WO2020044868A1 - Robot hand - Google Patents

Robot hand Download PDF

Info

Publication number
WO2020044868A1
WO2020044868A1 PCT/JP2019/028755 JP2019028755W WO2020044868A1 WO 2020044868 A1 WO2020044868 A1 WO 2020044868A1 JP 2019028755 W JP2019028755 W JP 2019028755W WO 2020044868 A1 WO2020044868 A1 WO 2020044868A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
dea
actuator
finger
capacitance
Prior art date
Application number
PCT/JP2019/028755
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 森田
藤原 武史
駿一 車谷
雅俊 島田
Original Assignee
豊田合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成株式会社 filed Critical 豊田合成株式会社
Publication of WO2020044868A1 publication Critical patent/WO2020044868A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present disclosure relates to a robot hand that operates an article with a finger.
  • Patent Literature 1 discloses a robot hand including a palm part, a plurality of finger parts provided on the palm part, a joint mechanism that allows the finger part to bend freely, and a drive unit that drives the joint mechanism. .
  • the robot hand of Patent Literature 1 is provided with two or more pressure-sensitive elements on a specific surface of a finger in order to grip an object with a specific surface of a finger parallel to a gripping surface of the item.
  • the posture of the finger is controlled so that the forces detected by all the pressure-sensitive elements when the article is brought into contact with the specific surface of the finger are approximately the same.
  • Patent Document 2 discloses a microtweezer provided with a pair of supports. A holding portion that is deformed by applying a voltage is provided at the tip of each support.
  • the micro tweezers disclosed in Patent Literature 2 can control the pressure applied to an article held by the micro tweezers by adjusting the voltage applied to the holding unit.
  • a holding unit of Patent Document 2 is applied to a finger of a robot hand of Patent Document 1, and the holding is performed based on a force detected by a pressure-sensitive element. It is conceivable to deform the part. However, in this case, there is a problem that the structure and wiring of the finger part are complicated.
  • the purpose of the present disclosure is to simplify the configuration of a robot hand that can control a force generated between a finger and an article.
  • a robot hand for solving the above-mentioned problems is a robot hand including at least one finger unit and operating an article with the finger unit, the robot hand being provided at a portion of the finger unit where an external force from the article acts, and An actuator that expands and contracts in a direction in which an external force from the actuator acts, and a control unit that controls the actuator.
  • the actuator can detect an external force acting on the actuator from the article based on a specific parameter of the actuator.
  • the control unit controls the actuator based on the specific parameter so that an external force acting on the actuator approaches a target value.
  • the actuator is a dielectric elastomer actuator in which a dielectric layer and an electrode layer are laminated in a direction in which an external force from the article acts, and the specific parameter is a value based on capacitance or capacitance
  • the control unit controls the actuator based on a voltage applied to the actuator and a measured capacitance of the actuator or a value based on the capacitance.
  • the dielectric elastomer actuator provided on the finger portion functions as an actuator for adjusting the force generated between the finger portion and the article, and also detects the force generated between the finger portion and the article. Also functions as a unit. Therefore, there is no need to provide a detection unit such as a pressure-sensitive element separately from the dielectric elastomer actuator. Therefore, the configuration of the robot hand can be simplified by omitting the detection unit itself, the wiring connected to the detection unit, and the like, as compared with the case where the detection unit is separately provided.
  • control unit applies an initial voltage for compressing the actuator before the finger and the article come into contact with each other, and moves the finger to move the finger and the article. After the contact, it is preferable that the voltage applied to the actuator is reduced to relax the compressed state of the actuator.
  • the external force acting on the dielectric elastomer actuator can be made closer to the target value by the one-way process of decreasing the voltage applied to the dielectric elastomer actuator. Also, the external force acting on the dielectric elastomer actuator is increased to approach the target value. Therefore, an excessive force acting on the article due to the external force acting on the dielectric elastomer actuator greatly exceeding the target value is suppressed.
  • the actuator is provided at a portion of the finger portion that comes into contact with an article. According to the above configuration, it is possible to reduce the impact at the time of contact between the finger and the article based on the elasticity of the dielectric elastomer actuator. Further, since the surface shape of the dielectric elastomer actuator is elastically deformed along the surface shape of the article, a contact area between the article and the dielectric elastomer actuator can be secured, and the contact state between the article and the finger portion is stabilized.
  • the target value is set according to a type of the article. According to the above configuration, even when a plurality of types of articles are targeted, the articles can be operated with an appropriate force according to the type of the article.
  • the at least one finger is preferably two or more fingers, and more preferably three or more fingers. According to the above configuration, when the article is grasped, the article can be stably grasped by independently adjusting the grasping force at a plurality of contact points with the article.
  • the configuration of the robot hand that can control the force generated between the finger and the article can be simplified.
  • FIG. 2 is a schematic view of a dielectric elastomer actuator.
  • the robot hand 10 includes a main body 12 connected to the arm 11 and three fingers 13 extending from the main body 12 and operating the article A.
  • Each finger 13 has a bendable joint mechanism.
  • the main unit 12 is provided with a drive unit 14 such as a motor for driving a joint mechanism of the finger unit 13 and a control unit 15 for controlling the drive unit 14.
  • a dielectric elastomer actuator 16 (DEA: Dielectric Elastomer Actuator) that expands and contracts in the direction toward the inside and outside of the finger 13 is provided on the inner surface of the tip of each finger 13.
  • the DEA 16 constitutes an actuator having a self-sensing function.
  • the DEA 16 has a combination of a sheet-like dielectric layer 20 made of a dielectric elastomer and a positive electrode 21 and a negative electrode 22 as electrode layers disposed on both sides in the thickness direction of the dielectric layer 20. It is a multilayer structure in which a plurality of layers are stacked. An insulating layer 23 is laminated on the outermost layer of the DEA 16.
  • the DEA 16 when a DC voltage is applied between the positive electrode 21 and the negative electrode 22, the dielectric layer 20 is compressed in the thickness direction and along the surface of the dielectric layer 20 according to the magnitude of the applied voltage. Deform to stretch in the direction As shown in FIG. 1, the DEA 16 is attached to the finger 13 such that the laminating direction of the plurality of layers constituting the dielectric elastomer actuator coincides with the direction from the outside to the inside of the finger 13.
  • the dielectric elastomer constituting the dielectric layer 20 is not particularly limited, and a known dielectric elastomer used for DEA can be used.
  • the dielectric elastomer include a crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer.
  • One of these dielectric elastomers may be used, or a plurality of them may be used in combination.
  • the thickness of the dielectric layer 20 is, for example, 20 to 200 ⁇ m.
  • Examples of the material forming the positive electrode 21 and the negative electrode 22 include a conductive elastomer, carbon nanotube, Ketjen Black (registered trademark), and a metal deposition film.
  • Examples of the conductive elastomer include a conductive elastomer containing an insulating polymer and a conductive filler.
  • Examples of the insulating polymer include cross-linked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these insulating polymers may be used, or a plurality of them may be used in combination.
  • Examples of the conductive filler include Ketjen Black (registered trademark), carbon black, and metal particles. Examples of the metal particles include copper and silver. One of these conductive fillers may be used, or a plurality of them may be used in combination.
  • the thickness of the positive electrode 21 and the negative electrode 22 is, for example, 10 to 100 ⁇ m.
  • the insulating elastomer constituting the insulating layer 23 is not particularly limited, and a known insulating elastomer used for an insulating portion of a known DEA can be used.
  • the insulating elastomer include a crosslinked polyrotaxane, a silicone elastomer, an acrylic elastomer, and a urethane elastomer.
  • One of these insulating elastomers may be used, or a plurality of them may be used in combination.
  • the thickness of the insulating layer 23 is, for example, 10 to 100 ⁇ m.
  • the control unit 15 controls the voltage applied to the DEA 16 from a power supply (not shown) such as a battery.
  • the control unit 15 includes one or more dedicated processors such as 1) one or more processors that operate according to a computer program (software) and 2) an application specific integrated circuit (ASIC) that performs at least a part of various processes. Or a circuit including 3) a combination thereof.
  • the processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores a program code or a command configured to cause the CPU to execute a process.
  • Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the control unit 15 measures the capacitance of the DEA 16 by applying an AC voltage sufficiently smaller than the applied voltage to the applied voltage. Then, the control unit 15 controls the applied voltage to the DEA 16 based on the relationship between the applied voltage to the DEA 16 and the measured capacitance of the DEA 16 so that the external force acting on the DEA 16 approaches a predetermined target value.
  • the capacitance of the DEA 16 is a parameter that is inversely proportional to the distance between the electrodes of the DEA 16 and proportional to the area of the electrodes (opposed area), and varies according to the shape of the DEA 16. Therefore, when a voltage is applied to the DEA 16 and the DEA 16 is compressed in the thickness direction of the dielectric layer 20, the capacitance of the DEA 16 also increases. Therefore, as shown by the change curve L1 in the graph of FIG. 4, a correlation is established between the voltage applied to the DEA 16 and the capacitance, as one increases and the other increases.
  • the change curve L2 is shifted from the change curve L1 in a state where no external force acts on the DEA 16 in a direction in which the capacitance increases by an amount corresponding to the magnitude of the external force acting on the DEA 16.
  • the difference in capacitance based on the presence or absence of the external force acting on the DEA 16 can be regarded as a parameter indicating the magnitude of the external force acting on the DEA 16.
  • the external force acting on the DEA 16 of the finger portion 13 from the article A when the article A is brought into contact with the robot hand 10 is estimated from the voltage applied to the DEA 16 and the capacitance of the DEA 16.
  • the external force acting on the DEA 16 is a force generated between the finger 13 and the object, and is a reaction force (force sense) acting on the DEA 16 from the object when the finger 13 presses the object. Information). Therefore, when the target is gripped by the finger 13, the external force acting on the DEA 16 corresponds to the gripping force of the finger 13 gripping the target.
  • the control unit 15 includes a storage unit 15a.
  • the storage unit 15a stores a reference capacitance C0 and a target capacitance Ct.
  • the reference capacitance C0 is a capacitance in a state where no external force acts on the DEA 16 (a state where the article A or the like is not in contact with the finger portion 13), and as shown in a change curve L1 in FIG. It is stored as a relational expression between the voltage applied to and the capacitance.
  • the reference capacitance C0 can be obtained by simulation or preliminary measurement.
  • the target capacitance Ct is a value obtained by converting a target value of the external force acting on the DEA 16 into a capacitance.
  • the difference between the change curve L1 when no external force is acting on the DEA 16 and the change curve L2 when a target value of external force is acting on the DEA 16 is as follows. It corresponds to the target capacitance Ct.
  • the target capacitance Ct is set for each type of the article A according to the characteristics (for example, hardness and shape) of the article A to be operated.
