WO2020044926A1 - Intermediate connecting structure for power cable - Google Patents

Intermediate connecting structure for power cable Download PDF

Info

Publication number
WO2020044926A1
WO2020044926A1 PCT/JP2019/030187 JP2019030187W WO2020044926A1 WO 2020044926 A1 WO2020044926 A1 WO 2020044926A1 JP 2019030187 W JP2019030187 W JP 2019030187W WO 2020044926 A1 WO2020044926 A1 WO 2020044926A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
rubber unit
outer diameter
power cable
semiconductive
Prior art date
Application number
PCT/JP2019/030187
Other languages
French (fr)
Japanese (ja)
Inventor
中西 辰雄
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020044926A1 publication Critical patent/WO2020044926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections
    • H01R4/72Insulation of connections using a heat shrinking insulating sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/14Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions

Definitions

  • the present disclosure relates to an intermediate connection structure of a power cable.
  • This application claims priority based on Japanese Patent Application No. 2018-162191 filed on Aug. 30, 2018, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a power cable connection unit that connects a pair of power cables each having a conductor and an insulating layer in a straight line while aligning their axes.
  • the power cable connection unit includes a conductor connection portion, an insulating layer connection portion, and a cover member.
  • the conductor connecting portion connects the exposed pair of conductors in the power cable.
  • the insulating layer connection part surrounds the outer periphery of the conductor connection part and both ends extend along the axial direction, respectively, and connects the pair of insulation layers of the power cable across the conductor connection part.
  • the cover member covers the outer periphery of the insulating layer connection portion and both ends extend in the axial direction, respectively, and integrally covers the outer periphery of the pair of insulating layers in the power cable across the insulating layer connection portion.
  • the cover member includes a semiconductive covering layer made of a semiconductive rubber material and an insulating covering layer made of an insulating rubber material.
  • the intermediate connection structure of the power cable A set of power cables having a cable conductor, a cable insulator, and a cable outer semiconductive layer having a stepwise exposed tip; A conductor connecting portion for connecting the exposed cable conductors, With a cylindrical rubber unit,
  • Each of the cable insulators includes a first inclined portion whose outer diameter decreases toward the cable conductor, The rubber unit, Main insulation, An inner semiconductive portion provided on the inner peripheral side and the axial center portion of the main insulating portion, and arranged to cover the outer periphery of the conductor connecting portion, An external semiconductive portion provided on each end side of the main insulating portion and connected to each of the cable external semiconductive layers, It is arranged so as to fit into a depression formed by the conductor connection portion and each of the first inclined portions.
  • FIG. 1 is a cross-sectional view schematically illustrating a power cable intermediate connection structure according to the first embodiment.
  • FIG. 2 is a cross-sectional view of a rubber unit provided in the power cable intermediate connection structure according to the first embodiment, showing a state before a set of power cables is attached to a set connected by a conductor connection portion.
  • FIG. 3 is a cross-sectional view schematically illustrating an intermediate connection structure of a power cable according to the second embodiment.
  • FIG. 4 is a cross-sectional view of a rubber unit provided in the power cable intermediate connection structure according to the second embodiment, showing a state before a set of power cables is attached to a set connected by a conductor connection portion.
  • FIG. 5 is a cross-sectional view schematically illustrating a power cable intermediate connection structure according to the third embodiment.
  • FIG. 6 is a cross-sectional view schematically illustrating an intermediate connection structure of a power cable according to the fourth embodiment.
  • the cover member may be displaced from a predetermined position by an axial force which is an axial force applied to the power cable due to thermal expansion and contraction of the power cable.
  • the cover member is referred to as a rubber unit.
  • a concave portion is provided in an insulating layer connecting portion, and a rubber unit is fitted into the concave portion, thereby suppressing a deviation of the rubber unit from a predetermined position.
  • Patent Document 1 there is a possibility that the displacement of the rubber unit from a predetermined position cannot be suppressed depending on the magnitude of the axial force of the power cable.
  • the present disclosure provides a power cable intermediate connection structure that can suppress a rubber unit disposed so as to cover an outer periphery of a conductor connection portion connecting cable conductors of a set of power cables from a predetermined position. It is one of the purposes.
  • the power cable intermediate connection structure according to the present disclosure can prevent a rubber unit arranged to cover an outer periphery of a conductor connection portion that connects cable conductors of a set of power cables from being shifted from a predetermined position.
  • the intermediate connection structure of the power cable includes: A set of power cables having a cable conductor, a cable insulator, and a cable outer semiconductive layer having a stepwise exposed tip; A conductor connecting portion for connecting the exposed cable conductors, With a cylindrical rubber unit,
  • Each of the cable insulators includes a first inclined portion whose outer diameter decreases toward the cable conductor, The rubber unit, Main insulation, An inner semiconductive portion provided on the inner peripheral side and the axial center portion of the main insulating portion, and arranged to cover the outer periphery of the conductor connecting portion, An external semiconductive portion provided on each end side of the main insulating portion and connected to each of the cable external semiconductive layers, It is arranged so as to fit into a depression formed by the conductor connection portion and each of the first inclined portions.
  • the rubber unit is disposed so as to fit into the recess formed by the conductor connection portion and the first inclined portion of each cable insulator. Since the recess into which the rubber unit fits is formed by the cable insulator, the recess can be formed relatively deep and over a relatively long area along the axial direction of the power cable. Therefore, the rubber unit is stably held in the recess, and in the intermediate connection structure of the power cable, even if the axial force of the power cable is large, it is possible to suppress the deviation of the rubber unit from a predetermined position.
  • the rubber unit is expanded in a state in which the diameter of the rubber unit is 1.3 to 1.4 times. It is arranged on an insulator. Therefore, a surface pressure is applied on the cable insulator by the contraction force of the rubber unit. This surface pressure is applied substantially uniformly in the longitudinal direction of the power cable. For example, when the rubber unit is made of silicone rubber, a surface pressure of 0.1 MPa or more is applied. When the rubber unit is made of ethylene propylene rubber, a surface pressure of 0.3 MPa or more is applied.
  • the minimum outer diameter of the cable insulator can be reduced by about 5% from the maximum outer diameter of the cable insulator.
  • the minimum outer diameter of the cable insulator is the outer diameter of the deepest part of the depression.
  • the maximum outer diameter of the cable insulator is the outer diameter of a portion having no depression.
  • the cable insulator of the power cable may have uneven thickness in the circumferential direction due to eccentricity or uneven thickness due to the molding method. For this reason, the cable insulator may have an allowance in the thickness, and may have an outer diameter larger than the design insulation outer diameter which is the minimum specified outer diameter. An outer diameter larger than the designed insulation outer diameter is called a finished insulation outer diameter. Also, similarly to the cable insulator, the cable outer semiconductive layer formed on the outer periphery of the cable insulator may be eccentric or uneven in thickness, and may have a nonuniform thickness in the circumferential direction. For this reason, the cable outer semiconductive layer may have a margin in the thickness, and may have an outer diameter larger than the designed outer diameter which is the minimum specified outer diameter. An outer diameter larger than the designed outer diameter is called a finished outer diameter.
  • the inner diameter of the rubber unit may be referred to as the inner diameter of the rubber unit.
  • the finished insulation outer diameter varies, it is necessary to prepare rubber units having various inner diameters corresponding to each finished insulation outer diameter.
  • the rubber unit has an inner diameter of the rubber unit corresponding to the design outer diameter, electrically stable connection can be performed.
  • the rubber unit has a rubber unit inner diameter corresponding to the design insulation outer diameter, even if the finished insulation outer diameter of the cable insulator varies, a single rubber unit corresponding to the design insulation outer diameter Can be prepared, and the variety of rubber units can be reduced.
  • a rubber unit with a rubber unit inner diameter corresponding to the design insulation outer diameter when shaving the outer semiconductive layer of the cable with the finished outer diameter, cut the cable insulator and remove the outside of the cable insulator. It is conceivable to make the diameter uniform in the axial direction at the design insulation outer diameter.
  • the cable insulator should be exposed more gradually when exposing the end of the power cable compared to the finished outer diameter.
  • This is a difficult processing method for the cable external semiconductive layer provided on the outer periphery of the cable. This is because the method of treating the cable outer semiconductive layer can be simplified as the thickness of the cable insulator is larger, that is, as the outer diameter of the cable insulator is larger.
  • the outer diameter of the small diameter side of the first inclined portion is set as the design insulating outer diameter, and the outer diameter of the large diameter side of the first inclined portion. Can be the finished insulation outer diameter. Therefore, in the power cable intermediate connection structure, a rubber unit having a rubber unit inner diameter corresponding to the designed insulation outer diameter can be used. In addition, in the power cable intermediate connection structure, the method of treating the cable outer semiconductive layer can be simplified to a method corresponding to the finished insulation outer diameter. Further, in the intermediate connection structure of the power cable, since the outer diameter on the large diameter side of the first inclined portion is the finished insulation outer diameter, the thickness of the cable insulator is thicker than in the case of the design insulation outer diameter. Therefore, the electric field immediately below the cable external semiconductive layer can be reduced.
  • Each of the exposed cable outer semiconductive layers may include a second inclined portion whose outer diameter decreases toward the distal end so as to be continuous with the first inclined portion.
  • the cable outer semiconductive layer can be processed simultaneously with the shaving process for forming the first inclined portion on the cable insulator. Therefore, in the above-mentioned intermediate connection structure of the power cable, the method of processing the semiconductive layer outside the cable can be further simplified.
  • each of the bases may include a projection that projects radially inward from a region on the outer peripheral side at both ends in the axial direction of the base and that does not overlap the conductor connection part in the radial direction.
  • the electric field tends to concentrate at both axial ends of the internal semiconductive portion. Therefore, the electric field concentration can be reduced by providing the projecting portions projecting radially inward at both axial ends of the internal semiconductive portion.
  • the rubber unit may be composed of ethylene propylene rubber or silicone rubber.
  • Ethylene propylene rubber is a relatively hard rubber. Therefore, when the rubber unit is made of ethylene propylene rubber, the rubber unit can be slightly moved even after the rubber unit is mounted in the recess. Therefore, it is easy to position the rubber unit at a predetermined position.
  • silicone rubber is a relatively soft rubber. Therefore, when the rubber unit is made of silicone rubber, the rubber unit can be easily fitted into the recess.
  • FIG. 1 is a vertical cross section of the power cable intermediate connection structure 1A cut along a plane parallel to the longitudinal direction.
  • the inclination angle of the first inclined portion 220 provided in the cable insulator 22 of the power cable 2 is exaggerated for easy understanding.
  • FIG. 2 is a longitudinal sectional view of the rubber unit 5A cut along a plane parallel to the longitudinal direction. The rubber unit 5A shown in FIG. 2 is in a state before the set of power cables 2 shown in FIG.
  • the power cable intermediate connection structure 1A connects the cable conductors 21 of a set of power cables 2 to construct a power cable line.
  • This power cable intermediate connection structure 1A includes a power cable 2, a conductor connection portion 3, and a rubber unit 5A.
  • the power cable 2 has a distal end in which the cable conductor 21, the cable insulator 22, and the cable outer semiconductive layer 23 are stepwise exposed.
  • the conductor connection part 3 connects the exposed cable conductors 21 to each other.
  • the rubber unit 5 ⁇ / b> A is arranged so as to cover the outer periphery of the distal end of both power cables 2 including the conductor connection 3.
  • the exposed cable insulator 22 has the first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 side, and the rubber unit 5A Is one of the features of the present invention in that it is disposed so as to fit into a recess formed by the conductor connection portion 3 and each first inclined portion 220.
  • the configuration of the power cable intermediate connection structure 1A will be described in detail.
  • the power cable 2 includes, in order from the center, a cable conductor 21, a cable internal semiconductive layer (not shown), a cable insulator 22, a cable external semiconductive layer 23, a cable shielding layer 24, and a sheath 25.
  • the power cable 2 of this example is a crosslinked polyethylene insulated vinyl sheath cable called a CV cable.
  • the constituent material of the cable conductor 21 is a metal having excellent conductivity, for example, copper, aluminum, or an alloy thereof.
  • a constituent material of the cable insulator 22 includes a resin having excellent electric insulation. In this example, it is a crosslinked polyethylene.
  • the constituent material of the cable external semiconductive layer 23 includes a resin having semiconductivity.
  • the cable shielding layer 24 may be formed of a metal having excellent conductivity, for example, a tape or a braided wire made of copper, aluminum, an alloy thereof, or the like.
  • a constituent material of the sheath 25 is a resin such as polyethylene.
  • the basic configuration of the power cable 2 can refer to a known configuration.
  • the power cable 2 can be a high-voltage cable having a transmission voltage of 66 kV or more, an ultra-high-voltage cable of 400 kV or more, or even 500 kV or more.
  • Each power cable 2 has a distal end in which a cable conductor 21, a cable insulator 22, and a cable outer semiconductive layer 23 are gradually exposed from the distal end.
  • the exposed cable insulator 22 has a first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 side.
  • the first inclined portion 220 is formed by, for example, cutting.
  • a recess is formed between the conductor connecting portion 3 described below and each of the first inclined portions 220.
  • a sleeve cover 4 is provided on the outer periphery of the conductor connection portion 3. Therefore, the depression is formed by the conductor connection portion 3 and each first inclined portion 220 with the sleeve cover 4 interposed therebetween.
  • the cable insulator 22 may be uneven in thickness in the circumferential direction due to eccentricity or uneven thickness due to the molding method. For this reason, the cable insulator 22 has a thickness with a margin, and has a finished insulating outer diameter larger than the designed insulating outer diameter which is the minimum specified outer diameter.
  • the outer diameter on the smaller diameter side is the designed insulation outer diameter
  • the outer diameter on the larger diameter side is the finished insulation outer diameter.
  • the first inclined portion 220 is formed by performing a cutting process or the like on the cable insulator 22 having the finished insulating outer diameter so that the exposed cable conductor 21 has the designed insulating outer diameter.
  • the method of processing the cable outer semiconductive layer 23 provided on the outer periphery of the cable insulator 22 can be simplified.
  • the method of processing the cable outer semiconductive layer 23 is determined according to the outer diameter of the cable insulator 22. For example, when the outer diameter of the cable insulator 22 is 122 mm to 124 mm, the A method requiring a certain level of skill has been established. When the outer diameter of the cable insulator 22 is 126 mm to 128 mm, the B method that can be performed with a simple skill has been established.
  • the B method is a simple processing method in that the material is uniformly heated and pressed when the cable outer semiconductive layer 23 is reformed as compared with the A method.
  • the outer diameter on the smaller diameter side of the first inclined portion 220 is the design insulation outer diameter
  • the outer diameter on the larger diameter side is the finished insulation outer diameter, so that the outer diameter of the cable insulator 22 is the design insulation outer diameter.
  • the processing method of the cable outer semiconductive layer 23 can be simplified as compared with a uniform case. If the finished insulating outer diameter is larger than the designed insulating outer diameter by 3% or more, there is a tendency that the processing method of the cable outer semiconductive layer 23 can be simplified.
  • the design insulation outer diameter is 114 mm or more and 116 mm or less, and 120 mm or more and 122 mm or less when it is larger.
  • the finished insulating outer diameter may be 122 mm or more and 124 mm or less, and may be 126 mm or more and 128 mm or less when larger.
  • the cable insulator 22 has a design insulation outer diameter on the small diameter side of the first inclined portion 220, and extends along the axial direction of the power cable 2 continuously to the first inclined portion 220.
  • a flat portion 221 is provided.
  • the rubber unit 5A described later is arranged such that both ends of the internal semiconductive portion 52 do not overlap the first inclined portion 220 in the radial direction. Although details will be described later, the electric field at both ends of the internal semiconductive portion 52 can be reduced by preventing the both ends of the internal semiconductive portion 52 from overlapping the first inclined portion 220 in the radial direction.
  • the rubber unit 5A is arranged such that both ends of the internal semiconductive portion 52 are located radially outward of the small-diameter side flat portion 221.
  • the cable insulator 22 may not have the narrow flat portion 221 and may be continuously inclined from the exposed end on the cable conductor 21 side to the end on the cable external semiconductive layer 23 side.
  • a concave portion 223 is formed in the small-diameter side flat portion 221 in this example along the circumferential direction of the cable insulator 22.
  • the concave portion 223 may be provided continuously over the entire circumference of the cable insulator 22 or may be provided intermittently at an appropriate position.
  • a flat portion having a smaller diameter is provided at the end of the small-diameter side flat portion 221 in this example.
  • This flat portion has an outer diameter larger than the outer diameter of the bottom surface of the concave portion 223 and smaller than the outer diameter of the smaller-diameter flat portion 221. With this flat portion, the outer peripheral surface of the small-diameter side flat portion 221 and the outer peripheral surface of the sleeve cover 4 are flush with each other when the hook portion 42 is fitted in the concave portion 223.
  • the first inclined portion 220 may have an inclination angle of 3 ° or more and 10 ° or less with respect to the axial direction of the power cable 2 depending on the size and voltage of the power cable 2.
  • the inclination angle of the first inclined portion 220 is 3 ° or more, the diameter difference between the outer diameter on the small diameter side and the outer diameter on the large diameter side of the first inclined portion 220 can be increased.
  • the depth of the depression formed by the conductor connection portion 3 and each of the first inclined portions 220 can be made relatively large. Since the depth of the depression is deep, the rubber unit 5A can be easily fitted in the depression stably. Therefore, the retaining force against the axial force of the power cable 2 can be easily improved.
  • the outer diameter on the large diameter side can be made larger than the outer diameter on the small diameter side of the first inclined portion 220. Therefore, the processing method of the cable outer semiconductive layer 23 can be easily simplified.
  • the inclination angle of the first inclined portion 220 is equal to or less than 10 °, even after the rubber unit 5A is mounted in the recess formed by the conductor connection portion 3 and each first inclined portion 220, The unit 5A can be slightly moved. Therefore, it is easy to position the rubber unit 5A at a predetermined position. Further, at the time of power transmission of the power cable 2, when the cable insulator 22 thermally expands or contracts due to energization, the rubber unit 5A easily follows.
  • the inclination angle of the first inclined portion 220 is more preferably 4 ° to 9 °, 5 ° to 8 °, particularly 6 ° to 8 °.
  • the length of the first inclined portion 220 along the axial direction of the power cable 2 is 200 mm or more and 400 mm or less, depending on the size and voltage of the power cable 2.
  • a depression can be formed in a relatively long region along the axial direction of the power cable 2.
  • the diameter difference between the outer diameter on the small diameter side and the outer diameter on the large diameter side of the first inclined portion 220 can be increased.
  • the depth of the depression formed by the conductor connection portion 3 and each of the first inclined portions 220 can be made relatively large.
  • the rubber unit 5A can be easily stably fitted into the depression. Therefore, the retaining force against the axial force of the power cable 2 can be easily improved. Further, the outer diameter on the large diameter side can be made larger than the outer diameter on the small diameter side of the first inclined portion 220. Therefore, the processing method of the cable outer semiconductive layer 23 can be easily simplified. On the other hand, when the length of the first inclined portion 220 along the axial direction of the power cable 2 is 400 mm or less, the enlargement of the connection portion of the power cable 2 can be suppressed.
  • the length of the first inclined portion 220 along the axial direction of the power cable 2 may be 220 mm or more and 380 mm or less, particularly 250 mm or more and 350 mm or less.
  • the conductor connection part 3 is a member that connects the exposed cable conductors 21 at the end of the power cable 2.
  • the conductor connection part 3 of this example is a cylindrical member provided with blind holes that open on each end face. Each blind hole is a storage hole into which the tip of the cable conductor 21 of the power cable 2 is inserted. By performing compression connection in a state where each cable conductor 21 is inserted into each storage hole, the conductor connection portion 3 electrically connects the cable conductors 21 to each other.
  • the constituent material of the conductor connection portion 3 includes a metal having excellent conductivity and compressibility, for example, copper, aluminum, and an alloy thereof.
  • the power cable intermediate connection structure 1 ⁇ / b> A includes a sleeve cover 4 that covers the outer periphery of the conductor connection portion 3.
  • the sleeve cover 4 is a cylindrical member that is disposed across the conductor connection portion 3 and that connects regions on the small-diameter side of the first inclined portion 220 in the cable insulator 22.
  • the sleeve cover 4 is configured as a cylindrical member by combining a plurality of divided pieces whose circumferential direction is divided.
  • the sleeve cover 4 of this example includes a main body 41 disposed along the axial direction of the conductor connection portion 3, and hooks 42 protruding radially inward at both ends of the main body 41.
  • the hook portion 42 has a shape corresponding to the concave portion 223 formed in the cable insulator 22 and is locked in the concave portion 223.
  • the sleeve cover 4 includes an annular groove 43 inside the hook portion 42 in the axial direction. The groove 43 is engaged with a flat portion formed at the end of the small-diameter side flat portion 221.
  • a constituent material of the sleeve cover 4 include a metal material such as aluminum or an alloy thereof, and a nonmetallic conductive material such as carbon.
