WO2020044791A1 - Electric power converting system, and motor control method - Google Patents

Electric power converting system, and motor control method Download PDF

Info

Publication number
WO2020044791A1
WO2020044791A1 PCT/JP2019/026632 JP2019026632W WO2020044791A1 WO 2020044791 A1 WO2020044791 A1 WO 2020044791A1 JP 2019026632 W JP2019026632 W JP 2019026632W WO 2020044791 A1 WO2020044791 A1 WO 2020044791A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
energy
power
load
stored
Prior art date
Application number
PCT/JP2019/026632
Other languages
French (fr)
Japanese (ja)
Inventor
英人 高田
杉浦 正樹
卓也 石垣
小林 澄男
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201980054245.3A priority Critical patent/CN112585862B/en
Priority to DE112019003804.4T priority patent/DE112019003804T5/en
Publication of WO2020044791A1 publication Critical patent/WO2020044791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Definitions

  • the present invention relates to a power conversion system and a motor control method.
  • Patent Literature 1 discloses a power supply device and a power supply system that include a power supply circuit, a power supply control circuit, and a power storage device, and supply power to a device having a function of storing energy.
  • a power supply device and a power supply system that variably set a control command value of a power storage device based on energy that has been provided are disclosed.
  • control command value of the storage device is variably set and controlled based on the rotational energy or the spring energy stored in the inertia load such as the motor and the motor load, thereby achieving low cost, low loss and high density. It is intended to provide a simple power supply device.
  • the present invention has been made in view of the above requirements.
  • a power conversion system including a power conversion device that supplies power to a motor and a power supply device that supplies power to the power conversion device are exemplified.
  • a power conversion unit that converts power a control unit that controls the power conversion unit, and a current detection unit that detects a current in the power conversion unit
  • the power supply device A storage device for storing electric power according to a voltage, a step-up / step-down power supply circuit for changing the voltage of the storage device based on a voltage command, and calculating the energy stored in the storage device as the voltage command,
  • An arithmetic circuit for outputting to a power supply circuit, wherein the control unit uses information from an encoder provided in the motor and a current value detected by the current detection unit to output power running energy of the motor. There calculates the regenerative energy, the arithmetic circuit is assumed for calculating the energy accumulated in the storage device based on the power running
  • the present invention it is possible to suppress a shift in control due to a change in characteristics due to aged deterioration of the motor load, and to suppress a deterioration in control accuracy.
  • excessive storage of power in the storage device can be suppressed, and power loss can be reduced and the size of the storage device can be reduced.
  • FIG. 1 is a diagram schematically illustrating an example of a power conversion system according to a first embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a power conversion system according to a first embodiment.
  • FIG. 4 is a diagram illustrating an example of details of a directional converter, a step-up / step-down power supply circuit, and a storage device of the power supply device, in which a circuit that performs a boost operation is used as the step-up / step-down power supply circuit.
  • FIG. 9 is a diagram illustrating another example of the details of the forward converter, the step-up / step-down power supply circuit, and the storage device of the power supply device, and illustrates a case where a circuit that performs a step-down operation is used as the step-up / step-down power supply circuit.
  • FIG. 3 is a diagram illustrating details of an inverter and a position / speed current control circuit of the motor power converter.
  • FIG. 1 It is a figure which shows an example of the output waveform of an inertial load accumulation energy calculation circuit when drawing is performed by the press machine with a pneumatic die cushion. It is a figure which shows an example of the output waveform of the elastic load accumulation energy calculation circuit at the time of performing drawing by the press machine with a pneumatic die cushion. It is a figure which shows an example of the output waveform of the addition arithmetic unit of the accumulation energy arithmetic circuit at the time of performing a drawing process with the press machine with a pneumatic die cushion. It is a figure which shows an example of the output waveform of a voltage command calculation circuit at the time of performing a drawing process with the press machine with a pneumatic die cushion.
  • FIG. 1 shows an example of the output waveform of an inertial load accumulation energy calculation circuit when drawing is performed by the press machine with a pneumatic die cushion. It is a figure which shows an example of the output waveform of the elastic load accumulation energy calculation circuit at the time of performing drawing by the press machine with a pneu
  • FIG. 7 is a diagram schematically illustrating an example of a power conversion system according to a second embodiment.
  • FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a third embodiment. It is a figure which illustrates typically the structure of the press machine with a servo die cushion which concerns on 3rd Example.
  • FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a fourth embodiment.
  • FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a fifth embodiment.
  • FIG. 14 is a diagram schematically illustrating an example of a power conversion system according to a sixth embodiment.
  • FIG. 1 is a diagram schematically showing the overall configuration of the power conversion system according to the present embodiment.
  • the power conversion system controls the operation of the motor 3 by converting the power supplied from the power supply 11 to the motor 3, and includes a power supply device 1 and a motor power conversion device 2 (power conversion device). ).
  • the power supply device 1 includes a forward converter 4 for converting power supplied by an AC voltage from a power supply 11 to a DC voltage VPN, and a step-up / step-down power supply circuit for controlling a voltage VPN of the power converted to a DC voltage by the forward converter 4.
  • the electric power controlled by the step-up / step-down power supply circuit 5 is supplied to the motor power converter 2 while being accumulated, and the electric power generated by the regenerative operation of the motor 3 and supplied through the motor power converter 2 is It includes a storage device 6 (for example, a capacitor, a storage battery, etc.) for storing, and a voltage command calculation circuit 15 for controlling the operation of the step-up / step-down power supply circuit 5 to control the voltage VPN.
  • the motor power converter 2 controls the operation of the motor 3 by converting the power supplied from the step-up / step-down power supply circuit 5 of the power supply 1 via the storage device 6 and supplying the converted power to the motor 3.
  • a control circuit 8 (control unit) for calculating stored energy, which is energy stored in the motor 3 and a motor load 120 driven by the motor 3, based on the moment about the motor 3;
  • the step-up / step-down power supply circuit 5 is controlled on the basis of the stored energy calculated by the path 8 and the maximum amount of power that is allowed to be stored in the storage device 6 in advance.
  • a voltage command calculation circuit for controlling the amount of power stored in the device
  • the step-up / step-down power supply circuit 5 and the voltage command calculation circuit 15 constitute a power storage device control circuit that controls the amount of power stored in the storage device 6 from the power source 11 based on the stored energy and the maximum power amount. I have.
  • a rotary drive type motor 3 composed of an AC motor 9 and an encoder 10
  • the output shaft of the motor 3 rotates and its rotational energy is stored on the load side (motor load 120) including the motor shaft.
  • a motor 3 such as a linear motor
  • a movable portion loaded with a load moves on a straight line, and kinetic energy is stored in the load side and the movable portion (motor load 120).
  • an electronic component assembling machine or a semiconductor / liquid crystal manufacturing apparatus Except for a load in which the rotation angle of the motor 3 moves only a small angle (for example, 10 ° or less) or a special load that moves only a small distance (10 mm or less) on a straight line, an electronic component assembling machine or a semiconductor / liquid crystal manufacturing apparatus In general industrial machines such as metal machine tools, metal working machines, transfer machines, and industrial robots, when a load-side object moves, rotation or kinetic energy is accumulated in the object.
  • Equation 1 the inertial load power P ⁇ during the generation of the acceleration / deceleration torque in the above (Equation 1) is expressed by the following (Equation 3), where the rotation speed is N (min ⁇ (-1)).
  • the total load storage energy E obtained by adding the inertial load storage energy E ⁇ and the elastic load storage energy Ed is represented by the following (Equation 7).
  • the energy stored in the inertial load or the elastic load is regenerated as energy from the motor load 120 via the motor 3 and the inverter 7, such as an electrolytic capacitor or the like.
  • the process returns to the storage device 6 such as a storage battery.
  • the amount of energy stored in the inertial load or the load side is calculated every moment from the start of operation of the motor 3 so that the storage device 6 does not become overcharged, and the amount of energy stored in the storage device 6 is calculated from the amount of energy stored in the storage device 6.
  • the control circuit 8 controls the voltage command operation circuit 15 by controlling the voltage command operation circuit 15 so that the amount of energy generated by the regeneration is reduced to a specified amount even when the energy generated by the regeneration is stored in the storage device 6.
  • the accumulation amount is variably controlled.
  • the inertia load or the amount of energy stored on the load side is not calculated from physical power, but a control signal detected from the motor 3 or a sensor provided for driving the motor 3 is used. This is because the moment of inertia and elastic load characteristics (or gravitational load characteristics) can be accurately obtained from the current, voltage, position, speed, angular speed, power, and energy of the motor 3.
  • the moment of inertia and elastic load characteristics or gravitational load characteristics
  • the spring characteristics and the like using the restoring force of the compressed air have a durable life, and the characteristics are deteriorated by the life.
  • the load characteristics according to the aging can be faithfully picked up by the motor 3 and the sensor configured to drive it. Conversely, if it is attempted to operate from the physical power by operating the spring characteristics with the initial constants, the actual characteristics and the dissociated state will be calculated. May occur.
  • Equation 8 the energy stored when the storage device 6 is fully charged is Emax (J).
  • Equation 11 the constant k in the above (Equation 10) is represented by the following (Equation 11).
  • the acceleration / deceleration torque under a gravity load is as shown in the above (Equation 1).
  • the gravity load for example, a case in which a hoist is connected to the output shaft of the motor 3 and a car or luggage is hung at the tip of a rope, and the hoist is moved up and down can be considered.
  • Equation 16 the appropriate energy amount Eref stored in the storage device 6 is expressed by the following (Equation 16), where the energy stored when the storage device 6 is fully charged is Emax (J).
  • the inertial load occurs in common to both loads, and the appropriate voltage Vref of the storage device (electrolytic capacitor) is determined in advance by the above (Equation 19) and (Equation 20). From the start of operation, the amount of energy stored in the inertial load or the load side is calculated every moment, the amount is subtracted from the amount of energy stored in the storage device, and the amount of energy is returned to the specified amount of energy when regenerated. What is necessary is just to variably control the DC voltage of the storage device.
  • FIG. 2 is a diagram illustrating rotation or kinetic energy stored in an inertial load.
  • FIG. 2 shows the rotational movement of the crankshaft of the crank press as an example of the rotational movement.
  • the slide mass is shown collectively at point A, and the mass point equivalently showing the balance mass by the balance adjustment is shown at point B.
  • This is schematically shown as the rotational movement of the flywheel shown.
  • the energy E stored in such an inertial body is represented by the following (Equation 21), where the angular velocity of the crankshaft is ⁇ (rad / s) and the moment of inertia of the inertial body is J (kg ⁇ m ⁇ 2). Is proportional to the moment of inertia J and proportional to the square of the angular velocity ⁇ .
  • Equation 22 the energy E stored as kinetic energy is represented by the following (Equation 22), where m (kg) is the mass of the inertial body and Vl is the moving speed. It can be seen that it is proportional to m and proportional to the square of the moving speed Vl (m / s).
  • FIG. 3 is a diagram schematically illustrating the structure of a press machine with a pneumatic die cushion.
  • the press machine has a slide 25 that moves up and down and a bolster 27 that is fixed.
  • the slide 25 moves up and down while the rotation of the slide motor 20 is guided by the slide gib 26 through the slide drive means 21 and the crank mechanism (the crankshaft 22 and the crank eccentric part 23).
  • the bolster 27 is fixed on a bed 28, is connected to a slide mechanism through a frame of a press machine, and has a structure to receive a pressing force from above.
  • the slide driving means 21 in the case of a crank press that is used most often, the rotation of the slide motor 20 is transmitted from the crankshaft 22 to the crank eccentric part 23, and the slide 25 is moved up and down via the connection rod 24.
  • a press is performed by attaching a die to this press machine.
  • the upper mold 29 is set on the lower surface of the slide 25, and the lower mold 30 is set on the upper surface of the bolster 27, and a pair of upper and lower parts constitutes one mold.
  • the mold can perform processing such as shearing, bending, and squeezing an iron plate or the like, and can give a desired shape by giving plastic deformation to the iron plate.
  • the quality and performance of this mold play an important role in the productivity and quality of press working.
  • a compressive stress in the circumferential direction is generated in a flange portion of a molded product as the process proceeds, and wrinkles are generated if left unattended.
  • the pneumatic die cushion device 31 generates a necessary wrinkle holding pressure from below so as not to generate the wrinkles.
  • the pneumatic die cushion device 31 is built in the bed 28, and the lower die 30 and the die cushion pad (not shown) and the die cushion pin (not shown) operate in conjunction with each other.
  • the pneumatic die cushion device 31 includes a servo die cushion using a servo motor in addition to a pneumatic type and a hydraulic type.
  • FIG. 4 is a diagram for explaining the energy stored in the pneumatic die cushion.
  • the die cushion is a pressure holding device that generates a reaction force for holding down wrinkles in drawing and a pushing force of a molded product.
  • a pneumatic die cushion is equivalently replaced by an air spring. As the spring deforms, energy is stored in the spring in the form of elastic energy. Release of the stored energy allows the spring to perform mechanical work.
  • An air spring which is a material for generating a restoring force of air, is also a kind and is used in a pneumatic die cushion.
  • FIG. 5 is a diagram illustrating the energy stored in the lifting device.
  • a hoist 76 is connected to a motor output shaft, and a load (or a basket for storing a load or the like) 77 is hung above a rope 78 to perform a lifting operation.
  • a load 77 having a mass m (kg) is on the ground, the energy is in an open state.
  • the load 77 is wound up to the height h (m) from this state, the potential energy mgh (J) is stored.
  • the motor operates in a power running state because it moves in the direction opposite to the direction of gravity acting on the load 77, and potential energy is stored in the load 77.
  • the load 77 is lowered, the load 77 is lowered while suppressing the drop of the load 77 due to gravity. Therefore, the motor operates in a regenerative state, and the potential energy stored in the load 77 is released.
  • FIG. 6 is a diagram illustrating the relationship between the crankshaft angular speed and the slide speed of the crank press.
  • FIG. 6 shows a case where the crankshaft is rotated 360 ° (one rotation) from the top dead center to the top dead center via the bottom dead center in the rotation direction, and the horizontal axis represents time t (s).
  • the vertical axis indicates the crankshaft angular velocity ⁇ (rad / s), the slide position ⁇ s (mm), and the slide velocity Vs (m / s).
  • the slide speed Vs becomes zero speed when the slide position is at the intermediate point, and the positive side of the slide speed indicates the ascending speed and the negative side indicates the descending speed.
  • the slide position is a cosine curve, but the slide speed is a sine curve with a 180 ° phase delay because the connection point of the connecting rod of the crankshaft rotates.
  • the prior art includes a low-cost, low-loss, and high-density power supply device by variably setting a control command value of a storage device based on rotational energy or spring energy stored in a motor and a motor load.
  • This conventional technique is effective for a power supply device that variably controls the voltage of a storage device for energy stored in an inertial load.
  • the energy stored other than the inertial load is not specifically shown, and the energy stored in the elastic load such as a spring is not clear.
  • a control pattern for controlling a charge / discharge state of an energy storage device is selected based on an operation pattern of the press machine, and a power supply is selected.
  • This prior art is a system in which an operation pattern of a press machine and a control pattern for controlling a charge / discharge state of an energy storage device based on the operation pattern are registered in advance, and an operation command is given in synchronization with the operation pattern. It is valid.
  • a method of responding to an operation command synchronized with an operation pattern and a control pattern in the case of an independent setting device or an operation command set each time is not clear.
  • Another related art relates to a technology related to abnormal processing and display of a regenerative braking state by consuming the regenerated energy in a resistor of a regenerative braking circuit in an inverter in which an AC power supply is rectified and converted to a fixed DC voltage.
  • This prior art is effective for abnormal processing and display of a regenerative braking state of an inverter in which an AC power supply is set to a fixed DC voltage by a rectifier circuit.
  • the regenerated energy is consumed by the resistor of the regenerative braking circuit, there has been a problem about environmental improvement against global warming.
  • the present embodiment it is possible to distinguish whether the load during operation is an inertial load or an elastic load, or to distinguish an inertial load or a gravitational load.
  • the amount of power stored in the storage device is variably controlled with respect to the case of a gravitational load that moves up and down, so that excessive storage of power in the storage device is prevented.
  • power loss can be reduced and the size of the storage device can be reduced.
  • an operation pattern of the press machine as a load and a control pattern for controlling a charge / discharge state of the energy storage device based on the operation pattern may be registered in advance, or an operation command may be given in synchronization with the operation pattern. unnecessary. Further, it is not necessary to consume the regenerated energy by the resistor of the regenerative braking circuit.
  • FIG. 7 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • the power conversion system controls the operation of the motor 3 by converting the power supplied from the power supply 11 to the motor 3, and is roughly composed of a power supply device 1 and a motor power conversion device 2. ing.
  • the power supply device 1 includes a forward converter 4 for converting power supplied by an AC voltage from a power supply 11 to a DC voltage VPN, and a step-up / step-down power supply circuit for controlling a voltage VPN of the power converted to a DC voltage by the forward converter 4. 5 and the electric power controlled by the step-up / step-down power supply circuit 5 is supplied to the motor power converter 2 while being accumulated, and the electric power generated by the regenerative operation of the motor 3 and supplied through the motor power converter 2 is It includes a storage device 6 (for example, a capacitor, a storage battery, etc.) for storing, and a voltage command calculation circuit 15 for controlling the operation of the step-up / step-down power supply circuit 5 to control the voltage VPN.
  • the step-up / step-down power supply circuit 5 and the voltage command calculation circuit 15 constitute a power storage device control circuit that controls the amount of power stored in the storage device 6 from the power source 11 based on the stored energy and the maximum power amount. I have.
  • the motor power conversion device 2 controls the operation of the motor 3 by converting the power supplied from the step-up / step-down power supply circuit 5 of the power supply device 1 via the storage device 6 and supplying the converted power to the motor 3.
  • An inverter (inverter) 7 that supplies the power generated by the regenerative operation to the storage device 6 of the power supply device 1 and an inverter 7 that controls the operation of the inverter 7 and that is obtained through an encoder 10 provided in the motor 3.
  • the torque of the motor 3 calculated based on the angular velocity of the motor 3, the current value detected by current detectors 59 and 60 (described later) provided in the motor 3, and the moment of inertia of the motor 3 set in advance.
  • the stored energy which is the energy stored in the motor 3 and the motor load driven by the motor 3 (here, the press machine 12 with a pneumatic die cushion) is calculated.
  • the step-up / step-down power supply circuit 5 is controlled based on the control circuit 8, the stored energy calculated by the control circuit 8, and the maximum amount of power that is allowed to be stored in the storage device 6.
  • a voltage command calculation circuit 15 for controlling the amount of power stored in the storage device 6 from the power supply 11;
  • the control circuit 8 generates a gate signal based on the detection results from the current detectors 59 and 60 of the inverter 7 and the encoder 10 of the motor 3, and controls the inverter 7 with the gate signal to control the motor 3
  • Speed control circuit 16 for controlling the driving of the motor 3 and calculating the angular velocity and torque of the motor 3, and a press machine 12 with a pneumatic die cushion as a motor load based on the calculation result of the position / speed current control circuit 16.
  • a stored energy calculation circuit 14 (calculation circuit) for calculating stored energy.
  • the motor 3 for driving the slide 25 of the press machine 12 with a pneumatic die cushion (hereinafter sometimes simply referred to as the press machine 12) is composed of an AC motor 9 and an encoder 10 provided on the AC motor 9.
