WO2020045341A1 - Selection device, learning device, selection method, learning method, and program - Google Patents

Selection device, learning device, selection method, learning method, and program Download PDF

Info

Publication number
WO2020045341A1
WO2020045341A1 PCT/JP2019/033290 JP2019033290W WO2020045341A1 WO 2020045341 A1 WO2020045341 A1 WO 2020045341A1 JP 2019033290 W JP2019033290 W JP 2019033290W WO 2020045341 A1 WO2020045341 A1 WO 2020045341A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluator
learning
value
evaluation
data
Prior art date
Application number
PCT/JP2019/033290
Other languages
French (fr)
Japanese (ja)
Inventor
歩相名 神山
厚志 安藤
亮 増村
哲 小橋川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2020045341A1 publication Critical patent/WO2020045341A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education

Definitions

  • the present invention relates to a technique for selecting a specific evaluator from a plurality of evaluators who have evaluated a plurality of evaluation targets.
  • Non-patent document 1 In tests in which conversational skills are considered as one item of the skill test, such as favorable sensitivity of telephone voice (Non-patent document 1) and good pronunciation and fluency of foreign languages (Non-patent document 2), the quantitative Impressive impression values (for example, five-grade evaluation from good to bad, 5 to low 1 with high preference, 1 to 5 low with naturalness, etc.).
  • a machine learning model may be learned from impression value data and features of the data.
  • impressions have different criteria for different people, the impression values may be different for different persons even with the same data.
  • an average impression can be learned by giving an impression value to one data by a large number of people and using the average value of the impression values.
  • the impression value should be given by as many people as possible. For example, in the impression data created in Non-Patent Document 3, impression values are assigned to one voice data by ten people.
  • the impression value is at most about one or two persons per data.
  • the standard of impression may be different depending on the evaluator, and may be significantly different from the value obtained by the average value of a large number of people.
  • an averaged label may not be able to be correctly learned due to a difference in evaluation criteria.
  • the above-described problem is not limited to the case where the evaluation target is a voice, and may be a problem that can occur when the evaluation target is evaluated by a plurality of evaluators in various fields.
  • the present invention has been made in view of the above points, and provides a technology that enables an evaluator to perform an average evaluation to be selected even when the number of evaluators per evaluation target is small. Aim.
  • a selection device that selects a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets
  • a coincidence counting unit that calculates the degree of coincidence of the evaluation value with another evaluator for each evaluator based on the input data including the evaluator and the evaluation value for each evaluation target;
  • a probability value calculation unit that calculates a probability value indicating whether the evaluation value significantly matches other evaluators
  • an evaluator selection unit that selects an evaluator whose evaluation value is significantly consistent with another evaluator based on the probability value.
  • a technology that enables an evaluator to perform an average evaluation even when the number of evaluators per evaluation target is small.
  • FIG. 1 shows a functional configuration diagram of the learning device 100 according to the present embodiment.
  • the learning device 100 includes a number-of-matches counting unit 110, a probability value calculation unit 120, an evaluator selection unit 130, and a learning unit 140.
  • a learning label data DB 150 and a learning feature data DB 160 which are databases for storing data used in the learning device 100.
  • the learning label data DB 150 and the learning feature amount data DB 160 may be provided as a storage unit inside the learning device 100, or may be connected to the outside of the learning device 100 via a network.
  • the number of matches counted by the number-of-matches counting unit 110 is an example of the degree of match. More generally, the number-of-matches counting section 110 may be referred to as a matching degree counting section 110.
  • a device including the number-of-matches totaling unit 110, the probability value calculating unit 120, the evaluator selecting unit 130, and the learning unit 140 may be referred to as a selecting device.
  • the learning apparatus 100 further includes a matching number counting section 110, a probability value calculating section 120, an evaluator selecting section 130, and a learning section 140.
  • the matching number counting section 110, the probability value calculating section 120, and the evaluator selecting section 130 are provided.
  • the part may be referred to as a selection device.
  • the learning device 100 and the selection device described above can be realized by, for example, causing a computer to execute a program describing processing contents described in the present embodiment.
  • the device can be realized by executing a program corresponding to a process performed by the device using hardware resources such as a CPU and a memory built in the computer.
  • the above-mentioned program can be recorded on a computer-readable recording medium (a portable memory or the like) and can be stored or distributed. Further, the above program can be provided through a network such as the Internet or electronic mail.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the computer according to the present embodiment.
  • the computer in FIG. 2 includes a drive device 170, an auxiliary storage device 172, a memory device 173, a CPU 174, an interface device 175, a display device 176, an input device 177, and the like, which are interconnected by a bus B.
  • the program for realizing the processing in the computer is provided by a recording medium 171 such as a CD-ROM or a memory card.
  • a recording medium 171 such as a CD-ROM or a memory card.
  • the program is installed from the recording medium 171 to the auxiliary storage device 172 via the drive device 170.
  • the program need not always be installed from the recording medium 171 and may be downloaded from another computer via a network.
  • the auxiliary storage device 172 stores installed programs and also stores necessary files and data.
  • the memory device 173 reads out the program from the auxiliary storage device 172 and stores it when there is an instruction to start the program.
  • the CPU 174 implements functions of the memory device 173 according to a program stored in the device.
  • the interface device 175 is used as an interface for connecting to a network.
  • the display device 176 displays a GUI (Graphical User Interface) or the like by a program.
  • the input device 177 includes a keyboard, a mouse, buttons, a touch panel, and the like, and is used to input various operation instructions.
  • the learning label data DB150 the learning label data stored in the learning feature data DB160, the learning feature data, and the operation of each unit will be described in detail.
  • FIG. 3 shows an example of the learning label data in this embodiment
  • FIG. 4 shows an example of the learning feature amount data.
  • the data number y (i, 0) is y (i, 0) ⁇ 0,1,2, ..., J ⁇ , and is a number indicating the data number j of the learning feature amount data.
  • the evaluator number is the number y (i, 1) ⁇ 1, 2, 3,..., K ⁇ of the evaluator who evaluated the data.
  • the impression value label is an impression value (evaluation value) for the data. In the present embodiment, it is assumed that binary values are assigned as 0 and 1.
  • a plurality of impression labels are given to one learning feature amount data by a plurality of persons.
  • the learning feature amount data is, for example, an audio signal or a value such as a vector obtained by extracting a feature from the audio signal.
  • the learning label data is input from the learning label data DB 150 to the number-of-matches counting section 110.
  • the number-of-matches counting section 110 Based on the input learning label data, the number-of-matches counting section 110 counts the number of matches and the number of mismatches for each evaluator, and calculates the number-of-matches total data C (k, m) and the evaluation. The evaluation number N (k) of the person k is obtained. Note that the coincidence count data C (k, m) may be referred to as coincidence.
  • the learning label data is converted into a function based on the following rules 1 and 2.
  • the probability value calculation unit 120 obtains a probability value for calculating whether or not the number of the evaluators that match the other evaluators is significantly high. The details are as follows.
  • the probability value calculation unit 120 performs a binomial test according to the following equation to obtain a significance probability P (k), assuming that the number of C (k, 0) and C (k, 1) follows a binomial distribution.
  • M Normcdf in the above equation is a standard normal cumulative distribution function.
  • the evaluator selection unit 130 selects an evaluator whose evaluation value is significantly consistent with another using the threshold ⁇ based on P (k) obtained by the probability value calculation unit 120, and Select only the data evaluated by.
  • the evaluator selecting unit 130 calculates and outputs a set I ′ of label data of the selected evaluator according to the following equation.
  • an evaluator k that satisfies “P (k) ⁇ C (k, 1)> C (k, 0)” may be selected, and the selected evaluator may be output.
  • the learning unit 140 may extract the label data evaluated by the selected evaluator.
  • the learning unit 140 learns a machine learning model using the label data selected by the evaluator selection unit 130 and the corresponding learning feature data as teacher data.
  • a general method for example, SVM, neural network, or the like.
  • the label data only the label data set I ′ selected by the evaluator selection unit 130 is used. Specifically, sets X and Y of the learning feature amount data and the label data are obtained as described below.
  • the learning unit 140 performs learning using X and Y as teacher data. For example, the model is learned using X as the input of the model and Y as the correct data. The model obtained by learning is used, for example, for automatic evaluation of speech.
  • the label has two values (0 or 1).
  • a stable evaluator can be obtained even if the value is more than two steps, for example, five values, ten values, or the like. Can be selected.
  • a description will be given of processing contents that can be applied even when values of more than two levels are used as labels.
  • the learning label data at this time is such that the number of labels (the number of rows) per one data number (y (i, 0)) is the number of stages (not limited to two). It is.
  • the number-of-matches totaling unit 110 in the modified example totals differences between evaluators.
  • C (k, m) indicates the number of times that evaluator k agrees with another at any stage
  • m ⁇ 0, C (k, m) indicates that evaluator k is another
  • the views indicate the number of times there was an m-step difference.
  • the operation consists of the following (1) and (2).
  • the learning label data is converted into a function based on the following rules 1 and 2.
  • the probability value calculation unit 120 in the modification will be described.
  • the label is binary
  • the probability value is calculated based on the binomial distribution. Calculated.
  • P (k) is obtained on the assumption that C (k, s) follows a polynomial distribution.
  • the probability difference of the evaluation of both a m specifically When p m and calculates the square value ⁇ as follows seek P (k).
  • C Chi_p in the above equation is a function for calculating the P value of the ⁇ square value.
  • p m When the evaluation of the M phase, when the probability that a score m is given as q v, for example p m can be set as follows.
  • the above formula means that the difference between two evaluators is calculated as shown in the table of FIG. 5 and the value obtained by summing the probability values that the difference between the scores is the same is obtained.
  • an impression value is assumed, but the present invention can be extended to a case where evaluation of multiple items is performed.
  • a P value is obtained for each of the multiple items in the same manner as in the modification, and an evaluator is selected for each item.
  • an evaluator having a low P value for all items may be selected.
  • an evaluator having a low P value for all items.
  • one of two patterns shown in the following (1) and (2) is used. Either or both can be used.
  • the P value of item A for a certain evaluator is PA
  • the P value of item B is PB
  • the value of item C is
  • the P value of the evaluator is calculated as (PA + PB + PC) / 3.
  • the number of evaluation steps is set so that the P value when matching in seven levels of evaluation is evaluated higher than when matching in two levels of evaluation.
  • Weights can be assigned according to the size so that the stability evaluation when the evaluations match is higher.
  • the weighting according to the magnitude of the number of evaluation steps is, for example, in the case of the number of evaluation steps M set for an arbitrary evaluation item, a value of 1 / M is used as a weight, and the product of each P value and the weight is used.
  • the average obtained by adding is used for evaluator selection.
  • the number of stages of items A, B, and C is MA, MB, and MC, respectively. If the P value is PA, the P value of item B is PB, and the P value of item C is PC, the P value of the evaluator is ((PA / MA) + (PB / MB) + (PC / MC)) / 3.
  • an evaluator capable of giving an average impression value label is selected based on the probability distribution based on the number of evaluations, the number of matches, and the like. (1) Even when the number of evaluators per data is small (for example, two), non-average evaluators can be excluded, and evaluators performing average evaluation can be selected. Further, an average impression value can be learned.
  • a selection device for selecting a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets, and an evaluator and an evaluation value for each evaluation target.
  • a coincidence counting unit that calculates the degree of coincidence of the evaluation value with another evaluator for each evaluator, and for each evaluator, based on the degree of coincidence for each evaluator,
  • a probability value calculation unit that calculates a probability value indicating whether the value significantly matches another evaluator, and an evaluation that selects an evaluator whose evaluation value significantly matches the other evaluator based on the probability value
  • a selection device comprising: a selection unit.
  • the evaluation value is, for example, a value set for each evaluation target, and is a multi-step value of two or more values for one or a plurality of items, or a continuous value. Further, the probability value calculation unit may calculate the probability value assuming that the degree of coincidence follows a predetermined probability distribution.
  • an evaluation target and an evaluation value evaluated by the evaluator selected by the selection device are input as teacher data, and learning of a machine learning model is performed using the teacher data.
  • a learning device comprising a learning unit is provided.
  • REFERENCE SIGNS LIST 100 learning device 110 number of matches totaling unit 120 probability value calculating unit 130 evaluator selecting unit 140 learning unit 150 learning label data DB 160 learning feature data DB 170 Drive device 171 Recording medium 172 Auxiliary storage device 173 Memory device 174 CPU 175 Interface device 176 Display device 177 Input device