  • a gap is formed between the cable insulator 22 and the conductor connection portion 3, and a semiconductive tape layer or the like is provided in the gap.
  • the sleeve cover 4 is provided.
  • a semiconductive tape layer can be provided from the gap between the cable insulator 22 and the conductor connection portion 3 to the outer periphery of the conductor connection portion 3. .
  • the rubber unit 5A is a cylindrical member used for main insulation of the power cable intermediate connection structure 1A.
  • the rubber unit 5 ⁇ / b> A includes a main insulating portion 51, a cylindrical internal semiconductive portion 52 provided on an inner peripheral side and an axial center portion of the main insulating portion 51, and an external provided on each end side of the main insulating portion 51. And a semiconductive portion 53.
  • the external semiconductive portion 53 of this example is provided so as to cover the end face and the outer periphery of the main insulating portion 51 from one end to the other end of the main insulating portion 51. That is, the external semiconductive portion 53 has a cylindrical shape having both end surfaces.
  • the external semiconductive portion includes an end external semiconductive portion provided at each end of the main insulating portion, and an outer peripheral semiconductive portion provided at an outer peripheral portion of the main insulating portion.
  • the portion and the outer peripheral semiconductive portion may be electrically separated by the main insulating portion.
  • the rubber unit 5A is, as shown in FIG. 2, a molded product in which a main insulating portion 51, an inner semiconductive portion 52, and an outer semiconductive portion 53 are integrally formed. Since the main insulating part 51, the inner semiconductive part 52, and the outer semiconductive part 53 are integrally formed, the quality control of the rubber unit 5A can be performed at the factory. Therefore, the quality of the power cable intermediate connection structure 1A can be improved. Further, since the main insulating portion 51, the inner semiconductive portion 52, and the outer semiconductive portion 53 are integrally formed, the rubber unit 5A can be easily attached at the time of assembling the intermediate connection structure 1A of the power cable. .
  • the rubber unit 5 ⁇ / b> A is configured such that, when one set of power cables 2 is attached to a set connected by the conductor connection portion 3, the outer circumference of the cable outer semi-conductive layer 23 of one power cable 2 starts from the outer circumference of the sleeve cover 4. , A region covering the outer periphery of the cable outer semiconductive layer 23 of the other power cable 2 is continuously covered.
  • the inner semiconductive portion 52 is arranged so as to cover the outer periphery of the conductor connection portion 3.
  • the internal semiconductive portion 52 is connected to the conductor connecting portion 3 via the sleeve cover 4 and has the same potential as the cable conductor 21. That is, the internal semiconductive portion 52 has a high potential.
  • the inner semiconductive portion 52 is provided such that both ends do not overlap the first inclined portion 220 of the cable insulator 22 in the radial direction. When both ends of the inner semiconductive portion 52 radially overlap the first inclined portion 220, both ends of the inner semiconductive portion 52 face radially outward along the inclination of the first inclined portion 220, and This is because the electric field concentrates on both ends of the semiconductive portion 52. It is preferable that both end portions of the inner semiconductive portion 52 are oriented in a direction along the axial direction of the rubber unit 5A or in a direction inward in the radial direction.
  • the inner semiconductive portion 52 includes a base portion 521 that radially overlaps with the conductor connection portion 3 and a protrusion 522 that does not overlap with the conductor connection portion 3 in the radial direction.
  • the protruding portions 522 protrude from regions on the outer peripheral side at both ends in the axial direction of the base portion 521, respectively.
  • the protruding portion 522 protrudes in the axial direction from a region on the outer peripheral side of the base portion 521, and is arranged with a part of the main insulating portion 51 interposed between the protruding portion 522 and the cable insulator 22.
  • the rubber unit 5A is arranged such that the protruding portion 522 of the inner semiconductive portion 52 does not overlap the first inclined portion 220 of the cable insulator 22 in the radial direction.
  • the rubber unit 5A is arranged such that the protruding portion 522 of the inner semiconductive portion 52 is located radially outward of the small-diameter side flat portion 221 of the cable insulator 22. By doing so, the protruding direction of the protruding portion 522 becomes a direction along the axial direction of the rubber unit 5A.
  • Each external semiconductive portion 53 comes into contact with each cable external semiconductive layer 23 to be at the ground potential. That is, each external semiconductive portion 53 has a low potential.
  • the rubber unit 5A closely adheres to each power cable 2 and the conductor connection portion 3 via the sleeve cover 4 with a predetermined surface pressure.
  • a depression is formed by the first inclined portion 220 of the cable insulator 22 and the sleeve cover 4. For this reason, the area on the inner peripheral side of the rubber unit 5A is fitted into the depression and arranged.
  • the inner diameter of the rubber unit 5A is substantially uniform along the axial direction, as shown in FIG.
  • the outer diameter of the central portion is substantially uniform along the axial direction.
  • the inner diameter of the rubber unit 5A before being attached to the above-described braid is an inner diameter corresponding to the designed insulation outer diameter of the cable insulator 22, and is slightly smaller than the outer diameter of the sleeve cover 4 in the braid. Since the rubber unit 5A has a rubber unit inner diameter corresponding to the designed insulating outer diameter, a unit having a single size can be used even when the finished insulating outer diameter of the cable insulator 22 varies.
  • the rubber unit 5A is expanded in diameter and mounted on the above assembly.
  • the rubber unit 5A When the rubber unit 5A is mounted on the braid, the rubber unit 5A is fitted and disposed in the recess. Specifically, as shown in FIG. 1, the rubber unit 5A is located outside the recess so that the external semiconductive portions 53 at both ends of the rubber unit 5A are in contact with the cable external semiconductive layer 23.
  • the semiconductive portion 52 is arranged so as to be located at the deepest portion of the depression. For this reason, after the rubber unit 5A is mounted on the above-mentioned braid, a dent is formed on the outer surface of the central portion in the axial direction along the dent.
  • the inner diameter is substantially uniform along the axial direction. Therefore, in the rubber unit 5A after being mounted on the above-described assembly, the diameter of the inner semiconductive portion 52 is relatively small and the diameter of the outer semiconductive portion 53 is relatively large. Therefore, in the rubber unit 5A, the surface pressure applied to the sleeve cover 4 is relatively small, and the surface pressure applied to the cable external semiconductive layer 23 is relatively large.
  • a rubber having an electric insulating property for example, an insulating ethylene propylene rubber, an insulating silicone rubber, or the like can be given.
  • the constituent material of the inner semiconductive portion 52 and the outer semiconductive portion 53 includes rubber having semiconductivity, for example, semiconductive ethylene propylene rubber and semiconductive silicone rubber.
  • the power cable intermediate connection structure 1A typically includes a step of forming the first inclined portion 220 in the cable insulator 22 of the power cable 2, a step of mounting the conductor connection section 3, and a step of mounting the rubber unit 5A. Assembled through the process. In this example, a step of mounting the sleeve cover 4 is further performed.
  • the outer diameter of the cable insulator 22 is a finished insulating outer diameter that is uniform in the axial direction.
  • the finished insulating outer diameter is, for example, an outer diameter larger than the designed insulating outer diameter by 3% or more.
  • the end of the prepared power cable 2 is peeled off stepwise, so that the cable conductor 21, the cable insulator 22, and the cable outer semiconductive layer 23 are exposed stepwise.
  • the cable insulator 22 is formed with a first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 by, for example, cutting. At this time, the outer diameter on the large diameter side of the first inclined portion 220 is the finished insulation outer diameter, and the outer diameter on the small diameter side is the design insulation outer diameter.
  • the length and the inclination angle of the first inclined portion 220 along the axial direction of the power cable 2 may be processed so that the desired length and the inclination angle are obtained.
  • a small-diameter side flat portion 221 and a concave portion 223 are also formed.
  • Each of the exposed cable conductors 21 is inserted into a storage hole of the conductor connection portion 3 and compressed, thereby connecting the cable conductors 21 to each other.
  • the rubber unit 5A is powered by a diameter-expanding jig or an inner spiral core or the like in a state where the diameter is expanded. Insert the cable 2 and release it.
  • the power cable intermediate connection structure 1A according to the first embodiment can be suitably used as a connection point between the power cables 2 in various power cable lines for underground power transmission and the like. If the power cable intermediate connection structure 1A is laid underground, it is installed in a manhole, a cave, or the like.
  • the intermediate connection structure 1A of the power cable according to the first embodiment is a molded product in which the rubber unit 5A is integrally formed with the main insulating portion 51, the inner semiconductive portion 52, and the outer semiconductive portion 53. Therefore, the quality control of the rubber unit 5A can be performed at the factory, and the rubber unit 5A can be easily mounted on site.
  • the rubber unit 5 ⁇ / b> A is disposed so as to fit into a recess formed by the conductor connection portion 3 and the first inclined portion 220 of each cable insulator 22. Therefore, the rubber unit 5A is stably held in the depression, and the retaining force against the axial force of the power cable 2 can be improved.
  • Such a power cable intermediate connection structure 1A can suppress the deviation of the rubber unit 5A from a predetermined position even when the power cable 2 has a large axial force. Since the rubber unit 5A can be held at a predetermined position, insulation and water resistance at the connection portion of the power cable 2 can be ensured. Therefore, the reliability of the connection portion can be maintained.
  • the rubber unit 5A When the rubber unit 5A is made of ethylene propylene rubber, the rubber unit 5A can be slightly moved even after the rubber unit 5A is mounted in the recess. Therefore, it is easy to position the rubber unit 5A at a predetermined position. In other words, the power cable intermediate connection structure 1A easily aligns the rubber unit 5A at a predetermined position, and after the alignment, the rubber unit 5A does not easily move in the axial direction with respect to the power cable 2.
  • the intermediate connection structure 1A of the power cable uses the power cable 2 having the cable insulator 22 having a finished insulation outer diameter larger than the design insulation outer diameter, so that the tip end of the power cable 2 is exposed stepwise.
  • the processing method for the cable outer semiconductive layer 23 can be simplified. Specifically, by using a power cable 2 having a cable insulator 22 having a finished insulation outer diameter that is 3% or more larger than a designed insulation outer diameter, a method of treating the cable outer semiconductive layer 23 can be simplified. This is because the method of processing the cable outer semiconductive layer 23 can be simplified as the thickness of the cable insulator 22 is larger, that is, as the outer diameter of the cable insulator 22 is larger.
  • the outer diameter of the first inclined portion 220 on the smaller diameter side can be set as the design insulation outer diameter.
  • a rubber unit 5A having a rubber unit inner diameter corresponding to the designed insulating outer diameter can be used regardless of the finished insulating outer diameter.
  • the rubber unit 5A having the rubber unit inner diameter corresponding to the designed insulation outer diameter can be used, and the method of treating the cable outer semiconductive layer 23 can be simplified.
  • the power cable intermediate connection structure 1A has a thickness of the cable insulator 22 which is larger than that of the design insulation outer diameter because the outer diameter on the large diameter side of the first inclined portion 220 is the finished insulation outer diameter. And the electric field directly below the cable external semiconductive layer 23 can be reduced.
  • FIG. 3 is a vertical cross section of the power cable intermediate connection structure 1B cut along a plane parallel to the longitudinal direction.
  • FIG. 4 is a longitudinal sectional view of the rubber unit 5B cut along a plane parallel to the longitudinal direction.
  • the rubber unit 5B shown in FIG. 4 is in a state before the set of power cables 2 shown in FIG. 3 and 4, components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • the power cable intermediate connection structure 1B according to the second embodiment differs from the power cable intermediate connection structure 1A according to the first embodiment in the shape of the rubber unit 5B.
  • the present embodiment will be described focusing on differences from the first embodiment.
  • the bulging portion 54 bulging toward the center is provided.
  • the bulging portion 54 has a surface corresponding to a depression formed by the sleeve cover 4 shown in FIG. 3 and the first inclined portion 220 of each cable insulator 22. That is, the inner diameter of the bulging portion 54 at the central portion in the axial direction is uniform in the axial direction.
  • the inner diameter of the inclined portion extending from the central portion of the bulging portion 54 to both ends increases toward the both ends.
  • the inner diameter of the bulging portion 54 at the central portion in the axial direction is an inner diameter corresponding to the designed insulating outer diameter of the cable insulator 22.
  • the inner diameter of both ends of the rubber unit 5B is an inner diameter corresponding to the finished insulating outer diameter of the cable insulator 22.
  • the inner diameters of the central portion, the inclined portion, and both ends of the rubber unit 5B are slightly smaller than the outer diameter of the sleeve cover 4 in the braid, the outer diameter of the first inclined portion 220, and the finished insulating outer diameter of the cable insulator 22. small.
  • the internal semiconductive portion 52 is provided in a uniform inner diameter region of the bulging portion 54.
  • the outer diameter of the rubber unit 5B at the central portion in the axial direction is substantially uniform along the axial direction.
  • the bulge portion 54 is fitted and disposed in a depression formed by the first inclined portion 220 of the cable insulator 22 and the sleeve cover 4.
  • the rubber unit 5B is located outside the recess so that the outer semiconductive portions 53 at both ends of the rubber unit 5B are in contact with the cable outer semiconductive layer 23. It is arranged to be located at the deepest part of the depression. Since the rubber unit 5B has the bulging portion 54 on the inner peripheral surface thereof, the outer diameter of the central portion in the axial direction remains substantially uniform even after the rubber unit 5B is mounted on the braid.
  • the rubber unit 5B has an inner diameter along the sleeve cover 4, each cable insulator 22, and each cable outer semiconductive layer 23 shown in FIG. Therefore, after being mounted on the above-described assembly, the diameter of the inner semiconductive portion 52 and the diameter of the outer semiconductive portion 53 are substantially equal. Therefore, in the rubber unit 5B, the surface pressure applied to the conductor connection portion 3 via the sleeve cover 4 is substantially equal to the surface pressure applied to the cable external semiconductive layer 23.
  • the intermediate connection structure 1B for a power cable according to the second embodiment includes, similarly to the first embodiment, a process of forming the first inclined portion 220 in the cable insulator 22 of the power cable 2 and a process of mounting the conductor connection portion 3. And the process of mounting the sleeve cover 4 and the process of mounting the rubber unit 5B.
  • the rubber unit 5B of this example includes the bulging portion 54 on the inner peripheral side, as a diameter-expanding jig for expanding the diameter of the rubber unit 5B, for example, the position where the bulging portion 54 bulges most, that is, the axial center of the rubber unit 5B
  • the use of a pair of diameter-expanding jigs that can be extracted at both ends with the position as a boundary may be used.
  • the rubber unit 5B fits into the depression formed by the conductor connection portion 3 and the first inclined portion 220 of each cable insulator 22. It is arranged to be included. Therefore, the rubber unit 5B is stably held in the depression, and the retaining force against the axial force of the power cable 2 can be improved. Therefore, even if the power cable 2 has a large axial force, the power cable intermediate connection structure 1B can suppress the rubber unit 5B from being shifted from a predetermined position.
  • the outer diameter on the small diameter side of the first inclined portion 220 is set as the design insulation outer diameter
  • the outer diameter on the large diameter side is set as the finished insulation outer diameter.
  • the power cable intermediate connection structure 1B can use the rubber unit 5B having the rubber unit inner diameter corresponding to the design insulation outer diameter, and can simplify the processing method of the cable outer semiconductive layer 23.
  • the rubber unit 5B since the rubber unit 5B includes the bulge portion 54 having an inner peripheral surface corresponding to the depression on the inner peripheral side, the rubber unit 5B is substantially uniform along the axial direction of the power cable 2 in a state where the rubber unit 5B is mounted in the depression. Surface pressure can be given.
  • FIG. 5 is a vertical cross section of the power cable intermediate connection structure 1C cut along a plane parallel to the longitudinal direction.
  • components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • the power cable intermediate connection structure 1C according to the first embodiment is different from the power cable 2 in that an exposed cable outer semiconductive layer 23 of the power cable 2 includes a second inclined portion 230. And different.
  • the present embodiment will be described focusing on differences from the first embodiment.
  • the power cable 2 of this example has a second inclined portion 230 in which the outer diameter decreases toward the distal end side so as to be continuous with the first inclined portion 220 formed in the cable insulator 22 on the exposed cable outer semiconductive layer 23. Is provided.
  • the second inclined portion 230 is formed simultaneously with the formation of the first inclined portion 220 by, for example, cutting of the cable insulator 22 and cutting of the cable outer semiconductive layer 23.
  • the inclination angle of the second inclined part 230 is substantially the same as the inclination angle of the first inclined part 220.
  • the length of the second inclined portion 230 along the axial direction of the power cable 2 is 30 mm or more, depending on the size and voltage of the power cable 2.
  • the length of the second inclined portion 230 along the axial direction of the power cable 2 may be 40 mm or more.
  • the length of the second inclined portion 230 along the axial direction of the power cable 2 is 80 mm or less, it is possible to suppress an increase in the size of the connection portion of the power cable 2.
  • the length of the second inclined portion 230 along the axial direction of the power cable 2 may be 60 mm or less.
  • the length along the axial direction of the power cable 2 in the second inclined portion 230 is 30 mm or more and 80 mm or less, and more preferably 40 mm or more and 60 mm.
  • the power cable intermediate connection structure 1C according to the third embodiment has the effect of the power cable intermediate connection structure 1A according to the first embodiment.
  • the first inclined portion 220 and the second inclined portion 230 can be easily formed by copying and shaping the distal end portion of the power cable 2, and the processing method of the cable external semiconductive layer 23 can be further simplified.
  • the cable insulator 22 and the cable external semiconductive layer 23 have the continuous inclined portions 220 and 230, a step is hardly formed between the cable insulator 22 and the cable external semiconductive layer 23. Therefore, the rubber unit 5A is easily brought into close contact with the power cable 2.
  • FIG. 6 is a vertical cross section of the power cable intermediate connection structure 1D cut along a plane parallel to the longitudinal direction.
  • components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • the power cable intermediate connection structure 1D according to the fourth embodiment is different from the power cable intermediate connection according to the first embodiment in that the protrusion 522 of the inner semiconductive portion 52 of the rubber unit 5A protrudes radially inward. Different from structure 1A.
  • the present embodiment will be described focusing on differences from the first embodiment.
  • the power cable 2 of this example includes a concave portion 224 in the exposed cable insulator 22.
  • the recess 224 corresponds to the protruding portion 522 of the internal semiconductive portion 52 in the rubber unit 5A when the rubber unit 5A is mounted on a set to which a pair of power cables 2 are connected by the conductor connection unit 3. Position.
  • the depression 224 is provided radially inward of the tip of the protrusion 522.
  • the concave portion 224 has a rear end side inclined surface continuous with the first inclined portion 220, a bottom surface substantially along the axial direction of the power cable 2, and a diameter increasing toward the exposed cable conductor 21 side. And a slope on the tip side.
  • the tip-side inclined surface is connected to the small-diameter-side flat portion 221 of the cable insulator 22.
  • the recess 224 is provided continuously over the entire circumference of the cable insulator 22.
  • the rubber unit 5A of this example is attached to the above-described assembly, as described in the first embodiment with reference to FIG. 2, the rubber unit 5A is uniformly arranged in the axial direction corresponding to the design insulation outer diameter of the cable insulator 22.
  • the outer diameter of the central portion is substantially uniform along the axial direction.
  • the recess 224 is formed in the cable insulator 22, a part of the rubber unit 5 ⁇ / b> A is disposed so as to fit into the recess 224.
  • the recess 224 is provided at a position corresponding to the protruding portion 522 of the internal semiconductive portion 52 in the rubber unit 5A. Therefore, as the rubber unit 5A fits into the recess 224, the tip of the protrusion 522 is pulled radially inward and displaced. Specifically, the protrusion 522 is displaced so that both the inner peripheral surface and the outer peripheral surface are directed radially inward. Due to the displacement of the protruding portion 522, the protruding portion 522 of the inner semiconductive portion 52 protrudes radially inward when the rubber unit 5A is mounted on the above-described assembly.
  • the rubber unit 5A is made of silicone rubber. Since silicone rubber is a relatively soft rubber, when the rubber unit 5A is attached to the above-described assembly, the rubber unit 5A is easily fitted into the recess 224.
  • the power cable intermediate connection structure 1D according to the fourth embodiment can reduce the electric field concentration near the protrusion 522 of the rubber unit 5A, in addition to the effect of the power cable intermediate connection structure 1A according to the first embodiment. That is, the rubber unit 5A is provided with the protruding portions 522 that are directed radially inward at both axial end portions of the internal semiconductive portion 52, although electric fields are easily concentrated at both axial end portions of the internal semiconductive portion 52. This makes it possible to make the inclination or bending state of the equipotential line from the cable conductor 21 to the protruding portion 522 of the internal semiconductive portion 52 more gradual.
  • the protruding portions 522 that are directed radially inward at both axial ends of the inner semiconductive portion 52 are formed on the inner semiconductive portion 52 itself before being mounted on the above-described assembly. Can be easily formed by providing the recessed portion 224 in the cable insulator 22 without providing the same. If the concave portion 224 is provided in the cable insulator 22, the rubber unit 5B having the bulging portion 54 on the inner peripheral surface as described in the second embodiment can be used as the rubber unit.
  • the protruding portion of the rubber unit which is directed inward in the radial direction, may be provided on the rubber unit itself before the rubber unit is mounted.
  • the inner peripheral surface and the outer peripheral surface of the protruding portion may be formed so as to be inclined radially inward toward both ends. If the rubber unit itself is provided with the protruding portion, it is not necessary to form a recess in the cable insulator 22.
  • the rubber unit is preferably made of ethylene propylene rubber for both the main insulating part and the internal semiconductive part.

