WO2020045020A1 - Blade control device for work machine - Google Patents

Blade control device for work machine Download PDF

Info

Publication number
WO2020045020A1
WO2020045020A1 PCT/JP2019/031271 JP2019031271W WO2020045020A1 WO 2020045020 A1 WO2020045020 A1 WO 2020045020A1 JP 2019031271 W JP2019031271 W JP 2019031271W WO 2020045020 A1 WO2020045020 A1 WO 2020045020A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
design surface
virtual design
vehicle body
unit
Prior art date
Application number
PCT/JP2019/031271
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 上村
菅野 直紀
前川 智史
大輔 野田
佑介 上村
Original Assignee
株式会社神戸製鋼所
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, コベルコ建機株式会社 filed Critical 株式会社神戸製鋼所
Priority to US17/271,109 priority Critical patent/US20210254313A1/en
Priority to EP19855877.7A priority patent/EP3825474A1/en
Priority to CN201980055079.9A priority patent/CN112567100A/en
Publication of WO2020045020A1 publication Critical patent/WO2020045020A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7618Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a horizontal axis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine

Definitions

  • the present invention relates to a blade control device provided in a work machine having a blade.
  • Patent Document 1 discloses a blade control device intended to suppress undulation on a construction surface.
  • the blade operation control unit restricts the swing of the blade above a virtual design surface set parallel to the design surface and closer to the blade than the design surface, while reducing the blade load.
  • the blade load is smaller than the first set load value
  • the blade is lowered
  • the blade load is larger than the second set load value larger than the first set load value
  • the blade is raised.
  • the virtual design surface setting unit resets a virtual design surface parallel to the design surface when the blade load decreases from a value equal to or more than the first set load value to a value smaller than the first set load value.
  • the virtual design surface setting unit sets the virtual design surface at a position farther from the design surface than the previously set virtual design surface. That is, each time the virtual design surface is updated, it moves upward from the design surface.
  • the present invention provides a blade control device provided in a work machine equipped with a blade for controlling the raising and lowering operation of the blade, wherein the blade control device can effectively suppress undulation of a construction surface.
  • the purpose is to:
  • the blade control device is provided in a work machine including a traveling device and a machine body including a vehicle body supported by the traveling device, and a blade that is attached to the machine body so as to be movable up and down. It is a device for controlling the elevating operation.
  • the blade control device a target design surface setting unit that sets a target design surface that specifies a target shape of an excavation target by the blade, a position information acquisition unit that acquires position information about the work machine, and the position information acquisition unit
  • a blade position calculation unit that calculates a blade position that is the position of the blade based on the position information acquired by the above, a virtual design surface setting unit that sets a virtual design surface above the target design surface, and the blade
  • a blade operation control unit for controlling the elevating operation.
  • the virtual design surface setting unit when a preset update condition is satisfied, the horizontal plane of the vehicle body obtained based on the position information and based on the blade position when the update condition is satisfied.
  • the virtual design surface is set at an angle equivalent to the vehicle body angle, which is an inclination angle with respect to.
  • the blade operation control unit restricts the elevating operation of the blade so that the blade performs the elevating operation above the virtual design surface.
  • FIG. 1 is a side view illustrating a hydraulic excavator as an example of a work machine on which a blade control device according to an embodiment of the present invention is mounted.
  • FIG. 3 is a block diagram illustrating main functions of a blade control device according to the embodiment.
  • 4 is a flowchart illustrating an example of a control operation executed by a controller included in the blade control device. It is a flowchart which shows an example of the control operation by the blade operation control part among the control operations performed by the controller. It is a flowchart which shows an example of the control operation by the virtual design surface setting part among the control operations performed by the controller.
  • FIG. 4 is a schematic side view for explaining an estimated position in the blade control device.
  • FIG. 4 is a schematic side view for explaining an estimated position in the blade control device.
  • FIG. 4 is a schematic side view for explaining setting of a virtual design surface in the blade control device. It is a flowchart which shows an example of the control operation by the blade control restriction part among the control operations which the said controller performs. It is a schematic side view which shows an example of a design surface, a current surface, a virtual design surface, and a construction surface when the work machine provided with the blade control device performs excavation work while climbing a slope along a current surface.
  • FIG. 4 is a schematic side view showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when the work machine including the blade control device performs an excavation operation while descending a slope along a current surface.
  • FIG. 9 is a block diagram illustrating main functions of a blade control device according to a modification of the embodiment. 9 is a flowchart illustrating an example of a control operation performed by a controller included in the blade control device according to the modification.
  • FIG. 9 is a block diagram illustrating main functions of a blade control device according to a modification of the embodiment. 9 is a flowchart illustrating an example of a control operation performed by a controller included in the blade control device according to the modification.
  • FIG. 9 is a block diagram
  • FIG. 1 is a side view showing a hydraulic excavator 1 as an example of a work machine on which a blade control device according to an embodiment of the present invention is mounted.
  • the hydraulic excavator 1 includes a traveling device 2 (a lower traveling body) that can travel on the ground G, a vehicle body 3 (an upper revolving superstructure) mounted on the traveling device 2, and a working device mounted on the vehicle body 3. And a blade 4 mounted on the traveling device 2 or the vehicle body 3.
  • the traveling device 2 and the vehicle body 3 constitute a machine body of the work machine.
  • the vehicle body 3 has a turning frame, an engine, a cab, and the like.
  • the working device mounted on the vehicle body 3 includes a boom 5, an arm 6, and a bucket 7.
  • the boom 5 has a base end supported at the front end of the revolving frame so as to be able to undulate, that is, rotatable around a horizontal axis, and a tip end on the opposite side.
  • the arm 6 has a base end that is rotatably mounted on the front end of the boom 5 about a horizontal axis, and a front end opposite to the base end.
  • the bucket 7 is rotatably attached to the tip of the arm 6.
  • the hydraulic excavator 1 has a boom cylinder, an arm cylinder, and a bucket cylinder provided for each of the boom 5, the arm 6, and the bucket 7.
  • the boom cylinder is interposed between the vehicle body 3 and the boom 5, and extends and contracts so as to cause the boom 5 to perform an up-and-down operation.
  • the arm cylinder is interposed between the boom 5 and the arm 6, and expands and contracts so as to cause the arm 6 to perform a rotating operation.
  • the bucket cylinder is interposed between the arm 6 and the bucket 7, and expands and contracts so as to cause the bucket 7 to perform a rotating operation.
  • the blade 4 mounted on the traveling device 2 or the vehicle body 3 is provided for performing operations such as excavation of the ground, leveling, and transportation of earth and sand.
  • the blade 4 is supported by a lift frame 4a, and the lift frame 4a is supported rotatably about the horizontal axis 4b with respect to the traveling device 2. Therefore, the blade 4 can be displaced vertically with respect to the traveling device 2.
  • the excavator 1 has a lift cylinder 8 provided for the blade 4.
  • the lift cylinder 8 has a head-side chamber 8h and a rod-side chamber 8r (see FIG. 1).
  • the lift cylinder 8 When hydraulic oil is supplied to the head-side chamber 8h, the lift cylinder 8 extends to move the blade 4 in a lowering direction and to move the rod-side chamber 8r. While the hydraulic oil in the inside is discharged, the hydraulic oil is supplied to the rod side chamber 8r to contract and move the blade 4 in the upward direction, and to discharge the hydraulic oil in the head side chamber 8h.
  • the hydraulic excavator 1 has a hydraulic circuit (not shown).
  • the hydraulic circuit includes the boom cylinder, the arm cylinder, the bucket cylinder, and the lift cylinder 8.
  • the hydraulic circuit further includes a hydraulic pump 9 (see FIG. 1), a lift cylinder control proportional valve 41 (see FIG. 2), and a lift cylinder flow control valve (not shown).
  • FIG. 2 is a block diagram illustrating main functions of the blade control device 100.
  • the blade control device 100 is provided to control the elevating operation of the blade 4.
  • the blade control device 100 includes a controller 10 (mechatronic controller), a position information acquisition unit, a blade load acquisition unit 34, an automatic control switch 35, and a traveling lever 36 for operating the traveling device 2.
  • the controller 10 includes, for example, a microcomputer and controls the operation of each element included in the hydraulic circuit.
  • the position information acquisition unit has a function of acquiring position information on the excavator 1.
  • the position information acquisition unit includes a vehicle body position acquisition unit 31, a vehicle body angle acquisition unit 32, and a blade angle acquisition unit 33.
  • the vehicle body position acquisition unit 31 has a function of acquiring a vehicle body position that is the position of the machine body.
  • the vehicle body position acquisition unit 31 is configured by a receiver capable of receiving satellite data (positioning signal) from a satellite positioning system, such as a receiver (GNSS sensor) of GNSS (Global Navigation Satellite System), for example, and the vehicle body in a global coordinate system.
  • the GNSS data indicating the vehicle body position which is the position 3 is received.
  • the global coordinate system is a three-dimensional coordinate system based on an origin defined on the earth, and is a coordinate system indicating an absolute position defined by the satellite positioning system.
  • the vehicle body angle obtaining unit 32 has a function of obtaining a vehicle body angle which is an angle of the vehicle body 3.
  • the vehicle body angle acquisition unit 32 is configured by, for example, a vehicle body angle sensor that detects the angle of the vehicle body 3 in the global coordinate system.
  • the vehicle body angle sensor may be provided, for example, in the body of the aircraft, and may include one or a plurality of receivers capable of receiving satellite data (positioning signal) from a satellite positioning system.
  • the vehicle body angle is a tilt angle of the vehicle body with respect to a horizontal plane.
  • the blade angle acquisition unit 33 has a function of acquiring the angle of the blade 4.
  • the blade angle acquisition unit 33 is configured by, for example, a blade angle sensor that detects the angle of the blade 4 in the global coordinate system.
  • the blade angle sensor may be provided in, for example, the body of the aircraft, and may be configured by one or a plurality of receivers capable of receiving satellite data (positioning signal) from a satellite positioning system.
  • the vehicle body angle sensor may be configured by, for example, an inertial measurement device, or may be configured by the inertial measurement device and the receiver that can receive the satellite data.
  • the inertial measurement device measures, for example, the acceleration and angular velocity of the vehicle body 3, and based on the measurement result, tilts the vehicle body 3 (for example, pitch indicating rotation about the X axis, yaw indicating rotation about the Y axis, and rotation about the Z axis). May be configured to be detectable.
  • the blade angle sensor may be configured by, for example, a stroke sensor that detects a cylinder stroke of the blade cylinder 8, or may be configured by the stroke sensor and the receiver that can receive the satellite data.
  • the vehicle body position obtaining unit 31 and the vehicle body angle obtaining unit 32 are mounted on the upper part of the vehicle body 3, and the blade angle obtaining unit 33 is mounted on the upper part of the blade 4.
  • Detection signals which are electric signals generated by the acquisition units 31, 32, and 33, are input to the controller 10.
  • the blade load obtaining unit 34 has a function of obtaining a blade load that is a load applied to the blade 4 during excavation work.
  • the blade load corresponds to, for example, the pump pressure of the hydraulic pump 9 that drives the blade 4. Therefore, the blade load acquisition unit 34 can detect the blade load by detecting the pump pressure.
  • the blade load acquisition unit 34 includes a head pressure sensor 34H that detects a head pressure P1 that is a pressure of hydraulic oil in the head-side chamber 8h of the lift cylinder 8, and a hydraulic pressure in the rod-side chamber 8r of the lift cylinder 8. And a rod pressure sensor 34R for detecting a rod pressure P2 as a pressure.
  • Each of the sensors 34H and 34R converts the detected physical quantity into a detection signal, which is an electric signal corresponding to the detected physical quantity, and inputs the detection signal to the controller 10.
  • the automatic control switch 35 is arranged in the cab and is electrically connected to the controller 10.
  • the automatic control switch 35 receives an operation for switching the control mode of the controller 10 from the manual operation mode to the automatic control mode, and inputs a mode command signal relating to the operation to the controller 10.
  • the controller 10 switches the setting of the control mode from the manual operation mode to the automatic control mode according to a mode command signal input from the automatic control switch 35.
  • the controller 10 is configured to automatically control the operation of the lift cylinder 8 so that the construction surface constructed by the blade 4 approaches a preset target design surface.
  • a command value (command current) to the lift cylinder control proportional valve 41 for controlling the operation of the lift cylinder 8 is output from the controller 10, the secondary pressure of the proportional valve 41 is increased according to the command value.
  • the opening degree of the lift cylinder flow control valve changes according to the secondary pressure.
  • the controller 10 includes a target design surface setting unit 11, a blade position calculation unit 12, a storage unit 13, a virtual design surface setting unit 14, a blade operation control unit 15 as functions for executing the automatic control. , A load threshold setting unit 16, a blade control restriction unit 20, and an estimated position calculation unit 22.
  • the target design surface setting unit 11 sets a target design surface SD (see FIG. 7) for specifying a target shape to be excavated by the blade 4.
  • the target design surface setting unit 11 may store a design surface input by a target design surface input unit provided in the cab, and may set the design surface as a target design surface. Further, the target design surface setting unit 11 may store design surface data acquired via various storage media, a communication network, or the like, and set the design surface as a target design surface.
  • the target design plane setting unit 11 inputs the set target design plane to the virtual design plane setting unit 14.
  • the target design surface SD is a surface which is a target shape of the ground to be excavated and specifies a three-dimensional design topography.
  • the target design plane SD may be specified by external data such as BIM or CIM (Building / Construction / Information / Modeling, Management), or may be set based on the position of the work machine.
  • the blade position calculator 12 calculates a blade position, which is a position of the blade 4 in a global coordinate system, based on the position information acquired by the position information acquirer.
  • the blade position calculation unit 12 includes the vehicle body position acquired by the vehicle body position acquisition unit 31, the vehicle body angle acquired by the vehicle body angle acquisition unit 32, and the blade position acquired by the blade angle acquisition unit 33.
  • the blade position is calculated based on the angle of the blade 4. That is, the blade position is calculated from the sum of a vector from the reference point to the vehicle body position and a vector from the vehicle body position to the blade position.
  • the blade position is calculated based on the relative angle between the vehicle body angle and the angle of the blade 4 in the global coordinate system, but the method of calculating the blade position is not limited to this.
  • the blade position may be calculated based on, for example, the length of the lift cylinder 8, or a GNSS receiver (GNSS sensor) may be attached to the blade 4 and calculated based on GNSS data received by the GNSS sensor.
  • GNSS sensor GNSS receiver
  • the blade position is set at the cutting edge position (the position of the lower edge of the tip of the blade 4), which is the tip of the blade 4, but may be set at another part of the blade 4.
  • the storage unit 13 stores a first load threshold f1 as a load threshold which is a threshold of the blade load f.
  • the storage unit 13 further stores a second load threshold f2 which is a threshold of the blade load f.
  • the first load threshold f1 and the second load threshold f2 will be described later.
  • the storage unit 13 stores a preset update condition.
  • the update condition serves as a reference for determining whether or not the virtual design surface setting unit 14 updates a virtual design surface described later.
  • the update condition includes one or more conditions. Details of the update condition will be described later.
  • the virtual design surface setting unit 14 sets the vehicle body angle acquired by the vehicle body angle acquisition unit 32 based on the blade position when the update condition is satisfied.
  • a parallel virtual design surface is set above the target design surface.
  • the blade position calculated by the blade position calculation unit 12 the first load threshold f1 set by the load threshold setting unit 16, and the blade load f acquired by the blade load acquisition unit 34.
  • the virtual design surface is set based on. A specific setting method will be described later.
  • the load threshold setting unit 16 sets a load threshold used for calculation in the virtual design plane setting unit 14 and the blade operation control unit 15.
  • the load threshold setting unit 16 sets the first load threshold f1 and the second load threshold f2 described above.
  • the second load threshold f2 is set to a value larger than the first load threshold f1.
  • the first load threshold f1 is set to a value corresponding to an appropriate blade load f at which the excavator 1 can run stably.
  • the second load threshold f2 is a value set to realize a stable and efficient excavation operation.
  • the second load threshold f2 is a value set to prevent the occurrence of a situation in which the blade load f becomes excessive and a stack or the like occurs, and is therefore smaller than the blade load in which the situation occurs.
  • the second load threshold f2 is preferably set to a value at which the work machine can travel even when the blade load f has reached the second load threshold f2.
  • These load thresholds f1 and f2 may be manually input to the controller 10 by the operator before the excavation work, or may be appropriately calculated and stored by the controller 10 during the excavation work.
  • the blade operation control unit 15 calculates and outputs a command value to the lift cylinder control proportional valve 41 for controlling the operation of the lift cylinder 8.
  • the blade operation control unit 15 includes an automatic control switch operation signal of the automatic control switch 35, a traveling lever operation signal of the traveling lever 36, a blade load f acquired by the blade load acquiring unit 34, and a setting by the load threshold setting unit 16. Based on the first load threshold value f1 and the second load threshold value f2, a provisional command current to be output to the lift cylinder control proportional valve 41 is calculated. A specific calculation method will be described later.
  • the blade control restriction unit 20 outputs a command to the lift cylinder control proportional valve 41 based on the virtual design surface calculated by the virtual design surface setting unit 14 and the provisional command current calculated by the blade operation control unit 15. Calculate the current. A specific calculation method will be described later.
  • the estimated position calculation unit 22 calculates the estimated position of the current plane, which forms part of the update conditions. Specifically, the estimated position calculating unit 22 obtains, by the position information obtaining unit, an estimated position of a part associated with at least one of the blade 4 and the traveling device 2 on a current surface that is the ground to be excavated. The calculation is performed based on the position information. A specific calculation method will be described later.
  • the controller 10 acquires an automatic control switch operation signal relating to the automatic control switch 35 and a traveling lever operation signal relating to the traveling lever 36 (step S1).
  • controller 10 satisfies the condition that the automatic control switch operation signal indicates that the automatic control switch 35 is on and that the traveling lever operation signal indicates that the traveling lever 36 has been operated. It is determined whether or not (step S2). If the condition is not satisfied (NO in step S2), controller 10 resets the virtual design surface and ends the process.
  • step S2 If the condition is satisfied (YES in step S2), the load threshold setting unit 16 sets the first load threshold f1 and the second load threshold f2 (step S3).
  • the blade load acquiring unit 34 acquires the blade load f applied to the blade 4 (Step S4).
  • FIG. 4 is a diagram showing a flow in which the blade operation control unit 15 of the controller 10 calculates the provisional command current.
  • the blade operation control unit 15 determines whether or not the condition that the blade load f acquired by the blade load acquisition unit 34 is equal to or more than the second load threshold f2 is satisfied (Step S101). If the condition is satisfied (YES in step S101), blade operation control unit 15 outputs a provisional command current corresponding to "lift up", and ends the process.
  • the provisional command current is input to the blade control limiting unit 20. “Lift raising” corresponds to an operation of raising the blade 4.
  • step S101 determines whether the condition that the blade load f is equal to or greater than the first load threshold f1 is satisfied (step S102). .
  • the blade operation control unit 15 outputs a provisional command current corresponding to “lift fixed”, and ends the process.
  • the provisional command current is input to the blade control limiting unit 20. “Lift fixed” corresponds to not performing the raising / lowering operation of the blade 4.
  • step S102 If the above condition of step S102 is not satisfied (NO in step S102), blade operation control unit 15 outputs a provisional command current corresponding to “lift down”, and ends the process.
  • the provisional command current is input to the blade control limiting unit 20. “Lift lowering” corresponds to the operation of lowering the blade 4.
  • the flow shown in FIG. 4 is a process for maintaining the blade load f during excavation work within the range between the first load threshold f1 and the second load threshold f2.
  • the blade load f is equal to or more than the second load threshold f2
  • the “lift lift” is set to reduce the blade load f. Is performed.
  • the blade load f is smaller than the first load threshold f1
  • the load on the blade 4 is considered to be too small for the excavation ability, and a “lift lowering” operation is performed to increase the excavation amount.
  • a process of fixing the position of the blade 4, that is, a process of not performing the elevating operation of the blade 4 is performed.