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Educational Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

Provided is a selection device which selects a specific evaluator from among a plurality of evaluators who have evaluated a plurality of subjects for evaluation, said device comprising: a match level aggregation part for, on the basis of input data including evaluators and evaluation values for each subject for evaluation, computing the level of match in the evaluation values between one of the evaluators and the other evaluators; a probability value calculation part for computing a probability value for each of the evaluators on the basis of the match level pertaining to the evaluator, the probability value indicating whether the level of match between the evaluation value for the evaluator and the evaluation values for the other evaluators is significant; and an evaluator selection part for, on the basis of the probability values, selecting the evaluator for whom the level of match in the evaluation values with the other evaluators is significant.

Description

選定装置、学習装置、選定方法、学習方法、及びプログラムSelection device, learning device, selection method, learning method, and program
 本発明は、複数の評価対象に対する評価を実施した複数の評価者から特定の評価者を選定する技術に関連するものである。 (4) The present invention relates to a technique for selecting a specific evaluator from a plurality of evaluators who have evaluated a plurality of evaluation targets.
 電話音声の好感度(非特許文献1)や、外国語の発音の良さ・流暢さ(非特許文献2)等を技能テストの1項目として会話の技能を図るテストでは、音声に対して定量的な印象値(例えば、良い~悪いの5段階評価、好感度が高い5~低い1、自然さが高い5~低い1等)が付与されている。 In tests in which conversational skills are considered as one item of the skill test, such as favorable sensitivity of telephone voice (Non-patent document 1) and good pronunciation and fluency of foreign languages (Non-patent document 2), the quantitative Impressive impression values (for example, five-grade evaluation from good to bad, 5 to low 1 with high preference, 1 to 5 low with naturalness, etc.).
 現在は、各技能の専門家がこの音声の印象を評価し、合格・不合格の判定を行っているが、自動的に評価ができるようになると、試験の足切り等への活用や、評価に不慣れな専門家(例えば評価者になりたての人物)への参考値として用いることができる。そのため、音声の印象を自動推定する技術が必要とされている。 Currently, experts of each skill evaluate the impression of this voice and judge pass / fail, but if it can be automatically evaluated, it can be used for cutting off examinations, etc. Can be used as a reference value for an expert unfamiliar with (for example, a person who has just become an evaluator). Therefore, a technique for automatically estimating a voice impression is required.
 機械学習を用いたデータの印象の自動推定を実現するためには、印象値データとそのデータの特徴量から機械学習モデルを学習すればよい。しかし、印象は人によって感じる基準が異なるため、同じデータであっても印象値が人によって異なることがある。平均的な印象を推定できるようにするためには、1つのデータに対して多人数で印象値を付与し、印象値の平均値を用いることで、平均的な印象を学習することができる。平均的な印象値を安定して推定できるようになるには、できるだけ多人数で印象値を付与するとよい。例えば、非特許文献3で作成された印象データは、1音声データに対し10名で印象値を付与している。 In order to realize automatic estimation of the impression of data using machine learning, a machine learning model may be learned from impression value data and features of the data. However, since impressions have different criteria for different people, the impression values may be different for different persons even with the same data. In order to be able to estimate an average impression, an average impression can be learned by giving an impression value to one data by a large number of people and using the average value of the impression values. In order to be able to stably estimate the average impression value, the impression value should be given by as many people as possible. For example, in the impression data created in Non-Patent Document 3, impression values are assigned to one voice data by ten people.
 実運用上では、人数制約により1データに対して大量の印象値を付与するのは困難であるため、多人数でいくつかのデータを分散して印象値を付与する。そのため、1データ当たり高々1、2名程度の印象値となる。この場合、平均的な印象値を求めても、評価者によって印象の基準が異なる場合があり、多人数の平均値でとった値と大きく異なる場合がある。このとき、評価の基準の違いにより、平均したラベルが正しく学習できなくなる場合がある。 (4) In actual operation, it is difficult to give a large amount of impression value to one data due to the limitation of the number of people. Therefore, the impression value is at most about one or two persons per data. In this case, even when an average impression value is obtained, the standard of impression may be different depending on the evaluator, and may be significantly different from the value obtained by the average value of a large number of people. At this time, an averaged label may not be able to be correctly learned due to a difference in evaluation criteria.
 なお、上記のような課題は、評価対象が音声である場合に限らず、様々な分野において評価対象を複数の評価者で評価する場合に生じ得る課題である。 課題 Note that the above-described problem is not limited to the case where the evaluation target is a voice, and may be a problem that can occur when the evaluation target is evaluated by a plurality of evaluators in various fields.
 本発明は上記の点に鑑みてなされたものであり、1評価対象当たりの評価者数が少ない場合でも、平均的な評価を行う評価者を選定することを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above points, and provides a technology that enables an evaluator to perform an average evaluation to be selected even when the number of evaluators per evaluation target is small. Aim.
 開示の技術によれば、複数の評価対象に対する評価を実施した複数の評価者から特定の評価者を選定する選定装置であって、 According to the disclosed technology, a selection device that selects a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets,
 評価対象毎の評価者及び評価値を含む入力データに基づいて、評価者毎に他評価者との間の評価値の一致度を算出する一致度集計部と、 一致 a coincidence counting unit that calculates the degree of coincidence of the evaluation value with another evaluator for each evaluator based on the input data including the evaluator and the evaluation value for each evaluation target;
 評価者毎の前記一致度に基づいて、評価者毎に、評価値が他評価者と有意に一致するか否かを示す確率値を算出する確率値計算部と、 確 率 based on the degree of coincidence for each evaluator, for each evaluator, a probability value calculation unit that calculates a probability value indicating whether the evaluation value significantly matches other evaluators,
 前記確率値に基づいて、評価値が他評価者と有意に一致する評価者を選定する評価者選定部と と an evaluator selection unit that selects an evaluator whose evaluation value is significantly consistent with another evaluator based on the probability value.
 を備えることを特徴とする選定装置が提供される。 選定 is provided.
 開示の技術によれば、1評価対象当たりの評価者数が少ない場合でも、平均的な評価を行う評価者を選定することを可能とする技術が提供される。 According to the disclosed technology, a technology is provided that enables an evaluator to perform an average evaluation even when the number of evaluators per evaluation target is small.
本発明の実施の形態における学習装置100の機能構成図である。FIG. 2 is a functional configuration diagram of the learning device 100 according to the embodiment of the present invention. 装置のハードウェア構成の例を示す図である。FIG. 3 is a diagram illustrating an example of a hardware configuration of a device. 学習ラベルデータの例を示す図である。It is a figure showing an example of learning label data. 学習特徴量データの例を示す図である。FIG. 9 is a diagram illustrating an example of learning feature data. 両者の評価値とmの値を示す図である。It is a figure which shows the evaluation value of both, and the value of m.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、以下の実施の形態では、音声の印象値の評価を行う評価者を選定する例を示しているが、本発明は、音声の印象値の評価に限らず、様々な評価対象の評価についての評価者の選定に適用することができる。 Hereinafter, embodiments of the present invention (the present embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments. For example, in the following embodiment, an example in which an evaluator that evaluates an impression value of a voice is selected is shown. However, the present invention is not limited to the evaluation of an impression value of a voice, and various evaluation targets may be evaluated. Can be applied to the selection of evaluators.