Abstract

This intermediate connecting structure for a power cable is provided with a pair of power cables each having a tip end portion in which a cable conductor, a cable insulator, and a cable outer semiconductive layer are exposed in a stepped manner, a conductor connecting portion connecting the exposed cable conductors to one another, and a cylindrical rubber unit, wherein: each cable insulator is provided with a first inclined portion having an outer diameter which decreases toward the cable conductor side; the rubber unit is provided with a main insulating portion, an inner semiconductive portion which is provided on an inner circumferential side of the main insulating portion in an axially central portion thereof and which is disposed in such a way as to cover an outer circumference of the conductor connecting portion, and an outer semiconductive portion which is provided on the end portion sides of the main insulating portion and which is connected to the cable outer semiconductive layers; and the rubber unit is disposed in such a way as to fit into a recess formed by the conductor connecting portion and the first inclined portions.

Description

電力ケーブルの中間接続構造Intermediate connection structure of power cable
 本開示は、電力ケーブルの中間接続構造に関する。
 本出願は、2018年8月30日付の日本国出願の特願2018-162191に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to an intermediate connection structure of a power cable.
This application claims priority based on Japanese Patent Application No. 2018-162191 filed on Aug. 30, 2018, and incorporates all the contents described in the Japanese application.
 特許文献1には、導体及び絶縁層を有する一対の電力ケーブルを互いの軸を一致させつつ直線状に接続する電力ケーブルの接続用ユニットが開示されている。この電力ケーブルの接続用ユニットは、導体接続部と、絶縁層連結部と、カバー部材とを備える。導体接続部は、電力ケーブルにおける露出された一対の導体を接続する。絶縁層連結部は、導体接続部の外周を囲うと共に両端が軸方向に沿ってそれぞれ延び、導体接続部を跨いで電力ケーブルにおける一対の絶縁層を連結する。カバー部材は、絶縁層連結部の外周を被覆すると共に両端が軸方向に沿ってそれぞれ延び、絶縁層連結部を跨いで電力ケーブルにおける一対の絶縁層の外周を一体的に被覆する。カバー部材は、半導電性のラバー材料からなる半導電性被覆層と、絶縁性のラバー材料からなる絶縁性被覆層とを備える。 Patent Document 1 discloses a power cable connection unit that connects a pair of power cables each having a conductor and an insulating layer in a straight line while aligning their axes. The power cable connection unit includes a conductor connection portion, an insulating layer connection portion, and a cover member. The conductor connecting portion connects the exposed pair of conductors in the power cable. The insulating layer connection part surrounds the outer periphery of the conductor connection part and both ends extend along the axial direction, respectively, and connects the pair of insulation layers of the power cable across the conductor connection part. The cover member covers the outer periphery of the insulating layer connection portion and both ends extend in the axial direction, respectively, and integrally covers the outer periphery of the pair of insulating layers in the power cable across the insulating layer connection portion. The cover member includes a semiconductive covering layer made of a semiconductive rubber material and an insulating covering layer made of an insulating rubber material.
特開2016-12974号公報JP 2016-12974 A
 本開示に係る電力ケーブルの中間接続構造は、
 ケーブル導体と、ケーブル絶縁体と、ケーブル外部半導電層とが段階的に露出された先端部を有する一組の電力ケーブルと、
 露出された前記ケーブル導体同士を接続する導体接続部と、
 筒状のゴムユニットとを備え、
 前記各ケーブル絶縁体は、前記ケーブル導体側に向かって外径が小さくなる第一傾斜部を備え、
 前記ゴムユニットは、
  主絶縁部と、
  前記主絶縁部の内周側かつ軸方向中央部に設けられ、前記導体接続部の外周を覆うように配置される内部半導電部と、
  前記主絶縁部の各端部側に設けられ、前記各ケーブル外部半導電層に接続される外部半導電部とを備え、
  前記導体接続部と前記各第一傾斜部とで形成される窪みに嵌り込んで配置される。
The intermediate connection structure of the power cable according to the present disclosure,
A set of power cables having a cable conductor, a cable insulator, and a cable outer semiconductive layer having a stepwise exposed tip;
A conductor connecting portion for connecting the exposed cable conductors,
With a cylindrical rubber unit,
Each of the cable insulators includes a first inclined portion whose outer diameter decreases toward the cable conductor,
The rubber unit,
Main insulation,
An inner semiconductive portion provided on the inner peripheral side and the axial center portion of the main insulating portion, and arranged to cover the outer periphery of the conductor connecting portion,
An external semiconductive portion provided on each end side of the main insulating portion and connected to each of the cable external semiconductive layers,
It is arranged so as to fit into a depression formed by the conductor connection portion and each of the first inclined portions.
図1は、実施形態1に係る電力ケーブルの中間接続構造の概略を示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating a power cable intermediate connection structure according to the first embodiment. 図2は、実施形態1に係る電力ケーブルの中間接続構造に備わるゴムユニットについて、一組の電力ケーブルが導体接続部によって接続された組物に装着される前の状態を示す断面図である。FIG. 2 is a cross-sectional view of a rubber unit provided in the power cable intermediate connection structure according to the first embodiment, showing a state before a set of power cables is attached to a set connected by a conductor connection portion. 図3は、実施形態2に係る電力ケーブルの中間接続構造の概略を示す断面図である。FIG. 3 is a cross-sectional view schematically illustrating an intermediate connection structure of a power cable according to the second embodiment. 図4は、実施形態2に係る電力ケーブルの中間接続構造に備わるゴムユニットについて、一組の電力ケーブルが導体接続部によって接続された組物に装着される前の状態を示す断面図である。FIG. 4 is a cross-sectional view of a rubber unit provided in the power cable intermediate connection structure according to the second embodiment, showing a state before a set of power cables is attached to a set connected by a conductor connection portion. 図5は、実施形態3に係る電力ケーブルの中間接続構造の概略を示す断面図である。FIG. 5 is a cross-sectional view schematically illustrating a power cable intermediate connection structure according to the third embodiment. 図6は、実施形態4に係る電力ケーブルの中間接続構造の概略を示す断面図である。FIG. 6 is a cross-sectional view schematically illustrating an intermediate connection structure of a power cable according to the fourth embodiment.
 [本開示が解決しようとする課題]
 電力ケーブルの熱伸縮などにより電力ケーブルにかかる軸方向の力である軸力によって、カバー部材が所定位置からずれるおそれがある。以下、カバー部材をゴムユニットと呼ぶ。特許文献1の技術では、絶縁層連結部に凹部を設け、この凹部にゴムユニットを嵌め合わせることで、ゴムユニットの所定位置からのずれを抑制している。しかし、特許文献1の技術では、電力ケーブルの軸力の大きさによっては、ゴムユニットの所定位置からのずれを抑制できないおそれがある。
[Problems to be solved by the present disclosure]
The cover member may be displaced from a predetermined position by an axial force which is an axial force applied to the power cable due to thermal expansion and contraction of the power cable. Hereinafter, the cover member is referred to as a rubber unit. In the technique of Patent Literature 1, a concave portion is provided in an insulating layer connecting portion, and a rubber unit is fitted into the concave portion, thereby suppressing a deviation of the rubber unit from a predetermined position. However, in the technique of Patent Document 1, there is a possibility that the displacement of the rubber unit from a predetermined position cannot be suppressed depending on the magnitude of the axial force of the power cable.
 そこで、本開示は、一組の電力ケーブルのケーブル導体同士を接続する導体接続部の外周を覆うように配置されるゴムユニットが所定位置からずれることを抑制できる電力ケーブルの中間接続構造を提供することを目的の一つとする。 Therefore, the present disclosure provides a power cable intermediate connection structure that can suppress a rubber unit disposed so as to cover an outer periphery of a conductor connection portion connecting cable conductors of a set of power cables from a predetermined position. It is one of the purposes.
 [本開示の効果]
 本開示の電力ケーブルの中間接続構造は、一組の電力ケーブルのケーブル導体同士を接続する導体接続部の外周を覆うように配置されるゴムユニットが所定位置からずれることを抑制できる。
[Effects of the present disclosure]
The power cable intermediate connection structure according to the present disclosure can prevent a rubber unit arranged to cover an outer periphery of a conductor connection portion that connects cable conductors of a set of power cables from being shifted from a predetermined position.
 [本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施形態に係る電力ケーブルの中間接続構造は、
 ケーブル導体と、ケーブル絶縁体と、ケーブル外部半導電層とが段階的に露出された先端部を有する一組の電力ケーブルと、
 露出された前記ケーブル導体同士を接続する導体接続部と、
 筒状のゴムユニットとを備え、
 前記各ケーブル絶縁体は、前記ケーブル導体側に向かって外径が小さくなる第一傾斜部を備え、
 前記ゴムユニットは、
  主絶縁部と、
  前記主絶縁部の内周側かつ軸方向中央部に設けられ、前記導体接続部の外周を覆うように配置される内部半導電部と、
  前記主絶縁部の各端部側に設けられ、前記各ケーブル外部半導電層に接続される外部半導電部とを備え、
  前記導体接続部と前記各第一傾斜部とで形成される窪みに嵌り込んで配置される。
(1) The intermediate connection structure of the power cable according to the embodiment of the present disclosure includes:
A set of power cables having a cable conductor, a cable insulator, and a cable outer semiconductive layer having a stepwise exposed tip;
A conductor connecting portion for connecting the exposed cable conductors,
With a cylindrical rubber unit,
Each of the cable insulators includes a first inclined portion whose outer diameter decreases toward the cable conductor,
The rubber unit,
Main insulation,
An inner semiconductive portion provided on the inner peripheral side and the axial center portion of the main insulating portion, and arranged to cover the outer periphery of the conductor connecting portion,
An external semiconductive portion provided on each end side of the main insulating portion and connected to each of the cable external semiconductive layers,
It is arranged so as to fit into a depression formed by the conductor connection portion and each of the first inclined portions.
 上記電力ケーブルの中間接続構造では、ゴムユニットは、導体接続部と各ケーブル絶縁体の第一傾斜部とで形成される窪みに嵌り込んで配置される。ゴムユニットが嵌り込む窪みがケーブル絶縁体で形成されることで、その窪みを、比較的深く、かつ電力ケーブルの軸方向に沿って比較的長い領域にわたって形成できる。そのため、ゴムユニットが窪みに安定して保持され、上記電力ケーブルの中間接続構造では、電力ケーブルの軸力が大きい場合であっても、ゴムユニットの所定位置からのずれを抑制できる。 で は In the power cable intermediate connection structure, the rubber unit is disposed so as to fit into the recess formed by the conductor connection portion and the first inclined portion of each cable insulator. Since the recess into which the rubber unit fits is formed by the cable insulator, the recess can be formed relatively deep and over a relatively long area along the axial direction of the power cable. Therefore, the rubber unit is stably held in the recess, and in the intermediate connection structure of the power cable, even if the axial force of the power cable is large, it is possible to suppress the deviation of the rubber unit from a predetermined position.
 ケーブル絶縁体に窪みを有さない場合、つまり電力ケーブルの長手方向にケーブル絶縁体の外径が一様である場合、ゴムユニットは、1.3~1.4倍拡径された状態でケーブル絶縁体上に配置される。よって、ゴムユニットの収縮力により、ケーブル絶縁体上に面圧が付与される。この面圧は、電力ケーブルの長手方向にほぼ一様に付与される。例えば、ゴムユニットがシリコーンゴムで構成される場合、0.1MPa以上の面圧が付与される。また、ゴムユニットがエチレンプロピレンゴムで構成される場合、0.3MPa以上の面圧が付与される。一方、ケーブル絶縁体に窪みを有する場合、ケーブル絶縁体の最小外径をケーブル絶縁体の最大外径よりも5%程度小さくできる。ケーブル絶縁体の最小外径は、窪みの最も深い部分の外径である。ケーブル絶縁体の最大外径は、窪みのない箇所の外径である。このような窪みにゴムユニットが嵌り込むことで、最小外径の部分に比較して、最大外径の部分で面圧を高くすることができる。この面圧によっても、ゴムユニットの所定位置からのずれを抑制できる。ゴムユニットを所定位置で保持できることで、電力ケーブルの接続部における絶縁性や軸力に対する引留め力を確保することができる。ひいては、上記接続部の信頼性を維持することができる。 If the cable insulator does not have a depression, that is, if the outer diameter of the cable insulator is uniform in the longitudinal direction of the power cable, the rubber unit is expanded in a state in which the diameter of the rubber unit is 1.3 to 1.4 times. It is arranged on an insulator. Therefore, a surface pressure is applied on the cable insulator by the contraction force of the rubber unit. This surface pressure is applied substantially uniformly in the longitudinal direction of the power cable. For example, when the rubber unit is made of silicone rubber, a surface pressure of 0.1 MPa or more is applied. When the rubber unit is made of ethylene propylene rubber, a surface pressure of 0.3 MPa or more is applied. On the other hand, when the cable insulator has a depression, the minimum outer diameter of the cable insulator can be reduced by about 5% from the maximum outer diameter of the cable insulator. The minimum outer diameter of the cable insulator is the outer diameter of the deepest part of the depression. The maximum outer diameter of the cable insulator is the outer diameter of a portion having no depression. By fitting the rubber unit into such a depression, the surface pressure can be increased at the portion having the maximum outer diameter as compared with the portion having the minimum outer diameter. The deviation of the rubber unit from the predetermined position can be suppressed by this surface pressure. Since the rubber unit can be held at a predetermined position, insulation at the connection portion of the power cable and a retaining force against axial force can be secured. As a result, the reliability of the connection portion can be maintained.
 上記電力ケーブルの中間接続構造では、ケーブル外部半導電層の処理工法を簡素化できる場合がある。 中間 In the above-mentioned intermediate connection structure of the power cable, there are cases where the method of processing the semiconductive layer outside the cable can be simplified.
 電力ケーブルのケーブル絶縁体は、成形法の関係から偏心や偏肉が生じて周方向に厚みが不均一になることがある。そのため、ケーブル絶縁体は、厚みに裕度を持たせ、最小の規定外径である設計絶縁外径よりも大きな外径を有することがある。設計絶縁外径よりも大きな外径を、仕上がり絶縁外径と言う。また、ケーブル絶縁体の外周に形成されるケーブル外部半導電層も、ケーブル絶縁体と同様に、偏心や偏肉が生じて周方向に厚みが不均一になることがある。そのため、ケーブル外部半導電層も、厚みに裕度を持たせ、最小の規定外径である設計外導外径よりも大きな外径を有することがある。設計外導外径よりも大きな外径を、仕上がり外導外径と言う。 ケ ー ブ ル The cable insulator of the power cable may have uneven thickness in the circumferential direction due to eccentricity or uneven thickness due to the molding method. For this reason, the cable insulator may have an allowance in the thickness, and may have an outer diameter larger than the design insulation outer diameter which is the minimum specified outer diameter. An outer diameter larger than the designed insulation outer diameter is called a finished insulation outer diameter. Also, similarly to the cable insulator, the cable outer semiconductive layer formed on the outer periphery of the cable insulator may be eccentric or uneven in thickness, and may have a nonuniform thickness in the circumferential direction. For this reason, the cable outer semiconductive layer may have a margin in the thickness, and may have an outer diameter larger than the designed outer diameter which is the minimum specified outer diameter. An outer diameter larger than the designed outer diameter is called a finished outer diameter.
 ケーブル絶縁体の外径が仕上がり絶縁外径にて軸方向に一様な場合、ゴムユニットは、仕上がり絶縁外径に対応した内径を有するものを用意する必要がある。以下、ゴムユニットの内径を、ゴムユニット内径と呼ぶことがある。仕上がり絶縁外径にばらつきが生じる場合、各仕上がり絶縁外径に対応した種々の内径を有するゴムユニットを用意する必要がある。一方で、ゴムユニットは、設計絶縁外径に対応したゴムユニット内径を有していれば、電気的に安定した接続を行える。また、設計絶縁外径に対応したゴムユニット内径を有していれば、ケーブル絶縁体の仕上がり絶縁外径にばらつきが生じた場合であっても、設計絶縁外径に対応した単一のゴムユニットを用意すればよく、ゴムユニットの品種を少なくできる。設計絶縁外径に対応したゴムユニット内径を有するゴムユニットを用いる場合、仕上がり外導外径を有するケーブル外部半導電層に削り加工を施す際に、ケーブル絶縁体を削り込み、ケーブル絶縁体の外径を設計絶縁外径にて軸方向に一様とすることが考えられる。しかし、ケーブル絶縁体の外径を設計絶縁外径にて軸方向に一様とする場合、仕上がり絶縁外径に比較して、電力ケーブルの先端部を段階的に露出する際に、ケーブル絶縁体の外周に設けられるケーブル外部半導電層の処理工法が難しい処理工法となる。ケーブル外部半導電層の処理工法は、ケーブル絶縁体の厚みが厚いほど、つまりケーブル絶縁体の外径が大きいほど簡素化できるからである。 場合 When the outer diameter of the cable insulator is uniform in the axial direction at the finished insulating outer diameter, it is necessary to prepare a rubber unit having an inner diameter corresponding to the finished insulating outer diameter. Hereinafter, the inner diameter of the rubber unit may be referred to as the inner diameter of the rubber unit. When the finished insulation outer diameter varies, it is necessary to prepare rubber units having various inner diameters corresponding to each finished insulation outer diameter. On the other hand, if the rubber unit has an inner diameter of the rubber unit corresponding to the design outer diameter, electrically stable connection can be performed. In addition, if the rubber unit has a rubber unit inner diameter corresponding to the design insulation outer diameter, even if the finished insulation outer diameter of the cable insulator varies, a single rubber unit corresponding to the design insulation outer diameter Can be prepared, and the variety of rubber units can be reduced. When using a rubber unit with a rubber unit inner diameter corresponding to the design insulation outer diameter, when shaving the outer semiconductive layer of the cable with the finished outer diameter, cut the cable insulator and remove the outside of the cable insulator. It is conceivable to make the diameter uniform in the axial direction at the design insulation outer diameter. However, if the outer diameter of the cable insulator is made uniform in the axial direction at the design outer diameter, the cable insulator should be exposed more gradually when exposing the end of the power cable compared to the finished outer diameter. This is a difficult processing method for the cable external semiconductive layer provided on the outer periphery of the cable. This is because the method of treating the cable outer semiconductive layer can be simplified as the thickness of the cable insulator is larger, that is, as the outer diameter of the cable insulator is larger.