  • the speed, position, and magnetic pole position of the AC motor 9 are detected by the encoder 10 and fed back to the position / speed / current control circuit 16 of the control circuit 8 of the motor power converter 2.
  • a signal (speed, position, magnetic pole position) fed back from the encoder 10 is compared with a motor drive command from the host device 13, and the slide of the press machine 12 driven by the motor 3 is performed.
  • a PWM signal is generated and output to the inverter 7 so that the inverter 25 follows the motor drive command.
  • the inverter 7 receives a DC voltage (inter-PN voltage) supplied from the power supply device 1 and converts the DC voltage into a variable AC voltage and a variable current to drive the AC motor 9. Control the current.
  • the current of the AC motor 9 is detected by current detectors 59 and 60 (described later) in the inverter 7 and fed back to the position / velocity current control circuit 16 to be used for calculation of torque and the like.
  • the power supply device 1 receives AC power from the power supply 11, converts the AC power into DC voltage by the forward converter 4, and inputs the DC voltage to the buck-boost power supply circuit 5.
  • the step-up / step-down power supply circuit 5 supplies the variable DC voltage to the inverter 7 by performing step-up, step-down, or step-up / step-down of the DC voltage.
  • the step-up / step-down power supply circuit 5 is controlled by a voltage command operation circuit 15.
  • the voltage command calculation circuit 15 receives the signal E calculated by the control circuit 8 of the motor power conversion device 2 and performs variable voltage control on the step-up / step-down power supply circuit 5 so that the DC voltage VPN of the storage device 6 becomes an optimum voltage. I do.
  • the storage device 6 is provided between the step-up / step-down power supply circuit 5 and the inverter 7.
  • the storage device 6 receives electric energy from the power source 11, the press machine 12 via the motor 3, the inverter 7, and the like. The supplied regenerative energy is stored.
  • the energy stored in the inertial load of the press machine 12 will be described.
  • the motor 3 starts moving up and down the slide 25 according to the command.
  • the slide 25 starts the vertical movement, the amount of energy of the inertial load stored in the moment of inertia including the motor 3 and a mechanism connected to the load is calculated in real time.
  • the slide 25 and the pneumatic die cushion device 31 both start up / down operation, the amount of energy of the inertial load stored in the moment of inertia including up to the pneumatic die cushion device 31 is calculated in real time.
  • the above-described stored energy calculation is performed by the stored energy calculation circuit 14 in the control circuit 8 of the motor power conversion device 2, and the control of the optimum value of the energy capacity of the storage device 6 is performed by the PN that is replaced by the voltage of the storage device 6.
  • the voltage command operation circuit 15 of the power supply device 1 performs the operation as the inter-voltage command Vref.
  • the signals input from the position / velocity current control circuit 16 are an angular velocity detection signal ⁇ , a torque detection signal Tq, and a moment of inertia J detected by the encoder 10.
  • the acceleration / deceleration torque T ⁇ of the angular velocity signal ⁇ of the motor 3 is calculated by the acceleration / deceleration torque calculation circuit 42 by the calculation of the above (Equation 1).
  • the output T ⁇ of the acceleration / deceleration torque calculation circuit 42 calculates the product of the angular velocity signal ⁇ and the acceleration / deceleration power calculation circuit 43 (Equation 3) to output the acceleration / deceleration power P ⁇ .
  • Acceleration / deceleration power P ⁇ is subjected to time integration calculation by the above-mentioned (Equation 5) in inertial load accumulated energy calculation circuit 44 to output inertia load accumulated energy E ⁇ .
  • the acceleration / deceleration power calculation circuit 43 and the inertial load storage energy calculation circuit 44 are referred to as an inertia load storage energy calculation block 40.
  • the difference between the torque detection signal Tq and the output T ⁇ of the acceleration / deceleration torque calculation circuit 42 is calculated by the addition / subtraction calculator 51 as shown in the above (Equation 2), and the elastic load torque Td is output.
  • the elastic load power calculating circuit 45 calculates the product of the above equation (4) from the elastic load torque Td and the angular velocity signal ⁇ to output the elastic load power Pd.
  • the elastic load power Pd is subjected to time integration calculation by the above-mentioned (Equation 6) in the elastic load accumulated energy calculation circuit 46, and the elastic load accumulated energy Ed is output.
  • the elastic load power calculating circuit 45 and the elastic load accumulated energy calculating circuit 46 are referred to as an elastic load accumulated energy calculating block 41.
  • the signals input to the inertial load stored energy calculation circuit 44 and the elastic load stored energy calculation circuit 46 include CLR1 and CLR2 output from the position / velocity current control circuit 16.
  • the integration clear signals CLR1 and CLR2 are signals for clearing the output of the integration operation circuit, that is, the inertial load accumulated energy operation circuit 44 or the elastic load accumulated energy operation circuit 46.
  • the position / speed current control circuit 16 outputs the total value J of the rotor inertia moment of the AC motor 9 and the load-side inertia moment of the motor 3 converted into the motor shaft to the acceleration / deceleration torque calculation circuit 42.
  • the output E ⁇ of the inertial load storage energy calculation block 40 and the output Ed of the elastic load storage energy calculation block 41 are subjected to the addition calculation of the above (Equation 7) by the addition calculator 50, and the result is sent to the voltage command calculation circuit 15 of the power supply device 1. It is output as the total load accumulated energy E.
  • the value Emax is set as the energy when the storage device 6 is fully charged in the full charge energy setting block 47.
  • the difference from the total load accumulated energy E output from the accumulated energy calculation circuit 14 of FIG. 2, that is, the appropriate energy Eref stored in the storage device 6 is derived by the above (Equation 8).
  • the voltage is detected as voltage Vf, and is fed back after the insulation amplifier 18 performs electrical insulation.
  • the voltage command Vref of the storage device 6 and the feedback voltage Vf are subjected to a difference calculation of Vref ⁇ Vf by the addition / subtraction calculator 51.
  • This difference voltage is proportionally integrated by the PI adjuster 17, and the inverter 7 is controlled via the drive circuit 61 (described later) of the position / velocity current control circuit 16, whereby the output voltage of the step-up / step-down power supply circuit 5 is controlled.
  • the feedback control of the VPN that is, the output voltage of the storage device 6 is performed according to the value of the voltage command Vref.
  • FIG. 8 is a diagram showing an example of the details of a directional converter, a step-up / step-down power supply circuit, and a storage device of a power supply device, and shows a case where a circuit performing a boosting operation is used as the step-up / step-down power supply circuit.
  • the step-up / step-down power supply circuit 5 in FIG. 8 is a step-up power supply circuit showing a step-up operation.
  • the forward converter 4 rectifies the AC voltage supplied from the AC power supply 11 by the full-wave rectifier 55, converts the AC voltage to a substantially constant DC voltage determined by the received voltage, and smoothes the DC voltage by the smoothing capacitor 52.
  • the smoothed DC voltage is connected to a switching element 53 which repeats ON / OFF via a step-up reactor 58 in a step-up / step-down power supply circuit 5 which is a step-up power supply circuit.
  • the switching element 53 When the switching element 53 is turned on, the current flowing through the boosting reactor 58 increases.
  • the switching element is turned off next, the current flowing from the boosting reactor 58 to the switching element 53 is switched to the diode 54 side, and the output voltage VPN has a direct current.
  • Voltage e ⁇ L ⁇ (dI / dt) generated at both ends of boost reactor 58 is added to the voltage (voltage between P0 and N) and boosted.
  • the switching element 53 is repeatedly turned on / off, and the step-up / step-down power supply circuit 5 is configured such that the step-up voltage can be variably controlled by changing the conduction ratio.
  • a smoothing capacitor 52 is connected to the output of the step-up / step-down power supply circuit 5 as a storage device 6 to store electric energy charged from the AC power supply 11 and regenerative energy regenerated from the load side. Although the smoothing capacitor 52 is used in the storage device 6 in FIG. 8, a large-capacity electrolytic capacitor is connected in parallel to increase the capacity, but a secondary battery, an electric double layer capacitor, or the like may be used. good.
  • FIG. 9 is a diagram showing another example of the details of the forward converter, the step-up / step-down power supply circuit, and the storage device of the power supply device, and shows a case where a circuit that performs a step-down operation is used as the step-up / step-down power supply circuit.
  • the step-up / step-down power supply circuit 5A in FIG. 9 is a step-down power supply circuit showing a step-down operation.
  • the forward converter 4 rectifies the AC voltage supplied from the AC power supply 11 by the full-wave rectifier 55, converts the AC voltage to a substantially constant DC voltage determined by the received voltage, and smoothes the DC voltage by the smoothing capacitor 52.
  • a switching element 53 that repeats ON / OFF is provided at the entrance, and when the switching element 53 is turned ON, the voltage is given because the step-down reactor 58A and the load are connected in series, and the voltage is reduced by changing the ON / OFF conduction ratio.
  • a step-up / step-down power supply circuit 5A that operates as a step-down power supply circuit capable of variably controlling the voltage is configured.
  • a smoothing capacitor 52 is connected to the storage device 6 at the output, and electric energy charged from the AC power supply 11 and regenerative energy regenerated from the load side are stored. The increase in the capacity of the smoothing capacitor 52 is the same as in FIG.
  • FIG. 10 is a diagram showing details of the inverter and the position / velocity current control circuit of the motor power converter.
  • an AC servo amplifier, a vector control inverter, an inverter, and a DCBL controller are used as the motor power converter 2, and these are collectively referred to as the motor power converter 2.
  • the inverter 7 has one arm in which two sets of an anti-parallel circuit of the switching element 53 and the diode 54 are connected in series, and these three arms are connected in parallel to form a three-phase inverter.
  • FIG. 10 illustrates a case where a three-phase inverter is configured, another multi-phase inverter may be configured.
  • An intermediate terminal of each arm is connected to a motor terminal of the motor 3, and a U-phase current detector 59 and a W-phase current detector 60 are respectively connected to two phases (U-phase and W-phase).
  • the U-phase current detector 59 and the W-phase current detector 60 may be simply referred to as the current detectors 59 and 60 in some cases.
  • the AC motor 9 a permanent magnet motor, an induction motor, a DC brushless motor (DCBL motor), or the like is used.
  • the AC motor has a shaft at the center of the cylindrical shape, and is not caught by only a permanent magnet type motor or an induction type motor in which this shaft rotates.
  • a linear motor may be used in which a portion of the circumference of the AC motor 9 on the stator side is cut open to form a straight line, and the rotating portion has a linear reciprocating motion.
  • the AC servo amplifier for driving the linear motor, the vector control inverter, the inverter, and the DCBL controller the AC motor 9 can be used as it is.
  • the sensor In the case of a linear motor, the sensor is provided with a linear sensor scale on a fixed part and a linear sensor head on a moving part, instead of the encoder 10, on the moving path, and detects the position and speed. If a magnetic pole position detection signal of the magnet is required, it can be dealt with by attaching a magnetic pole position detection sensor.
  • the linear motor driven by the AC servo amplifier is also called a linear servo motor.
  • the AC motor 9 includes a linear motor unless otherwise specified.
  • the output of the encoder 10 attached to the output shaft of the AC motor 9 is input to the position / velocity magnetic pole position calculation circuit 62, and the rotation speed N which is one of the calculation results is output to feedback, and the other one of the calculation results is used. Is output to the three-phase / dq conversion circuit 68 and the dq / 3-phase conversion circuit 66.
  • the deviation ⁇ is amplified by the speed control circuit (ASR) 63, passes through the mode switch (Mod1), and is output as a torque current command Iq.
  • the mode switch 73 (Mod1) switches the motor drive command to the torque command Ts when turned on, and switches to the position command or speed command when turned off.
  • the mode switch 74 (Mod2) switches the motor drive command to the position command ⁇ s when turned on, and switches to the speed command Ns when turned off.
  • the detection results of the current detectors 59 and 60 are input to the three-phase / dq conversion circuit 68 as current feedback signals Iuf and Iwf of the AC motor 9, and are d-axis current negative feedback signals, which are two vector signals whose dq axes are orthogonal to each other. It is converted into Idf and a torque current feedback signal Iqf.
  • the torque current command Iq is input to an addition / subtraction calculator 51 for calculating a difference from the torque current feedback signal Iqf, and the difference is amplified by a q-axis current control circuit (ACR) 65.
  • ACR q-axis current control circuit
  • the d-axis current command Id is a current command for performing field-weakening control, and is input to an addition / subtraction calculator 51 that calculates a difference from the d-axis current negative feedback signal Idf, and the deviation is used as a d-axis current control circuit (ACR).
  • the d-axis current command Vd output from the d-axis current control circuit (ACR) 64 and the q-axis voltage command Vq output from the q-axis current control circuit (ACR) 65 are input to a dq / 3-phase conversion circuit 66.
  • the three-phase voltage commands Vu, Vv, and Vw are converted into three-phase voltage commands and output to the PWM circuit 67, and are output from the PWM circuit 67 as gate signals for driving the six switching elements 53 of the inverter 7 through the drive circuit 61.
  • the motor 3 is controlled to follow the motor drive command.
  • the total value J Jm + Jl of the inertia moment Jm of the AC motor 9 and the load-side inertia moment Jl of the motor 3 converted into the motor shaft is obtained by inputting the calculated inertia moment J into the parameter of the motor power converter 2 at the time of the test operation.
  • tuning can be performed by the auto-tuning function of the moment of inertia J by the test operation function of the motor power conversion device 2. If the motor power converter 2 has a function of tuning the moment of inertia J in real time during operation (a function of real-time auto-tuning), even if the moment of inertia J changes with the function, the value tuned in real time is updated. can do.
  • the CPU 72 of the position / speed current control circuit 16 outputs the moment of inertia J stored and updated in the parameter area 75 by tuning or the like to the acceleration / deceleration torque calculation circuit 42 of the stored energy calculation circuit 14, and the acceleration / deceleration torque calculation circuit 42
  • the used moment of inertia J can be updated in real time.
  • the values of these parameters are written from the RAM memory to the nonvolatile memory when the power is turned off, and the updated moment of inertia J which is read from the nonvolatile memory to the RAM memory and updated when the power is turned on next time is inherited. .
  • FIG. 11 is a diagram showing an example of a waveform of an angular velocity detection signal of a slide motor when drawing is performed by a press machine with a pneumatic die cushion.
  • the angular velocity detection signal ⁇ of the slide motor and the torque detection signal Tq are output from the position velocity current control circuit 16.
  • a blank material is sandwiched between the upper die of the slide 25 and the lower die of the pneumatic die cushion device 31, and the sliding torque from above and the reaction force of the pneumatic die cushion device 31 to push up from below. With this, a compressive force is applied to the blank material from both the upper and lower sides.
  • the slide 25 starts to descend at a high speed from the top dead center and decelerates to a medium speed just before contacting the pneumatic die cushion device 31.
  • the drawing process After reaching the middle speed, the drawing process starts, and after passing through the bottom dead center, the slide 25 starts to rise and separates from the pneumatic die cushion device 31, and then the angular velocity detection signal ⁇ accelerates again and stops at the top dead center.
  • the rotation direction of the slide motor (motor 3) is one-way operation, but the operation direction of the slide 25 switches between descending and ascending (see FIG. 6).
  • FIG. 11 the timing of the drawing process is shown in the range of the arrow as during the drawing process at the middle speed.
  • FIG. 12 is a diagram showing an example of a waveform of a torque detection signal of a slide motor when drawing is performed by a press machine with a pneumatic die cushion.
  • the slide torque (torque detection signal) Tq when no drawing is performed is such that the acceleration torque is generated on the positive side during acceleration and the deceleration torque is generated on the negative side during deceleration. Acceleration / deceleration torque is generated only when the angular velocity changes.
  • the slide 25 descends and gradually presses the compressed air of the pneumatic die cushion device 31, so that elastic energy is stored and the torque (torque detection signal Tq) of the slide motor gradually increases in the positive direction. To increase. At the bottom dead center, the pressing torque becomes zero, but the reaction force from the pneumatic die cushion device 31 is received.
  • the slide torque (torque detection signal) Tq is switched to the regenerative brake torque in the negative direction because the increased reaction force of the pneumatic die cushion device 31 maintains the medium speed.
  • the slide 25 separates from the pneumatic die cushion device 31, the stored elastic energy is released and the regenerative torque rapidly decreases to zero.
  • a die cushion torque is generated in a portion indicated by the range of the arrow during the drawing process.
  • FIG. 13 is a diagram showing an example of an output waveform of the acceleration / deceleration torque calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
  • the output waveform of the acceleration / deceleration torque calculation circuit 42 is a waveform obtained by differentiating the angular velocity detection signal ⁇ of the slide motor and multiplying by the inertia moment J. Accordingly, as shown in FIG. 13, the output becomes zero when the angular velocity detection signal ⁇ is constant, and no die cushion torque appears during the drawing process because the angular velocity detection signal ⁇ is constant. Therefore, as the output waveform of the acceleration / deceleration torque calculation circuit 42, a waveform obtained by separating only the acceleration / deceleration torque of the slide motor is obtained.
  • the detection based on the current waveform of the motor 3 includes the entire load current, so that it is impossible to detect only the acceleration / deceleration torque separately. That is, it is one of the features of the present embodiment that only the acceleration / deceleration torque can be separated by the calculation.
  • FIG. 14 is a diagram showing an example of an output waveform of the addition / subtraction arithmetic unit when drawing is performed by a press machine with a pneumatic die cushion.
  • the output Td of the addition / subtraction calculator 51 is represented by a torque detection signal Tq ⁇ acceleration / deceleration torque T ⁇ .
  • the main torque of the slide motor is acceleration / deceleration torque for accelerating and decelerating the load inertia moment, and drawing is performed by the slide 25 and the pneumatic die cushion device 31. It is almost two of die cushion torque.
  • the elastic load torque Td is calculated by the slide motor torque (torque detection signal) Tq ⁇ the acceleration / deceleration torque T ⁇ .
  • the slide motor torque (torque detection signal) Tq is determined by the acceleration / deceleration torque T ⁇ generated in the inertial load and the elastic load torque Td generated in the elastic load. It has the characteristic that it is detected separately in two.
  • FIG. 15 is a diagram illustrating an example of an output waveform of the inertial load accumulated energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
  • the inertial load accumulated energy E ⁇ which is the output of the inertial load accumulated energy calculation circuit 44, calculates acceleration / deceleration power P ⁇ by multiplying the angular velocity detection signal ⁇ of the slide motor by the acceleration / deceleration torque T ⁇ in the acceleration / deceleration power calculation circuit 43. It is calculated by integrating the acceleration / deceleration power P ⁇ over time.
  • the accumulated inertia load energy E ⁇ whose waveform is shown in FIG. 15 is obtained by accumulating or subtracting the energy only when the angular velocity detection signal ⁇ (see FIG. 11) of the slide motor is changing. Therefore, the angular velocity detection signal ⁇ is constant. It is not integrated during a certain drawing process, that is, when a die cushion torque is generated.
  • FIG. 16 is a diagram showing an example of an output waveform of the elastic load accumulated energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
  • the elastic load accumulated energy Ed which is the output of the elastic load accumulated energy calculating circuit 46, is calculated by multiplying the elastic load torque calculating circuit 45 by the angular velocity ⁇ of the slide motor and the elastic load torque Td. It is calculated by integrating the power Pd over time.
  • the elastic load accumulated energy Ed whose waveform is shown in FIG. 16 has a shape obtained by integrating the waveform of the elastic load torque Td (see FIG. 14) because the angular velocity detection signal ⁇ of the slide motor is constant at the middle speed during the drawing process.