  • step S6 the controller 10 determines whether or not the condition that the provisional command current output by the blade operation control unit 15 corresponds to “lift up” is satisfied (step S6). S6). If the condition is satisfied (YES in step S6), the blade control restriction unit 20 performs the processing in step S11. If the condition is not satisfied (NO in step S6), a series of processes in the following steps S7 to S11 is performed.
  • the vehicle body position obtaining unit 31 obtains the vehicle body position
  • the vehicle body angle obtaining unit 32 obtains the vehicle body angle
  • the blade angle obtaining unit 33 obtains the angle of the blade 4 (Step S7).
  • the blade position calculator 12 calculates the blade position based on the vehicle body position, the vehicle body angle, and the angle of the blade 4 (Step S8).
  • FIG. 5 is a diagram illustrating a flow in which the virtual design surface setting unit 14 of the controller 10 sets a virtual design surface.
  • the virtual design surface setting unit 14 determines whether a condition corresponding to no virtual design surface being set is satisfied (step S201). In the specific example shown in FIG. 5, in step S201, the virtual design surface setting unit 14 determines whether or not step S201 is the first step of the automatic control. If the step S201 is the first step of the automatic control, the virtual design surface is not necessarily set. Therefore, whether or not the first step of the automatic control is the virtual design surface is determined. It can be determined whether or not the condition corresponding to the absence of the event is satisfied. Further, the determination as to whether or not the condition corresponding to the fact that the virtual design surface has not been set can also be performed based on, for example, a flag (setting flag) indicating setting or non-setting of the virtual setting surface. .
  • the virtual design surface setting unit 14 determines that the step is the first step of the automatic control (YES in step S201)
  • the virtual design surface setting unit 14 newly sets a virtual design surface and ends the process. If the virtual design surface setting unit 14 determines that the step is not the first step of the automatic control (NO in step S201), the blade load f previously obtained by the blade load obtaining unit 34 is equal to or more than the first load threshold f1. It is determined whether or not the condition that the blade load f acquired this time by the blade load acquisition unit 34 is smaller than the first load threshold f1 is satisfied (step S202). If the condition is satisfied (YES in step S202), virtual design surface setting unit 14 newly sets a virtual design surface (updates the virtual design surface), and ends the process.
  • step S203 it is determined whether the condition that the estimated position is below the virtual design surface is satisfied. If it is determined that the condition of step S203 is satisfied (YES in step S203), virtual design surface setting unit 14 newly sets a virtual design surface (updates the virtual design surface) and ends the process. . If the condition in step S203 is not satisfied (NO in step S203), virtual design surface setting unit 14 ends the process without updating the virtual design surface.
  • the flow shown in FIG. 5 is a process for appropriately setting the virtual design surface SV.
  • the condition “it is the first step of the automatic control" (step S201)
  • the blade load f acquired last time is equal to or more than the first load threshold f1
  • the blade load f acquired this time is the At least one of the following condition is satisfied (Step S202): “It is smaller than one load threshold f1"; and (Step S203): "The estimated position is below the currently set virtual design surface SV".
  • a process of newly setting the virtual design surface SV (a process of updating the virtual design surface SV) is performed. By performing this processing, the virtual design surface SV is set at an appropriate time, and stable excavation work with high construction efficiency is realized.
  • FIG. 6 is a schematic side view for explaining the estimated position.
  • the estimated position PB shown in FIG. 6 is calculated by the estimated position calculation unit 22. Since the blade 4 and the traveling device 2 are arranged below the work machine, they are located at a height close to the height of the current plane SP. Therefore, at least one of the blade 4 and the traveling device 2 can be an index when determining the positional relationship between the virtual design surface SV and the current surface SP.
  • the estimated position PB calculated by the estimated position calculation unit 22 is a part of the current surface SP associated with at least one of the blade 4 and the traveling device 2 based on the position information. Is calculated and estimated.
  • the virtual design surface SV is updated to an angle parallel to the vehicle body angle based on the blade position, so that the state where the blade 4 floats above the current surface SP is eliminated. Is done.
  • the estimated position PB is, as shown in FIG. 6, a line parallel to the lower part of the traveling device 2 in the work machine (a line on the current plane SP in FIG. 6) and a virtual design plane passing through the blade position. This is the intersection of a line L extending vertically from the SV. Since the estimated position PB is the estimated height position of the current plane SP at the blade position, the estimated position PB may be, for example, a point where the line parallel to the lower part of the traveling device 2 of the work machine and the blade 4 intersect. .
  • FIG. 7 is a schematic side view for explaining a setting method of the virtual design surface SV in the blade control device 100.
  • the virtual design plane setting unit 14 sets the virtual design plane setting section 14 in advance on the straight line passing through the blade position and perpendicular to the target design plane SD from the blade position.
  • a reference position below the reference distance ⁇ is calculated, and a plane passing through the reference position and parallel to the vehicle body angle is set as a virtual design plane SV.
  • FIG. 8 is a diagram showing a flow in which the blade control restriction unit 20 of the controller 10 calculates the command current.
  • the blade control restriction unit 20 determines whether or not the condition that the blade position calculated by the blade position calculation unit 12 is below the virtual design surface SV is satisfied (step S301). . If the condition is satisfied (YES in step S301), blade control restriction unit 20 sets the command current corresponding to "lift up", and ends the process. “Lift raising” corresponds to an operation of raising the blade 4. On the other hand, when the condition is not satisfied (NO in step S301), blade control restriction unit 20 sets the command current to the same as the provisional command current input from blade operation control unit 15, and ends the process. .
  • the flow shown in FIG. 8 is a process for maintaining the blade position above the virtual design surface SV. For example, even if the calculation result by the blade operation control unit 15 corresponds to “lift down” or “lift fixed” (that is, the blade load f is small with respect to the excavating ability of the blade 4). Also, when the blade control limiting unit 20 determines that the blade position is below the virtual design surface SV, the command current is overwritten to “lift up” so that the blade position does not fall below the virtual design surface SV. Processing is performed. This prevents undulations on the construction surface SC.
  • step S11 shown in FIG. 3 the blade control restricting unit 20 outputs the command current to the lift cylinder control proportional valve 41. Specifically, when the condition that the provisional command current output by the blade operation control unit 15 corresponds to “lift up” is satisfied (YES in step S6), the blade control restriction unit 20 sets The same command current as the command current is output to the proportional valve 41. If NO in step S6, the blade control restriction unit 20 outputs the command current calculated in step S10 to the proportional valve 41. When the processing in step S11 ends, the controller 10 performs the processing in step S1 again.
  • FIG. 15 shows a design plane SD (target design plane), a current plane SP1, SP2, and a virtual plane when a work machine equipped with the blade control device of the reference example performs an excavation work while climbing a slope along the current planes SP1 and SP2. It is an outline side view showing an example of design side SV11, SV12, SV13, SV21 and construction side SC1, SC2.
  • the virtual design surface SV11 is parallel to the design surface SD, the distance between the current surface SP1 and the virtual design surface SV11 increases as going up the ascending slope. Therefore, as shown in the upper diagram of FIG. 15, as the work machine goes up the slope along the current plane SP1 while excavating the current plane SP1, the blade load becomes significantly large.
  • the blade operation controller raises the blade 104, so that the blade load gradually decreases.
  • the virtual design surface setting unit updates the virtual design surface SV11 to the virtual design surface SV12.
  • the updated virtual design surface SV12 is set in parallel with the horizontal design surface SD, and is set above the previously set virtual design surface SV11. In this manner, during the first excavation operation in which the work machine climbs up the slope along the current plane SP1 and excavates the entire current plane SP1, a plurality of horizontal excavations are performed as shown in the upper diagram of FIG.
  • the virtual design surfaces SV11, SV12, and SV13 are set in steps, and the construction surface SC1 formed by the first excavation work is also formed in steps.
  • the first construction surface SC1 formed in a stepped manner as described above becomes the current surface SP2 to be excavated in the second excavation operation to be performed next (see the lower diagram in FIG. 15). Therefore, as shown in the lower diagram of FIG.
  • FIG. 16 shows the design surface SD, the current surface SP, the virtual design surface SV11, and the construction surface SC when the work machine equipped with the blade control device of the reference example performs the excavation work while descending the slope along the current surface SP. It is an outline side view showing an example.
  • the virtual design surface SV21 in the lower diagram of FIG. 15 is a virtual design surface set for the second excavation work, and is a virtual design surface parallel to the target design surface SD.
  • the virtual design surface SV set by the virtual design surface setting unit 14 is not parallel to the target design surface SD but parallel to the vehicle body angle,
  • the undulation of the construction surface SC can be suppressed, and the controllability of the posture of the work machine at the time of excavation work, ride comfort, and deterioration of construction efficiency can be suppressed.
  • it is as follows.
  • FIG. 9 shows a design plane SD (target design plane), a current plane SP, and a virtual design when the work machine including the blade control device 100 according to the present embodiment performs excavation work while climbing a slope along the current plane SP.
  • FIG. 10 is a schematic side view showing an example of a surface SV and a construction surface SC
  • FIG. 10 is a schematic side view showing an example when the work machine performs excavation work while descending a slope along the current surface SP. is there.
  • FIG. 11 is a schematic side view showing an example when the work machine performs excavation work while going up and down a slope along the current plane SP.
  • the virtual design surface SV is set in parallel with the vehicle body angle of the work machine traveling up the slope along the current surface SP of the upward slope.
  • the staircase is not set as in the reference example shown in the upper diagram of FIG. 15, and as a result, the construction surface SC is also prevented from being formed in a staircase. For this reason, when excavating the construction surface SC again, the swing of the vehicle body in the pitch direction is suppressed, and the effect of eliminating the deterioration of the controllability of the posture of the work machine and the deterioration of the riding comfort can be obtained.
  • setting the virtual design surface SV in parallel to the vehicle body angle of the work machine going down the slope along the current surface SP of the downward slope requires that the virtual design surface SV be set along the current surface SP of the downward slope.
  • the virtual design surface SV parallel to the vehicle body angle of the work machine in the inclined posture can be reset. This makes it possible to eliminate the state even if the virtual design plane SV exceeds the current plane SP, thereby suppressing a reduction in construction efficiency.
  • the blade control device 100 is also effective when the current surface has relatively large irregularities as shown in FIG.
  • the virtual design surface SV can have various angles according to the vehicle body angle. This means that, as shown in FIG. 11, a plurality of virtual design surfaces set during the first excavation operation in which the work machine climbs up the slope along the current surface SP and excavates the entire current surface. SV1, SV2, SV3, and SV4 are prevented from being formed in a horizontal step shape as in the reference example. That is, each of the plurality of virtual design surfaces SV1, SV2, SV3, SV4 formed in the first excavation work is set in parallel with the vehicle body angle of the work machine in a posture along the uphill current plane SP.
  • the plurality of virtual design planes SV tend to be along the upward slope of the current plane SP. This suppresses that the construction surface SC formed in the first excavation work by the blade 4 whose elevation operation is restricted based on the virtual design surface SV1, SV2, SV3, SV4 is formed in a step shape, As compared with the reference example, it is easy to have less unevenness. Therefore, in the second excavation operation performed using the first construction surface SC as the current surface, when the work machine climbs up a slope along the current surface while excavating the current surface, the body of the work machine moves at the pitch. Swing in the direction is suppressed. This suppresses a decrease in controllability for controlling the posture of the work machine and a decrease in ride comfort of the worker. In addition, undulation is suppressed on the construction surface excavated by the blade 4 whose elevation operation is restricted based on the virtual design surfaces SV1, SV2, SV3, and SV4 as described above.
  • FIG. 12 is a block diagram illustrating main functions of a blade control device 100 according to a modification of the present embodiment.
  • FIG. 13 is a flowchart illustrating an example of a control operation executed by the controller 10 included in the blade control device 100 according to the modification.
  • FIG. 14 shows a design surface SD, a current surface SP, a virtual design surface SV, when a work machine including the blade control device 100 according to the modification performs an excavation operation while going up and down a slope along the current surface SP.
  • a schematic side view showing an example of a construction surface SC.
  • the blade control device 100 according to the modified example shown in FIG. 12 differs from the blade control device 100 shown in FIG. 2 in that the controller 10 further includes a vehicle body average angle calculation unit 21, and other configurations are shown in FIG. It is the same as the blade control device 100.
  • the flowchart shown in FIG. 13 is different from the flowchart shown in FIG. 3 in that the process of step S12 is added between the process of step S8 and the process of step S9, and other processes are shown in FIG. It is the same as the flowchart.
  • the vehicle body average angle calculation unit 21 calculates an average value of the vehicle body angle acquired by the position information acquisition unit.
  • the virtual design surface setting unit 14 is configured to use the average value of the vehicle body angle as the vehicle body angle that is a reference when setting the virtual design surface SV.
  • the virtual design surfaces SV1, SV2, SV3, and SV4 are different from the average value of the vehicle body angle. Since the virtual design surfaces SV2, SV3, and SV4 are set in parallel, the update timing of the virtual design surfaces SV2, SV3, and SV4 is less likely to be affected by local irregularities. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surfaces SV2, SV3, and SV4, thereby enabling more stable excavation work.
  • the average value of the vehicle body angle is, for example, a moving average of a plurality of vehicle body angles acquired by the vehicle body angle acquisition unit 32 between a time when the virtual design surface SV is updated and a time that is a predetermined time before the time.
  • a value can be adopted, the method of calculating the average value is not limited to the above method.
  • the virtual design plane setting unit 14 sets a reference distance ⁇ which is lower than the blade position by a preset reference distance ⁇ on a straight line passing through the blade position and perpendicular to the target design plane SD.
  • a reference position is calculated, and a plane passing through the reference position and parallel to the average value of the vehicle body angle is set as a virtual design plane SV. That is, in the modification, the virtual design surface is set in parallel with the average value of the vehicle body angle in the continuous time, so that even if the current surface has irregularities, the virtual design surface SV Is along the average angle of the vehicle body, that is, along the average gradient of the current plane. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surface, thereby enabling more stable excavation.
  • the virtual design surface SV is set in parallel to the average of the vehicle body angles in continuous time, so that the virtual design surface SV is virtual compared to the embodiment shown in FIG.
  • the amount of change in the angle at the time of updating the design surface can be reduced, which has the effect of eliminating the deterioration of construction efficiency and has the effect of enabling more stable excavation.
  • the present invention is not limited to the embodiment described above.
  • the present invention includes the following embodiments, for example.
  • the work machine to which the blade control device according to the present invention is applied is not limited to a hydraulic shovel.
  • the present invention can be widely applied to other work machines including a blade, such as a wheel loader and a bulldozer.
  • a blade control device capable of effectively suppressing undulation on a construction surface.
  • the blade control device is provided in a work machine including a machine body including a traveling device and a vehicle body supported by the traveling device, and a blade attached to the machine body so as to be able to move up and down.
  • a device for controlling the The blade control device a target design surface setting unit that sets a target design surface that specifies a target shape of an excavation target by the blade, a position information acquisition unit that acquires position information about the work machine, and the position information acquisition unit
  • a blade position calculation unit that calculates a blade position that is the position of the blade based on the position information acquired by the above, a virtual design surface setting unit that sets a virtual design surface above the target design surface, and the blade
  • a blade operation control unit for controlling the elevating operation.
  • the virtual design surface setting unit is configured such that, when a preset update condition is satisfied, the horizontal plane of the vehicle body obtained based on the position information while referring to the blade position when the update condition is satisfied.
  • the virtual design surface is set at an angle equivalent to the vehicle body angle, which is an inclination angle with respect to.
  • the blade operation control unit limits the lifting operation of the blade so that the blade performs the lifting operation above the virtual design surface.
  • the virtual design surface is not set parallel to the target design surface, but is set parallel to the vehicle body angle.
  • the current plane ground
  • the work machine is traveling uphill or downhill along the current plane.
  • the virtual design surface is likely to be along an upward slope or a downward slope. This suppresses fluctuations in the distance between the current plane and the virtual design plane, thereby suppressing fluctuations in the blade load.
  • the fluctuation of the blade load is suppressed, the raising / lowering operation of the blade is suppressed, so that the undulation of the construction surface is suppressed.
  • the blade control device based on the position information acquired by the position information acquisition unit the estimated position of the site associated with at least one of the blade and the traveling device in the current surface that is the ground of the excavation target It is preferable that the apparatus further includes an estimated position calculating unit for calculating, and the update condition includes a condition that the estimated position is below the virtual design surface.
  • the body angle of the work machine also fluctuates relatively largely, and the virtual design plane set parallel to the body angle also has a relatively large angle range. It becomes easy to be set.
  • the virtual design surface may be temporarily located higher than the portion corresponding to the blade in the current surface or the portion corresponding to the traveling device in the current surface.
  • the blade restricted above the plane may float above the current plane. If such a state continues for a long time, the efficiency of the excavation operation decreases.
  • the blade and the traveling device are arranged below the work machine, they are located at a height close to the height position of the current plane.
  • At least one of the blade and the traveling device can be an index when determining the positional relationship between the virtual design surface and the current surface.
  • the estimated position calculated by the estimated position calculation unit is calculated by the estimated position calculation unit based on the position information on a portion of the current surface associated with at least one of the blade and the traveling device. It is estimated. Therefore, when the condition that the estimated position is below the virtual design plane is satisfied, there is a high possibility that the blade will be in a state of floating above the current plane.
  • the update condition including the condition is satisfied, the virtual design surface is updated to the same angle as the vehicle body angle based on the blade position, so that the blade floats above the current surface. The condition is resolved.
  • the update condition includes a condition corresponding to the fact that the virtual design surface has not been set. For example, if a virtual design surface is not set at the start of automatic blade control, a virtual design surface parallel to the vehicle body angle is set when an update condition including the condition is satisfied. As a result, excavation work with high construction efficiency can be performed from the initial stage of automatic blade control.
  • the blade control device further includes a blade load acquisition unit that acquires a blade load that is a load applied to the blade, and a storage unit that stores a load threshold that is a threshold value of the blade load. It is preferable to include a condition that the blade load changes from a value equal to or greater than the load threshold to a value smaller than the load threshold.
  • the blade load changes from a value equal to or more than the load threshold to a value smaller than the load threshold, it often corresponds to a case where an operation for reducing the load applied to the blade is being performed.
  • the state when the blade load is reduced is more desirable than the state when the blade load is increased, from the viewpoint of stability of excavation work. Therefore, the virtual design surface is set when the update condition including the condition is satisfied, and the excavation work in which the raising / lowering operation of the blade is restricted based on the virtual design surface is performed, so that the stability of the excavation work is reduced. improves.
  • the blade control device further includes a vehicle body average angle calculation unit that calculates an average value of the vehicle body angle acquired by the position information acquisition unit, and the virtual design surface setting unit sets the virtual design surface. It is preferable that the average value of the vehicle body angles is used as the reference vehicle body angle. In this aspect, even when the current surface to be excavated has relatively large irregularities, the virtual design surface is set parallel to the average value of the vehicle body angle, so that the virtual design surface is locally updated. Less likely to be affected by irregularities. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surface, thereby enabling more stable excavation work.