 上記電力ケーブルの中間接続構造では、ケーブル絶縁体に第一傾斜部を備えるため、第一傾斜部の細径側の外径を設計絶縁外径とし、第一傾斜部の太径側の外径を仕上がり絶縁外径とすることができる。よって、上記電力ケーブルの中間接続構造では、設計絶縁外径に対応したゴムユニット内径を有するゴムユニットを用いることができる。かつ上記電力ケーブルの中間接続構造では、ケーブル外部半導電層の処理工法を仕上がり絶縁外径に対応したものに簡素化できる。また、上記電力ケーブルの中間接続構造では、第一傾斜部の太径側の外径が仕上がり絶縁外径であるため、設計絶縁外径の場合に比較してケーブル絶縁体の厚みが厚い。そのため、ケーブル外部半導電層の直下の電界を低減できる。 In the power cable intermediate connection structure, since the cable insulator has the first inclined portion, the outer diameter of the small diameter side of the first inclined portion is set as the design insulating outer diameter, and the outer diameter of the large diameter side of the first inclined portion. Can be the finished insulation outer diameter. Therefore, in the power cable intermediate connection structure, a rubber unit having a rubber unit inner diameter corresponding to the designed insulation outer diameter can be used. In addition, in the power cable intermediate connection structure, the method of treating the cable outer semiconductive layer can be simplified to a method corresponding to the finished insulation outer diameter. Further, in the intermediate connection structure of the power cable, since the outer diameter on the large diameter side of the first inclined portion is the finished insulation outer diameter, the thickness of the cable insulator is thicker than in the case of the design insulation outer diameter. Therefore, the electric field immediately below the cable external semiconductive layer can be reduced.
 (2)本開示の電力ケーブルの中間接続構造の一形態として、
 露出された前記各ケーブル外部半導電層は、前記第一傾斜部に連続するように先端側ほど外径が小さくなる第二傾斜部を備えることが挙げられる。
(2) As one mode of the intermediate connection structure of the power cable of the present disclosure,
Each of the exposed cable outer semiconductive layers may include a second inclined portion whose outer diameter decreases toward the distal end so as to be continuous with the first inclined portion.
 ケーブル外部半導電層に第二傾斜部を備えることで、ケーブル絶縁体に第一傾斜部を形成する削り加工と同時に、ケーブル外部半導電層の処理を行うことができる。そのため、上記電力ケーブルの中間接続構造では、ケーブル外部半導電層の処理工法を更に簡素化できる。 備 え る By providing the cable outer semiconductive layer with the second inclined portion, the cable outer semiconductive layer can be processed simultaneously with the shaving process for forming the first inclined portion on the cable insulator. Therefore, in the above-mentioned intermediate connection structure of the power cable, the method of processing the semiconductive layer outside the cable can be further simplified.
 (3)本開示の電力ケーブルの中間接続構造の一形態として、
 前記内部半導電部は、
  前記導体接続部と径方向に重複する基部と、
  前記基部の軸方向両端部における外周側の領域からそれぞれ径方向内方に向かって突出すると共に、前記導体接続部と径方向に重複しない突出部とを備えることが挙げられる。
(3) As one mode of the intermediate connection structure of the power cable of the present disclosure,
The internal semiconductive portion,
A base portion radially overlapping with the conductor connection portion,
Each of the bases may include a projection that projects radially inward from a region on the outer peripheral side at both ends in the axial direction of the base and that does not overlap the conductor connection part in the radial direction.
 ゴムユニットは、内部半導電部の軸方向両端部において電界が集中し易い。そこで、内部半導電部の軸方向両端部に径方向内方に向かうように突出する突出部を備えることで、上記電界集中を緩和できる。 電 界 In the rubber unit, the electric field tends to concentrate at both axial ends of the internal semiconductive portion. Therefore, the electric field concentration can be reduced by providing the projecting portions projecting radially inward at both axial ends of the internal semiconductive portion.
 (4)本開示の電力ケーブルの中間接続構造の一形態として、
 前記ゴムユニットは、エチレンプロピレンゴム又はシリコーンゴムで構成されることが挙げられる。
(4) As one mode of the intermediate connection structure of the power cable of the present disclosure,
The rubber unit may be composed of ethylene propylene rubber or silicone rubber.
 エチレンプロピレンゴムは、比較的硬いゴムである。そのため、ゴムユニットをエチレンプロピレンゴムで構成することで、ゴムユニットを上記窪みに装着した後であってもゴムユニットを若干であれば動かすことができる。従って、ゴムユニットを所定位置に位置合わせし易い。一方、シリコーンゴムは、比較的柔らかいゴムである。そのため、ゴムユニットをシリコーンゴムで構成することで、ゴムユニットを上記窪みに嵌め込み易い。 Ethylene propylene rubber is a relatively hard rubber. Therefore, when the rubber unit is made of ethylene propylene rubber, the rubber unit can be slightly moved even after the rubber unit is mounted in the recess. Therefore, it is easy to position the rubber unit at a predetermined position. On the other hand, silicone rubber is a relatively soft rubber. Therefore, when the rubber unit is made of silicone rubber, the rubber unit can be easily fitted into the recess.
 [本開示の実施形態の詳細]
 以下、図面を参照して、本開示の実施形態を具体的に説明する。図面において同一符号は、同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiment of the Present Disclosure]
Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings. In the drawings, the same reference numerals indicate the same names. It should be noted that the present invention is not limited to these exemplifications, but is indicated by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
 <実施形態1>
 実施形態1に係る電力ケーブルの中間接続構造1Aを図1及び図2に基づいて説明する。図1は、電力ケーブルの中間接続構造1Aを長手方向に平行な平面で切断した縦断面である。なお、図1では、分かり易いように、電力ケーブル2のケーブル絶縁体22に設けられた第一傾斜部220の傾斜角度を誇張して図示している。図2は、ゴムユニット5Aを長手方向に平行な平面で切断した縦断面図である。図2に示すゴムユニット5Aは、図1に示す一組の電力ケーブル2が導体接続部3によって接続された組物に装着される前の状態である。
<First embodiment>
A power cable intermediate connection structure 1A according to the first embodiment will be described with reference to FIGS. FIG. 1 is a vertical cross section of the power cable intermediate connection structure 1A cut along a plane parallel to the longitudinal direction. In FIG. 1, the inclination angle of the first inclined portion 220 provided in the cable insulator 22 of the power cable 2 is exaggerated for easy understanding. FIG. 2 is a longitudinal sectional view of the rubber unit 5A cut along a plane parallel to the longitudinal direction. The rubber unit 5A shown in FIG. 2 is in a state before the set of power cables 2 shown in FIG.
 ≪電力ケーブルの中間接続構造≫
 〔概要〕
 電力ケーブルの中間接続構造1Aは、一組の電力ケーブル2のケーブル導体21同士を接続して電力ケーブル線路を構築する。この電力ケーブルの中間接続構造1Aは、電力ケーブル2と、導体接続部3と、ゴムユニット5Aとを備える。電力ケーブル2は、ケーブル導体21と、ケーブル絶縁体22と、ケーブル外部半導電層23とが段階的に露出された先端部を有する。導体接続部3は、露出されたケーブル導体21同士を接続する。ゴムユニット5Aは、導体接続部3を含む両電力ケーブル2の先端部の外周を覆うように配置される。実施形態1に係る電力ケーブルの中間接続構造1Aは、露出されたケーブル絶縁体22が、露出されたケーブル導体21側に向かって外径が小さくなる第一傾斜部220を有し、ゴムユニット5Aが、導体接続部3と各第一傾斜部220とで形成される窪みに嵌り込んで配置される点を特徴の一つとする。以下、電力ケーブルの中間接続構造1Aの構成について詳しく説明する。
中間 Intermediate connection structure of power cable≫
〔Overview〕
The power cable intermediate connection structure 1A connects the cable conductors 21 of a set of power cables 2 to construct a power cable line. This power cable intermediate connection structure 1A includes a power cable 2, a conductor connection portion 3, and a rubber unit 5A. The power cable 2 has a distal end in which the cable conductor 21, the cable insulator 22, and the cable outer semiconductive layer 23 are stepwise exposed. The conductor connection part 3 connects the exposed cable conductors 21 to each other. The rubber unit 5 </ b> A is arranged so as to cover the outer periphery of the distal end of both power cables 2 including the conductor connection 3. In the power cable intermediate connection structure 1A according to the first embodiment, the exposed cable insulator 22 has the first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 side, and the rubber unit 5A Is one of the features of the present invention in that it is disposed so as to fit into a recess formed by the conductor connection portion 3 and each first inclined portion 220. Hereinafter, the configuration of the power cable intermediate connection structure 1A will be described in detail.
 〔電力ケーブル〕
 電力ケーブル2は、その中心から順に、ケーブル導体21と、図示しないケーブル内部半導電層と、ケーブル絶縁体22と、ケーブル外部半導電層23と、ケーブル遮蔽層24と、シース25とを備える。この例の電力ケーブル2は、CVケーブルと呼ばれる架橋ポリエチレン絶縁ビニルシースケーブルである。
[Power cable]
The power cable 2 includes, in order from the center, a cable conductor 21, a cable internal semiconductive layer (not shown), a cable insulator 22, a cable external semiconductive layer 23, a cable shielding layer 24, and a sheath 25. The power cable 2 of this example is a crosslinked polyethylene insulated vinyl sheath cable called a CV cable.
 ケーブル導体21の構成材料は、導電性に優れる金属、例えば銅やアルミニウム、その合金などが挙げられる。ケーブル絶縁体22の構成材料は、電気絶縁性に優れる樹脂などが挙げられる。この例では架橋ポリエチレンである。ケーブル外部半導電層23の構成材料は、半導電性を有する樹脂などが挙げられる。ケーブル遮蔽層24は、導電性に優れる金属、例えば銅やアルミニウム、その合金などからなるテープや編組線などによって形成されることが挙げられる。シース25の構成材料は、ポリエチレンなどの樹脂が挙げられる。 構成 The constituent material of the cable conductor 21 is a metal having excellent conductivity, for example, copper, aluminum, or an alloy thereof. A constituent material of the cable insulator 22 includes a resin having excellent electric insulation. In this example, it is a crosslinked polyethylene. The constituent material of the cable external semiconductive layer 23 includes a resin having semiconductivity. The cable shielding layer 24 may be formed of a metal having excellent conductivity, for example, a tape or a braided wire made of copper, aluminum, an alloy thereof, or the like. A constituent material of the sheath 25 is a resin such as polyethylene.
 電力ケーブル2の基本的構成は公知の構成を参照できる。例えば、電力ケーブル2は、送電電圧が66kV以上の高圧用ケーブル、400kV以上、更には500kV以上といった超高圧用ケーブルなどとすることができる。 は The basic configuration of the power cable 2 can refer to a known configuration. For example, the power cable 2 can be a high-voltage cable having a transmission voltage of 66 kV or more, an ultra-high-voltage cable of 400 kV or more, or even 500 kV or more.
 各電力ケーブル2は、先端から順に、ケーブル導体21と、ケーブル絶縁体22と、ケーブル外部半導電層23とが段階的に露出された先端部を有する。露出されたケーブル絶縁体22は、露出されたケーブル導体21側に向かって外径が小さくなる第一傾斜部220を有する。第一傾斜部220は、例えば切削加工により形成される。ケーブル絶縁体22に第一傾斜部220を有することで、後述する導体接続部3と各第一傾斜部220とで窪みが形成される。本例では、導体接続部3の外周にスリーブカバー4を備える。そのため、窪みは、スリーブカバー4を介した状態で、導体接続部3と各第一傾斜部220とで形成される。 Each power cable 2 has a distal end in which a cable conductor 21, a cable insulator 22, and a cable outer semiconductive layer 23 are gradually exposed from the distal end. The exposed cable insulator 22 has a first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 side. The first inclined portion 220 is formed by, for example, cutting. By having the first inclined portion 220 in the cable insulator 22, a recess is formed between the conductor connecting portion 3 described below and each of the first inclined portions 220. In this example, a sleeve cover 4 is provided on the outer periphery of the conductor connection portion 3. Therefore, the depression is formed by the conductor connection portion 3 and each first inclined portion 220 with the sleeve cover 4 interposed therebetween.
 ケーブル絶縁体22は、成形法の関係から偏心や偏肉が生じて周方向に厚みが不均一になることがある。そのため、ケーブル絶縁体22は、厚みに裕度を持たせ、最小の規定外径である設計絶縁外径よりも大きな仕上がり絶縁外径を有する。第一傾斜部220は、細径側の外径が設計絶縁外径であり、太径側の外径が仕上がり絶縁外径である。第一傾斜部220は、仕上がり絶縁外径を有するケーブル絶縁体22に対して、露出されたケーブル導体21側が設計絶縁外径となるように切削加工などを施して形成される。 The cable insulator 22 may be uneven in thickness in the circumferential direction due to eccentricity or uneven thickness due to the molding method. For this reason, the cable insulator 22 has a thickness with a margin, and has a finished insulating outer diameter larger than the designed insulating outer diameter which is the minimum specified outer diameter. In the first inclined portion 220, the outer diameter on the smaller diameter side is the designed insulation outer diameter, and the outer diameter on the larger diameter side is the finished insulation outer diameter. The first inclined portion 220 is formed by performing a cutting process or the like on the cable insulator 22 having the finished insulating outer diameter so that the exposed cable conductor 21 has the designed insulating outer diameter.
 ケーブル絶縁体22の外径が大きいほど、つまりケーブル絶縁体22の厚みが厚いほど、ケーブル絶縁体22の外周に設けられるケーブル外部半導電層23の処理工法を簡素化できる。ケーブル外部半導電層23の処理工法は、ケーブル絶縁体22の外径に応じて工法が決められている。例えば、ケーブル絶縁体22の外径が122mm~124mmの場合、ある程度のスキルを要するA工法が確立されている。ケーブル絶縁体22の外径が126mm~128mmの場合、簡易なスキルで行えるB工法が確立されている。B工法は、A工法に比較して、ケーブル外部半導電層23を再形成する際に、材料を均一的に加熱及び加圧する点で簡易な処理工法である。第一傾斜部220の細径側の外径が設計絶縁外径であり、太径側の外径が仕上がり絶縁外径であることで、ケーブル絶縁体22の外径が設計絶縁外径にて一様な場合に比較して、ケーブル外部半導電層23の処理工法を簡素化できる。仕上がり絶縁外径は、設計絶縁外径に対して3%以上大きいと、ケーブル外部半導電層23の処理工法を簡素化できる傾向にある。設計絶縁外径は、114mm以上116mm以下、より大きい場合には120mm以上122mm以下が挙げられる。一方、仕上がり絶縁外径は、122mm以上124mm以下、より大きい場合には126mm以上128mm以下が挙げられる。 (4) As the outer diameter of the cable insulator 22 increases, that is, as the thickness of the cable insulator 22 increases, the method of processing the cable outer semiconductive layer 23 provided on the outer periphery of the cable insulator 22 can be simplified. The method of processing the cable outer semiconductive layer 23 is determined according to the outer diameter of the cable insulator 22. For example, when the outer diameter of the cable insulator 22 is 122 mm to 124 mm, the A method requiring a certain level of skill has been established. When the outer diameter of the cable insulator 22 is 126 mm to 128 mm, the B method that can be performed with a simple skill has been established. The B method is a simple processing method in that the material is uniformly heated and pressed when the cable outer semiconductive layer 23 is reformed as compared with the A method. The outer diameter on the smaller diameter side of the first inclined portion 220 is the design insulation outer diameter, and the outer diameter on the larger diameter side is the finished insulation outer diameter, so that the outer diameter of the cable insulator 22 is the design insulation outer diameter. The processing method of the cable outer semiconductive layer 23 can be simplified as compared with a uniform case. If the finished insulating outer diameter is larger than the designed insulating outer diameter by 3% or more, there is a tendency that the processing method of the cable outer semiconductive layer 23 can be simplified. The design insulation outer diameter is 114 mm or more and 116 mm or less, and 120 mm or more and 122 mm or less when it is larger. On the other hand, the finished insulating outer diameter may be 122 mm or more and 124 mm or less, and may be 126 mm or more and 128 mm or less when larger.
 この例では、ケーブル絶縁体22は、第一傾斜部220の細径側に設計絶縁外径を有し、第一傾斜部220に連続して電力ケーブル2の軸方向に沿って延びる細径側平坦部221を備える。後述するゴムユニット5Aは、内部半導電部52の両端部が第一傾斜部220と径方向に重複しないように配置される。詳細は後述するが、内部半導電部52の両端部が第一傾斜部220と径方向に重複しないことで、内部半導電部52の両端部における電界を低減できる。この例では、ゴムユニット5Aは、内部半導電部52の両端部が細径側平坦部221の径方向外方に位置するように配置されている。ケーブル絶縁体22は、細径側平坦部221を有さず、露出されたケーブル導体21側の端部からケーブル外部半導電層23側の端部まで連続して傾斜していてもよい。 In this example, the cable insulator 22 has a design insulation outer diameter on the small diameter side of the first inclined portion 220, and extends along the axial direction of the power cable 2 continuously to the first inclined portion 220. A flat portion 221 is provided. The rubber unit 5A described later is arranged such that both ends of the internal semiconductive portion 52 do not overlap the first inclined portion 220 in the radial direction. Although details will be described later, the electric field at both ends of the internal semiconductive portion 52 can be reduced by preventing the both ends of the internal semiconductive portion 52 from overlapping the first inclined portion 220 in the radial direction. In this example, the rubber unit 5A is arranged such that both ends of the internal semiconductive portion 52 are located radially outward of the small-diameter side flat portion 221. The cable insulator 22 may not have the narrow flat portion 221 and may be continuously inclined from the exposed end on the cable conductor 21 side to the end on the cable external semiconductive layer 23 side.
 この例の細径側平坦部221には、ケーブル絶縁体22の周方向に沿って凹部223が形成されている。この凹部223には、後述するスリーブカバー4の引っ掛け部42が嵌り込む。凹部223は、ケーブル絶縁体22の全周にわたって連続して設けられていてもよいし、断続的に適所に設けられていてもよい。この例の細径側平坦部221の端部には、更に径が細い平坦部を備える。この平坦部は、凹部223の底面の外径よりも大きく、細径側平坦部221の外径よりも小さい外径を有する。この平坦部によって、凹部223に引っ掛け部42が嵌められた状態において、細径側平坦部221の外周面と、スリーブカバー4の外周面とを面一にしている。 凹 部 A concave portion 223 is formed in the small-diameter side flat portion 221 in this example along the circumferential direction of the cable insulator 22. A hook 42 of the sleeve cover 4 described later fits into the recess 223. The concave portion 223 may be provided continuously over the entire circumference of the cable insulator 22 or may be provided intermittently at an appropriate position. At the end of the small-diameter side flat portion 221 in this example, a flat portion having a smaller diameter is provided. This flat portion has an outer diameter larger than the outer diameter of the bottom surface of the concave portion 223 and smaller than the outer diameter of the smaller-diameter flat portion 221. With this flat portion, the outer peripheral surface of the small-diameter side flat portion 221 and the outer peripheral surface of the sleeve cover 4 are flush with each other when the hook portion 42 is fitted in the concave portion 223.