  • the inertial load accumulated energy E ⁇ stored in the slide motor and its load and the elastic load accumulated energy Ed stored in the pneumatic die cushion device 31 are different from each other. Is calculated individually.
  • FIG. 17 is a diagram showing an example of an output waveform of the addition calculator of the stored energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
  • the total load accumulated energy E output from the addition calculator 50 is the waveform itself obtained by adding the inertial load accumulated energy E ⁇ (see FIG. 13) and the elastic load accumulated energy Ed (see FIG. 14). It is.
  • FIG. 18 is a diagram showing an example of an output waveform of the voltage command calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
  • the output of the voltage command operation circuit 15 is an output voltage command Vref for controlling the step-up / step-down power supply circuit 5.
  • the total load accumulated energy E which is the output of the accumulated energy operation circuit 14 of the control circuit 8 (that is, the output of the addition operation unit 50) is fully charged in the accumulation device 6. It is subtracted from the energy Emax at the time.
  • the energy Emax of the storage device 6 at the time of full charge is the maximum value at the time of full charge, but is a constant value.
  • the energy (J) is replaced by a unit of voltage (V) via the square root operation circuit 49.
  • the output voltage command Vref is obtained as a waveform obtained by subtracting the waveform of the total accumulated energy E (see FIG. 17) from the constant value.
  • the voltage Vref of the accumulating device 6 is initially changed by the change of the angular velocity detection signal ⁇ from acceleration to high speed to medium speed when the slide motor descends. , The voltage of the storage device 6 is gradually lowered so as to be able to be regenerated immediately, the voltage Vref is maintained when the angular velocity detection value ⁇ is constant, and a part of the energy is lost when the vehicle is decelerated to a medium speed. Since the power is regenerated, the voltage Vref is returned and increased by that amount. During the next drawing, the elastic load energy supplied from the power supply 11 by the pneumatic die cushion device 31 increases, so that the voltage Vref of the storage device 6 is greatly reduced.
  • the elastic load energy starts to regenerate, so that the voltage Vref of the storage device 6 returns to an increase this time. Then, when the drawing is completed, the operation shifts to the operation of the inertial load accumulated energy again, and the same operation as in the first high-speed operation is performed at medium speed ⁇ high speed ⁇ stop.
  • the voltage command Vref of the storage device 6 is variably controlled according to the energy stored in the inertial load and the energy stored in the elastic load.
  • the power supply device is incorporated in the motor power converter, and the voltage of the storage device is variably controlled based on the inertial load stored energy.
  • FIG. 19 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • a storage element 6A is used in place of the storage device 6 of the first embodiment, and an injection molding machine is driven by a motor as a load.
  • the motor power converter 2A of the power conversion system includes a forward converter 4, a step-up / step-down power supply circuit 5, a storage element 6A, an inverter 7, a control circuit 8, and a voltage command operation circuit 15. It has. Further, the control circuit 8 includes a stored energy calculation circuit 14A (calculation circuit) and a position / velocity current control circuit 16A.
  • the stored energy calculation circuit 14A of this embodiment outputs the acceleration / deceleration torque T ⁇ output from the acceleration / deceleration torque calculation circuit 42 and the elastic load torque Td (the output of the addition / subtraction calculator 51) to the position / speed current control circuit 16A.
  • a torque detection signal of a motor includes torque components of all loads applied to the motor.
  • the acceleration / deceleration torque T ⁇ generated in the inertial load and the elastic load torque Td generated in the elastic load can be separated from each other.
  • the load torque Td is fed back to the position / speed current control circuit 16A.
  • the position / velocity current control circuit 16A has a function of taking in the acceleration / deceleration torque T ⁇ and the elastic load torque Td from the stored energy calculation circuit 14A, that is, a separate monitor torque function.
  • the position / speed current control circuit 16A outputs the acquired acceleration / deceleration torque T ⁇ and elastic load torque Td to the host device 13.
  • the acceleration / deceleration torque T ⁇ and the elastic load torque Td are used for studying what power should be reduced in order to save energy. In other words, it is possible to measure individually by changing various conditions such as whether to reduce the inertial load power, the elastic load power, or the tact time or the elastic load torque.
  • the acceleration / deceleration torque T ⁇ and the elastic load torque Td can be considered.
  • the injection shaft 34 of the injection molding machine 35 is illustrated as a load for general industrial machines. Since the injection shaft 34 as the motor load does not store energy other than the elastic load and the gravitational load except for the inertial load, the elastic load storage energy calculation circuit 46 always turns on the CLR2 of the integration clear signal 2 and sets its output to zero. To disable. However, the inertial load storage energy calculation circuit 44 is enabled to perform the energy storage calculation.
  • the integration clear signals CLR1 and CLR2 can be always set to ON from the outside by using parameters, and can be set to be ON when the load cannot store energy. The ON setting can also be set from the host device 13.
  • the rechargeable energy is not overcharged even when the regenerative energy returns to the power storage device
  • the power storage device 6A for example, an electrolytic capacitor
  • the voltage preset in the power storage device 6A By reducing the upper limit margin of the range and raising the upper limit of the voltage range, the energy that can be stored without increasing the capacity of the electrolytic capacitor can be increased, and the loss can be further reduced. Therefore, as in the present embodiment, the forward converter 4, the step-up / step-down power supply circuit 5, and the power storage element 6A (electrolytic capacitor) can be built in the motor power converter 2A.
  • FIGS. A third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, only the differences from the first embodiment will be described.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the present embodiment uses a press machine 12A with a servo die cushion having a slide 25 and a servo die cushion device 32 as a motor load, and using a separate power supply for the power supply system of the slide 25 and the servo die cushion device 32. is there.
  • FIG. 20 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • the pneumatic die cushion device 31 is replaced with a servo die cushion device 32 with respect to the first embodiment (FIG. 7), and a reaction force is applied from below by a die cushion motor 103, and the die is driven.
  • the cushion motor 103 is controlled by a die cushion motor power converter 121 (AC input).
  • the motor 103 for the die cushion has an encoder 110 built in an AC motor 109.
  • the motor power conversion circuit 107 of the die cushion motor power conversion device 121 incorporates functions (not shown) such as a forward converter and an inverse converter. And a constant DC voltage is applied to the input of the inverter. That is, motor power conversion circuit 107 is a standard motor power conversion device without a step-up / step-down power supply circuit.
  • the control circuit 108 of the die cushion motor power converter 121 has the same configuration as the position / velocity / current control circuit 16 (see FIG. 10) shown in the first embodiment. Does not have the function as A motor drive command is given from the host device 13 to the control circuit 108 of the die cushion motor power conversion device 121 (AC input), and the operation mode of the die cushion motor 103 is set during the drawing process. Since the blank is sandwiched between the mold and the lower mold, a reaction force is given by torque control. This torque control gives the same torque as the reaction force when the pneumatic die cushion device 31 is used. It is operated by position control or speed control except during the drawing process.
  • FIG. 21 is a diagram schematically illustrating the structure of the press with a servo die cushion according to the present embodiment.
  • the press machine 12A with a servo die cushion is different from the press machine 12 with a pneumatic die cushion shown in the first embodiment (see FIG. 3) in that the pneumatic die cushion device 31 is a servo die cushion device. 32, and has a die cushion motor 103 for driving the servo die cushion device 32.
  • a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, only the differences from the third embodiment will be described.
  • the same members as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the power of the servo die cushion device 32 in the press machine 12A with the servo die cushion of the third embodiment is supplied from the input of the step-up / step-down power supply circuit 5 (in other words, the output of the forward converter 4). It was done.
  • FIG. 22 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • the input power of the die cushion motor power converter 121A (DC input) is connected between the input sides P0-N of the step-up / step-down power supply circuit 5 of the power supply 1.
  • the die cushion motor power converter 121A (DC input) is a DC power input because it is connected to the output of the forward converter 4, and the motor power conversion circuit 107A does not need the function as a forward converter. is there.
  • the motor 3 (hereinafter, also referred to as a slide motor 3) and the die cushion motor 103 generate torque in the direction of pressing each other during drawing and cutting. Therefore, when the slide motor 3 operates in the power running direction, the motor 103 for the die cushion is used. Means regenerative operation. Conversely, when the slide motor 3 operates in the regenerative direction, the motor 103 for the die cushion is in power running operation. For example, when the slide motor 3 operates in power running, it is necessary to supply power from the power supply 11 side. At this time, the die cushion motor 103 is in a regenerative state and the power supplied from the power supply is in a surplus state. Become.
  • the motor power converter for die cushion 121A (DC input) does not have a function as a step-up / step-down power supply circuit, the voltage level is the same as that of the slide motor 3; And can be connected. In this state, the regenerative power of the die cushion motor 103 can be boosted and supplied as powering power of the slide motor 3 by the step-up / step-down power supply circuit 5, for example, so that power supply from the power supply 11 is suppressed or eliminated. Energy saving can be achieved.
  • the DC voltage P0-N of the power supply device 1 is kept substantially constant regardless of which voltage is in the regeneration state. Therefore, there is an effect that there is no problem even if the elastic load accumulated energy calculation circuit 46 is operated in an invalid state, that is, the clear signal CLR2 is turned on. Since energy is accumulated in the inertia load of the slide motor 3 at the end of the drawing cutting, the inertia load accumulated energy calculation circuit 44 needs to be operated with the validity (clear signal CLR1 is OFF).
  • a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, only the differences from the first embodiment will be described.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the present embodiment is an example of a case where the lifting device is driven by a motor using a load.
  • FIG. 23 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • the lifting device 82 of the present embodiment includes a hoist 76 (see FIG. 5).
  • the elevating device 82 is a load that can most easily explain the regenerative state as a gravitational load.
  • a lifting device having a large difference in height in the direction of gravity is not assumed, and a lifting device for a car or luggage on the floor, a lifting device for storage components between upper and lower shelves, and a component for vertically transporting the inside of the device. Transport is assumed.
  • the motor 3 When the load 77 rises, the motor 3 operates in a power running state due to the operation in the direction opposite to the gravity, and when the load 77 descends, it descends while suppressing the fall, so that the motor 3 enters a regenerative state.
  • the elastic load stored energy calculation block 41 has the gravity load stored energy.
  • the calculation block 79 has been replaced.
  • the gravity load accumulated energy calculation block 79 includes a gravity load power calculation circuit 80 and a gravity load accumulated energy calculation circuit 81.
  • the gravitational load torque Tw is Tq ⁇ T ⁇ as in the above (Equation 12)
  • the gravitational load power calculation circuit 80 calculates the gravitational load power Pw
  • the gravitational load storage energy calculation circuit 81 calculates the gravitational load storage energy Ew. Is calculated.
  • the voltage command Vref of the storage device 6 shown in the above (Equation 17) is obtained as in the first embodiment.
  • the motor is constituted by a linear motor and an encoder.
  • FIG. 24 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
  • the motor 3C includes a linear motor 9C and a position detector (linear encoder, Hall sensor) 10C for acquiring the position of the linear motor 9C.
  • the physical quantity related to the linear motor 9C of the present embodiment and the physical quantity related to the AC motor 9 shown in the first embodiment correspond as follows. That is, the speed v (m / s), thrust Fq (N), mass M (kg), and (1/2) Mv ⁇ 2 of the linear motor 9C are the same as those of the AC motor 9 (that is, the rotary servomotor). It corresponds to angular velocity ⁇ (rad / s), torque Tq (N ⁇ m), moment of inertia J (kg ⁇ mkg2), and inertia load energy (1 /) J ⁇ ⁇ 2, respectively.
  • the inertial load power P ⁇ , the running power Pd, the inertial load energy E ⁇ , and the running energy Ed (corresponding to the above (Equation 3) to (Equation 6) in the case of the AC motor 9) in the linear motor 9C are as follows. (Expression 24) to (Expression 27).
  • the acceleration / deceleration torque calculation circuit 42 related to the moment of inertia J is different from the stored energy calculation circuit 14 of the first embodiment (see FIG. 7).
  • the acceleration / deceleration torque calculation circuit 142 relating to the mass M is replaced.
  • the position / speed current control circuit 16C outputs the mass M to the acceleration / deceleration torque calculation circuit 142 and outputs the thrust Fq instead of the motor load torque Tq. It is configured as follows.
  • control can be performed in the same manner as in the first embodiment.
  • the present invention is not limited to the above-described embodiment, and includes various modifications and combinations without departing from the gist of the present invention.
  • the present invention is not limited to the configuration including all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted.
  • the above-described respective configurations, functions, and the like may be realized by designing a part or all of them, for example, with an integrated circuit.
  • the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
  • Accumulated energy calculation circuit (calculation circuit), 15: voltage command calculation circuit, 16, 16A: position / velocity current control circuit, 17: regulator, 18: insulation amplifier, 20: slide motor, 21: slur Drive means, 22 ... crankshaft, 23 ... crank eccentric part, 24 ... connection rod, 25 ... slide, 26 ... slide gib, 27 ... bolster, 28 ... bed, 29 ... upper mold, 30 ... lower mold, 31 ... pneumatic die cushion device, 32 ... servo die cushion device, 34 ... injection shaft, 35 ... injection molding machine, 40 ... inertia load storage energy calculation block, 41 ... elastic load storage energy calculation block, 42, 142 ...
  • acceleration / deceleration torque Calculation circuit 43: acceleration / deceleration power calculation circuit, 44: inertial load storage energy calculation circuit, 45: elastic load power calculation circuit, 46: elastic load storage energy calculation circuit, 47: full charge energy setting block, 48: proportional coefficient Block, 49: square root operation circuit, 50: addition operation unit, 51: addition / subtraction operation unit, 52: smoothing capacitor, 53: switch 54, diode, 55, full-wave rectifier, 56, resistor, 58, step-up reactor, 58A, step-down reactor, 59, U-phase current detector (current detector), 60, W-phase current detector (current Detector), 61: drive circuit, 62: position / speed magnetic pole position calculation circuit, 63: speed control circuit (ASR), 64: axis current control circuit (ACR), 65: axis current control circuit (ACR), 66: phase Conversion circuit, 67: circuit, 68: conversion circuit, 73, 74: mode changeover switch, 75: parameter area, 76: hoisting
  • Gravity load storage energy calculation block 80: gravity load power calculation circuit, 81: gravity load storage energy calculation circuit, 82: lifting device, 103: die cushion motor, 107, 107A ... Over data power conversion circuit, 109 ... AC motor, 110 ... encoder, 120 ... motor load, 121, 121a ... die cushion motor power converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Presses (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This electric power converting system is provided with a power source device 1 for supplying electric power to a motor electric power converting device 2 which supplies electric power to a motor 3, wherein: the motor electric power converting device 2 includes an inverse converter 7 for converting the electric power, a control circuit 8 for controlling the inverse converter 7, and current detectors 59, 60 for detecting currents flowing through the inverse converter 7; the power source device 1 includes an accumulating device 6 for accumulating electric power in accordance with a voltage, a step up/step down power source circuit 5 for changing the voltage of the accumulating device 6 on the basis of a voltage command, and a voltage command calculating circuit 15 for calculating the energy accumulated in the accumulating device 6 and outputting the same as the voltage command to the step up/step down power source circuit 5; and the energy accumulated in the accumulating device 6 is calculated on the basis of powered running energy or regenerative energy of the motor 3, calculated using information from an encoder 10 with which the motor 3 is provided, and electric current values detected by the current detectors 59, 60. In this way, control shifts accompanying changes in characteristics due to degradation over time in the motor load, for example, can be suppressed.

Description

電力変換システムおよびモータ制御方法Power conversion system and motor control method
 本発明は、電力変換システムおよびモータ制御方法に関する。 The present invention relates to a power conversion system and a motor control method.
 従来技術として、例えば、特許文献1には、電源回路と電源制御回路と蓄電装置を備え、エネルギーを貯蔵する機能を備えた装置に電力を供給する、電源装置および電源システムにおいて、前記装置に貯蔵されたエネルギーに基づき蓄電装置の制御指令値を、可変に設定する電源装置および電源システムが開示されている。 As a conventional technique, for example, Patent Literature 1 discloses a power supply device and a power supply system that include a power supply circuit, a power supply control circuit, and a power storage device, and supply power to a device having a function of storing energy. A power supply device and a power supply system that variably set a control command value of a power storage device based on energy that has been provided are disclosed.
特開2011-200048号公報JP 2011-200048 A
 上記従来技術においては、モータおよびモータ負荷などの慣性負荷に貯蔵された回転エネルギまたはばねエネルギに基づき蓄積装置の制御指令値を、可変に設定して制御することにより低コスト、低損失かつ高密度な電源装置を提供することを目的としている。 In the above prior art, the control command value of the storage device is variably set and controlled based on the rotational energy or the spring energy stored in the inertia load such as the motor and the motor load, thereby achieving low cost, low loss and high density. It is intended to provide a simple power supply device.
 一般的には、モータや蓄積装置は経年劣化等により特性が変化する。こういった種々の要因による特性の変化に応じた高精度な制御が求められている。 特性 Generally, the characteristics of motors and storage devices change due to aging and the like. There is a demand for high-precision control according to changes in characteristics due to these various factors.
 本発明は上記の要求に鑑みてなされたものである。 The present invention has been made in view of the above requirements.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、モータに電力を供給する電力変換装置と、前記電力変換装置に電力を供給する電源装置とを備える電力変換システムにおいて、前記電力変換装置は、電力を変換する電力変換部と、前記電力変換部を制御する制御部と、前記電力変換部内の電流を検出する電流検出部と、を有し、前記電源装置は、電圧に応じて電力を蓄積する蓄積装置と、電圧指令に基づいて前記蓄積装置の電圧を変更する昇降圧電源回路と、前記蓄積装置に蓄積するエネルギを演算して前記電圧指令として前記昇降圧電源回路へ出力する演算回路と、を有し、前記制御部は、前記モータが備えるエンコーダからの情報と前記電流検出部で検出した電流値とを用いて前記モータの力行エネルギ或いは回生エネルギを算出し、前記演算回路は、前記制御部で算出した前記モータの力行エネルギ或いは回生エネルギに基づいて前記蓄積装置に蓄積するエネルギを演算するものとする。 The present application includes a plurality of means for solving the above-described problems. For example, a power conversion system including a power conversion device that supplies power to a motor and a power supply device that supplies power to the power conversion device are exemplified. In the power conversion device, a power conversion unit that converts power, a control unit that controls the power conversion unit, and a current detection unit that detects a current in the power conversion unit, the power supply device A storage device for storing electric power according to a voltage, a step-up / step-down power supply circuit for changing the voltage of the storage device based on a voltage command, and calculating the energy stored in the storage device as the voltage command, An arithmetic circuit for outputting to a power supply circuit, wherein the control unit uses information from an encoder provided in the motor and a current value detected by the current detection unit to output power running energy of the motor. There calculates the regenerative energy, the arithmetic circuit is assumed for calculating the energy accumulated in the storage device based on the power running energy or regenerative energy of the motor calculated by the control unit.
 本発明によれば、モータ負荷の経年劣化などによる特性の変化に伴う制御のずれを抑制することができ、制御精度の悪化を抑制することができる。また、蓄積装置への電力の過度な蓄積を抑制することができ、電力損失の低減や、蓄積装置の小型化を実現することができる。 According to the present invention, it is possible to suppress a shift in control due to a change in characteristics due to aged deterioration of the motor load, and to suppress a deterioration in control accuracy. In addition, excessive storage of power in the storage device can be suppressed, and power loss can be reduced and the size of the storage device can be reduced.