Abstract

In a blade control device (100), when an update condition set in advance is satisfied, a virtual design surface setting unit (14) defines, as a reference, a blade position when the update condition is satisfied and sets a virtual design surface (SV) at an angle equivalent to a vehicle body angle, and a blade operation control unit (15) limits a raising and lowering operation of a blade (4) such that the blade (4) performs the raising and lowering operation above the virtual design surface (SV).

Description

作業機械のブレード制御装置Work machine blade controller
 本発明は、ブレードを備えた作業機械に設けられるブレード制御装置に関する。 The present invention relates to a blade control device provided in a work machine having a blade.
 従来、地面の掘削、整地、土砂の運搬などに使用されるブレードを備える作業機械が広く用いられている。このような作業機械において、ブレードにかかるブレード負荷がほぼ一定になるようにブレードの上昇及び下降の動作を自動制御する手法が提案されているが、当該手法においては、ブレードを昇降させることにより発生する施工面のうねりが課題となる。 作業 Conventionally, work machines equipped with blades used for excavating the ground, leveling the ground, and transporting earth and sand have been widely used. In such a working machine, a method of automatically controlling the raising and lowering operation of the blade so that the blade load applied to the blade is almost constant has been proposed. The swell of the construction surface to be performed becomes an issue.
 特許文献1は、施工面のうねりを抑制することを目的としたブレード制御装置を開示している。特許文献1のブレード制御装置では、ブレード動作制御部は、設計面に平行で設計面よりもブレードの近くに設定された仮想設計面の上方に前記ブレードの揺動を制限しつつ、ブレード負荷が第1の設定負荷値よりも小さい場合にブレードを下降させ、ブレード負荷が第1の設定負荷値よりも大きな第2の設定負荷値よりも大きい場合にブレードを上昇させる。仮想設計面設定部は、ブレード負荷が第1の設定負荷値以上の値から前記第1の設定負荷値よりも小さい値に下がったときに、設計面に平行な仮想設計面を再設定する。また、特許文献1のブレード制御装置では、仮想設計面設定部は前回設定された仮想設計面よりも前記設計面から離れた位置に仮想設計面を設定する。すなわち、仮想設計面は更新される度に前記設計面から上方に離れていく。 Patent Document 1 discloses a blade control device intended to suppress undulation on a construction surface. In the blade control device of Patent Literature 1, the blade operation control unit restricts the swing of the blade above a virtual design surface set parallel to the design surface and closer to the blade than the design surface, while reducing the blade load. When the blade load is smaller than the first set load value, the blade is lowered, and when the blade load is larger than the second set load value larger than the first set load value, the blade is raised. The virtual design surface setting unit resets a virtual design surface parallel to the design surface when the blade load decreases from a value equal to or more than the first set load value to a value smaller than the first set load value. Further, in the blade control device of Patent Document 1, the virtual design surface setting unit sets the virtual design surface at a position farther from the design surface than the previously set virtual design surface. That is, each time the virtual design surface is updated, it moves upward from the design surface.
 しかし、上記のような特許文献1に記載のブレード制御装置では、例えば水平な設計面に対して現状面(地面)が上り勾配又は下り勾配を有する場合であって、作業機械が前記現状面に沿って坂を上りながら又は前記現状面に沿って坂を下りながら掘削作業を行う場合には、現状面の勾配によってブレード負荷が大きく影響を受けるため、ブレードの昇降動作が大きくなり、施工面のうねりを抑制する効果が十分とは言えない。 However, in the blade control device described in Patent Literature 1 described above, for example, when the current surface (ground) has an upward gradient or a downward gradient with respect to a horizontal design surface, the work machine is located on the current surface. When performing excavation work while climbing up or down the slope along the current surface, the blade load is greatly affected by the gradient of the current surface, so that the blade elevating operation becomes large, and The effect of suppressing the swell is not sufficient.
特許第5285805号公報Japanese Patent No. 5285805
 本発明は、ブレードを備えた作業機械に設けられ、前記ブレードの昇降動作を制御するためのブレード制御装置であって、施工面のうねりを効果的に抑制することができるブレード制御装置を提供することを目的とする。 The present invention provides a blade control device provided in a work machine equipped with a blade for controlling the raising and lowering operation of the blade, wherein the blade control device can effectively suppress undulation of a construction surface. The purpose is to:
 本発明のブレード制御装置は、走行装置及び当該走行装置に支持される車体を含む機械本体と前記機械本体に対して昇降可能に取り付けられたブレードとを備えた作業機械に設けられ、前記ブレードの昇降動作を制御するための装置である。前記ブレード制御装置は、前記ブレードによる掘削対象の目標形状を特定する目標設計面を設定する目標設計面設定部と、前記作業機械に関する位置情報を取得する位置情報取得部と、前記位置情報取得部により取得された前記位置情報に基づいて前記ブレードの位置であるブレード位置を演算するブレード位置演算部と、前記目標設計面よりも上方に仮想設計面を設定する仮想設計面設定部と、前記ブレードの前記昇降動作を制御するブレード動作制御部と、を備える。前記仮想設計面設定部は、予め設定された更新条件が満たされた場合に、前記更新条件が満たされたときの前記ブレード位置を基準とするとともに前記位置情報に基づいて得られる前記車体の水平面に対する傾斜角度である車体角度と同等の角度に仮想設計面を設定する。前記ブレード動作制御部は、前記ブレードが前記仮想設計面の上方において前記昇降動作をするように前記ブレードの前記昇降動作を制限する。 The blade control device according to the present invention is provided in a work machine including a traveling device and a machine body including a vehicle body supported by the traveling device, and a blade that is attached to the machine body so as to be movable up and down. It is a device for controlling the elevating operation. The blade control device, a target design surface setting unit that sets a target design surface that specifies a target shape of an excavation target by the blade, a position information acquisition unit that acquires position information about the work machine, and the position information acquisition unit A blade position calculation unit that calculates a blade position that is the position of the blade based on the position information acquired by the above, a virtual design surface setting unit that sets a virtual design surface above the target design surface, and the blade And a blade operation control unit for controlling the elevating operation. The virtual design surface setting unit, when a preset update condition is satisfied, the horizontal plane of the vehicle body obtained based on the position information and based on the blade position when the update condition is satisfied. The virtual design surface is set at an angle equivalent to the vehicle body angle, which is an inclination angle with respect to. The blade operation control unit restricts the elevating operation of the blade so that the blade performs the elevating operation above the virtual design surface.
本発明の実施形態に係るブレード制御装置が搭載される作業機械の例である油圧ショベルを示す側面図である。1 is a side view illustrating a hydraulic excavator as an example of a work machine on which a blade control device according to an embodiment of the present invention is mounted. 前記実施形態に係るブレード制御装置の主要な機能を示すブロック図である。FIG. 3 is a block diagram illustrating main functions of a blade control device according to the embodiment. 前記ブレード制御装置に含まれるコントローラが実行する制御動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of a control operation executed by a controller included in the blade control device. 前記コントローラが実行する制御動作のうちのブレード動作制御部による制御動作の一例を示すフローチャートである。It is a flowchart which shows an example of the control operation by the blade operation control part among the control operations performed by the controller. 前記コントローラが実行する制御動作のうちの仮想設計面設定部による制御動作の一例を示すフローチャートである。It is a flowchart which shows an example of the control operation by the virtual design surface setting part among the control operations performed by the controller. 前記ブレード制御装置における推定位置について説明するための概略の側面図である。FIG. 4 is a schematic side view for explaining an estimated position in the blade control device. 前記ブレード制御装置において、仮想設計面の設定について説明するための概略の側面図である。FIG. 4 is a schematic side view for explaining setting of a virtual design surface in the blade control device. 前記コントローラが実行する制御動作のうちのブレード制御制限部による制御動作の一例を示すフローチャートである。It is a flowchart which shows an example of the control operation by the blade control restriction part among the control operations which the said controller performs. 前記ブレード制御装置を備える前記作業機械が現状面に沿って坂を上りながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。It is a schematic side view which shows an example of a design surface, a current surface, a virtual design surface, and a construction surface when the work machine provided with the blade control device performs excavation work while climbing a slope along a current surface. 前記ブレード制御装置を備える前記作業機械が現状面に沿って坂を下りながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。FIG. 4 is a schematic side view showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when the work machine including the blade control device performs an excavation operation while descending a slope along a current surface. 前記ブレード制御装置を備える前記作業機械が現状面に沿って坂を上り下りしながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。It is a schematic side view showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when the work machine including the blade control device performs excavation work while going up and down a slope along a current surface. . 前記実施形態の変形例に係るブレード制御装置の主要な機能を示すブロック図である。FIG. 9 is a block diagram illustrating main functions of a blade control device according to a modification of the embodiment. 前記変形例に係るブレード制御装置に含まれるコントローラが実行する制御動作の一例を示すフローチャートである。9 is a flowchart illustrating an example of a control operation performed by a controller included in the blade control device according to the modification. 前記変形例に係る前記ブレード制御装置を備えた作業機械が現状面に沿って坂を上り下りしながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。A schematic showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when a work machine equipped with the blade control device according to the modification performs an excavation operation while going up and down a slope along a current surface. FIG. 参考例のブレード制御装置を備えた作業機械が現状面に沿って坂を上りながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。It is a schematic side view showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when a work machine equipped with the blade control device of the reference example performs excavation work while climbing a slope along the current surface. . 参考例のブレード制御装置を備えた作業機械が現状面に沿って坂を下りながら掘削作業を行うときの設計面、現状面、仮想設計面、及び施工面の一例を示す概略の側面図である。It is a schematic side view showing an example of a design surface, a current surface, a virtual design surface, and a construction surface when a work machine equipped with the blade control device of the reference example performs excavation work while descending a slope along the current surface. .
 本発明の好ましい実施の形態を、図面を参照しながら説明する。 好 ま し い Preferred embodiments of the present invention will be described with reference to the drawings.
 [作業機械の全体構造]
 図1は、本発明の実施の形態に係るブレード制御装置が搭載される作業機械の例である油圧ショベル1を示す側面図である。この油圧ショベル1は、地面Gの上を走行可能な走行装置2(下部走行体)と、前記走行装置2に搭載される車体3(上部旋回体)と、車体3に搭載される作業装置と、走行装置2又は車体3に搭載されるブレード4と、を備える。前記走行装置2及び前記車体3は、前記作業機械の機械本体を構成する。前記車体3は、旋回フレーム、エンジン、運転室などを有する。
[Overall structure of work machine]
FIG. 1 is a side view showing a hydraulic excavator 1 as an example of a work machine on which a blade control device according to an embodiment of the present invention is mounted. The hydraulic excavator 1 includes a traveling device 2 (a lower traveling body) that can travel on the ground G, a vehicle body 3 (an upper revolving superstructure) mounted on the traveling device 2, and a working device mounted on the vehicle body 3. And a blade 4 mounted on the traveling device 2 or the vehicle body 3. The traveling device 2 and the vehicle body 3 constitute a machine body of the work machine. The vehicle body 3 has a turning frame, an engine, a cab, and the like.
 前記車体3に搭載される前記作業装置は、ブーム5、アーム6及びバケット7を含む。前記ブーム5は、前記旋回フレームの前端に起伏可能すなわち水平軸回りに回動可能に支持される基端部と、その反対側の先端部と、を有する。前記アーム6は、前記ブーム5の先端部に水平軸回りに回動可能に取付けられる基端部と、その反対側の先端部と、を有する。前記バケット7は、前記アーム6の先端部に回動可能に取付けられる。 The working device mounted on the vehicle body 3 includes a boom 5, an arm 6, and a bucket 7. The boom 5 has a base end supported at the front end of the revolving frame so as to be able to undulate, that is, rotatable around a horizontal axis, and a tip end on the opposite side. The arm 6 has a base end that is rotatably mounted on the front end of the boom 5 about a horizontal axis, and a front end opposite to the base end. The bucket 7 is rotatably attached to the tip of the arm 6.
 油圧ショベル1は、ブーム5、アーム6及びバケット7のそれぞれについて設けられるブームシリンダ、アームシリンダ及びバケットシリンダを有する。前記ブームシリンダは、前記車体3と前記ブーム5との間に介在し、当該ブーム5に起伏動作を行わせるように伸縮する。前記アームシリンダは、前記ブーム5と前記アーム6との間に介在し、当該アーム6に回動動作を行わせるように伸縮する。前記バケットシリンダは、前記アーム6と前記バケット7との間に介在し、当該バケット7に回動動作を行わせるように伸縮する。 The hydraulic excavator 1 has a boom cylinder, an arm cylinder, and a bucket cylinder provided for each of the boom 5, the arm 6, and the bucket 7. The boom cylinder is interposed between the vehicle body 3 and the boom 5, and extends and contracts so as to cause the boom 5 to perform an up-and-down operation. The arm cylinder is interposed between the boom 5 and the arm 6, and expands and contracts so as to cause the arm 6 to perform a rotating operation. The bucket cylinder is interposed between the arm 6 and the bucket 7, and expands and contracts so as to cause the bucket 7 to perform a rotating operation.
 前記走行装置2又は車体3に搭載される前記ブレード4は、地面の掘削、整地、土砂の運搬などの作業を行うために設けられている。具体的には、ブレード4は、リフトフレーム4aに支持されており、当該リフトフレーム4aは、走行装置2に対して水平軸4b回りに回動可能に支持されている。したがって、ブレード4は、走行装置2に対して上下方向に変位することができる。 The blade 4 mounted on the traveling device 2 or the vehicle body 3 is provided for performing operations such as excavation of the ground, leveling, and transportation of earth and sand. Specifically, the blade 4 is supported by a lift frame 4a, and the lift frame 4a is supported rotatably about the horizontal axis 4b with respect to the traveling device 2. Therefore, the blade 4 can be displaced vertically with respect to the traveling device 2.
 油圧ショベル1は、ブレード4について設けられるリフトシリンダ8を有する。当該リフトシリンダ8は、ヘッド側室8h及びロッド側室8r(図1参照)を有し、当該ヘッド側室8hに作動油が供給されることにより伸長してブレード4を下げ方向に動かすとともに前記ロッド側室8r内の作動油を排出する一方、前記ロッド側室8rに作動油が供給されることにより収縮してブレード4を上げ方向に動かすとともに前記ヘッド側室8h内の作動油を排出する。 The excavator 1 has a lift cylinder 8 provided for the blade 4. The lift cylinder 8 has a head-side chamber 8h and a rod-side chamber 8r (see FIG. 1). When hydraulic oil is supplied to the head-side chamber 8h, the lift cylinder 8 extends to move the blade 4 in a lowering direction and to move the rod-side chamber 8r. While the hydraulic oil in the inside is discharged, the hydraulic oil is supplied to the rod side chamber 8r to contract and move the blade 4 in the upward direction, and to discharge the hydraulic oil in the head side chamber 8h.
 油圧ショベル1は、図略の油圧回路を有する。前記油圧回路は、前記ブームシリンダ、前記アームシリンダ、前記バケットシリンダ及び前記リフトシリンダ8を含む。また、前記油圧回路は、油圧ポンプ9(図1参照)と、リフトシリンダ制御用比例弁41(図2参照)と、図略のリフトシリンダ流量制御弁と、をさらに含む。 The hydraulic excavator 1 has a hydraulic circuit (not shown). The hydraulic circuit includes the boom cylinder, the arm cylinder, the bucket cylinder, and the lift cylinder 8. The hydraulic circuit further includes a hydraulic pump 9 (see FIG. 1), a lift cylinder control proportional valve 41 (see FIG. 2), and a lift cylinder flow control valve (not shown).
 [ブレード制御装置]
 図2は、ブレード制御装置100の主要な機能を示すブロック図である。ブレード制御装置100は、ブレード4の昇降動作を制御するために設けられている。ブレード制御装置100は、コントローラ10(メカトロコントローラ)と、位置情報取得部と、ブレード負荷取得部34と、自動制御スイッチ35と、走行装置2を操作するための走行レバー36と、を備える。前記コントローラ10は、例えばマイクロコンピュータからなり、前記油圧回路に含まれる各要素の動作を制御する。
[Blade control unit]
FIG. 2 is a block diagram illustrating main functions of the blade control device 100. The blade control device 100 is provided to control the elevating operation of the blade 4. The blade control device 100 includes a controller 10 (mechatronic controller), a position information acquisition unit, a blade load acquisition unit 34, an automatic control switch 35, and a traveling lever 36 for operating the traveling device 2. The controller 10 includes, for example, a microcomputer and controls the operation of each element included in the hydraulic circuit.