  • the target capacitance Ct may be given as a function of the applied voltage, may indicate a specific value approximating the target capacitance Ct, or may be a value in which a specific range is added thereto. There may be.
  • the method for setting the target capacitance Ct is not particularly limited. For example, the determination may be performed by a user's input, or the type of the article A may be determined using a detection unit such as an image sensor, and the article A may be determined from among the plurality of target capacitances Ct stored in the storage unit 15a. Control may be performed so as to select the target capacitance Ct according to the type.
  • control for executing the operation of gripping the article A using the robot hand 10 will be described based on the flowchart of FIG.
  • FIG. 1 control from a state in which the robot hand 10 and the article A are positioned so that the article A can be gripped by moving the finger portion 13 of the robot hand 10 inward will be described. I do.
  • the control unit 15 applies the initial voltage V0 to the DEA 16 of the finger unit 13 to bring the DEA 16 into a compressed state (step S1).
  • the initial voltage V0 is a voltage necessary for compressing the DEA 16 to a maximum compression state set in advance as an upper limit in the compression direction of the DEA 16 in a state where no external force acts on the DEA 16.
  • control unit 15 controls the driving unit 14 to move the finger units 13 inward so as to close the hands, and to bring the DEA 16 provided on each finger unit 13 into contact with the article A (step S2). .
  • the control unit 15 measures the capacitance of the DEA 16 at a predetermined cycle, and based on detecting that the amount of increase from the reference capacitance C0 exceeds a preset specified value, the finger unit 13 Stop moving.
  • the control unit 15 determines the current measured value Cm of the capacitance of the DEA 16 and the reference capacitance at the current applied voltage (initial voltage V0) as external force parameters corresponding to the external force acting on the DEA 16 from the article A.
  • the control unit 15 determines whether or not the capacitance difference Cd is smaller than the target capacitance Ct (Step S4).
  • step S4 when the capacitance difference Cd is smaller than the target capacitance Ct (YES), the control unit 15 subtracts a predetermined amount from the voltage applied to the DEA 16 to the current applied voltage. The voltage is decreased to the applied voltage Vd (step S5).
  • the capacitance difference Cd is smaller than the target capacitance Ct, it means that the gripping force is insufficient. Therefore, the gripping force is increased by lowering the applied voltage to the DEA 16 to relax the compressed state of the DEA 16.
  • step S5 the process returns to step S3.
  • the capacitance difference Cd is calculated using the reference capacitance C0 at the current applied voltage Vd. Steps S3 to S5 are repeated until the capacitance difference Cd reaches the target capacitance Ct, and the applied voltage is reduced to increase the gripping force.
  • step S4 If the capacitance difference Cd is not smaller than the target capacitance Ct in step S4 (NO), the control unit 15 maintains the voltage applied to the DEA 16. Thereby, the gripping force on the article A can be finely adjusted to the target gripping force. Then, a predetermined operation on the article A, such as conveying the article A, is executed.
  • the above steps S1 to S5 are executed independently for the DEA 16 provided on each finger 13.
  • control unit 15 repeatedly executes Steps S11 to S15 described below at a predetermined cycle while holding the article A.
  • step S13 the process returns to step S11.
  • step S12 determines whether the capacitance difference Cd exceeds the target capacitance Ct (step S12). S14). In step S14, when the capacitance difference Cd exceeds the target capacitance Ct (YES), the control unit 15 adds the voltage applied to the DEA 16 to the current applied voltage by a predetermined amount set in advance. The voltage is increased to the applied voltage Vu (step S15).
  • step S15 the process returns to step S11.
  • step S14 If the capacitance difference Cd does not exceed the target capacitance Ct in step S14 (NO), the control unit 15 maintains the voltage applied to the DEA 16. Thereby, the state where the article A is gripped with the target gripping force is maintained.
  • the above steps S11 to S15 are executed independently for the DEA 16 provided on each finger 13.
  • the robot hand 10 operates the article A by the finger unit 13.
  • the robot hand 10 is provided at a portion of the finger unit 13 where an external force from the article A acts, and includes an actuator that expands and contracts in a direction in which the external force from the article A acts, and a control unit that controls the actuator.
  • the actuator is a DEA 16 in which a dielectric layer 20 and electrode layers (a positive electrode 21 and a negative electrode 22) are laminated in a direction in which an external force from the article A acts.
  • the control unit 15 controls the DEA 16 based on the capacitance of the DEA 16 so that the external force acting on the DEA 16 approaches a target value.
  • the DEA 16 provided on the finger 13 functions as an actuator for adjusting the force (gripping force) generated between the finger 13 and the article A, and the DEA 16 between the finger 13 and the article A It also functions as a detection unit for detecting the force generated in. Therefore, there is no need to provide a detection unit such as a pressure-sensitive element separately from the DEA 16. Therefore, the configuration of the robot hand 10 can be simplified by omitting the detection unit itself and the wiring and the like connected to the detection unit, as compared with the case where the detection unit is separately provided.
  • the control unit 15 applies the applied voltage to the DEA 16, the reference capacitance C0 which is the capacitance when the same applied voltage is applied in a state where no external force is applied to the DEA 16, and the measured value of the capacitance
  • the DEA 16 is controlled based on Cm.
  • the external force acting on the DEA 16 can be easily brought close to the target value based on the capacitance of the DEA 16.
  • the control unit 15 applies the initial voltage V0 that brings the DEA 16 into a preset maximum compression state before the finger unit 13 comes into contact with the article A. Then, after the finger 13 moves and the finger 13 comes into contact with the article A, the applied voltage to the DEA 16 is reduced, so that the compression state of the DEA 16 is relaxed and the external force acting on the DEA 16 is increased.
  • the external force acting on the DEA 16 can be made closer to the target value by the one-way process of decreasing the voltage applied to the DEA 16. Further, the external force acting on the DEA 16 is increased to approach the target value. Therefore, an excessive force acting on the article A due to the external force acting on the DEA 16 greatly exceeding the target value is suppressed.
  • the DEA 16 is provided at a portion of the finger portion 13 that contacts the article A. According to the above configuration, the impact at the time of contact between the finger portion 13 and the article A can be reduced based on the elasticity of the DEA 16. Further, since the surface shape of the DEA 16 is elastically deformed along the surface shape of the article A, a contact area between the article A and the DEA 16 can be secured, and the contact state between the article A and the finger 13 is stabilized.
  • the target value (target capacitance Ct) of the external force acting on the DEA 16 is set according to the type of the article A. According to the above configuration, even when a plurality of types of articles A are targeted, the articles A can be operated with an appropriate gripping force according to the type of the articles A.
  • the robot hand 10 includes three fingers 13 each having a DEA 16. According to the above configuration, when the article A is grasped, the article A can be stably grasped by independently adjusting the grasping force at a plurality of contact points with the article A. For example, when the gripped article A vibrates, the gripping force becomes insufficient at a certain contact point, and the gripping force becomes excessive at another contact point. It can be adjusted to an appropriate gripping force.
  • the present embodiment can be modified and implemented as follows.
  • the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the configuration such as the shape of the robot hand 10 can be changed as appropriate.
  • the number of fingers 13 of the robot hand 10 may be changed. It is sufficient that the number of the finger portions 13 is one or more.
  • the position where the DEA 16 is provided on the finger portion 13 is not limited to the portion that contacts the article A.
  • the DEA 16 is provided in a portion other than the portion that contacts the article A, and the force is transmitted bidirectionally between the portion of the finger portion 13 that contacts the article A and the DEA 16 via a link mechanism or the like. You may.
  • the DEA 16 is attached so as to extend and contract in a direction in which an external force acts.
  • the processing of steps S11 to S15 of the flowchart of FIG. 6 may be performed instead of the processing of steps S3 to S5 of the flowchart of FIG.
  • a predetermined timing for example, a timing of changing the transport direction or the posture
  • the position and orientation of the gripped article A can be finely adjusted by changing the target value of the external force acting on the DEA 16.
  • the method of controlling the DEA 16 so that the external force acting on the DEA 16 approaches the target value based on the capacitance of the DEA 16 obtains the capacitance difference Cd, and brings the capacitance difference Cd closer to the target capacitance Ct.
  • the method is not limited to the method of gradually increasing or decreasing the applied voltage as described above, and other methods may be employed.
  • a relational expression between the voltage applied to the DEA 16 and the capacitance of the DEA 16 when the target external force is acting on the DEA 16 (the value obtained by adding the target capacitance Ct to the reference capacitance C0) (FIG. 4) (Corresponding to the change curve L2) is stored in the storage 15a. Then, based on the measured value Cm of the capacitance of the DEA 16 and the above-mentioned relational expression, an applied voltage having the same value as the measured value Cm in the above-mentioned relational expression is obtained, and the applied voltage is applied to the DEA 16.
  • the state of the DEA 16 when the finger portion 13 (DEA 16) is brought into contact with the article A is not limited to the preset maximum compressed state, but may be an uncompressed state or the maximum.
  • the compression state may be intermediate between the compression state and the uncompressed state.
  • the hardness of the article A may be determined using the self-sensing function of the DEA 16. For example, in a state where the DEA 16 is in contact with the article A, the voltage applied to the DEA 16 is lowered by a predetermined amount, and the hardness of the article A is determined based on the amount of change in the capacitance of the DEA 16 before and after that. I do.
  • the amount of change in the capacitance of the DEA 16 is increased by extending the DEA 16 toward the article A so as to push the article A.
  • the DEA 16 It cannot extend to the A side, and the amount of change in the capacitance of the DEA 16 becomes small.
  • the type of the article A is determined based on the determined hardness of the article A, and the plurality of target capacitances Ct stored in the storage unit 15a are determined. It is preferable to select a target capacitance Ct according to the type of the article A from among them. In this case, there is no need to separately provide a detection unit such as an image sensor for determining the type of the article A.
  • the DEA 16 may be controlled using a value based on the capacitance (for example, a value having a correlation with the capacitance such as a voltage value) instead of the capacitance of the DEA 16 itself.
  • the actuator having the self-sensing function is not limited to the DEA 16, but may be any actuator that can detect an external force acting on the actuator from the article A based on the specific parameter of the actuator.
  • an electroactive polymer may be used as the actuator.
  • the operation by the finger unit 13 may be an operation other than the operation of gripping the article A.
  • the control for increasing the gripping force and the control for weakening the gripping force are alternately executed, so that the gripped article A can be slid down by its own weight little by little.
  • the control for increasing the gripping force and the control for weakening the gripping force are alternately executed, and the timing is shifted between the plurality of finger portions 13 to shake (vibrate) the gripped article A. )be able to.
  • the present invention can be applied to an operation of turning a sheet such as paper.
  • DEA dielectric elastomer actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