 第一傾斜部220は、電力ケーブル2のサイズや電圧にもよるが、電力ケーブル2の軸方向に対する傾斜角が3°以上10°以下であることが挙げられる。第一傾斜部220の傾斜角が3°以上であることで、第一傾斜部220の細径側の外径と太径側の外径との径差を大きくできる。その結果、導体接続部3と各第一傾斜部220とで形成される窪みの深さを比較的深くできる。窪みの深さが深いことで、その窪みにゴムユニット5Aを安定して嵌め込み易い。よって、電力ケーブル2の軸力に対する引留め力を向上し易い。また、第一傾斜部220の細径側の外径に対して太径側の外径を大きくできる。従って、ケーブル外部半導電層23の処理工法をより簡素化し易い。一方、第一傾斜部220の傾斜角が10°以下であることで、導体接続部3と各第一傾斜部220とで形成される窪みにゴムユニット5Aを装着させた後であってもゴムユニット5Aを若干であれば動かすことができる。そのため、ゴムユニット5Aを所定位置に位置合わせし易い。また、電力ケーブル2の送電時、通電によりケーブル絶縁体22が熱膨張や熱伸縮をした際に、ゴムユニット5Aが追随し易い。第一傾斜部220の傾斜角は、更に4°以上9°以下、5°以上8°以下、特に6°以上8°以下であることが挙げられる。 The first inclined portion 220 may have an inclination angle of 3 ° or more and 10 ° or less with respect to the axial direction of the power cable 2 depending on the size and voltage of the power cable 2. When the inclination angle of the first inclined portion 220 is 3 ° or more, the diameter difference between the outer diameter on the small diameter side and the outer diameter on the large diameter side of the first inclined portion 220 can be increased. As a result, the depth of the depression formed by the conductor connection portion 3 and each of the first inclined portions 220 can be made relatively large. Since the depth of the depression is deep, the rubber unit 5A can be easily fitted in the depression stably. Therefore, the retaining force against the axial force of the power cable 2 can be easily improved. Further, the outer diameter on the large diameter side can be made larger than the outer diameter on the small diameter side of the first inclined portion 220. Therefore, the processing method of the cable outer semiconductive layer 23 can be easily simplified. On the other hand, since the inclination angle of the first inclined portion 220 is equal to or less than 10 °, even after the rubber unit 5A is mounted in the recess formed by the conductor connection portion 3 and each first inclined portion 220, The unit 5A can be slightly moved. Therefore, it is easy to position the rubber unit 5A at a predetermined position. Further, at the time of power transmission of the power cable 2, when the cable insulator 22 thermally expands or contracts due to energization, the rubber unit 5A easily follows. The inclination angle of the first inclined portion 220 is more preferably 4 ° to 9 °, 5 ° to 8 °, particularly 6 ° to 8 °.
 また、第一傾斜部220は、電力ケーブル2のサイズや電圧にもよるが、電力ケーブル2の軸方向に沿った長さが200mm以上400mm以下であることが挙げられる。第一傾斜部220における電力ケーブル2の軸方向に沿った長さが200mm以上であることで、電力ケーブル2の軸方向に沿って比較的長い領域に窪みを形成できる。また、第一傾斜部220の上記傾斜角が小さい場合であっても、第一傾斜部220の細径側の外径と太径側の外径との径差を大きくできる。その結果、導体接続部3と各第一傾斜部220とで形成される窪みの深さを比較的深くできる。電力ケーブル2に沿った窪みの長さが長く、かつ深さが深いことで、その窪みにゴムユニット5Aを安定して嵌め込み易い。よって、電力ケーブル2の軸力に対する引留め力を向上し易い。また、第一傾斜部220の細径側の外径に対して太径側の外径を大きくできる。従って、ケーブル外部半導電層23の処理工法をより簡素化し易い。一方、第一傾斜部220における電力ケーブル2の軸方向に沿った長さが400mm以下であることで、電力ケーブル2の接続部の大型化を抑制できる。第一傾斜部220における電力ケーブル2の軸方向に沿った長さは、更に220mm以上380mm以下、特に250mm以上350mm以下であることが挙げられる。 The length of the first inclined portion 220 along the axial direction of the power cable 2 is 200 mm or more and 400 mm or less, depending on the size and voltage of the power cable 2. When the length of the first inclined portion 220 along the axial direction of the power cable 2 is 200 mm or more, a depression can be formed in a relatively long region along the axial direction of the power cable 2. Further, even when the inclination angle of the first inclined portion 220 is small, the diameter difference between the outer diameter on the small diameter side and the outer diameter on the large diameter side of the first inclined portion 220 can be increased. As a result, the depth of the depression formed by the conductor connection portion 3 and each of the first inclined portions 220 can be made relatively large. Since the length of the depression along the power cable 2 is long and the depth is deep, the rubber unit 5A can be easily stably fitted into the depression. Therefore, the retaining force against the axial force of the power cable 2 can be easily improved. Further, the outer diameter on the large diameter side can be made larger than the outer diameter on the small diameter side of the first inclined portion 220. Therefore, the processing method of the cable outer semiconductive layer 23 can be easily simplified. On the other hand, when the length of the first inclined portion 220 along the axial direction of the power cable 2 is 400 mm or less, the enlargement of the connection portion of the power cable 2 can be suppressed. The length of the first inclined portion 220 along the axial direction of the power cable 2 may be 220 mm or more and 380 mm or less, particularly 250 mm or more and 350 mm or less.
 〔導体接続部〕
 導体接続部3は、電力ケーブル2の先端部において、露出されたケーブル導体21同士を接続する部材である。この例の導体接続部3は、各端面に開口する止まり穴を備える円筒状部材である。各止まり穴を電力ケーブル2のケーブル導体21の先端部が挿入される収納穴とする。各収納穴内に各ケーブル導体21が挿入された状態で圧縮接続することにより、導体接続部3は、ケーブル導体21同士を電気的に接続する。導体接続部3の構成材料は、導電性及び圧縮性に優れる金属、例えば銅やアルミニウム、その合金などが挙げられる。
(Conductor connection)
The conductor connection part 3 is a member that connects the exposed cable conductors 21 at the end of the power cable 2. The conductor connection part 3 of this example is a cylindrical member provided with blind holes that open on each end face. Each blind hole is a storage hole into which the tip of the cable conductor 21 of the power cable 2 is inserted. By performing compression connection in a state where each cable conductor 21 is inserted into each storage hole, the conductor connection portion 3 electrically connects the cable conductors 21 to each other. The constituent material of the conductor connection portion 3 includes a metal having excellent conductivity and compressibility, for example, copper, aluminum, and an alloy thereof.
 〔スリーブカバー〕
 この例では、電力ケーブルの中間接続構造1Aは、導体接続部3の外周を覆うスリーブカバー4を備える。スリーブカバー4は、導体接続部3を跨いで配置され、ケーブル絶縁体22における第一傾斜部220の細径側の領域同士を連結する円筒状部材である。スリーブカバー4は、周方向が分断される複数の分割片を組み合わせて円筒状部材に構成される。
[Sleeve cover]
In this example, the power cable intermediate connection structure 1 </ b> A includes a sleeve cover 4 that covers the outer periphery of the conductor connection portion 3. The sleeve cover 4 is a cylindrical member that is disposed across the conductor connection portion 3 and that connects regions on the small-diameter side of the first inclined portion 220 in the cable insulator 22. The sleeve cover 4 is configured as a cylindrical member by combining a plurality of divided pieces whose circumferential direction is divided.
 この例のスリーブカバー4は、導体接続部3の軸方向に沿って配置される本体部41と、本体部41の両端部に径方向内方に向かって突出する引っ掛け部42とを備える。引っ掛け部42は、ケーブル絶縁体22に形成された凹部223に対応した形状を有し、凹部223に係止される。また、スリーブカバー4は、引っ掛け部42の軸方向内側に環状の溝部43を備える。溝部43は、細径側平坦部221の端部に形成された平坦部に係止される。ケーブル絶縁体22同士がスリーブカバー4で連結されることで、ケーブル絶縁体22、すなわち電力ケーブル2が軸方向に動くことを抑制できる。このとき、スリーブカバー4の外径が軸方向に一様な場合、ケーブル絶縁体22間が略平坦となり、スリーブカバー4を介して導体接続部3の外周にゴムユニット5Aを配置し易い。スリーブカバー4の構成材料は、例えばアルミニウムやその合金などの金属材料や、カーボンなどの非金属導電材料などが挙げられる。 ス リ ー ブ The sleeve cover 4 of this example includes a main body 41 disposed along the axial direction of the conductor connection portion 3, and hooks 42 protruding radially inward at both ends of the main body 41. The hook portion 42 has a shape corresponding to the concave portion 223 formed in the cable insulator 22 and is locked in the concave portion 223. Further, the sleeve cover 4 includes an annular groove 43 inside the hook portion 42 in the axial direction. The groove 43 is engaged with a flat portion formed at the end of the small-diameter side flat portion 221. By connecting the cable insulators 22 with the sleeve cover 4, it is possible to suppress the cable insulator 22, that is, the power cable 2 from moving in the axial direction. At this time, when the outer diameter of the sleeve cover 4 is uniform in the axial direction, the space between the cable insulators 22 becomes substantially flat, and the rubber unit 5A is easily arranged on the outer periphery of the conductor connection portion 3 via the sleeve cover 4. Examples of a constituent material of the sleeve cover 4 include a metal material such as aluminum or an alloy thereof, and a nonmetallic conductive material such as carbon.
 この例では、ケーブル絶縁体22と導体接続部3との間に隙間が形成されており、この隙間には、半導電性テープ層などが設けられる。この例では、スリーブカバー4を設けたが、スリーブカバー4に代えて、ケーブル絶縁体22と導体接続部3との間の隙間から導体接続部3の外周にわたって半導電テープ層を設けることができる。 で は In this example, a gap is formed between the cable insulator 22 and the conductor connection portion 3, and a semiconductive tape layer or the like is provided in the gap. In this example, the sleeve cover 4 is provided. However, instead of the sleeve cover 4, a semiconductive tape layer can be provided from the gap between the cable insulator 22 and the conductor connection portion 3 to the outer periphery of the conductor connection portion 3. .
 〔ゴムユニット〕
 ゴムユニット5Aは、電力ケーブルの中間接続構造1Aの主絶縁に用いられる円筒状部材である。ゴムユニット5Aは、主絶縁部51と、主絶縁部51の内周側かつ軸方向中央部に設けられる円筒状の内部半導電部52と、主絶縁部51の各端部側に設けられる外部半導電部53とを備える。この例の外部半導電部53は、主絶縁部51の一方の端部から他方の端部まで主絶縁部51の端面及び外周を覆うように設けられる。つまり、外部半導電部53は、両端面を有する円筒状となっている。外部半導電部は、主絶縁部の各端部に設けられる端部側外部半導電部と、主絶縁部の外周部分に設けられる外周側外部半導電部とを備え、端部側外部半導電部と外周側外部半導電部とが主絶縁部により電気的に縁切りされていてもよい。
[Rubber unit]
The rubber unit 5A is a cylindrical member used for main insulation of the power cable intermediate connection structure 1A. The rubber unit 5 </ b> A includes a main insulating portion 51, a cylindrical internal semiconductive portion 52 provided on an inner peripheral side and an axial center portion of the main insulating portion 51, and an external provided on each end side of the main insulating portion 51. And a semiconductive portion 53. The external semiconductive portion 53 of this example is provided so as to cover the end face and the outer periphery of the main insulating portion 51 from one end to the other end of the main insulating portion 51. That is, the external semiconductive portion 53 has a cylindrical shape having both end surfaces. The external semiconductive portion includes an end external semiconductive portion provided at each end of the main insulating portion, and an outer peripheral semiconductive portion provided at an outer peripheral portion of the main insulating portion. The portion and the outer peripheral semiconductive portion may be electrically separated by the main insulating portion.
 ゴムユニット5Aは、図2に示すように、主絶縁部51と内部半導電部52と外部半導電部53とが一体に成形された成形物である。主絶縁部51と内部半導電部52と外部半導電部53とが一体に成形された成形物であることで、ゴムユニット5Aの品質管理を工場で行うことができる。そのため、電力ケーブルの中間接続構造1Aの品質を向上できる。また、主絶縁部51と内部半導電部52と外部半導電部53とが一体に成形された成形物であることで、電力ケーブルの中間接続構造1Aの組立時に、ゴムユニット5Aを装着し易い。 The rubber unit 5A is, as shown in FIG. 2, a molded product in which a main insulating portion 51, an inner semiconductive portion 52, and an outer semiconductive portion 53 are integrally formed. Since the main insulating part 51, the inner semiconductive part 52, and the outer semiconductive part 53 are integrally formed, the quality control of the rubber unit 5A can be performed at the factory. Therefore, the quality of the power cable intermediate connection structure 1A can be improved. Further, since the main insulating portion 51, the inner semiconductive portion 52, and the outer semiconductive portion 53 are integrally formed, the rubber unit 5A can be easily attached at the time of assembling the intermediate connection structure 1A of the power cable. .
 ゴムユニット5Aは、一組の電力ケーブル2が導体接続部3によって接続された組物に装着された状態において、一方の電力ケーブル2のケーブル外部半導電層23の外周から、スリーブカバー4の外周を経て、他方の電力ケーブル2のケーブル外部半導電層23の外周にわたる領域を連続して覆う。 The rubber unit 5 </ b> A is configured such that, when one set of power cables 2 is attached to a set connected by the conductor connection portion 3, the outer circumference of the cable outer semi-conductive layer 23 of one power cable 2 starts from the outer circumference of the sleeve cover 4. , A region covering the outer periphery of the cable outer semiconductive layer 23 of the other power cable 2 is continuously covered.
 内部半導電部52は、導体接続部3の外周を覆うように配置される。内部半導電部52は、スリーブカバー4を介して導体接続部3に接続され、ケーブル導体21と同電位となる。つまり、内部半導電部52は、高電位となる。内部半導電部52は、両端部がケーブル絶縁体22の第一傾斜部220と径方向に重複しないように設けられる。内部半導電部52の両端部が第一傾斜部220と径方向に重複すると、内部半導電部52の両端部が第一傾斜部220の傾斜に沿って径方向外方に向いてしまい、内部半導電部52の両端部に電界が集中するからである。内部半導電部52の両端部は、ゴムユニット5Aの軸方向に沿った方向、又は径方向内方に向かう方向に向いていることが好ましい。 The inner semiconductive portion 52 is arranged so as to cover the outer periphery of the conductor connection portion 3. The internal semiconductive portion 52 is connected to the conductor connecting portion 3 via the sleeve cover 4 and has the same potential as the cable conductor 21. That is, the internal semiconductive portion 52 has a high potential. The inner semiconductive portion 52 is provided such that both ends do not overlap the first inclined portion 220 of the cable insulator 22 in the radial direction. When both ends of the inner semiconductive portion 52 radially overlap the first inclined portion 220, both ends of the inner semiconductive portion 52 face radially outward along the inclination of the first inclined portion 220, and This is because the electric field concentrates on both ends of the semiconductive portion 52. It is preferable that both end portions of the inner semiconductive portion 52 are oriented in a direction along the axial direction of the rubber unit 5A or in a direction inward in the radial direction.
 この例では、内部半導電部52は、導体接続部3と径方向に重複する基部521と、導体接続部3と径方向に重複しない突出部522とを備える。突出部522は、基部521の軸方向両端部における外周側の領域からそれぞれ突出する。内部半導電部52に突出部522を備えることで、等電位線が内部半導電部52の端部からケーブル絶縁体22の切断端面側に回り込むことを抑制できる。突出部522は、基部521の外周側の領域から軸方向に突出しており、ケーブル絶縁体22との間に主絶縁部51の一部を介在した状態で配置される。ゴムユニット5Aは、内部半導電部52の突出部522がケーブル絶縁体22の第一傾斜部220と径方向に重複しないように配置される。この例では、ゴムユニット5Aは、内部半導電部52の突出部522がケーブル絶縁体22の細径側平坦部221の径方向外方に位置するように配置されている。そうすることで、突出部522における突出方向が、ゴムユニット5Aの軸方向に沿った方向となる。 In this example, the inner semiconductive portion 52 includes a base portion 521 that radially overlaps with the conductor connection portion 3 and a protrusion 522 that does not overlap with the conductor connection portion 3 in the radial direction. The protruding portions 522 protrude from regions on the outer peripheral side at both ends in the axial direction of the base portion 521, respectively. By providing the protruding portion 522 on the inner semiconductive portion 52, it is possible to prevent equipotential lines from going from the end of the inner semiconductive portion 52 to the cut end surface side of the cable insulator 22. The protruding portion 522 protrudes in the axial direction from a region on the outer peripheral side of the base portion 521, and is arranged with a part of the main insulating portion 51 interposed between the protruding portion 522 and the cable insulator 22. The rubber unit 5A is arranged such that the protruding portion 522 of the inner semiconductive portion 52 does not overlap the first inclined portion 220 of the cable insulator 22 in the radial direction. In this example, the rubber unit 5A is arranged such that the protruding portion 522 of the inner semiconductive portion 52 is located radially outward of the small-diameter side flat portion 221 of the cable insulator 22. By doing so, the protruding direction of the protruding portion 522 becomes a direction along the axial direction of the rubber unit 5A.
 各外部半導電部53は、各ケーブル外部半導電層23に接触し、接地電位となる。つまり、各外部半導電部53は、低電位となる。内部半導電部52と各外部半導電部53との間に位置する主絶縁部51は、各ケーブル絶縁体22に接触する。 (4) Each external semiconductive portion 53 comes into contact with each cable external semiconductive layer 23 to be at the ground potential. That is, each external semiconductive portion 53 has a low potential. The main insulating portion 51 located between the inner semiconductive portion 52 and each outer semiconductive portion 53 contacts each cable insulator 22.
 ゴムユニット5Aは、各電力ケーブル2と、スリーブカバー4を介した導体接続部3とに所定の面圧で密着する。本実施形態1の電力ケーブルの中間接続構造1Aは、ケーブル絶縁体22の第一傾斜部220と、スリーブカバー4とで窪みが形成されている。そのため、ゴムユニット5Aの内周側の領域は、この窪みに嵌り込んで配置されている。 (5) The rubber unit 5A closely adheres to each power cable 2 and the conductor connection portion 3 via the sleeve cover 4 with a predetermined surface pressure. In the power cable intermediate connection structure 1 </ b> A according to the first embodiment, a depression is formed by the first inclined portion 220 of the cable insulator 22 and the sleeve cover 4. For this reason, the area on the inner peripheral side of the rubber unit 5A is fitted into the depression and arranged.
 ゴムユニット5Aは、一組の電力ケーブル2が導体接続部3によって接続された組物に装着される前は、図2に示すように、内径が軸方向に沿って略一様であると共に、中央部分の外径が軸方向に沿って略一様である。上記組物に装着される前のゴムユニット5Aの内径は、ケーブル絶縁体22の設計絶縁外径に対応した内径であり、組物におけるスリーブカバー4の外径よりも若干小さい。ゴムユニット5Aは、設計絶縁外径に対応したゴムユニット内径を有するため、ケーブル絶縁体22の仕上がり絶縁外径にばらつきが生じた場合であっても、単一の大きさのものを利用できる。ゴムユニット5Aは、拡径されて上記組物に装着される。 Before the rubber unit 5A is attached to the set connected by the conductor connection part 3, the inner diameter of the rubber unit 5A is substantially uniform along the axial direction, as shown in FIG. The outer diameter of the central portion is substantially uniform along the axial direction. The inner diameter of the rubber unit 5A before being attached to the above-described braid is an inner diameter corresponding to the designed insulation outer diameter of the cable insulator 22, and is slightly smaller than the outer diameter of the sleeve cover 4 in the braid. Since the rubber unit 5A has a rubber unit inner diameter corresponding to the designed insulating outer diameter, a unit having a single size can be used even when the finished insulating outer diameter of the cable insulator 22 varies. The rubber unit 5A is expanded in diameter and mounted on the above assembly.