 前記位置情報取得部は、油圧ショベル1に関する位置情報を取得する機能を有する。具体的には、本実施形態では、前記位置情報取得部は、車体位置取得部31と、車体角度取得部32と、ブレード角度取得部33と、を含む。前記車体位置取得部31は、前記機械本体の位置である車体位置を取得する機能を有する。前記車体位置取得部31は、例えばGNSS(Global Navigation Satellite System)のレシーバ(GNSSセンサ)のように衛星測位システムから衛星データ(測位信号)を受信可能なレシーバなどによって構成され、グローバル座標系における車体3の位置である車体位置を示すGNSSデータを受信する。前記グローバル座標系は、地球に規定された原点を基準とする3次元の座標系であって、前記衛星測位システムにより規定される絶対位置を示す座標系である。 位置 The position information acquisition unit has a function of acquiring position information on the excavator 1. Specifically, in the present embodiment, the position information acquisition unit includes a vehicle body position acquisition unit 31, a vehicle body angle acquisition unit 32, and a blade angle acquisition unit 33. The vehicle body position acquisition unit 31 has a function of acquiring a vehicle body position that is the position of the machine body. The vehicle body position acquisition unit 31 is configured by a receiver capable of receiving satellite data (positioning signal) from a satellite positioning system, such as a receiver (GNSS sensor) of GNSS (Global Navigation Satellite System), for example, and the vehicle body in a global coordinate system. The GNSS data indicating the vehicle body position which is the position 3 is received. The global coordinate system is a three-dimensional coordinate system based on an origin defined on the earth, and is a coordinate system indicating an absolute position defined by the satellite positioning system.
 車体角度取得部32は、車体3の角度である車体角度を取得する機能を有する。車体角度取得部32は、例えばグローバル座標系における車体3の角度を検出する車体角度センサによって構成されている。具体的に、当該車体角度センサは、例えば前記機体本体に設けられ、衛星測位システムから衛星データ(測位信号)を受信可能な1つ又は複数のレシーバにより構成されていてもよい。前記車体角度は、前記車体の水平面に対する傾斜角度である。 The vehicle body angle obtaining unit 32 has a function of obtaining a vehicle body angle which is an angle of the vehicle body 3. The vehicle body angle acquisition unit 32 is configured by, for example, a vehicle body angle sensor that detects the angle of the vehicle body 3 in the global coordinate system. Specifically, the vehicle body angle sensor may be provided, for example, in the body of the aircraft, and may include one or a plurality of receivers capable of receiving satellite data (positioning signal) from a satellite positioning system. The vehicle body angle is a tilt angle of the vehicle body with respect to a horizontal plane.
 前記ブレード角度取得部33は、前記ブレード4の角度を取得する機能を有する。ブレード角度取得部33は、例えばグローバル座標系におけるブレード4の角度を検出するブレード角度センサによって構成されている。具体的に、当該ブレード角度センサは、例えば前記機体本体に設けられ、衛星測位システムから衛星データ(測位信号)を受信可能な1つ又は複数のレシーバにより構成されていてもよい。 ブ レ ー ド The blade angle acquisition unit 33 has a function of acquiring the angle of the blade 4. The blade angle acquisition unit 33 is configured by, for example, a blade angle sensor that detects the angle of the blade 4 in the global coordinate system. Specifically, the blade angle sensor may be provided in, for example, the body of the aircraft, and may be configured by one or a plurality of receivers capable of receiving satellite data (positioning signal) from a satellite positioning system.
 なお、前記グローバル座標系に代えて、前記車体位置を基準とする3次元の座標系、作業現場における特定位置を基準とする3次元の座標系などのローカル座標系が用いられてもよく、前記グローバル座標系と前記ローカル座標系とが併用されてもよい。この場合、前記車体角度センサは、例えば慣性計測装置により構成されていてもよく、当該慣性計測装置と前記衛星データを受信可能な前記レシーバとにより構成されていてもよい。前記慣性計測装置は、例えば、車体3の加速度および角速度を計測し、計測結果に基づいて車体3の傾き(例えば、X軸に対する回転を表すピッチ、Y軸に対する回転を表すヨーおよびZ軸に対する回転を表すロール)を検出可能に構成されていてもよい。また、前記ブレード角度センサは、例えばブレードシリンダ8のシリンダストロークを検出するストロークセンサにより構成されていてもよく、当該ストロークセンサと前記衛星データを受信可能な前記レシーバとにより構成されていてもよい。 Note that, instead of the global coordinate system, a local coordinate system such as a three-dimensional coordinate system based on the vehicle body position or a three-dimensional coordinate system based on a specific position in a work site may be used. The global coordinate system and the local coordinate system may be used together. In this case, the vehicle body angle sensor may be configured by, for example, an inertial measurement device, or may be configured by the inertial measurement device and the receiver that can receive the satellite data. The inertial measurement device measures, for example, the acceleration and angular velocity of the vehicle body 3, and based on the measurement result, tilts the vehicle body 3 (for example, pitch indicating rotation about the X axis, yaw indicating rotation about the Y axis, and rotation about the Z axis). May be configured to be detectable. Further, the blade angle sensor may be configured by, for example, a stroke sensor that detects a cylinder stroke of the blade cylinder 8, or may be configured by the stroke sensor and the receiver that can receive the satellite data.
 図1に示すように、本実施形態では、車体位置取得部31及び車体角度取得部32は車体3の上部に取り付けられており、ブレード角度取得部33はブレード4の上部に取り付けられるが、これらの取り付け位置は図1に示す具体例に限られない。これらの取得部31,32,33により生成される電気信号である検出信号は、前記コントローラ10に入力される。 As shown in FIG. 1, in the present embodiment, the vehicle body position obtaining unit 31 and the vehicle body angle obtaining unit 32 are mounted on the upper part of the vehicle body 3, and the blade angle obtaining unit 33 is mounted on the upper part of the blade 4. Is not limited to the specific example shown in FIG. Detection signals, which are electric signals generated by the acquisition units 31, 32, and 33, are input to the controller 10.
 本実施形態では、前記ブレード負荷取得部34は、掘削作業時に前記ブレード4にかかる負荷であるブレード負荷を取得する機能を有する。当該ブレード負荷は、例えばブレード4を駆動する油圧ポンプ9のポンプ圧に対応するものである。したがって、ブレード負荷取得部34は、前記ポンプ圧を検出することにより前記ブレード負荷を検出可能である。本実施形態では、前記ブレード負荷取得部34は、リフトシリンダ8のヘッド側室8hにおける作動油の圧力であるヘッド圧P1を検出するヘッド圧センサ34Hと、リフトシリンダ8のロッド側室8rにおける作動油の圧力であるロッド圧P2を検出するロッド圧センサ34Rと、を含む。前記センサ34H及び34Rのそれぞれは、その検出した物理量をこれに対応する電気信号である検出信号に変換して前記コントローラ10に入力する。 In the present embodiment, the blade load obtaining unit 34 has a function of obtaining a blade load that is a load applied to the blade 4 during excavation work. The blade load corresponds to, for example, the pump pressure of the hydraulic pump 9 that drives the blade 4. Therefore, the blade load acquisition unit 34 can detect the blade load by detecting the pump pressure. In the present embodiment, the blade load acquisition unit 34 includes a head pressure sensor 34H that detects a head pressure P1 that is a pressure of hydraulic oil in the head-side chamber 8h of the lift cylinder 8, and a hydraulic pressure in the rod-side chamber 8r of the lift cylinder 8. And a rod pressure sensor 34R for detecting a rod pressure P2 as a pressure. Each of the sensors 34H and 34R converts the detected physical quantity into a detection signal, which is an electric signal corresponding to the detected physical quantity, and inputs the detection signal to the controller 10.
 自動制御スイッチ35は、運転室内に配置されるとともに、前記コントローラ10に電気的に接続される。当該自動制御スイッチ35は、前記コントローラ10の制御モードを手動操作モードから自動制御モードに切換えるための操作を受けて当該操作に係るモード指令信号を前記コントローラ10に入力する。前記コントローラ10は、制御モードの設定を、前記自動制御スイッチ35から入力されるモード指令信号により前記手動操作モードから前記自動制御モードに切換える。 The automatic control switch 35 is arranged in the cab and is electrically connected to the controller 10. The automatic control switch 35 receives an operation for switching the control mode of the controller 10 from the manual operation mode to the automatic control mode, and inputs a mode command signal relating to the operation to the controller 10. The controller 10 switches the setting of the control mode from the manual operation mode to the automatic control mode according to a mode command signal input from the automatic control switch 35.
 前記自動制御モードでは、当該コントローラ10は、ブレード4により施工される施工面が予め設定された目標設計面に近づくように前記リフトシリンダ8の動作を自動制御するように構成されている。リフトシリンダ8の動作を制御するための前記リフトシリンダ制御用比例弁41への指令値(指令電流)が当該コントローラ10から出力されると、当該指令値に応じて比例弁41の2次圧が変化し、その2次圧に応じて前記リフトシリンダ流量制御弁の開度が変化する。その結果、前記油圧ポンプ9から前記リフトシリンダ流量制御弁を介してリフトシリンダ8へ供給される作動油の供給流量及び供給方向が変化し、リフトシリンダ8の動作速度や駆動方向が制御される。一方、前記手動操作モードでは、作業者が走行レバー36を操作すると、その操作信号がコントローラ10に入力され、ブレード4の昇降を操作するための図略の操作レバーの操作量に応じて、前記リフトシリンダ制御用比例弁41への指令値又は前記リフトシリンダ流量制御弁への指令値が当該コントローラ10から出力される。 In the automatic control mode, the controller 10 is configured to automatically control the operation of the lift cylinder 8 so that the construction surface constructed by the blade 4 approaches a preset target design surface. When a command value (command current) to the lift cylinder control proportional valve 41 for controlling the operation of the lift cylinder 8 is output from the controller 10, the secondary pressure of the proportional valve 41 is increased according to the command value. The opening degree of the lift cylinder flow control valve changes according to the secondary pressure. As a result, the supply flow rate and the supply direction of the hydraulic oil supplied from the hydraulic pump 9 to the lift cylinder 8 via the lift cylinder flow control valve change, and the operation speed and the drive direction of the lift cylinder 8 are controlled. On the other hand, in the manual operation mode, when an operator operates the traveling lever 36, an operation signal is input to the controller 10, and the operation signal is input to the controller 10 according to the operation amount of an unillustrated operation lever for operating the elevation of the blade 4. A command value to the lift cylinder control proportional valve 41 or a command value to the lift cylinder flow control valve is output from the controller 10.
 前記コントローラ10は、前記自動制御を実行するための機能として、目標設計面設定部11と、ブレード位置演算部12と、記憶部13と、仮想設計面設定部14と、ブレード動作制御部15と、負荷閾値設定部16と、ブレード制御制限部20と、推定位置演算部22と、を有する。 The controller 10 includes a target design surface setting unit 11, a blade position calculation unit 12, a storage unit 13, a virtual design surface setting unit 14, a blade operation control unit 15 as functions for executing the automatic control. , A load threshold setting unit 16, a blade control restriction unit 20, and an estimated position calculation unit 22.
 前記目標設計面設定部11は、前記ブレード4による掘削対象の目標形状を特定する目標設計面SD(図7参照)を設定する。前記目標設計面設定部11は、前記運転室内に設けられた目標設計面入力部により入力された設計面を記憶し、当該設計面を目標設計面に設定してもよい。また、前記目標設計面設定部11は、各種記憶媒体、通信ネットワークなどを介して取得した設計面のデータを記憶し、当該設計面を目標設計面に設定してもよい。前記目標設計面設定部11は、設定した目標設計面を仮想設計面設定部14に入力する。前記目標設計面SDは、掘削対象である地盤の目標形状であって3次元の設計地形を特定する面である。当該目標設計面SDは、BIM、CIM(Building/Construction Information Modeling,Management)などの外部データによって特定されてもよいし、作業機械の位置を基準にして設定されたものでもよい。 The target design surface setting unit 11 sets a target design surface SD (see FIG. 7) for specifying a target shape to be excavated by the blade 4. The target design surface setting unit 11 may store a design surface input by a target design surface input unit provided in the cab, and may set the design surface as a target design surface. Further, the target design surface setting unit 11 may store design surface data acquired via various storage media, a communication network, or the like, and set the design surface as a target design surface. The target design plane setting unit 11 inputs the set target design plane to the virtual design plane setting unit 14. The target design surface SD is a surface which is a target shape of the ground to be excavated and specifies a three-dimensional design topography. The target design plane SD may be specified by external data such as BIM or CIM (Building / Construction / Information / Modeling, Management), or may be set based on the position of the work machine.
 前記ブレード位置演算部12は、前記位置情報取得部により取得された前記位置情報に基づいて、グローバル座標系における前記ブレード4の位置であるブレード位置を演算する。本実施形態では、ブレード位置演算部12は、車体位置取得部31により取得された前記車体位置と、車体角度取得部32により取得された前記車体角度と、ブレード角度取得部33により取得された前記ブレード4の角度とに基づいて、前記ブレード位置を演算する。すなわち、基準点から前記車体位置までのベクトルと前記車体位置から前記ブレード位置までのベクトルとの和から前記ブレード位置が演算される。このように本実施形態では、グローバル座標系における前記車体角度と前記ブレード4の角度の相対角度によりブレード位置を演算しているが、ブレード位置の演算方法はこれに限られない。ブレード位置は、例えばリフトシリンダ8の長さに基づいて演算されてもよく、ブレード4にGNSSのレシーバ(GNSSセンサ)を取り付け、当該GNSSセンサが受信するGNSSデータに基づいて演算されてもよい。 The blade position calculator 12 calculates a blade position, which is a position of the blade 4 in a global coordinate system, based on the position information acquired by the position information acquirer. In the present embodiment, the blade position calculation unit 12 includes the vehicle body position acquired by the vehicle body position acquisition unit 31, the vehicle body angle acquired by the vehicle body angle acquisition unit 32, and the blade position acquired by the blade angle acquisition unit 33. The blade position is calculated based on the angle of the blade 4. That is, the blade position is calculated from the sum of a vector from the reference point to the vehicle body position and a vector from the vehicle body position to the blade position. As described above, in the present embodiment, the blade position is calculated based on the relative angle between the vehicle body angle and the angle of the blade 4 in the global coordinate system, but the method of calculating the blade position is not limited to this. The blade position may be calculated based on, for example, the length of the lift cylinder 8, or a GNSS receiver (GNSS sensor) may be attached to the blade 4 and calculated based on GNSS data received by the GNSS sensor.
 本実施形態では、前記ブレード位置は、ブレード4の先端である刃先位置(ブレード4の先端の下縁の位置)に設定されているが、ブレード4の他の部位に設定されていてもよい。 In the present embodiment, the blade position is set at the cutting edge position (the position of the lower edge of the tip of the blade 4), which is the tip of the blade 4, but may be set at another part of the blade 4.
 前記記憶部13は、前記ブレード負荷fの閾値である負荷閾値としての第1負荷閾値f1を記憶する。本実施形態では、記憶部13は、前記ブレード負荷fの閾値である第2負荷閾値f2をさらに記憶する。第1負荷閾値f1及び第2負荷閾値f2については後述する。 記憶 The storage unit 13 stores a first load threshold f1 as a load threshold which is a threshold of the blade load f. In the present embodiment, the storage unit 13 further stores a second load threshold f2 which is a threshold of the blade load f. The first load threshold f1 and the second load threshold f2 will be described later.
 また、前記記憶部13は、予め設定された更新条件を記憶する。当該更新条件は、前記仮想設計面設定部14が後述する仮想設計面を更新するか否かを判定する基準となるものである。更新条件は、1つ又は複数の条件を含む。更新条件の詳細については後述する。 (4) The storage unit 13 stores a preset update condition. The update condition serves as a reference for determining whether or not the virtual design surface setting unit 14 updates a virtual design surface described later. The update condition includes one or more conditions. Details of the update condition will be described later.
 前記仮想設計面設定部14は、前記更新条件が満たされた場合に、前記更新条件が満たされたときの前記ブレード位置を基準とするとともに前記車体角度取得部32により取得される前記車体角度に平行な仮想設計面を前記目標設計面よりも上方に設定する。仮想設計面設定部14では、ブレード位置演算部12で演算されたブレード位置と、負荷閾値設定部16で設定された第1負荷閾値f1と、ブレード負荷取得部34で取得されたブレード負荷fと、GNSSレシーバ(車体位置取得部31)で取得された車体位置と、車体角度センサ(車体角度取得部32)で取得された車体角度と、目標設計面設定部11で設定された目標設計面とに基づいて、仮想設計面が設定される。具体的な設定方法については後述する。 When the update condition is satisfied, the virtual design surface setting unit 14 sets the vehicle body angle acquired by the vehicle body angle acquisition unit 32 based on the blade position when the update condition is satisfied. A parallel virtual design surface is set above the target design surface. In the virtual design surface setting unit 14, the blade position calculated by the blade position calculation unit 12, the first load threshold f1 set by the load threshold setting unit 16, and the blade load f acquired by the blade load acquisition unit 34. The vehicle position acquired by the GNSS receiver (vehicle position acquisition unit 31), the vehicle body angle acquired by the vehicle angle sensor (vehicle angle acquisition unit 32), the target design surface set by the target design surface setting unit 11, The virtual design surface is set based on. A specific setting method will be described later.
 前記負荷閾値設定部16は、仮想設計面設定部14及びブレード動作制御部15における演算に使用される負荷閾値を設定する。本実施形態では、負荷閾値設定部16は、上述の第1負荷閾値f1と第2負荷閾値f2を設定する。第2負荷閾値f2は第1負荷閾値f1よりも大きい値に設定される。前記第1負荷閾値f1は、油圧ショベル1が安定して走行可能な適正なブレード負荷fに対応する値に設定される。第2負荷閾値f2は、安定して効率のよい掘削動作を実現するために設定された値である。前記第2負荷閾値f2は、ブレード負荷fが過大になってスタック等が発生するという事態の発生を未然に防止するために設定された値であるので、当該事態が発生するブレード負荷よりも小さい値に設定されるのが好ましい。すなわち、第2負荷閾値f2は、ブレード負荷fが第2負荷閾値f2に達した場合であっても、作業機械が走行可能な値に設定されるのが好ましい。これらの負荷閾値f1,f2は、作業者が掘削作業前にコントローラ10に手動で入力してもよく、掘削作業中にコントローラ10により適宜演算されて記憶されるものであってもよい。 The load threshold setting unit 16 sets a load threshold used for calculation in the virtual design plane setting unit 14 and the blade operation control unit 15. In the present embodiment, the load threshold setting unit 16 sets the first load threshold f1 and the second load threshold f2 described above. The second load threshold f2 is set to a value larger than the first load threshold f1. The first load threshold f1 is set to a value corresponding to an appropriate blade load f at which the excavator 1 can run stably. The second load threshold f2 is a value set to realize a stable and efficient excavation operation. The second load threshold f2 is a value set to prevent the occurrence of a situation in which the blade load f becomes excessive and a stack or the like occurs, and is therefore smaller than the blade load in which the situation occurs. Preferably, it is set to a value. That is, the second load threshold f2 is preferably set to a value at which the work machine can travel even when the blade load f has reached the second load threshold f2. These load thresholds f1 and f2 may be manually input to the controller 10 by the operator before the excavation work, or may be appropriately calculated and stored by the controller 10 during the excavation work.