This robot hand (10) manipulates an article (A) by means of fingers (13). The robot hand (10) is provided with: actuators which are disposed in a position on the fingers (13) where an outside force from the article (A) acts, and which expand and contract in the direction of action of the outside force from the article (A); and a control unit which controls said actuators. The actuators are DEAs (16) which comprise a dielectric layer and an electrode layer laminated in the direction of action of the outside force from the article (A). On the basis of the electrostatic capacity of the DEAs (16), the control unit (15) controls the DEAs (16) such that the outside forces acting on the DEAs (16) approach a target value.

Description

ロボットハンドRobot hand
 本開示は、指部により物品を操作するロボットハンドに関する。 The present disclosure relates to a robot hand that operates an article with a finger.
 特許文献1には、手掌部と、手掌部に設けられた複数の指部と、指部を屈曲自在とする関節機構と、関節機構を駆動する駆動部とを備えるロボットハンドが開示されている。特許文献1のロボットハンドは、物品の把持面に対して指部の特定面を平行にした状態で物品を把持するために、指部の特定面に2以上の感圧素子を設けている。そして、指部の特定面に物品を当接させた際に、すべての感圧素子により検出される力が同程度になるように指部の姿勢を制御している。 Patent Literature 1 discloses a robot hand including a palm part, a plurality of finger parts provided on the palm part, a joint mechanism that allows the finger part to bend freely, and a drive unit that drives the joint mechanism. . The robot hand of Patent Literature 1 is provided with two or more pressure-sensitive elements on a specific surface of a finger in order to grip an object with a specific surface of a finger parallel to a gripping surface of the item. The posture of the finger is controlled so that the forces detected by all the pressure-sensitive elements when the article is brought into contact with the specific surface of the finger are approximately the same.
 特許文献2には、一対の支持体を備えたマイクロピンセットが開示されている。各支持体の先端部には、電圧の印加により変形する保持部が設けられている。特許文献2のマイクロピンセットは、保持部に印加させる電圧を調整することにより、マイクロピンセットに挟持される物品に作用する圧力を制御できる。 Patent Document 2 discloses a microtweezer provided with a pair of supports. A holding portion that is deformed by applying a voltage is provided at the tip of each support. The micro tweezers disclosed in Patent Literature 2 can control the pressure applied to an article held by the micro tweezers by adjusting the voltage applied to the holding unit.
特許第5267213号Patent No. 5267213 特開2006-326716号公報JP 2006-326716 A
 ロボットハンドの指部により物品を操作する際の精度を高めるためには、指部と物品との間に生じる力を適切に制御することが重要である。指部と物品との間に生じる力を制御する方法として、特許文献1のロボットハンドの指部に対して特許文献2の保持部を適用し、感圧素子により検出される力に基づいて保持部を変形させることが考えられる。しかしながら、この場合には、指部の構造や配線が複雑化するという問題がある。 In order to improve the accuracy of manipulating the article with the finger of the robot hand, it is important to appropriately control the force generated between the finger and the article. As a method of controlling a force generated between a finger and an article, a holding unit of Patent Document 2 is applied to a finger of a robot hand of Patent Document 1, and the holding is performed based on a force detected by a pressure-sensitive element. It is conceivable to deform the part. However, in this case, there is a problem that the structure and wiring of the finger part are complicated.
 本開示の目的は、指部と物品との間に生じる力を制御可能なロボットハンドの構成を簡略化することにある。 The purpose of the present disclosure is to simplify the configuration of a robot hand that can control a force generated between a finger and an article.
 上記課題を解決するロボットハンドは、少なくとも一つの指部を備え、前記指部により物品を操作するロボットハンドであって、前記指部における前記物品からの外力が作用する部位に設けられ、前記物品からの外力が作用する方向に伸縮動作するアクチュエータと、前記アクチュエータを制御する制御部とを備え、前記アクチュエータは、当該アクチュエータの特定パラメータに基づいて、前記物品から前記アクチュエータに作用する外力を検出可能なセルフセンシング機能を有し、前記制御部は、前記特定パラメータに基づいて、前記アクチュエータに作用する外力を目標値に近づけるように前記アクチュエータを制御する。 A robot hand for solving the above-mentioned problems is a robot hand including at least one finger unit and operating an article with the finger unit, the robot hand being provided at a portion of the finger unit where an external force from the article acts, and An actuator that expands and contracts in a direction in which an external force from the actuator acts, and a control unit that controls the actuator. The actuator can detect an external force acting on the actuator from the article based on a specific parameter of the actuator. The control unit controls the actuator based on the specific parameter so that an external force acting on the actuator approaches a target value.
 例えば、前記アクチュエータは、前記物品からの外力が作用する方向に誘電層と電極層とが積層された誘電エラストマーアクチュエータであり、前記特定パラメータは、静電容量又は静電容量に基づく値であり、前記制御部は、前記アクチュエータに対する印加電圧と、測定された前記アクチュエータの静電容量又は静電容量に基づく値とに基づいて、前記アクチュエータを制御する。 For example, the actuator is a dielectric elastomer actuator in which a dielectric layer and an electrode layer are laminated in a direction in which an external force from the article acts, and the specific parameter is a value based on capacitance or capacitance, The control unit controls the actuator based on a voltage applied to the actuator and a measured capacitance of the actuator or a value based on the capacitance.
 上記構成によれば、指部に設けられた誘電エラストマーアクチュエータが、指部と物品との間に生じる力を調整するアクチュエータとして機能するとともに、指部と物品との間に生じる力を検出する検出部としても機能する。そのため、誘電エラストマーアクチュエータとは別に感圧素子等の検出部を設ける必要がない。よって、検出部を別に設ける場合と比較して、検出部自体、及び検出部に接続される配線等を省略できることにより、ロボットハンドの構成を簡略化できる。 According to the above configuration, the dielectric elastomer actuator provided on the finger portion functions as an actuator for adjusting the force generated between the finger portion and the article, and also detects the force generated between the finger portion and the article. Also functions as a unit. Therefore, there is no need to provide a detection unit such as a pressure-sensitive element separately from the dielectric elastomer actuator. Therefore, the configuration of the robot hand can be simplified by omitting the detection unit itself, the wiring connected to the detection unit, and the like, as compared with the case where the detection unit is separately provided.
 上記ロボットハンドにおいて、前記制御部は、前記指部と前記物品とが接触する前に、前記アクチュエータを圧縮状態とする初期電圧を印加し、前記指部が移動して前記指部と前記物品とが接触した後、前記アクチュエータに対する印加電圧を降下させて前記アクチュエータの圧縮状態を緩和させることが好ましい。 In the robot hand, the control unit applies an initial voltage for compressing the actuator before the finger and the article come into contact with each other, and moves the finger to move the finger and the article. After the contact, it is preferable that the voltage applied to the actuator is reduced to relax the compressed state of the actuator.
 上記構成によれば、誘電エラストマーアクチュエータに対する印加電圧を降下させるという一方向の処理により、誘電エラストマーアクチュエータに作用する外力を目標値に近づけることができる。また、誘電エラストマーアクチュエータに作用する外力を増大させることにより、目標値に近づけている。そのため、誘電エラストマーアクチュエータに作用する外力が目標値を大きく超えてしまうことによって物品に対して過剰な力が作用することが抑制される。 According to the above configuration, the external force acting on the dielectric elastomer actuator can be made closer to the target value by the one-way process of decreasing the voltage applied to the dielectric elastomer actuator. Also, the external force acting on the dielectric elastomer actuator is increased to approach the target value. Therefore, an excessive force acting on the article due to the external force acting on the dielectric elastomer actuator greatly exceeding the target value is suppressed.
 上記ロボットハンドにおいて、前記アクチュエータは、前記指部における物品に接触する部分に設けられていることが好ましい。
 上記構成によれば、誘電エラストマーアクチュエータの弾性に基づいて、指部と物品との接触時における衝撃を緩和できる。また、物品の表面形状に沿って誘電エラストマーアクチュエータの表面形状が弾性変形することにより、物品と誘電エラストマーアクチュエータとの接触面積を確保することができ、物品と指部との接触状態が安定する。
In the robot hand, it is preferable that the actuator is provided at a portion of the finger portion that comes into contact with an article.
According to the above configuration, it is possible to reduce the impact at the time of contact between the finger and the article based on the elasticity of the dielectric elastomer actuator. Further, since the surface shape of the dielectric elastomer actuator is elastically deformed along the surface shape of the article, a contact area between the article and the dielectric elastomer actuator can be secured, and the contact state between the article and the finger portion is stabilized.
 上記ロボットハンドにおいて、前記目標値は、前記物品の種類に応じて設定されることが好ましい。
 上記構成によれば、複数種類の物品を対象とした場合にも、物品の種類に応じた適切な力で物品を操作できる。
In the robot hand, it is preferable that the target value is set according to a type of the article.
According to the above configuration, even when a plurality of types of articles are targeted, the articles can be operated with an appropriate force according to the type of the article.
 上記ロボットハンドにおいて、前記少なくとも一つの指部は、2本以上の指部であることが好ましく、3本以上の指部であることがより好ましい。
 上記構成によれば、物品を把持した際に、物品に対する複数の接触点において、それぞれ独立して把持力を調整することにより、物品を安定的に把持できる。
In the above robot hand, the at least one finger is preferably two or more fingers, and more preferably three or more fingers.
According to the above configuration, when the article is grasped, the article can be stably grasped by independently adjusting the grasping force at a plurality of contact points with the article.
 本開示によれば、指部と物品との間に生じる力を制御可能なロボットハンドの構成を簡略化できる。 According to the present disclosure, the configuration of the robot hand that can control the force generated between the finger and the article can be simplified.
ロボットハンドの概略図。The schematic diagram of a robot hand. 誘電エラストマーアクチュエータの概略図。FIG. 2 is a schematic view of a dielectric elastomer actuator. 制御部と誘電エラストマーアクチュエータとの関係図。FIG. 4 is a diagram showing a relationship between a control unit and a dielectric elastomer actuator. 誘電エラストマーアクチュエータにおける印加電圧と静電容量と外力との関係を示すグラフ。4 is a graph showing a relationship between an applied voltage, a capacitance, and an external force in a dielectric elastomer actuator. 物品を把持する制御のフローチャート。5 is a flowchart of control for gripping an article. 物品を把持した状態を維持する制御のフローチャート。9 is a flowchart of control for maintaining a state in which an article is held.
 以下、ロボットハンドの一実施形態を説明する。
 図1に示すように、ロボットハンド10は、アーム11に接続された本体部12と、本体部12から延びて物品Aを操作する3本の指部13とを備えている。各指部13は屈曲自在な関節機構を有している。本体部12には、指部13の関節機構を駆動するモータ等の駆動部14と、駆動部14を制御する制御部15とが設けられている。
Hereinafter, an embodiment of the robot hand will be described.
As shown in FIG. 1, the robot hand 10 includes a main body 12 connected to the arm 11 and three fingers 13 extending from the main body 12 and operating the article A. Each finger 13 has a bendable joint mechanism. The main unit 12 is provided with a drive unit 14 such as a motor for driving a joint mechanism of the finger unit 13 and a control unit 15 for controlling the drive unit 14.
 各指部13の先端部における内側の面には、指部13の内側及び外側に向かう方向に伸縮動作する誘電エラストマーアクチュエータ16(DEA:Dielectric Elastomer Actuator)が設けられている。本実施形態においては、DEA16が、セルフセンシング機能を有するアクチュエータを構成する。 誘 電 A dielectric elastomer actuator 16 (DEA: Dielectric Elastomer Actuator) that expands and contracts in the direction toward the inside and outside of the finger 13 is provided on the inner surface of the tip of each finger 13. In the present embodiment, the DEA 16 constitutes an actuator having a self-sensing function.
 図2に示すように、DEA16は、誘電エラストマーからなるシート状の誘電層20と、誘電層20の厚さ方向の両側に配置された電極層としての正極電極21及び負極電極22との組み合わせが複数、積層された多層構造体である。DEA16の最外層には絶縁層23が積層されている。 As shown in FIG. 2, the DEA 16 has a combination of a sheet-like dielectric layer 20 made of a dielectric elastomer and a positive electrode 21 and a negative electrode 22 as electrode layers disposed on both sides in the thickness direction of the dielectric layer 20. It is a multilayer structure in which a plurality of layers are stacked. An insulating layer 23 is laminated on the outermost layer of the DEA 16.