 ゴムユニット5Aは、上記組物に装着されると、上記窪みに嵌り込んで配置される。具体的には、ゴムユニット5Aは、図1に示すように、ゴムユニット5Aの両端部の外部半導電部53がケーブル外部半導電層23に接触するように上記窪みの外側に位置し、内部半導電部52が上記窪みの最も深い部分に位置するように配置される。そのため、ゴムユニット5Aは、上記組物に装着された後は、上記窪みに沿うように軸方向中央部の外面に窪みが形成される。 (5) When the rubber unit 5A is mounted on the braid, the rubber unit 5A is fitted and disposed in the recess. Specifically, as shown in FIG. 1, the rubber unit 5A is located outside the recess so that the external semiconductive portions 53 at both ends of the rubber unit 5A are in contact with the cable external semiconductive layer 23. The semiconductive portion 52 is arranged so as to be located at the deepest portion of the depression. For this reason, after the rubber unit 5A is mounted on the above-mentioned braid, a dent is formed on the outer surface of the central portion in the axial direction along the dent.
 ゴムユニット5Aは、上記組物に装着される前は、内径が軸方向に沿って略一様である。そのため、上記組物に装着された後のゴムユニット5Aは、相対的に内部半導電部52の拡径率が小さく、外部半導電部53の拡径率が大きい。よって、ゴムユニット5Aは、相対的にスリーブカバー4に与える面圧が小さく、ケーブル外部半導電層23に与える面圧が大きい。 Before the rubber unit 5A is mounted on the above-mentioned braid, the inner diameter is substantially uniform along the axial direction. Therefore, in the rubber unit 5A after being mounted on the above-described assembly, the diameter of the inner semiconductive portion 52 is relatively small and the diameter of the outer semiconductive portion 53 is relatively large. Therefore, in the rubber unit 5A, the surface pressure applied to the sleeve cover 4 is relatively small, and the surface pressure applied to the cable external semiconductive layer 23 is relatively large.
 主絶縁部51の構成材料は、電気絶縁性を有するゴム、例えば絶縁性エチレンプロピレンゴムや絶縁性シリコーンゴムなどが挙げられる。内部半導電部52及び外部半導電部53の構成材料は、半導電性を有するゴム、例えば半導電性エチレンプロピレンゴムや半導電性シリコーンゴムなどが挙げられる。ゴムユニット5Aがエチレンプロピレンゴムで構成される場合、ゴムユニット5Aが上記窪みに嵌り込んだ状態でゴムユニット5Aを若干であれば動かすことができる。従って、上記組物への装着後であっても、ゴムユニット5Aを所定位置に位置合わせし易い。 構成 As a constituent material of the main insulating portion 51, a rubber having an electric insulating property, for example, an insulating ethylene propylene rubber, an insulating silicone rubber, or the like can be given. The constituent material of the inner semiconductive portion 52 and the outer semiconductive portion 53 includes rubber having semiconductivity, for example, semiconductive ethylene propylene rubber and semiconductive silicone rubber. When the rubber unit 5A is made of ethylene propylene rubber, the rubber unit 5A can be slightly moved while the rubber unit 5A is fitted in the recess. Therefore, the rubber unit 5A can be easily positioned at a predetermined position even after being mounted on the above-described assembly.
 ≪電力ケーブルの中間接続構造の組立方法≫
 電力ケーブルの中間接続構造1Aは、代表的には、電力ケーブル2のケーブル絶縁体22に第一傾斜部220を形成する工程と、導体接続部3を装着する工程と、ゴムユニット5Aを装着する工程とを経て組み立てられる。この例では、更にスリーブカバー4を装着する工程を行う。
組 立 Method of assembling power cable intermediate connection structure≪
The power cable intermediate connection structure 1A typically includes a step of forming the first inclined portion 220 in the cable insulator 22 of the power cable 2, a step of mounting the conductor connection section 3, and a step of mounting the rubber unit 5A. Assembled through the process. In this example, a step of mounting the sleeve cover 4 is further performed.
 電力ケーブル2として、ケーブル絶縁体22の外径が軸方向に一様な仕上がり絶縁外径であるものを用意する。仕上がり絶縁外径は、例えば、設計絶縁外径に対して3%以上大きい外径である。用意した電力ケーブル2の端部を段剥ぎして、ケーブル導体21と、ケーブル絶縁体22と、ケーブル外部半導電層23とを段階的に露出させる。ケーブル絶縁体22には、例えば切削加工により、露出されたケーブル導体21側に向かって外径が小さくなる第一傾斜部220を形成する。このとき、第一傾斜部220の太径側の外径を仕上がり絶縁外径とし、細径側の外径を設計絶縁外径とする。第一傾斜部220における電力ケーブル2の軸方向に沿った長さや、傾斜角などについては、所望の長さや傾斜角などになるように加工を行えばよい。また、ケーブル絶縁体22には、第一傾斜部220の形成と同時に、細径側平坦部221や凹部223も形成する。 Prepare a power cable 2 in which the outer diameter of the cable insulator 22 is a finished insulating outer diameter that is uniform in the axial direction. The finished insulating outer diameter is, for example, an outer diameter larger than the designed insulating outer diameter by 3% or more. The end of the prepared power cable 2 is peeled off stepwise, so that the cable conductor 21, the cable insulator 22, and the cable outer semiconductive layer 23 are exposed stepwise. The cable insulator 22 is formed with a first inclined portion 220 whose outer diameter decreases toward the exposed cable conductor 21 by, for example, cutting. At this time, the outer diameter on the large diameter side of the first inclined portion 220 is the finished insulation outer diameter, and the outer diameter on the small diameter side is the design insulation outer diameter. The length and the inclination angle of the first inclined portion 220 along the axial direction of the power cable 2 may be processed so that the desired length and the inclination angle are obtained. In addition, on the cable insulator 22, simultaneously with the formation of the first inclined portion 220, a small-diameter side flat portion 221 and a concave portion 223 are also formed.
 露出させた各ケーブル導体21をそれぞれ導体接続部3の収納穴に挿入し、圧縮することで、ケーブル導体21同士を接続する。このとき、各ケーブル導体21を導体接続部3の収納穴に挿入する前に、ゴムユニット5Aは、拡径治具やインナースパイラルコアなどの図示しない拡径保持材によって拡径した状態で、電力ケーブル2に挿通して逃がしておく。 (4) Each of the exposed cable conductors 21 is inserted into a storage hole of the conductor connection portion 3 and compressed, thereby connecting the cable conductors 21 to each other. At this time, before each cable conductor 21 is inserted into the storage hole of the conductor connection portion 3, the rubber unit 5A is powered by a diameter-expanding jig or an inner spiral core or the like in a state where the diameter is expanded. Insert the cable 2 and release it.
 露出させたケーブル絶縁体22における第一傾斜部220の細径側の領域同士をスリーブカバー4で連結する。この例では、スリーブカバー4を構成する各分割片の引っ掛け部42をケーブル絶縁体22に形成された凹部223に係止させ、各分割片を組付けて円筒状にする。 (4) The exposed portions of the cable insulator 22 on the small-diameter side of the first inclined portion 220 are connected by the sleeve cover 4. In this example, the hooks 42 of the divided pieces constituting the sleeve cover 4 are engaged with the concave portions 223 formed in the cable insulator 22, and the divided pieces are assembled into a cylindrical shape.
 導体接続部3を跨いでスリーブカバー4を配置したら、拡径状態のゴムユニット5Aを所定の位置に移動させてから拡径保持材を抜き取る。その結果、ゴムユニット5Aは、収縮し、各ケーブル絶縁体22の第一傾斜部220とスリーブカバー4とで形成される窪みに嵌り込んで配置され、ケーブル絶縁体22、ケーブル外部半導電層23、スリーブカバー4に密着する。 (4) When the sleeve cover 4 is disposed across the conductor connection portion 3, the rubber unit 5A in the expanded state is moved to a predetermined position, and then the expanded holding material is removed. As a result, the rubber unit 5A shrinks and is fitted into the recess formed by the first inclined portion 220 of each cable insulator 22 and the sleeve cover 4 to be disposed, so that the cable insulator 22, the cable outer semiconductive layer 23 And the sleeve cover 4.
 ≪用途≫
 実施形態1の電力ケーブルの中間接続構造1Aは、地中送電用などの各種の電力ケーブル線路において電力ケーブル2同士の接続箇所に好適に利用できる。電力ケーブルの中間接続構造1Aは、地中布設される場合、マンホールや洞道内などに設置される。
≪Application≫
The power cable intermediate connection structure 1A according to the first embodiment can be suitably used as a connection point between the power cables 2 in various power cable lines for underground power transmission and the like. If the power cable intermediate connection structure 1A is laid underground, it is installed in a manhole, a cave, or the like.
 ≪効果≫
 実施形態1に係る電力ケーブルの中間接続構造1Aは、ゴムユニット5Aが、主絶縁部51と、内部半導電部52と、外部半導電部53とが一体に成形された成形物である。そのため、ゴムユニット5Aの品質管理を工場で行うことができ、かつ現場にてゴムユニット5Aを装着し易い。
≪Effect≫
The intermediate connection structure 1A of the power cable according to the first embodiment is a molded product in which the rubber unit 5A is integrally formed with the main insulating portion 51, the inner semiconductive portion 52, and the outer semiconductive portion 53. Therefore, the quality control of the rubber unit 5A can be performed at the factory, and the rubber unit 5A can be easily mounted on site.
 上記電力ケーブルの中間接続構造1Aは、導体接続部3と各ケーブル絶縁体22の第一傾斜部220とで形成される窪みにゴムユニット5Aが嵌り込んで配置される。そのため、ゴムユニット5Aが窪みに安定して保持され、電力ケーブル2の軸力に対する引留め力を向上できる。このような電力ケーブルの中間接続構造1Aは、電力ケーブル2の軸力が大きい場合であっても、ゴムユニット5Aの所定位置からのずれを抑制できる。ゴムユニット5Aを所定位置で保持できることで、電力ケーブル2の接続部における絶縁性や耐水性を確保することができる。従って、上記接続部の信頼性を維持することができる。ゴムユニット5Aがエチレンプロピレンゴムで構成されると、ゴムユニット5Aが上記窪みに装着された後であってもゴムユニット5Aを若干であれば動かすことができる。そのため、ゴムユニット5Aを所定位置に位置合わせし易い。つまり、上記電力ケーブルの中間接続構造1Aは、ゴムユニット5Aを所定位置に位置合わせし易く、位置合わせ後は、ゴムユニット5Aが電力ケーブル2に対して軸方向に動き難い。 In the power cable intermediate connection structure 1 </ b> A, the rubber unit 5 </ b> A is disposed so as to fit into a recess formed by the conductor connection portion 3 and the first inclined portion 220 of each cable insulator 22. Therefore, the rubber unit 5A is stably held in the depression, and the retaining force against the axial force of the power cable 2 can be improved. Such a power cable intermediate connection structure 1A can suppress the deviation of the rubber unit 5A from a predetermined position even when the power cable 2 has a large axial force. Since the rubber unit 5A can be held at a predetermined position, insulation and water resistance at the connection portion of the power cable 2 can be ensured. Therefore, the reliability of the connection portion can be maintained. When the rubber unit 5A is made of ethylene propylene rubber, the rubber unit 5A can be slightly moved even after the rubber unit 5A is mounted in the recess. Therefore, it is easy to position the rubber unit 5A at a predetermined position. In other words, the power cable intermediate connection structure 1A easily aligns the rubber unit 5A at a predetermined position, and after the alignment, the rubber unit 5A does not easily move in the axial direction with respect to the power cable 2.
 上記電力ケーブルの中間接続構造1Aは、設計絶縁外径よりも大きい仕上がり絶縁外径のケーブル絶縁体22を有する電力ケーブル2を用いることで、電力ケーブル2の先端部を段階的に露出する際に、ケーブル外部半導電層23の処理工法を簡素化できる。具体的には、設計絶縁外径よりも3%以上大きい仕上がり絶縁外径のケーブル絶縁体22を有する電力ケーブル2を用いることで、ケーブル外部半導電層23の処理工法を簡素化できる。ケーブル外部半導電層23の処理工法は、ケーブル絶縁体22の厚みが厚いほど、つまりケーブル絶縁体22の外径が大きいほど簡素化できるからである。一方で、上記電力ケーブルの中間接続構造1Aは、ケーブル絶縁体22に第一傾斜部220を備えるため、第一傾斜部220の細径側の外径を設計絶縁外径とすることができる。その結果、仕上がり絶縁外径の大きさによらず、設計絶縁外径に対応したゴムユニット内径を有するゴムユニット5Aを用いることができる。以上より、上記電力ケーブルの中間接続構造1Aでは、設計絶縁外径に対応したゴムユニット内径を有するゴムユニット5Aを用いることができ、かつケーブル外部半導電層23の処理工法を簡素化できる。 The intermediate connection structure 1A of the power cable uses the power cable 2 having the cable insulator 22 having a finished insulation outer diameter larger than the design insulation outer diameter, so that the tip end of the power cable 2 is exposed stepwise. In addition, the processing method for the cable outer semiconductive layer 23 can be simplified. Specifically, by using a power cable 2 having a cable insulator 22 having a finished insulation outer diameter that is 3% or more larger than a designed insulation outer diameter, a method of treating the cable outer semiconductive layer 23 can be simplified. This is because the method of processing the cable outer semiconductive layer 23 can be simplified as the thickness of the cable insulator 22 is larger, that is, as the outer diameter of the cable insulator 22 is larger. On the other hand, in the power cable intermediate connection structure 1A, since the cable insulator 22 includes the first inclined portion 220, the outer diameter of the first inclined portion 220 on the smaller diameter side can be set as the design insulation outer diameter. As a result, a rubber unit 5A having a rubber unit inner diameter corresponding to the designed insulating outer diameter can be used regardless of the finished insulating outer diameter. As described above, in the power cable intermediate connection structure 1A, the rubber unit 5A having the rubber unit inner diameter corresponding to the designed insulation outer diameter can be used, and the method of treating the cable outer semiconductive layer 23 can be simplified.
 また、上記電力ケーブルの中間接続構造1Aは、第一傾斜部220の太径側の外径が仕上がり絶縁外径であることで、設計絶縁外径の場合に比較してケーブル絶縁体22の厚みが厚く、ケーブル外部半導電層23の直下の電界を低減できる。 In addition, the power cable intermediate connection structure 1A has a thickness of the cable insulator 22 which is larger than that of the design insulation outer diameter because the outer diameter on the large diameter side of the first inclined portion 220 is the finished insulation outer diameter. And the electric field directly below the cable external semiconductive layer 23 can be reduced.
 <実施形態2>
 実施形態2に係る電力ケーブルの中間接続構造1Bを図3及び図4に基づいて説明する。図3は、電力ケーブルの中間接続構造1Bを長手方向に平行な平面で切断した縦断面である。図4は、ゴムユニット5Bを長手方向に平行な平面で切断した縦断面図である。図4に示すゴムユニット5Bは、図3に示す一組の電力ケーブル2が導体接続部3によって接続された組物に装着される前の状態である。図3及び図4では、実施形態1と同様の機能を有する構成に実施形態1と同一の符号を付している。実施形態2に係る電力ケーブルの中間接続構造1Bは、ゴムユニット5Bの形状が、実施形態1に係る電力ケーブルの中間接続構造1Aと異なる。以下、本実施形態では、実施形態1との相違点を中心に説明する。
<Embodiment 2>
A power cable intermediate connection structure 1B according to a second embodiment will be described with reference to FIGS. FIG. 3 is a vertical cross section of the power cable intermediate connection structure 1B cut along a plane parallel to the longitudinal direction. FIG. 4 is a longitudinal sectional view of the rubber unit 5B cut along a plane parallel to the longitudinal direction. The rubber unit 5B shown in FIG. 4 is in a state before the set of power cables 2 shown in FIG. 3 and 4, components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment. The power cable intermediate connection structure 1B according to the second embodiment differs from the power cable intermediate connection structure 1A according to the first embodiment in the shape of the rubber unit 5B. Hereinafter, the present embodiment will be described focusing on differences from the first embodiment.
 この例のゴムユニット5Bは、一組の電力ケーブル2が導体接続部3によって接続された組物に装着される前は、図4に示すように、その内周面に、両端部から軸方向中央部に向かって膨らむ膨らみ部54を備える。この膨らみ部54は、図3に示すスリーブカバー4と各ケーブル絶縁体22の第一傾斜部220とで形成される窪みに対応した面で構成される。即ち、膨らみ部54の軸方向中央部の内径は、軸方向に一様である。膨らみ部54の中央部から両端側に延びる傾斜部の内径は、両端側に向かうに従って広がる。膨らみ部54の軸方向中央部の内径は、ケーブル絶縁体22の設計絶縁外径に対応した内径である。この例では、ゴムユニット5Bの両端部の内径は、ケーブル絶縁体22の仕上がり絶縁外径に対応した内径である。ゴムユニット5Bの中央部、傾斜部、及び両端部の各内径は、組物におけるスリーブカバー4の外径、第一傾斜部220の外径、及びケーブル絶縁体22の仕上がり絶縁外径よりも若干小さい。内部半導電部52は、膨らみ部54の一様な内径領域に設けられている。ゴムユニット5Bは、その軸方向中央部の外径が軸方向に沿って略一様である。 Before the rubber unit 5B of this example is mounted on a set connected by the conductor connection part 3 to the power cable 2 as shown in FIG. A bulging portion 54 bulging toward the center is provided. The bulging portion 54 has a surface corresponding to a depression formed by the sleeve cover 4 shown in FIG. 3 and the first inclined portion 220 of each cable insulator 22. That is, the inner diameter of the bulging portion 54 at the central portion in the axial direction is uniform in the axial direction. The inner diameter of the inclined portion extending from the central portion of the bulging portion 54 to both ends increases toward the both ends. The inner diameter of the bulging portion 54 at the central portion in the axial direction is an inner diameter corresponding to the designed insulating outer diameter of the cable insulator 22. In this example, the inner diameter of both ends of the rubber unit 5B is an inner diameter corresponding to the finished insulating outer diameter of the cable insulator 22. The inner diameters of the central portion, the inclined portion, and both ends of the rubber unit 5B are slightly smaller than the outer diameter of the sleeve cover 4 in the braid, the outer diameter of the first inclined portion 220, and the finished insulating outer diameter of the cable insulator 22. small. The internal semiconductive portion 52 is provided in a uniform inner diameter region of the bulging portion 54. The outer diameter of the rubber unit 5B at the central portion in the axial direction is substantially uniform along the axial direction.
 ゴムユニット5Bは、上記組物に装着されると、ケーブル絶縁体22の第一傾斜部220と、スリーブカバー4とで形成される窪みに膨らみ部54が嵌り込んで配置される。ゴムユニット5Bは、図3に示すように、ゴムユニット5Bの両端部の外部半導電部53がケーブル外部半導電層23に接触するように上記窪みの外側に位置し、内部半導電部52が上記窪みの最も深い部分に位置するように配置される。ゴムユニット5Bは、その内周面に膨らみ部54を備えるため、上記組物に装着された後でも、軸方向中央部の外径は略一様のままである。 When the rubber unit 5B is mounted on the above-described assembly, the bulge portion 54 is fitted and disposed in a depression formed by the first inclined portion 220 of the cable insulator 22 and the sleeve cover 4. As shown in FIG. 3, the rubber unit 5B is located outside the recess so that the outer semiconductive portions 53 at both ends of the rubber unit 5B are in contact with the cable outer semiconductive layer 23. It is arranged to be located at the deepest part of the depression. Since the rubber unit 5B has the bulging portion 54 on the inner peripheral surface thereof, the outer diameter of the central portion in the axial direction remains substantially uniform even after the rubber unit 5B is mounted on the braid.
