WO2020045427A1 - Map generation device and map generation method - Google Patents

Map generation device and map generation method Download PDF

Info

Publication number
WO2020045427A1
WO2020045427A1 PCT/JP2019/033513 JP2019033513W WO2020045427A1 WO 2020045427 A1 WO2020045427 A1 WO 2020045427A1 JP 2019033513 W JP2019033513 W JP 2019033513W WO 2020045427 A1 WO2020045427 A1 WO 2020045427A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe data
data
map
characteristic information
probe
Prior art date
Application number
PCT/JP2019/033513
Other languages
French (fr)
Japanese (ja)
Inventor
高行 渡部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019138796A external-priority patent/JP7136035B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980055682.7A priority Critical patent/CN112602134B/en
Priority to DE112019004315.3T priority patent/DE112019004315T5/en
Publication of WO2020045427A1 publication Critical patent/WO2020045427A1/en
Priority to US17/186,919 priority patent/US11885640B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present disclosure relates to a map generation device and a map generation method for generating map data using probe data generated by a plurality of vehicles.
  • Patent Document 1 As a method for generating map data used in an in-vehicle navigation device or an in-vehicle driving support device, for example, a technique described in Patent Document 1 is known.
  • probe data acquired in an in-vehicle device mounted on a vehicle is transmitted from the in-vehicle device to a data center, and the data center performs a statistical method from a plurality of received probe data. It is configured to generate information such as a lane marking, for example, a white line, and sign information by using the information.
  • Patent Document 1 hardly describes the process of aligning the probe data. It is described that there is a method for performing positioning using GPS data included in the probe data. However, since conventionally known GPS data contains a large error, if GPS data is used for positioning, it may not be possible to perform proper positioning.
  • An object of the present disclosure is to provide a map generation device and a map generation method that can easily perform positioning of probe data.
  • a map generation device receives a probe data transmitted from at least one vehicle and indicating a feature existing around the vehicle detected by a surrounding monitoring sensor mounted on the vehicle.
  • a map generation device that creates or updates map data based on the probe data received by the receiving unit, and that can be used for positioning the probe data with other probe data or map data.
  • a characteristic determining unit that determines whether or not characteristic information is sufficiently included; and a target probe data having an insufficient amount of characteristic information is converted into a continuous probe data obtained by the same traveling of the same vehicle.
  • a connection unit for connecting to the probe data one before or one after the target probe data.
  • the map generation method includes at least one map data generation or update method for generating or updating map data based on probe data indicating a feature existing around the vehicle detected by a surrounding monitoring sensor mounted on the vehicle.
  • a map generation method performed using one processor, the method comprising receiving the probe data from at least one of the vehicles, and aligning the probe data with other probe data or map data. It is determined whether or not the characteristic information is sufficiently included, and the target probe data having an insufficient amount of the characteristic information is included in successive probe data obtained by the same traveling of the same vehicle. And joining the probe data to the probe data one before or one after the target probe data.
  • FIG. 1 illustrates the first embodiment, and is a diagram schematically illustrating an entire configuration of a system.
  • FIG. 2 is a block diagram schematically showing a configuration of the vehicle-mounted device.
  • FIG. 3 is a block diagram of a control unit of the in-vehicle device;
  • FIG. 4 is a block diagram schematically showing a main configuration of the data center.
  • FIG. 5 is a block diagram of a processing control device of the data center.
  • FIG. 6 is a diagram (part 1) illustrating a process of aligning probe data with map data and a process of linking probe data.
  • FIG. 7 is a flowchart illustrating an example of probe data connection control
  • FIG. 8 is a diagram (part 2) for explaining the alignment process between the probe data and the map data and the linking process of the probe data.
  • FIG. 9 is a diagram (part 3) for explaining the alignment process between the probe data and the map data and the connection process of the probe data.
  • FIG. 10 is a flowchart illustrating another example of the connection control of the probe data.
  • FIG. 11 is a diagram illustrating a detection target landmark.
  • FIG. 12 is a flowchart illustrating an example of probe data connection control according to the second embodiment.
  • FIG. 1 schematically shows the entire configuration of a map generation system 1 according to the present embodiment.
  • the map generation system 1 includes a data center 2 that collects and analyzes probe data and generates or updates map data, and a group of a plurality of vehicles A traveling on a road.
  • the vehicle A group includes the entire general automobile such as a passenger car and a truck.
  • the in-vehicle apparatus 3 includes an in-vehicle camera 4, a position detection unit 5, various on-vehicle sensors 6, a map database 7, a communication unit 8, a storage unit 9, an operation unit 10, and a control unit 11. .
  • the in-vehicle camera 4 is provided at, for example, a front portion of the vehicle A, and is configured to photograph at least a road condition ahead in the traveling direction.
  • the in-vehicle camera 4 has a function as a periphery monitoring sensor.
  • the position detecting unit 5 has a function of detecting the position of the vehicle based on, for example, data received by a GNSS (Global Navigation Satellite System) receiver.
  • the various in-vehicle sensors 6 detect speed information of the own vehicle, information of a traveling direction, that is, information of a direction, and the like.
  • the vehicle-mounted camera 4 can be provided in front of and behind the vehicle A, and left and right. Further, as the type of the on-vehicle camera 4, a wide-angle camera can be adopted, and it is particularly desirable to adopt a twin-lens camera or more as the front camera.
  • the map database 7 stores, for example, map data for the whole country.
  • the map data includes road data indicating a road network and feature data indicating the position and type of a feature existing along the road.
  • the feature data includes landmark information and lane mark information.
  • the landmark information includes the type of landmark existing along the road, position coordinates, color, size, shape, and the like.
  • the lane mark information includes information indicating the position coordinates of the lane mark and which pattern of the lane mark is realized by a solid line, a dashed line, or a Bottom Dots pattern.
  • the position of the lane mark is expressed as a group of coordinates of a point where the lane mark is formed, that is, a group of points.
  • the lane mark may be represented by a polynomial expression.
  • the lane mark information may be a polynomial-expressed line group.
  • the map data may include a traveling trajectory model.
  • the traveling trajectory model is trajectory data generated by statistically integrating traveling trajectories of a plurality of vehicles.
  • the traveling trajectory model is, for example, an average of traveling trajectories for each lane.
  • the traveling trajectory model corresponds to data indicating a traveling trajectory that is a reference during automatic driving.
  • the communication unit 8 communicates with the data center 2 via a mobile communication network or using road-to-vehicle communication, for example.
  • the storage unit 9 stores the camera image data taken by the on-board camera 4 with data such as the current position of the vehicle, the traveling speed, the traveling direction, the photographing date and time, and based on the camera image data.
  • the generated probe data is stored.
  • the storage unit 9 stores various data, programs, and the like. The details of the probe data will be described later.
  • the operation unit 10 includes a touch panel, a switch, a display unit, and the like (not shown), and necessary operations are performed by a user of the vehicle A, for example, a driver.
  • the control unit 11 includes a computer and has a function of controlling the entire on-vehicle device 3. In this case, while the vehicle A is traveling, the control unit 11 constantly captures a road condition ahead by the vehicle-mounted camera 4 and stores the camera image data in the storage unit 9 together with the vehicle position data and the like. Then, the control unit 11 generates probe data having information on road signs and road division lines, that is, information on white lines of the road, etc. by performing image recognition processing on the camera image data, and stores the probe data in the storage unit 9. .
  • the camera image data constitutes data detected by the periphery monitoring sensor 4.
  • control unit 11 periodically, for example, once to several times a day, or every time a predetermined time elapses, for example, every one second to several seconds, or every time, for example, several hundred milliseconds
  • communication unit 8 is configured to transmit the probe data stored in the storage unit 9 to the data center 2.
  • the control unit 11 includes a position information receiving unit 12, an image processing unit 13, a probe data generating unit 14, and a probe data transmitting unit 15, as shown in FIG.
  • the position information receiving unit 12 receives the position information from the position detecting unit 5, that is, the GNSS signal, and acquires the current position information of the vehicle, that is, the own vehicle position information based on the GNSS signal.
  • the image processing unit 13 performs image recognition processing on camera image data captured by the vehicle-mounted camera 4 and stored in the storage unit 9.
  • the probe data generator 14 generates probe data based on the image recognition result of the image processor 13 and stores the probe data in the storage unit 9.
  • the probe data transmission unit 15 transmits the probe data stored in the storage unit 9 to the data center 2 via the communication unit 8.
  • the data center 2 includes a communication unit 16, an input operation unit 17, a processing control unit 18, a storage unit 19, and a map database 20, as shown in FIG.
  • the communication unit 16 receives the probe data through communication with the communication unit 8 of each vehicle A.
  • the communication unit 16 has a function as a receiving unit.
  • the input operation unit 17 has a keyboard, a mouse, a switch, a display unit, and the like (not shown), and is used by an operator to perform necessary input operations.
  • the processing control device 18 is mainly configured by a computer, and has a function of controlling the entire data center 2, that is, a function as a control unit. At the same time, the processing control device 18 executes processing for generating or updating map data.
  • the storage unit 19 collects and stores probe data transmitted from each vehicle A. At this time, a huge amount of probe data is collected and stored, for example, from a group of general vehicles A traveling all over Japan.
  • the map database 20 stores the generated high-precision map data.
  • probe data that does not include the characteristic information that is, probe data that is difficult to align
  • probe data that includes the characteristic information that is, probe data that can be aligned. It is configured to perform a process of joining together, that is, a process of creating connected probe data, and convert probe data that is difficult to align into probe data that can be aligned.
  • the connection probe data is stored in the storage unit 19. Details of the connection processing will be described later.
  • the processing control device 18 has each function as a feature determination unit and a connection unit.
  • the processing control device 18 includes a probe data receiving unit 21, a probe data linking processing unit 22, a map data generation unit 23, and a map data distribution unit 24, as shown in FIG.
  • the probe data receiving unit 21 receives the probe data transmitted from each vehicle A via the communication unit 16 and stores the probe data in the storage unit 19.
  • the probe data connection processing unit 22 performs a detection process of determining whether or not the probe data stored in the storage unit 19 includes characteristic information, and converts the probe data that does not include characteristic information into characteristic information. Then, a process of connecting and linking to the probe data including is performed, and the linked probe data is stored in the storage unit 19.
  • the map data generation unit 23 generates map data based on the probe data and the connected probe data stored in the storage unit 19, and updates the map data.
  • the generated or updated map data is stored in the map database 20.
  • the map data distribution unit 24 transmits the generated or updated map data to each vehicle A via the communication unit 16.
  • the control unit 11 of the vehicle-mounted device 3 of each vehicle A converts the camera image data captured by the vehicle-mounted camera 4 during each time the vehicle A travels a predetermined distance or every time a predetermined time elapses.
  • a recognition process is performed to execute a process of generating probe data.
  • the process of recognizing the camera image data and the process of generating the probe data are set to be executed, for example, every 100 milliseconds.
  • the control unit 11 is configured to collectively transmit, for example, 400 ms of probe data to the data center 2, that is, to transmit the probe data to the data center 2 every 400 ms, for example. ing.
  • probe data for example, data of a lane marking shape of a road, in this case, data including information such as a line type and a color of a lane marking, and data of a position of a road sign or a sign, Data including information such as the size, type, meaning, and content of signs and signboards, and data on the position of poles such as telephone poles, in this case, data including information such as the thickness, height, and type of poles such as telephone poles, and stopping Probe data including various data such as data of a road marking such as a line and a pedestrian crossing and data of a position of a traffic signal, in this case, data including information such as a size and a type of the traffic signal, is generated.
  • the probe data may include travel locus data indicating the travel locus of the vehicle A. That is, at least one or more of the various types of data is recognized by the image recognition processing of the camera image data, and is configured as probe data including the data of the recognition result.
  • the movement locus corresponds to data in which the position coordinates of the own vehicle are arranged in time series.
  • the position information of the own vehicle may be calculated based on, for example, GPS information. Of course, it may be specified by dead reckoning or localization.
  • the localization means relative position information between the landmark imaged by the on-board camera 4 and the own vehicle, for example, information indicating the distance between the landmark and the coordinates of the landmark registered in the map data.
  • the process of specifying the position of the own vehicle based on The relative position of the landmark imaged by the vehicle-mounted camera 4 with respect to the own vehicle can be specified by analyzing the image captured by the vehicle-mounted camera 4.
  • the probe data is generated based on the camera image data captured by the on-board camera 4.
  • a millimeter wave radar or A rider in particular, a SPAD rider or the like may be mounted, and probe data may be generated based on a detection result by the millimeter wave radar or the rider.
  • the probe data may be generated by using both the image recognition processing of the camera image data and the detection result by the millimeter wave radar or lidar, or the probe data may be generated based only on the detection result by the millimeter wave radar or lidar. You may. Millimeter-wave radars and riders have a function as a periphery monitoring sensor.
  • the detection results by the millimeter-wave radar and the lidar constitute data detected by the surrounding monitoring sensor 4.
  • various sensors that can detect a feature around the vehicle such as a vehicle-mounted camera, a millimeter-wave radar, and a rider, can be used.
  • the periphery monitoring sensor a sensor that forms a detection range behind or on the side of the vehicle can also be used.
  • the control unit 11 may be configured to generate probe data using a combination of a plurality of types of peripheral monitoring sensors. For example, in a configuration in which the in-vehicle camera 4 and the millimeter wave radar are used in combination as the peripheral monitoring sensor, the detection accuracy of the distance from the landmark can be improved.
  • the recognition rate of landmarks can be secured by using the detection results of the millimeter wave radar complementarily.
  • the detection target that is, the detection target landmark detected by the vehicle-mounted camera 4, the millimeter-wave radar, the lidar, or the like when creating the probe data
  • the detection target is a sign
  • it is configured to detect the shape of the sign, for example, a circle, a square, a diamond, a triangle, an octagon, and the like, and to detect the meaning of the sign if necessary. ing.
  • the signboard is configured to detect, for example, a blue, yellow, or green signboard and, if necessary, to detect the meaning of the sign or character on the signboard.
  • the detection target is a road marking, for example, an arrow, a diamond, a stop, a speed, a stop line, a pedestrian crossing, a white line, or the like drawn on the road is detected.
  • the detection target is a signal, for example, it is configured to detect a three-lamp signal or the like.
  • the detection target is a group of poles, for example, it is configured to detect a telephone pole, a streetlight, and the like.
  • Each probe data is added with a vehicle ID and a time stamp of the vehicle A, that is, data information that indicates the time series of the order in which the probe data is created. Note that serial number information may be added instead of the time stamp information.
  • This makes it possible to specify and extract continuous probe data in the same traveling of the same vehicle, that is, traveling from the start to the stop of the engine, from the probe data collected in the data center 2. Have been.
  • the connection processing is performed on the probe data of the same traveling of the same vehicle.
  • Pattern (a) in FIG. 6 shows an example of probe data generated in one traveling of one vehicle A.
  • the vertical lines in the pattern (a) in FIG. 6 indicate the boundaries of the probe data.
  • eight pieces of probe data P1, P2,... Is transmitted to the data center 2.
  • the processing control device 18 of the data center 2 performs a process of aligning the probe data P1, P2,... P8 received from the vehicle A with the map data.
  • FIG. 6B shows eight data blocks M1, M2,... M8 of map data corresponding to the eight probe data P1, P2,. In this case, six probe data P2,... P7 excluding both ends of the eight probe data P1, P2,... P8, and six data blocks M2,. Align.
  • the probe data P2, P3, and P7 include characteristic information, for example, data of a lane marking, specifically, data of an oblique lane marking, It can be compared with the data blocks M2, M3, M7 of the corresponding map data, that is, aligned.
  • the probe data P4, P5, and P6 do not include data of characteristic information, specifically, the shape of the lane marking of the road is straight and any one of the probe data P4, P5, and P6 is used. Therefore, it is difficult to compare with the data blocks M4, M5, and M6 of the corresponding map data, that is, to perform alignment. In this case, the positioning can be performed by using the GPS information. However, there is a problem that the accuracy of the positioning is low. In practice, the positioning using the GPS information is difficult.
  • the probe data P4, P5, and P6 that do not include the characteristic information that is, the probe data P4, P5, and P6 that are difficult to position are converted into the characteristic information before or after the characteristic data.
  • the probe data P3 and P7 that are included that is, the probe data P3 and P7 that can be aligned, are connected and connected.
  • the probe data P4 and the preceding probe data P3 including characteristic information are connected to create the connected probe data P3-4.
  • the probe data P5, P4 and the probe data P3 are connected to create the connected probe data P3-4-5.
  • the probe data P6, P5, and P4 may be joined to the probe data P3 to create the connected probe data P3-4-5-6.
  • the probe data P6 may be connected to the probe data P7 including characteristic information thereafter to create the connected probe data P6-7. Further, the probe data P5, P6 and the probe data P7 may be joined to create the connected probe data P5-6-7. Further, the probe data P4, P5, and P6 may be joined with the probe data P7 to create the connected probe data P4-5-6-7.
  • FIG. 7 is a flowchart showing the control contents of an example of the probe data linking process.
  • the flowchart of FIG. 7 shows the contents of control by the processing control device 18 of the data center 2.
  • the processing control device 18 determines whether characteristic information, for example, information on the shape of a road division line, is included in the probe data. Is performed.
  • step S20 it is determined whether or not characteristic information is included in the probe data.
  • characteristic information is not included (NO)
  • the process proceeds to step S30, and one of the probe data of the same traveling of the same vehicle with respect to the probe data currently being processed, that is, the target probe data.
  • the previous probe data or the next probe data is linked.
  • the process returns to step S10 to determine whether characteristic information, for example, information on the shape of a lane marking, is included in the connected probe data, that is, a process of detecting the characteristic information from the connected probe data. Do. Then, the above-described processing is repeatedly executed. That is, the connection processing of the probe data is continued until the characteristic information is included in the connection probe data. If the probe data including the characteristic information has been identified, in step S30, the probe data including the characteristic information is collectively linked to the target probe data. You may comprise.
  • step S20 when characteristic information is included in the probe data or the linked probe data (YES), the process proceeds to step S40 without executing the probe data linking process, and the next probe data is It is determined whether or not there is.
  • the process returns to step S10, and the above-described processing is repeatedly performed on the next probe data.
  • step S40 when there is no next probe data, the process proceeds to “NO” and the present control ends.
  • FIG. 8 shows another example of the probe data linking process, for example, a case in which data of a lane marking of a road is used as characteristic information.
  • FIG. 8A shows an example of probe data generated in one traveling of one vehicle A. In this example, for example, eight pieces of probe data P11, P12,... P18 are generated, and these probe data are transmitted to the data center 2.
  • the processing control device 18 of the data center 2 performs a process of aligning the probe data P11, P12,... P18 received from the vehicle A with the map data.
  • the pattern (b) of FIG. 8 shows eight data blocks M11, M12,... M18 of map data corresponding to the eight probe data P11, P12,. In this case, as shown in FIG. 8, six probe data P12,... P17 excluding both ends of the eight probe data P11, P12,. Blocks M12,... M17 are aligned.
  • the probe data P12 and P13 include characteristic information, for example, data of a lane marking shape of a road, specifically, data of a lane marking lane shape.
  • the data can be compared with the data blocks M12 and M13, that is, the data can be aligned.
  • the probe data P14 and P15 do not include data of characteristic information, specifically, since the lane markings of the road are straight and indistinguishable, the data blocks M14 and M15 of the corresponding map data are not included. It is difficult to compare, that is, align.