 DEA16では、正極電極21と負極電極22との間に直流電圧が印加されると、印加電圧の大きさに応じて、誘電層20が厚さ方向に圧縮されるとともに誘電層20の面に沿った方向に伸張するように変形する。図1に示すように、DEA16は、誘電エラストマーアクチュエータを構成する複数の層の積層方向が、指部13における外側から内側に向かう方向に一致するように指部13に取り付けられている。 In the DEA 16, when a DC voltage is applied between the positive electrode 21 and the negative electrode 22, the dielectric layer 20 is compressed in the thickness direction and along the surface of the dielectric layer 20 according to the magnitude of the applied voltage. Deform to stretch in the direction As shown in FIG. 1, the DEA 16 is attached to the finger 13 such that the laminating direction of the plurality of layers constituting the dielectric elastomer actuator coincides with the direction from the outside to the inside of the finger 13.
 誘電層20を構成する誘電エラストマーは特に限定されるものではなく、公知のDEAに用いられる誘電エラストマーを用いることができる。上記誘電エラストマーとしては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、及びウレタンエラストマーが挙げられる。これら誘電エラストマーのうちの一種を用いてもよいし、複数種を併用してもよい。誘電層20の厚さは、例えば、20~200μmである。 誘 電 The dielectric elastomer constituting the dielectric layer 20 is not particularly limited, and a known dielectric elastomer used for DEA can be used. Examples of the dielectric elastomer include a crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these dielectric elastomers may be used, or a plurality of them may be used in combination. The thickness of the dielectric layer 20 is, for example, 20 to 200 μm.
 正極電極21及び負極電極22を構成する材料としては、例えば、導電エラストマー、カーボンナノチューブ、ケッチェンブラック(登録商標)、及び金属蒸着膜が挙げられる。上記導電エラストマーとしては、例えば、絶縁性高分子及び導電性フィラーを含有する導電エラストマーが挙げられる。 材料 Examples of the material forming the positive electrode 21 and the negative electrode 22 include a conductive elastomer, carbon nanotube, Ketjen Black (registered trademark), and a metal deposition film. Examples of the conductive elastomer include a conductive elastomer containing an insulating polymer and a conductive filler.
 上記絶縁性高分子としては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、及びウレタンエラストマーが挙げられる。これら絶縁性高分子のうちの一種を用いてもよいし、複数種を併用してもよい。上記導電性フィラーとしては、例えば、ケッチェンブラック(登録商標)、カーボンブラック、及び金属粒子が挙げられる。金属粒子としては例えば銅及び銀が挙げられる。これら導電性フィラーのうちの一種を用いてもよいし、複数種を併用してもよい。正極電極21及び負極電極22の厚さは、例えば、10~100μmである。 Examples of the insulating polymer include cross-linked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these insulating polymers may be used, or a plurality of them may be used in combination. Examples of the conductive filler include Ketjen Black (registered trademark), carbon black, and metal particles. Examples of the metal particles include copper and silver. One of these conductive fillers may be used, or a plurality of them may be used in combination. The thickness of the positive electrode 21 and the negative electrode 22 is, for example, 10 to 100 μm.
 絶縁層23を構成する絶縁エラストマーは特に限定されるものではなく、公知のDEAの絶縁部分に用いられる公知の絶縁エラストマーを用いることができる。上記絶縁エラストマーとしては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、及びウレタンエラストマーが挙げられる。これら絶縁エラストマーのうちの一種を用いてもよいし、複数種を併用してもよい。絶縁層23の厚さは、例えば、10~100μmである。 絶 縁 The insulating elastomer constituting the insulating layer 23 is not particularly limited, and a known insulating elastomer used for an insulating portion of a known DEA can be used. Examples of the insulating elastomer include a crosslinked polyrotaxane, a silicone elastomer, an acrylic elastomer, and a urethane elastomer. One of these insulating elastomers may be used, or a plurality of them may be used in combination. The thickness of the insulating layer 23 is, for example, 10 to 100 μm.
 図3に示すように、制御部15は、バッテリ等の電源(図示略)からDEA16に印加される印加電圧を制御する。制御部15は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。制御部15において、DEA16に対する印加電圧が変更されると、DEA16は印加電圧の大きさに応じた形状に変形する。 (3) As shown in FIG. 3, the control unit 15 controls the voltage applied to the DEA 16 from a power supply (not shown) such as a battery. The control unit 15 includes one or more dedicated processors such as 1) one or more processors that operate according to a computer program (software) and 2) an application specific integrated circuit (ASIC) that performs at least a part of various processes. Or a circuit including 3) a combination thereof. The processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores a program code or a command configured to cause the CPU to execute a process. Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer. When the control unit 15 changes the applied voltage to the DEA 16, the DEA 16 is deformed into a shape corresponding to the magnitude of the applied voltage.
 また、制御部15は、この印加電圧に比べて十分小さな交流電圧を印加電圧に加えることで、DEA16の静電容量を測定する。そして、制御部15は、DEA16に対する印加電圧と、測定されたDEA16の静電容量との関係に基づいて、DEA16に作用する外力を所定の目標値に近づけるようにDEA16に対する印加電圧を制御する。 {Circle around (4)} The control unit 15 measures the capacitance of the DEA 16 by applying an AC voltage sufficiently smaller than the applied voltage to the applied voltage. Then, the control unit 15 controls the applied voltage to the DEA 16 based on the relationship between the applied voltage to the DEA 16 and the measured capacitance of the DEA 16 so that the external force acting on the DEA 16 approaches a predetermined target value.
 DEA16の静電容量は、DEA16の電極間の間隔に反比例し、電極の面積(対向面積)に比例するパラメータであり、DEA16の形状に応じて変化する。そのため、DEA16に対して電圧が印加されて、誘電層20の厚さ方向にDEA16が圧縮されると、DEA16の静電容量も増大する。したがって、図4のグラフの変化曲線L1で示すように、DEA16への印加電圧と静電容量との間には、一方が大きくなるに従って他方も大きくなる相関関係が成立している。 静電 The capacitance of the DEA 16 is a parameter that is inversely proportional to the distance between the electrodes of the DEA 16 and proportional to the area of the electrodes (opposed area), and varies according to the shape of the DEA 16. Therefore, when a voltage is applied to the DEA 16 and the DEA 16 is compressed in the thickness direction of the dielectric layer 20, the capacitance of the DEA 16 also increases. Therefore, as shown by the change curve L1 in the graph of FIG. 4, a correlation is established between the voltage applied to the DEA 16 and the capacitance, as one increases and the other increases.
 同様に、DEA16に対して外力が作用して、誘電層20の厚さ方向にDEA16が圧縮されると、DEA16の静電容量が増大する。そのため、DEA16に対する印加電圧が同じであっても、DEA16に対して外力が作用していない状態におけるDEA16の静電容量と、DEA16に対して外力が作用している状態におけるDEA16の静電容量との間には違いが生じる。 Similarly, when an external force acts on the DEA 16 to compress the DEA 16 in the thickness direction of the dielectric layer 20, the capacitance of the DEA 16 increases. Therefore, even when the voltage applied to the DEA 16 is the same, the capacitance of the DEA 16 when no external force is acting on the DEA 16 and the capacitance of the DEA 16 when an external force is acting on the DEA 16 There is a difference between
 図4の変化曲線L2は、DEA16に対して一定の外力(後述する外力の目標値)が作用している状態におけるDEA16への印加電圧と静電容量との関係を示す。変化曲線L2は、DEA16に対して外力が作用していない状態における変化曲線L1に対して、DEA16に作用する外力の大きさに応じた分だけ静電容量が増加する方向にシフトしている。 4 shows the relationship between the applied voltage and the capacitance of the DEA 16 when a constant external force (a target value of the external force described later) is acting on the DEA 16. The change curve L2 is shifted from the change curve L1 in a state where no external force acts on the DEA 16 in a direction in which the capacitance increases by an amount corresponding to the magnitude of the external force acting on the DEA 16.
 したがって、DEA16に作用する外力の有無に基づく静電容量の相違は、DEA16に作用している外力の大きさを示すパラメータと見なすことができる。本実施形態においては、ロボットハンド10に物品Aを接触させた場合における物品Aから指部13のDEA16に作用する外力を、DEA16への印加電圧及びDEA16の静電容量から推定している。 Therefore, the difference in capacitance based on the presence or absence of the external force acting on the DEA 16 can be regarded as a parameter indicating the magnitude of the external force acting on the DEA 16. In the present embodiment, the external force acting on the DEA 16 of the finger portion 13 from the article A when the article A is brought into contact with the robot hand 10 is estimated from the voltage applied to the DEA 16 and the capacitance of the DEA 16.
 ここで、DEA16に作用する外力は、指部13と対象物との間に生じる力であって、指部13が対象物を押した際に対象物からDEA16に作用する反作用の力(力覚情報)である。したがって、指部13により対象物を把持する場合、DEA16に作用する外力は、指部13が対象物を把持する把持力に相当する。 Here, the external force acting on the DEA 16 is a force generated between the finger 13 and the object, and is a reaction force (force sense) acting on the DEA 16 from the object when the finger 13 presses the object. Information). Therefore, when the target is gripped by the finger 13, the external force acting on the DEA 16 corresponds to the gripping force of the finger 13 gripping the target.
 図3に示すように、制御部15は、記憶部15aを備えている。記憶部15aには、基準静電容量C0と目標静電容量Ctとが保存されている。基準静電容量C0は、DEA16に外力が作用していない状態(指部13に物品A等が接触していない状態)における静電容量であり、図4の変化曲線L1に示すように、DEA16への印加電圧と静電容量との関係式として保存されている。基準静電容量C0は、シミュレーション又は事前の測定により求めることができる。 制 御 As shown in FIG. 3, the control unit 15 includes a storage unit 15a. The storage unit 15a stores a reference capacitance C0 and a target capacitance Ct. The reference capacitance C0 is a capacitance in a state where no external force acts on the DEA 16 (a state where the article A or the like is not in contact with the finger portion 13), and as shown in a change curve L1 in FIG. It is stored as a relational expression between the voltage applied to and the capacitance. The reference capacitance C0 can be obtained by simulation or preliminary measurement.
 目標静電容量Ctは、DEA16に作用する外力の目標値を静電容量に換算した値である。図4のグラフに示すように、DEA16に対して外力が作用していない状態における変化曲線L1と、DEA16に対して目標値の外力が作用している状態における変化曲線L2との間の差が目標静電容量Ctに相当する。 The target capacitance Ct is a value obtained by converting a target value of the external force acting on the DEA 16 into a capacitance. As shown in the graph of FIG. 4, the difference between the change curve L1 when no external force is acting on the DEA 16 and the change curve L2 when a target value of external force is acting on the DEA 16 is as follows. It corresponds to the target capacitance Ct.
 目標静電容量Ctは、操作する対象となる物品Aの特性(例えば、硬度や形状)に応じて物品Aの種類毎に設定される。目標静電容量Ctは、印加電圧の関数として与えられたものであってもよいし、これを近似した特定の値を示すものであってもよいし、これらに特定の範囲を加味したものであってもよい。目標静電容量Ctの設定方法は特に限定されるものではない。例えば、使用者の入力により行ってもよいし、イメージセンサ等の検出手段を用いて物品Aの種類を判別し、記憶部15aに保存された複数の目標静電容量Ctの中から物品Aの種類に応じた目標静電容量Ctを選択するように制御してもよい。 The target capacitance Ct is set for each type of the article A according to the characteristics (for example, hardness and shape) of the article A to be operated. The target capacitance Ct may be given as a function of the applied voltage, may indicate a specific value approximating the target capacitance Ct, or may be a value in which a specific range is added thereto. There may be. The method for setting the target capacitance Ct is not particularly limited. For example, the determination may be performed by a user's input, or the type of the article A may be determined using a detection unit such as an image sensor, and the article A may be determined from among the plurality of target capacitances Ct stored in the storage unit 15a. Control may be performed so as to select the target capacitance Ct according to the type.
 次に、図5のフローチャートに基づいて、ロボットハンド10を用いて物品Aを把持する操作を実行する際の制御について説明する。ここでは、図1に示すように、ロボットハンド10の指部13を内側へ動かすことにより物品Aを把持可能な位置関係に、ロボットハンド10と物品Aとを位置させた状態からの制御について説明する。 Next, the control for executing the operation of gripping the article A using the robot hand 10 will be described based on the flowchart of FIG. Here, as shown in FIG. 1, control from a state in which the robot hand 10 and the article A are positioned so that the article A can be gripped by moving the finger portion 13 of the robot hand 10 inward will be described. I do.