 ゴムユニット5Bは、上記組物に装着される前は、図3に示すスリーブカバー4、各ケーブル絶縁体22、及び各ケーブル外部半導電層23に沿った内径を有する。そのため、上記組物に装着された後は、内部半導電部52の拡径率と外部半導電部53の拡径率とが略等しい。よって、ゴムユニット5Bは、スリーブカバー4を介して導体接続部3に与える面圧と、ケーブル外部半導電層23に与える面圧とがほぼ等しい。 The rubber unit 5B has an inner diameter along the sleeve cover 4, each cable insulator 22, and each cable outer semiconductive layer 23 shown in FIG. Therefore, after being mounted on the above-described assembly, the diameter of the inner semiconductive portion 52 and the diameter of the outer semiconductive portion 53 are substantially equal. Therefore, in the rubber unit 5B, the surface pressure applied to the conductor connection portion 3 via the sleeve cover 4 is substantially equal to the surface pressure applied to the cable external semiconductive layer 23.
 実施形態2に係る電力ケーブルの中間接続構造1Bは、実施形態1と同様に、電力ケーブル2のケーブル絶縁体22に第一傾斜部220を形成する工程と、導体接続部3を装着する工程と、スリーブカバー4を装着する工程と、ゴムユニット5Bを装着する工程とを経て組み立てられる。この例のゴムユニット5Bは、内周側に膨らみ部54を備えるため、ゴムユニット5Bを拡径する拡径治具としては、例えば膨らみ部54の最も膨らむ位置、つまりゴムユニット5Bの軸方向中央位置を境界に両端の各々に抜き取り可能な一対の拡径治具を用いることが挙げられる。 The intermediate connection structure 1B for a power cable according to the second embodiment includes, similarly to the first embodiment, a process of forming the first inclined portion 220 in the cable insulator 22 of the power cable 2 and a process of mounting the conductor connection portion 3. And the process of mounting the sleeve cover 4 and the process of mounting the rubber unit 5B. Since the rubber unit 5B of this example includes the bulging portion 54 on the inner peripheral side, as a diameter-expanding jig for expanding the diameter of the rubber unit 5B, for example, the position where the bulging portion 54 bulges most, that is, the axial center of the rubber unit 5B The use of a pair of diameter-expanding jigs that can be extracted at both ends with the position as a boundary may be used.
 実施形態2に係る電力ケーブルの中間接続構造1Bにおいても、実施形態1と同様に、導体接続部3と各ケーブル絶縁体22の第一傾斜部220とで形成される窪みにゴムユニット5Bが嵌り込んで配置される。そのため、ゴムユニット5Bが窪みに安定して保持され、電力ケーブル2の軸力に対する引留め力を向上できる。従って、上記電力ケーブルの中間接続構造1Bは、電力ケーブル2の軸力が大きい場合であっても、ゴムユニット5Bの所定位置からのずれを抑制できる。また、上記電力ケーブルの中間接続構造1Bは、第一傾斜部220の細径側の外径を設計絶縁外径とし、太径側の外径を仕上がり絶縁外径とする。そのため、上記電力ケーブルの中間接続構造1Bは、設計絶縁外径に対応したゴムユニット内径を有するゴムユニット5Bを用いることができ、かつケーブル外部半導電層23の処理工法を簡素化できる。なお、上記ゴムユニット5Bは、内周側に上記窪みに対応した内周面を有する膨らみ部54を備えるため、上記窪みに装着した状態で、電力ケーブル2の軸方向に沿って略一様な面圧を与えることができる。 In the power cable intermediate connection structure 1B according to the second embodiment, as in the first embodiment, the rubber unit 5B fits into the depression formed by the conductor connection portion 3 and the first inclined portion 220 of each cable insulator 22. It is arranged to be included. Therefore, the rubber unit 5B is stably held in the depression, and the retaining force against the axial force of the power cable 2 can be improved. Therefore, even if the power cable 2 has a large axial force, the power cable intermediate connection structure 1B can suppress the rubber unit 5B from being shifted from a predetermined position. In the power cable intermediate connection structure 1B, the outer diameter on the small diameter side of the first inclined portion 220 is set as the design insulation outer diameter, and the outer diameter on the large diameter side is set as the finished insulation outer diameter. For this reason, the power cable intermediate connection structure 1B can use the rubber unit 5B having the rubber unit inner diameter corresponding to the design insulation outer diameter, and can simplify the processing method of the cable outer semiconductive layer 23. In addition, since the rubber unit 5B includes the bulge portion 54 having an inner peripheral surface corresponding to the depression on the inner peripheral side, the rubber unit 5B is substantially uniform along the axial direction of the power cable 2 in a state where the rubber unit 5B is mounted in the depression. Surface pressure can be given.
 <実施形態3>
 実施形態3に係る電力ケーブルの中間接続構造1Cを図5に基づいて説明する。図5は、電力ケーブルの中間接続構造1Cを長手方向に平行な平面で切断した縦断面である。図5では、実施形態1と同様の機能を有する構成に実施形態1と同一の符号を付している。実施形態3に係る電力ケーブルの中間接続構造1Cは、電力ケーブル2における露出されたケーブル外部半導電層23に第二傾斜部230を備える点が、実施形態1に係る電力ケーブルの中間接続構造1Aと異なる。以下、本実施形態では、実施形態1との相違点を中心に説明する。
<Embodiment 3>
A power cable intermediate connection structure 1C according to a third embodiment will be described with reference to FIG. FIG. 5 is a vertical cross section of the power cable intermediate connection structure 1C cut along a plane parallel to the longitudinal direction. In FIG. 5, components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment. The power cable intermediate connection structure 1C according to the first embodiment is different from the power cable 2 in that an exposed cable outer semiconductive layer 23 of the power cable 2 includes a second inclined portion 230. And different. Hereinafter, the present embodiment will be described focusing on differences from the first embodiment.
 この例の電力ケーブル2は、露出されたケーブル外部半導電層23に、ケーブル絶縁体22に形成された第一傾斜部220に連続するように先端側ほど外径が小さくなる第二傾斜部230を備える。この第二傾斜部230は、例えばケーブル外部半導電層23の切削加工と連続したケーブル絶縁体22の切削加工により、第一傾斜部220の形成と同時に形成される。 The power cable 2 of this example has a second inclined portion 230 in which the outer diameter decreases toward the distal end side so as to be continuous with the first inclined portion 220 formed in the cable insulator 22 on the exposed cable outer semiconductive layer 23. Is provided. The second inclined portion 230 is formed simultaneously with the formation of the first inclined portion 220 by, for example, cutting of the cable insulator 22 and cutting of the cable outer semiconductive layer 23.
 第二傾斜部230の傾斜角は、第一傾斜部220の傾斜角と略同じである。第二傾斜部230は、電力ケーブル2のサイズや電圧にもよるが、電力ケーブル2の軸方向に沿った長さが30mm以上であることが挙げられる。第二傾斜部230における電力ケーブル2の軸方向に沿った長さが30mm以上であることで、ケーブル外部半導電層23の処理工法を更に簡素化できる。第二傾斜部230における電力ケーブル2の軸方向に沿った長さは、更に40mm以上であることが挙げられる。一方、第二傾斜部230における電力ケーブル2の軸方向に沿った長さが80mm以下であることで、電力ケーブル2の接続部の大型化を抑制できる。第二傾斜部230における電力ケーブル2の軸方向に沿った長さは、更に60mm以下であることが挙げられる。第二傾斜部230における電力ケーブル2の軸方向に沿った長さは、30mm以上80mm以下、更に40mm以上60mmであることが挙げられる。 傾斜 The inclination angle of the second inclined part 230 is substantially the same as the inclination angle of the first inclined part 220. The length of the second inclined portion 230 along the axial direction of the power cable 2 is 30 mm or more, depending on the size and voltage of the power cable 2. When the length of the second inclined portion 230 along the axial direction of the power cable 2 is 30 mm or more, the processing method of the cable external semiconductive layer 23 can be further simplified. The length of the second inclined portion 230 along the axial direction of the power cable 2 may be 40 mm or more. On the other hand, when the length of the second inclined portion 230 along the axial direction of the power cable 2 is 80 mm or less, it is possible to suppress an increase in the size of the connection portion of the power cable 2. The length of the second inclined portion 230 along the axial direction of the power cable 2 may be 60 mm or less. The length along the axial direction of the power cable 2 in the second inclined portion 230 is 30 mm or more and 80 mm or less, and more preferably 40 mm or more and 60 mm.
 実施形態3に係る電力ケーブルの中間接続構造1Cは、実施形態1に係る電力ケーブルの中間接続構造1Aの効果を奏する。加えて、電力ケーブル2の先端部に倣い削りによって第一傾斜部220及び第二傾斜部230を形成し易く、ケーブル外部半導電層23の処理工法を更に簡素化できる。また、ケーブル絶縁体22とケーブル外部半導電層23とが連続した傾斜部220,230を有することになり、ケーブル絶縁体22とケーブル外部半導電層23との間に段差ができ難い。そのため、電力ケーブル2に対してゴムユニット5Aを密着させ易い。 中間 The power cable intermediate connection structure 1C according to the third embodiment has the effect of the power cable intermediate connection structure 1A according to the first embodiment. In addition, the first inclined portion 220 and the second inclined portion 230 can be easily formed by copying and shaping the distal end portion of the power cable 2, and the processing method of the cable external semiconductive layer 23 can be further simplified. In addition, since the cable insulator 22 and the cable external semiconductive layer 23 have the continuous inclined portions 220 and 230, a step is hardly formed between the cable insulator 22 and the cable external semiconductive layer 23. Therefore, the rubber unit 5A is easily brought into close contact with the power cable 2.
 <実施形態4>
 実施形態4に係る電力ケーブルの中間接続構造1Dを図6に基づいて説明する。図6は、電力ケーブルの中間接続構造1Dを長手方向に平行な平面で切断した縦断面である。図6では、実施形態1と同様の機能を有する構成に実施形態1と同一の符号を付している。実施形態4に係る電力ケーブルの中間接続構造1Dは、ゴムユニット5Aにおける内部半導電部52の突出部522が径方向内方に向かって突出する点が、実施形態1に係る電力ケーブルの中間接続構造1Aと異なる。以下、本実施形態では、実施形態1との相違点を中心に説明する。
<Embodiment 4>
A power cable intermediate connection structure 1D according to a fourth embodiment will be described with reference to FIG. FIG. 6 is a vertical cross section of the power cable intermediate connection structure 1D cut along a plane parallel to the longitudinal direction. In FIG. 6, components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment. The power cable intermediate connection structure 1D according to the fourth embodiment is different from the power cable intermediate connection according to the first embodiment in that the protrusion 522 of the inner semiconductive portion 52 of the rubber unit 5A protrudes radially inward. Different from structure 1A. Hereinafter, the present embodiment will be described focusing on differences from the first embodiment.
 この例の電力ケーブル2は、露出されたケーブル絶縁体22に窪み部224を備える。この窪み部224は、一組の電力ケーブル2が導体接続部3によって接続された組物にゴムユニット5Aが装着された状態において、ゴムユニット5Aにおける内部半導電部52の突出部522に対応する位置に設けられる。具体的には、窪み部224は、突出部522の先端の径方向内側に設けられる。この例では、窪み部224は、第一傾斜部220に連続した後端側傾斜面と、電力ケーブル2の軸方向に略沿った底面と、露出されたケーブル導体21側に向かって径が大きくなる先端側斜面とで形成される。先端側傾斜面は、ケーブル絶縁体22の細径側平坦部221に繋がる。窪み部224は、ケーブル絶縁体22の全周にわたって連続して設けられている。 電力 The power cable 2 of this example includes a concave portion 224 in the exposed cable insulator 22. The recess 224 corresponds to the protruding portion 522 of the internal semiconductive portion 52 in the rubber unit 5A when the rubber unit 5A is mounted on a set to which a pair of power cables 2 are connected by the conductor connection unit 3. Position. Specifically, the depression 224 is provided radially inward of the tip of the protrusion 522. In this example, the concave portion 224 has a rear end side inclined surface continuous with the first inclined portion 220, a bottom surface substantially along the axial direction of the power cable 2, and a diameter increasing toward the exposed cable conductor 21 side. And a slope on the tip side. The tip-side inclined surface is connected to the small-diameter-side flat portion 221 of the cable insulator 22. The recess 224 is provided continuously over the entire circumference of the cable insulator 22.
 この例のゴムユニット5Aは、上記組物に装着される前は、図2を参照して実施形態1で説明したように、ケーブル絶縁体22の設計絶縁外径に対応した軸方向に一様なゴムユニット内径を有し、中央部分の外径が軸方向に沿って略一様である。ゴムユニット5Aは、上記組物に装着されると、ケーブル絶縁体22の第一傾斜部220と、スリーブカバー4とで形成される窪みに嵌り込んで配置される。このとき、ケーブル絶縁体22に窪み部224が形成されているため、ゴムユニット5Aの一部は、上記窪み部224に嵌り込んで配置される。窪み部224は、ゴムユニット5Aにおける内部半導電部52の突出部522に対応する位置に設けられている。そのため、窪み部224にゴムユニット5Aが嵌り込むことに伴い、突出部522の先端が径方向内方に引っ張られて変位する。具体的には、突出部522は、内周面及び外周面共に径方向内方に向かうように変位する。この突出部522の変位によって、ゴムユニット5Aは、上記組物に装着された状態において、内部半導電部52の突出部522が径方向内方に向かって突出する。 Before the rubber unit 5A of this example is attached to the above-described assembly, as described in the first embodiment with reference to FIG. 2, the rubber unit 5A is uniformly arranged in the axial direction corresponding to the design insulation outer diameter of the cable insulator 22. The outer diameter of the central portion is substantially uniform along the axial direction. When the rubber unit 5 </ b> A is mounted on the above-described assembly, the rubber unit 5 </ b> A is disposed so as to fit into a recess formed by the first inclined portion 220 of the cable insulator 22 and the sleeve cover 4. At this time, since the recess 224 is formed in the cable insulator 22, a part of the rubber unit 5 </ b> A is disposed so as to fit into the recess 224. The recess 224 is provided at a position corresponding to the protruding portion 522 of the internal semiconductive portion 52 in the rubber unit 5A. Therefore, as the rubber unit 5A fits into the recess 224, the tip of the protrusion 522 is pulled radially inward and displaced. Specifically, the protrusion 522 is displaced so that both the inner peripheral surface and the outer peripheral surface are directed radially inward. Due to the displacement of the protruding portion 522, the protruding portion 522 of the inner semiconductive portion 52 protrudes radially inward when the rubber unit 5A is mounted on the above-described assembly.
 この例では、ゴムユニット5Aは、シリコーンゴムで構成されることが好ましい。シリコーンゴムは、比較的柔らかいゴムであるため、上記組物にゴムユニット5Aを装着すると、上記窪み部224にゴムユニット5Aが嵌り込み易い。 で は In this example, it is preferable that the rubber unit 5A is made of silicone rubber. Since silicone rubber is a relatively soft rubber, when the rubber unit 5A is attached to the above-described assembly, the rubber unit 5A is easily fitted into the recess 224.
 実施形態4に係る電力ケーブルの中間接続構造1Dは、実施形態1に係る電力ケーブルの中間接続構造1Aの効果に加え、ゴムユニット5Aの突出部522近傍の電界集中を低減できる。それは、ゴムユニット5Aは、内部半導電部52の軸方向両端部において電界が集中し易いが、その内部半導電部52の軸方向両端部に径方向内方に向かうような突出部522を備えることで、ケーブル導体21から内部半導電部52の突出部522にかけての等電位線の傾斜や屈曲状態をより緩やかな変化とすることができるからである。内部半導電部52の軸方向両端部における径方向内方に向かうような突出部522は、上記組物に装着する前の内部半導電部52自体に径方向内方に向かうような突出部522を設けなくとも、ケーブル絶縁体22に窪み部224を設けることで容易に形成できる。ケーブル絶縁体22に窪み部224を設ければ、ゴムユニットは、実施形態2で説明したような内周面に膨らみ部54を備えるゴムユニット5Bを用いることもできる。 中間 The power cable intermediate connection structure 1D according to the fourth embodiment can reduce the electric field concentration near the protrusion 522 of the rubber unit 5A, in addition to the effect of the power cable intermediate connection structure 1A according to the first embodiment. That is, the rubber unit 5A is provided with the protruding portions 522 that are directed radially inward at both axial end portions of the internal semiconductive portion 52, although electric fields are easily concentrated at both axial end portions of the internal semiconductive portion 52. This makes it possible to make the inclination or bending state of the equipotential line from the cable conductor 21 to the protruding portion 522 of the internal semiconductive portion 52 more gradual. The protruding portions 522 that are directed radially inward at both axial ends of the inner semiconductive portion 52 are formed on the inner semiconductive portion 52 itself before being mounted on the above-described assembly. Can be easily formed by providing the recessed portion 224 in the cable insulator 22 without providing the same. If the concave portion 224 is provided in the cable insulator 22, the rubber unit 5B having the bulging portion 54 on the inner peripheral surface as described in the second embodiment can be used as the rubber unit.
 ゴムユニットにおける径方向内方に向かうような突出部は、上記組物に装着される前のゴムユニット自体に設けることもできる。この場合、ゴムユニットを成形する際に、突出部の内周面及び外周面が両端部に向かうに従ってそれぞれ径方向内方に傾く形状に形成すればよい。ゴムユニット自体に上記突出部を設けると、ケーブル絶縁体22に窪み部を形成しなくてもよい。ゴムユニット自体に上記突出部を設ける場合、ゴムユニットは、主絶縁部及び内部半導電部共にエチレンプロピレンゴムで構成されることが好ましい。 (4) The protruding portion of the rubber unit, which is directed inward in the radial direction, may be provided on the rubber unit itself before the rubber unit is mounted. In this case, when the rubber unit is molded, the inner peripheral surface and the outer peripheral surface of the protruding portion may be formed so as to be inclined radially inward toward both ends. If the rubber unit itself is provided with the protruding portion, it is not necessary to form a recess in the cable insulator 22. When the above-mentioned protrusion is provided on the rubber unit itself, the rubber unit is preferably made of ethylene propylene rubber for both the main insulating part and the internal semiconductive part.
 1A,1B,1C,1D 電力ケーブルの中間接続構造
 2 電力ケーブル
 21 ケーブル導体
 22 ケーブル絶縁体
 220 第一傾斜部
 221 細径側平坦部
 223 凹部
 224 窪み部
 23 ケーブル外部半導電層
 230 第二傾斜部
 24 ケーブル遮蔽層
 25 シース
 3 導体接続部
 4 スリーブカバー
 41 本体部
 42 引っ掛け部
 43 溝部
 5A,5B ゴムユニット
 51 主絶縁部
 52 内部半導電部
 521 基部
 522 突出部
 53 外部半導電部
 54 膨らみ部
Reference Signs List 1A, 1B, 1C, 1D Power cable intermediate connection structure 2 Power cable 21 Cable conductor 22 Cable insulator 220 First inclined portion 221 Small-diameter side flat portion 223 Concave portion 224 Depressed portion 23 Cable external semiconductive layer 230 Second inclined portion 24 Cable shielding layer 25 Sheath 3 Conductor connection part 4 Sleeve cover 41 Body part 42 Hook part 43 Groove part 5A, 5B Rubber unit 51 Main insulating part 52 Internal semiconductive part 521 Base part 522 Projection part 53 External semiconductive part 54 Swelling part