 (装置の機能構成) (Functional configuration of device)
 図1に本実施の形態における学習装置100の機能構成図を示す。図1に示すように、学習装置100は、一致数集計部110、確率値計算部120、評価者選定部130、学習部140を備える。また、学習装置100において使用されるデータを格納するデータベースである学習ラベルデータDB150、及び学習特徴量データDB160が存在する。学習ラベルデータDB150、及び学習特徴量データDB160は、学習装置100の内部に記憶部として備えられていてもよいし、学習装置100の外部にネットワークを介して接続されるものであってもよい。なお、一致数集計部110が集計する一致数は一致度の例である。より一般的に、一致数集計部110を一致度集計部110と称してもよい。 FIG. 1 shows a functional configuration diagram of the learning device 100 according to the present embodiment. As shown in FIG. 1, the learning device 100 includes a number-of-matches counting unit 110, a probability value calculation unit 120, an evaluator selection unit 130, and a learning unit 140. Further, there are a learning label data DB 150 and a learning feature data DB 160 which are databases for storing data used in the learning device 100. The learning label data DB 150 and the learning feature amount data DB 160 may be provided as a storage unit inside the learning device 100, or may be connected to the outside of the learning device 100 via a network. The number of matches counted by the number-of-matches counting unit 110 is an example of the degree of match. More generally, the number-of-matches counting section 110 may be referred to as a matching degree counting section 110.
 また、学習部140を備えずに、一致数集計部110、確率値計算部120、評価者選定部130を備える装置(選定装置と呼ぶ)が設けられてもよい。この場合、学習を行うために、選定装置から、学習部を備える任意の学習装置に、選定結果(選定された評価者でもよいし、選定されたラベルデータでもよい)が送信される。 (4) An apparatus (referred to as a selection apparatus) including the number-of-matches counting section 110, the probability value calculation section 120, and the evaluator selection section 130 without providing the learning section 140 may be provided. In this case, in order to perform learning, the selection result (either the selected evaluator or the selected label data) is transmitted from the selection device to an arbitrary learning device including a learning unit.
 一致数集計部110、確率値計算部120、評価者選定部130、学習部140を含む装置を選定装置と称してもよい。また、一致数集計部110、確率値計算部120、評価者選定部130、学習部140を含む学習装置100の内部における一致数集計部110、確率値計算部120、評価者選定部130を有する部分を選定装置と称してもよい。 A device including the number-of-matches totaling unit 110, the probability value calculating unit 120, the evaluator selecting unit 130, and the learning unit 140 may be referred to as a selecting device. The learning apparatus 100 further includes a matching number counting section 110, a probability value calculating section 120, an evaluator selecting section 130, and a learning section 140. The matching number counting section 110, the probability value calculating section 120, and the evaluator selecting section 130 are provided. The part may be referred to as a selection device.
 上述したDBに格納されたデータの内容、及び各部の詳細動作については実施例(及び変形例)として後述する。 The contents of the data stored in the above-mentioned DB and the detailed operation of each unit will be described later as an embodiment (and a modification).
 (ハードウェア構成例) (Example of hardware configuration)
 上述した学習装置100及び選定装置(以下、"装置"と総称する)は、例えば、コンピュータに、本実施の形態で説明する処理内容を記述したプログラムを実行させることにより実現可能である。 The learning device 100 and the selection device described above (hereinafter, collectively referred to as “devices”) can be realized by, for example, causing a computer to execute a program describing processing contents described in the present embodiment.
 すなわち、当該装置は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、当該装置で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。 That is, the device can be realized by executing a program corresponding to a process performed by the device using hardware resources such as a CPU and a memory built in the computer. The above-mentioned program can be recorded on a computer-readable recording medium (a portable memory or the like) and can be stored or distributed. Further, the above program can be provided through a network such as the Internet or electronic mail.
 図2は、本実施の形態における上記コンピュータのハードウェア構成例を示す図である。図2のコンピュータは、それぞれバスBで相互に接続されているドライブ装置170、補助記憶装置172、メモリ装置173、CPU174、インタフェース装置175、表示装置176、及び入力装置177等を有する。 FIG. 2 is a diagram illustrating an example of a hardware configuration of the computer according to the present embodiment. The computer in FIG. 2 includes a drive device 170, an auxiliary storage device 172, a memory device 173, a CPU 174, an interface device 175, a display device 176, an input device 177, and the like, which are interconnected by a bus B.
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体171によって提供される。プログラムを記憶した記録媒体171がドライブ装置170にセットされると、プログラムが記録媒体171からドライブ装置170を介して補助記憶装置172にインストールされる。但し、プログラムのインストールは必ずしも記録媒体171より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置172は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 The program for realizing the processing in the computer is provided by a recording medium 171 such as a CD-ROM or a memory card. When the recording medium 171 storing the program is set in the drive device 170, the program is installed from the recording medium 171 to the auxiliary storage device 172 via the drive device 170. However, the program need not always be installed from the recording medium 171 and may be downloaded from another computer via a network. The auxiliary storage device 172 stores installed programs and also stores necessary files and data.
 メモリ装置173は、プログラムの起動指示があった場合に、補助記憶装置172からプログラムを読み出して格納する。CPU174は、メモリ装置173に格納されたプログラムに従って、当該装置に係る機能を実現する。インタフェース装置175は、ネットワークに接続するためのインタフェースとして用いられる。表示装置176はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置177はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。 (4) The memory device 173 reads out the program from the auxiliary storage device 172 and stores it when there is an instruction to start the program. The CPU 174 implements functions of the memory device 173 according to a program stored in the device. The interface device 175 is used as an interface for connecting to a network. The display device 176 displays a GUI (Graphical User Interface) or the like by a program. The input device 177 includes a keyboard, a mouse, buttons, a touch panel, and the like, and is used to input various operation instructions.
 以下、実施例として、学習ラベルデータDB150、学習特徴量データDB160に格納される学習ラベルデータ、学習特徴量データ、及び各部の動作を詳細に説明する。 Hereinafter, as examples, the learning label data DB150, the learning label data stored in the learning feature data DB160, the learning feature data, and the operation of each unit will be described in detail.
 (実施例) (Example)
 <学習ラベルデータ・学習特徴量データ> <Learning label data / learning feature data>
 本実施例における学習ラベルデータの例を図3に示し、学習特徴量データの例を図4に示す。 FIG. 3 shows an example of the learning label data in this embodiment, and FIG. 4 shows an example of the learning feature amount data.
 図3に示すように、学習ラベルデータには、学習ラベルデータのデータ番号i(i=0,1,…,I)に対して、データ番号y(i,0)、評価者番号y(i,1)、印象値ラベルy(i,2)が存在する。データ番号y(i,0)はy(i,0)∈{0,1,2,…,J}であり、学習特徴量データのデータ番号jを示す番号である。また、評価者番号はそのデータを評価した評価者の番号y(i,1)∈{1,2,3,…,K}である。印象値ラベルは、そのデータに対する印象の値(評価値)である。本実施例では、0、1として2値の値を付与しているものとする。 As shown in FIG. 3, the learning label data includes a data number y (i, 0) and an evaluator number y (i) for the data number i (i = 0, 1,..., I) of the learning label data. , 1) and an impression value label y (i, 2). The data number y (i, 0) is y (i, 0) {0,1,2, ..., J}, and is a number indicating the data number j of the learning feature amount data. The evaluator number is the number y (i, 1) {1, 2, 3,..., K} of the evaluator who evaluated the data. The impression value label is an impression value (evaluation value) for the data. In the present embodiment, it is assumed that binary values are assigned as 0 and 1.
 このように、学習ラベルデータは、1つの学習特徴量データに対して複数の人物により、複数の印象ラベルが付与されているものになっている。 As described above, in the learning label data, a plurality of impression labels are given to one learning feature amount data by a plurality of persons.
 図4に示すように、学習特徴量データは、データ番号j(j=0,1,…,J)に対するデータx(j)となる。学習特徴量データは、例えば、音声信号や音声信号から特徴を抽出したベクトル等の値である。 As shown in FIG. 4, the learning feature amount data is data x (j) for data number j (j = 0, 1,..., J). The learning feature amount data is, for example, an audio signal or a value such as a vector obtained by extracting a feature from the audio signal.
 <一致数集計部110> <Match number counting unit 110>
 次に、一致数集計部110の動作を説明する。一致数集計部110には、学習ラベルデータDB150から学習ラベルデータが入力される。 Next, the operation of the coincidence counting section 110 will be described. The learning label data is input from the learning label data DB 150 to the number-of-matches counting section 110.
 一致数集計部110は、入力された学習ラベルデータに基づいて、評価者毎に他者と一致している数、不一致の数を集計し、一致数集計データC(k,m)と、評価者kの評価数N(k)を求める。なお、一致数集計データC(k,m)を一致度と称してもよい。 Based on the input learning label data, the number-of-matches counting section 110 counts the number of matches and the number of mismatches for each evaluator, and calculates the number-of-matches total data C (k, m) and the evaluation. The evaluation number N (k) of the person k is obtained. Note that the coincidence count data C (k, m) may be referred to as coincidence.
 一致数集計データC(k,m)に関して、m=0のとき、C(k,m)は評価者kが他者と見解が不一致であった回数を示し、m=1のとき、C(k,m)は評価者kが他者と見解が一致した回数を示す。評価数N(k)は、これらの回数の合計であり、N(k)=C(k,0)+C(k,1)を満たす。以下、一致数集計部110の動作をより詳細に説明する。動作は下記の(1)と(2)からなる。 Regarding the coincidence count data C (k, m), when m = 0, C (k, m) indicates the number of times that the evaluator k disagrees with others, and when m = 1, C (k, m) k, m) indicates the number of times that the evaluator k has agreed with another person. The evaluation number N (k) is the sum of these numbers, and satisfies N (k) = C (k, 0) + C (k, 1). Hereinafter, the operation of the number-of-matches counting section 110 will be described in more detail. The operation consists of the following (1) and (2).
 (1)まず、学習ラベルデータを下記ルール1、2に基づき関数化する。 (1) First, the learning label data is converted into a function based on the following rules 1 and 2.
 ルール1:評価者k、学習特徴量データ番号jについて学習ラベルデータ内にデータが存在するときは、その時のラベルをf(k,j)とし、存在しないときはf(k,j)=Noneとする。例えば、図3に示す例において、1番の評価者(k=1)、0番の学習特徴量データ(j=0)に着目すると、ラベル=0なので、f(1,0)=0である。また、f(2,0)=0である。 Rule 1: If data exists in the learning label data for evaluator k and learning feature data number j, the label at that time is f (k, j); otherwise, f (k, j) = None And For example, in the example shown in FIG. 3, focusing on the first evaluator (k = 1) and the zeroth learning feature data (j = 0), since label = 0, f (1,0) = 0 is there. Also, f (2,0) = 0.
 ルール2:あるデータ番号jを評価している評価者番号の集合をL(j)とする。例えば、図3の例では、0番のデータを評価しているのでは、1番と2番の評価者なので、L(0)={1,2}となる。各jについて、L(j)が得られる。 Rule 2: Let a set of evaluator numbers evaluating a certain data number j be L (j). For example, in the example of FIG. 3, L (0) = {1, 2} when the data of No. 0 is evaluated because it is the first and second evaluators. For each j, L (j) is obtained.
 (2)評価者k(k=1,…K)についてのループ処理として、k=1,…Kのそれぞれについて、下記の(2-1)と(2-2)の処理を実行する。 (2) As a loop process for the evaluator k (k = 1,... K), the following processes (2-1) and (2-2) are executed for each of k = 1,.
 (2-1)一致数集計データC(k,m)と評価者kの評価数N(k)を初期化するため、C(k,0)=0、C(k,1)=0、N(k)=0とする。 (2-1) C (k, 0) = 0, C (k, 1) = 0, in order to initialize the coincidence count data C (k, m) and the evaluation number N (k) of the evaluator k. N (k) = 0.
 (2-2)データ番号j(j=0,1,..,J)についてのループ処理として、j=0,1,..,Jのそれぞれについて、下記の(2-2-1)と(2-2-2)の処理を実行する。 {(2-2) As loop processing for data number j (j = 0, 1,..., J), j = 0, 1,. . , J, the following processes (2-2-1) and (2-2-2) are executed.
 (2-2-1)f(k,j)=Noneの場合、jについての次のループへ進む。 If (2-2-1) f (k, j) = None, the process proceeds to the next loop for j.
 (2-2-2)f(k,j)!=Noneの場合(f(k,j)がNoneでない場合)、L'=L(j)-{k}を求めてl∈L'(データjを評価するk以外の評価者集合)についてのループ処理として、(2-2-2-1)、(2-2-2-2)、(2-2-2-3)を実行する。 (2-2-2) f (k, j)! = None (if f (k, j) is not None), L ′ = L (j) − {k} is obtained and l {L ′ (evaluator set other than k for evaluating data j) (2-2-2-1), (2-2-2-2), and (2-2-2-3) are executed as loop processing.
 (2-2-2-1)N(k)+=1 (2-2-2-1) N (k) + = 1
 (2-2-2-2)f(l,j)=f(k,j)の場合(他者とラベルが一致する場合)、一致している数を増やす:C(k,0)+=1 (2-2-2-2) When f (l, j) = f (k, j) (when the label matches another person), the number of matching is increased: C (k, 0) + = 1
 (2-2-2-3)f(l,j)≠f(k,j)の場合(他者とラベルが一致しない場合)、不一致している数を増やす:C(k,1)+=1 (2-2-2-3) If f (l, j) ≠ f (k, j) (if the label does not match with the others), increase the number of mismatches: C (k, 1) + = 1
 <確率値計算部120> <Probability value calculation unit 120>
 次に、確率値計算部120の動作を説明する。確率値計算部120では、ある評価者について他者と一致している数が有意に高いか否かを計算するための確率値を求める。具体的には下記のとおりである。 Next, the operation of the probability value calculation unit 120 will be described. The probability value calculation unit 120 obtains a probability value for calculating whether or not the number of the evaluators that match the other evaluators is significantly high. The details are as follows.
 他者と見解が一致する確率をpと仮定すると、有意に一致する回数が高い場合は、様々な評価者と見解が一致しやすく、様々な評価者の中でも安定して評価ができる評価者とすることができる。ここでは、2名の見解が一致する確率・不一致する確率がp、(1-p)であるベルヌーイ分布に従うと仮定し、2項分布に基づいて確率値を計算する。 Assuming that the probability that the views agree with others is p, if the number of significant matches is high, various evaluators are likely to agree with the views, and evaluators that can stably evaluate among various evaluators can do. Here, it is assumed that the probability that the two people agree and the probability that they disagree follow a Bernoulli distribution of p and (1−p), and calculate the probability value based on the binomial distribution.
 確率値計算部120は、C(k,0),C(k,1)の回数が二項分布に従うと仮定し、下記の式により2項検定を行い有意確率P(k)を求める。 The probability value calculation unit 120 performs a binomial test according to the following equation to obtain a significance probability P (k), assuming that the number of C (k, 0) and C (k, 1) follows a binomial distribution.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式におけるNormcdfは標準正規累積分布関数である。計算により得られるPについて、評価回数が多く、かつ他者と一致している回数が多い評価者はPの値が小さくなる。一致する確率pは例えば、p=0.5とすることができる。 M Normcdf in the above equation is a standard normal cumulative distribution function. For the P obtained by the calculation, the evaluator who has a large number of evaluations and has a large number of matches with others has a small value of P. The matching probability p can be, for example, p = 0.5.
 <評価者選定部130> <Evaluator selection unit 130>
 次に、評価者選定部130の動作を説明する。評価者選定部130は、確率値計算部120により得られたP(k)に基づき、閾値δを用いて、評価値が他者と有意に一致している評価者を選定し、その評価者の評価しているデータのみを選定する。本実施例では、評価者選定部130は、下記の式により、選定された評価者のラベルデータの集合I'を算出し、出力する。 Next, the operation of the evaluator selection unit 130 will be described. The evaluator selection unit 130 selects an evaluator whose evaluation value is significantly consistent with another using the threshold δ based on P (k) obtained by the probability value calculation unit 120, and Select only the data evaluated by. In the present embodiment, the evaluator selecting unit 130 calculates and outputs a set I ′ of label data of the selected evaluator according to the following equation.
 I'={i|P(k)<δ∧C(k,1)>C(k,0)∧y(i,1)=k} {I ′ = {i | P (k) <δ} C (k, 1)> C (k, 0) {y (i, 1) = k}
 なお、「P(k)<δ∧C(k,1)>C(k,0)」を満たす評価者kを選定し、選定した評価者を出力することとしてもよい。この場合、学習部140において、選定された評価者が評価したラベルデータを抽出すればよい。 Note that an evaluator k that satisfies “P (k) <δ∧C (k, 1)> C (k, 0)” may be selected, and the selected evaluator may be output. In this case, the learning unit 140 may extract the label data evaluated by the selected evaluator.
 また、評価者を選定する基準「P(k)<δ∧C(k,1)>C(k,0)」は一例であり、これ以外の基準で評価者を選定してもよい。 {The criteria for selecting the evaluator “P (k) <δ∧C (k, 1)> C (k, 0)” are merely examples, and the evaluator may be selected based on other criteria.
 <学習部140> <Learning unit 140>
 次に、学習部140の動作を説明する。学習部140は、評価者選定部130により選定されたラベルデータ、及び、対応する学習特徴量データを教師データとして用いて機械学習モデルを学習する。機械学習の方法としては、一般的な方法(例えばSVM,ニューラルネットワーク等)を用いることができる。 Next, the operation of the learning unit 140 will be described. The learning unit 140 learns a machine learning model using the label data selected by the evaluator selection unit 130 and the corresponding learning feature data as teacher data. As a method of machine learning, a general method (for example, SVM, neural network, or the like) can be used.
 ラベルデータとしては、評価者選定部130により選定されたラベルデータ集合I'のみを用いる。具体的には、下記のように学習特徴量データとラベルデータのセットX、Yを求める。 の み As the label data, only the label data set I ′ selected by the evaluator selection unit 130 is used. Specifically, sets X and Y of the learning feature amount data and the label data are obtained as described below.
 (X,Y)i∈I'={(x(y(i,0)),y(i,2))|i∈I'} (X, Y) i∈I ′ = {(x (y (i, 0)), y (i, 2)) | i∈I ′}
 そして、学習部140は、X,Yを教師データとして用いて学習を行う。例えば、Xをモデルの入力とし、Yを正解データとして、モデルを学習する。学習でできたモデルは、例えば、音声の自動評価に使用される。 {The learning unit 140 performs learning using X and Y as teacher data. For example, the model is learned using X as the input of the model and Y as the correct data. The model obtained by learning is used, for example, for automatic evaluation of speech.
 (変形例) (Modification)
 次に、変形例を説明する。上述した実施例では、ラベルが2値(0又は1)の場合を想定していたが、2よりも多い段階の値、例えば、5段階の値、10段階の値等でも安定した評価者を選定することができる。変形例では、ラベルとして、2よりも多い段階の値を用いる場合でも適用できる処理内容について説明する。このときの学習ラベルデータは、図3の例では、1つのデータ番号(y(i,0)あたりのラベルの数(行数)が、段階の数(2に限られない)になったものである。 Next, a modified example will be described. In the above-described embodiment, it is assumed that the label has two values (0 or 1). However, a stable evaluator can be obtained even if the value is more than two steps, for example, five values, ten values, or the like. Can be selected. In the modified example, a description will be given of processing contents that can be applied even when values of more than two levels are used as labels. In the example of FIG. 3, the learning label data at this time is such that the number of labels (the number of rows) per one data number (y (i, 0)) is the number of stages (not limited to two). It is.
 以下、変形例における一致数集計部110、及び確率値計算部120の動作を説明する。評価者選定部130、及び学習部140の動作は実施例における動作と同様である。 Hereinafter, the operations of the number-of-matches totaling unit 110 and the probability value calculating unit 120 in the modification will be described. The operations of the evaluator selecting unit 130 and the learning unit 140 are the same as the operations in the embodiment.
 <変形例:一致数集計部110> <Modified example: Match count totaling unit 110>
 変形例における一致数集計部110は、評価者間の差を集計する。このとき、一致数集計データC(k,m)(m=0,・・・,M-1,Mはラベルの最大値。例えば評価の最小値が1の5段階評価の場合M=5となる)は、2名の評価者の差分の回数の集計値となる。m=0とき、C(k,m)は評価者kが他者と見解がいずれかの段階で一致した回数を示し、m≠0のときC(k,m)は評価者kが他者と見解がm段階差があった回数を示す。N(k)=Σm=0 M-1C(k,m)を満たす。以下、一致数集計部110の動作をより詳細に説明する。動作は下記の(1)と(2)からなる。 The number-of-matches totaling unit 110 in the modified example totals differences between evaluators. At this time, the total number of matching data C (k, m) (m = 0,..., M−1, M is the maximum value of the label. For example, in the case of a five-level evaluation where the minimum evaluation value is 1, M = 5 ) Is a total value of the number of differences between the two evaluators. When m = 0, C (k, m) indicates the number of times that evaluator k agrees with another at any stage, and when m ≠ 0, C (k, m) indicates that evaluator k is another And the views indicate the number of times there was an m-step difference. N (k) = Σ m = 0 M−1 C (k, m) is satisfied. Hereinafter, the operation of the number-of-matches counting section 110 will be described in more detail. The operation consists of the following (1) and (2).
 (1)まず、学習ラベルデータを下記ルール1、2に基づき関数化する。 (1) First, the learning label data is converted into a function based on the following rules 1 and 2.
 ルール1:評価者k、学習特徴量データ番号jについて学習ラベルデータ内にデータが存在するときは、その時のラベルをf(k,j)とし、存在しないときはf(k,j)=Noneとする。例えば、図3に示す例では、f(1,0)=0、f(2,0)=0である。 Rule 1: If data exists in the learning label data for evaluator k and learning feature data number j, the label at that time is f (k, j); otherwise, f (k, j) = None And For example, in the example shown in FIG. 3, f (1,0) = 0 and f (2,0) = 0.
 ルール2:あるデータ番号jを評価している評価者番号の集合をL(j)とする。例えば、図3の例では、L(0)={1,2}となる。 Rule 2: Let a set of evaluator numbers evaluating a certain data number j be L (j). For example, in the example of FIG. 3, L (0) = {1, 2}.
 (2)評価者k(k=1,…K)についてのループ処理として、k=1,…Kのそれぞれについて、下記の(2-1)、(2-2)、(2-3)の処理を実行する。 (2) As a loop process for the evaluator k (k = 1,... K), the following (2-1), (2-2), and (2-3) Execute the process.
 (2-1)ラベルの最小値を1、最大値をMとしたときC(k,m)=0(m=0,1,2,・・・,M-1)とする。 と き When the minimum value of the (2-1) label is 1 and the maximum value is M, C (k, m) = 0 (m = 0, 1, 2,..., M−1).
 (2-2)N(k)=0とする。 (2-2) N (k) = 0.
 (2-3)データ番号j(j=0,1,..,J)についてのループ処理として、j=0,1,..,Jのそれぞれについて、下記の(2-3-1)、(2-3-2)の処理を実行する。 {(2-3) As loop processing for data number j (j = 0, 1,..., J), j = 0, 1,. . , J, the following processes (2-3-1) and (2-3-2) are executed.
 (2-3-1)f(k,j)=Noneの場合、jについての次のループへ進む。 If (2-3-1) f (k, j) = None, the process proceeds to the next loop for j.
 (2-3-2)f(k,j)≠Noneの場合,L'=L(j)-{k}を求めてl∈L'(データjを評価するk以外の評価者集合)についてのループ処理として、(2-3-2-1)、(2-3-2-2)を実行する。 (2-3-2) In the case of f (k, j) {None, L ′ = L (j) − {k} is obtained and l {L ′ (evaluator set other than k for evaluating data j) (2-3-2-1) and (2-3-2-2) are executed as the loop processing.
 (2-3-2-1)2つの評点の差分s=|f(l,j)-f(k,j)|を計算してC(k,s)+=1とする。 (2-3-2-1) The difference s = | f (l, j) −f (k, j) | between the two scores is calculated and C (k, s) + = 1.
 (2-3-2-2)N(k)+=1 (2-3-2-2) N (k) + = 1
 <変形例:確率値計算部120> <Modified example: probability value calculation unit 120>
 次に、変形例における確率値計算部120の動作を説明する。実施例では、ラベルが2値であったため、2名の見解が一致する確率・不一致する確率がp、(1-p)であるベルヌーイ分布に従うと仮定し、2項分布に基づいて確率値を計算した。 Next, the operation of the probability value calculation unit 120 in the modification will be described. In the embodiment, since the label is binary, it is assumed that the probability that the two people agree and the probability that they disagree follow a Bernoulli distribution of p and (1−p), and the probability value is calculated based on the binomial distribution. Calculated.
 変形例においては、ラベルが2値に限られない複数の段階値になるため、C(k,s)が多項分布に従うと仮定してP(k)を求める。両者の評価の差がmである確率をpとすると具体的には下記のようなχ二乗値を求めてP(k)を求める。 In the modified example, since the label has a plurality of step values not limited to binary values, P (k) is obtained on the assumption that C (k, s) follows a polynomial distribution. The probability difference of the evaluation of both a m specifically When p m and calculates the square value χ as follows seek P (k).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 P(k)=Chi_p(χP (k) = Chi_p (χ 2 )
 上記の式におけるChi_pはχ二乗値のP値を求める関数である。 C Chi_p in the above equation is a function for calculating the P value of the χ square value.
 M段階の評価としたときに、ある評点mが付与される確率をqとすると、例えばpは次のように設定することができる。 When the evaluation of the M phase, when the probability that a score m is given as q v, for example p m can be set as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記の式は、図5の表に示すように2名の評価者の差分を計算し、評点の差分が同じとなる確率値を合計した値を求めることを意味する。 The above formula means that the difference between two evaluators is calculated as shown in the table of FIG. 5 and the value obtained by summing the probability values that the difference between the scores is the same is obtained.
 本変形例では、多段階の評価(例えば、5段階等)を仮定したが、正規分布に従う連続値やベータ分布に従う0~1のような連続値であっても、その2名の差分の分布を仮定して検定を行うことでP(k)を求めることができる。 In this modification, a multi-level evaluation (for example, 5 levels) is assumed. However, even if a continuous value according to a normal distribution or a continuous value such as 0 to 1 according to a beta distribution is used, the distribution of the difference between the two persons is evaluated. P (k) can be obtained by performing a test on the assumption that
 また、本変形例では、印象値という1次元の評価を仮定したが、多項目の評価を行う場合にも拡張することができる。この場合、例えば、多項目における各項目で変形例と同様にP値を求め、項目毎に評価者を選定する。 Also, in the present modified example, a one-dimensional evaluation called an impression value is assumed, but the present invention can be extended to a case where evaluation of multiple items is performed. In this case, for example, a P value is obtained for each of the multiple items in the same manner as in the modification, and an evaluator is selected for each item.
 また、多項目の評価を行う場合において、全ての項目でP値の低い評価者を選定することとしてもよい。このように、全ての項目の評価をまとめて評価者を選出する場合において、全ての項目に関してのP値の算出方法として、例えば下記の(1)、(2)で示す2パターンのうちのいずれか又は両方を用いることができる。 In addition, when evaluating multiple items, an evaluator having a low P value for all items may be selected. As described above, in a case where an evaluator is collectively evaluated and an evaluator is selected, as a method of calculating a P value for all items, for example, one of two patterns shown in the following (1) and (2) is used. Either or both can be used.
 (1)全てのP値を重み付け和なし(=同一の重み)で平均する。 (1) Average all P values without weighted sum (= same weight).
 (2)全てのP値を重み付き和で平均する。 (2) Average all P values by weighted sum.
 (1)の場合、例えば、項目が項目A、項目B、項目Cの3つである場合において、ある評価者についての項目AのP値がPA、項目BのP値がPB、項目CのP値がPCである場合、当該評価者のP値は(PA+PB+PC)/3として算出される。 In the case of (1), for example, when there are three items, item A, item B, and item C, the P value of item A for a certain evaluator is PA, the P value of item B is PB, and the value of item C is When the P value is PC, the P value of the evaluator is calculated as (PA + PB + PC) / 3.
 (2)のように重み付き和で平均する場合、例えば、2段階の評価で一致した時より、7段階の評価で一致しているときのP値を高く評価するよう、評価の段階数の大きさに応じて評価が一致した時の安定性の評価が高くなるよう、重みを付けることができる。具体的に、評価段階数の大きさに応じた重み付けとは、例えば任意の評価項目に設定された評価段階数Mの場合に、1/Mの値を重みとし、各P値と重みの積を加算した平均を評価者選出に用いる。 In the case of averaging with a weighted sum as in (2), for example, the number of evaluation steps is set so that the P value when matching in seven levels of evaluation is evaluated higher than when matching in two levels of evaluation. Weights can be assigned according to the size so that the stability evaluation when the evaluations match is higher. Specifically, the weighting according to the magnitude of the number of evaluation steps is, for example, in the case of the number of evaluation steps M set for an arbitrary evaluation item, a value of 1 / M is used as a weight, and the product of each P value and the weight is used. The average obtained by adding is used for evaluator selection.
 例えば、項目が項目A、項目B、項目Cの3つである場合において、項目A、項目B、項目Cの段階数がそれぞれMA、MB,MCであるとし、ある評価者についての項目AのP値がPA、項目BのP値がPB、項目CのP値がPCである場合、当該評価者のP値は((PA/MA)+(PB/MB)+(PC/MC))/3として算出される。 For example, when there are three items, item A, item B, and item C, it is assumed that the number of stages of items A, B, and C is MA, MB, and MC, respectively. If the P value is PA, the P value of item B is PB, and the P value of item C is PC, the P value of the evaluator is ((PA / MA) + (PB / MB) + (PC / MC)) / 3.
 (実施の形態の効果) (Effects of the embodiment)
 上記実施例及び変形例で説明した本実施の形態に係る技術により、平均的な印象値ラベルを付与できる評価者を、評価回数や一致数などを基準に確率分布に基づき選定することとしたので、1データ当たりの評価者数が少ない場合(例えば2名)でも、平均的ではない評価者を除外でき、平均的な評価を行う評価者を選定することができる。また、平均的な印象値を学習することができる。 According to the technology according to the present embodiment described in the above Examples and Modifications, an evaluator capable of giving an average impression value label is selected based on the probability distribution based on the number of evaluations, the number of matches, and the like. (1) Even when the number of evaluators per data is small (for example, two), non-average evaluators can be excluded, and evaluators performing average evaluation can be selected. Further, an average impression value can be learned.
 (実施の形態のまとめ) (Summary of embodiment)
 以上説明したように、本実施の形態によれば、複数の評価対象に対する評価を実施した複数の評価者から特定の評価者を選定する選定装置であって、評価対象毎の評価者及び評価値を含む入力データに基づいて、評価者毎に他評価者との間の評価値の一致度を算出する一致度集計部と、評価者毎の前記一致度に基づいて、評価者毎に、評価値が他評価者と有意に一致するか否かを示す確率値を算出する確率値計算部と、前記確率値に基づいて、評価値が他評価者と有意に一致する評価者を選定する評価者選定部とを備えることを特徴とする選定装置が提供される。 As described above, according to the present embodiment, there is provided a selection device for selecting a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets, and an evaluator and an evaluation value for each evaluation target. Based on the input data including, a coincidence counting unit that calculates the degree of coincidence of the evaluation value with another evaluator for each evaluator, and for each evaluator, based on the degree of coincidence for each evaluator, A probability value calculation unit that calculates a probability value indicating whether the value significantly matches another evaluator, and an evaluation that selects an evaluator whose evaluation value significantly matches the other evaluator based on the probability value A selection device comprising: a selection unit.
 前記評価値は、例えば評価対象毎に設定された値であって、1又は複数の項目毎の2値以上の多段階値、又は、連続値である。また、前記確率値計算部は、前記確率値を、前記一致度が所定の確率分布に従うと仮定して算出することとしてもよい。 The evaluation value is, for example, a value set for each evaluation target, and is a multi-step value of two or more values for one or a plurality of items, or a continuous value. Further, the probability value calculation unit may calculate the probability value assuming that the degree of coincidence follows a predetermined probability distribution.
 また、本実施の形態によれば、上記選定装置により選定された評価者により評価が行われた評価対象及び評価値を教師データとして入力し、当該教師データを用いて機械学習モデルの学習を行う学習部を備えることを特徴とする学習装置が提供される。 Further, according to the present embodiment, an evaluation target and an evaluation value evaluated by the evaluator selected by the selection device are input as teacher data, and learning of a machine learning model is performed using the teacher data. A learning device comprising a learning unit is provided.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to the specific embodiment, and various modifications and changes may be made within the scope of the present invention described in the appended claims. It is possible.
100 学習装置
110 一致数集計部
120 確率値計算部
130 評価者選定部
140 学習部
150 学習ラベルデータDB
160 学習特徴量データDB
170 ドライブ装置
171 記録媒体
172 補助記憶装置
173 メモリ装置
174 CPU
175 インターフェース装置
176 表示装置
177 入力装置
REFERENCE SIGNS LIST 100 learning device 110 number of matches totaling unit 120 probability value calculating unit 130 evaluator selecting unit 140 learning unit 150 learning label data DB
160 learning feature data DB
170 Drive device 171 Recording medium 172 Auxiliary storage device 173 Memory device 174 CPU
175 Interface device 176 Display device 177 Input device

Claims (8)

  1.  複数の評価対象に対する評価を実施した複数の評価者から特定の評価者を選定する選定装置であって、
     評価対象毎の評価者及び評価値を含む入力データに基づいて、評価者毎に他評価者との間の評価値の一致度を算出する一致度集計部と、
     評価者毎の前記一致度に基づいて、評価者毎に、評価値が他評価者と有意に一致するか否かを示す確率値を算出する確率値計算部と、
     前記確率値に基づいて、評価値が他評価者と有意に一致する評価者を選定する評価者選定部と
     を備えることを特徴とする選定装置。
    A selection device for selecting a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets,
    Based on input data including an evaluator and an evaluation value for each evaluation target, a coincidence degree totalization unit that calculates the degree of coincidence of the evaluation value with another evaluator for each evaluator;
    A probability value calculation unit that calculates a probability value indicating whether or not the evaluation value significantly matches another evaluator based on the degree of coincidence for each evaluator;
    An evaluator selecting unit that selects an evaluator whose evaluation value significantly matches another evaluator based on the probability value.
  2.  前記評価値は、評価対象毎に設定された値であって、1又は複数の項目毎の2値以上の多段階値、又は、連続値である
     ことを特徴とする請求項1に記載の選定装置。
    The selection according to claim 1, wherein the evaluation value is a value set for each evaluation target, and is a multi-level value of two or more values for one or more items or a continuous value. apparatus.
  3.  前記確率値計算部は、前記確率値を、前記一致度が所定の確率分布に従うと仮定して算出する
     ことを特徴とする請求項1又は2に記載の選定装置。
    The selection device according to claim 1, wherein the probability value calculation unit calculates the probability value assuming that the degree of coincidence follows a predetermined probability distribution.
  4.  請求項1ないし3のうちいずれか1項に記載の選定装置により選定された評価者により評価が行われた評価対象及び評価値を教師データとして入力し、当該教師データを用いて機械学習モデルの学習を行う学習部
     を備えることを特徴とする学習装置。
    An evaluation target and an evaluation value evaluated by an evaluator selected by the selection device according to any one of claims 1 to 3 are input as teacher data, and the learning data of the machine learning model is input using the teacher data. A learning device comprising a learning unit for performing learning.
  5.  複数の評価対象に対する評価を実施した複数の評価者から特定の評価者を選定する選定装置が実行する選定方法であって、
     評価対象毎の評価者及び評価値を含む入力データに基づいて、評価者毎に他評価者との間の評価値の一致度を算出する一致度集計ステップと、
     評価者毎の前記一致度に基づいて、評価者毎に、評価値が他評価者と有意に一致するか否かを示す確率値を算出する確率値計算ステップと、
     前記確率値に基づいて、評価値が他評価者と有意に一致する評価者を選定する評価者選定ステップと
     を備えることを特徴とする選定方法。
    A selection method performed by a selection device that selects a specific evaluator from a plurality of evaluators who have performed evaluations on a plurality of evaluation targets,
    Based on input data including an evaluator and an evaluation value for each evaluation target, a coincidence counting step of calculating a coincidence of the evaluation value with another evaluator for each evaluator;
    A probability value calculating step of calculating a probability value indicating whether or not the evaluation value significantly matches another evaluator based on the degree of coincidence for each evaluator;
    An evaluator selecting step of selecting an evaluator whose evaluation value significantly matches another evaluator based on the probability value.
  6.  学習装置が実行する学習方法であって、
     請求項1ないし3のうちいずれか1項に記載の選定装置により選定された評価者により評価が行われた評価対象及び評価値を教師データとして入力し、当該教師データを用いて機械学習モデルの学習を行う学習ステップ
     を備えることを特徴とする学習方法。
    A learning method performed by the learning device,
    An evaluation target and an evaluation value evaluated by an evaluator selected by the selection device according to any one of claims 1 to 3 are input as teacher data, and the learning data of the machine learning model is input using the teacher data. A learning method comprising a learning step of performing learning.
  7.  コンピュータを、請求項1ないし3のうちいずれか1項に記載の選定装置における各部として機能させるためのプログラム。 A program for causing a computer to function as each section of the selection device according to any one of claims 1 to 3.
  8.  コンピュータを、請求項4に記載の学習装置における学習部として機能させるためのプログラム。 A program for causing a computer to function as a learning unit in the learning device according to claim 4.
PCT/JP2019/033290 2018-08-27 2019-08-26 Selection device, learning device, selection method, learning method, and program WO2020045341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158652 2018-08-27
JP2018158652A JP2020035018A (en) 2018-08-27 2018-08-27 Selection device, learning device, selection method, learning method, and program

Publications (1)

Publication Number Publication Date
WO2020045341A1 true WO2020045341A1 (en) 2020-03-05

Family

ID=69643025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033290 WO2020045341A1 (en) 2018-08-27 2019-08-26 Selection device, learning device, selection method, learning method, and program

Country Status (2)

Country Link
JP (1) JP2020035018A (en)
WO (1) WO2020045341A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227208A (en) * 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd User-adaptive action determination device and action determination method
JP2018063536A (en) * 2016-10-12 2018-04-19 株式会社野村総合研究所 Housekeeping book management support system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227208A (en) * 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd User-adaptive action determination device and action determination method
JP2018063536A (en) * 2016-10-12 2018-04-19 株式会社野村総合研究所 Housekeeping book management support system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDO, ATSUSHI: "Speech emotion classification based on soft target learning using ambiguous emotion utterances", LECTURE PROCEEDINGS OF 2018 SPRING RESEARCH CONFERENCE OF THE ACOUSTICAL SOCIETY OF JAPAN CD- ROM, 27 February 2018 (2018-02-27), pages 41 - 42 *
NEYATANI, TAKUROU: "Optimization of KANSEI Retrieval Agent Using the Neural Network", PROCEEDINGS OF THE 2012 GENERAL CONFERENCE OF IEICE: INFORMATION AND SYSTEM 1, 6 March 2012 (2012-03-06), pages 20 *
SUZUKI, YOSUKE: "Stacked Denoising Autoencoder-based Deep Collaborative Filtering using the change of similarity", DOCUMENTS OF SPECIAL INTEREST GROUP ON KNOWLEDGE-BASED SYSTEMS, 1 November 2016 (2016-11-01), pages 7 - 12, XP033099453 *
TAKAKI, SHINJI: "Unsupervised speaker adaptation based on speaker similarity for DNN- based speech synthesis", IPSJ SIG TECHNICAL REPORTS, SPOKEN LANGUAGE PROCESSING (SLP) 2017-SLP- 118, 6 October 2017 (2017-10-06), pages 1 - 6, XP033525977 *

Also Published As

Publication number Publication date
JP2020035018A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
Wang et al. Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks
Rodrigues et al. Sequence labeling with multiple annotators
US9141622B1 (en) Feature weight training techniques
Wang et al. Cost-effective quality assurance in crowd labeling
Bentivogli et al. SICK through the SemEval glasses. Lesson learned from the evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment
US20180225581A1 (en) Prediction system, method, and program
JP6977901B2 (en) Learning material recommendation method, learning material recommendation device and learning material recommendation program
WO2020082734A1 (en) Text emotion recognition method and apparatus, electronic device, and computer non-volatile readable storage medium
US20190026655A1 (en) Machine Learning System for Patient Similarity
US20190012573A1 (en) Co-clustering system, method and program
US11669740B2 (en) Graph-based labeling rule augmentation for weakly supervised training of machine-learning-based named entity recognition
US20200250574A1 (en) Techniques for bimodal learning in a financial context
Kong et al. Eliciting expertise without verification
US20130004931A1 (en) Computer-Implemented Systems and Methods for Determining Content Analysis Metrics for Constructed Responses
US9348810B2 (en) Model learning method
CN113011689B (en) Evaluation method and device for software development workload and computing equipment
US20100296728A1 (en) Discrimination Apparatus, Method of Discrimination, and Computer Program
WO2020045341A1 (en) Selection device, learning device, selection method, learning method, and program
Scharl et al. Leveraging the wisdom of the crowds for the acquisition of multilingual language resources
Javid et al. Developing Novel T-Swish Activation Function in Deep Learning
JP6306951B2 (en) Classification method and system of noise posting in social network service
Liu et al. Transfer learning robustness in multi-class categorization by fine-tuning pre-trained contextualized language models
Bujnowski et al. An approach to intuitionistic fuzzy decision trees
CN115048525B (en) Method and device for text classification and text classification model training based on multi-tuple
Huang et al. ChatGPT Rates Natural Language Explanation Quality Like Humans: But on Which Scales?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855792

Country of ref document: EP

Kind code of ref document: A1