 まず、制御部15は、指部13のDEA16に初期電圧V0を印加して、DEA16を圧縮状態にする(ステップS1)。初期電圧V0は、DEA16に外力が作用していない状態において、DEA16の圧縮方向の上限として予め設定された最大圧縮状態までDEA16を圧縮するために必要な電圧である。 First, the control unit 15 applies the initial voltage V0 to the DEA 16 of the finger unit 13 to bring the DEA 16 into a compressed state (step S1). The initial voltage V0 is a voltage necessary for compressing the DEA 16 to a maximum compression state set in advance as an upper limit in the compression direction of the DEA 16 in a state where no external force acts on the DEA 16.
 その後、制御部15は、駆動部14を制御して、手を閉じるように指部13を内側に移動させて、各指部13に設けられたDEA16を物品Aに当接させる(ステップS2)。DEA16が物品Aに接触すると、物品Aからの外力がDEA16に作用することにより、DEA16の静電容量が初期電圧V0における基準静電容量C0から増加する。制御部15は、DEA16の静電容量を所定の周期で測定しており、基準静電容量C0からの増加量が予め設定された規定値を超えたことを検出することに基づいて指部13の移動を停止する。 Thereafter, the control unit 15 controls the driving unit 14 to move the finger units 13 inward so as to close the hands, and to bring the DEA 16 provided on each finger unit 13 into contact with the article A (step S2). . When the DEA 16 comes into contact with the article A, an external force from the article A acts on the DEA 16, so that the capacitance of the DEA 16 increases from the reference capacitance C0 at the initial voltage V0. The control unit 15 measures the capacitance of the DEA 16 at a predetermined cycle, and based on detecting that the amount of increase from the reference capacitance C0 exceeds a preset specified value, the finger unit 13 Stop moving.
 次に、制御部15は、物品AからDEA16に作用する外力に相当する外力パラメータとして、現在のDEA16の静電容量の測定値Cmと、現在の印加電圧(初期電圧V0)における基準静電容量C0との静電容量差Cd(=Cm-C0)を演算する(ステップS3)。そして、制御部15は、静電容量差Cdが目標静電容量Ct未満であるか否かを判定する(ステップS4)。 Next, the control unit 15 determines the current measured value Cm of the capacitance of the DEA 16 and the reference capacitance at the current applied voltage (initial voltage V0) as external force parameters corresponding to the external force acting on the DEA 16 from the article A. The capacitance difference Cd from C0 (= Cm-C0) is calculated (step S3). Then, the control unit 15 determines whether or not the capacitance difference Cd is smaller than the target capacitance Ct (Step S4).
 ステップS4において、静電容量差Cdが目標静電容量Ct未満である場合(YES)には、制御部15は、DEA16への印加電圧を、現在の印加電圧に予め設定された所定量を減算した印加電圧Vdに降下させる(ステップS5)。静電容量差Cdが目標静電容量Ct未満であることは、把持力が不足した状態であることを意味する。そのため、DEA16への印加電圧を降下させて、DEA16の圧縮状態を緩和させることにより、把持力を増大させる。 In step S4, when the capacitance difference Cd is smaller than the target capacitance Ct (YES), the control unit 15 subtracts a predetermined amount from the voltage applied to the DEA 16 to the current applied voltage. The voltage is decreased to the applied voltage Vd (step S5). When the capacitance difference Cd is smaller than the target capacitance Ct, it means that the gripping force is insufficient. Therefore, the gripping force is increased by lowering the applied voltage to the DEA 16 to relax the compressed state of the DEA 16.
 DEA16と物品Aとが当接して、指部13におけるDEA16の取り付け部分と物品Aとの間にDEA16が挟まれた状態においては、DEA16への印加電圧を変化させたとしてもDEA16の厚さはほとんど変化しない。そのため、図4の左方向の矢印で示すように、DEA16への印加電圧を降下させた場合、静電容量は変化せずに印加電圧のみが降下する。これにより、物品AからDEA16に作用する外力(静電容量差Cd)を目標値(目標静電容量Ct)に向かって少しずつ大きくすることができる。 In a state where the DEA 16 and the article A are in contact with each other and the DEA 16 is sandwiched between the attachment portion of the DEA 16 in the finger portion 13 and the article A, even if the voltage applied to the DEA 16 is changed, the thickness of the DEA 16 is Hardly change. Therefore, when the voltage applied to the DEA 16 is decreased, as indicated by the left arrow in FIG. 4, only the applied voltage is decreased without changing the capacitance. Thereby, the external force (capacitance difference Cd) acting on the DEA 16 from the article A can be gradually increased toward the target value (target capacitance Ct).
 ステップS5の後はステップS3へと戻る。二回目以降のステップS3においては、現在の印加電圧Vdにおける基準静電容量C0を用いて静電容量差Cdが演算される。そして、静電容量差Cdが目標静電容量CtになるまでステップS3~S5を繰り返し、印加電圧を降下させて把持力を増大させる。 の 後 After step S5, the process returns to step S3. In the second and subsequent steps S3, the capacitance difference Cd is calculated using the reference capacitance C0 at the current applied voltage Vd. Steps S3 to S5 are repeated until the capacitance difference Cd reaches the target capacitance Ct, and the applied voltage is reduced to increase the gripping force.
 ステップS4において、静電容量差Cdが目標静電容量Ct未満でない場合(NO)には、制御部15は、DEA16への印加電圧を維持する。これにより、物品Aに対する把持力を目標の把持力に微調整できる。そして、物品Aを搬送する等の物品Aに対する所定の操作が実行される。なお、上記のステップS1~S5は、各指部13に設けられるDEA16に対して、それぞれ独立して実行される。 If the capacitance difference Cd is not smaller than the target capacitance Ct in step S4 (NO), the control unit 15 maintains the voltage applied to the DEA 16. Thereby, the gripping force on the article A can be finely adjusted to the target gripping force. Then, a predetermined operation on the article A, such as conveying the article A, is executed. The above steps S1 to S5 are executed independently for the DEA 16 provided on each finger 13.
 次に、図6のフローチャートに基づいて、目標の把持力にて物品Aを把持した状態を維持する際の制御について説明する。制御部15は、物品Aを把持している間、以下に記載するステップS11~S15を所定の周期で繰り返し実行する。 Next, the control for maintaining the state where the article A is gripped with the target gripping force will be described with reference to the flowchart of FIG. The control unit 15 repeatedly executes Steps S11 to S15 described below at a predetermined cycle while holding the article A.
 制御部15は、現在のDEA16の静電容量の測定値Cmと、現在の印加電圧における基準静電容量C0との静電容量差Cd(=Cm-C0)を演算する(ステップS11)。そして、制御部15は、静電容量差Cdが目標静電容量Ct未満であるか否かを判定する(ステップS12)。ステップS12において、静電容量差Cdが目標静電容量Ct未満である場合(YES)には、制御部15は、DEA16への印加電圧を、現在の印加電圧に予め設定された所定量を減算した印加電圧Vdに降下させる(ステップS13)。 The control unit 15 calculates a capacitance difference Cd (= Cm−C0) between the current measured value Cm of the capacitance of the DEA 16 and the reference capacitance C0 at the current applied voltage (step S11). Then, the control unit 15 determines whether the capacitance difference Cd is less than the target capacitance Ct (Step S12). In step S12, when the capacitance difference Cd is smaller than the target capacitance Ct (YES), the control unit 15 subtracts a predetermined amount from the voltage applied to the DEA 16 to the current applied voltage. The voltage is decreased to the applied voltage Vd (step S13).
 静電容量差Cdが目標静電容量Ct未満であることは、何らかの原因(例えば、搬送時の振動や姿勢変更)により、把持力が不足した状態であることを意味する。そのため、DEA16への印加電圧を降下させて、DEA16の圧縮状態を緩和させることにより、把持力を増大させる。ステップS13の後はステップS11へと戻る。 The fact that the capacitance difference Cd is smaller than the target capacitance Ct means that the gripping force is insufficient due to some cause (for example, vibration or change in posture during conveyance). Therefore, the gripping force is increased by lowering the applied voltage to the DEA 16 to relax the compressed state of the DEA 16. After step S13, the process returns to step S11.
 図4の左方向の矢印で示すように、DEA16への印加電圧を降下させた場合、静電容量は変化せずに印加電圧のみが降下し、これにより、物品AからDEA16に作用する外力(静電容量差Cd)を目標値(目標静電容量Ct)に向かって少しずつ大きくすることができる。 As shown by the leftward arrow in FIG. 4, when the applied voltage to the DEA 16 is decreased, only the applied voltage is decreased without changing the capacitance, whereby the external force ( The capacitance difference Cd) can be gradually increased toward the target value (the target capacitance Ct).
 ステップS12において、静電容量差Cdが目標静電容量Ct未満でない場合(NO)には、制御部15は、静電容量差Cdが目標静電容量Ctを超えるか否かを判定する(ステップS14)。ステップS14において、静電容量差Cdが目標静電容量Ctを超える場合(YES)には、制御部15は、DEA16への印加電圧を、現在の印加電圧に予め設定された所定量を加算した印加電圧Vuに上昇させる(ステップS15)。 If the capacitance difference Cd is not less than the target capacitance Ct in step S12 (NO), the control unit 15 determines whether the capacitance difference Cd exceeds the target capacitance Ct (step S12). S14). In step S14, when the capacitance difference Cd exceeds the target capacitance Ct (YES), the control unit 15 adds the voltage applied to the DEA 16 to the current applied voltage by a predetermined amount set in advance. The voltage is increased to the applied voltage Vu (step S15).
 静電容量差Cdが目標静電容量Ctを超えていることは、何らかの原因(例えば、搬送時の振動や姿勢変更)により、把持力が過剰な状態であることを意味する。そのため、DEA16への印加電圧を上昇させて、DEA16をより圧縮した状態にすることにより、把持力を減少させる。ステップS15の後はステップS11へと戻る。 The fact that the capacitance difference Cd exceeds the target capacitance Ct means that the gripping force is in an excessive state due to some cause (for example, vibration or posture change during conveyance). Therefore, the gripping force is reduced by increasing the voltage applied to the DEA 16 to make the DEA 16 more compressed. After step S15, the process returns to step S11.
 図4の右方向の矢印で示すように、DEA16への印加電圧を上昇させた場合、静電容量は変化せずに印加電圧のみが上昇し、これにより、物品AからDEA16に作用する外力(静電容量差Cd)を目標値(目標静電容量Ct)に向かって少しずつ小さくすることができる。 As shown by the rightward arrow in FIG. 4, when the applied voltage to the DEA 16 is increased, only the applied voltage is increased without changing the capacitance, whereby the external force ( The capacitance difference Cd) can be gradually reduced toward the target value (target capacitance Ct).
 また、ステップS14において、静電容量差Cdが目標静電容量Ctを超えない場合(NO)には、制御部15は、DEA16への印加電圧を維持する。これにより、目標の把持力にて物品Aを把持した状態が維持される。なお、上記のステップS11~S15は、各指部13に設けられるDEA16に対して、それぞれ独立して実行される。 If the capacitance difference Cd does not exceed the target capacitance Ct in step S14 (NO), the control unit 15 maintains the voltage applied to the DEA 16. Thereby, the state where the article A is gripped with the target gripping force is maintained. The above steps S11 to S15 are executed independently for the DEA 16 provided on each finger 13.
 次に、本実施形態の作用及び効果について記載する。
 (1)ロボットハンド10は、指部13により物品Aを操作する。ロボットハンド10は、指部13における物品Aからの外力が作用する部位に設けられ、物品Aからの外力が作用する方向に伸縮動作するアクチュエータと、そのアクチュエータを制御する制御部とを備えている。アクチュエータは、物品Aからの外力が作用する方向に誘電層20と電極層(正極電極21及び負極電極22)とが積層されたDEA16である。制御部15は、DEA16の静電容量に基づいて、DEA16に作用する外力を目標値に近づけるようにDEA16を制御する。
Next, the operation and effect of the present embodiment will be described.
(1) The robot hand 10 operates the article A by the finger unit 13. The robot hand 10 is provided at a portion of the finger unit 13 where an external force from the article A acts, and includes an actuator that expands and contracts in a direction in which the external force from the article A acts, and a control unit that controls the actuator. . The actuator is a DEA 16 in which a dielectric layer 20 and electrode layers (a positive electrode 21 and a negative electrode 22) are laminated in a direction in which an external force from the article A acts. The control unit 15 controls the DEA 16 based on the capacitance of the DEA 16 so that the external force acting on the DEA 16 approaches a target value.
 上記構成によれば、指部13に設けられたDEA16が、指部13と物品Aとの間に生じる力(把持力)を調整するアクチュエータとして機能するとともに、指部13と物品Aとの間に生じる力を検出する検出部としても機能する。そのため、DEA16とは別に、感圧素子等の検出部を設ける必要がない。よって、検出部を別に設ける場合と比較して、検出部自体、及び検出部に接続される配線等を省略できることにより、ロボットハンド10の構成を簡略化できる。 According to the above configuration, the DEA 16 provided on the finger 13 functions as an actuator for adjusting the force (gripping force) generated between the finger 13 and the article A, and the DEA 16 between the finger 13 and the article A It also functions as a detection unit for detecting the force generated in. Therefore, there is no need to provide a detection unit such as a pressure-sensitive element separately from the DEA 16. Therefore, the configuration of the robot hand 10 can be simplified by omitting the detection unit itself and the wiring and the like connected to the detection unit, as compared with the case where the detection unit is separately provided.