Claims (4)

  1.  ケーブル導体と、ケーブル絶縁体と、ケーブル外部半導電層とが段階的に露出された先端部を有する一組の電力ケーブルと、
     露出された前記ケーブル導体同士を接続する導体接続部と、
     筒状のゴムユニットとを備え、
     前記各ケーブル絶縁体は、前記ケーブル導体側に向かって外径が小さくなる第一傾斜部を備え、
     前記ゴムユニットは、
      主絶縁部と、
      前記主絶縁部の内周側かつ軸方向中央部に設けられ、前記導体接続部の外周を覆うように配置される内部半導電部と、
      前記主絶縁部の各端部側に設けられ、前記各ケーブル外部半導電層に接続される外部半導電部とを備え、
      前記導体接続部と前記各第一傾斜部とで形成される窪みに嵌り込んで配置される、
     電力ケーブルの中間接続構造。
    A set of power cables having a cable conductor, a cable insulator, and a cable outer semiconductive layer having a stepwise exposed tip;
    A conductor connecting portion for connecting the exposed cable conductors,
    With a cylindrical rubber unit,
    Each of the cable insulators includes a first inclined portion whose outer diameter decreases toward the cable conductor,
    The rubber unit,
    Main insulation,
    An inner semiconductive portion provided on the inner peripheral side and the axial center portion of the main insulating portion, and arranged to cover the outer periphery of the conductor connecting portion,
    An external semiconductive portion provided on each end side of the main insulating portion and connected to each of the cable external semiconductive layers,
    It is arranged to fit into the recess formed by the conductor connection portion and each of the first inclined portions,
    Intermediate connection structure for power cables.
  2.  露出された前記各ケーブル外部半導電層は、前記第一傾斜部に連続するように先端側ほど外径が小さくなる第二傾斜部を備える請求項1に記載の電力ケーブルの中間接続構造。 2. The intermediate connection structure for a power cable according to claim 1, wherein each of the exposed cable outer semiconductive layers includes a second inclined portion whose outer diameter decreases toward the distal end so as to be continuous with the first inclined portion.
  3.  前記内部半導電部は、
      前記導体接続部と径方向に重複する基部と、
      前記基部の軸方向両端部における外周側の領域からそれぞれ径方向内方に向かって突出すると共に、前記導体接続部と径方向に重複しない突出部とを備える請求項1又は請求項2に記載の電力ケーブルの中間接続構造。
    The internal semiconductive portion,
    A base portion radially overlapping with the conductor connection portion,
    The projecting part according to claim 1 or 2, further comprising a projecting part that projects radially inward from regions on the outer peripheral side at both ends in the axial direction of the base, and that does not overlap with the conductor connection part in the radial direction. Intermediate connection structure for power cables.
  4.  前記ゴムユニットは、エチレンプロピレンゴム又はシリコーンゴムで構成される請求項1から請求項3のいずれか1項に記載の電力ケーブルの中間接続構造。 The intermediate connection structure for a power cable according to any one of claims 1 to 3, wherein the rubber unit is made of ethylene propylene rubber or silicone rubber.
PCT/JP2019/030187 2018-08-30 2019-08-01 Intermediate connecting structure for power cable WO2020044926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162191 2018-08-30
JP2018-162191 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020044926A1 true WO2020044926A1 (en) 2020-03-05

Family

ID=69642730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030187 WO2020044926A1 (en) 2018-08-30 2019-08-01 Intermediate connecting structure for power cable

Country Status (1)

Country Link
WO (1) WO2020044926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210079A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Cable intermediate connection structure formation method and cable intermediate connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168121A (en) * 1991-12-18 1993-07-02 Furukawa Electric Co Ltd:The Insulation block for connecting power cable and jointing method employing insulation block
JP2000059976A (en) * 1998-08-12 2000-02-25 Fujikura Ltd Crosslinked polyethylene insulator type connective portion of power cables

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168121A (en) * 1991-12-18 1993-07-02 Furukawa Electric Co Ltd:The Insulation block for connecting power cable and jointing method employing insulation block
JP2000059976A (en) * 1998-08-12 2000-02-25 Fujikura Ltd Crosslinked polyethylene insulator type connective portion of power cables

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210079A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Cable intermediate connection structure formation method and cable intermediate connection structure
JP2022157329A (en) * 2021-03-31 2022-10-14 古河電気工業株式会社 Method of forming cable intermediate connection structure and cable intermediate connection structure
JP7421843B2 (en) 2021-03-31 2024-01-25 古河電気工業株式会社 Method for forming cable intermediate connection structure and cable intermediate connection structure

Similar Documents

Publication Publication Date Title
JP6464133B2 (en) Terminal crimping structure and connector with cable
CN102624125B (en) For the insulation assembly of motor
WO2020044926A1 (en) Intermediate connecting structure for power cable
TW200949116A (en) A rubber unit and a cable connection using the same
JP2016012974A (en) Unit for connecting power cable, and connection method of power cable
JP2020072624A (en) Intermediate connection structure of power cable
JP5697918B2 (en) Cable connection
JP6537273B2 (en) Cable covering device, method of covering cable end, and method of covering cable connection
CN112292788B (en) Wire harness
JP5761529B2 (en) Cold shrinkable rubber insulation cylinder for power cable connection and manufacturing method thereof
JP5124208B2 (en) Insertion plug and electric cable with plug
JP6666013B2 (en) Method for manufacturing cold-shrinkable tube
JP6097728B2 (en) Power cable connecting apparatus and power cable connecting method
JP4609821B2 (en) Power cable connection
US3769395A (en) Method of making a unitary connector structure
JP6089010B2 (en) Power cable connecting apparatus and power cable connecting method
JP2002191116A (en) Cable joint
JP2019193416A (en) Cable connection part
JPH11332079A (en) Insertion-type straight line connection part for power cable
JP5924468B2 (en) Prefab joint for DC CV cable
JP5963174B2 (en) Power cable connection structure
JP5967344B2 (en) Joint part of DC CV cable
JP6823983B2 (en) Cable connection
JP2011239494A (en) Plug-in connection body for power cable and connecting method using the same
JP2001224127A (en) Linear joint of power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP