1 (en) Method of Continuous Casting
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
US1554367A (en) Process and apparatus for making steel
RU2806948C1 (en) Continuous steel degassing unit
JPH0446657A (en) Method for casting steel having excellent hydrogen induced cracking resistance
CN211939022U (en) Pouring equipment for casting
JPH09122852A (en) Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing
CN113481349B (en) Continuous online refining equipment and production process for molten steel
RU17781U1 (en) TECHNOLOGICAL STEEL PRODUCTION LINE
JP2009241122A (en) Sealing method for molten steel in continuous casting
JP2024085133A (en) Ladle injection nozzle and continuous casting method
JP2019206018A (en) Method for feeding molten steel
JP4066797B2 (en) Vacuum degassing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539569

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001763

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021001763

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210129

122 Ep: pct application non-entry in european phase

Ref document number: 19854021

Country of ref document: EP

Kind code of ref document: A1