 前記ブレード動作制御部15は、リフトシリンダ8の動作を制御するための前記リフトシリンダ制御用比例弁41への指令値を演算し出力する。ブレード動作制御部15は、自動制御スイッチ35の自動制御スイッチ操作信号と、走行レバー36の走行レバー操作信号と、ブレード負荷取得部34で取得されたブレード負荷fと、負荷閾値設定部16で設定された第1負荷閾値f1及び第2負荷閾値f2とに基づいて、リフトシリンダ制御用比例弁41に出力する仮指令電流を演算する。具体的な演算方法については後述する。 The blade operation control unit 15 calculates and outputs a command value to the lift cylinder control proportional valve 41 for controlling the operation of the lift cylinder 8. The blade operation control unit 15 includes an automatic control switch operation signal of the automatic control switch 35, a traveling lever operation signal of the traveling lever 36, a blade load f acquired by the blade load acquiring unit 34, and a setting by the load threshold setting unit 16. Based on the first load threshold value f1 and the second load threshold value f2, a provisional command current to be output to the lift cylinder control proportional valve 41 is calculated. A specific calculation method will be described later.
 ブレード制御制限部20は、仮想設計面設定部14で演算された仮想設計面と、ブレード動作制御部15で演算された前記仮指令電流に基づいて、リフトシリンダ制御用比例弁41に出力する指令電流を演算する。具体的な演算方法については後述する。 The blade control restriction unit 20 outputs a command to the lift cylinder control proportional valve 41 based on the virtual design surface calculated by the virtual design surface setting unit 14 and the provisional command current calculated by the blade operation control unit 15. Calculate the current. A specific calculation method will be described later.
 推定位置演算部22は、前記更新条件のうちの一部の条件を構成する現状面の推定位置を演算する。具体的には、推定位置演算部22は、前記掘削対象の地面である現状面のうち前記ブレード4及び前記走行装置2の少なくとも一方に関連づけられた部位の推定位置を前記位置情報取得部により取得される前記位置情報に基づいて演算する。具体的な演算方法については後述する。 The estimated position calculation unit 22 calculates the estimated position of the current plane, which forms part of the update conditions. Specifically, the estimated position calculating unit 22 obtains, by the position information obtaining unit, an estimated position of a part associated with at least one of the blade 4 and the traveling device 2 on a current surface that is the ground to be excavated. The calculation is performed based on the position information. A specific calculation method will be described later.
 次に、前記自動制御モードにおいて前記コントローラ10が前記ブレード4の駆動について行う制御動作を、図3のフローチャートを参照しながら説明する。 Next, a control operation performed by the controller 10 for driving the blade 4 in the automatic control mode will be described with reference to a flowchart of FIG.
 コントローラ10は、自動制御スイッチ35に係る自動制御スイッチ操作信号及び走行レバー36に係る走行レバー操作信号をそれぞれ取得する(ステップS1)。 The controller 10 acquires an automatic control switch operation signal relating to the automatic control switch 35 and a traveling lever operation signal relating to the traveling lever 36 (step S1).
 次に、コントローラ10は、自動制御スイッチ操作信号が、自動制御スイッチ35がオンの状態であることを示し、かつ、走行レバー操作信号が、走行レバー36が操作されたことを示すという条件を満たすか否かを判定する(ステップS2)。当該条件が満たされない場合(ステップS2においてNO)、コントローラ10は、仮想設計面をリセットして処理を終了する。 Next, the controller 10 satisfies the condition that the automatic control switch operation signal indicates that the automatic control switch 35 is on and that the traveling lever operation signal indicates that the traveling lever 36 has been operated. It is determined whether or not (step S2). If the condition is not satisfied (NO in step S2), controller 10 resets the virtual design surface and ends the process.
 当該条件が満たされている場合(ステップS2においてYES)、負荷閾値設定部16は、第1負荷閾値f1及び第2負荷閾値f2を設定する(ステップS3)。 If the condition is satisfied (YES in step S2), the load threshold setting unit 16 sets the first load threshold f1 and the second load threshold f2 (step S3).
 次に、ブレード負荷取得部34は、ブレード4にかかるブレード負荷fを取得する(ステップS4)。 Next, the blade load acquiring unit 34 acquires the blade load f applied to the blade 4 (Step S4).
 次に、ブレード動作制御部15は、前記仮指令電流を演算する(ステップS5)。図4は、コントローラ10のブレード動作制御部15が前記仮指令電流を演算するフローを示す図である。図4に示すように、ブレード動作制御部15は、ブレード負荷取得部34により取得されたブレード負荷fが第2負荷閾値f2以上であるという条件を満たすか否かを判定する(ステップS101)。当該条件が満たされる場合(ステップS101においてYES)、ブレード動作制御部15は、「リフト上げ」に対応する仮指令電流を出力し、処理を終了する。当該仮指令電流は、ブレード制御制限部20に入力される。「リフト上げ」は、ブレード4を上昇させる動作に対応するものである。 Next, the blade operation control unit 15 calculates the provisional command current (step S5). FIG. 4 is a diagram showing a flow in which the blade operation control unit 15 of the controller 10 calculates the provisional command current. As shown in FIG. 4, the blade operation control unit 15 determines whether or not the condition that the blade load f acquired by the blade load acquisition unit 34 is equal to or more than the second load threshold f2 is satisfied (Step S101). If the condition is satisfied (YES in step S101), blade operation control unit 15 outputs a provisional command current corresponding to "lift up", and ends the process. The provisional command current is input to the blade control limiting unit 20. “Lift raising” corresponds to an operation of raising the blade 4.
 ステップS101の前記条件が満たされない場合(ステップS101においてNO)、ブレード動作制御部15は、前記ブレード負荷fが第1負荷閾値f1以上であるという条件を満たすか否かを判定する(ステップS102)。ステップS102の当該条件が満たされる場合(ステップS102においてYES)、ブレード動作制御部15は、「リフト固定」に対応する仮指令電流を出力し、処理を終了する。当該仮指令電流は、ブレード制御制限部20に入力される。「リフト固定」は、ブレード4の昇降動作を行わないことに対応するものである。 If the condition in step S101 is not satisfied (NO in step S101), the blade operation control unit 15 determines whether the condition that the blade load f is equal to or greater than the first load threshold f1 is satisfied (step S102). . When the condition in Step S102 is satisfied (YES in Step S102), the blade operation control unit 15 outputs a provisional command current corresponding to “lift fixed”, and ends the process. The provisional command current is input to the blade control limiting unit 20. “Lift fixed” corresponds to not performing the raising / lowering operation of the blade 4.
 ステップS102の前記条件が満たされない場合(ステップS102においてNO)、ブレード動作制御部15は、「リフト下げ」に対応する仮指令電流を出力し、処理を終了する。当該仮指令電流は、ブレード制御制限部20に入力される。「リフト下げ」は、ブレード4を下降させる動作に対応するものである。 場合 If the above condition of step S102 is not satisfied (NO in step S102), blade operation control unit 15 outputs a provisional command current corresponding to “lift down”, and ends the process. The provisional command current is input to the blade control limiting unit 20. “Lift lowering” corresponds to the operation of lowering the blade 4.
 図4に示すフローは、掘削作業時のブレード負荷fを第1負荷閾値f1と第2負荷閾値f2の範囲に保つことを目的とする処理である。当該フローでは、ブレード負荷fが第2負荷閾値f2以上であるときは、ブレード4の掘削能力を超過した負荷がブレード4にかかっているとみなされ、ブレード負荷fを緩和するために「リフト上げ」の動作が行われる。また、ブレード負荷fが第1負荷閾値f1より小さいときは、ブレード4にかかる負荷が掘削能力に対して過小であるとみなされ、掘削量を増やすために「リフト下げ」の動作が行われる。これら以外のときは、ブレード4の位置を固定する処理、すなわち、ブレード4の昇降動作を行わないという処理が行われる。 フ ロ ー The flow shown in FIG. 4 is a process for maintaining the blade load f during excavation work within the range between the first load threshold f1 and the second load threshold f2. In this flow, when the blade load f is equal to or more than the second load threshold f2, it is considered that a load exceeding the excavation capacity of the blade 4 is applied to the blade 4, and the “lift lift” is set to reduce the blade load f. Is performed. When the blade load f is smaller than the first load threshold f1, the load on the blade 4 is considered to be too small for the excavation ability, and a “lift lowering” operation is performed to increase the excavation amount. In other cases, a process of fixing the position of the blade 4, that is, a process of not performing the elevating operation of the blade 4 is performed.
 次に、図3に示すステップS6において、コントローラ10は、ブレード動作制御部15が出力した前記仮指令電流が「リフト上げ」に対応するものであるという条件を満たすか否かを判定する(ステップS6)。当該条件が満たされる場合(ステップS6においてYES)、ブレード制御制限部20は、ステップS11の処理を行う。当該条件が満たされない場合(ステップS6においてNO)、次のステップS7~S11の一連の処理が行われる。 Next, in step S6 shown in FIG. 3, the controller 10 determines whether or not the condition that the provisional command current output by the blade operation control unit 15 corresponds to “lift up” is satisfied (step S6). S6). If the condition is satisfied (YES in step S6), the blade control restriction unit 20 performs the processing in step S11. If the condition is not satisfied (NO in step S6), a series of processes in the following steps S7 to S11 is performed.
 車体位置取得部31は前記車体位置を取得し、車体角度取得部32は前記車体角度を取得し、ブレード角度取得部33はブレード4の角度を取得する(ステップS7)。ブレード位置演算部12は、前記車体位置、前記車体角度及び前記ブレード4の角度に基づいて前記ブレード位置を演算する(ステップS8)。 The vehicle body position obtaining unit 31 obtains the vehicle body position, the vehicle body angle obtaining unit 32 obtains the vehicle body angle, and the blade angle obtaining unit 33 obtains the angle of the blade 4 (Step S7). The blade position calculator 12 calculates the blade position based on the vehicle body position, the vehicle body angle, and the angle of the blade 4 (Step S8).
 次に、仮想設計面設定部14は、仮想設計面を設定する(ステップS9)。図5は、コントローラ10の仮想設計面設定部14が仮想設計面を設定するフローを示す図である。まず、仮想設計面設定部14は、仮想設計面が設定されていないことに対応する条件を満たすか否かを判定する(ステップS201)。図5に示す具体例では、ステップS201において、仮想設計面設定部14は、当該ステップS201が自動制御の最初のステップであるか否かを判定する。当該ステップS201が自動制御の最初のステップであれば仮想設計面は必然的に設定されていないことになるため、自動制御の最初のステップであるか否かの判定は、仮想設計面が設定されていないことに対応する条件を満たすか否かを判定することができる。また、仮想設計面が設定されていないことに対応する条件を満たすか否かの判定は、例えば、仮想設定面の設定又は未設定を表すフラグ(設定フラグ)に基づいて行うことも可能である。 Next, the virtual design surface setting unit 14 sets a virtual design surface (step S9). FIG. 5 is a diagram illustrating a flow in which the virtual design surface setting unit 14 of the controller 10 sets a virtual design surface. First, the virtual design surface setting unit 14 determines whether a condition corresponding to no virtual design surface being set is satisfied (step S201). In the specific example shown in FIG. 5, in step S201, the virtual design surface setting unit 14 determines whether or not step S201 is the first step of the automatic control. If the step S201 is the first step of the automatic control, the virtual design surface is not necessarily set. Therefore, whether or not the first step of the automatic control is the virtual design surface is determined. It can be determined whether or not the condition corresponding to the absence of the event is satisfied. Further, the determination as to whether or not the condition corresponding to the fact that the virtual design surface has not been set can also be performed based on, for example, a flag (setting flag) indicating setting or non-setting of the virtual setting surface. .
 仮想設計面設定部14は、当該ステップが自動制御の最初のステップであると判定した場合(ステップS201においてYES)、仮想設計面を新規に設定して、処理を終了する。仮想設計面設定部14は、当該ステップが自動制御の最初のステップではないと判定した場合(ステップS201においてNO)、ブレード負荷取得部34により前回取得されたブレード負荷fが第1負荷閾値f1以上であり、かつ、ブレード負荷取得部34により今回取得されたブレード負荷fが第1負荷閾値f1よりも小さいという条件を満たすか否かを判定する(ステップS202)。当該条件が満たされる場合(ステップS202においてYES)、仮想設計面設定部14は、仮想設計面を新規に設定して(仮想設計面を更新して)、処理を終了する。 When the virtual design surface setting unit 14 determines that the step is the first step of the automatic control (YES in step S201), the virtual design surface setting unit 14 newly sets a virtual design surface and ends the process. If the virtual design surface setting unit 14 determines that the step is not the first step of the automatic control (NO in step S201), the blade load f previously obtained by the blade load obtaining unit 34 is equal to or more than the first load threshold f1. It is determined whether or not the condition that the blade load f acquired this time by the blade load acquisition unit 34 is smaller than the first load threshold f1 is satisfied (step S202). If the condition is satisfied (YES in step S202), virtual design surface setting unit 14 newly sets a virtual design surface (updates the virtual design surface), and ends the process.
 ステップS202の当該条件が満たされない場合(ステップS202においてNO)、前記推定位置が前記仮想設計面よりも下方であるという条件を満たすか否かを判定する(ステップS203)。仮想設計面設定部14は、ステップS203の前記条件が満たされると判定した場合(ステップS203においてYES)、仮想設計面を新規に設定して(仮想設計面を更新して)、処理を終了する。ステップS203の当該条件が満たされない場合(ステップS203においてNO)、仮想設計面設定部14は、仮想設計面を更新せず、処理を終了する。 If the condition in step S202 is not satisfied (NO in step S202), it is determined whether the condition that the estimated position is below the virtual design surface is satisfied (step S203). When it is determined that the condition of step S203 is satisfied (YES in step S203), virtual design surface setting unit 14 newly sets a virtual design surface (updates the virtual design surface) and ends the process. . If the condition in step S203 is not satisfied (NO in step S203), virtual design surface setting unit 14 ends the process without updating the virtual design surface.
 図5に示すフローは、仮想設計面SVを適切に設定することを目的とする処理である。当該フローでは、「自動制御の最初のステップであること」という条件(ステップS201)、「前回取得されたブレード負荷fが第1負荷閾値f1以上で、かつ、今回取得されたブレード負荷fが第1負荷閾値f1よりも小さいこと」という条件(ステップS202)、「前記推定位置が現在設定されている仮想設計面SVよりも下方であること」という条件(ステップS203)の少なくとも1つの条件を満たした場合に仮想設計面SVが新規に設定される処理(仮想設計面SVを更新する処理)が行われる。当該処理が行われることにより、仮想設計面SVが適切な時期に設定され、安定して施工効率のよい掘削作業が実現される。 フ ロ ー The flow shown in FIG. 5 is a process for appropriately setting the virtual design surface SV. In this flow, the condition "it is the first step of the automatic control" (step S201), "the blade load f acquired last time is equal to or more than the first load threshold f1, and the blade load f acquired this time is the At least one of the following condition is satisfied (Step S202): "It is smaller than one load threshold f1"; and (Step S203): "The estimated position is below the currently set virtual design surface SV". In this case, a process of newly setting the virtual design surface SV (a process of updating the virtual design surface SV) is performed. By performing this processing, the virtual design surface SV is set at an appropriate time, and stable excavation work with high construction efficiency is realized.
 図6は、前記推定位置について説明するための概略の側面図である。図6に示す推定位置PBは、前記推定位置演算部22により演算される。前記ブレード4及び前記走行装置2は、作業機械の下部に配置されているので、現状面SPの高さ位置に近い高さに位置している。したがって、前記ブレード4及び前記走行装置2の少なくとも一方は、仮想設計面SVと現状面SPとの位置関係を判定するときの指標になり得る。前記推定位置演算部22により演算される前記推定位置PBは、前記現状面SPのうち前記ブレード4及び前記走行装置2の少なくとも一方に関連づけられた部位を前記位置情報に基づいて推定位置演算部22が演算して推定したものである。したがって、当該推定位置PBが前記仮想設計面SVよりも下方であるという条件が満たされたときには、ブレード4が現状面SPよりも上方に浮いた状態になる可能性が高まる。当該条件を含む更新条件が満たされたときに、仮想設計面SVがブレード位置を基準として車体角度に平行な角度に更新されるので、ブレード4が現状面SPよりも上方に浮いた状態が解消される。 FIG. 6 is a schematic side view for explaining the estimated position. The estimated position PB shown in FIG. 6 is calculated by the estimated position calculation unit 22. Since the blade 4 and the traveling device 2 are arranged below the work machine, they are located at a height close to the height of the current plane SP. Therefore, at least one of the blade 4 and the traveling device 2 can be an index when determining the positional relationship between the virtual design surface SV and the current surface SP. The estimated position PB calculated by the estimated position calculation unit 22 is a part of the current surface SP associated with at least one of the blade 4 and the traveling device 2 based on the position information. Is calculated and estimated. Therefore, when the condition that the estimated position PB is below the virtual design plane SV is satisfied, the possibility that the blade 4 is floating above the current plane SP increases. When the update condition including the above condition is satisfied, the virtual design surface SV is updated to an angle parallel to the vehicle body angle based on the blade position, so that the state where the blade 4 floats above the current surface SP is eliminated. Is done.
 本実施形態では、前記推定位置PBは、図6に示すように、作業機械における走行装置2の下部に平行な線(図6では現状面SP上の線)と、ブレード位置を通り仮想設計面SVから垂直に延びる線Lの交点である。なお、前記推定位置PBは、ブレード位置における現状面SPの推定高さ位置であるので、例えば、作業機械における走行装置2の下部に平行な線とブレード4とが交差する点であってもよい。 In the present embodiment, the estimated position PB is, as shown in FIG. 6, a line parallel to the lower part of the traveling device 2 in the work machine (a line on the current plane SP in FIG. 6) and a virtual design plane passing through the blade position. This is the intersection of a line L extending vertically from the SV. Since the estimated position PB is the estimated height position of the current plane SP at the blade position, the estimated position PB may be, for example, a point where the line parallel to the lower part of the traveling device 2 of the work machine and the blade 4 intersect. .
 図7は、前記ブレード制御装置100において、仮想設計面SVの設定方法について説明するための概略の側面図である。本実施形態では、図7に示すように、仮想設計面設定部14は、前記更新条件が満たされた場合、ブレード位置を通り目標設計面SDに垂直な直線上において前記ブレード位置から予め設定された基準距離δだけ下方の基準位置を演算し、当該基準位置を通り、前記車体角度に平行な面を仮想設計面SVとして設定する。 FIG. 7 is a schematic side view for explaining a setting method of the virtual design surface SV in the blade control device 100. In the present embodiment, as shown in FIG. 7, when the update condition is satisfied, the virtual design plane setting unit 14 sets the virtual design plane setting section 14 in advance on the straight line passing through the blade position and perpendicular to the target design plane SD from the blade position. A reference position below the reference distance δ is calculated, and a plane passing through the reference position and parallel to the vehicle body angle is set as a virtual design plane SV.
 次に、図3に示すステップS10において、ブレード制御制限部20は、指令電流を演算する。図8は、コントローラ10のブレード制御制限部20が前記指令電流を演算するフローを示す図である。図8に示すように、ブレード制御制限部20は、ブレード位置演算部12により演算されるブレード位置が前記仮想設計面SVよりも下方であるという条件を満たすか否かを判定する(ステップS301)。ブレード制御制限部20は、当該条件が満たされる場合(ステップS301においてYES)、指令電流を「リフト上げ」に対応するもの設定し、処理を終了する。「リフト上げ」は、ブレード4を上昇させる動作に対応するものである。一方、ブレード制御制限部20は、当該条件が満たされない場合(ステップS301においてNO)、指令電流を、ブレード動作制御部15から入力された前記仮指令電流と同じものに設定し、処理を終了する。 Next, in step S10 shown in FIG. 3, the blade control limiting unit 20 calculates the command current. FIG. 8 is a diagram showing a flow in which the blade control restriction unit 20 of the controller 10 calculates the command current. As shown in FIG. 8, the blade control restriction unit 20 determines whether or not the condition that the blade position calculated by the blade position calculation unit 12 is below the virtual design surface SV is satisfied (step S301). . If the condition is satisfied (YES in step S301), blade control restriction unit 20 sets the command current corresponding to "lift up", and ends the process. “Lift raising” corresponds to an operation of raising the blade 4. On the other hand, when the condition is not satisfied (NO in step S301), blade control restriction unit 20 sets the command current to the same as the provisional command current input from blade operation control unit 15, and ends the process. .
 図8に示すフローはブレード位置を仮想設計面SVよりも上方に保つことを目的とする処理である。例えば、ブレード動作制御部15による演算結果が「リフト下げ」又は「リフト固定」に対応するものであったとしても(すなわち、ブレード負荷fがブレード4の掘削能力に対して小さいものであったとしても)、ブレード制御制限部20においてブレード位置が仮想設計面SVよりも下方であると判定した場合には、ブレード位置が仮想設計面SVを下回らないように指令電流を「リフト上げ」に上書きする処理が行われる。このことは、施工面SCにうねりが発生することを防止する。 フ ロ ー The flow shown in FIG. 8 is a process for maintaining the blade position above the virtual design surface SV. For example, even if the calculation result by the blade operation control unit 15 corresponds to “lift down” or “lift fixed” (that is, the blade load f is small with respect to the excavating ability of the blade 4). Also, when the blade control limiting unit 20 determines that the blade position is below the virtual design surface SV, the command current is overwritten to “lift up” so that the blade position does not fall below the virtual design surface SV. Processing is performed. This prevents undulations on the construction surface SC.
 図3に示すステップS11において、ブレード制御制限部20は、前記指令電流をリフトシリンダ制御用比例弁41に出力する。具体的には、ブレード動作制御部15が出力した前記仮指令電流が「リフト上げ」に対応するものであるという条件が満たされる場合(ステップS6においてYES)、ブレード制御制限部20は、当該仮指令電流と同じ指令電流を比例弁41に出力する。また、ブレード制御制限部20は、前記ステップS6においてNOである場合、ステップS10において演算された指令電流を比例弁41に出力する。ステップS11の処理が終了すると、コントローラ10は、ステップS1の処理を再び行う。 に お い て In step S11 shown in FIG. 3, the blade control restricting unit 20 outputs the command current to the lift cylinder control proportional valve 41. Specifically, when the condition that the provisional command current output by the blade operation control unit 15 corresponds to “lift up” is satisfied (YES in step S6), the blade control restriction unit 20 sets The same command current as the command current is output to the proportional valve 41. If NO in step S6, the blade control restriction unit 20 outputs the command current calculated in step S10 to the proportional valve 41. When the processing in step S11 ends, the controller 10 performs the processing in step S1 again.
 以下では、上記の本実施形態に係るブレード制御装置100の利点について、参考例のブレード制御装置と比較して具体的に説明する。 In the following, advantages of the blade control device 100 according to the present embodiment will be specifically described in comparison with the blade control device of the reference example.
 図15は、参考例のブレード制御装置を備えた作業機械が現状面SP1,SP2に沿って坂を上りながら掘削作業を行うときの設計面SD(目標設計面)、現状面SP1,SP2、仮想設計面SV11,SV12,SV13,SV21及び施工面SC1,SC2の一例を示す概略の側面図である。 FIG. 15 shows a design plane SD (target design plane), a current plane SP1, SP2, and a virtual plane when a work machine equipped with the blade control device of the reference example performs an excavation work while climbing a slope along the current planes SP1 and SP2. It is an outline side view showing an example of design side SV11, SV12, SV13, SV21 and construction side SC1, SC2.
 図15に示す参考例では、仮想設計面SV11が設計面SDに対して平行であるので、上り坂の上方にいくほど現状面SP1と仮想設計面SV11との距離が大きくなる。したがって、図15の上図に示すように作業機械が現状面SP1を掘削しながら現状面SP1に沿って坂を上り進むにつれてブレード負荷は顕著に大きくなる。そして、ブレード負荷が所定の第2閾値よりも大きくなると、ブレード動作制御部がブレード104を上昇させるのでブレード負荷が次第に小さくなる。ブレード負荷が所定の第1閾値(前記第2閾値よりも小さい値)よりも小さくなると、仮想設計面設定部が仮想設計面SV11を仮想設計面SV12に更新する。更新される当該仮想設計面SV12は、水平な設計面SDに平行に設定され、かつ、前回設定された仮想設計面SV11よりも上方に設定される。このようにして作業機械が現状面SP1に沿って坂を上り進んで現状面SP1の全体を掘削する1回目の掘削作業が行われる間に、図15の上図に示すように複数の水平な仮想設計面SV11,SV12,SV13が階段状に設定され、1回目の掘削作業による施工面SC1も階段状に形成される。このように階段状に形成された1回目の施工面SC1は、次に行われる2回目の掘削作業における掘削対象の現状面SP2となる(図15の下図を参照)。したがって、図15の下図に示すように、2回目の掘削作業において、作業機械が当該現状面SP2を掘削しながら現状面SP2に沿って坂を上り進むときには、作業機械の車体はそのピッチ方向に大きく揺動する。このことは、作業機械の姿勢を制御する制御性や作業者の乗り心地の低下の原因となる。 In the reference example shown in FIG. 15, since the virtual design surface SV11 is parallel to the design surface SD, the distance between the current surface SP1 and the virtual design surface SV11 increases as going up the ascending slope. Therefore, as shown in the upper diagram of FIG. 15, as the work machine goes up the slope along the current plane SP1 while excavating the current plane SP1, the blade load becomes significantly large. When the blade load becomes larger than the second predetermined threshold, the blade operation controller raises the blade 104, so that the blade load gradually decreases. When the blade load becomes smaller than a predetermined first threshold (a value smaller than the second threshold), the virtual design surface setting unit updates the virtual design surface SV11 to the virtual design surface SV12. The updated virtual design surface SV12 is set in parallel with the horizontal design surface SD, and is set above the previously set virtual design surface SV11. In this manner, during the first excavation operation in which the work machine climbs up the slope along the current plane SP1 and excavates the entire current plane SP1, a plurality of horizontal excavations are performed as shown in the upper diagram of FIG. The virtual design surfaces SV11, SV12, and SV13 are set in steps, and the construction surface SC1 formed by the first excavation work is also formed in steps. The first construction surface SC1 formed in a stepped manner as described above becomes the current surface SP2 to be excavated in the second excavation operation to be performed next (see the lower diagram in FIG. 15). Therefore, as shown in the lower diagram of FIG. 15, in the second excavation operation, when the work machine goes up the slope along the current surface SP2 while excavating the current surface SP2, the body of the work machine moves in the pitch direction. Shaking greatly. This causes a decrease in controllability for controlling the attitude of the work machine and in ride comfort of the worker.
 図16は、参考例のブレード制御装置を備えた作業機械が現状面SPに沿って坂を下りながら掘削作業を行うときの設計面SD、現状面SP、仮想設計面SV11、及び施工面SCの一例を示す概略の側面図である。なお、図15の下図における仮想設計面SV21は、2回目の掘削作業のために設定された仮想設計面であって、目標設計面SDに対して平行な仮想設計面である。 FIG. 16 shows the design surface SD, the current surface SP, the virtual design surface SV11, and the construction surface SC when the work machine equipped with the blade control device of the reference example performs the excavation work while descending the slope along the current surface SP. It is an outline side view showing an example. The virtual design surface SV21 in the lower diagram of FIG. 15 is a virtual design surface set for the second excavation work, and is a virtual design surface parallel to the target design surface SD.
 図16に示す参考例では、仮想設計面SV11が設計面SDに対して平行であるので、下り坂の下方にいくほど現状面SPと仮想設計面SV11との距離が小さくなる。したがって、図16の上図に示すように作業機械が現状面SPを掘削しながら現状面SPに沿って坂を下り進むと、水平な仮想設計面SV11が現状面SPを上回る領域が必然的に生じる。このように仮想設計面SV11が現状面SPを上回る領域においては、図16の真ん中の図及び図16の下図に示すように、当該仮想設計面SV11の上方に揺動が制限されたブレード104は、必然的に現状面SPよりも上方に浮いた状態となり、現状面SPを掘削することができない。しかも、ブレード負荷が第1閾値より小さくなったときに更新される仮想設計面は、前回の仮想設計面SV11よりもさらに上方に設定されるので、ブレード104は現状面SPからさらに上方に浮いた状態になる。このことは、施工効率の低下の原因となる。 In the reference example shown in FIG. 16, since the virtual design surface SV11 is parallel to the design surface SD, the distance between the current surface SP and the virtual design surface SV11 decreases as the position goes down the downhill. Therefore, as shown in the upper diagram of FIG. 16, when the work machine goes down a slope along the current plane SP while excavating the current plane SP, an area where the horizontal virtual design surface SV11 exceeds the current plane SP is inevitably. Occurs. In the region where the virtual design surface SV11 exceeds the current surface SP, as shown in the middle diagram of FIG. 16 and the lower diagram of FIG. Inevitably, the current plane SP is floated above the current plane SP, and the current plane SP cannot be excavated. Moreover, since the virtual design surface updated when the blade load becomes smaller than the first threshold value is set further above the previous virtual design surface SV11, the blade 104 floats further above the current surface SP. State. This causes a decrease in construction efficiency.
 一方、本実施形態に係るブレード制御装置100では、仮想設計面設定部14により設定される仮想設計面SVは、目標設計面SDに対して平行ではなく、車体角度に対して平行であるので、施工面SCのうねりを抑制することができ、しかも、掘削作業時における作業機械の姿勢の制御性、乗り心地及び施工効率の低下を抑制できる。具体的には次の通りである。 On the other hand, in the blade control device 100 according to the present embodiment, since the virtual design surface SV set by the virtual design surface setting unit 14 is not parallel to the target design surface SD but parallel to the vehicle body angle, The undulation of the construction surface SC can be suppressed, and the controllability of the posture of the work machine at the time of excavation work, ride comfort, and deterioration of construction efficiency can be suppressed. Specifically, it is as follows.
 図9は、本実施形態に係るブレード制御装置100を備える前記作業機械が現状面SPに沿って坂を上りながら掘削作業を行うときの設計面SD(目標設計面)、現状面SP、仮想設計面SV、及び施工面SCの一例を示す概略の側面図であり、図10は、前記作業機械が現状面SPに沿って坂を下りながら掘削作業を行うときの一例を示す概略の側面図である。図11は、前記作業機械が現状面SPに沿って坂を上り下りしながら掘削作業を行うときの一例を示す概略の側面図である。 FIG. 9 shows a design plane SD (target design plane), a current plane SP, and a virtual design when the work machine including the blade control device 100 according to the present embodiment performs excavation work while climbing a slope along the current plane SP. FIG. 10 is a schematic side view showing an example of a surface SV and a construction surface SC, and FIG. 10 is a schematic side view showing an example when the work machine performs excavation work while descending a slope along the current surface SP. is there. FIG. 11 is a schematic side view showing an example when the work machine performs excavation work while going up and down a slope along the current plane SP.
 図9に示すように、本実施形態では、上り勾配の現状面SPに沿って坂を上り進む作業機械の車体角度に対して平行に仮想設計面SVが設定されるため、仮想設計面SVが図15の上図に示す参考例のような階段状には設定されず、その結果、施工面SCも階段状に形成されることが抑制される。このため、施工面SCを再度掘削する際に、車体のピッチ方向の揺動が抑制され、作業機械の姿勢の制御性の悪化や乗り心地の悪化を解消する効果が得られる。 As shown in FIG. 9, in the present embodiment, the virtual design surface SV is set in parallel with the vehicle body angle of the work machine traveling up the slope along the current surface SP of the upward slope. The staircase is not set as in the reference example shown in the upper diagram of FIG. 15, and as a result, the construction surface SC is also prevented from being formed in a staircase. For this reason, when excavating the construction surface SC again, the swing of the vehicle body in the pitch direction is suppressed, and the effect of eliminating the deterioration of the controllability of the posture of the work machine and the deterioration of the riding comfort can be obtained.
 また、図10に示すように、下り勾配の現状面SPに沿って坂を下り進む作業機械の車体角度に対して平行に仮想設計面SVを設定することは、下り勾配の現状面SPに沿った姿勢の作業機械の車体角度に対して平行な仮想設計面SV(下り勾配の仮想設計面SV)が再設定されることを可能にする。このことは、仮に仮想設計面SVが現状面SPを上回った状態になったとしても当該状態の解消を可能にし、施工効率の低下を抑制する。 As shown in FIG. 10, setting the virtual design surface SV in parallel to the vehicle body angle of the work machine going down the slope along the current surface SP of the downward slope requires that the virtual design surface SV be set along the current surface SP of the downward slope. The virtual design surface SV parallel to the vehicle body angle of the work machine in the inclined posture (downward slope virtual design surface SV) can be reset. This makes it possible to eliminate the state even if the virtual design plane SV exceeds the current plane SP, thereby suppressing a reduction in construction efficiency.
 さらに、本実施形態に係るブレード制御装置100は、図11に示すように現状面が比較的大きな凹凸を有する場合にも有効である。本実施形態では、仮想設計面SVが車体角度に応じた様々な角度を持ち得る。このことは、図11に示すように、作業機械が現状面SPに沿って坂を上り進んで現状面の全体を掘削する1回目の掘削作業が行われる間に設定される複数の仮想設計面SV1,SV2,SV3,SV4が、参考例のように水平な階段状に形成されることを抑制する。すなわち、1回目の掘削作業において形成される複数の仮想設計面SV1,SV2,SV3,SV4のそれぞれは、上り勾配の現状面SPに沿った姿勢の作業機械の車体角度に平行に設定されるので、前記複数の仮想設計面SVは現状面SPの上り勾配に沿ったものとなりやすい。このことは、仮想設計面SV1,SV2,SV3,SV4に基づいて昇降動作が制限されるブレード4による1回目の掘削作業において形成される施工面SCが階段状に形成されることを抑制し、参考例に比べて凹凸の少ないものとなりやすい。したがって、1回目の施工面SCを現状面として行われる2回目の掘削作業において、作業機械が当該現状面を掘削しながら現状面に沿って坂を上り進むときに、作業機械の車体がそのピッチ方向に揺動するのが抑制される。このことは、作業機械の姿勢を制御する制御性や作業者の乗り心地の低下を抑制する。また、上記のような仮想設計面SV1,SV2,SV3,SV4に基づいて昇降動作が制限されるブレード4によって掘削される施工面はうねりが抑制されたものとなる。 {Furthermore, the blade control device 100 according to the present embodiment is also effective when the current surface has relatively large irregularities as shown in FIG. In the present embodiment, the virtual design surface SV can have various angles according to the vehicle body angle. This means that, as shown in FIG. 11, a plurality of virtual design surfaces set during the first excavation operation in which the work machine climbs up the slope along the current surface SP and excavates the entire current surface. SV1, SV2, SV3, and SV4 are prevented from being formed in a horizontal step shape as in the reference example. That is, each of the plurality of virtual design surfaces SV1, SV2, SV3, SV4 formed in the first excavation work is set in parallel with the vehicle body angle of the work machine in a posture along the uphill current plane SP. The plurality of virtual design planes SV tend to be along the upward slope of the current plane SP. This suppresses that the construction surface SC formed in the first excavation work by the blade 4 whose elevation operation is restricted based on the virtual design surface SV1, SV2, SV3, SV4 is formed in a step shape, As compared with the reference example, it is easy to have less unevenness. Therefore, in the second excavation operation performed using the first construction surface SC as the current surface, when the work machine climbs up a slope along the current surface while excavating the current surface, the body of the work machine moves at the pitch. Swing in the direction is suppressed. This suppresses a decrease in controllability for controlling the posture of the work machine and a decrease in ride comfort of the worker. In addition, undulation is suppressed on the construction surface excavated by the blade 4 whose elevation operation is restricted based on the virtual design surfaces SV1, SV2, SV3, and SV4 as described above.