  • the probe data P16 and P17 include information characteristic of the lane marking of the road. Specifically, it includes data of road markings for which traffic is prohibited. However, this characteristic information does not exist in the data blocks M16 and M17 of the corresponding map data. That is, the road marking data is new data that does not exist in the current map data, and is data to be updated. Therefore, it is difficult to compare the probe data P16 and P17 with the data blocks M16 and M17 of the map data alone, that is, to align the probe data P16 and P17.
  • the characteristic information of the probe data P16 and P17 is not characteristic information that can be used for alignment, but the probe data includes characteristic information that can be used for alignment with map data. Can not be determined to be sufficiently contained.
  • the state where the characteristic information is not sufficiently included indicates a case where the characteristic information is less than three, such as one or two.
  • the case where the characteristic information is not included that is, the case where the characteristic information is zero is also included.
  • the probe data P14 and P15 that do not include characteristic information and are difficult to position, and the probe data that includes characteristic information but are difficult to position, that is, the amount of characteristic information Insufficient probe data P16 and P17 are connected and linked to probe data including characteristic information that can be used before or after alignment, that is, probe data P13 that can be aligned.
  • the probe data P14, P15, P16, and P17 are all connected and connected, and furthermore, a probe capable of performing positioning including characteristic information before the four connected probe data P14, P15, P16, and P17.
  • the four probe data P14, P15, P16, and P17 are connected and connected to the data P13 to create probe data P13-14-15-16-17.
  • the probe data after the alignment is added to the four probe data P14, P15, P16 and P17 may be connected and connected.
  • FIG. 9 shows another example of the probe data linking process, for example, a case where road sign data is used as characteristic information.
  • FIG. 9A shows an example of probe data generated in one traveling of one vehicle A. In this example, for example, eight pieces of probe data P21, P22,... P28 are generated, and these probe data are transmitted to the data center 2.
  • the processing control device 18 of the data center 2 performs a process of aligning the probe data P21, P22,... P28 received from the vehicle A with the map data.
  • the pattern (b) in FIG. 9 shows eight data blocks M21, M22,... M28 of map data corresponding to the eight probe data P21, P22,. In this case, as shown in FIG. 9, six probe data P22,... P27 excluding both ends of the eight probe data P21, P22,. Blocks M22,... M27 are aligned.
  • the probe data P22, P23, and P27 are characteristic information, for example, data of road signs, specifically, data indicating the type, position, size, and number of road signs are compared. It matches the data of the road sign included in the data blocks M22, M23, and M27 of the map data. Therefore, both can be compared, that is, alignment can be performed.
  • the characteristic information included in the probe data P22, P23, and P27 is characteristic information that can be used for alignment.
  • the probe data P24, P25, and P26 include road sign data as characteristic information.
  • this characteristic information that is, the data of the road sign included in the probe data P24, P25, and P26 is the data of the road sign included in the data blocks M24, M25, and M26 of the corresponding map data and the shape of the road division line. Does not match the data in. Specifically, the position and number of road signs, the shape of the road marking line, and the like do not match. Therefore, it is difficult to compare the probe data P24, P25, and P26 with the data blocks M24, M25, and M26 of the map data alone, that is, to align the probe data.
  • the characteristic information of the probe data P24, P25, and P26 is insufficient as characteristic information that can be used for alignment. That is, the probe data P24, P25, and P26 do not sufficiently include characteristic information that can be used for alignment with the map data.
  • the probe data P24, P25, and P26 that include characteristic information but are difficult to align that is, probe data with an insufficient amount of characteristic information
  • the probe data including characteristic information usable for alignment that is, probe data P23 or P27 that can be aligned is connected and connected.
  • the probe data P24, P25, and P26 are all connected and connected, and further, the probe data P23 that includes the characteristic information before the three connected probe data P24, P25, and P26 and can be aligned,
  • the three probe data P24, P25, and P26 are connected and connected to create probe data P23-24-25-26.
  • the probe data P27 that can be positioned exists after the three pieces of probe data P24, P25, and P26 that have been connected. Therefore, the probe data P24, P25, and P26 may be connected and connected to the probe data P27 that can be aligned to create probe data P24-25-26-27.
  • the first probe data P24 among the three probe data P24, P25, and P26 is connected to the preceding probe data P23 that includes characteristic information and can be aligned. Then, the last two pieces of probe data P25 and P26 are connected, and further, the two pieces of connected probe data P25 and P26 are connected to probe data P27 that includes the characteristic information thereafter and can be aligned. You may make it connect.
  • the previous two probe data P24 and P25 among the three probe data P24, P25 and P26 are connected, and the two connected probe data P24 and P25 are distinguished by a characteristic
  • the probe data P23 containing information and capable of alignment is connected and connected.
  • the last one piece of probe data P26 may be connected to and connected to probe data P27 which includes the subsequent characteristic information and can be aligned.
  • FIG. 10 is a flowchart showing the control contents of an example of the probe data linking process of FIG.
  • the flowchart of FIG. 10 shows the contents of control by the processing control device 18 of the data center 2.
  • the processing control device 18 performs a process of detecting whether or not characteristic information is included in the probe data, that is, a process of detecting the characteristic information from the probe data.
  • characteristic information for example, as shown in FIG.
  • the sign may be a direction sign or a commercial advertising sign. It is preferable that the signboard information includes character string information such as numbers and alphabets. Note that the characteristic information includes characteristic information that cannot be aligned, that is, characteristic information that cannot be used for alignment.
  • step S120 determines whether characteristic information is included in the probe data.
  • characteristic information is not included (NO)
  • the process proceeds to step S130, where the probe data immediately before the probe data of the same traveling of the same vehicle with respect to the probe data currently being processed, Alternatively, the next probe data is connected and connected.
  • step S110 the process returns to step S110 to perform a process of detecting whether or not the above-described characteristic information is included in the connected probe data, that is, a process of detecting the above-described characteristic information from the connected probe data. Then, the above-described processing is repeatedly executed. That is, the connection processing of the probe data is continued until the characteristic information is included in the connection probe data. If the probe data including the characteristic information has been identified, in step S130, the probe data including the characteristic information is collectively connected to the target probe data. You may comprise.
  • step S120 when characteristic information is included in the probe data or the connected probe data (YES), the process proceeds to step S150.
  • the processing control device 18 determines the characteristic information included in the probe data, for example, the data of the road sign, and the characteristic information included in the data block of the corresponding map data, for example, the data of the road sign. To see if they match.
  • the characteristic information included in the probe data and the characteristic information included in the corresponding data block of the map data may be configured to detect the number of matching characteristic information. .
  • step S160 it is determined whether the characteristic information included in the probe data matches the characteristic information included in the data block of the corresponding map data.
  • the number of pieces of characteristic information matching between the characteristic information included in the probe data and the characteristic information included in the data block of the corresponding map data is specified, and the matching characteristic is determined. It is determined whether or not the number of pieces of target information is equal to or more than the number of pieces of data that can three-dimensionally specify the data block of the probe data, that is, map data, for example, three or more. In this embodiment, it is configured to determine whether or not there are three or more pieces of matching characteristic information.
  • the present invention is not limited to this.
  • step S160 it is configured to determine whether there are three points, whether there are four points, whether there are five points, or whether there are six or more points. That is, in step S160, it is configured to determine whether or not the probe data sufficiently includes characteristic information that can be used for alignment with the map data.
  • step S160 when the characteristic information does not match between the probe data and the data block of the corresponding map data, that is, when there is no matching characteristic information of three or more points, in other words, the probe currently being processed is When the amount of characteristic information included in the data is insufficient (NO), the process proceeds to step S170.
  • the probe data that is currently being processed is connected to the previous probe data or the next probe data of the same vehicle probe data of the same traveling.
  • the characteristic information included in the connected probe data for example, the data of the road sign
  • the processing control device 18 repeatedly executes the above-described processing. This allows the probe data connection process to be continued until the characteristic information included in the connected probe data matches the characteristic information included in the corresponding data block of the map data. ing. If the probe data including the characteristic information matching the characteristic information of the map data has been identified, in step S170, up to the probe data including the characteristic information, It may be configured to connect to the probe data to be performed.
  • step S160 when the characteristic information matches between the probe data or the connected probe data and the data block of the corresponding map data, that is, when there are three or more matching characteristic information (YES), Proceeding to step S180, it is determined whether or not there is next probe data without performing the linking process.
  • the process returns to step S110, and the above-described processing is repeatedly performed on the next probe data.
  • step S180 when there is no next probe data, the process proceeds to “NO” and the present control ends.
  • the processing control device 18 detects whether characteristic information is included in the probe data, and converts the target probe data that does not include the characteristic information to the same vehicle.
  • the probe data is connected to the probe data immediately before or after the target probe data in the continuous probe data obtained by the same traveling. According to this configuration, the probe data can be easily and reliably aligned by using the connected probe data instead of the probe data that cannot be aligned.
  • characteristic information characteristic information usable for aligning the probe data with the map data is used.
  • the probe data linking process as shown in FIG. 8 can be realized, so that the alignment of the probe data can be performed more reliably.
  • the processing control device 18 matches the characteristic information included in the probe data with the characteristic information included in the data block of the corresponding map data. Is configured to detect whether the number of pieces of information is equal to or more than the number of pieces of data that can specify the probe data three-dimensionally, that is, the probe data contains sufficient characteristic information that can be used for alignment with the map data. It is configured to determine whether or not it is included. Furthermore, according to the present embodiment, target probe data in which matching characteristic information does not exceed the number of data that can be specified three-dimensionally, that is, target probe data with an insufficient amount of characteristic information, The probe data is connected to the probe data immediately before or after the target probe data in the continuous probe data obtained by the same traveling. According to this configuration, the probe data linking process as shown in FIG. 9 can be realized, so that the alignment of the probe data can be performed more reliably.
  • the probe data linking process is configured to be executed by the processing control device 18 of the data center 2.
  • the probe data linking process is performed by the in-vehicle device 3 of each vehicle A. May be configured to be executed by the control unit 11. That is, the control unit 11 of the in-vehicle device 3 may be configured to have each function as a feature determination unit and a connection unit.
  • the in-vehicle device 3 of each vehicle A is configured to transmit the probe data and the connected probe data to the data center 2.
  • FIG. 12 shows a second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the probe data P1, P2,... P8 received from one vehicle A are aligned with the map data.
  • the present invention is not limited to this.
  • probe data P1, P2,... P8 received from one vehicle A and probe data received from another vehicle A that is, probe data P1, P2 of another probe data or another trip. ,..., P8.
  • FIG. 12 replaces the eight data blocks M21, M22,... M28 of the map data shown in the pattern (b) in FIG. 9 with eight probe data P210, P220,.
  • 9 is a flowchart illustrating control contents of a probe data linking process in the alignment process.
  • the flowchart of FIG. 12 shows the contents of control by the processing control device 18 of the data center 2.
  • the processing from step S110 to step S130 in FIG. 12 is executed in the same manner as the processing from step S110 to step S130 in FIG. 10 of the first embodiment.
  • the processing control device 18 determines the characteristic information included in the probe data received from one vehicle A, for example, the data of the road sign and the corresponding probe information received from the other vehicle A.
  • Data that is, characteristic information included in the probe data of another trip, for example, data of a road sign, is compared to determine whether or not the two match.
  • the characteristic information included in the probe data received from one vehicle A and the characteristic information included in the corresponding probe data received from another vehicle A correspond to the characteristic information. May be configured to detect the number.
  • the probe data received from one vehicle A is referred to as “one probe data”
  • the probe data received from another vehicle A is referred to as “other trip probe data”.
  • step S260 it is determined whether or not the characteristic information included in one probe data and the characteristic information included in the corresponding probe data of another trip match.
  • the number of pieces of characteristic information that match between the characteristic information included in one probe data and the characteristic information included in the corresponding probe data of another trip is specified. It may be configured to determine whether the number of matching characteristic information is equal to or more than the number of data that can three-dimensionally specify one probe data and the probe data of another trip, for example, three points or more. In this embodiment, it is configured to determine whether or not there are three or more pieces of matching characteristic information.
  • the present invention is not limited to this.
  • step S260 it is configured to determine whether there are three points, whether there are four points, whether there are five points, or whether there are six or more points. That is, in step S260, it is configured to determine whether or not one probe data sufficiently contains characteristic information that can be used for alignment with probe data of another trip.
  • step S260 when characteristic information does not match between one probe data and the corresponding probe data of another trip, that is, when there is no matching characteristic information of three or more points, in other words, if the current processing is being performed. If the amount of characteristic information included in the probe data is insufficient (NO), the process proceeds to step S270.
  • step S270 the previous probe data or the next probe data of the same traveling probe data of the same vehicle is connected to the currently processed probe data and connected. Further, in this step S270, the probe data of the other trip immediately before the probe data of the other trip of the same traveling of the same vehicle with respect to the probe data of the other trip that is currently being processed, or the probe data of the next trip And connect the probe data of other trips.
  • the characteristic information included in the connection probe data for example, the data of the road sign, and the characteristic information included in the connection probe data of the corresponding other trip, for example, the data of the road sign, are obtained. Compare to see if they match. Then, the processing control device 18 repeatedly executes the above-described processing. Thereby, until the characteristic information included in the connected probe data matches the characteristic information included in the corresponding connected probe data of another trip, the probe data received from one vehicle A becomes identical. The connection processing and the connection processing of the probe data of another trip received from another vehicle A are continued. If the probe data including the characteristic information that matches the characteristic information of the probe data of another trip has been identified, in step S270, the probe data including the characteristic information is collectively collected. It may be configured to be linked to the target probe data. In this case, similarly, it is preferable that the probe data of another trip including the characteristic information be collectively connected to the probe data of the target other trip.
  • step S260 when the characteristic information of one probe data or one connected probe data and the corresponding probe data of another trip match, that is, when there are three or more matching characteristic information, (YES), the process proceeds to step S180 to determine whether or not there is the next probe data without performing the connection process.
  • the process returns to step S110, and the above-described processing is repeatedly performed on the next probe data.
  • step S290 probe data for which connection processing has been performed on the same road segment as described above is prepared for a plurality of vehicles, and statistical processing is performed on the probe data for which connection processing has been performed for these vehicles. Execute In this statistical processing, for example, a normal averaging processing may be executed, or the statistical processing described in Japanese Patent Application No. 2018-163076 previously filed by the present applicant may be executed. good.
  • probe data created by performing statistical processing on probe data that has undergone connection processing for a plurality of vehicles is referred to as integrated probe data or statistical probe data.
  • the road segment is a road management unit in the map data.
  • the road segment is obtained by dividing a road according to a predetermined rule.
  • the road segment may be a road segmented by a predetermined length, for example, every 10 m.
  • the processing control device 18 executing step S290 identifies a plurality of the probe data for the same road segment using the probe data connected so that other probe data can be aligned, and This corresponds to an integrated processing unit that generates integrated probe data by statistically processing a plurality of probe data.
  • the statistical process corresponds to a process of averaging the position coordinates of each feature included in each probe data or obtaining a median of the position coordinates of each feature.
  • the statistical processing of the probe data may include a process of generating a traveling trajectory model by averaging traveling trajectories included in each probe data.
  • step S300 characteristic information included in the integrated probe data, for example, data of a road sign, and characteristic information included in a data block of the corresponding map data, for example, data of a road sign Then, it is determined whether or not the two coincide with each other, and a connection process of the integrated probe data is executed.
  • the integrated probe data linking process is configured to be executed in substantially the same manner as the processes from step S150 to step S180 in FIG. In this case, the process of replacing the eight pieces of probe data received from one vehicle A shown in the pattern (a) in FIG. 9 with the integrated probe data statistically processed in the above-described step S290 is performed. It is configured. After execution of the process of step S300, the present control ends.
  • the processing control device 18 detects a difference between the current map data and the integrated probe data by using the result of the alignment between the integrated probe data and the map data.
  • this different portion is referred to as a “map change point”.
  • the map change point indicates a portion that may be different between the current map data and the real world. For example, a map change point indicates that a feature that has been relocated, newly constructed, or removed exists.
  • the processing control device 18 generates, for example, map data in which the current map data reflects the map change point. According to such a configuration, the processing control device 18 can update the map data based on the probe data sequentially uploaded from a plurality of vehicles.
  • the processing control device 18 can generate and update the traveling trajectory model by connecting and statistically processing a plurality of probe data. That is, when a change occurs in a feature or road shape existing along a road, a traveling trajectory model corresponding to the change can be quickly generated and distributed.
  • the travel trajectories included in the probe data are connected together with the connection processing of the probe data, and the travel trajectories included in the respective connected probe data are integrated by statistical processing to form a travel trajectory model. .
  • the configuration of the second embodiment other than the above is the same as the configuration of the first embodiment. Therefore, also in the second embodiment, substantially the same operation and effect as in the first embodiment can be obtained.
  • one probe data for a plurality of vehicles received from a plurality of vehicles is connected, and further, integrated probe data obtained by statistically processing the plurality of probe data is combined with map data. It is configured to perform the alignment process and execute the linking process of the integrated probe data. Therefore, the positioning and linking of the integrated probe data can be easily and reliably performed.
  • the probe data received from one vehicle A is configured to execute the connection processing of the probe data, but is not limited thereto. Instead, the same linking process may be performed on integrated probe data created by statistical processing. In this case, in each of the flowcharts of FIG. 7, FIG. 10, and FIG. 12, it is preferable to perform control so that the probe data received from one vehicle A is replaced with integrated probe data to execute each process.
  • control unit and the technique according to the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. May be.
  • control unit and the technique described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method according to the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured with one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