本発明に係る電力変換システムの全体構成を模式的に示す図である。It is a figure showing typically the whole power conversion system composition concerning the present invention. 慣性負荷に蓄えられる回転または運動エネルギを説明する図である。It is a figure explaining rotation or kinetic energy stored in an inertial load. 空圧式ダイクッション付プレス機の構造を模式的に説明する図である。It is a figure which illustrates typically the structure of the press machine with a pneumatic die cushion. 空圧式ダイクッションに蓄えられたエネルギについて説明する図である。It is a figure explaining the energy stored in the pneumatic type die cushion. 昇降装置に蓄えられたエネルギについて説明する図である。It is a figure explaining the energy stored in the elevating device. クランクプレス機のクランク軸角速度とスライド速度の関係を説明する図である。FIG. 4 is a diagram illustrating a relationship between a crankshaft angular speed and a slide speed of the crank press. 第1の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an example of a power conversion system according to a first embodiment. 電源装置の順変換器、昇降圧電源回路、及び蓄積装置の詳細の一例を示す図であり、昇降圧電源回路として昇圧動作を行う回路を用いる場合を示している。FIG. 4 is a diagram illustrating an example of details of a directional converter, a step-up / step-down power supply circuit, and a storage device of the power supply device, in which a circuit that performs a boost operation is used as the step-up / step-down power supply circuit. 電源装置の順変換器、昇降圧電源回路、及び蓄積装置の詳細の他の例を示す図であり、昇降圧電源回路として降圧動作を行う回路を用いる場合を示している。FIG. 9 is a diagram illustrating another example of the details of the forward converter, the step-up / step-down power supply circuit, and the storage device of the power supply device, and illustrates a case where a circuit that performs a step-down operation is used as the step-up / step-down power supply circuit. モータ電力変換装置の逆変換器及び位置速度電流制御回路の詳細を示す図である。FIG. 3 is a diagram illustrating details of an inverter and a position / speed current control circuit of the motor power converter. 空圧式ダイクッション付プレス機で絞り加工を行った場合のスライドモータの角速度検出信号の波形の一例を示す図である。It is a figure which shows an example of the waveform of the angular velocity detection signal of a slide motor when performing drawing by a press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合のスライドモータのトルク検出信号の波形の一例を示す図である。It is a figure which shows an example of the waveform of the torque detection signal of a slide motor when drawing is performed by the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の加減速トルク演算回路の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of the acceleration / deceleration torque calculation circuit when drawing is performed by the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の加減算演算器の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of the addition / subtraction arithmetic unit when drawing is performed by the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の慣性負荷蓄積エネルギ演算回路の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of an inertial load accumulation energy calculation circuit when drawing is performed by the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の弾性負荷蓄積エネルギ演算回路の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of the elastic load accumulation energy calculation circuit at the time of performing drawing by the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の蓄積エネルギ演算回路の加算演算器の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of the addition arithmetic unit of the accumulation energy arithmetic circuit at the time of performing a drawing process with the press machine with a pneumatic die cushion. 空圧式ダイクッション付プレス機で絞り加工を行った場合の電圧指令演算回路の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform of a voltage command calculation circuit at the time of performing a drawing process with the press machine with a pneumatic die cushion. 第2の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 7 is a diagram schematically illustrating an example of a power conversion system according to a second embodiment. 第3の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a third embodiment. 第3の実施例に係るサーボダイクッション付プレス機の構造を模式的に説明する図である。It is a figure which illustrates typically the structure of the press machine with a servo die cushion which concerns on 3rd Example. 第4の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a fourth embodiment. 第5の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 13 is a diagram schematically illustrating an example of a power conversion system according to a fifth embodiment. 第6の実施例に係る電力変換システムの一例を模式的に示す図である。FIG. 14 is a diagram schematically illustrating an example of a power conversion system according to a sixth embodiment.
 以下、本発明の実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、本実施の形態に係る電力変換システムの基本原理について説明する。 First, the basic principle of the power conversion system according to the present embodiment will be described.
 図1は、本実施の形態に係る電力変換システムの全体構成を模式的に示す図である。 FIG. 1 is a diagram schematically showing the overall configuration of the power conversion system according to the present embodiment.
 本実施の形態の電力変換システムは、電源11からモータ3に供給される電力を変換することによって、モータ3の動作を制御するものであり、電源装置1とモータ電力変換装置2(電力変換装置)とから概略構成されている。電源装置1は、電源11から交流電圧で供給される電力を直流電圧VPNに変換する順変換器4と、順変換器4で直流電圧に変換された電力の電圧VPNを制御する昇降圧電源回路5と、昇降圧電源回路5で電圧制御された電力を蓄積しつつモータ電力変換装置2に供給するとともに、モータ3の回生動作によって生成されてモータ電力変換装置2を介して供給される電力を蓄積する蓄積装置6(例えば、コンデンサ、蓄電池、など)と、昇降圧電源回路5の動作を制御して電圧VPNを制御する電圧指令演算回路15とを備えている。また、モータ電力変換装置2は、電源装置1の昇降圧電源回路5から蓄積装置6を介して供給される電力を変換してモータ3に供給することでモータ3の動作を制御するとともに、モータ3の回生動作により生成された電力を電源装置1の蓄積装置6に供給する逆変換器(インバータ)7(電力変換部)と、逆変換器7の動作を制御するとともに、モータ3に設けられたエンコーダ10を介して得られるモータ3の角速度と、モータ3に設けられた電流検出器(電流検出部)で検出される電流値に基づいて演算されるモータ3のトルクと、予め設定されたモータ3に関するモーメントとに基づいて、モータ3及びモータ3により駆動されるモータ負荷120に貯蔵されたエネルギである貯蔵エネルギを算出する制御回路8(制御部)と、制御回路8により算出された貯蔵エネルギと、蓄積装置6への蓄積が許容される電力量の最大値として予め定められた最大電力量とに基づいて昇降圧電源回路5を制御し、電源11から蓄積装置6に蓄積される電力量を制御する電圧指令演算回路15とを備えている。ここで、昇降圧電源回路5と電圧指令演算回路15とは、貯蔵エネルギと最大電力量とに基づいて電源11から蓄積装置6に蓄積される電力量を制御する蓄電装置制御回路を構成している。 The power conversion system according to the present embodiment controls the operation of the motor 3 by converting the power supplied from the power supply 11 to the motor 3, and includes a power supply device 1 and a motor power conversion device 2 (power conversion device). ). The power supply device 1 includes a forward converter 4 for converting power supplied by an AC voltage from a power supply 11 to a DC voltage VPN, and a step-up / step-down power supply circuit for controlling a voltage VPN of the power converted to a DC voltage by the forward converter 4. 5 and the electric power controlled by the step-up / step-down power supply circuit 5 is supplied to the motor power converter 2 while being accumulated, and the electric power generated by the regenerative operation of the motor 3 and supplied through the motor power converter 2 is It includes a storage device 6 (for example, a capacitor, a storage battery, etc.) for storing, and a voltage command calculation circuit 15 for controlling the operation of the step-up / step-down power supply circuit 5 to control the voltage VPN. The motor power converter 2 controls the operation of the motor 3 by converting the power supplied from the step-up / step-down power supply circuit 5 of the power supply 1 via the storage device 6 and supplying the converted power to the motor 3. 3 that controls the operation of the inverter 7 (power converter) that supplies the power generated by the regenerative operation to the storage device 6 of the power supply device 1 and that is provided in the motor 3. The angular velocity of the motor 3 obtained through the encoder 10 and the torque of the motor 3 calculated based on a current value detected by a current detector (current detecting unit) provided in the motor 3 are set in advance. A control circuit 8 (control unit) for calculating stored energy, which is energy stored in the motor 3 and a motor load 120 driven by the motor 3, based on the moment about the motor 3; The step-up / step-down power supply circuit 5 is controlled on the basis of the stored energy calculated by the path 8 and the maximum amount of power that is allowed to be stored in the storage device 6 in advance. A voltage command calculation circuit for controlling the amount of power stored in the device; Here, the step-up / step-down power supply circuit 5 and the voltage command calculation circuit 15 constitute a power storage device control circuit that controls the amount of power stored in the storage device 6 from the power source 11 based on the stored energy and the maximum power amount. I have.
 このとき、交流モータ9とエンコーダ10とにより構成される回転駆動式のモータ3を考えると、モータ3の出力軸が回転し、その回転エネルギがモータ軸を含む負荷側(モータ負荷120)に蓄えられる。また、リニアモータなどのモータ3を考えると、負荷を積載した可動部が直線上を移動し、運動エネルギが負荷側及び可動部(モータ負荷120)に蓄えられる。 At this time, considering a rotary drive type motor 3 composed of an AC motor 9 and an encoder 10, the output shaft of the motor 3 rotates and its rotational energy is stored on the load side (motor load 120) including the motor shaft. Can be In addition, when considering a motor 3 such as a linear motor, a movable portion loaded with a load moves on a straight line, and kinetic energy is stored in the load side and the movable portion (motor load 120).
 仮に、モータ3の回転角が微小角度(例えば10°以下)しか動かない負荷や直線上を微小距離(10mm以下)しか移動しない特殊な負荷を除くと、電子部品組立機械や半導体・液晶製造装置、金属工作機械や金属加工機械、搬送機械や産業用ロボット等の一般産業機械は負荷側の物体が動くとその物体に回転または運動エネルギが蓄積される。 Except for a load in which the rotation angle of the motor 3 moves only a small angle (for example, 10 ° or less) or a special load that moves only a small distance (10 mm or less) on a straight line, an electronic component assembling machine or a semiconductor / liquid crystal manufacturing apparatus In general industrial machines such as metal machine tools, metal working machines, transfer machines, and industrial robots, when a load-side object moves, rotation or kinetic energy is accumulated in the object.
 回転する物体の慣性モーメントをJ、モータの出力軸の回転の角速度をω(rad/s)とすると、加減速トルクTαは下記(式1)で表される。 加 Assuming that the moment of inertia of the rotating object is J and the angular velocity of rotation of the output shaft of the motor is ω (rad / s), the acceleration / deceleration torque Tα is represented by the following (Equation 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、モータの出力軸にクランク軸を結合し回転運動を往復運動に変え、ばね特性を持つ負荷に押し付けて戻す動作を繰り返した時、加減速中を含めたモータ負荷トルクをTq(N・m)とすると、ばね特性に対する弾性負荷トルクTdは下記(式2)で表される。なお、この時の摩擦負荷やころがり摩擦、その他の負荷は無視できる程度に微小であるとしている。 Further, when the crankshaft is connected to the output shaft of the motor to change the rotational motion into a reciprocating motion, and the operation of pressing and returning to the load having the spring characteristic is repeated, the motor load torque including during acceleration / deceleration is calculated by Tq (N · m ), The elastic load torque Td with respect to the spring characteristics is expressed by the following (Equation 2). The friction load, rolling friction, and other loads at this time are assumed to be negligibly small.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、上記(式1)における加減速トルクを発生中の慣性負荷動力Pαは、回転速度をN(min^(-1))として下記(式3)で表される。 慣 In addition, the inertial load power Pα during the generation of the acceleration / deceleration torque in the above (Equation 1) is expressed by the following (Equation 3), where the rotation speed is N (min ^ (-1)).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、一定角速度運転中の弾性負荷動力Pdは下記(式4)で表される。 弾 性 Next, the elastic load power Pd during the constant angular velocity operation is expressed by the following (Equation 4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、上記(式3)で与えられる動力Pαで運転した時、慣性負荷に蓄積される慣性負荷蓄積エネルギは上記(式3)を時間積分することによって下記(式5)で表される。 Here, when the vehicle is operated with the power Pα given by the above (Equation 3), the inertial load accumulated energy accumulated in the inertial load is expressed by the following (Equation 5) by integrating the above (Equation 3) with time.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 同様に、上記(式4)で与えられる動力Pdで運転した時、弾性負荷に蓄積される弾性負荷蓄積エネルギは上記(式4)を時間積分することによって下記(式6)で表される。 Similarly, when operating with the power Pd given by the above (Equation 4), the elastic load storage energy accumulated in the elastic load is expressed by the following (Equation 6) by integrating the above (Equation 4) with time.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 したがって、慣性負荷蓄積エネルギEαと弾性負荷蓄積エネルギEdを加算した総負荷蓄積エネルギEは下記(式7)で表される。 Therefore, the total load storage energy E obtained by adding the inertial load storage energy Eα and the elastic load storage energy Ed is represented by the following (Equation 7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この状態からモータ3を減速停止させると慣性負荷や弾性負荷(または重力負荷)に蓄えられたエネルギは、回生エネルギとしてモータ負荷120からモータ3および逆変換器7を介して、例えば、電解コンデンサや蓄電池などの蓄積装置6に戻る。このとき、蓄積装置6が過充電状態とならないよう、モータ3の運転開始時から慣性負荷または負荷側に蓄えられるエネルギの量を刻々演算し、蓄積装置6に蓄えられているエネルギの量からその分を差し引き、回生によって生成されたエネルギが蓄積装置6に蓄積される場合にも規定のエネルギの量となるように、制御回路8で電圧指令演算回路15を制御して蓄積装置6の電力の蓄積量を可変制御する。 When the motor 3 is decelerated and stopped from this state, the energy stored in the inertial load or the elastic load (or the gravitational load) is regenerated as energy from the motor load 120 via the motor 3 and the inverter 7, such as an electrolytic capacitor or the like. The process returns to the storage device 6 such as a storage battery. At this time, the amount of energy stored in the inertial load or the load side is calculated every moment from the start of operation of the motor 3 so that the storage device 6 does not become overcharged, and the amount of energy stored in the storage device 6 is calculated from the amount of energy stored in the storage device 6. The control circuit 8 controls the voltage command operation circuit 15 by controlling the voltage command operation circuit 15 so that the amount of energy generated by the regeneration is reduced to a specified amount even when the energy generated by the regeneration is stored in the storage device 6. The accumulation amount is variably controlled.
 なお、慣性負荷または負荷側に蓄えられたエネルギの量は、物理的な動力から演算するのではなく、モータ3やそれを駆動する構成に設けられたセンサ等から検出される制御信号を用いる。これは、慣性モーメントや弾性負荷特性(または重力負荷特性)がモータ3の電流や電圧、位置、速度や角速度、動力やエネルギから正確に得られるからである。例えば、弾性負荷の場合、圧縮空気の復元力を用いたばね特性等は耐用寿命があり、寿命までには特性劣化がある。しかしながら、この場合においても、経年変化に合わせた負荷特性をモータ3とそれを駆動する構成のセンサで忠実に拾うことができる。逆に、ばね特性を初期の定数のまま運転して物理的な動力から演算しようとすると、実際の特性と解離した状態を演算することになり、モータ3の運転における制御精度等の悪化や誤差が生じる恐れがある。 The inertia load or the amount of energy stored on the load side is not calculated from physical power, but a control signal detected from the motor 3 or a sensor provided for driving the motor 3 is used. This is because the moment of inertia and elastic load characteristics (or gravitational load characteristics) can be accurately obtained from the current, voltage, position, speed, angular speed, power, and energy of the motor 3. For example, in the case of an elastic load, the spring characteristics and the like using the restoring force of the compressed air have a durable life, and the characteristics are deteriorated by the life. However, also in this case, the load characteristics according to the aging can be faithfully picked up by the motor 3 and the sensor configured to drive it. Conversely, if it is attempted to operate from the physical power by operating the spring characteristics with the initial constants, the actual characteristics and the dissociated state will be calculated. May occur.
 エネルギ保存の法則から、蓄積装置6に蓄えられる適正エネルギ量Erefは、蓄積装置6が満充電時に蓄えられるエネルギをEmax(J)とすると下記(式8)で表される。 From the law of energy conservation, the appropriate energy amount Eref stored in the storage device 6 is expressed by the following (Equation 8), where the energy stored when the storage device 6 is fully charged is Emax (J).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 例えば、蓄積装置6として容量C(F)の電解コンデンサを使用した場合、電解コンデンサの適正電圧をVref(V)とすると、電解コンデンサに蓄えられる適正なエネルギは下記(式9)で表される。 For example, in the case where an electrolytic capacitor having a capacitance C (F) is used as the storage device 6, if the appropriate voltage of the electrolytic capacitor is Vref (V), the appropriate energy stored in the electrolytic capacitor is represented by the following (Equation 9). .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記(式9)を上記(式8)に代入して整理すると、弾性負荷時の蓄積装置6の電解コンデンサの適正電圧Vrefは下記(式10)で表される。 代 入 Substituting the above (Equation 9) into the above (Equation 8) and rearranging, the appropriate voltage Vref of the electrolytic capacitor of the storage device 6 at the time of elastic load is expressed by the following (Equation 10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、上記(式10)における定数kは下記(式11)で表される。 Here, the constant k in the above (Equation 10) is represented by the following (Equation 11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 次に、重力負荷について弾性負荷と同様にトルク、動力、蓄積エネルギを考える。なお、重力負荷時の加減速トルクは上記(式1)の通りである。重力負荷としては、例えば、モータ3の出力軸に巻き上げ機を連結し、ロープの先にかご、または荷物を吊るしこれを昇降運転する場合が考えられる。 Next, regarding the gravitational load, torque, power, and stored energy are considered in the same manner as the elastic load. The acceleration / deceleration torque under a gravity load is as shown in the above (Equation 1). As the gravity load, for example, a case in which a hoist is connected to the output shaft of the motor 3 and a car or luggage is hung at the tip of a rope, and the hoist is moved up and down can be considered.
 加減速中を含めたモータトルクをTq(N・m)とすると、重力負荷トルクTwは下記(式12)で表される。なお、この時の摩擦負荷やころがり摩擦、その他の負荷は無視できる程度に微小であるとしている。 、 If the motor torque including during acceleration / deceleration is Tq (N · m), the gravity load torque Tw is represented by the following (Equation 12). The friction load, rolling friction, and other loads at this time are assumed to be negligibly small.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 次に、一定角速度運転中の重力負荷動力Pwは、下記(式13)で表される。 Next, the gravitational load power Pw during the constant angular velocity operation is expressed by the following (Equation 13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記(式13)で与えられる重力負荷動力Pwで運転した時、重力負荷に蓄積される重力負荷蓄積エネルギは上記(式13)を時間積分することによって下記(式14)で表される。 運 転 When operated with the gravitational load power Pw given by the above (Equation 13), the gravitational load accumulated energy accumulated in the gravitational load is expressed by the following (Equation 14) by integrating the above (Equation 13) with time.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 したがって、慣性負荷蓄積エネルギEαと重力負荷蓄積エネルギEwを加算した総負荷蓄積エネルギEは下記(式15)で表される。 Therefore, the total load storage energy E obtained by adding the inertial load storage energy Eα and the gravity load storage energy Ew is expressed by the following (Equation 15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 次に、重力負荷の場合、蓄積装置6に蓄えられる適正エネルギ量Erefは、蓄積装置6が満充電時に蓄えられるエネルギをEmax(J)とすると下記(式16)で表される。 Next, in the case of a gravitational load, the appropriate energy amount Eref stored in the storage device 6 is expressed by the following (Equation 16), where the energy stored when the storage device 6 is fully charged is Emax (J).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 また、蓄積装置6として、例えば、容量C(F)の電解コンデンサを使用した場合には、電解コンデンサに蓄えられる適正なエネルギは上記(式9)で表されるので、上記(式9)を上記(式16)に代入して整理することにより、重力負荷時の蓄積装置6の電解コンデンサの適正電圧Vrefは下記(式17)で表される。なお、比例定数kは上記(式11)で表される。 Further, for example, when an electrolytic capacitor having a capacitance C (F) is used as the storage device 6, the appropriate energy stored in the electrolytic capacitor is expressed by the above (Equation 9). By substituting into (Equation 16) and rearranging, the appropriate voltage Vref of the electrolytic capacitor of the storage device 6 at the time of gravity load is expressed by the following (Equation 17). Note that the proportional constant k is represented by the above (Equation 11).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、慣性負荷エネルギEα、弾性負荷エネルギEd、重力負荷エネルギEwが回生時、負荷側からモータ3および逆変換器7を介して蓄積装置6に回生エネルギが戻るとき、回生効率は100%ではないために一部が損失として消費される。そこで、回生時の演算では、慣性負荷エネルギEα、弾性負荷エネルギEd、重力負荷エネルギEwにそれぞれ回生効率X1(<1)を乗じることで回生効率を反映し、また、力行時の演算では、X1=1とすることにより、回生時のみ回生効率X1(<1)が設定されるので、より精度の高い制御を実現することができる。 Here, when the inertia load energy Eα, the elastic load energy Ed, and the gravitational load energy Ew are regenerated, when the regenerative energy returns from the load side to the storage device 6 via the motor 3 and the inverter 7, the regenerative efficiency is 100%. Some are lost as they are not. Therefore, in the calculation at the time of the regeneration, the inertia load energy Eα, the elastic load energy Ed, and the gravitational load energy Ew are each multiplied by the regeneration efficiency X1 (<1) to reflect the regeneration efficiency. By setting = 1, the regenerative efficiency X1 (<1) is set only at the time of regeneration, so that more accurate control can be realized.