 [変形例]
 図12は、本実施形態の変形例に係るブレード制御装置100の主要な機能を示すブロック図である。図13は、当該変形例に係るブレード制御装置100に含まれるコントローラ10が実行する制御動作の一例を示すフローチャートである。図14は、前記変形例に係るブレード制御装置100を備えた作業機械が現状面SPに沿って坂を上り下りしながら掘削作業を行うときの設計面SD、現状面SP、仮想設計面SV、及び施工面SCの一例を示す概略の側面図である。
[Modification]
FIG. 12 is a block diagram illustrating main functions of a blade control device 100 according to a modification of the present embodiment. FIG. 13 is a flowchart illustrating an example of a control operation executed by the controller 10 included in the blade control device 100 according to the modification. FIG. 14 shows a design surface SD, a current surface SP, a virtual design surface SV, when a work machine including the blade control device 100 according to the modification performs an excavation operation while going up and down a slope along the current surface SP. And a schematic side view showing an example of a construction surface SC.
 図12に示す変形例に係るブレード制御装置100では、コントローラ10が車体平均角度演算部21をさらに備える点で、図2に示すブレード制御装置100と異なっており、他の構成は図2に示すブレード制御装置100と同様である。また、図13に示すフローチャートでは、ステップS8の処理とステップS9の処理との間にステップS12の処理が追加されている点が、図3に示すフローチャートと異なり、その他の処理は図3に示すフローチャートと同様である。 The blade control device 100 according to the modified example shown in FIG. 12 differs from the blade control device 100 shown in FIG. 2 in that the controller 10 further includes a vehicle body average angle calculation unit 21, and other configurations are shown in FIG. It is the same as the blade control device 100. Further, the flowchart shown in FIG. 13 is different from the flowchart shown in FIG. 3 in that the process of step S12 is added between the process of step S8 and the process of step S9, and other processes are shown in FIG. It is the same as the flowchart.
 前記車体平均角度演算部21は、前記位置情報取得部により取得される前記車体角度の平均値を演算する。当該変形例では、前記仮想設計面設定部14は、前記仮想設計面SVを設定するときの基準となる前記車体角度として前記車体角度の前記平均値を用いるように構成されている。 The vehicle body average angle calculation unit 21 calculates an average value of the vehicle body angle acquired by the position information acquisition unit. In the modified example, the virtual design surface setting unit 14 is configured to use the average value of the vehicle body angle as the vehicle body angle that is a reference when setting the virtual design surface SV.
 この変形例では、図14に示すように、掘削対象の現状面SPが比較的大きな凹凸を有する場合であっても、仮想設計面SV1,SV2,SV3,SV4が車体角度の平均値に対して平行に設定されるので、仮想設計面SV2,SV3,SV4の更新時期が局所的な凹凸などに左右されにくくなる。このことは、仮想設計面SV2,SV3,SV4の更新時の角度の変化量を小さくすることを可能にし、より安定した掘削作業を可能にする。 In this modification, as shown in FIG. 14, even when the current surface SP to be excavated has relatively large irregularities, the virtual design surfaces SV1, SV2, SV3, and SV4 are different from the average value of the vehicle body angle. Since the virtual design surfaces SV2, SV3, and SV4 are set in parallel, the update timing of the virtual design surfaces SV2, SV3, and SV4 is less likely to be affected by local irregularities. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surfaces SV2, SV3, and SV4, thereby enabling more stable excavation work.
 車体角度の前記平均値としては、例えば、仮想設計面SVが更新される時刻と当該時刻から所定時間だけ前の時刻との間に車体角度取得部32により取得された複数の車体角度の移動平均値を採用することができるが、平均値の算出方法は上記の方法に限られない。 The average value of the vehicle body angle is, for example, a moving average of a plurality of vehicle body angles acquired by the vehicle body angle acquisition unit 32 between a time when the virtual design surface SV is updated and a time that is a predetermined time before the time. Although a value can be adopted, the method of calculating the average value is not limited to the above method.
 この変形例では、仮想設計面設定部14は、前記更新条件が満たされた場合、ブレード位置を通り目標設計面SDに垂直な直線上において前記ブレード位置から予め設定された基準距離δだけ下方の基準位置を演算し、当該基準位置を通り、前記車体角度の前記平均値に平行な面を仮想設計面SVとして設定する。すなわち、当該変形例では、連続した時間における車体角度の平均値に対して平行な仮想設計面を設定しており、こうすることで、現状面に凹凸があるような場合でも、仮想設計面SVは車体の平均角度に沿ったもの、すなわち現状面の平均勾配に沿ったものとなる。このことは、仮想設計面の更新時の角度の変化量を小さくすることを可能にし、より安定した掘削を可能にする。 In this modification, when the update condition is satisfied, the virtual design plane setting unit 14 sets a reference distance δ which is lower than the blade position by a preset reference distance δ on a straight line passing through the blade position and perpendicular to the target design plane SD. A reference position is calculated, and a plane passing through the reference position and parallel to the average value of the vehicle body angle is set as a virtual design plane SV. That is, in the modification, the virtual design surface is set in parallel with the average value of the vehicle body angle in the continuous time, so that even if the current surface has irregularities, the virtual design surface SV Is along the average angle of the vehicle body, that is, along the average gradient of the current plane. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surface, thereby enabling more stable excavation.
 具体例を挙げると、図14に示す変形例では、仮想設計面SVは連続した時間における車体角度の平均角度に対して平行に設定されるため、図11に示す前記実施形態に比べて、仮想設計面の更新時の角度の変化量を小さくすることができ、施工効率の悪化を解消する効果があり、かつ、より安定した掘削が行える効果がある。 To give a specific example, in the modification shown in FIG. 14, the virtual design surface SV is set in parallel to the average of the vehicle body angles in continuous time, so that the virtual design surface SV is virtual compared to the embodiment shown in FIG. The amount of change in the angle at the time of updating the design surface can be reduced, which has the effect of eliminating the deterioration of construction efficiency and has the effect of enabling more stable excavation.
 なお、本発明は以上説明した実施の形態に限定されない。本発明は、例えば次のような態様を包含する。 The present invention is not limited to the embodiment described above. The present invention includes the following embodiments, for example.
 本発明に係るブレード制御装置が適用される作業機械は油圧ショベルに限らない。本発明は、例えばホイールローダ、ブルドーザなどのようにブレードを備える他の作業機械に広く適用されることが可能である。 The work machine to which the blade control device according to the present invention is applied is not limited to a hydraulic shovel. The present invention can be widely applied to other work machines including a blade, such as a wheel loader and a bulldozer.
 以上のように、施工面のうねりを効果的に抑制することができるブレード制御装置が提供される。 As described above, a blade control device capable of effectively suppressing undulation on a construction surface is provided.
 前記ブレード制御装置は、走行装置及び当該走行装置に支持される車体を含む機械本体と前記機械本体に対して昇降可能に取り付けられたブレードとを備えた作業機械に設けられ、前記ブレードの昇降動作を制御するための装置である。前記ブレード制御装置は、前記ブレードによる掘削対象の目標形状を特定する目標設計面を設定する目標設計面設定部と、前記作業機械に関する位置情報を取得する位置情報取得部と、前記位置情報取得部により取得された前記位置情報に基づいて前記ブレードの位置であるブレード位置を演算するブレード位置演算部と、前記目標設計面よりも上方に仮想設計面を設定する仮想設計面設定部と、前記ブレードの前記昇降動作を制御するブレード動作制御部と、を備える。前記仮想設計面設定部は、予め設定された更新条件が満たされた場合に、前記更新条件が満たされたときの前記ブレード位置を基準とするとともに前記位置情報に基づいて得られる前記車体の水平面に対する傾斜角度である車体角度と同等の角度に仮想設計面を設定する。前記ブレード動作制御部は、前記ブレードが前記仮想設計面の上方において前記昇降動作をするように前記ブレードの前記昇降動作を制限する。 The blade control device is provided in a work machine including a machine body including a traveling device and a vehicle body supported by the traveling device, and a blade attached to the machine body so as to be able to move up and down. Is a device for controlling the The blade control device, a target design surface setting unit that sets a target design surface that specifies a target shape of an excavation target by the blade, a position information acquisition unit that acquires position information about the work machine, and the position information acquisition unit A blade position calculation unit that calculates a blade position that is the position of the blade based on the position information acquired by the above, a virtual design surface setting unit that sets a virtual design surface above the target design surface, and the blade And a blade operation control unit for controlling the elevating operation. The virtual design surface setting unit is configured such that, when a preset update condition is satisfied, the horizontal plane of the vehicle body obtained based on the position information while referring to the blade position when the update condition is satisfied. The virtual design surface is set at an angle equivalent to the vehicle body angle, which is an inclination angle with respect to. The blade operation control unit limits the lifting operation of the blade so that the blade performs the lifting operation above the virtual design surface.
 このブレード制御装置では、仮想設計面は、前記目標設計面に対して平行に設定されるのではなく、前記車体角度に対して平行に設定される。したがって、例えば水平な目標設計面に対して現状面(地面)が上り勾配又は下り勾配を有し、作業機械が前記現状面に沿って坂を上りながら又は前記現状面に沿って坂を下りながら掘削作業を行う場合において、前記仮想設計面は、上り勾配や下り勾配に沿ったものとなりやすい。このことは、現状面と仮想設計面との距離の変動を抑制し、これにより、ブレード負荷の変動も抑制する。ブレード負荷の変動が抑制されると、ブレードの昇降動作が抑制されるので、施工面のうねりが抑制される。 In this blade control device, the virtual design surface is not set parallel to the target design surface, but is set parallel to the vehicle body angle. Thus, for example, the current plane (ground) has an upward or downward slope with respect to the horizontal target design plane, and the work machine is traveling uphill or downhill along the current plane. When performing an excavation work, the virtual design surface is likely to be along an upward slope or a downward slope. This suppresses fluctuations in the distance between the current plane and the virtual design plane, thereby suppressing fluctuations in the blade load. When the fluctuation of the blade load is suppressed, the raising / lowering operation of the blade is suppressed, so that the undulation of the construction surface is suppressed.
 前記ブレード制御装置は、前記掘削対象の地面である現状面のうち前記ブレード及び前記走行装置の少なくとも一方に関連づけられた部位の推定位置を前記位置情報取得部により取得される前記位置情報に基づいて演算する推定位置演算部をさらに備え、前記更新条件は、前記推定位置が前記仮想設計面よりも下方であるという条件を含んでいることが好ましい。 The blade control device, based on the position information acquired by the position information acquisition unit the estimated position of the site associated with at least one of the blade and the traveling device in the current surface that is the ground of the excavation target It is preferable that the apparatus further includes an estimated position calculating unit for calculating, and the update condition includes a condition that the estimated position is below the virtual design surface.
 掘削対象の現状面(地面)が比較的大きな凹凸を有する場合には、作業機械の車体角度も比較的大きく変動し、当該車体角度に平行に設定される仮想設計面も比較的大きな角度範囲で設定されやすくなる。このような場合、掘削作業中に仮想設計面が、一時的に、現状面のうちブレードに対応する部位や現状面のうち走行装置に対応する部位よりも上方に位置することがあり、仮想設計面よりも上方に制限されるブレードが現状面よりも上方に浮いた状態になることがある。かかる状態が長く続くと、掘削作業の効率が低下する。ここで、前記ブレード及び前記走行装置は、作業機械の下部に配置されているので、現状面の高さ位置に近い高さに位置している。したがって、前記ブレード及び前記走行装置の少なくとも一方は、仮想設計面と現状面との位置関係を判定するときの指標になり得る。本態様において、前記推定位置演算部により演算される前記推定位置は、前記現状面のうち前記ブレード及び前記走行装置の少なくとも一方に関連づけられた部位を前記位置情報に基づいて推定位置演算部が演算して推定したものである。したがって、当該推定位置が前記仮想設計面よりも下方であるという条件が満たされたときには、ブレードが現状面よりも上方に浮いた状態になる可能性が高まる。本態様では、当該条件を含む更新条件が満たされたときに、仮想設計面がブレード位置を基準とするとともに車体角度と同等の角度に更新されるので、ブレードが現状面よりも上方に浮いた状態が解消される。 If the current plane (ground) to be excavated has relatively large irregularities, the body angle of the work machine also fluctuates relatively largely, and the virtual design plane set parallel to the body angle also has a relatively large angle range. It becomes easy to be set. In such a case, during the excavation work, the virtual design surface may be temporarily located higher than the portion corresponding to the blade in the current surface or the portion corresponding to the traveling device in the current surface. The blade restricted above the plane may float above the current plane. If such a state continues for a long time, the efficiency of the excavation operation decreases. Here, since the blade and the traveling device are arranged below the work machine, they are located at a height close to the height position of the current plane. Therefore, at least one of the blade and the traveling device can be an index when determining the positional relationship between the virtual design surface and the current surface. In this aspect, the estimated position calculated by the estimated position calculation unit is calculated by the estimated position calculation unit based on the position information on a portion of the current surface associated with at least one of the blade and the traveling device. It is estimated. Therefore, when the condition that the estimated position is below the virtual design plane is satisfied, there is a high possibility that the blade will be in a state of floating above the current plane. In this aspect, when the update condition including the condition is satisfied, the virtual design surface is updated to the same angle as the vehicle body angle based on the blade position, so that the blade floats above the current surface. The condition is resolved.
 前記ブレード制御装置において、前記更新条件は、前記仮想設計面が設定されていないことに対応する条件を含んでいることが好ましい。例えばブレードの自動制御の開始時において仮想設計面が設定されていない場合には、当該条件を含む更新条件が満たされると、車体角度に平行な仮想設計面が設定される。これにより、ブレードの自動制御の初期段階から施工効率のよい掘削作業が可能になる。 In the blade controller, it is preferable that the update condition includes a condition corresponding to the fact that the virtual design surface has not been set. For example, if a virtual design surface is not set at the start of automatic blade control, a virtual design surface parallel to the vehicle body angle is set when an update condition including the condition is satisfied. As a result, excavation work with high construction efficiency can be performed from the initial stage of automatic blade control.
 前記ブレード制御装置は、前記ブレードにかかる負荷であるブレード負荷を取得するブレード負荷取得部と、前記ブレード負荷の閾値である負荷閾値を記憶する記憶部と、をさらに備え、前記更新条件は、前記ブレード負荷が前記負荷閾値以上の値から前記負荷閾値よりも小さい値になるという条件を含んでいることが好ましい。 The blade control device further includes a blade load acquisition unit that acquires a blade load that is a load applied to the blade, and a storage unit that stores a load threshold that is a threshold value of the blade load. It is preferable to include a condition that the blade load changes from a value equal to or greater than the load threshold to a value smaller than the load threshold.
 ブレード負荷が前記負荷閾値以上の値から前記負荷閾値よりも小さい値になるときは、ブレードにかかる負荷を低減させる動作が行われているときに対応することが多い。このようにブレード負荷の低減時の状態は、ブレード負荷の増加時の状態に比べて、掘削作業の安定性という観点では望ましい状態である。したがって、当該条件を含む更新条件が満たされたときに仮想設計面が設定され、その仮想設計面に基づいてブレードの昇降動作が制限される掘削作業が行われることにより、掘削作業の安定性が向上する。 と き When the blade load changes from a value equal to or more than the load threshold to a value smaller than the load threshold, it often corresponds to a case where an operation for reducing the load applied to the blade is being performed. Thus, the state when the blade load is reduced is more desirable than the state when the blade load is increased, from the viewpoint of stability of excavation work. Therefore, the virtual design surface is set when the update condition including the condition is satisfied, and the excavation work in which the raising / lowering operation of the blade is restricted based on the virtual design surface is performed, so that the stability of the excavation work is reduced. improves.
 前記ブレード制御装置は、前記位置情報取得部により取得される前記車体角度の平均値を演算する車体平均角度演算部をさらに備え、前記仮想設計面設定部は、前記仮想設計面を設定するときの基準となる前記車体角度として前記車体角度の前記平均値を用いるように構成されているのが好ましい。この態様では、掘削対象の現状面が比較的大きな凹凸を有する場合であっても、仮想設計面が車体角度の平均値に対して平行に設定されるので、仮想設計面の更新時期が局所的な凹凸などに左右されにくくなる。このことは、仮想設計面の更新時の角度の変化量を小さくすることを可能にし、より安定した掘削作業を可能にする。
 