 (2)制御部15は、DEA16に対する印加電圧と、DEA16に外力が作用していない状態において同じ印加電圧を印加した際の静電容量である基準静電容量C0と、静電容量の測定値Cmとに基づいて、DEA16を制御する。 (2) The control unit 15 applies the applied voltage to the DEA 16, the reference capacitance C0 which is the capacitance when the same applied voltage is applied in a state where no external force is applied to the DEA 16, and the measured value of the capacitance The DEA 16 is controlled based on Cm.
 上記構成によれば、DEA16の静電容量に基づいて、DEA16に作用する外力を目標値に容易に近づけることができる。
 (3)制御部15は、指部13と物品Aとが接触する前に、DEA16を予め設定された最大の圧縮状態とする初期電圧V0を印加する。そして、指部13が移動して指部13と物品Aとが接触した後、DEA16に対する印加電圧を降下することにより、DEA16の圧縮状態を緩和させてDEA16に作用する外力を増大させる。
According to the above configuration, the external force acting on the DEA 16 can be easily brought close to the target value based on the capacitance of the DEA 16.
(3) The control unit 15 applies the initial voltage V0 that brings the DEA 16 into a preset maximum compression state before the finger unit 13 comes into contact with the article A. Then, after the finger 13 moves and the finger 13 comes into contact with the article A, the applied voltage to the DEA 16 is reduced, so that the compression state of the DEA 16 is relaxed and the external force acting on the DEA 16 is increased.
 上記構成によれば、DEA16に対する印加電圧を降下させるという一方向の処理により、DEA16に作用する外力を目標値に近づけることができる。また、DEA16に作用する外力を増大させることにより、目標値に近づけている。そのため、DEA16に作用する外力が目標値を大きく超えてしまうことによって物品Aに対して過剰な力が作用することが抑制される。 According to the above configuration, the external force acting on the DEA 16 can be made closer to the target value by the one-way process of decreasing the voltage applied to the DEA 16. Further, the external force acting on the DEA 16 is increased to approach the target value. Therefore, an excessive force acting on the article A due to the external force acting on the DEA 16 greatly exceeding the target value is suppressed.
 (4)DEA16は、指部13における物品Aに接触する部分に設けられている。
 上記構成によれば、DEA16の弾性に基づいて、指部13と物品Aとの接触時における衝撃を緩和できる。また、物品Aの表面形状に沿ってDEA16の表面形状が弾性変形することにより、物品AとDEA16との接触面積を確保することができ、物品Aと指部13との接触状態が安定する。
(4) The DEA 16 is provided at a portion of the finger portion 13 that contacts the article A.
According to the above configuration, the impact at the time of contact between the finger portion 13 and the article A can be reduced based on the elasticity of the DEA 16. Further, since the surface shape of the DEA 16 is elastically deformed along the surface shape of the article A, a contact area between the article A and the DEA 16 can be secured, and the contact state between the article A and the finger 13 is stabilized.
 (5)DEA16に作用する外力の目標値(目標静電容量Ct)を物品Aの種類に応じて設定している。
 上記構成によれば、複数種類の物品Aを対象とした場合にも、物品Aの種類に応じた適切な把持力にて物品Aを操作できる。
(5) The target value (target capacitance Ct) of the external force acting on the DEA 16 is set according to the type of the article A.
According to the above configuration, even when a plurality of types of articles A are targeted, the articles A can be operated with an appropriate gripping force according to the type of the articles A.
 (6)ロボットハンド10は、DEA16をそれぞれ有する3本の指部13を備えている。
 上記構成によれば、物品Aを把持した際に、物品Aに対する複数の接触点において、それぞれ独立して把持力を調整することにより、物品Aを安定的に把持できる。例えば、把持した物品Aが振動すると、ある接触点においては把持力が不足し、別の接触点においては把持力が過剰になるといった状態になるが、このような場合にも、接触点毎に適切な把持力に調整できる。
(6) The robot hand 10 includes three fingers 13 each having a DEA 16.
According to the above configuration, when the article A is grasped, the article A can be stably grasped by independently adjusting the grasping force at a plurality of contact points with the article A. For example, when the gripped article A vibrates, the gripping force becomes insufficient at a certain contact point, and the gripping force becomes excessive at another contact point. It can be adjusted to an appropriate gripping force.
 なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・ロボットハンド10の形状等の構成は、適宜変更することができる。例えば、ロボットハンド10の指部13の数を変更してもよい。なお、指部13は1本以上であればよいが、物品Aを把持する場合には、把持の安定性の観点から、2本以上の指部13を設けることが好ましく、3本以上の指部13を設けることがより好ましい。
The present embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The configuration such as the shape of the robot hand 10 can be changed as appropriate. For example, the number of fingers 13 of the robot hand 10 may be changed. It is sufficient that the number of the finger portions 13 is one or more. However, when gripping the article A, it is preferable to provide two or more finger portions 13 from the viewpoint of holding stability, and it is preferable to provide three or more finger portions. More preferably, the portion 13 is provided.
 ・指部13におけるDEA16を設ける位置は、物品Aに接触する部分に限定されるものではない。例えば、物品Aに接触する部分以外の部分にDEA16を設け、リンク機構等を介して指部13における物品Aに接触する部分とDEA16との間で双方向に力が伝達されるように構成してもよい。この場合、DEA16は、外力が作用する方向に伸縮動作するように取り付けられる。 The position where the DEA 16 is provided on the finger portion 13 is not limited to the portion that contacts the article A. For example, the DEA 16 is provided in a portion other than the portion that contacts the article A, and the force is transmitted bidirectionally between the portion of the finger portion 13 that contacts the article A and the DEA 16 via a link mechanism or the like. You may. In this case, the DEA 16 is attached so as to extend and contract in a direction in which an external force acts.
 ・物品Aを把持する際の制御に関して、図5のフローチャートのステップS3~S5の処理に代えて、図6のフローチャートのステップS11~S15の処理を行ってもよい。
 ・物品Aを操作する一連の工程の間において、所定のタイミング(例えば、搬送方向や姿勢を変更するタイミング)で、DEA16に作用する外力の目標値(目標静電容量Ct)を変更してもよい。例えば、物品Aを把持した状態において、DEA16に作用する外力の目標値を変更することにより把持された物品Aの位置や姿勢を微調整することもできる。
Regarding the control when gripping the article A, the processing of steps S11 to S15 of the flowchart of FIG. 6 may be performed instead of the processing of steps S3 to S5 of the flowchart of FIG.
Even if the target value (target capacitance Ct) of the external force acting on the DEA 16 is changed at a predetermined timing (for example, a timing of changing the transport direction or the posture) during a series of steps of operating the article A. Good. For example, while the article A is being gripped, the position and orientation of the gripped article A can be finely adjusted by changing the target value of the external force acting on the DEA 16.
 ・DEA16の静電容量に基づいて、DEA16に作用する外力を目標値に近づけるようにDEA16を制御する方法は、静電容量差Cdを求め、静電容量差Cdを目標静電容量Ctに近づけるように印加電圧を徐々に上昇又は降下させる方法に限定されるものではなく、その他の方法を採用してもよい。 The method of controlling the DEA 16 so that the external force acting on the DEA 16 approaches the target value based on the capacitance of the DEA 16 obtains the capacitance difference Cd, and brings the capacitance difference Cd closer to the target capacitance Ct. The method is not limited to the method of gradually increasing or decreasing the applied voltage as described above, and other methods may be employed.
 例えば、DEA16への印加電圧と、DEA16に目標の外力が作用している状態におけるDEA16の静電容量(基準静電容量C0に目標静電容量Ctを加算した値)との関係式(図4の変化曲線L2に相当)を記憶部15aに保存しておく。そして、DEA16の静電容量の測定値Cm及び上記関係式に基づいて、上記関係式において測定値Cmと同じ値となる印加電圧を求め、その印加電圧をDEA16に印加する。 For example, a relational expression between the voltage applied to the DEA 16 and the capacitance of the DEA 16 when the target external force is acting on the DEA 16 (the value obtained by adding the target capacitance Ct to the reference capacitance C0) (FIG. 4) (Corresponding to the change curve L2) is stored in the storage 15a. Then, based on the measured value Cm of the capacitance of the DEA 16 and the above-mentioned relational expression, an applied voltage having the same value as the measured value Cm in the above-mentioned relational expression is obtained, and the applied voltage is applied to the DEA 16.
 ・指部13(DEA16)を物品Aに接触させる際のDEA16の状態は、予め設定された最大の圧縮状態に限定されるものでなく、圧縮していない状態であってもよいし、最大の圧縮状態と圧縮していない状態との間の中間の圧縮状態であってもよい。 The state of the DEA 16 when the finger portion 13 (DEA 16) is brought into contact with the article A is not limited to the preset maximum compressed state, but may be an uncompressed state or the maximum. The compression state may be intermediate between the compression state and the uncompressed state.
 ・DEA16のセルフセンシング機能を利用して物品Aの硬さを判定してもよい。例えば、DEA16を物品Aに接触させた状態において、DEA16への印加電圧を予め設定された所定量、降下させ、その前後におけるDEA16の静電容量の変化量に基づいて物品Aの硬さを判定する。物品Aが柔らかい物体である場合、DEA16が物品Aを押し込むように物品A側に伸長することにより、DEA16の静電容量の変化量は大きくなり、物品Aが硬い物体である場合、DEA16が物品A側に伸長できず、DEA16の静電容量の変化量は小さくなる。 · The hardness of the article A may be determined using the self-sensing function of the DEA 16. For example, in a state where the DEA 16 is in contact with the article A, the voltage applied to the DEA 16 is lowered by a predetermined amount, and the hardness of the article A is determined based on the amount of change in the capacitance of the DEA 16 before and after that. I do. When the article A is a soft object, the amount of change in the capacitance of the DEA 16 is increased by extending the DEA 16 toward the article A so as to push the article A. When the article A is a hard object, the DEA 16 It cannot extend to the A side, and the amount of change in the capacitance of the DEA 16 becomes small.
 物品Aの硬さを判定する構成を採用した場合には、判定された物品Aの硬さに基づいて物品Aの種類を判別し、記憶部15aに保存された複数の目標静電容量Ctの中から物品Aの種類に応じた目標静電容量Ctを選択することが好ましい。この場合には、物品Aの種類を判別するためのイメージセンサ等の検出部を別に設ける必要がない。 When the configuration for determining the hardness of the article A is employed, the type of the article A is determined based on the determined hardness of the article A, and the plurality of target capacitances Ct stored in the storage unit 15a are determined. It is preferable to select a target capacitance Ct according to the type of the article A from among them. In this case, there is no need to separately provide a detection unit such as an image sensor for determining the type of the article A.
 ・DEA16の静電容量そのものでなく、静電容量に基づく値(例えば、電圧値等の静電容量と相関関係のある値)を用いてDEA16を制御してもよい。
 ・セルフセンシング機能を有するアクチュエータは、DEA16に限定されるものではなく、アクチュエータの特定パラメータに基づいて、物品Aからアクチュエータに作用する外力を検出可能なものであればよい。アクチュエータとして、例えば、電気活性ポリマーを用いてもよい。
The DEA 16 may be controlled using a value based on the capacitance (for example, a value having a correlation with the capacitance such as a voltage value) instead of the capacitance of the DEA 16 itself.
The actuator having the self-sensing function is not limited to the DEA 16, but may be any actuator that can detect an external force acting on the actuator from the article A based on the specific parameter of the actuator. For example, an electroactive polymer may be used as the actuator.
 ・指部13による操作は、物品Aを把持する操作以外の操作であってもよい。例えば、物品Aを把持した状態で、把持力を強める制御と弱める制御とを交互に実行することにより、把持した物品Aを自重により少しずつ滑り落とさせることができる。また、物品Aを把持した状態で、把持力を強める制御と弱める制御とを交互に実行するとともに、そのタイミングを複数の指部13の間でずらすことにより、把持した物品Aを揺らす(振動させる)ことができる。また、紙等のシートを捲る操作に適用することもできる。 The operation by the finger unit 13 may be an operation other than the operation of gripping the article A. For example, in a state where the article A is gripped, the control for increasing the gripping force and the control for weakening the gripping force are alternately executed, so that the gripped article A can be slid down by its own weight little by little. In addition, while holding the article A, the control for increasing the gripping force and the control for weakening the gripping force are alternately executed, and the timing is shifted between the plurality of finger portions 13 to shake (vibrate) the gripped article A. )be able to. Further, the present invention can be applied to an operation of turning a sheet such as paper.
 A…物品、10…ロボットハンド、11…アーム、12…本体部、13…指部、14…駆動部、15…制御部、15a…記憶部、16…誘電エラストマーアクチュエータ(DEA)、20…誘電層、21…正極電極、22…負極電極。 A: article, 10: robot hand, 11: arm, 12: body, 13: finger, 14: drive, 15: control, 15a: storage, 16: dielectric elastomer actuator (DEA), 20: dielectric Layers, 21: Positive electrode, 22: Negative electrode.

Claims (7)

  1.  少なくとも一つの指部を備え、前記指部により物品を操作するロボットハンドであって、
     前記指部における前記物品からの外力が作用する部位に設けられ、前記物品からの外力が作用する方向に伸縮動作するアクチュエータと、
     前記アクチュエータを制御する制御部とを備え、
     前記アクチュエータは、当該アクチュエータの特定パラメータに基づいて、前記物品から前記アクチュエータに作用する外力を検出可能なセルフセンシング機能を有し、
     前記制御部は、前記特定パラメータに基づいて、前記アクチュエータに作用する外力を目標値に近づけるように前記アクチュエータを制御することを特徴とするロボットハンド。
    A robot hand including at least one finger unit and operating an article with the finger unit,
    An actuator that is provided at a portion of the finger portion where an external force from the article acts, and that expands and contracts in a direction in which the external force from the article acts.
    A control unit for controlling the actuator,
    The actuator has a self-sensing function capable of detecting an external force acting on the actuator from the article based on a specific parameter of the actuator,
    The robot hand according to claim 1, wherein the control unit controls the actuator based on the specific parameter such that an external force acting on the actuator approaches a target value.
  2.  前記アクチュエータは、前記物品からの外力が作用する方向に誘電層と電極層とが積層された誘電エラストマーアクチュエータであり、
     前記特定パラメータは、静電容量又は静電容量に基づく値であり、
     前記制御部は、前記アクチュエータに対する印加電圧と、測定された前記アクチュエータの静電容量又は静電容量に基づく値とに基づいて、前記アクチュエータを制御することを特徴とする請求項1に記載のロボットハンド。
    The actuator is a dielectric elastomer actuator in which a dielectric layer and an electrode layer are stacked in a direction in which an external force from the article acts,
    The specific parameter is a capacitance or a value based on the capacitance,
    The robot according to claim 1, wherein the control unit controls the actuator based on a voltage applied to the actuator and a measured capacitance of the actuator or a value based on the capacitance. hand.
  3.  前記制御部は、前記指部と前記物品とが接触する前に、前記アクチュエータを圧縮状態とする初期電圧を印加し、前記指部が移動して前記指部と前記物品とが接触した後、前記アクチュエータに対する印加電圧を降下させて前記アクチュエータの圧縮状態を緩和させることを特徴とする請求項2に記載のロボットハンド。 The controller, before the finger and the article are in contact with each other, applies an initial voltage to compress the actuator, after the finger moves and the finger and the article come into contact with each other, The robot hand according to claim 2, wherein a voltage applied to the actuator is reduced to reduce a compression state of the actuator.
  4.  前記アクチュエータは、前記指部における物品に接触する部分に設けられていることを特徴とする請求項1~3のいずれか一項に記載のロボットハンド。 (4) The robot hand according to any one of (1) to (3), wherein the actuator is provided at a portion of the finger portion that comes into contact with an article.
  5.  前記目標値は、前記物品の種類に応じて設定されることを特徴とする請求項1~4のいずれか一項に記載のロボットハンド。 The robot hand according to any one of claims 1 to 4, wherein the target value is set according to a type of the article.
  6.  前記少なくとも一つの指部は、2本以上の指部であることを特徴とする請求項1~5のいずれか一項に記載のロボットハンド。 The robot hand according to any one of claims 1 to 5, wherein the at least one finger is two or more fingers.
  7.  前記少なくとも一つの指部は、3本以上の指部であることを特徴とする請求項1~5のいずれか一項に記載のロボットハンド。 The robot hand according to any one of claims 1 to 5, wherein the at least one finger is three or more fingers.
PCT/JP2019/028755 2018-08-31 2019-07-23 Robot hand WO2020044868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162301A JP6988743B2 (en) 2018-08-31 2018-08-31 Robot hand
JP2018-162301 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044868A1 true WO2020044868A1 (en) 2020-03-05

Family

ID=69644344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028755 WO2020044868A1 (en) 2018-08-31 2019-07-23 Robot hand

Country Status (2)

Country Link
JP (1) JP6988743B2 (en)
WO (1) WO2020044868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112223338A (en) * 2020-09-25 2021-01-15 陕西伟景机器人科技有限公司 Finger control method and system for dexterous robot hand

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027722A (en) * 2019-08-06 2021-02-22 豊田合成株式会社 Control device and actuator device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113685A (en) * 2000-10-10 2002-04-16 Ricoh Co Ltd Contact type shape sensing robot hand
JP2009045687A (en) * 2007-08-20 2009-03-05 Ntn Corp Grip control device of gripping device
JP2009101424A (en) * 2006-12-14 2009-05-14 Yaskawa Electric Corp Robot
JP2012024886A (en) * 2010-07-23 2012-02-09 Sharp Corp Mechanism for correcting position and posture
JP2012517790A (en) * 2009-02-09 2012-08-02 オークランド・ユニサービシス・リミテッド Mechanosensitive actuator array
JP2013543365A (en) * 2010-10-18 2013-11-28 オークランド ユニサービシズ リミテッド Self-sensing of dielectric elastomers using planar approximation
JP2017196690A (en) * 2016-04-26 2017-11-02 株式会社デンソー Holding device and robot device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113685A (en) * 2000-10-10 2002-04-16 Ricoh Co Ltd Contact type shape sensing robot hand
JP2009101424A (en) * 2006-12-14 2009-05-14 Yaskawa Electric Corp Robot
JP2009045687A (en) * 2007-08-20 2009-03-05 Ntn Corp Grip control device of gripping device
JP2012517790A (en) * 2009-02-09 2012-08-02 オークランド・ユニサービシス・リミテッド Mechanosensitive actuator array
JP2012024886A (en) * 2010-07-23 2012-02-09 Sharp Corp Mechanism for correcting position and posture
JP2013543365A (en) * 2010-10-18 2013-11-28 オークランド ユニサービシズ リミテッド Self-sensing of dielectric elastomers using planar approximation
JP2017196690A (en) * 2016-04-26 2017-11-02 株式会社デンソー Holding device and robot device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAU, GIH-KEONG ET AL.: "Dielectric elastomer fingers for versatile grasping and nimble pinching", APPLIED PHYSICS LETTERS, vol. 110, 3 May 2017 (2017-05-03), pages 182906, XP012218566, DOI: 10.1063/1.4983036 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112223338A (en) * 2020-09-25 2021-01-15 陕西伟景机器人科技有限公司 Finger control method and system for dexterous robot hand
CN112223338B (en) * 2020-09-25 2023-12-29 陕西伟景机器人科技有限公司 Robot smart hand finger control method and system

Also Published As

Publication number Publication date
JP6988743B2 (en) 2022-01-05
JP2020032508A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US9974706B2 (en) Driving device and driving method
WO2020044868A1 (en) Robot hand
CN104068989B (en) Finger servicing unit
US9357312B2 (en) System of audio speakers implemented using EMP actuators
US9183710B2 (en) Localized multimodal electromechanical polymer transducers
US8662552B2 (en) Dexterous and compliant robotic finger
US9785237B2 (en) Electronic device and control method of electronic device
JP5239986B2 (en) Finger for robot hand
WO2014081879A1 (en) Systems including electromechanical polymer sensors and actuators
JP5924107B2 (en) Robot hand and robot
JP2010005732A (en) Robot hand mechanism, robot having robot hand mechanism and control method of robot hand mechanism
CN104934250B (en) Key board unit, PBU pushbutton unit and electronic equipment
JP2016087749A (en) Robot hand
US11037415B2 (en) Tactile presentation device
KR100949191B1 (en) Self-Sensing Actuator Using Dielectric Elastomer
US20230091400A1 (en) Hydraulically Amplified Self-Healing Electrostatic (HASEL) Actuator Systems for Gripping Applications
JP2017004262A (en) Manipulation device
JP4591634B2 (en) Pressure sensor device
JP4888375B2 (en) Robot hand
JP6237927B2 (en) Tactile presentation device
JP6019880B2 (en) Roughness forming device and key input device
WO2022196099A1 (en) Sensor device and robot device
JP2019010721A (en) End effector
JP6432171B2 (en) Driving device and driving method thereof
WO2022009747A1 (en) Pressing force detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854794

Country of ref document: EP

Kind code of ref document: A1