 例えば、モータ負荷120として、圧縮空気の復元力を利用した弾性負荷を考える場合には、圧縮空気をスライドが下降して負荷にエネルギを蓄え、次にスライドが上昇に転じるとき、上昇速度によって回生エネルギの量が異なる。これは圧縮空気を包んでいる材料にも復元時間が生じるので、先にスライドが離れるとモータは弾性負荷からの反力がなくなるため回生状態にならない。実際には圧縮空気を包んでいる材料からスライドが離れることはないので回生エネルギは生じる。しかし、スライドが下降時の動力エネルギの量とスライドが上昇時の回生エネルギの量は均等にならず回生側のエネルギの量が少ない状態になる。この場合、モータを運転開始時負荷側に蓄えられるエネルギの量を刻々演算し、蓄積装置に蓄えられるエネルギの量からその分を差し引き、回生された時に規定のエネルギの量に戻らない状態が発生する。そこで、この場合には回生時のエネルギ量に合わせて力行時のエネルギに重み係数X2(≠1)を乗じる。例えば、運転開始時には、(負荷側に蓄えられるエネルギの量)×(重み係数X2)を行って蓄積装置6に蓄えられているエネルギの量を補正してその分を差し引き、回生時は、(回生されるエネルギの量)×(重み係数X2)(ただし、X2=1)を行ってそのままのエネルギ量として戻せば、差し引かれた分は元の値に戻るようになる。 For example, when considering an elastic load using the restoring force of the compressed air as the motor load 120, when the slide descends the compressed air to store energy in the load, and then when the slide starts to rise, the slide is regenerated by the rising speed. The amount of energy is different. This causes a restoring time for the material wrapping the compressed air, so that if the slide is released first, the motor will not be in a regenerative state because there is no reaction force from the elastic load. In fact, regenerative energy is generated because the slide does not actually leave the material surrounding the compressed air. However, the amount of power energy when the slide descends and the amount of regenerative energy when the slide rises are not equal, and the amount of energy on the regenerative side is small. In this case, the amount of energy stored on the load side at the start of operation of the motor is calculated every moment, the amount is subtracted from the amount of energy stored in the storage device, and the state where the amount of energy does not return to the specified amount of energy when regenerated is generated. I do. Therefore, in this case, the energy during power running is multiplied by the weight coefficient X2 (≠ 1) in accordance with the energy amount during regeneration. For example, at the start of operation, the amount of energy stored in the storage device 6 is corrected by performing (the amount of energy stored on the load side) × (weight coefficient X2), and the amount is subtracted. If the amount of energy regenerated is multiplied by (weight coefficient X2) (where X2 = 1) and returned as it is, the deducted amount returns to the original value.
 回生時の回生効率X1(ただし、回生時:X1<1、力行時:X1=1)および力行時の重み係数X2(ただし、力行時:X2≠1、回生時:X2=1)を係数Xとしてまとめると下記(式18)で表される。 The regenerative efficiency X1 at the time of regeneration (however, X1 <1, at the time of regeneration: X1 = 1 at the time of power running) and the weighting factor X2 at the time of power running (however, X2 ≠ 1 at the time of power running, X2 = 1 at the time of regeneration) are coefficients X. Are summarized in the following (Equation 18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、上記(式10)で示した弾性負荷時の蓄積装置6(電解コンデンサ)の適正電圧Vref、および、上記(式17)で示した重力負荷時の蓄積装置6(電解コンデンサ)の適正電圧Vrefは、上記(式18)の係数Xを用いて、それぞれ、下記(式19)および下記(式20)で表される。 Here, the proper voltage Vref of the storage device 6 (electrolytic capacitor) under the elastic load shown in the above (Equation 10) and the appropriate voltage Vref of the storage device 6 (electrolytic capacitor) under the gravitational load shown in the above (Formula 17) The voltage Vref is expressed by the following (Equation 19) and the following (Equation 20) using the coefficient X of the above (Equation 18).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、上記(式18)では、重み係数X2として、力行時にX2≠1、回生時にX2=1となるものを設定したが、回生時に重み係数X2≠1、力行時に重み係数X2=1となるように設定しても良い。 In the above (Equation 18), the weighting factor X2 is set such that X2 ≠ 1 during power running and X2 = 1 during regeneration. However, the weighting factor X2 ≠ 1 during regeneration and the weighting factor X2 = 1 during power running. May be set as follows.
 以上のように、弾性負荷、重力負荷の場合、慣性負荷は両方の負荷に共通に発生し、蓄積装置(電解コンデンサ)の適正電圧Vrefは上記(式19)及び(式20)により、予めモータを運転開始時から慣性負荷、または負荷側に蓄えられるエネルギの量を刻々演算し、蓄積装置に蓄えられているエネルギの量からその分を差し引き、回生された時に規定のエネルギの量に戻るよう蓄積装置の直流電圧を可変制御すればよい。 As described above, in the case of the elastic load and the gravitational load, the inertial load occurs in common to both loads, and the appropriate voltage Vref of the storage device (electrolytic capacitor) is determined in advance by the above (Equation 19) and (Equation 20). From the start of operation, the amount of energy stored in the inertial load or the load side is calculated every moment, the amount is subtracted from the amount of energy stored in the storage device, and the amount of energy is returned to the specified amount of energy when regenerated. What is necessary is just to variably control the DC voltage of the storage device.
 ここで、慣性負荷や弾性負荷、重力負荷などについて具体例を挙げて詳細に説明する。 Here, the inertial load, the elastic load, the gravitational load, and the like will be described in detail with specific examples.
 図2は、慣性負荷に蓄えられる回転または運動エネルギを説明する図である。 FIG. 2 is a diagram illustrating rotation or kinetic energy stored in an inertial load.
 図2に示すように、モータ等により電気エネルギを慣性体にta時間だけ与える場合、慣性体には角速度ωでまわる回転エネルギが与えられる。ここで、電路やころがり摩擦、風損等の損失を無視すると、電気エネルギの供給をやめても慣性体は永久にまわり続ける。ただし、実際には損失は無視できないため、慣性体の回転を維持するためには損失分のエネルギを電気エネルギとして与え続けなければならない。次に、慣性体に回生ブレーキをtd時間掛けて回転エネルギを取り去ると、慣性体は停止して回転エネルギは回生されて電気エネルギとして電源に戻る。すなわち、慣性負荷を回すということは電源から供給された電気エネルギを回転エネルギに変換することであり、また、慣性負荷を回生ブレーキによって止めるということは回転エネルギを再び電気エネルギという形に変えることであり、これらは、エネルギの保存場所を移し替える行為であるといえる。 (2) As shown in FIG. 2, when electric energy is applied to the inertial body for a time ta by a motor or the like, rotational energy rotating at an angular velocity ω is applied to the inertial body. Here, ignoring losses such as electric paths, rolling friction, and windage, the inertial body continues to rotate forever even when the supply of electric energy is stopped. However, since the loss cannot be ignored in practice, the energy corresponding to the loss must be continuously provided as electric energy in order to maintain the rotation of the inertial body. Next, when the regenerative braking is applied to the inertial body for a time period of td to remove the rotational energy, the inertial body stops, the rotational energy is regenerated, and returns to the power source as electric energy. In other words, turning the inertial load converts the electric energy supplied from the power supply into rotational energy, and stopping the inertial load by the regenerative brake changes the rotational energy into electric energy again. Yes, these can be said to be the act of transferring energy storage locations.
 図2では、回転運動の一例としてクランクプレス機のクランク軸の回転運動を示しており、スライド質量を点Aに集約して示し、バランス調整によるバランス質量を等価的に示した質点を点Bで示したフライホイルの回転運動として模式的に示している。このような慣性体に蓄えられるエネルギEは、クランク軸の角速度をω(rad/s)とし、慣性体の慣性モーメントをJ(kg・m^2)とすると、下記(式21)で表され、慣性モーメントJに比例し、角速度ωの二乗に比例することがわかる。 FIG. 2 shows the rotational movement of the crankshaft of the crank press as an example of the rotational movement. The slide mass is shown collectively at point A, and the mass point equivalently showing the balance mass by the balance adjustment is shown at point B. This is schematically shown as the rotational movement of the flywheel shown. The energy E stored in such an inertial body is represented by the following (Equation 21), where the angular velocity of the crankshaft is ω (rad / s) and the moment of inertia of the inertial body is J (kg · m ^ 2). Is proportional to the moment of inertia J and proportional to the square of the angular velocity ω.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 また、図2に示すように、直線運動の場合は運動エネルギとして蓄えられるエネルギEは、慣性体の質量をm(kg)、移動速度をVlとすると、下記(式22)で表され、質量mに比例し移動速度Vl(m/s)の二乗に比例することがわかる。 As shown in FIG. 2, in the case of linear motion, the energy E stored as kinetic energy is represented by the following (Equation 22), where m (kg) is the mass of the inertial body and Vl is the moving speed. It can be seen that it is proportional to m and proportional to the square of the moving speed Vl (m / s).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 図3は、空圧式ダイクッション付プレス機の構造を模式的に説明する図である。 FIG. 3 is a diagram schematically illustrating the structure of a press machine with a pneumatic die cushion.
 図3において、プレス機には昇降運動するスライド25と固定されたボルスタ27がある。スライド25はスライドモータ20の回転をスライド駆動手段21およびクランク機構(クランク軸22、クランク偏心部23)を通してスライドギブ26にガイドされながら昇降運動する。ボルスタ27はベッド28の上に固定されプレス機のフレームを通してスライド機構に連結され、上からの加圧力を受ける構造となっている。スライド駆動手段21の一例として、もっとも多く使用されているクランクプレスの場合、スライドモータ20の回転をクランク軸22からクランク偏心部23に伝え、コネクションロッド24を介してスライド25を昇降させる。このプレス機に金型を取り付けてプレス加工が行われる。上金型29はスライド25の下面に、下金型30はボルスタ27の上面にセットされ上下一対で一つの金型を構成する。金型は鉄板等をせん断、曲げ、絞る等の加工ができ、鉄板に塑性変形を与え目的の形状を作ることができる。この金型の品質、性能がプレス加工の生産性、品質にかかわる重要な役割を担っている。空圧式ダイクッション装置31は絞り加工において、例えばカップ状絞りでは加工の進行につれて成形品のフランジ部に円周方向の圧縮応力が生じ、放置すればしわが発生する。このしわが発生しないよう下側から必要なしわ押え圧力を発生する装置が空圧式ダイクッション装置31である。空圧式ダイクッション装置31はベッド28に内蔵されており、下金型30とダイクッションパッド(図示せず)及びダイクッションピン(図示せず)が連動して作動する。なお、空圧式ダイクッション装置31には、空圧式や油圧式等のタイプの他にサーボモータを使用したサーボダイクッションがある。 In FIG. 3, the press machine has a slide 25 that moves up and down and a bolster 27 that is fixed. The slide 25 moves up and down while the rotation of the slide motor 20 is guided by the slide gib 26 through the slide drive means 21 and the crank mechanism (the crankshaft 22 and the crank eccentric part 23). The bolster 27 is fixed on a bed 28, is connected to a slide mechanism through a frame of a press machine, and has a structure to receive a pressing force from above. As an example of the slide driving means 21, in the case of a crank press that is used most often, the rotation of the slide motor 20 is transmitted from the crankshaft 22 to the crank eccentric part 23, and the slide 25 is moved up and down via the connection rod 24. A press is performed by attaching a die to this press machine. The upper mold 29 is set on the lower surface of the slide 25, and the lower mold 30 is set on the upper surface of the bolster 27, and a pair of upper and lower parts constitutes one mold. The mold can perform processing such as shearing, bending, and squeezing an iron plate or the like, and can give a desired shape by giving plastic deformation to the iron plate. The quality and performance of this mold play an important role in the productivity and quality of press working. In the drawing process of the pneumatic die cushion device 31, for example, in the case of cup-shaped drawing, a compressive stress in the circumferential direction is generated in a flange portion of a molded product as the process proceeds, and wrinkles are generated if left unattended. The pneumatic die cushion device 31 generates a necessary wrinkle holding pressure from below so as not to generate the wrinkles. The pneumatic die cushion device 31 is built in the bed 28, and the lower die 30 and the die cushion pad (not shown) and the die cushion pin (not shown) operate in conjunction with each other. The pneumatic die cushion device 31 includes a servo die cushion using a servo motor in addition to a pneumatic type and a hydraulic type.
 図4は、空圧式ダイクッションに蓄えられたエネルギについて説明する図である。 FIG. 4 is a diagram for explaining the energy stored in the pneumatic die cushion.
 図4に示すように、ダイクッションとは絞り加工のしわ押え用反力、成形品の突き上げ力を発生させる圧力保持装置である。空圧式ダイクッションは空気ばねに等価的に置き換えられる。ばねが変形するとき、弾性エネルギという形でエネルギがばねに蓄えられる。蓄えられたエネルギを放出させれば、ばねに機械的な仕事をさせることができる。空気の復元力を生み出す材料である空気ばねもその一種であり、空圧式ダイクッションで利用される。 (4) As shown in FIG. 4, the die cushion is a pressure holding device that generates a reaction force for holding down wrinkles in drawing and a pushing force of a molded product. A pneumatic die cushion is equivalently replaced by an air spring. As the spring deforms, energy is stored in the spring in the form of elastic energy. Release of the stored energy allows the spring to perform mechanical work. An air spring, which is a material for generating a restoring force of air, is also a kind and is used in a pneumatic die cushion.
 空圧式ダイクッション装置31にエネルギを蓄える場合には、スライド25が下降方向に動くことで空圧式ダイクッション内の空気を圧縮しこの部分に弾性エネルギが蓄えられ、同時にスライド方向への反力が発生する。スライド25で下に押されれば押されるほど反力31Eは大きくなるため、ばね定数k(N/m)のばねに置き換えて考えることができ、スライド25で押された場合の変位をx(m)とすると蓄えられる弾性エネルギEは下記(式23)で与えられる。 When energy is stored in the pneumatic die cushion device 31, the air in the pneumatic die cushion is compressed by moving the slide 25 in the downward direction, and elastic energy is stored in this part, and at the same time, the reaction force in the sliding direction is reduced. appear. The lower the slide 25 is pressed, the greater the reaction force 31E is. Therefore, the reaction force 31E can be replaced with a spring having a spring constant k (N / m). m), the stored elastic energy E is given by the following (Equation 23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 図5は、昇降装置に蓄えられたエネルギについて説明する図である。 FIG. 5 is a diagram illustrating the energy stored in the lifting device.
 図5に示すように、昇降装置82(後述)では、モータ出力軸に巻き上げ機76を連結し、ロープ78の先に荷物(又は、荷物等を収容するかご)77を吊るして昇降運転を行う。図5において、質量m(kg)の荷物77が地上にある場合には、エネルギは開放状態にある。この状態から荷物77を高さh(m)まで巻き上げると、位置エネルギmgh(J)が蓄えられる。荷物77の上昇時には、荷物77に働く重力の方向とは逆方向へ移動するためモータは力行状態で運転し、荷物77に位置エネルギが蓄えられる。また、荷物77の下降時には、荷物77の重力による落下を抑えながら下降させるのでモータは回生状態で運転し、荷物77に蓄えられた位置エネルギは開放される。 As shown in FIG. 5, in a lifting device 82 (described later), a hoist 76 is connected to a motor output shaft, and a load (or a basket for storing a load or the like) 77 is hung above a rope 78 to perform a lifting operation. . In FIG. 5, when a load 77 having a mass m (kg) is on the ground, the energy is in an open state. When the load 77 is wound up to the height h (m) from this state, the potential energy mgh (J) is stored. When the load 77 rises, the motor operates in a power running state because it moves in the direction opposite to the direction of gravity acting on the load 77, and potential energy is stored in the load 77. Further, when the load 77 is lowered, the load 77 is lowered while suppressing the drop of the load 77 due to gravity. Therefore, the motor operates in a regenerative state, and the potential energy stored in the load 77 is released.
 図6は、クランクプレス機のクランク軸角速度とスライド速度の関係を説明する図である。 FIG. 6 is a diagram illustrating the relationship between the crankshaft angular speed and the slide speed of the crank press.
 図6においては、クランク軸を回転方向に上死点から下死点を介して上死点まで360°(1回転)回転させた場合を示しており、横軸に時間t(s)を、縦軸にクランク軸角速度ω(rad/s)、スライド位置θs(mm)、及びスライド速度Vs(m/s)をそれぞれ示している。スライド速度Vsは、スライド位置が中間点の時に零速度となり、スライド速度の正側が上昇速度で負側が下降速度を示す。図6において、スライド位置は余弦曲線となるが、スライド速度はクランク軸のコネクティングロッドの接続点が回転するため180°位相遅れの正弦曲線となる。 FIG. 6 shows a case where the crankshaft is rotated 360 ° (one rotation) from the top dead center to the top dead center via the bottom dead center in the rotation direction, and the horizontal axis represents time t (s). The vertical axis indicates the crankshaft angular velocity ω (rad / s), the slide position θs (mm), and the slide velocity Vs (m / s). The slide speed Vs becomes zero speed when the slide position is at the intermediate point, and the positive side of the slide speed indicates the ascending speed and the negative side indicates the descending speed. In FIG. 6, the slide position is a cosine curve, but the slide speed is a sine curve with a 180 ° phase delay because the connection point of the connecting rod of the crankshaft rotates.
 以上のように構成した本実施の形態における作用効果を説明する。 The operation and effect of the present embodiment configured as described above will be described.