The blade control device further includes a vehicle body average angle calculation unit that calculates an average value of the vehicle body angle acquired by the position information acquisition unit, and the virtual design surface setting unit sets the virtual design surface. It is preferable that the average value of the vehicle body angles is used as the reference vehicle body angle. In this aspect, even when the current surface to be excavated has relatively large irregularities, the virtual design surface is set parallel to the average value of the vehicle body angle, so that the virtual design surface is locally updated. Less likely to be affected by irregularities. This makes it possible to reduce the amount of change in the angle at the time of updating the virtual design surface, thereby enabling more stable excavation work.

Claims (5)

  1.  走行装置及び当該走行装置に支持される車体を含む機械本体と前記機械本体に対して昇降可能に取り付けられたブレードとを備えた作業機械に設けられ、前記ブレードの昇降動作を制御するためのブレード制御装置であって、
     前記ブレードによる掘削対象の目標形状を特定する目標設計面を設定する目標設計面設定部と、
     前記作業機械に関する位置情報を取得する位置情報取得部と、
     前記位置情報取得部により取得された前記位置情報に基づいて前記ブレードの位置であるブレード位置を演算するブレード位置演算部と、
     前記目標設計面よりも上方に仮想設計面を設定する仮想設計面設定部と、
     前記ブレードの前記昇降動作を制御するブレード動作制御部と、を備え、
     前記仮想設計面設定部は、予め設定された更新条件が満たされた場合に、前記更新条件が満たされたときの前記ブレード位置を基準とするとともに前記位置情報に基づいて得られる前記車体の水平面に対する傾斜角度である車体角度と同等の角度に前記仮想設計面を設定し、
     前記ブレード動作制御部は、前記ブレードが前記仮想設計面の上方において前記昇降動作をするように前記ブレードの前記昇降動作を制限する、ブレード制御装置。
    A blade provided on a work machine including a traveling device and a machine body including a vehicle body supported by the traveling device, and a blade that is attached to the machine body so as to be able to move up and down, and controls a lifting operation of the blade. A control device,
    A target design surface setting unit that sets a target design surface that specifies a target shape of the excavation target by the blade,
    A position information acquisition unit that acquires position information about the work machine,
    A blade position calculation unit that calculates a blade position that is a position of the blade based on the position information acquired by the position information acquisition unit,
    A virtual design surface setting unit that sets a virtual design surface above the target design surface,
    A blade operation control unit that controls the elevating operation of the blade,
    The virtual design surface setting unit is configured such that, when a preset update condition is satisfied, the horizontal plane of the vehicle body obtained based on the position information while referring to the blade position when the update condition is satisfied. The virtual design surface is set to an angle equivalent to the vehicle body angle that is an inclination angle with respect to,
    The blade control device, wherein the blade operation control unit limits the lifting operation of the blade so that the blade performs the lifting operation above the virtual design surface.
  2.  前記掘削対象の地面である現状面のうち前記ブレード及び前記走行装置の少なくとも一方に関連づけられた部位の推定位置を前記位置情報取得部により取得される前記位置情報に基づいて演算する推定位置演算部をさらに備え、
     前記更新条件は、前記推定位置が前記仮想設計面よりも下方であるという条件を含む、請求項1に記載のブレード制御装置。
    An estimated position calculating unit that calculates an estimated position of a portion associated with at least one of the blade and the traveling device on the current surface that is the ground to be excavated based on the position information acquired by the position information acquiring unit. Further comprising
    The blade control device according to claim 1, wherein the update condition includes a condition that the estimated position is below the virtual design surface.
  3.  前記更新条件は、前記仮想設計面が設定されていないことに対応する条件を含む、請求項1又は2に記載のブレード制御装置。 3. The blade control device according to claim 1, wherein the update condition includes a condition corresponding to the fact that the virtual design surface is not set. 4.
  4.  前記ブレードにかかる負荷であるブレード負荷を取得するブレード負荷取得部と、
     前記ブレード負荷の閾値である負荷閾値を記憶する記憶部と、をさらに備え、
     前記更新条件は、前記ブレード負荷が前記負荷閾値以上の値から前記負荷閾値よりも小さい値になるという条件を含む、請求項1~3の何れか1項に記載のブレード制御装置。
    A blade load acquisition unit that acquires a blade load that is a load applied to the blade,
    A storage unit that stores a load threshold value that is a threshold value of the blade load,
    4. The blade control device according to claim 1, wherein the update condition includes a condition that the blade load changes from a value equal to or larger than the load threshold to a value smaller than the load threshold.
  5.  前記位置情報取得部により取得される前記車体角度の平均値を演算する車体平均角度演算部をさらに備え、
     前記仮想設計面設定部は、前記仮想設計面を設定するときの基準となる前記車体角度として前記車体角度の前記平均値を用いる、請求項1~4の何れか1項に記載のブレード制御装置。
    The vehicle further includes a vehicle body average angle calculation unit that calculates an average value of the vehicle body angle acquired by the position information acquisition unit,
    The blade control device according to any one of claims 1 to 4, wherein the virtual design surface setting unit uses the average value of the vehicle body angle as the vehicle body angle serving as a reference when setting the virtual design surface. .
PCT/JP2019/031271 2018-08-31 2019-08-07 Blade control device for work machine WO2020045020A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/271,109 US20210254313A1 (en) 2018-08-31 2019-08-07 Blade control device for work machine
EP19855877.7A EP3825474A1 (en) 2018-08-31 2019-08-07 Blade control device for work machine
CN201980055079.9A CN112567100A (en) 2018-08-31 2019-08-07 Scraper control device for construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162284A JP2020033790A (en) 2018-08-31 2018-08-31 Blade control device of work machine
JP2018-162284 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045020A1 true WO2020045020A1 (en) 2020-03-05

Family

ID=69644969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031271 WO2020045020A1 (en) 2018-08-31 2019-08-07 Blade control device for work machine

Country Status (5)

Country Link
US (1) US20210254313A1 (en)
EP (1) EP3825474A1 (en)
JP (1) JP2020033790A (en)
CN (1) CN112567100A (en)
WO (1) WO2020045020A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033788A (en) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 Blade control device of work machine
JP7379281B2 (en) * 2020-06-19 2023-11-14 株式会社小松製作所 Systems, methods, and work machines for controlling work machines
JP2022184018A (en) * 2021-05-31 2022-12-13 株式会社小松製作所 Work machine and method of controlling the same
CN116109282B (en) * 2023-04-11 2023-09-08 中交(天津)生态环保设计研究院有限公司 BIM technology-based environment-friendly dredging whole-process digital management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051379A1 (en) * 2011-10-06 2013-04-11 株式会社小松製作所 Blade control system, construction machine, and blade control method
JP5285805B1 (en) 2012-10-26 2013-09-11 株式会社小松製作所 Blade control device, work machine, and blade control method
JP2017521580A (en) * 2014-06-13 2017-08-03 キャタピラー インコーポレイテッドCaterpillar Incorporated Operator support algorithms for earthworking machines

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548691B2 (en) * 2011-10-06 2013-10-01 Komatsu Ltd. Blade control system, construction machine and blade control method
US8924098B2 (en) * 2012-03-27 2014-12-30 Topcon Positioning Systems, Inc. Automatic control of a joystick for dozer blade control
US9328479B1 (en) * 2015-02-05 2016-05-03 Deere & Company Grade control system and method for a work vehicle
JP6815834B2 (en) * 2016-11-01 2021-01-20 株式会社小松製作所 Work vehicle control system, control method, and work vehicle
US10267018B2 (en) * 2017-01-27 2019-04-23 Deere & Company Work vehicle load control system and method
JP7418948B2 (en) * 2018-03-28 2024-01-22 株式会社小松製作所 Work vehicle control system, method, and work vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051379A1 (en) * 2011-10-06 2013-04-11 株式会社小松製作所 Blade control system, construction machine, and blade control method
JP5285805B1 (en) 2012-10-26 2013-09-11 株式会社小松製作所 Blade control device, work machine, and blade control method
JP2017521580A (en) * 2014-06-13 2017-08-03 キャタピラー インコーポレイテッドCaterpillar Incorporated Operator support algorithms for earthworking machines

Also Published As

Publication number Publication date
EP3825474A1 (en) 2021-05-26
US20210254313A1 (en) 2021-08-19
CN112567100A (en) 2021-03-26
JP2020033790A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2020045020A1 (en) Blade control device for work machine
KR102025124B1 (en) Job support system of working machine
KR101737389B1 (en) Work machine control device, work machine, and work machine control method
CN106068354B (en) Control device for work machine, and control method for work machine
CN107306500B (en) Control device for work machine, and control method for work machine
US10822771B2 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
JP6867398B2 (en) Work machine control system and work machine control method
KR101886798B1 (en) Work equipment control device and work machine
US10501911B2 (en) Work equipment control device and work machine
JP6894847B2 (en) Work machine and control method of work machine
JP7402026B2 (en) Work machine control system, work machine, work machine control method
JP6618498B2 (en) Work machine
JP2018021427A (en) Work vehicle control system, control method, and work vehicle
KR102649042B1 (en) work vehicle
WO2020045018A1 (en) Blade control device for work machinery
US11136742B2 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
WO2020045017A1 (en) Blade control device for work machinery
JP7360568B2 (en) working machine
KR102506386B1 (en) Control method for construction machinery
JP6901406B2 (en) Work machine and control method of work machine
WO2020202651A1 (en) Wheel loader
JP6876623B2 (en) Work machine and control method of work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019855877

Country of ref document: EP

Effective date: 20210217

NENP Non-entry into the national phase

Ref country code: DE