A map generation device according to the present invention is provided with a reception unit 16 that receives probe data transmitted from at least one vehicle and indicating a ground object detected to be present around the vehicle by a peripheral monitoring sensor mounted on the vehicle, and that generates or updates map data on the basis of the probe data received by the reception unit. The map generation device is further provided with: feature determination units 11, 18 that determine whether the probe data includes other probe data or sufficient information that is characteristic and that is usable for alignment with the map data; and linkage units 11, 18 that link target probe data having insufficient amount of characteristic information with probe data immediately before or after the target probe data among a series of probe data acquired through the same traveling motion of the same vehicle.

Description

地図生成装置及び地図生成方法Map generation device and map generation method 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年8月31日に出願された日本出願番号2018-163071号および2019年7月29日に出願された日本出願番号2019-138796号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-163071 filed on Aug. 31, 2018 and Japanese Application No. 2019-138796 filed on Jul. 29, 2019, the contents of which are hereby incorporated by reference. Invite.
 本開示は、複数の車両で生成されるプローブデータを用いて地図データを生成する地図生成装置及び地図生成方法に関する。 The present disclosure relates to a map generation device and a map generation method for generating map data using probe data generated by a plurality of vehicles.
 車載ナビゲーション装置や車載運転支援装置などに利用される地図データの生成方法として、例えば特許文献1に記載された技術が知られている。この特許文献1に記載された構成では、車両に搭載された車載装置において取得されたプローブデータを車載装置からデータセンタに送信し、データセンタにおいては、受信した複数のプローブデータから統計的手法を用いて区画線、例えば白線等の情報や標識情報を生成するように構成されている。 As a method for generating map data used in an in-vehicle navigation device or an in-vehicle driving support device, for example, a technique described in Patent Document 1 is known. In the configuration described in Patent Literature 1, probe data acquired in an in-vehicle device mounted on a vehicle is transmitted from the in-vehicle device to a data center, and the data center performs a statistical method from a plurality of received probe data. It is configured to generate information such as a lane marking, for example, a white line, and sign information by using the information.
米国特許公開2018/0023961US Patent Publication 2018/0023961
 地図データを生成または更新するに際しては、プローブデータと地図データとを位置合わせする処理が必要であるが、上記特許文献1には、プローブデータの位置合わせの処理については、ほとんど記載がない。尚、プローブデータに含まれているGPSデータを用いて位置合わせを行なう方法があると記載されている。しかし、従来より知られているGPSデータには、大きな誤差が含まれているので、位置合わせにGPSデータを用いると、適切な位置合わせを行なうことができないおそれがある。
 本開示の目的は、プローブデータの位置合わせを容易に行なうことができる地図生成装置及び地図生成方法を提供することにある。
When generating or updating the map data, a process of aligning the probe data with the map data is necessary. However, Patent Document 1 hardly describes the process of aligning the probe data. It is described that there is a method for performing positioning using GPS data included in the probe data. However, since conventionally known GPS data contains a large error, if GPS data is used for positioning, it may not be possible to perform proper positioning.
An object of the present disclosure is to provide a map generation device and a map generation method that can easily perform positioning of probe data.
 本開示の一態様において、地図生成装置は、少なくとも1つの車両から送信された、前記車両に搭載された周辺監視センサにより検出された車両周辺に存在する地物を示すプローブデータを受信する受信部を備え、前記受信部にて受信した前記プローブデータに基づいて地図データを作成または更新する地図生成装置であって、前記プローブデータに、他のプローブデータまたは地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断する特徴判断部と、特徴的な情報の量が不十分な対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の前記対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせる連結部とを備えた。 In one embodiment of the present disclosure, a map generation device receives a probe data transmitted from at least one vehicle and indicating a feature existing around the vehicle detected by a surrounding monitoring sensor mounted on the vehicle. A map generation device that creates or updates map data based on the probe data received by the receiving unit, and that can be used for positioning the probe data with other probe data or map data. A characteristic determining unit that determines whether or not characteristic information is sufficiently included; and a target probe data having an insufficient amount of characteristic information is converted into a continuous probe data obtained by the same traveling of the same vehicle. And a connection unit for connecting to the probe data one before or one after the target probe data.
 本開示の一態様において、地図生成方法は、車両に搭載された周辺監視センサにより検出された車両周辺に存在する地物を示すプローブデータに基づいて地図データを作成または更新するための、少なくとも1つのプロセッサを用いて実行される地図生成方法であって、少なくとも1つの前記車両から前記プローブデータを受信することと、前記プローブデータに、他のプローブデータまたは地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断することと、特徴的な情報の量が不十分な対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の前記対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせることと、を含む地図生成方法である。 In one aspect of the present disclosure, the map generation method includes at least one map data generation or update method for generating or updating map data based on probe data indicating a feature existing around the vehicle detected by a surrounding monitoring sensor mounted on the vehicle. A map generation method performed using one processor, the method comprising receiving the probe data from at least one of the vehicles, and aligning the probe data with other probe data or map data. It is determined whether or not the characteristic information is sufficiently included, and the target probe data having an insufficient amount of the characteristic information is included in successive probe data obtained by the same traveling of the same vehicle. And joining the probe data to the probe data one before or one after the target probe data.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態を示すもので、システムの全体構成を模式的に示す図であり、 図2は、車載装置の構成を概略的に示すブロック図であり、 図3は、車載装置の制御部のブロック図であり、 図4は、データセンタの要部構成を概略的に示すブロック図であり、 図5は、データセンタの処理制御装置のブロック図であり、 図6は、プローブデータと地図データとの位置合わせ処理及びプローブデータの連結処理を説明する図(その1)であり、 図7は、プローブデータの連結制御の一例を示すフローチャートであり、 図8は、プローブデータと地図データとの位置合わせ処理及びプローブデータの連結処理を説明する図(その2)であり、 図9は、プローブデータと地図データとの位置合わせ処理及びプローブデータの連結処理を説明する図(その3)であり、 図10は、プローブデータの連結制御の他例を示すフローチャートであり、 図11は、検出対象ランドマークを説明する図であり、 図12は、第2実施形態を示すプローブデータの連結制御の一例を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 illustrates the first embodiment, and is a diagram schematically illustrating an entire configuration of a system. FIG. 2 is a block diagram schematically showing a configuration of the vehicle-mounted device. FIG. 3 is a block diagram of a control unit of the in-vehicle device; FIG. 4 is a block diagram schematically showing a main configuration of the data center. FIG. 5 is a block diagram of a processing control device of the data center. FIG. 6 is a diagram (part 1) illustrating a process of aligning probe data with map data and a process of linking probe data. FIG. 7 is a flowchart illustrating an example of probe data connection control; FIG. 8 is a diagram (part 2) for explaining the alignment process between the probe data and the map data and the linking process of the probe data. FIG. 9 is a diagram (part 3) for explaining the alignment process between the probe data and the map data and the connection process of the probe data. FIG. 10 is a flowchart illustrating another example of the connection control of the probe data. FIG. 11 is a diagram illustrating a detection target landmark. FIG. 12 is a flowchart illustrating an example of probe data connection control according to the second embodiment.
 (第1実施形態)
 以下、本開示を具体化した第1実施形態について、図1から図10を参照しながら説明する。図1は、本実施形態に係る地図生成システム1の全体構成を概略的に示している。ここで、地図生成システム1は、プローブデータを収集、分析し、地図データを生成または更新するデータセンタ2と、道路上を走行する複数台の車両A群とから構成される。具体的には、車両A群は、乗用車やトラック等、一般の自動車全体を含んでいる。
(1st Embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 10. FIG. 1 schematically shows the entire configuration of a map generation system 1 according to the present embodiment. Here, the map generation system 1 includes a data center 2 that collects and analyzes probe data and generates or updates map data, and a group of a plurality of vehicles A traveling on a road. Specifically, the vehicle A group includes the entire general automobile such as a passenger car and a truck.
 各車両Aには、地図生成システム1を実現するための車載装置3が搭載されている。図2に示すように、車載装置3は、車載カメラ4、位置検出部5、各種の車載センサ6、地図データベース7、通信部8、記憶部9、操作部10、制御部11を備えている。そのうち車載カメラ4は、例えば車両Aの前部に設けられ、少なくとも走行方向前方の道路状況を撮影するように構成されている。車載カメラ4は、周辺監視センサとしての機能を有する。 Each vehicle A is equipped with an in-vehicle device 3 for realizing the map generation system 1. As shown in FIG. 2, the in-vehicle apparatus 3 includes an in-vehicle camera 4, a position detection unit 5, various on-vehicle sensors 6, a map database 7, a communication unit 8, a storage unit 9, an operation unit 10, and a control unit 11. . The in-vehicle camera 4 is provided at, for example, a front portion of the vehicle A, and is configured to photograph at least a road condition ahead in the traveling direction. The in-vehicle camera 4 has a function as a periphery monitoring sensor.
 位置検出部5は、例えばGNSS(Global Navigation Satellite System)受信機の受信データ等に基づいて、自車位置を検出する機能を有する。各種の車載センサ6は、自車の速度情報や走行方向つまり向きの情報等を検出するものである。尚、車載カメラ4は、車両Aの前後及び左右に設けることができる。また、車載カメラ4の種類としては、広角カメラを採用することができ、特に前方カメラについては2眼式以上のカメラを採用することが望ましい。 The position detecting unit 5 has a function of detecting the position of the vehicle based on, for example, data received by a GNSS (Global Navigation Satellite System) receiver. The various in-vehicle sensors 6 detect speed information of the own vehicle, information of a traveling direction, that is, information of a direction, and the like. In addition, the vehicle-mounted camera 4 can be provided in front of and behind the vehicle A, and left and right. Further, as the type of the on-vehicle camera 4, a wide-angle camera can be adopted, and it is particularly desirable to adopt a twin-lens camera or more as the front camera.
 地図データベース7は、例えば全国の地図データを記憶している。例えば、地図データは、道路網を示す道路データと、道路沿いに存在する地物の位置及び種別を示す地物データと、を含む。地物データには、ランドマーク情報とレーンマーク情報が含まれる。ランドマーク情報には、道路沿いに存在するランドマークの種別や、位置座標、色、大きさ、形状等が含まれる。ランドマークの種別としては、看板、信号、標識、ポール、横断歩道、例えば停止線などの路面標示、マンホール等を採用可能である。レーンマーク情報には、レーンマークの位置座標や、レーンマークが実線、破線、ボッツドッツのいずれのパターンによって実現されているかを示す情報が含まれる。レーンマークの位置は、レーンマークが形成されている地点の座標群つまり点群として表現されている。尚、他の態様としてレーンマークは、多項式表現されていてもよい。レーンマーク情報は、多項式表現された線群でもよい。また、地図データは、走行軌道モデルを含んでいてもよい。走行軌道モデルは、複数の車両の走行軌跡を統計的に統合することで生成された軌道データである。走行軌道モデルは、例えば車線ごとの走行軌跡を平均化したものである。走行軌道モデルは、自動運転時の基準となる走行軌道を示すデータに相当する。 The map database 7 stores, for example, map data for the whole country. For example, the map data includes road data indicating a road network and feature data indicating the position and type of a feature existing along the road. The feature data includes landmark information and lane mark information. The landmark information includes the type of landmark existing along the road, position coordinates, color, size, shape, and the like. As the types of landmarks, signs, signals, signs, poles, pedestrian crossings, road markings such as stop lines, manholes, and the like can be adopted. The lane mark information includes information indicating the position coordinates of the lane mark and which pattern of the lane mark is realized by a solid line, a dashed line, or a Bottom Dots pattern. The position of the lane mark is expressed as a group of coordinates of a point where the lane mark is formed, that is, a group of points. Note that, as another aspect, the lane mark may be represented by a polynomial expression. The lane mark information may be a polynomial-expressed line group. Further, the map data may include a traveling trajectory model. The traveling trajectory model is trajectory data generated by statistically integrating traveling trajectories of a plurality of vehicles. The traveling trajectory model is, for example, an average of traveling trajectories for each lane. The traveling trajectory model corresponds to data indicating a traveling trajectory that is a reference during automatic driving.
 通信部8は、例えば移動体通信網を介して或いは路車間通信等を用いて、前記データセンタ2との間での通信を行うものである。記憶部9には、前記車載カメラ4が撮影したカメラ画像データが、その時の自車位置や走行速度、走行方向、撮影日時等のデータを付されて記憶されると共に、上記カメラ画像データに基づいて生成されたプローブデータが記憶される。また、記憶部9には、種々のデータやプログラム等が記憶されるようになっている。尚、プローブデータの詳細については、後述する。操作部10は、図示しないタッチパネルやスイッチや表示部等を有し、車両Aのユーザである例えばドライバにより必要な操作がなされる。 The communication unit 8 communicates with the data center 2 via a mobile communication network or using road-to-vehicle communication, for example. The storage unit 9 stores the camera image data taken by the on-board camera 4 with data such as the current position of the vehicle, the traveling speed, the traveling direction, the photographing date and time, and based on the camera image data. The generated probe data is stored. The storage unit 9 stores various data, programs, and the like. The details of the probe data will be described later. The operation unit 10 includes a touch panel, a switch, a display unit, and the like (not shown), and necessary operations are performed by a user of the vehicle A, for example, a driver.
 制御部11は、コンピュータを含んで構成され、車載装置3全体を制御する機能を有する。この場合、制御部11は、車両Aの走行中に、前記車載カメラ4により、常時前方の道路状況を撮影し、そのカメラ画像データを自車位置データ等と共に前記記憶部9に記憶させる。そして、制御部11は、カメラ画像データを画像認識処理することにより道路標識の情報や道路区画線、即ち、道路の白線等の情報等を有するプローブデータを生成して前記記憶部9に記憶させる。カメラ画像データは、周辺監視センサ4により検出されたデータを構成している。また、制御部11は、定期的に、例えば1日1回ないし数回程度、或いは、所定時間経過する毎に、例えば1秒ないし数秒経過する毎に、または、例えば数百ミリ秒経過する毎に、前記通信部8により、前記データセンタ2に対して、記憶部9に記憶されているプローブデータを送信するように構成されている。 The control unit 11 includes a computer and has a function of controlling the entire on-vehicle device 3. In this case, while the vehicle A is traveling, the control unit 11 constantly captures a road condition ahead by the vehicle-mounted camera 4 and stores the camera image data in the storage unit 9 together with the vehicle position data and the like. Then, the control unit 11 generates probe data having information on road signs and road division lines, that is, information on white lines of the road, etc. by performing image recognition processing on the camera image data, and stores the probe data in the storage unit 9. . The camera image data constitutes data detected by the periphery monitoring sensor 4. Further, the control unit 11 periodically, for example, once to several times a day, or every time a predetermined time elapses, for example, every one second to several seconds, or every time, for example, several hundred milliseconds Further, the communication unit 8 is configured to transmit the probe data stored in the storage unit 9 to the data center 2.
 制御部11は、図3に示すように、位置情報受信部12と、画像処理部13と、プローブデータ生成部14と、プローブデータ送信部15とを有する。位置情報受信部12は、位置検出部5からの位置情報、即ち、GNSS信号を受信し、このGNSS信号に基づいて車両の現在位置情報、即ち、自車位置情報を取得し、記憶部9に記憶する。画像処理部13は、車載カメラ4により撮影され記憶部9に記憶されたカメラ画像データを画像認識処理する。プローブデータ生成部14は、画像処理部13による画像認識結果に基づいてプローブデータを生成し、記憶部9に記憶する。プローブデータ送信部15は、記憶部9に記憶されているプローブデータを通信部8を介してデータセンタ2へ送信する。 The control unit 11 includes a position information receiving unit 12, an image processing unit 13, a probe data generating unit 14, and a probe data transmitting unit 15, as shown in FIG. The position information receiving unit 12 receives the position information from the position detecting unit 5, that is, the GNSS signal, and acquires the current position information of the vehicle, that is, the own vehicle position information based on the GNSS signal. Remember. The image processing unit 13 performs image recognition processing on camera image data captured by the vehicle-mounted camera 4 and stored in the storage unit 9. The probe data generator 14 generates probe data based on the image recognition result of the image processor 13 and stores the probe data in the storage unit 9. The probe data transmission unit 15 transmits the probe data stored in the storage unit 9 to the data center 2 via the communication unit 8.
 一方、データセンタ2は、図4に示すように、通信部16、入力操作部17、処理制御装置18、記憶部19、地図データベース20を備えている。そのうちの通信部16は、各車両Aの通信部8との間の通信により、前記プローブデータを受信する。通信部16は、受信部としての機能を有する。前記入力操作部17は、図示しないキーボードやマウスやスイッチや表示部等を有し、オペレータが必要な入力操作を行うためのものである。 On the other hand, the data center 2 includes a communication unit 16, an input operation unit 17, a processing control unit 18, a storage unit 19, and a map database 20, as shown in FIG. The communication unit 16 receives the probe data through communication with the communication unit 8 of each vehicle A. The communication unit 16 has a function as a receiving unit. The input operation unit 17 has a keyboard, a mouse, a switch, a display unit, and the like (not shown), and is used by an operator to perform necessary input operations.
 処理制御装置18は、コンピュータを主体として構成され、データセンタ2全体の制御を行う機能、即ち、制御部としての機能を有する。これと共に、処理制御装置18は、地図データを生成または更新する処理等を実行する。記憶部19には、各車両Aから送信されたプローブデータが収集されて記憶される。このとき、例えば日本全国を走行する一般の車両A群から、膨大なプローブデータが収集され、記憶されるように構成されている。地図データベース20には、生成された高精度の地図データが記憶される。 The processing control device 18 is mainly configured by a computer, and has a function of controlling the entire data center 2, that is, a function as a control unit. At the same time, the processing control device 18 executes processing for generating or updating map data. The storage unit 19 collects and stores probe data transmitted from each vehicle A. At this time, a huge amount of probe data is collected and stored, for example, from a group of general vehicles A traveling all over Japan. The map database 20 stores the generated high-precision map data.
 また、処理制御装置18が実行する地図データの生成処理においては、プローブデータを地図データに位置合わせする処理を実行する。この場合、特徴的な情報、例えば道路区画線の形状を示す情報や道路標識の情報等がプローブデータに含まれていないときには、そのプローブデータを位置合わせすることが困難である。そこで、本実施形態では、上記特徴的な情報を含まないプローブデータ、即ち、位置合わせが困難であるプローブデータを、上記特徴的な情報を含むプローブデータ、即ち、位置合わせできるプローブデータに、つなぎ合わせて連結する処理、即ち、連結プローブデータを作成する処理を実行し、位置合わせが困難であるプローブデータを位置合わせできるプローブデータに変換するように構成されている。上記連結プローブデータは、記憶部19に記憶される。上記連結処理の詳細については、後述する。処理制御装置18は、特徴判断部及び連結部としての各機能を有する。 {Circle around (2)} In the map data generation processing executed by the processing control device 18, processing for aligning probe data with map data is executed. In this case, when characteristic information such as information indicating the shape of a road lane marking and information on a road sign is not included in the probe data, it is difficult to align the probe data. Therefore, in the present embodiment, probe data that does not include the characteristic information, that is, probe data that is difficult to align, is connected to probe data that includes the characteristic information, that is, probe data that can be aligned. It is configured to perform a process of joining together, that is, a process of creating connected probe data, and convert probe data that is difficult to align into probe data that can be aligned. The connection probe data is stored in the storage unit 19. Details of the connection processing will be described later. The processing control device 18 has each function as a feature determination unit and a connection unit.
 処理制御装置18は、図5に示すように、プローブデータ受信部21と、プローブデータ連結処理部22と、地図データ生成部23と、地図データ配信部24とを有する。プローブデータ受信部21は、通信部16を介して各車両Aから送信されたプローブデータを受信し、記憶部19に記憶する。プローブデータ連結処理部22は、記憶部19に記憶されたプローブデータについて、特徴的な情報を含むか否かの検出処理を実行し、特徴的な情報を含まないプローブデータを、特徴的な情報を含むプローブデータに、つなぎ合わせて連結する処理を実行し、連結プローブデータを記憶部19に記憶する。地図データ生成部23は、記憶部19に記憶されたプローブデータや連結プローブデータに基づいて地図データを生成したり、地図データを更新したりする。生成または更新された地図データは、地図データベース20に記憶される。地図データ配信部24は、通信部16を介して上記生成または更新された地図データを各車両Aに送信する。 5, the processing control device 18 includes a probe data receiving unit 21, a probe data linking processing unit 22, a map data generation unit 23, and a map data distribution unit 24, as shown in FIG. The probe data receiving unit 21 receives the probe data transmitted from each vehicle A via the communication unit 16 and stores the probe data in the storage unit 19. The probe data connection processing unit 22 performs a detection process of determining whether or not the probe data stored in the storage unit 19 includes characteristic information, and converts the probe data that does not include characteristic information into characteristic information. Then, a process of connecting and linking to the probe data including is performed, and the linked probe data is stored in the storage unit 19. The map data generation unit 23 generates map data based on the probe data and the connected probe data stored in the storage unit 19, and updates the map data. The generated or updated map data is stored in the map database 20. The map data distribution unit 24 transmits the generated or updated map data to each vehicle A via the communication unit 16.
 さて、各車両Aの車載装置3の制御部11においては、車両Aが所定距離走行する毎に、或いは、所定時間が経過する毎に、その間に車載カメラ4により撮影されたカメラ画像データを画像認識処理して、プローブデータを生成する処理を実行する。この場合、カメラ画像データを画像認識する処理及びプローブデータを生成する処理は、例えば100ミリ秒毎に実行されるように設定されている。そして、制御部11は、例えば400ミリ秒分のプローブデータをまとめてデータセンタ2に送信するように、即ち、例えば400ミリ秒経過する毎にプローブデータをデータセンタ2に送信するように構成されている。また、プローブデータとしては、例えば、道路の区画線形状のデータ、この場合、道路の区画線の線種や色等の情報を含むデータと、道路標識や看板の位置のデータ、この場合、道路標識や看板の大きさや種別や意味や内容等の情報を含むデータと、電柱等のポールの位置のデータ、この場合、電柱等のポールの太さや高さや種別等の情報を含むデータと、停止線や横断歩道等の路面標示のデータと、信号機の位置のデータ、この場合、信号機の大きさや種別等の情報を含むデータ等の各種のデータが含まれたプローブデータが生成される。また、プローブデータには、車両Aの移動軌跡を示す走行軌跡データが含まれていてもよい。即ち、上記各種のデータの中の少なくとも1つ以上のデータが、カメラ画像データの画像認識処理によって認識され、認識結果のデータを含めてプローブデータとして構成されるようになっている。尚、移動軌跡は、自車両の位置座標を時系列に並べたデータに相当する。自車両の位置情報は例えばGPS情報をもとに算出されればよい。もちろん、デッドレコニングや、ローカライズによって特定されてもよい。ここでのローカライズとは、車載カメラ4にて撮像されたランドマークと自車両との相対的な位置情報、例えば両者間の距離を示す情報と、地図データに登録されている当該ランドマークの座標と、に基づいて自車両の位置を特定する処理を指す。車載カメラ4にて撮像されたランドマークの自車両に対する相対位置は、車載カメラ4の撮像画像を解析することで特定することができる。 The control unit 11 of the vehicle-mounted device 3 of each vehicle A converts the camera image data captured by the vehicle-mounted camera 4 during each time the vehicle A travels a predetermined distance or every time a predetermined time elapses. A recognition process is performed to execute a process of generating probe data. In this case, the process of recognizing the camera image data and the process of generating the probe data are set to be executed, for example, every 100 milliseconds. The control unit 11 is configured to collectively transmit, for example, 400 ms of probe data to the data center 2, that is, to transmit the probe data to the data center 2 every 400 ms, for example. ing. Further, as the probe data, for example, data of a lane marking shape of a road, in this case, data including information such as a line type and a color of a lane marking, and data of a position of a road sign or a sign, Data including information such as the size, type, meaning, and content of signs and signboards, and data on the position of poles such as telephone poles, in this case, data including information such as the thickness, height, and type of poles such as telephone poles, and stopping Probe data including various data such as data of a road marking such as a line and a pedestrian crossing and data of a position of a traffic signal, in this case, data including information such as a size and a type of the traffic signal, is generated. Further, the probe data may include travel locus data indicating the travel locus of the vehicle A. That is, at least one or more of the various types of data is recognized by the image recognition processing of the camera image data, and is configured as probe data including the data of the recognition result. The movement locus corresponds to data in which the position coordinates of the own vehicle are arranged in time series. The position information of the own vehicle may be calculated based on, for example, GPS information. Of course, it may be specified by dead reckoning or localization. Here, the localization means relative position information between the landmark imaged by the on-board camera 4 and the own vehicle, for example, information indicating the distance between the landmark and the coordinates of the landmark registered in the map data. And the process of specifying the position of the own vehicle based on The relative position of the landmark imaged by the vehicle-mounted camera 4 with respect to the own vehicle can be specified by analyzing the image captured by the vehicle-mounted camera 4.
 また、本実施形態では、車載カメラ4により撮影されたカメラ画像データに基づいてプローブデータを生成するように構成したが、これに限られるものではなく、車両に周辺監視センサとして例えばミリ波レーダやライダー、特にはSPADライダー等を搭載し、これらミリ波レーダやライダーによる検出結果に基づいてプローブデータを生成するように構成しても良い。この場合、カメラ画像データの画像認識処理と、ミリ波レーダやライダーによる検出結果を併用してプローブデータを生成しても良いし、ミリ波レーダやライダーによる検出結果だけに基づいてプローブデータを生成しても良い。ミリ波レーダやライダーは、周辺監視センサとしての機能を有する。ミリ波レーダやライダーによる検出結果は、周辺監視センサ4により検出されたデータを構成している。周辺監視センサとしては、車載カメラ、ミリ波レーダ、ライダー等、車両周辺の地物を検出可能な多様なセンサを採用可能である。周辺監視センサとしては、車両後方や側方に検知範囲を形成するものも採用可能である。制御部11は、複数の種類の周辺監視センサを組み合わせて用いてプローブデータを生成するように構成されていてもよい。例えば周辺監視センサとして車載カメラ4とミリ波レーダを併用する構成においては、ランドマークとの距離の検出精度を高めることができる。また、夜間など車載カメラ4によるランドマークの認識精度が劣化する環境下においても、ミリ波レーダの検出結果を相補的に用いることにより、ランドマークの認識率を担保することが可能となる。車載カメラ4とライダーとを併用する構成においても同様である。 In the present embodiment, the probe data is generated based on the camera image data captured by the on-board camera 4. However, the present invention is not limited to this. For example, a millimeter wave radar or A rider, in particular, a SPAD rider or the like may be mounted, and probe data may be generated based on a detection result by the millimeter wave radar or the rider. In this case, the probe data may be generated by using both the image recognition processing of the camera image data and the detection result by the millimeter wave radar or lidar, or the probe data may be generated based only on the detection result by the millimeter wave radar or lidar. You may. Millimeter-wave radars and riders have a function as a periphery monitoring sensor. The detection results by the millimeter-wave radar and the lidar constitute data detected by the surrounding monitoring sensor 4. As the peripheral monitoring sensor, various sensors that can detect a feature around the vehicle, such as a vehicle-mounted camera, a millimeter-wave radar, and a rider, can be used. As the periphery monitoring sensor, a sensor that forms a detection range behind or on the side of the vehicle can also be used. The control unit 11 may be configured to generate probe data using a combination of a plurality of types of peripheral monitoring sensors. For example, in a configuration in which the in-vehicle camera 4 and the millimeter wave radar are used in combination as the peripheral monitoring sensor, the detection accuracy of the distance from the landmark can be improved. Further, even in an environment in which the recognition accuracy of landmarks by the in-vehicle camera 4 is deteriorated, such as at night, the recognition rate of landmarks can be secured by using the detection results of the millimeter wave radar complementarily. The same applies to a configuration in which the in-vehicle camera 4 and the rider are used together.
 ここで、プローブデータを作成する際に、車載カメラ4やミリ波レーダやライダー等で検出する検出対象、即ち、検出対象ランドマークについて、図11を参照して説明する。図11に示すように、検出対象が標識の場合、標識の形状、例えば円形、四角、ひし形、三角形、八角形等を検出すると共に、必要に応じて標識の意味等を検出するように構成されている。 Here, the detection target, that is, the detection target landmark detected by the vehicle-mounted camera 4, the millimeter-wave radar, the lidar, or the like when creating the probe data will be described with reference to FIG. As shown in FIG. 11, when the detection target is a sign, it is configured to detect the shape of the sign, for example, a circle, a square, a diamond, a triangle, an octagon, and the like, and to detect the meaning of the sign if necessary. ing.
 また、検出対象が看板の場合、例えば青系、黄色系、緑系の看板を検出すると共に、必要に応じて看板の文字や図柄等の意味等を検出するように構成されている。検出対象が路面標示の場合、路面に描画された例えば矢印、ひし形、停止、速度、停止線、横断歩道や、白線等を検出するように構成されている。検出対象が信号の場合、例えば3灯式の信号等を検出するように構成されている。検出対象がポール群の場合、例えば電柱や街灯等を検出するように構成されている。 In addition, when the detection target is a signboard, the signboard is configured to detect, for example, a blue, yellow, or green signboard and, if necessary, to detect the meaning of the sign or character on the signboard. When the detection target is a road marking, for example, an arrow, a diamond, a stop, a speed, a stop line, a pedestrian crossing, a white line, or the like drawn on the road is detected. When the detection target is a signal, for example, it is configured to detect a three-lamp signal or the like. When the detection target is a group of poles, for example, it is configured to detect a telephone pole, a streetlight, and the like.
 そして、各プローブデータには、車両Aの車両IDとタイムスタンプ、即ち、プローブデータの作成順序の時系列がわかるデータの情報が付け加えられている。尚、タイムスタンプの情報の代わりに通し番号の情報を付け加えても良い。これにより、データセンタ2に集められたプローブデータの中から、同一車両の同一走行、即ち、エンジンの始動から停止までの走行において連続するプローブデータを特定して抽出することが可能なように構成されている。本実施形態では、同一車両の同一走行のプローブデータについて、連結処理を実行するように構成されている。 {Circle around (4)} Each probe data is added with a vehicle ID and a time stamp of the vehicle A, that is, data information that indicates the time series of the order in which the probe data is created. Note that serial number information may be added instead of the time stamp information. This makes it possible to specify and extract continuous probe data in the same traveling of the same vehicle, that is, traveling from the start to the stop of the engine, from the probe data collected in the data center 2. Have been. In the present embodiment, the connection processing is performed on the probe data of the same traveling of the same vehicle.
 図6のパターン(a)に、ある1つの車両Aのある1つの走行で生成されたプローブデータの一例を示す。図6のパターン(a)中における縦線は、プローブデータの境界を示しており、この例では、例えば8個のプローブデータP1、P2、・・・P8が示されており、これらのプローブデータがデータセンタ2へ送信されるようになっている。 パ タ ー ン Pattern (a) in FIG. 6 shows an example of probe data generated in one traveling of one vehicle A. The vertical lines in the pattern (a) in FIG. 6 indicate the boundaries of the probe data. In this example, for example, eight pieces of probe data P1, P2,... Is transmitted to the data center 2.
 そして、データセンタ2の処理制御装置18は、車両Aから受信したプローブデータP1、P2、・・・P8と地図データとを位置合わせする処理を行なう。図6のパターン(b)に、8個のプローブデータP1、P2、・・・P8に対応する地図データの8個のデータブロックM1、M2、・・・M8を示す。この場合、8個のプローブデータP1、P2、・・・P8の中の両端を除く6個のプローブデータP2、・・・P7と、地図データの6個のデータブロックM2、・・・M7とを位置合わせする。 The processing control device 18 of the data center 2 performs a process of aligning the probe data P1, P2,... P8 received from the vehicle A with the map data. FIG. 6B shows eight data blocks M1, M2,... M8 of map data corresponding to the eight probe data P1, P2,. In this case, six probe data P2,... P7 excluding both ends of the eight probe data P1, P2,... P8, and six data blocks M2,. Align.
 上記位置合わせ処理においては、プローブデータP2、P3、P7については、特徴的な情報、例えば道路の区画線形状、具体的には、斜めに曲がった区画線形状のデータが含まれているので、対応する地図データのデータブロックM2、M3、M7と比較すること、即ち、位置合わせすることができる。 In the above-described alignment process, since the probe data P2, P3, and P7 include characteristic information, for example, data of a lane marking, specifically, data of an oblique lane marking, It can be compared with the data blocks M2, M3, M7 of the corresponding map data, that is, aligned.
 これに対して、プローブデータP4、P5、P6は、特徴的な情報のデータが含まれていないので、具体的には、道路の区画線形状が真っ直ぐで各プローブデータP4、P5、P6のいずれであるかを判別できないので、対応する地図データのデータブロックM4、M5、M6と比較すること、即ち、位置合わせすることが困難である。この場合、GPS情報を用いることにより、位置合わせすることが可能となるが、位置合わせの精度が低いという問題があり、実際には、GPS情報を用いる位置合わせは困難である。 On the other hand, since the probe data P4, P5, and P6 do not include data of characteristic information, specifically, the shape of the lane marking of the road is straight and any one of the probe data P4, P5, and P6 is used. Therefore, it is difficult to compare with the data blocks M4, M5, and M6 of the corresponding map data, that is, to perform alignment. In this case, the positioning can be performed by using the GPS information. However, there is a problem that the accuracy of the positioning is low. In practice, the positioning using the GPS information is difficult.
 そこで、本実施形態では、特徴的な情報を含まないプローブデータP4、P5、P6、即ち、位置合わせが困難であるプローブデータP4、P5、P6を、その前または後の上記特徴的な情報を含むプローブデータP3、P7、即ち、位置合わせできるプローブデータP3、P7に、つなぎ合わせて連結する。例えば、プローブデータP4と、その前の特徴的な情報を含むプローブデータP3をつなぎ合わせて連結プローブデータP3―4を作成する。また、プローブデータP5、P4と、プローブデータP3をつなぎ合わせて連結プローブデータP3-4-5を作成することも好ましい。また、プローブデータP6、P5、P4と、プローブデータP3をつなぎ合わせて連結プローブデータP3-4-5-6を作成しても良い。 Therefore, in the present embodiment, the probe data P4, P5, and P6 that do not include the characteristic information, that is, the probe data P4, P5, and P6 that are difficult to position are converted into the characteristic information before or after the characteristic data. The probe data P3 and P7 that are included, that is, the probe data P3 and P7 that can be aligned, are connected and connected. For example, the probe data P4 and the preceding probe data P3 including characteristic information are connected to create the connected probe data P3-4. It is also preferable that the probe data P5, P4 and the probe data P3 are connected to create the connected probe data P3-4-5. Further, the probe data P6, P5, and P4 may be joined to the probe data P3 to create the connected probe data P3-4-5-6.
 また、プローブデータP6と、その後の特徴的な情報を含むプローブデータP7をつなぎ合わせて連結プローブデータP6―7を作成しても良い。また、プローブデータP5、P6と、プローブデータP7をつなぎ合わせて連結プローブデータP5-6-7を作成しても良い。また、プローブデータP4、P5、P6と、プローブデータP7をつなぎ合わせて連結プローブデータP4-5-6-7を作成しても良い。 {Circle around (4)} The probe data P6 may be connected to the probe data P7 including characteristic information thereafter to create the connected probe data P6-7. Further, the probe data P5, P6 and the probe data P7 may be joined to create the connected probe data P5-6-7. Further, the probe data P4, P5, and P6 may be joined with the probe data P7 to create the connected probe data P4-5-6-7.
 図7は、プローブデータ連結処理の一例の制御内容を示すフローチャートである。この図7のフローチャートは、データセンタ2の処理制御装置18による制御の内容を示す。まず、図7のステップS10においては、処理制御装置18は、プローブデータ内に、特徴的な情報例えば道路区画線形状の情報が含まれているかどうか、即ち、プローブデータ内から上記特徴的な情報を検出する処理を行なう。 FIG. 7 is a flowchart showing the control contents of an example of the probe data linking process. The flowchart of FIG. 7 shows the contents of control by the processing control device 18 of the data center 2. First, in step S10 of FIG. 7, the processing control device 18 determines whether characteristic information, for example, information on the shape of a road division line, is included in the probe data. Is performed.
 そして、ステップS20へ進み、プローブデータ内に特徴的な情報が含まれているか否かを判断する。ここで、特徴的な情報が含まれていないときには(NO)、ステップS30へ進み、現在処理中のプローブデータ、即ち、対象プローブデータに対して、同一車両の同一走行のプローブデータのうちの1つ前のプローブデータ、または、1つ後のプローブデータを連結する。 Then, the process proceeds to step S20, and it is determined whether or not characteristic information is included in the probe data. Here, when characteristic information is not included (NO), the process proceeds to step S30, and one of the probe data of the same traveling of the same vehicle with respect to the probe data currently being processed, that is, the target probe data. The previous probe data or the next probe data is linked.
 続いて、ステップS10へ戻り、連結プローブデータに対して、特徴的な情報例えば道路区画線形状の情報が含まれているかどうか、即ち、連結プローブデータ内から上記特徴的な情報を検出する処理を行なう。そして、上述した処理を繰り返し実行する。即ち、連結プローブデータ内に上記特徴的な情報が含まれるようになるまで、プローブデータの連結処理が続けられるようになっている。尚、特徴的な情報が含まれるプローブデータが特定できている場合には、ステップS30において、その特徴的な情報が含まれるプローブデータまで、まとめて、前記対象とするプローブデータに連結するように構成しても良い。 Subsequently, the process returns to step S10 to determine whether characteristic information, for example, information on the shape of a lane marking, is included in the connected probe data, that is, a process of detecting the characteristic information from the connected probe data. Do. Then, the above-described processing is repeatedly executed. That is, the connection processing of the probe data is continued until the characteristic information is included in the connection probe data. If the probe data including the characteristic information has been identified, in step S30, the probe data including the characteristic information is collectively linked to the target probe data. You may comprise.
 また、上記ステップS20において、プローブデータ内または連結プローブデータ内に特徴的な情報が含まれているときには(YES)、プローブデータの連結処理を実行しないで、ステップS40へ進み、次のプローブデータがあるか否かを判断する。ここで、次のプローブデータがあるときには(YES)、ステップS10へ戻り、次のプローブデータに対して上述した処理を繰り返し実行する。また、上記ステップS40において、次のプローブデータがないときには、「NO」へ進み、本制御を終了する。 In step S20, when characteristic information is included in the probe data or the linked probe data (YES), the process proceeds to step S40 without executing the probe data linking process, and the next probe data is It is determined whether or not there is. Here, when there is the next probe data (YES), the process returns to step S10, and the above-described processing is repeatedly performed on the next probe data. In step S40, when there is no next probe data, the process proceeds to “NO” and the present control ends.
 次に、プローブデータ連結処理の他の例、例えば特徴的な情報として道路の区画線形状のデータを用いる場合の他の例を、図8に示す。図8のパターン(a)に、ある1つの車両Aのある1つの走行で生成されたプローブデータの一例を示す。この例では、例えば8個のプローブデータP11、P12、・・・P18が生成されており、これらのプローブデータがデータセンタ2へ送信されるようになっている。 FIG. 8 shows another example of the probe data linking process, for example, a case in which data of a lane marking of a road is used as characteristic information. FIG. 8A shows an example of probe data generated in one traveling of one vehicle A. In this example, for example, eight pieces of probe data P11, P12,... P18 are generated, and these probe data are transmitted to the data center 2.
 そして、データセンタ2の処理制御装置18は、車両Aから受信したプローブデータP11、P12、・・・P18と地図データとを位置合わせする処理を行なう。図8のパターン(b)に、8個のプローブデータP11、P12、・・・P18に対応する地図データの8個のデータブロックM11、M12、・・・M18を示す。この場合、図8に示すように、上記8個のプローブデータP11、P12、・・・P18の中の両端を除く6個のプローブデータP12、・・・P17と、地図データの6個のデータブロックM12、・・・M17とを位置合わせする。 Then, the processing control device 18 of the data center 2 performs a process of aligning the probe data P11, P12,... P18 received from the vehicle A with the map data. The pattern (b) of FIG. 8 shows eight data blocks M11, M12,... M18 of map data corresponding to the eight probe data P11, P12,. In this case, as shown in FIG. 8, six probe data P12,... P17 excluding both ends of the eight probe data P11, P12,. Blocks M12,... M17 are aligned.
 上記位置合わせ処理においては、プローブデータP12、P13は、特徴的な情報、例えば道路の区画線形状、具体的には、斜めに曲がった区画線形状のデータが含まれているので、対応する地図データのデータブロックM12、M13と比較すること、即ち、位置合わせすることができる。 In the above-described alignment process, the probe data P12 and P13 include characteristic information, for example, data of a lane marking shape of a road, specifically, data of a lane marking lane shape. The data can be compared with the data blocks M12 and M13, that is, the data can be aligned.
 そして、プローブデータP14、P15は、特徴的な情報のデータが含まれていないので、具体的には、道路の区画線形状が真っ直ぐで区別できないので、対応する地図データのデータブロックM14、M15と比較すること、即ち、位置合わせすることが困難である。 Since the probe data P14 and P15 do not include data of characteristic information, specifically, since the lane markings of the road are straight and indistinguishable, the data blocks M14 and M15 of the corresponding map data are not included. It is difficult to compare, that is, align.
 ここで、プローブデータP16、P17は、道路の区画線形状に特徴的な情報を含んでいる。具体的には、通行禁止の路面標示のデータを含んでいる。しかし、この特徴的な情報は、対応する地図データのデータブロックM16、M17に存在しない。即ち、上記路面標示のデータは、現在の地図データには存在しない新規のデータであり、更新すべきデータである。そのため、プローブデータP16、P17は、それぞれ単独では、地図データのデータブロックM16、M17と比較すること、即ち、位置合わせすることが困難である。この場合、プローブデータP16、P17の上記特徴的な情報は、位置合わせするために利用可能な特徴的な情報ではなく、プローブデータには、地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれていないと判断することができる。尚、特徴的な情報が十分に含まれていない状態とは、例えば、特徴的な情報が1個や2個など、3個未満である場合を指す。また、特徴的な情報が含まれていない場合、つまり、特徴的な情報が0個である場合も含まれる。 Here, the probe data P16 and P17 include information characteristic of the lane marking of the road. Specifically, it includes data of road markings for which traffic is prohibited. However, this characteristic information does not exist in the data blocks M16 and M17 of the corresponding map data. That is, the road marking data is new data that does not exist in the current map data, and is data to be updated. Therefore, it is difficult to compare the probe data P16 and P17 with the data blocks M16 and M17 of the map data alone, that is, to align the probe data P16 and P17. In this case, the characteristic information of the probe data P16 and P17 is not characteristic information that can be used for alignment, but the probe data includes characteristic information that can be used for alignment with map data. Can not be determined to be sufficiently contained. The state where the characteristic information is not sufficiently included indicates a case where the characteristic information is less than three, such as one or two. In addition, the case where the characteristic information is not included, that is, the case where the characteristic information is zero is also included.
 本実施形態では、特徴的な情報を含まず位置合わせが困難であるプローブデータP14、P15と、特徴的な情報を含むが位置合わせが困難であるプローブデータ、即ち、特徴的な情報の量が不十分なプローブデータP16、P17とを、その前または後の位置合わせするために利用可能な特徴的な情報を含むプローブデータ、即ち、位置合わせできるプローブデータP13に、つなぎ合わせて連結する。 In the present embodiment, the probe data P14 and P15 that do not include characteristic information and are difficult to position, and the probe data that includes characteristic information but are difficult to position, that is, the amount of characteristic information Insufficient probe data P16 and P17 are connected and linked to probe data including characteristic information that can be used before or after alignment, that is, probe data P13 that can be aligned.
 例えば、プローブデータP14、P15、P16、P17を全てつなぎ合わせて連結し、更に、これらつなぎ合わせた4個のプローブデータP14、P15、P16、P17の前の特徴的な情報を含み位置合わせできるプローブデータP13に、上記4個のプローブデータP14、P15、P16、P17をつなぎ合わせて連結し、プローブデータP13-14-15-16-17を作成する。尚、上記4個のプローブデータP14、P15、P16、P17の後に、位置合わせできるプローブデータが存在する場合には、その位置合わせできる後のプローブデータに、上記4個のプローブデータP14、P15、P16、P17をつなぎ合わせて連結するように構成しても良い。 For example, the probe data P14, P15, P16, and P17 are all connected and connected, and furthermore, a probe capable of performing positioning including characteristic information before the four connected probe data P14, P15, P16, and P17. The four probe data P14, P15, P16, and P17 are connected and connected to the data P13 to create probe data P13-14-15-16-17. When there is probe data that can be aligned after the four probe data P14, P15, P16, and P17, the probe data after the alignment is added to the four probe data P14, P15, P16 and P17 may be connected and connected.
 また、図9は、プローブデータ連結処理の他の例、例えば特徴的な情報として道路標識のデータを用いる場合の例を示す。図9のパターン(a)に、ある1つの車両Aのある1つの走行で生成されたプローブデータの一例を示す。この例では、例えば8個のプローブデータP21、P22、・・・P28が生成されており、これらのプローブデータがデータセンタ2へ送信されるようになっている。 FIG. 9 shows another example of the probe data linking process, for example, a case where road sign data is used as characteristic information. FIG. 9A shows an example of probe data generated in one traveling of one vehicle A. In this example, for example, eight pieces of probe data P21, P22,... P28 are generated, and these probe data are transmitted to the data center 2.
 そして、データセンタ2の処理制御装置18は、車両Aから受信したプローブデータP21、P22、・・・P28と地図データとを位置合わせする処理を行なう。図9のパターン(b)に、8個のプローブデータP21、P22、・・・P28に対応する地図データの8個のデータブロックM21、M22、・・・M28を示す。この場合、図9に示すように、上記8個のプローブデータP21、P22、・・・P28の中の両端を除く6個のプローブデータP22、・・・P27と、地図データの6個のデータブロックM22、・・・M27とを位置合わせする。 Then, the processing control device 18 of the data center 2 performs a process of aligning the probe data P21, P22,... P28 received from the vehicle A with the map data. The pattern (b) in FIG. 9 shows eight data blocks M21, M22,... M28 of map data corresponding to the eight probe data P21, P22,. In this case, as shown in FIG. 9, six probe data P22,... P27 excluding both ends of the eight probe data P21, P22,. Blocks M22,... M27 are aligned.
 上記位置合わせ処理においては、プローブデータP22、P23、P27は、特徴的な情報である例えば道路標識のデータ、具体的には、道路標識の種類や位置や大きさや個数等を示すデータが、比較する地図データのデータブロックM22、M23、M27に含まれる道路標識のデータと一致する。そのため、両者を比較すること、即ち、位置合わせすることができる。この構成の場合、プローブデータP22、P23、P27に含まれる特徴的な情報は、位置合わせするために利用可能な特徴的な情報である。 In the alignment processing, the probe data P22, P23, and P27 are characteristic information, for example, data of road signs, specifically, data indicating the type, position, size, and number of road signs are compared. It matches the data of the road sign included in the data blocks M22, M23, and M27 of the map data. Therefore, both can be compared, that is, alignment can be performed. In the case of this configuration, the characteristic information included in the probe data P22, P23, and P27 is characteristic information that can be used for alignment.
 これに対して、プローブデータP24、P25、P26は、特徴的な情報として、道路標識のデータが含まれている。しかし、この特徴的な情報、即ち、プローブデータP24、P25、P26に含まれる道路標識のデータは、対応する地図データのデータブロックM24、M25、M26に含まれる道路標識のデータや道路区画線形状のデータと一致しない。具体的には、道路標識の位置や個数や道路区画線形状等が一致しない。そのため、プローブデータP24、P25、P26は、それぞれ単独では、地図データのデータブロックM24、M25、M26と比較すること、即ち、位置合わせすることが困難である。即ち、プローブデータP24、P25、P26の上記特徴的な情報は、位置合わせするために利用可能な特徴的な情報として不十分である。つまり、プローブデータP24、P25、P26には、地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれていない。 On the other hand, the probe data P24, P25, and P26 include road sign data as characteristic information. However, this characteristic information, that is, the data of the road sign included in the probe data P24, P25, and P26 is the data of the road sign included in the data blocks M24, M25, and M26 of the corresponding map data and the shape of the road division line. Does not match the data in. Specifically, the position and number of road signs, the shape of the road marking line, and the like do not match. Therefore, it is difficult to compare the probe data P24, P25, and P26 with the data blocks M24, M25, and M26 of the map data alone, that is, to align the probe data. That is, the characteristic information of the probe data P24, P25, and P26 is insufficient as characteristic information that can be used for alignment. That is, the probe data P24, P25, and P26 do not sufficiently include characteristic information that can be used for alignment with the map data.
 そこで、本実施形態では、特徴的な情報を含むが位置合わせが困難であるプローブデータ、即ち、特徴的な情報の量が不十分なプローブデータP24、P25、P26を、その前または後の位置合わせするために利用可能な特徴的な情報を含むプローブデータ、即ち、位置合わせできるプローブデータP23またはP27に、つなぎ合わせて連結する。 Therefore, in the present embodiment, the probe data P24, P25, and P26 that include characteristic information but are difficult to align, that is, probe data with an insufficient amount of characteristic information, The probe data including characteristic information usable for alignment, that is, probe data P23 or P27 that can be aligned is connected and connected.
 例えば、プローブデータP24、P25、P26を全てつなぎ合わせて連結し、更に、これらつなぎ合わせた3個のプローブデータP24、P25、P26の前の特徴的な情報を含み位置合わせできるプローブデータP23に、上記3個のプローブデータP24、P25、P26をつなぎ合わせて連結し、プローブデータP23-24-25-26を作成する。 For example, the probe data P24, P25, and P26 are all connected and connected, and further, the probe data P23 that includes the characteristic information before the three connected probe data P24, P25, and P26 and can be aligned, The three probe data P24, P25, and P26 are connected and connected to create probe data P23-24-25-26.
 また、本実施形態では、上記つなぎ合わせた3個のプローブデータP24、P25、P26の後に、位置合わせできるプローブデータP27が存在する。そのため、その位置合わせできるプローブデータP27に、上記3個のプローブデータP24、P25、P26をつなぎ合わせて連結し、プローブデータP24-25-26-27を作成するように構成しても良い。 Also, in the present embodiment, the probe data P27 that can be positioned exists after the three pieces of probe data P24, P25, and P26 that have been connected. Therefore, the probe data P24, P25, and P26 may be connected and connected to the probe data P27 that can be aligned to create probe data P24-25-26-27.
 また、3個のプローブデータP24、P25、P26の中の最前の1個のプローブデータP24を、その前の特徴的な情報を含み位置合わせできるプローブデータP23に、つなぎ合わせて連結する。そして、後2個のプローブデータP25、P26を、つなぎ合わせ、更に、つなぎ合わせた2個のプローブデータP25、P26を、その後の特徴的な情報を含み位置合わせできるプローブデータP27に、つなぎ合わせて連結するようにしても良い。 (4) The first probe data P24 among the three probe data P24, P25, and P26 is connected to the preceding probe data P23 that includes characteristic information and can be aligned. Then, the last two pieces of probe data P25 and P26 are connected, and further, the two pieces of connected probe data P25 and P26 are connected to probe data P27 that includes the characteristic information thereafter and can be aligned. You may make it connect.
 また、3個のプローブデータP24、P25、P26の中の前2個のプローブデータP24、P25を、つなぎ合わせ、更に、つなぎ合わせた2個のプローブデータP24、P25を、その前の特徴的な情報を含み位置合わせできるプローブデータP23に、つなぎ合わせて連結する。そして、最後の1個のプローブデータP26を、その後の特徴的な情報を含み位置合わせできるプローブデータP27に、つなぎ合わせて連結するようにしても良い。 In addition, the previous two probe data P24 and P25 among the three probe data P24, P25 and P26 are connected, and the two connected probe data P24 and P25 are distinguished by a characteristic The probe data P23 containing information and capable of alignment is connected and connected. Then, the last one piece of probe data P26 may be connected to and connected to probe data P27 which includes the subsequent characteristic information and can be aligned.
 図10は、図9のプローブデータ連結処理の例の制御内容を示すフローチャートである。この図10のフローチャートは、データセンタ2の処理制御装置18による制御の内容を示す。まず、図10のステップS110においては、処理制御装置18は、プローブデータ内に、特徴的な情報が含まれているかどうか、即ち、プローブデータ内から上記特徴的な情報を検出する処理を行なう。特徴的な情報としては、例えば図11に示すように、道路の区画線形状のデータ、区画線の線種や色等のデータ、区画線の付与態様のデータ、道路形状を示す例えば分岐、合流、曲線等のデータ、道路標識の配置態様のデータ、道路標識の大きさや種別や内容等のデータ、看板の配置態様のデータ、看板の大きさや種別や内容等のデータ、路面標示の付与態様のデータ等が含まれている。看板は、方面看板でも良いし、商業広告看板でも良い。また、看板情報には、数字やアルファベット等の文字列情報が含まれていることが好ましい。尚、上記特徴的な情報には、位置合わせできない特徴的な情報、即ち、位置合わせするために利用することができない特徴的な情報も含まれている。 FIG. 10 is a flowchart showing the control contents of an example of the probe data linking process of FIG. The flowchart of FIG. 10 shows the contents of control by the processing control device 18 of the data center 2. First, in step S110 of FIG. 10, the processing control device 18 performs a process of detecting whether or not characteristic information is included in the probe data, that is, a process of detecting the characteristic information from the probe data. As characteristic information, for example, as shown in FIG. 11, data on the shape of a lane marking, data on the line type and color of the lane marking, data on the manner of assigning lane markings, and branching and merging indicating the road shape , Curves, etc., data of road sign layout mode, data of road sign size, type, content, etc., data of signboard layout mode, data of signboard size, type, content, etc., road marking application mode Data etc. are included. The sign may be a direction sign or a commercial advertising sign. It is preferable that the signboard information includes character string information such as numbers and alphabets. Note that the characteristic information includes characteristic information that cannot be aligned, that is, characteristic information that cannot be used for alignment.
 そして、ステップS120へ進み、プローブデータ内に特徴的な情報が含まれているか否かを判断する。ここで、特徴的な情報が含まれていないときには(NO)、ステップS130へ進み、現在処理中のプローブデータに対して、同一車両の同一走行のプローブデータのうちの1つ前のプローブデータ、または、1つ後のプローブデータをつなぎ合わせて連結する。 Then, the process proceeds to step S120, where it is determined whether characteristic information is included in the probe data. Here, when characteristic information is not included (NO), the process proceeds to step S130, where the probe data immediately before the probe data of the same traveling of the same vehicle with respect to the probe data currently being processed, Alternatively, the next probe data is connected and connected.
 続いて、ステップS110へ戻り、連結プローブデータに対して、上記した特徴的な情報が含まれているかどうか、即ち、連結プローブデータ内から上記した特徴的な情報を検出する処理を行なう。そして、上述した処理を繰り返し実行する。即ち、連結プローブデータ内に上記特徴的な情報が含まれるようになるまで、プローブデータの連結処理が続けられるようになっている。尚、特徴的な情報が含まれるプローブデータが特定できている場合には、ステップS130において、その特徴的な情報が含まれるプローブデータまで、まとめて、前記対象とするプローブデータに連結するように構成しても良い。 Then, the process returns to step S110 to perform a process of detecting whether or not the above-described characteristic information is included in the connected probe data, that is, a process of detecting the above-described characteristic information from the connected probe data. Then, the above-described processing is repeatedly executed. That is, the connection processing of the probe data is continued until the characteristic information is included in the connection probe data. If the probe data including the characteristic information has been identified, in step S130, the probe data including the characteristic information is collectively connected to the target probe data. You may comprise.
 また、上記ステップS120において、プローブデータ内または連結プローブデータ内に特徴的な情報が含まれているときには(YES)、ステップS150へ進む。このステップS150では、処理制御装置18は、プローブデータ内に含まれる特徴的な情報、例えば道路標識のデータと、対応する地図データのデータブロックに含まれる特徴的な情報、例えば道路標識のデータとを比較して、両者が一致するかどうかを調べる。この場合、プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報とで、一致する特徴的な情報の個数を検出するように構成しても良い。 {Circle around (5)} In step S120, when characteristic information is included in the probe data or the connected probe data (YES), the process proceeds to step S150. In this step S150, the processing control device 18 determines the characteristic information included in the probe data, for example, the data of the road sign, and the characteristic information included in the data block of the corresponding map data, for example, the data of the road sign. To see if they match. In this case, the characteristic information included in the probe data and the characteristic information included in the corresponding data block of the map data may be configured to detect the number of matching characteristic information. .
 続いて、ステップS160へ進み、プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報とが一致したか否かを判断する。この場合、プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報との間で、一致する特徴的な情報の数を特定し、その一致する特徴的な情報の数が、プローブデータ、即ち、地図データのデータブロックを3次元的に特定可能なデータ数以上例えば3点以上あるか否かを判断する。尚、本実施形態では、一致する特徴的な情報が3点以上あるか否かを判断するように構成したが、これに限られるものではなく、一致する特徴的な情報が2点あるか否か、または、3点あるか否か、または、4点あるか否か、または、5点あるか否か、または、6点以上あるか否かを判断するように構成しても良い。即ち、ステップS160においては、プローブデータに、地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断する構成となっている。 Then, the process proceeds to step S160, and it is determined whether the characteristic information included in the probe data matches the characteristic information included in the data block of the corresponding map data. In this case, the number of pieces of characteristic information matching between the characteristic information included in the probe data and the characteristic information included in the data block of the corresponding map data is specified, and the matching characteristic is determined. It is determined whether or not the number of pieces of target information is equal to or more than the number of pieces of data that can three-dimensionally specify the data block of the probe data, that is, map data, for example, three or more. In this embodiment, it is configured to determine whether or not there are three or more pieces of matching characteristic information. However, the present invention is not limited to this. Alternatively, it may be configured to determine whether there are three points, whether there are four points, whether there are five points, or whether there are six or more points. That is, in step S160, it is configured to determine whether or not the probe data sufficiently includes characteristic information that can be used for alignment with the map data.
 そして、ステップS160において、プローブデータと対応する地図データのデータブロックとで特徴的な情報が一致しないとき、即ち、一致する特徴的な情報が3点以上ないときには、換言すると、現在処理中のプローブデータに含まれる特徴的な情報の量が不十分なときには(NO)、ステップS170へ進む。このステップS170では、現在処理中のプローブデータに対して、同一車両の同一走行のプローブデータのうちの1つ前のプローブデータ、または、1つ後のプローブデータをつなぎ合わせて連結する。 In step S160, when the characteristic information does not match between the probe data and the data block of the corresponding map data, that is, when there is no matching characteristic information of three or more points, in other words, the probe currently being processed is When the amount of characteristic information included in the data is insufficient (NO), the process proceeds to step S170. In this step S170, the probe data that is currently being processed is connected to the previous probe data or the next probe data of the same vehicle probe data of the same traveling.
 続いて、ステップS150へ戻り、連結プローブデータ内に含まれる特徴的な情報、例えば道路標識のデータと、対応する地図データのデータブロックに含まれる特徴的な情報、例えば道路標識のデータとを比較して、両者が一致するかどうかを調べる。そして、処理制御装置18は、上述した処理を繰り返し実行する。これにより、連結プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報とが一致するようになるまで、プローブデータの連結処理が続けられるようになっている。尚、地図データの特徴的な情報と一致する特徴的な情報を含むプローブデータが特定できている場合には、ステップS170において、その特徴的な情報を含むプローブデータまで、まとめて、前記対象とするプローブデータに連結するように構成しても良い。 Then, returning to step S150, the characteristic information included in the connected probe data, for example, the data of the road sign, is compared with the characteristic information included in the data block of the corresponding map data, for example, the data of the road sign. To see if they match. Then, the processing control device 18 repeatedly executes the above-described processing. This allows the probe data connection process to be continued until the characteristic information included in the connected probe data matches the characteristic information included in the corresponding data block of the map data. ing. If the probe data including the characteristic information matching the characteristic information of the map data has been identified, in step S170, up to the probe data including the characteristic information, It may be configured to connect to the probe data to be performed.
 また、上記ステップS160において、プローブデータまたは連結プローブデータと対応する地図データのデータブロックとで特徴的な情報が一致したとき、即ち、一致する特徴的な情報が3点以上あるときには(YES)、ステップS180へ進み、連結処理をしないで、次のプローブデータがあるか否かを判断する。ここで、次のプローブデータがあるときには(YES)、ステップS110へ戻り、次のプローブデータに対して上述した処理を繰り返し実行する。また、上記ステップS180において、次のプローブデータがないときには、「NO」へ進み、本制御を終了する。 Also, in the above step S160, when the characteristic information matches between the probe data or the connected probe data and the data block of the corresponding map data, that is, when there are three or more matching characteristic information (YES), Proceeding to step S180, it is determined whether or not there is next probe data without performing the linking process. Here, when there is the next probe data (YES), the process returns to step S110, and the above-described processing is repeatedly performed on the next probe data. In step S180, when there is no next probe data, the process proceeds to “NO” and the present control ends.
 上記した構成の本実施形態によれば、処理制御装置18は、プローブデータに特徴的な情報が含まれているか否かを検出し、特徴的な情報を含まない対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせて連結するように構成した。この構成によれば、位置合わせできないプローブデータの代わりに連結プローブデータを用いることにより、プローブデータの位置合わせを容易に且つ確実に行なうことができる。 According to the present embodiment having the above-described configuration, the processing control device 18 detects whether characteristic information is included in the probe data, and converts the target probe data that does not include the characteristic information to the same vehicle. The probe data is connected to the probe data immediately before or after the target probe data in the continuous probe data obtained by the same traveling. According to this configuration, the probe data can be easily and reliably aligned by using the connected probe data instead of the probe data that cannot be aligned.
 また、本実施形態によれば、上記特徴的な情報として、プローブデータを地図データと位置合わせするために使用可能な特徴的な情報を用いるように構成した。このように構成すると、図8に示すようなプローブデータ連結処理を実現することができるから、プローブデータの位置合わせをより一層確実に行なうことができる。 According to the present embodiment, as the characteristic information, characteristic information usable for aligning the probe data with the map data is used. With this configuration, the probe data linking process as shown in FIG. 8 can be realized, so that the alignment of the probe data can be performed more reliably.
 また、本実施形態によれば、処理制御装置18は、プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報との間で、一致する特徴的な情報が、プローブデータを3次元的に特定可能なデータ数以上あるか否かを検出するように構成、即ち、プローブデータ内に地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断するように構成した。更に、本実施形態によれば、一致する特徴的な情報が3次元的に特定可能なデータ数以上ない対象プローブデータ、即ち、特徴的な情報の量が不十分な対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせるように構成した。この構成によれば、図9に示すようなプローブデータ連結処理を実現することができるから、プローブデータの位置合わせをより一層確実に行なうことができる。 Further, according to the present embodiment, the processing control device 18 matches the characteristic information included in the probe data with the characteristic information included in the data block of the corresponding map data. Is configured to detect whether the number of pieces of information is equal to or more than the number of pieces of data that can specify the probe data three-dimensionally, that is, the probe data contains sufficient characteristic information that can be used for alignment with the map data. It is configured to determine whether or not it is included. Furthermore, according to the present embodiment, target probe data in which matching characteristic information does not exceed the number of data that can be specified three-dimensionally, that is, target probe data with an insufficient amount of characteristic information, The probe data is connected to the probe data immediately before or after the target probe data in the continuous probe data obtained by the same traveling. According to this configuration, the probe data linking process as shown in FIG. 9 can be realized, so that the alignment of the probe data can be performed more reliably.
 また、本実施形態によれば、プローブデータ連結処理を、データセンタ2の処理制御装置18において実行するように構成したが、これに代えて、プローブデータ連結処理を、各車両Aの車載装置3の制御部11において実行するように構成しても良い。即ち、車載装置3の制御部11が、特徴判断部及び連結部としての各機能を有するように構成しても良い。このように構成した場合、各車両Aの車載装置3は、プローブデータ及び連結プローブデータをデータセンタ2へ送信するように構成される。 Further, according to the present embodiment, the probe data linking process is configured to be executed by the processing control device 18 of the data center 2. Instead, the probe data linking process is performed by the in-vehicle device 3 of each vehicle A. May be configured to be executed by the control unit 11. That is, the control unit 11 of the in-vehicle device 3 may be configured to have each function as a feature determination unit and a connection unit. When configured in this manner, the in-vehicle device 3 of each vehicle A is configured to transmit the probe data and the connected probe data to the data center 2.
 (第2実施形態)
 図12は、第2実施形態を示すものである。尚、第1実施形態と同一構成には、同一符号を付している。第1実施形態では、図6、図7、図8、図9及び図10に示すように、1つの車両Aから受信したプローブデータP1、P2、・・・P8と、地図データとを位置合わせする処理を行う構成に適用したが、これに限られるものではない。第2実施形態では、1つの車両Aから受信したプローブデータP1、P2、・・・P8と、他の車両Aから受信したプローブデータ、即ち、他のプローブデータまたは他トリップのプローブデータP1、P2、・・・P8とを位置合わせする処理を行う構成に適用した。
(2nd Embodiment)
FIG. 12 shows a second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals. In the first embodiment, as shown in FIGS. 6, 7, 8, 9 and 10, the probe data P1, P2,... P8 received from one vehicle A are aligned with the map data. However, the present invention is not limited to this. In the second embodiment, probe data P1, P2,... P8 received from one vehicle A and probe data received from another vehicle A, that is, probe data P1, P2 of another probe data or another trip. ,..., P8.
 具体的には、第2実施形態においては、第1実施形態の図6のパターン(b)、図8のパターン(b)、図9のパターン(b)に示す地図データの8個のデータブロックM1、M2、・・・M8、8個のデータブロックM11、M12、・・・M18、8個のデータブロックM21、M22、・・・M28を、他の車両Aから受信した他トリップの8個のプローブデータP10、P20、・・・P80、他トリップの8個のプローブデータP110、P120、・・・P180、他トリップの8個のプローブデータP210、P220、・・・P280に置き換えて位置合わせする処理を実行すれば良い。 Specifically, in the second embodiment, eight data blocks of the map data shown in the pattern (b) of FIG. 6, the pattern (b) of FIG. 8, and the pattern (b) of FIG. M1, M2,... M8, eight data blocks M11, M12,... M18, eight data blocks M21, M22,. , P80, eight probe data P110, P120,... P180 of another trip, and eight probe data P210, P220,. What is necessary is just to perform the process which performs.
 図12は、図9においてパターン(b)に示す地図データの8個のデータブロックM21、M22、・・・M28を、他トリップの8個のプローブデータP210、P220、・・・P280に置き換えて位置合わせする処理におけるプローブデータ連結処理の制御内容を示すフローチャートである。この図12のフローチャートは、データセンタ2の処理制御装置18による制御の内容を示す。まず、図12のステップS110からステップS130までの処理は、第1実施形態の図10のステップS110からステップS130までの処理と同様に実行する。 FIG. 12 replaces the eight data blocks M21, M22,... M28 of the map data shown in the pattern (b) in FIG. 9 with eight probe data P210, P220,. 9 is a flowchart illustrating control contents of a probe data linking process in the alignment process. The flowchart of FIG. 12 shows the contents of control by the processing control device 18 of the data center 2. First, the processing from step S110 to step S130 in FIG. 12 is executed in the same manner as the processing from step S110 to step S130 in FIG. 10 of the first embodiment.
 この後、ステップS250へ進むと、処理制御装置18は、1つの車両Aから受信したプローブデータ内に含まれる特徴的な情報、例えば道路標識のデータと、対応する他の車両Aから受信したプローブデータ、即ち、他トリップのプローブデータに含まれる特徴的な情報、例えば道路標識のデータとを比較して両者が一致するかどうかを調べる。この場合、1つの車両Aから受信したプローブデータ内に含まれる特徴的な情報と、対応する他の車両Aから受信したプローブデータ内に含まれる特徴的な情報とで、一致する特徴的な情報の個数を検出するように構成しても良い。以下、1つの車両Aから受信したプローブデータを、「1つのプローブデータ」と称し、他の車両Aから受信したプローブデータを、「他トリップのプローブデータ」と称する。 Thereafter, when the process proceeds to step S250, the processing control device 18 determines the characteristic information included in the probe data received from one vehicle A, for example, the data of the road sign and the corresponding probe information received from the other vehicle A. Data, that is, characteristic information included in the probe data of another trip, for example, data of a road sign, is compared to determine whether or not the two match. In this case, the characteristic information included in the probe data received from one vehicle A and the characteristic information included in the corresponding probe data received from another vehicle A correspond to the characteristic information. May be configured to detect the number. Hereinafter, the probe data received from one vehicle A is referred to as “one probe data”, and the probe data received from another vehicle A is referred to as “other trip probe data”.
 続いて、ステップS260へ進み、1つのプローブデータ内に含まれる特徴的な情報と、対応する他トリップのプローブデータに含まれる特徴的な情報とが一致したか否かを判断する。この場合、1つのプローブデータ内に含まれる特徴的な情報と、対応する他トリップのプローブデータ内に含まれる特徴的な情報との間で、一致する特徴的な情報の数を特定し、その一致する特徴的な情報の数が、1つのプローブデータ、他トリップのプローブデータを3次元的に特定可能なデータ数以上例えば3点以上あるか否かを判断するように構成しても良い。尚、本実施形態では、一致する特徴的な情報が3点以上あるか否かを判断するように構成したが、これに限られるものではなく、一致する特徴的な情報が2点あるか否か、または、3点あるか否か、または、4点あるか否か、または、5点あるか否か、または、6点以上あるか否かを判断するように構成しても良い。即ち、ステップS260においては、1つのプローブデータに、他トリップのプローブデータとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断する構成となっている。 Then, the process proceeds to step S260, and it is determined whether or not the characteristic information included in one probe data and the characteristic information included in the corresponding probe data of another trip match. In this case, the number of pieces of characteristic information that match between the characteristic information included in one probe data and the characteristic information included in the corresponding probe data of another trip is specified. It may be configured to determine whether the number of matching characteristic information is equal to or more than the number of data that can three-dimensionally specify one probe data and the probe data of another trip, for example, three points or more. In this embodiment, it is configured to determine whether or not there are three or more pieces of matching characteristic information. However, the present invention is not limited to this. Alternatively, it may be configured to determine whether there are three points, whether there are four points, whether there are five points, or whether there are six or more points. That is, in step S260, it is configured to determine whether or not one probe data sufficiently contains characteristic information that can be used for alignment with probe data of another trip.
 そして、ステップS260において、1つのプローブデータと対応する他トリップのプローブデータとで特徴的な情報が一致しないとき、即ち、一致する特徴的な情報が3点以上ないときには、換言すると、現在処理中のプローブデータに含まれる特徴的な情報の量が不十分なときには(NO)、ステップS270へ進む。このステップS270では、現在処理中のプローブデータに対して、同一車両の同一走行のプローブデータのうちの1つ前のプローブデータ、または、1つ後のプローブデータをつなぎ合わせて連結する。更に、このステップS270では、現在処理中の他トリップのプローブデータに対しても、同一車両の同一走行の他トリップのプローブデータのうちの1つ前の他トリップのプローブデータ、または、1つ後の他トリップのプローブデータをつなぎ合わせて連結する。 In step S260, when characteristic information does not match between one probe data and the corresponding probe data of another trip, that is, when there is no matching characteristic information of three or more points, in other words, if the current processing is being performed. If the amount of characteristic information included in the probe data is insufficient (NO), the process proceeds to step S270. In this step S270, the previous probe data or the next probe data of the same traveling probe data of the same vehicle is connected to the currently processed probe data and connected. Further, in this step S270, the probe data of the other trip immediately before the probe data of the other trip of the same traveling of the same vehicle with respect to the probe data of the other trip that is currently being processed, or the probe data of the next trip And connect the probe data of other trips.
 続いて、ステップS250へ戻り、連結プローブデータ内に含まれる特徴的な情報、例えば道路標識のデータと、対応する他トリップの連結プローブデータに含まれる特徴的な情報、例えば道路標識のデータとを比較して両者が一致するかどうかを調べる。そして、処理制御装置18は、上述した処理を繰り返し実行する。これにより、連結プローブデータ内に含まれる特徴的な情報と、対応する他トリップの連結プローブデータに含まれる特徴的な情報とが一致するようになるまで、1つの車両Aから受信したプローブデータの連結処理並びに他の車両Aから受信した他トリップのプローブデータの連結処理が続けられるようになっている。尚、他トリップのプローブデータの特徴的な情報と一致する特徴的な情報を含むプローブデータが特定できている場合には、ステップS270において、その特徴的な情報を含むプローブデータまで、まとめて、前記対象とするプローブデータに連結するように構成しても良い。この場合、同様に、その特徴的な情報を含む他トリップのプローブデータまで、まとめて、前記対象とする他トリップのプローブデータに連結するように構成することが好ましい。 Then, returning to step S250, the characteristic information included in the connection probe data, for example, the data of the road sign, and the characteristic information included in the connection probe data of the corresponding other trip, for example, the data of the road sign, are obtained. Compare to see if they match. Then, the processing control device 18 repeatedly executes the above-described processing. Thereby, until the characteristic information included in the connected probe data matches the characteristic information included in the corresponding connected probe data of another trip, the probe data received from one vehicle A becomes identical. The connection processing and the connection processing of the probe data of another trip received from another vehicle A are continued. If the probe data including the characteristic information that matches the characteristic information of the probe data of another trip has been identified, in step S270, the probe data including the characteristic information is collectively collected. It may be configured to be linked to the target probe data. In this case, similarly, it is preferable that the probe data of another trip including the characteristic information be collectively connected to the probe data of the target other trip.
 また、上記ステップS260において、1つのプローブデータまたは1つの連結プローブデータと対応する他トリップのプローブデータとで特徴的な情報が一致したとき、即ち、一致する特徴的な情報が3点以上あるときには(YES)、ステップS180へ進み、連結処理をしないで、次のプローブデータがあるか否かを判断する。ここで、次のプローブデータがあるときには(YES)、ステップS110へ戻り、次のプローブデータに対して上述した処理を繰り返し実行する。 In step S260, when the characteristic information of one probe data or one connected probe data and the corresponding probe data of another trip match, that is, when there are three or more matching characteristic information, (YES), the process proceeds to step S180 to determine whether or not there is the next probe data without performing the connection process. Here, when there is the next probe data (YES), the process returns to step S110, and the above-described processing is repeatedly performed on the next probe data.
 また、上記ステップS180において、次のプローブデータがないときには(NO)、ステップS290へ進む。このステップS290では、同一の道路セグメントに対して、上記したように連結処理を実行したプローブデータを、複数の車両分用意し、これら複数の車両分の連結処理を実行したプローブデータについて、統計処理を実行する。この統計処理では、例えば通常の平均化処理を実行しても良く、また、本出願人が先に出願した特願2018-163076号に記載されている統計処理を実行するように構成しても良い。尚、複数の車両分の連結処理を実行したプローブデータについて統計処理を実行して作成されるプローブデータを、統合プローブデータまたは統計化プローブデータと称する。また、道路セグメントは、地図データにおける道路の管理単位である。道路セグメントは、道路を所定の規則で区切ったものである。道路セグメントは、道路を所定の長さ、例えば10mごとに区切ったものであってもよい。 {Circle around (2)} If there is no next probe data in step S180 (NO), the flow proceeds to step S290. In this step S290, probe data for which connection processing has been performed on the same road segment as described above is prepared for a plurality of vehicles, and statistical processing is performed on the probe data for which connection processing has been performed for these vehicles. Execute In this statistical processing, for example, a normal averaging processing may be executed, or the statistical processing described in Japanese Patent Application No. 2018-163076 previously filed by the present applicant may be executed. good. Note that probe data created by performing statistical processing on probe data that has undergone connection processing for a plurality of vehicles is referred to as integrated probe data or statistical probe data. The road segment is a road management unit in the map data. The road segment is obtained by dividing a road according to a predetermined rule. The road segment may be a road segmented by a predetermined length, for example, every 10 m.
 尚、当該ステップS290を実行する処理制御装置18は、他のプローブデータを位置合わせ可能なようにつなぎ合わされてなるプローブデータを用いて、同一道路セグメントについての複数の前記プローブデータを特定し、それら複数のプローブデータを統計処理することによって統合プローブデータを生成する統合処理部に相当する。統計処理は、各プローブデータに含まれる地物ごとの位置座標を平均化したり、地物ごとの位置座標の中央値を求める処理に相当する。また、プローブデータの統計処理には、各プローブデータに含まれる走行軌跡を平均化することによって走行軌道モデルを生成する処理も含まれうる。 Note that the processing control device 18 executing step S290 identifies a plurality of the probe data for the same road segment using the probe data connected so that other probe data can be aligned, and This corresponds to an integrated processing unit that generates integrated probe data by statistically processing a plurality of probe data. The statistical process corresponds to a process of averaging the position coordinates of each feature included in each probe data or obtaining a median of the position coordinates of each feature. In addition, the statistical processing of the probe data may include a process of generating a traveling trajectory model by averaging traveling trajectories included in each probe data.
 この後は、ステップS300へ進み、上記統合プローブデータ内に含まれる特徴的な情報、例えば道路標識のデータ等と、対応する地図データのデータブロックに含まれる特徴的な情報、例えば道路標識のデータ等とを比較して両者が一致するかどうかを調べ、統合プローブデータの連結処理を実行する。この統合プローブデータの連結処理は、図10のステップS150からステップS180までの処理とほぼ同様にして実行するように構成されている。この場合、図9においてパターン(a)に示す1つの車両Aから受信した8個のプローブデータを、上記ステップS290にて統計処理された統合プローブデータに置き換えて位置合わせする処理を実行するように構成されている。ステップS300の処理の実行後、本制御を終了する。 Thereafter, the process proceeds to step S300, where characteristic information included in the integrated probe data, for example, data of a road sign, and characteristic information included in a data block of the corresponding map data, for example, data of a road sign Then, it is determined whether or not the two coincide with each other, and a connection process of the integrated probe data is executed. The integrated probe data linking process is configured to be executed in substantially the same manner as the processes from step S150 to step S180 in FIG. In this case, the process of replacing the eight pieces of probe data received from one vehicle A shown in the pattern (a) in FIG. 9 with the integrated probe data statistically processed in the above-described step S290 is performed. It is configured. After execution of the process of step S300, the present control ends.
 尚、処理制御装置18は、後続の処理として、統合プローブデータと地図データとの位置合わせをした結果を用いて、現行の地図データと統合プローブデータとにおいて相違する部分を検出する。以下、この相違する部分を「地図変化点」と称する。地図変化点は、現行の地図データと現実世界とで相違する可能性がある部分を指す。例えば地図変化点は、移設、新設、撤去された地物が存在することを示す。処理制御装置18は、地図変化点が存在する場合、例えば、現行の地図データに当該地図変化点を反映した地図データを生成する。このような構成によれば、処理制御装置18は、複数の車両から逐次アップロードされてくるプローブデータをもとに地図データを更新することができる。また、統合プローブデータは、複数のプローブデータを統合したものであるため、個々のプローブデータよりも統計的な確からしさを有する。ゆえに、1つのプローブデータを用いて地図データを更新する構成に比べて、統合プローブデータを用いて地図データを更新する構成によれば、地図データを誤った内容に変更する恐れを低減できる。また、処理制御装置18は、複数のプローブデータの連結及び統計処理することによって、走行軌道モデルを生成及び更新できる。つまり、道路沿いに存在する地物や道路形状に変化が生じた場合に、当該変化に対応した走行軌道モデルを速やかに生成及び配信可能となる。なお、プローブデータに含まれる走行軌跡は、プローブデータ同士の連結処理に伴って連結されるとともに、各連結プローブデータに含まれる走行軌跡は、統計処理によって統合されることにより、走行軌道モデルとなる。 Note that, as a subsequent process, the processing control device 18 detects a difference between the current map data and the integrated probe data by using the result of the alignment between the integrated probe data and the map data. Hereinafter, this different portion is referred to as a “map change point”. The map change point indicates a portion that may be different between the current map data and the real world. For example, a map change point indicates that a feature that has been relocated, newly constructed, or removed exists. When there is a map change point, the processing control device 18 generates, for example, map data in which the current map data reflects the map change point. According to such a configuration, the processing control device 18 can update the map data based on the probe data sequentially uploaded from a plurality of vehicles. Further, since the integrated probe data is obtained by integrating a plurality of probe data, it has more statistical certainty than individual probe data. Therefore, according to the configuration in which the map data is updated using the integrated probe data, the possibility of changing the map data to erroneous contents can be reduced as compared with the configuration in which the map data is updated using one probe data. Further, the processing control device 18 can generate and update the traveling trajectory model by connecting and statistically processing a plurality of probe data. That is, when a change occurs in a feature or road shape existing along a road, a traveling trajectory model corresponding to the change can be quickly generated and distributed. The travel trajectories included in the probe data are connected together with the connection processing of the probe data, and the travel trajectories included in the respective connected probe data are integrated by statistical processing to form a travel trajectory model. .
 また、上述した以外の第2実施形態の構成は、第1実施形態の構成と同じ構成となっている。従って、第2実施形態においても、第1実施形態とほぼ同じ作用効果を得ることができる。特に、第2実施形態では、複数の車両から受信した複数台分の1つのプローブデータを連結処理し、更に、これら複数のプローブデータを統計処理して得られた統合プローブデータを、地図データと位置合わせ処理して、統合プローブデータの連結処理を実行するように構成した。そのため、統合プローブデータの位置合わせ並びに連結処理を、容易且つ確実に行なうことができる。 構成 In addition, the configuration of the second embodiment other than the above is the same as the configuration of the first embodiment. Therefore, also in the second embodiment, substantially the same operation and effect as in the first embodiment can be obtained. In particular, in the second embodiment, one probe data for a plurality of vehicles received from a plurality of vehicles is connected, and further, integrated probe data obtained by statistically processing the plurality of probe data is combined with map data. It is configured to perform the alignment process and execute the linking process of the integrated probe data. Therefore, the positioning and linking of the integrated probe data can be easily and reliably performed.
 また、上記各実施形態では、1つの車両Aから受信したプローブデータについて、図7、図10、図12に示すように、プローブデータの連結処理を実行するように構成したが、これに限られるものではなく、統計処理して作成された統合プローブデータについても、同様の連結処理を実行するように構成しても良い。この場合、図7、図10、図12の各フローチャートにおいて、1つの車両Aから受信したプローブデータを統合プローブデータに置き換えて各処理を実行するように制御することが好ましい。 Further, in each of the above embodiments, as shown in FIGS. 7, 10, and 12, the probe data received from one vehicle A is configured to execute the connection processing of the probe data, but is not limited thereto. Instead, the same linking process may be performed on integrated probe data created by statistical processing. In this case, in each of the flowcharts of FIG. 7, FIG. 10, and FIG. 12, it is preferable to perform control so that the probe data received from one vehicle A is replaced with integrated probe data to execute each process.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することにより提供された専用コンピュータにより実現されても良い。或いは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によりプロセッサを構成することにより提供された専用コンピュータにより実現されても良い。若しくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路により構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより実現されても良い。又、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていても良い。
 
The control unit and the technique according to the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. May be. Alternatively, the control unit and the technique described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method according to the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured with one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.

Claims (6)

  1.  少なくとも1つの車両から送信された、前記車両に搭載された周辺監視センサにより検出された車両周辺に存在する地物を示すプローブデータを受信する受信部(16)を備え、前記受信部にて受信した前記プローブデータに基づいて地図データを作成または更新する地図生成装置であって、
     前記プローブデータに、他のプローブデータまたは地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断する特徴判断部(11、18)と、
     特徴的な情報の量が不十分な対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の前記対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせる連結部(11、18)とを備えた地図生成装置。
    A receiving unit (16) for receiving probe data transmitted from at least one vehicle and indicating a feature existing around the vehicle detected by a surrounding monitoring sensor mounted on the vehicle, and received by the receiving unit; A map generation device that creates or updates map data based on the probe data obtained,
    A characteristic determining unit (11, 18) for determining whether the probe data sufficiently contains characteristic information usable for alignment with other probe data or map data,
    Concatenation that joins target probe data having an insufficient amount of characteristic information to probe data immediately before or after the target probe data in continuous probe data obtained by the same traveling of the same vehicle. And a map generation device comprising:
  2.  前記周辺監視センサとしての車載カメラ、ミリ波レーダ、及びライダーの少なくともいずれか1つから提供されるデータに基づいて前記プローブデータを逐次作成するように構成されている請求項1記載の地図生成装置。 2. The map generation device according to claim 1, wherein the map generation device is configured to sequentially generate the probe data based on data provided from at least one of a vehicle-mounted camera, a millimeter-wave radar, and a rider serving as the periphery monitoring sensor. 3. .
  3.  前記特徴判断部は、プローブデータ内に含まれる特徴的な情報と、対応する地図データのデータブロックに含まれる特徴的な情報とで、一致する特徴的な情報が、プローブデータを3次元的に特定可能なデータ数以上あるか否かを検出するように構成され、
     前記連結部は、前記一致する特徴的な情報が前記3次元的に特定可能なデータ数以上ない対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の前記対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせるように構成された請求項1または2記載の地図生成装置。
    The characteristic determining unit determines that the characteristic information matching the characteristic information included in the probe data and the characteristic information included in the corresponding data block of the map data three-dimensionally converts the probe data. Is configured to detect whether or not the number of identifiable data is greater than or equal to,
    The connection unit may be configured to convert the target probe data in which the matching characteristic information does not exceed the three-dimensionally identifiable data number into the target probe data in continuous probe data obtained by the same traveling of the same vehicle. The map generating apparatus according to claim 1, wherein the map generating apparatus is configured to be connected to probe data immediately before or after one of the above.
  4.  前記連結部によって前記他のプローブデータを位置合わせ可能なようにつなぎ合わされてなる前記プローブデータを用いて、同一道路セグメントについての複数の前記プローブデータを特定し、それら複数の前記プローブデータに基づいて統合プローブデータを生成する統合処理部(S290)と、
     前記統合処理部が生成した前記統合プローブデータに基づいて地図データを生成または更新する地図生成部(23)と、を備える請求項1から3のいずれか一項記載の地図生成装置。
    Using the probe data connected so that the other probe data can be aligned by the connection unit, a plurality of the probe data for the same road segment is specified, and based on the plurality of the probe data, An integration processing unit (S290) for generating integrated probe data,
    4. The map generation device according to claim 1, further comprising: a map generation unit configured to generate or update map data based on the integrated probe data generated by the integration processing unit. 5.
  5.  前記地図生成部は、前記統合プローブデータと現行の地図データとを比較することで地図変化点を検出するように構成されている請求項4記載の地図生成装置。 5. The map generation device according to claim 4, wherein the map generation unit is configured to detect a map change point by comparing the integrated probe data with current map data.
  6.  車両に搭載された周辺監視センサにより検出された車両周辺に存在する地物を示すプローブデータに基づいて地図データを作成または更新するための、少なくとも1つのプロセッサを用いて実行される地図生成方法であって、
     少なくとも1つの前記車両から前記プローブデータを受信することと、
     前記プローブデータに、他のプローブデータまたは地図データとの位置合わせに使用可能な特徴的な情報が十分に含まれているか否かを判断することと、
     特徴的な情報の量が不十分な対象プローブデータを、同一車両の同一走行によって得られた連続するプローブデータの中の前記対象プローブデータの1つ前または1つ後のプローブデータにつなぎ合わせることと、を含む地図生成方法。
     
    A map generation method executed using at least one processor for creating or updating map data based on probe data indicating a feature existing around a vehicle detected by a surrounding monitoring sensor mounted on the vehicle. So,
    Receiving the probe data from at least one of the vehicles;
    To determine whether the probe data contains sufficient characteristic information that can be used for alignment with other probe data or map data,
    Splicing the target probe data having an insufficient amount of characteristic information to the probe data immediately before or after the target probe data in the continuous probe data obtained by the same traveling of the same vehicle. And a map generation method including:
PCT/JP2019/033513 2018-08-31 2019-08-27 Map generation device and map generation method WO2020045427A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980055682.7A CN112602134B (en) 2018-08-31 2019-08-27 Map generation device and map generation method
DE112019004315.3T DE112019004315T5 (en) 2018-08-31 2019-08-27 CARD GENERATING DEVICE AND CARD GENERATING METHOD
US17/186,919 US11885640B2 (en) 2018-08-31 2021-02-26 Map generation device and map generation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-163071 2018-08-31
JP2018163071 2018-08-31
JP2019-138796 2019-07-29
JP2019138796A JP7136035B2 (en) 2018-08-31 2019-07-29 Map generation device and map generation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/186,919 Continuation US11885640B2 (en) 2018-08-31 2021-02-26 Map generation device and map generation method

Publications (1)

Publication Number Publication Date
WO2020045427A1 true WO2020045427A1 (en) 2020-03-05

Family

ID=69644314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033513 WO2020045427A1 (en) 2018-08-31 2019-08-27 Map generation device and map generation method

Country Status (1)

Country Link
WO (1) WO2020045427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099459A1 (en) * 2019-06-13 2022-03-31 Denso Corporation Map data generation system, data center, and in-vehicle apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062854A (en) * 2003-07-28 2005-03-10 Toyota Mapmaster:Kk Method for updating road map
JP2008164831A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Map information generation system
WO2011122150A1 (en) * 2010-03-30 2011-10-06 株式会社トヨタマップマスター Road information identification device, method for same, computer program for identifying road information, and recording medium on which said computer program is recorded
JP2016133605A (en) * 2015-01-19 2016-07-25 株式会社日立製作所 Map generation system and map generation method
US20180144190A1 (en) * 2015-12-22 2018-05-24 Here Global B.V. Method and apparatus for updating road map geometry based on received probe data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062854A (en) * 2003-07-28 2005-03-10 Toyota Mapmaster:Kk Method for updating road map
JP2008164831A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Map information generation system
WO2011122150A1 (en) * 2010-03-30 2011-10-06 株式会社トヨタマップマスター Road information identification device, method for same, computer program for identifying road information, and recording medium on which said computer program is recorded
JP2016133605A (en) * 2015-01-19 2016-07-25 株式会社日立製作所 Map generation system and map generation method
US20180144190A1 (en) * 2015-12-22 2018-05-24 Here Global B.V. Method and apparatus for updating road map geometry based on received probe data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099459A1 (en) * 2019-06-13 2022-03-31 Denso Corporation Map data generation system, data center, and in-vehicle apparatus

Similar Documents

Publication Publication Date Title
CN106352867B (en) Method and device for determining the position of a vehicle
JP6591737B2 (en) Automatic operation control device
JP5762483B2 (en) Processor unit mounted on front vehicle and processor unit mounted on following vehicle
CN110546696B (en) Method for automatically generating and updating data sets for autonomous vehicles
CN113348338A (en) Lane mapping and navigation
WO2020042348A1 (en) Method for generating autonomous driving navigation map, system, vehicle-mounted terminal, and server
US11231285B2 (en) Map information system
JP7123154B2 (en) Driving support method and driving support device
CN102208036A (en) Vehicle position detection system
CN105197014A (en) Apparatus and method for recognizing driving lane of vehicle
US11928871B2 (en) Vehicle position estimation device and traveling position estimation method
US11091151B2 (en) Management device, vehicle management method, program, and vehicle management system
JP2013196595A (en) Vehicle travel support system
CN115123232A (en) Driving support device, driving support method, and storage medium
WO2020045427A1 (en) Map generation device and map generation method
JP7136035B2 (en) Map generation device and map generation method
JP7502047B2 (en) COMMUNICATION DEVICE, VEHICLE, PROGRAM, AND COMMUNICATION METHOD
US20210206392A1 (en) Method and device for operating an automated vehicle
JP4953015B2 (en) Own vehicle position recognition device, own vehicle position recognition program, and navigation device using the same
JP4789868B2 (en) Image recognition apparatus and image recognition method, and self-position recognition apparatus and navigation apparatus using the same
US20220004193A1 (en) Processing device, processing method, and medium
JP4817019B2 (en) Own vehicle position recognition device and own vehicle position recognition program
JP2012037312A (en) Feature position acquisition device, method and program
JP2007240319A (en) Map data preparation device for vehicle, and map data updating device for vehicle
US20240025411A1 (en) On-board device and server for controlling driving of vehicle within intersection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19854630

Country of ref document: EP

Kind code of ref document: A1