 従来技術には、モータおよびモータ負荷に貯蔵された回転エネルギまたはばねエネルギに基づき蓄積装置の制御指令値を、可変に設定することにより低コスト、低損失かつ高密度な電源装置がある。この従来技術は、慣性負荷に蓄えられたエネルギを対象とする蓄積装置の電圧を可変制御する電源装置に有効である。しかしながら、慣性負荷以外に蓄えられたエネルギについては具体的に示されておらず、ばね等による弾性負荷に蓄えられたエネルギについては明確ではなかった。 The prior art includes a low-cost, low-loss, and high-density power supply device by variably setting a control command value of a storage device based on rotational energy or spring energy stored in a motor and a motor load. This conventional technique is effective for a power supply device that variably controls the voltage of a storage device for energy stored in an inertial load. However, the energy stored other than the inertial load is not specifically shown, and the energy stored in the elastic load such as a spring is not clear.
 また、他の従来技術には、交流モータにより可変駆動されるスライドをもつサーボプレス装置において、プレス機械の運転パターンに基づいてエネルギ蓄積装置の充放電状態を制御する制御パターンを選択して、電源コンバータを小型化、高効率化するとともに、エネルギ蓄積装置の容量を最適化する技術がある。この従来技術は、プレス機械の運転パターンと、この運転パターンに基づくエネルギ蓄積装置の充放電状態を制御する制御パターンが予め登録され、運転パターンと制御パターンが同期して運転指令が与えられるシステムで有効である。しかしながら、独立した設定器、またはその都度設定される運転指令の場合の運転パターンと制御パターンの同期した運転指令への対応方法が明確になっていないという課題があった。 Further, in another conventional technique, in a servo press apparatus having a slide variably driven by an AC motor, a control pattern for controlling a charge / discharge state of an energy storage device is selected based on an operation pattern of the press machine, and a power supply is selected. There are techniques for reducing the size and efficiency of the converter and optimizing the capacity of the energy storage device. This prior art is a system in which an operation pattern of a press machine and a control pattern for controlling a charge / discharge state of an energy storage device based on the operation pattern are registered in advance, and an operation command is given in synchronization with the operation pattern. It is valid. However, there has been a problem that a method of responding to an operation command synchronized with an operation pattern and a control pattern in the case of an independent setting device or an operation command set each time is not clear.
 さらに、他の従来技術には、交流電源を整流して直流の固定電圧に変換されたインバータにおいて、回生されたエネルギを回生制動回路の抵抗器で消費し回生制動状態の異常処理及び表示に関する技術がある。この従来技術は、交流電源を整流回路で直流の固定電圧とするインバータの回生制動状態の異常処理及び表示に有効である。しかしながら、回生されたエネルギを回生制動回路の抵抗器で消費するため地球温暖化に対する環境改善について課題があった。 Further, another related art relates to a technology related to abnormal processing and display of a regenerative braking state by consuming the regenerated energy in a resistor of a regenerative braking circuit in an inverter in which an AC power supply is rectified and converted to a fixed DC voltage. There is. This prior art is effective for abnormal processing and display of a regenerative braking state of an inverter in which an AC power supply is set to a fixed DC voltage by a rectifier circuit. However, since the regenerated energy is consumed by the resistor of the regenerative braking circuit, there has been a problem about environmental improvement against global warming.
 このような従来技術における課題に対して、本実施の形態によれば、運転中の負荷が慣性負荷か弾性負荷かを区別し、または慣性負荷か重力負荷かを区別し、慣性負荷の場合、反力を発生する弾性負荷の場合、昇降動作をする重力負荷の場合に対して、蓄積装置に蓄積される電力量を可変制御するように構成したので、蓄積装置への電力の過度な蓄積を抑制し、電力損失の低減や、蓄積装置の小型化を実現することができる。また、負荷であるプレス機械の運転パターンとこの運転パターンに基づくエネルギ蓄積装置の充放電状態を制御する制御パターンを予め登録することも、運転パターンと制御パターンを同期して運転指令を与えることも必要ない。また、回生されたエネルギを回生制動回路の抵抗器で消費する必要もない。 With respect to such a problem in the related art, according to the present embodiment, it is possible to distinguish whether the load during operation is an inertial load or an elastic load, or to distinguish an inertial load or a gravitational load. In the case of an elastic load that generates a reaction force, the amount of power stored in the storage device is variably controlled with respect to the case of a gravitational load that moves up and down, so that excessive storage of power in the storage device is prevented. Thus, power loss can be reduced and the size of the storage device can be reduced. In addition, an operation pattern of the press machine as a load and a control pattern for controlling a charge / discharge state of the energy storage device based on the operation pattern may be registered in advance, or an operation command may be given in synchronization with the operation pattern. unnecessary. Further, it is not necessary to consume the regenerated energy by the resistor of the regenerative braking circuit.
 すなわち、本実施の形態においては、モータ3の負荷が慣性負荷、弾性負荷、重力負荷には運転と同時に負荷側にはエネルギが蓄えられ、逆変換器7の入力側に蓄積装置6をもつ電力変換システムにおいて、モータ3運転と共にモータ3の速度と電流を検出器で検出して負荷側に蓄えられたエネルギの量Eを演算し、蓄積装置6に蓄えられるエネルギ指令値をEref、満充電時の蓄積装置6のエネルギをEmaxとした場合に、蓄積装置6に蓄えられるエネルギ指令値Eref=(Emax-E)として演算することによって蓄積装置6に蓄積されるエネルギが最適化され、電力変換システムの小型化、高効率化、低コスト化を実現することができる。 That is, in the present embodiment, when the load of the motor 3 is applied to the inertial load, the elastic load, and the gravitational load, energy is stored on the load side at the same time as the operation, and the electric power having the storage device 6 on the input side of the inverter 7. In the conversion system, the speed and current of the motor 3 are detected by a detector together with the operation of the motor 3 to calculate the amount E of energy stored on the load side, and the energy command value stored in the storage device 6 is Eref, when the battery is fully charged. If the energy of the storage device 6 is Emax, the energy stored in the storage device 6 is optimized by calculating the energy command value Eref = (Emax−E) stored in the storage device 6, and the power conversion system , High efficiency, and low cost can be realized.
 本発明の第1の実施例を図7~図18を参照しつつ説明する。 A first embodiment of the present invention will be described with reference to FIGS.
 図7は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 7 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 本実施例では、空圧式ダイクッション付プレス機を負荷としてモータで駆動する場合を例示している。 In this embodiment, a case where the motor is driven by using a press machine with a pneumatic die cushion as a load is exemplified.
 図7において、電力変換システムは、電源11からモータ3に供給される電力を変換することによって、モータ3の動作を制御するものであり、電源装置1とモータ電力変換装置2とから概略構成されている。 In FIG. 7, the power conversion system controls the operation of the motor 3 by converting the power supplied from the power supply 11 to the motor 3, and is roughly composed of a power supply device 1 and a motor power conversion device 2. ing.
 電源装置1は、電源11から交流電圧で供給される電力を直流電圧VPNに変換する順変換器4と、順変換器4で直流電圧に変換された電力の電圧VPNを制御する昇降圧電源回路5と、昇降圧電源回路5で電圧制御された電力を蓄積しつつモータ電力変換装置2に供給するとともに、モータ3の回生動作によって生成されてモータ電力変換装置2を介して供給される電力を蓄積する蓄積装置6(例えば、コンデンサ、蓄電池、など)と、昇降圧電源回路5の動作を制御して電圧VPNを制御する電圧指令演算回路15とを備えている。ここで、昇降圧電源回路5と電圧指令演算回路15とは、貯蔵エネルギと最大電力量とに基づいて電源11から蓄積装置6に蓄積される電力量を制御する蓄電装置制御回路を構成している。 The power supply device 1 includes a forward converter 4 for converting power supplied by an AC voltage from a power supply 11 to a DC voltage VPN, and a step-up / step-down power supply circuit for controlling a voltage VPN of the power converted to a DC voltage by the forward converter 4. 5 and the electric power controlled by the step-up / step-down power supply circuit 5 is supplied to the motor power converter 2 while being accumulated, and the electric power generated by the regenerative operation of the motor 3 and supplied through the motor power converter 2 is It includes a storage device 6 (for example, a capacitor, a storage battery, etc.) for storing, and a voltage command calculation circuit 15 for controlling the operation of the step-up / step-down power supply circuit 5 to control the voltage VPN. Here, the step-up / step-down power supply circuit 5 and the voltage command calculation circuit 15 constitute a power storage device control circuit that controls the amount of power stored in the storage device 6 from the power source 11 based on the stored energy and the maximum power amount. I have.
 モータ電力変換装置2は、電源装置1の昇降圧電源回路5から蓄積装置6を介して供給される電力を変換してモータ3に供給することでモータ3の動作を制御するとともに、モータ3の回生動作により生成された電力を電源装置1の蓄積装置6に供給する逆変換器(インバータ)7と、逆変換器7の動作を制御するとともに、モータ3に設けられたエンコーダ10を介して得られるモータ3の角速度と、モータ3に設けられた電流検出器59,60(後述)で検出される電流値に基づいて演算されるモータ3のトルクと、予め設定されたモータ3に関する慣性モーメントとに基づいて、モータ3及びモータ3により駆動されるモータ負荷(ここでは、空圧式ダイクッション付プレス機12)に貯蔵されたエネルギである貯蔵エネルギを算出する制御回路8と、制御回路8により算出された貯蔵エネルギと、蓄積装置6への蓄積が許容される電力量の最大値として予め定められた最大電力量とに基づいて昇降圧電源回路5を制御し、電源11から蓄積装置6に蓄積される電力量を制御する電圧指令演算回路15とを備えている。制御回路8は、逆変換器7の電流検出器59,60やモータ3のエンコーダ10などからの検出結果に基づいてゲート信号を生成し、このゲート信号で逆変換器7を制御してモータ3の駆動を制御するとともに、モータ3の角速度やトルク等を演算する位置速度電流制御回路16と、位置速度電流制御回路16の演算結果に基づいてモータ負荷である空圧式ダイクッション付プレス機12の貯蔵エネルギを算出する蓄積エネルギ演算回路14(演算回路)とを有している。 The motor power conversion device 2 controls the operation of the motor 3 by converting the power supplied from the step-up / step-down power supply circuit 5 of the power supply device 1 via the storage device 6 and supplying the converted power to the motor 3. An inverter (inverter) 7 that supplies the power generated by the regenerative operation to the storage device 6 of the power supply device 1 and an inverter 7 that controls the operation of the inverter 7 and that is obtained through an encoder 10 provided in the motor 3. And the torque of the motor 3 calculated based on the angular velocity of the motor 3, the current value detected by current detectors 59 and 60 (described later) provided in the motor 3, and the moment of inertia of the motor 3 set in advance. Based on the above, the stored energy which is the energy stored in the motor 3 and the motor load driven by the motor 3 (here, the press machine 12 with a pneumatic die cushion) is calculated. The step-up / step-down power supply circuit 5 is controlled based on the control circuit 8, the stored energy calculated by the control circuit 8, and the maximum amount of power that is allowed to be stored in the storage device 6. A voltage command calculation circuit 15 for controlling the amount of power stored in the storage device 6 from the power supply 11; The control circuit 8 generates a gate signal based on the detection results from the current detectors 59 and 60 of the inverter 7 and the encoder 10 of the motor 3, and controls the inverter 7 with the gate signal to control the motor 3 Speed control circuit 16 for controlling the driving of the motor 3 and calculating the angular velocity and torque of the motor 3, and a press machine 12 with a pneumatic die cushion as a motor load based on the calculation result of the position / speed current control circuit 16. And a stored energy calculation circuit 14 (calculation circuit) for calculating stored energy.
 空圧式ダイクッション付プレス機12(以降、単にプレス機12と称する場合がある)のスライド25を駆動するモータ3は、交流モータ9と交流モータ9に設けられたエンコーダ10とで構成される。交流モータ9の速度、位置、及び磁極位置がエンコーダ10で検出され、モータ電力変換装置2の制御回路8の位置速度電流制御回路16にフィードバックされる。位置速度電流制御回路16では、エンコーダ10からフィードバックされた信号(速度、位置、磁極位置)と、上位装置13からのモータ駆動指令とが比較演算され、モータ3によって駆動されるプレス機12のスライド25をモータ駆動指令どおりに追従するように、PWM信号が生成されて逆変換器7に出力される。逆変換器7は、電源装置1から供給されるDC電圧(PN間電圧)を入力して、交流の可変電圧、可変電流に変換することにより交流モータ9を駆動し、モータの位置、速度および電流を制御する。なお、交流モータ9の電流は、逆変換器7内の電流検出器59,60(後述)で検出され、位置速度電流制御回路16へフィードバックされてトルク等の演算に用いられる。 モ ー タ The motor 3 for driving the slide 25 of the press machine 12 with a pneumatic die cushion (hereinafter sometimes simply referred to as the press machine 12) is composed of an AC motor 9 and an encoder 10 provided on the AC motor 9. The speed, position, and magnetic pole position of the AC motor 9 are detected by the encoder 10 and fed back to the position / speed / current control circuit 16 of the control circuit 8 of the motor power converter 2. In the position / speed current control circuit 16, a signal (speed, position, magnetic pole position) fed back from the encoder 10 is compared with a motor drive command from the host device 13, and the slide of the press machine 12 driven by the motor 3 is performed. A PWM signal is generated and output to the inverter 7 so that the inverter 25 follows the motor drive command. The inverter 7 receives a DC voltage (inter-PN voltage) supplied from the power supply device 1 and converts the DC voltage into a variable AC voltage and a variable current to drive the AC motor 9. Control the current. The current of the AC motor 9 is detected by current detectors 59 and 60 (described later) in the inverter 7 and fed back to the position / velocity current control circuit 16 to be used for calculation of torque and the like.
 電源装置1は、電源11から交流電力を入力し、順変換器4でACからDC電圧に変換し、昇降圧電源回路5へDC電圧を入力する。昇降圧電源回路5は、DC電圧を昇圧、降圧、又は、昇降圧の両方を行うことで逆変換器7に可変するDC電圧を与える。昇降圧電源回路5は電圧指令演算回路15によって制御されている。電圧指令演算回路15は、モータ電力変換装置2の制御回路8で演算された信号Eを受信し、蓄積装置6のDC電圧VPNが最適な電圧になるように昇降圧電源回路5を可変電圧制御する。また、蓄積装置6は、昇降圧電源回路5と逆変換器7の間に設置されており、電源11から供給される電気エネルギや、プレス機12からモータ3、逆変換器7などを介して供給される回生エネルギを蓄積する。 The power supply device 1 receives AC power from the power supply 11, converts the AC power into DC voltage by the forward converter 4, and inputs the DC voltage to the buck-boost power supply circuit 5. The step-up / step-down power supply circuit 5 supplies the variable DC voltage to the inverter 7 by performing step-up, step-down, or step-up / step-down of the DC voltage. The step-up / step-down power supply circuit 5 is controlled by a voltage command operation circuit 15. The voltage command calculation circuit 15 receives the signal E calculated by the control circuit 8 of the motor power conversion device 2 and performs variable voltage control on the step-up / step-down power supply circuit 5 so that the DC voltage VPN of the storage device 6 becomes an optimum voltage. I do. The storage device 6 is provided between the step-up / step-down power supply circuit 5 and the inverter 7. The storage device 6 receives electric energy from the power source 11, the press machine 12 via the motor 3, the inverter 7, and the like. The supplied regenerative energy is stored.
 次に、電力変換システム全体の制御の動作の概略を説明する。まず、プレス機12の慣性負荷に蓄えられるエネルギについて説明する。上位装置13からモータ駆動指令が与えられると、モータ3はその指令に従ってスライド25の昇降動作を開始する。スライド25が昇降動作を開始する場合は、モータ3やその負荷に連なる機構部を含む慣性モーメントに蓄えられた慣性負荷の蓄積エネルギの量をリアルタイムで演算する。また、スライド25と空圧式ダイクッション装置31が共に昇降動作を開始する場合は、空圧式ダイクッション装置31まで含む慣性モーメントに蓄えられた慣性負荷の蓄積エネルギの量をリアルタイムで演算する。次に回生停止するときにその回生エネルギが戻ってきても蓄積装置6の蓄積容量がオーバフローしないようにしなければならない。このため、動き始めと同時に予め蓄積装置6に溜まっているエネルギの容量を下げておくように制御する。このように制御された状態で、上位装置13からモータ駆動指令として回生停止指令が来て、実際に回生エネルギが戻ってきても運転開始前の元のエネルギ状態のレベルに戻るので、蓄積装置6が過充電の状態になることはない。 Next, the outline of the control operation of the entire power conversion system will be described. First, the energy stored in the inertial load of the press machine 12 will be described. When a motor drive command is given from the host device 13, the motor 3 starts moving up and down the slide 25 according to the command. When the slide 25 starts the vertical movement, the amount of energy of the inertial load stored in the moment of inertia including the motor 3 and a mechanism connected to the load is calculated in real time. In addition, when the slide 25 and the pneumatic die cushion device 31 both start up / down operation, the amount of energy of the inertial load stored in the moment of inertia including up to the pneumatic die cushion device 31 is calculated in real time. Next, even when the regenerative energy returns when the regeneration is stopped, the storage capacity of the storage device 6 must be prevented from overflowing. Therefore, control is performed so that the capacity of the energy stored in the storage device 6 is reduced at the same time as the movement starts. In this controlled state, a regeneration stop command is received from the host device 13 as a motor drive command, and even if the regenerative energy actually returns, the level returns to the level of the original energy state before the start of operation. Will not be overcharged.
 なお、上述の蓄積エネルギ演算はモータ電力変換装置2の制御回路8内の蓄積エネルギ演算回路14が行い、蓄積装置6のエネルギ容量の最適値の制御は、蓄積装置6の電圧に置き直したPN間電圧指令Vrefとして電源装置1の電圧指令演算回路15で行なわれる。 Note that the above-described stored energy calculation is performed by the stored energy calculation circuit 14 in the control circuit 8 of the motor power conversion device 2, and the control of the optimum value of the energy capacity of the storage device 6 is performed by the PN that is replaced by the voltage of the storage device 6. The voltage command operation circuit 15 of the power supply device 1 performs the operation as the inter-voltage command Vref.
 次に、モータ電力変換装置2の蓄積エネルギ演算回路14と、電源装置1の電圧指令演算回路15の詳細な動作について説明する。位置速度電流制御回路16から入力する信号はエンコーダ10で検出された角速度検出信号ωとトルク検出信号Tqと、慣性モーメントJである。始めに慣性負荷に蓄えられるエネルギについて説明する。モータ3の角速度信号ωを加減速トルク演算回路42で加減速トルクTαを上記(式1)の演算により算出する。加減速トルク演算回路42の出力Tαは角速度信号ωと加減速動力演算回路43で上記(式3)の積を演算し加減速動力Pαを出力する。加減速動力Pαは慣性負荷蓄積エネルギ演算回路44で上記(式5)による時間積分演算を行い慣性負荷蓄積エネルギEαを出力する。なお、加減速動力演算回路43と慣性負荷蓄積エネルギ演算回路44を慣性負荷蓄積エネルギ演算ブロック40とする。 Next, detailed operations of the stored energy calculation circuit 14 of the motor power conversion device 2 and the voltage command calculation circuit 15 of the power supply device 1 will be described. The signals input from the position / velocity current control circuit 16 are an angular velocity detection signal ω, a torque detection signal Tq, and a moment of inertia J detected by the encoder 10. First, the energy stored in the inertial load will be described. The acceleration / deceleration torque Tα of the angular velocity signal ω of the motor 3 is calculated by the acceleration / deceleration torque calculation circuit 42 by the calculation of the above (Equation 1). The output Tα of the acceleration / deceleration torque calculation circuit 42 calculates the product of the angular velocity signal ω and the acceleration / deceleration power calculation circuit 43 (Equation 3) to output the acceleration / deceleration power Pα. Acceleration / deceleration power Pα is subjected to time integration calculation by the above-mentioned (Equation 5) in inertial load accumulated energy calculation circuit 44 to output inertia load accumulated energy Eα. The acceleration / deceleration power calculation circuit 43 and the inertial load storage energy calculation circuit 44 are referred to as an inertia load storage energy calculation block 40.
 次に、弾性負荷に蓄えられるエネルギについて説明する。トルク検出信号Tqと加減速トルク演算回路42の出力Tαは加減算演算器51で上記(式2)に示す差演算を行い弾性負荷トルクTdを出力する。この弾性負荷トルクTdと角速度信号ωを弾性負荷動力演算回路45で上記(式4)の積を演算し弾性負荷動力Pdを出力する。弾性負荷動力Pdは弾性負荷蓄積エネルギ演算回路46で上記(式6)による時間積分演算を行い弾性負荷蓄積エネルギEdを出力する。なお、弾性負荷動力演算回路45と弾性負荷蓄積エネルギ演算回路46を弾性負荷蓄積エネルギ演算ブロック41とする。 Next, the energy stored in the elastic load will be described. The difference between the torque detection signal Tq and the output Tα of the acceleration / deceleration torque calculation circuit 42 is calculated by the addition / subtraction calculator 51 as shown in the above (Equation 2), and the elastic load torque Td is output. The elastic load power calculating circuit 45 calculates the product of the above equation (4) from the elastic load torque Td and the angular velocity signal ω to output the elastic load power Pd. The elastic load power Pd is subjected to time integration calculation by the above-mentioned (Equation 6) in the elastic load accumulated energy calculation circuit 46, and the elastic load accumulated energy Ed is output. The elastic load power calculating circuit 45 and the elastic load accumulated energy calculating circuit 46 are referred to as an elastic load accumulated energy calculating block 41.
 なお、慣性負荷蓄積エネルギ演算回路44と弾性負荷蓄積エネルギ演算回路46に入力される信号には、位置速度電流制御回路16から出力されるCLR1,CLR2がある。この積分クリア信号CLR1,CLR2信号は積分演算回路、すなわち、慣性負荷蓄積エネルギ演算回路44、または、弾性負荷蓄積エネルギ演算回路46の出力をクリアする信号である。また、位置速度電流制御回路16から交流モータ9の回転子慣性モーメントとモータ軸換算されたモータ3の負荷側の慣性モーメントの合計値Jが加減速トルク演算回路42へ出力される。 The signals input to the inertial load stored energy calculation circuit 44 and the elastic load stored energy calculation circuit 46 include CLR1 and CLR2 output from the position / velocity current control circuit 16. The integration clear signals CLR1 and CLR2 are signals for clearing the output of the integration operation circuit, that is, the inertial load accumulated energy operation circuit 44 or the elastic load accumulated energy operation circuit 46. Further, the position / speed current control circuit 16 outputs the total value J of the rotor inertia moment of the AC motor 9 and the load-side inertia moment of the motor 3 converted into the motor shaft to the acceleration / deceleration torque calculation circuit 42.
 慣性負荷蓄積エネルギ演算ブロック40の出力Eαと弾性負荷蓄積エネルギ演算ブロック41の出力Edは、加算演算器50で上記(式7)の加算演算が行われ、電源装置1の電圧指令演算回路15へ総負荷蓄積エネルギEとして出力される。電源装置1の電圧指令演算回路15では、満充電時エネルギ設定ブロック47に蓄積装置6の満充電時のエネルギとして値Emaxが設定されており、この値Emaxと加減算演算器51でモータ電力変換装置2の蓄積エネルギ演算回路14から出力された総負荷蓄積エネルギEとの差、すなわち蓄積装置6に蓄えられる適正エネルギErefが上記(式8)により導かれる。 The output Eα of the inertial load storage energy calculation block 40 and the output Ed of the elastic load storage energy calculation block 41 are subjected to the addition calculation of the above (Equation 7) by the addition calculator 50, and the result is sent to the voltage command calculation circuit 15 of the power supply device 1. It is output as the total load accumulated energy E. In the voltage command calculation circuit 15 of the power supply device 1, the value Emax is set as the energy when the storage device 6 is fully charged in the full charge energy setting block 47. The difference from the total load accumulated energy E output from the accumulated energy calculation circuit 14 of FIG. 2, that is, the appropriate energy Eref stored in the storage device 6 is derived by the above (Equation 8).
 ここで、例えば、蓄積装置6として電解コンデンサCを使用した場合には、加減算演算器51の出力であるErefに比例係数ブロックで上記(式11)で示されるk=2/Cを掛算後、平方根演算回路49で平方根演算を行うと、上記(式10)に示す蓄積装置6についての電圧指令Vrefが得られる。また、蓄積装置6の両端電圧VPN(PN間電圧)は、直列接続された抵抗値R1の抵抗器56(後述)および抵抗値R2の抵抗器57(後述)により分圧されて検出値(フィードバック電圧)Vfとして検出され、絶縁増幅器18で電気絶縁を行なった後にフィードバックされる。この後、蓄積装置6の電圧指令Vrefとフィードバック電圧Vfは加減算演算器51でVref-Vfの差演算を行う。この差電圧はPI調節器17で比例積分演算され、位置速度電流制御回路16の駆動回路61(後述)を経由して逆変換器7が制御されることにより、昇降圧電源回路5の出力電圧VPN、すなわち蓄積装置6の出力電圧が電圧指令Vrefの値に従ってフィードバック制御される。 Here, for example, when the electrolytic capacitor C is used as the storage device 6, after multiplying Eref, which is the output of the addition / subtraction operation unit 51, by k = 2 / C expressed by the above (Equation 11) in the proportional coefficient block, When the square root operation is performed by the square root operation circuit 49, the voltage command Vref for the storage device 6 shown in the above (Equation 10) is obtained. Further, the voltage VPN (voltage between PN) across the storage device 6 is divided by a resistor 56 (described later) having a resistance value R1 and a resistor 57 (described later) having a resistance value R2 which are connected in series, and a detection value (feedback) is obtained. The voltage is detected as voltage Vf, and is fed back after the insulation amplifier 18 performs electrical insulation. After that, the voltage command Vref of the storage device 6 and the feedback voltage Vf are subjected to a difference calculation of Vref−Vf by the addition / subtraction calculator 51. This difference voltage is proportionally integrated by the PI adjuster 17, and the inverter 7 is controlled via the drive circuit 61 (described later) of the position / velocity current control circuit 16, whereby the output voltage of the step-up / step-down power supply circuit 5 is controlled. The feedback control of the VPN, that is, the output voltage of the storage device 6 is performed according to the value of the voltage command Vref.
 図8は、電源装置の順変換器、昇降圧電源回路、及び蓄積装置の詳細の一例を示す図であり、昇降圧電源回路として昇圧動作を行う回路を用いる場合を示している。 FIG. 8 is a diagram showing an example of the details of a directional converter, a step-up / step-down power supply circuit, and a storage device of a power supply device, and shows a case where a circuit performing a boosting operation is used as the step-up / step-down power supply circuit.
 すなわち、図8における昇降圧電源回路5は、昇圧動作を示す昇圧電源回路であると言える。 That is, it can be said that the step-up / step-down power supply circuit 5 in FIG. 8 is a step-up power supply circuit showing a step-up operation.
 順変換器4は、交流電源11から供給される交流電圧を全波整流器55により整流して、受電電圧で決まる概略一定の直流電圧に変換され平滑コンデンサ52により平滑する。平滑された直流電圧は昇圧電源回路である昇降圧電源回路5で昇圧リアクトル58を経由してON/OFFを繰り返すスイッチング素子53に接続される。スイッチング素子53がONすると昇圧リアクトル58に流れる電流が増大し、次にスイッチング素子がOFFした時、昇圧リアクトル58からスイッチング素子53に流れていた電流はダイオード54側に切り替わり、出力電圧VPNには直流電圧(P0-N間電圧)に昇圧リアクトル58の両端に発生する電圧e=-L・(dI/dt)が加算され昇圧される。スイッチング素子53はON/OFFが繰り返され、その導通比を変えることで昇圧電圧の可変制御が可能な昇降圧電源回路5が構成される。昇降圧電源回路5の出力には蓄積装置6として平滑コンデンサ52が接続され、交流電源11から充電される電気エネルギや負荷側から回生される回生エネルギが蓄えられる。なお、図8においては、蓄積装置6に平滑コンデンサ52を使用したが、大容量電解コンデンサを並列接続し、大容量化して使用されるが2次電池、電気二重層コンデンサ等も使用しても良い。 The forward converter 4 rectifies the AC voltage supplied from the AC power supply 11 by the full-wave rectifier 55, converts the AC voltage to a substantially constant DC voltage determined by the received voltage, and smoothes the DC voltage by the smoothing capacitor 52. The smoothed DC voltage is connected to a switching element 53 which repeats ON / OFF via a step-up reactor 58 in a step-up / step-down power supply circuit 5 which is a step-up power supply circuit. When the switching element 53 is turned on, the current flowing through the boosting reactor 58 increases. When the switching element is turned off next, the current flowing from the boosting reactor 58 to the switching element 53 is switched to the diode 54 side, and the output voltage VPN has a direct current. Voltage e = −L · (dI / dt) generated at both ends of boost reactor 58 is added to the voltage (voltage between P0 and N) and boosted. The switching element 53 is repeatedly turned on / off, and the step-up / step-down power supply circuit 5 is configured such that the step-up voltage can be variably controlled by changing the conduction ratio. A smoothing capacitor 52 is connected to the output of the step-up / step-down power supply circuit 5 as a storage device 6 to store electric energy charged from the AC power supply 11 and regenerative energy regenerated from the load side. Although the smoothing capacitor 52 is used in the storage device 6 in FIG. 8, a large-capacity electrolytic capacitor is connected in parallel to increase the capacity, but a secondary battery, an electric double layer capacitor, or the like may be used. good.
 図9は、電源装置の順変換器、昇降圧電源回路、及び蓄積装置の詳細の他の例を示す図であり、昇降圧電源回路として降圧動作を行う回路を用いる場合を示している。 FIG. 9 is a diagram showing another example of the details of the forward converter, the step-up / step-down power supply circuit, and the storage device of the power supply device, and shows a case where a circuit that performs a step-down operation is used as the step-up / step-down power supply circuit.
 すなわち、図9における昇降圧電源回路5Aは、降圧動作を示す降圧電源回路であると言える。 That is, it can be said that the step-up / step-down power supply circuit 5A in FIG. 9 is a step-down power supply circuit showing a step-down operation.
 順変換器4は、交流電源11から供給される交流電圧を全波整流器55により整流して、受電電圧で決まる概略一定の直流電圧に変換され平滑コンデンサ52により平滑する。次に、ON/OFFを繰り返すスイッチング素子53が入口にあり、スイッチング素子53がONすると降圧リアクトル58Aと負荷が直列に接続されるため分圧して与えられ、ON/OFF導通比を変えることで降圧電圧の可変制御が可能な降圧電源回路として動作する昇降圧電源回路5Aが構成される。出力には蓄積装置6に平滑コンデンサ52が接続され、交流電源11から充電される電気エネルギや負荷側から回生される回生エネルギが蓄えられる。平滑コンデンサ52の大容量化については図8と同様である。 The forward converter 4 rectifies the AC voltage supplied from the AC power supply 11 by the full-wave rectifier 55, converts the AC voltage to a substantially constant DC voltage determined by the received voltage, and smoothes the DC voltage by the smoothing capacitor 52. Next, a switching element 53 that repeats ON / OFF is provided at the entrance, and when the switching element 53 is turned ON, the voltage is given because the step-down reactor 58A and the load are connected in series, and the voltage is reduced by changing the ON / OFF conduction ratio. A step-up / step-down power supply circuit 5A that operates as a step-down power supply circuit capable of variably controlling the voltage is configured. A smoothing capacitor 52 is connected to the storage device 6 at the output, and electric energy charged from the AC power supply 11 and regenerative energy regenerated from the load side are stored. The increase in the capacity of the smoothing capacitor 52 is the same as in FIG.
 図10は、モータ電力変換装置の逆変換器及び位置速度電流制御回路の詳細を示す図である。 FIG. 10 is a diagram showing details of the inverter and the position / velocity current control circuit of the motor power converter.
 図10において、モータ電力変換装置2には、ACサーボアンプ、ベクトル制御インバータやインバータ及びDCBLコントローラが用いられ、これらをまとめてモータ電力変換装置2と称する。 In FIG. 10, an AC servo amplifier, a vector control inverter, an inverter, and a DCBL controller are used as the motor power converter 2, and these are collectively referred to as the motor power converter 2.
 逆変換器7には、スイッチング素子53とダイオード54の逆並列回路が2組直列接続された1アームあり、これが3アーム並列接続され3相インバータが構成される。なお、図10においては、3相インバータを構成する場合を例示したが、他の多相インバータを構成するようにしても良い。各アームの中間端子はモータ3のモータ端子に接続されており、そのうちの2相(U相、W相)にU相電流検出器59とW相電流検出器60がそれぞれ接続されている。なお、U相電流検出器59とW相電流検出器60とを合わせて、単に、電流検出器59,60と記載する場合がある。 The inverter 7 has one arm in which two sets of an anti-parallel circuit of the switching element 53 and the diode 54 are connected in series, and these three arms are connected in parallel to form a three-phase inverter. Although FIG. 10 illustrates a case where a three-phase inverter is configured, another multi-phase inverter may be configured. An intermediate terminal of each arm is connected to a motor terminal of the motor 3, and a U-phase current detector 59 and a W-phase current detector 60 are respectively connected to two phases (U-phase and W-phase). The U-phase current detector 59 and the W-phase current detector 60 may be simply referred to as the current detectors 59 and 60 in some cases.
 交流モータ9には、永久磁石式モータや誘導型モータ、DCブラシレスモータ(DCBLモータ)などが使用される。なお、交流モータは円筒状の中心に軸があり、この軸が回転する永久磁石式モータや誘導型モータのみに捕われることはない。例えば、交流モータ9の円周上の固定子側の一か所を切り開いて直線にして回転部分を直線的な往復運動としたリニアモータでもよい。リニアモータを駆動するACサーボアンプやベクトル制御インバータやインバータ、DCBLコントローラとしては、交流モータ9のものをそのまま流用可能である。リニアモータの場合のセンサは、エンコーダ10の代わりに固定部にリニアセンサスケール、移動部にリニアセンサヘッドを移動経路上に相対して設置し、位置および速度を検出する。また、マグネットの磁極位置検出信号が必要な場合は、磁極位置検出センサを取り付けることで対応できる。なお、ACサーボアンプで駆動されるリニアモータは、リニアサーボモータとも呼ばれる。以降の説明において、交流モータ9は、特段の記載が無い場合にはリニアモータを含むものとする。 (4) As the AC motor 9, a permanent magnet motor, an induction motor, a DC brushless motor (DCBL motor), or the like is used. Note that the AC motor has a shaft at the center of the cylindrical shape, and is not caught by only a permanent magnet type motor or an induction type motor in which this shaft rotates. For example, a linear motor may be used in which a portion of the circumference of the AC motor 9 on the stator side is cut open to form a straight line, and the rotating portion has a linear reciprocating motion. As the AC servo amplifier for driving the linear motor, the vector control inverter, the inverter, and the DCBL controller, the AC motor 9 can be used as it is. In the case of a linear motor, the sensor is provided with a linear sensor scale on a fixed part and a linear sensor head on a moving part, instead of the encoder 10, on the moving path, and detects the position and speed. If a magnetic pole position detection signal of the magnet is required, it can be dealt with by attaching a magnetic pole position detection sensor. The linear motor driven by the AC servo amplifier is also called a linear servo motor. In the following description, the AC motor 9 includes a linear motor unless otherwise specified.
 交流モータ9の出力軸に取り付けられたエンコーダ10の出力は、位置速度磁極位置演算回路62に入力され、演算結果の一つである回転速度Nはフィードバックへ出力され、演算結果の他の一つである磁極位置信号θは3相/dq変換回路68及びdq/3相変換回路66へ出力される。 The output of the encoder 10 attached to the output shaft of the AC motor 9 is input to the position / velocity magnetic pole position calculation circuit 62, and the rotation speed N which is one of the calculation results is output to feedback, and the other one of the calculation results is used. Is output to the three-phase / dq conversion circuit 68 and the dq / 3-phase conversion circuit 66.
 回転速度Nは、上位装置13から出力されモータ駆動指令の中の速度指令Nsがモード切替スイッチ74(Mod2)を通り、加減算演算器51でその偏差ε=Ns-Nを演算する。偏差εは、速度制御回路(ASR)63で増幅されモード切替スイッチ(Mod1)を通り、トルク電流指令Iqとして出力される。なお、モード切替スイッチ73(Mod1)は、ONでモータ駆動指令をトルク指令Tsに切り替え、OFFで位置指令または速度指令に切り替える。また、モード切替スイッチ74(Mod2)は、ONでモータ駆動指令を位置指令θsに切り替え、OFFで速度指令Nsに切り替える。なお、モータ駆動指令をどのモードに切り替えるかは、上位装置13からモータ電力変換装置2の位置速度電流制御回路16のCPU72に指令され、CPU72がそのモードを切り替える。すなわち、CPU72は、積分クリア信号CLR1,CLR2の出力を制御するだけではなく、上位装置13からの指令に基づいて16全体の動作を制御する。 The rotational speed N is such that the speed command Ns among the motor drive commands output from the host device 13 passes through the mode switch 74 (Mod2), and the addition / subtraction calculator 51 calculates the deviation ε = Ns−N. The deviation ε is amplified by the speed control circuit (ASR) 63, passes through the mode switch (Mod1), and is output as a torque current command Iq. The mode switch 73 (Mod1) switches the motor drive command to the torque command Ts when turned on, and switches to the position command or speed command when turned off. The mode switch 74 (Mod2) switches the motor drive command to the position command θs when turned on, and switches to the speed command Ns when turned off. It should be noted that which mode the motor drive command is switched to is instructed from the host device 13 to the CPU 72 of the position / speed / current control circuit 16 of the motor power converter 2 and the CPU 72 switches the mode. That is, the CPU 72 not only controls the outputs of the integration clear signals CLR1 and CLR2, but also controls the operation of the entire unit 16 based on a command from the host device 13.
 電流検出器59,60の検出結果は、交流モータ9の電流フィードバック信号Iuf,Iwfとして3相/dq変換回路68に入力され、dq軸が直交する2つのベクトル信号であるd軸電流負フィードバック信号Idf及びトルク電流フィードバック信号Iqfに変換される。トルク電流指令Iqは、トルク電流フィードバック信号Iqfとの差を演算する加減算演算器51に入力され、その偏差はq軸電流制御回路(ACR)65で増幅される。d軸電流指令Idは、弱め界磁制御を行う場合の電流指令であり、d軸電流負フィードバック信号Idfとの差を演算する加減算演算器51に入力され、その偏差はd軸電流制御回路(ACR)64で増幅される。d軸電流制御回路(ACR)64の出力であるd軸電流指令Vd及びq軸電流制御回路(ACR)65の出力であるq軸電圧指令Vqは、dq/3相変換回路66に入力され、3相電圧指令Vu,Vv,Vwに変換されてPWM回路67に出力され、PWM回路67から駆動回路61を経由して逆変換器7の6個のスイッチング素子53を駆動するゲート信号として出力されることで、モータ3がモータ駆動指令に追従して制御される。 The detection results of the current detectors 59 and 60 are input to the three-phase / dq conversion circuit 68 as current feedback signals Iuf and Iwf of the AC motor 9, and are d-axis current negative feedback signals, which are two vector signals whose dq axes are orthogonal to each other. It is converted into Idf and a torque current feedback signal Iqf. The torque current command Iq is input to an addition / subtraction calculator 51 for calculating a difference from the torque current feedback signal Iqf, and the difference is amplified by a q-axis current control circuit (ACR) 65. The d-axis current command Id is a current command for performing field-weakening control, and is input to an addition / subtraction calculator 51 that calculates a difference from the d-axis current negative feedback signal Idf, and the deviation is used as a d-axis current control circuit (ACR). Amplified at 64. The d-axis current command Vd output from the d-axis current control circuit (ACR) 64 and the q-axis voltage command Vq output from the q-axis current control circuit (ACR) 65 are input to a dq / 3-phase conversion circuit 66. The three-phase voltage commands Vu, Vv, and Vw are converted into three-phase voltage commands and output to the PWM circuit 67, and are output from the PWM circuit 67 as gate signals for driving the six switching elements 53 of the inverter 7 through the drive circuit 61. Thus, the motor 3 is controlled to follow the motor drive command.
 なお、交流モータ9の慣性モーメントJmとモータ軸換算されたモータ3の負荷側の慣性モーメントJlの合計値J=Jm+Jlは、試運転時にモータ電力変換装置2のパラメータに計算値の慣性モーメントJを入力するか、またはモータ電力変換装置2の試運転機能による慣性モーメントJのオートチューニング機能でチューニングすることができる。また、モータ電力変換装置2に、運転中にリアルタイムで慣性モーメントJをチューニングする機能(リアルタイムオートチューニングの機能)があれば、その機能で慣性モーメントJが変化する場合でもリアルタイムでチューニングした値を更新することができる。位置速度電流制御回路16のCPU72は、チューニング等によってパラメータエリア75に記憶され更新された慣性モーメントJを蓄積エネルギ演算回路14の加減速トルク演算回路42に出力して、加減速トルク演算回路42で用いる慣性モーメントJをリアルタイムで更新することができる。なお、これらのパラメータは、電源オフ時にその時点の値がRAMメモリから、不揮発性メモリに書き込まれ、次の電源投入時に不揮発性メモリからRAMメモリに読み出しされて更新された慣性モーメントJが引き継がれる。 Note that the total value J = Jm + Jl of the inertia moment Jm of the AC motor 9 and the load-side inertia moment Jl of the motor 3 converted into the motor shaft is obtained by inputting the calculated inertia moment J into the parameter of the motor power converter 2 at the time of the test operation. Alternatively, tuning can be performed by the auto-tuning function of the moment of inertia J by the test operation function of the motor power conversion device 2. If the motor power converter 2 has a function of tuning the moment of inertia J in real time during operation (a function of real-time auto-tuning), even if the moment of inertia J changes with the function, the value tuned in real time is updated. can do. The CPU 72 of the position / speed current control circuit 16 outputs the moment of inertia J stored and updated in the parameter area 75 by tuning or the like to the acceleration / deceleration torque calculation circuit 42 of the stored energy calculation circuit 14, and the acceleration / deceleration torque calculation circuit 42 The used moment of inertia J can be updated in real time. The values of these parameters are written from the RAM memory to the nonvolatile memory when the power is turned off, and the updated moment of inertia J which is read from the nonvolatile memory to the RAM memory and updated when the power is turned on next time is inherited. .
 図11は、空圧式ダイクッション付プレス機で絞り加工を行った場合のスライドモータの角速度検出信号の波形の一例を示す図である。 FIG. 11 is a diagram showing an example of a waveform of an angular velocity detection signal of a slide motor when drawing is performed by a press machine with a pneumatic die cushion.
 本実施例において、スライドモータの角速度検出信号ωとトルク検出信号Tqは位置速度電流制御回路16から出力される。絞り加工では、スライド25側の上金型と空圧式ダイクッション装置31側の下金型の間にブランク材を挟み込み、上からのスライドトルクと空圧式ダイクッション装置31による下からの押し上げ反力により、上下両方からブランク材に圧縮力を加える。図11に示すように、絞り加工の初めは、スライド25は上死点から高速で下降を開始し、空圧式ダイクッション装置31に接触する直前に中速まで減速する。中速になった後、絞り加工に入り下死点を通過後、スライド25は上昇に転じ空圧式ダイクッション装置31から離れた後、角速度検出信号ωは再び高速に加速し上死点で停止する。ここでスライドモータ(モータ3)の回転方向は一方方向運転であるが、スライド25の運転方向は下降、上昇と切り替わる(図6参照)。なお、図11中には、中速時に絞り加工期間中として矢印の範囲で絞り加工のタイミングを示している。 In the present embodiment, the angular velocity detection signal ω of the slide motor and the torque detection signal Tq are output from the position velocity current control circuit 16. In the drawing process, a blank material is sandwiched between the upper die of the slide 25 and the lower die of the pneumatic die cushion device 31, and the sliding torque from above and the reaction force of the pneumatic die cushion device 31 to push up from below. With this, a compressive force is applied to the blank material from both the upper and lower sides. As shown in FIG. 11, at the beginning of the drawing, the slide 25 starts to descend at a high speed from the top dead center and decelerates to a medium speed just before contacting the pneumatic die cushion device 31. After reaching the middle speed, the drawing process starts, and after passing through the bottom dead center, the slide 25 starts to rise and separates from the pneumatic die cushion device 31, and then the angular velocity detection signal ω accelerates again and stops at the top dead center. I do. Here, the rotation direction of the slide motor (motor 3) is one-way operation, but the operation direction of the slide 25 switches between descending and ascending (see FIG. 6). In FIG. 11, the timing of the drawing process is shown in the range of the arrow as during the drawing process at the middle speed.
 図12は、空圧式ダイクッション付プレス機で絞り加工を行った場合のスライドモータのトルク検出信号の波形の一例を示す図である。 FIG. 12 is a diagram showing an example of a waveform of a torque detection signal of a slide motor when drawing is performed by a press machine with a pneumatic die cushion.
 図12に示すように、絞り加工をしていないときのスライドトルク(トルク検出信号)Tqは、加速時に加速トルクが正側に、減速時に減速トルクが負側に発生するものであり、すなわち、角速度の変化時にのみ加減速トルクが発生する。絞り加工期間中に入ると、スライド25は下降しながら空圧式ダイクッション装置31の圧縮空気を徐々に押すため、弾性エネルギが蓄えられ、スライドモータのトルク(トルク検出信号Tq)は正方向に徐々に増大する。下死点では、押し当てトルクが零になるが空圧式ダイクッション装置31からの反力を受けた状態となる。下死点を通過して上昇に転ずると、空圧式ダイクッション装置31の増大した反力によりスライドトルク(トルク検出信号)Tqは中速を維持するため、回生ブレーキトルクに切り替わり負方向となる。スライド25が空圧式ダイクッション装置31から離れると、蓄えられた弾性エネルギが開放されて回生トルクは急速に減少して零になる。なお、図12においては、絞り加工期間中として矢印の範囲で示す部分においてダイクッショントルクが発生している。 As shown in FIG. 12, the slide torque (torque detection signal) Tq when no drawing is performed is such that the acceleration torque is generated on the positive side during acceleration and the deceleration torque is generated on the negative side during deceleration. Acceleration / deceleration torque is generated only when the angular velocity changes. During the drawing process, the slide 25 descends and gradually presses the compressed air of the pneumatic die cushion device 31, so that elastic energy is stored and the torque (torque detection signal Tq) of the slide motor gradually increases in the positive direction. To increase. At the bottom dead center, the pressing torque becomes zero, but the reaction force from the pneumatic die cushion device 31 is received. When passing through the bottom dead center and turning upward, the slide torque (torque detection signal) Tq is switched to the regenerative brake torque in the negative direction because the increased reaction force of the pneumatic die cushion device 31 maintains the medium speed. When the slide 25 separates from the pneumatic die cushion device 31, the stored elastic energy is released and the regenerative torque rapidly decreases to zero. In FIG. 12, a die cushion torque is generated in a portion indicated by the range of the arrow during the drawing process.
 図13は、空圧式ダイクッション付プレス機で絞り加工を行った場合の加減速トルク演算回路の出力波形の一例を示す図である。 FIG. 13 is a diagram showing an example of an output waveform of the acceleration / deceleration torque calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
 加減速トルク演算回路42の出力波形は、スライドモータの角速度検出信号ωを微分し慣性モーメントJを乗算した波形である。したがって、図13に示すように、角速度検出信号ωが一定の時は出力は零になり、また、絞り加工期間中は角速度検出信号ωが一定のためにダイクッショントルクは現れることはない。このため、加減速トルク演算回路42の出力波形としては、スライドモータの加減速トルクのみを分離した波形が得られる。通常、モータ3の電流波形による検出では全負荷電流が含まれるため、加減速トルクのみ分離して検出することは不可能である。すなわち、演算により加減速トルクのみを分離することができることは本実施例の特徴の一つである。 The output waveform of the acceleration / deceleration torque calculation circuit 42 is a waveform obtained by differentiating the angular velocity detection signal ω of the slide motor and multiplying by the inertia moment J. Accordingly, as shown in FIG. 13, the output becomes zero when the angular velocity detection signal ω is constant, and no die cushion torque appears during the drawing process because the angular velocity detection signal ω is constant. Therefore, as the output waveform of the acceleration / deceleration torque calculation circuit 42, a waveform obtained by separating only the acceleration / deceleration torque of the slide motor is obtained. Normally, the detection based on the current waveform of the motor 3 includes the entire load current, so that it is impossible to detect only the acceleration / deceleration torque separately. That is, it is one of the features of the present embodiment that only the acceleration / deceleration torque can be separated by the calculation.
 図14は、空圧式ダイクッション付プレス機で絞り加工を行った場合の加減算演算器の出力波形の一例を示す図である。 FIG. 14 is a diagram showing an example of an output waveform of the addition / subtraction arithmetic unit when drawing is performed by a press machine with a pneumatic die cushion.
 加減算演算器51の出力Tdは、トルク検出信号Tq-加減速トルクTαで表される。例えば、空圧式ダイクッション付プレス機12で絞り加工を行う場合において、スライドモータの主なトルクは負荷慣性モーメントを加減速する加減速トルクと、スライド25と空圧式ダイクッション装置31で絞り加工するダイクッショントルクのほぼ2つである。一般に、モータ3のトルク検出信号Tqには、モータ3に印加されるすべての負荷のトルク成分が現れるが、絞り加工時のダイクッショントルクは弾性負荷トルクTdに等しいので、図14に示すように、弾性負荷トルクTdはスライドモータトルク(トルク検出信号)Tq-加減速トルクTαで算出される。 出力 The output Td of the addition / subtraction calculator 51 is represented by a torque detection signal Tq−acceleration / deceleration torque Tα. For example, when drawing is performed by the press machine 12 with a pneumatic die cushion, the main torque of the slide motor is acceleration / deceleration torque for accelerating and decelerating the load inertia moment, and drawing is performed by the slide 25 and the pneumatic die cushion device 31. It is almost two of die cushion torque. Generally, the torque components of all the loads applied to the motor 3 appear in the torque detection signal Tq of the motor 3, but since the die cushion torque at the time of drawing is equal to the elastic load torque Td, as shown in FIG. , The elastic load torque Td is calculated by the slide motor torque (torque detection signal) Tq−the acceleration / deceleration torque Tα.
 以上の図13及び図14で示したように、本実施例には、スライドモータトルク(トルク検出信号)Tqは、慣性負荷に発生する加減速トルクTαと弾性負荷に発生する弾性負荷トルクTdの2つに分離して検出されるという特徴がある。 As shown in FIGS. 13 and 14, in the present embodiment, the slide motor torque (torque detection signal) Tq is determined by the acceleration / deceleration torque Tα generated in the inertial load and the elastic load torque Td generated in the elastic load. It has the characteristic that it is detected separately in two.
 図15は、空圧式ダイクッション付プレス機で絞り加工を行った場合の慣性負荷蓄積エネルギ演算回路の出力波形の一例を示す図である。 FIG. 15 is a diagram illustrating an example of an output waveform of the inertial load accumulated energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
 慣性負荷蓄積エネルギ演算回路44の出力である慣性負荷蓄積エネルギEαは、加減速動力演算回路43でスライドモータの角速度検出信号ωと加減速トルクTαを乗算して加減速動力Pαを算出し、この加減速動力Pαを時間積分することにより算出される。図15に波形を示す慣性負荷蓄積エネルギEαは、スライドモータの角速度検出信号ω(図11参照)が変化している時のみエネルギが積算または減算されており、したがって、角速度検出信号ωが一定である絞り加工期間中、すなわち、ダイクッショントルク発生時は積算されない。 The inertial load accumulated energy Eα, which is the output of the inertial load accumulated energy calculation circuit 44, calculates acceleration / deceleration power Pα by multiplying the angular velocity detection signal ω of the slide motor by the acceleration / deceleration torque Tα in the acceleration / deceleration power calculation circuit 43. It is calculated by integrating the acceleration / deceleration power Pα over time. The accumulated inertia load energy Eα whose waveform is shown in FIG. 15 is obtained by accumulating or subtracting the energy only when the angular velocity detection signal ω (see FIG. 11) of the slide motor is changing. Therefore, the angular velocity detection signal ω is constant. It is not integrated during a certain drawing process, that is, when a die cushion torque is generated.
 図16は、空圧式ダイクッション付プレス機で絞り加工を行った場合の弾性負荷蓄積エネルギ演算回路の出力波形の一例を示す図である。 FIG. 16 is a diagram showing an example of an output waveform of the elastic load accumulated energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
 弾性負荷蓄積エネルギ演算回路46の出力である弾性負荷蓄積エネルギEdは、弾性負荷動力演算回路45でスライドモータの角速度ωと弾性負荷トルクTdを乗算して弾性負荷動力Pdを算出し、この弾性負荷動力Pdを時間積分することにより算出される。図16に波形を示す弾性負荷蓄積エネルギEdは、絞り加工期間中はスライドモータの角速度検出信号ωが中速一定のため、弾性負荷トルクTdの波形(図14参照)を積分した形状になる。 The elastic load accumulated energy Ed, which is the output of the elastic load accumulated energy calculating circuit 46, is calculated by multiplying the elastic load torque calculating circuit 45 by the angular velocity ω of the slide motor and the elastic load torque Td. It is calculated by integrating the power Pd over time. The elastic load accumulated energy Ed whose waveform is shown in FIG. 16 has a shape obtained by integrating the waveform of the elastic load torque Td (see FIG. 14) because the angular velocity detection signal ω of the slide motor is constant at the middle speed during the drawing process.
 以上の図15及び図16で示したように、本実施例には、スライドモータとその負荷に蓄えられた慣性負荷蓄積エネルギEαと空圧式ダイクッション装置31に蓄えられた弾性負荷蓄積エネルギEdとが個別に算出されるという特徴がある。 As shown in FIGS. 15 and 16, in the present embodiment, the inertial load accumulated energy Eα stored in the slide motor and its load and the elastic load accumulated energy Ed stored in the pneumatic die cushion device 31 are different from each other. Is calculated individually.
 図17は、空圧式ダイクッション付プレス機で絞り加工を行った場合の蓄積エネルギ演算回路の加算演算器の出力波形の一例を示す図である。 FIG. 17 is a diagram showing an example of an output waveform of the addition calculator of the stored energy calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
 図17に示すように、加算演算器50の出力である総負荷蓄積エネルギEは、慣性負荷蓄積エネルギEα(図13参照)と弾性負荷蓄積エネルギEd(図14参照)とが加算された波形そのものである。 As shown in FIG. 17, the total load accumulated energy E output from the addition calculator 50 is the waveform itself obtained by adding the inertial load accumulated energy Eα (see FIG. 13) and the elastic load accumulated energy Ed (see FIG. 14). It is.
 図18は、空圧式ダイクッション付プレス機で絞り加工を行った場合の電圧指令演算回路の出力波形の一例を示す図である。 FIG. 18 is a diagram showing an example of an output waveform of the voltage command calculation circuit when drawing is performed by a press machine with a pneumatic die cushion.
 電圧指令演算回路15の出力は、昇降圧電源回路5を制御するための出力電圧指令Vrefである。電圧指令演算回路15では、まず、加減算演算器51において、制御回路8の蓄積エネルギ演算回路14の出力(すなわち、加算演算器50の出力)である総負荷蓄積エネルギEが蓄積装置6の満充電時のエネルギEmaxから減算される。蓄積装置6の満充電時のエネルギEmaxは満充電時の最大値であるが一定値であるので、加減算演算器51の出力は、比例係数k(=2/C)を掛け算する比例係数ブロック48と、平方根演算回路49とを経由してエネルギ(J)から電圧(V)の単位に置き直される。この結果、図18に示すように、出力電圧指令Vrefは、一定値から総蓄積エネルギE(図17参照)の波形を差し引いた波形として得られる。 The output of the voltage command operation circuit 15 is an output voltage command Vref for controlling the step-up / step-down power supply circuit 5. In the voltage command operation circuit 15, first, in the addition / subtraction operation unit 51, the total load accumulated energy E which is the output of the accumulated energy operation circuit 14 of the control circuit 8 (that is, the output of the addition operation unit 50) is fully charged in the accumulation device 6. It is subtracted from the energy Emax at the time. The energy Emax of the storage device 6 at the time of full charge is the maximum value at the time of full charge, but is a constant value. Then, the energy (J) is replaced by a unit of voltage (V) via the square root operation circuit 49. As a result, as shown in FIG. 18, the output voltage command Vref is obtained as a waveform obtained by subtracting the waveform of the total accumulated energy E (see FIG. 17) from the constant value.
 図18に示すように、絞り加工においては、最初、スライドモータが下降する場合における角速度検出信号ωの加速→高速→中速の変化で蓄積装置6の電圧Vrefは、高速迄の加速時に慣性負荷に徐々に蓄えられるので、直ちに回生されても良いように蓄積装置6の電圧を徐々に下げ、角速度検出値ωが一定の時には電圧Vrefは維持し、中速までの減速時はエネルギが一部回生されるので、その分だけ電圧Vrefを戻して上昇させる。次の絞り加工中では、空圧式ダイクッション装置31で電源11から供給する弾性負荷エネルギは大きくなるので、蓄積装置6の電圧Vrefは大きく下げる。また、総エネルギEがピークを越えると、この弾性負荷エネルギは回生に転じるため、蓄積装置6の電圧Vrefは今度は上昇に戻す。そして、絞り加工が終了すると、再び慣性負荷蓄積エネルギの動作に移り、中速→高速→停止で最初の高速運転時と同様の動作が行われる。 As shown in FIG. 18, in the drawing process, the voltage Vref of the accumulating device 6 is initially changed by the change of the angular velocity detection signal ω from acceleration to high speed to medium speed when the slide motor descends. , The voltage of the storage device 6 is gradually lowered so as to be able to be regenerated immediately, the voltage Vref is maintained when the angular velocity detection value ω is constant, and a part of the energy is lost when the vehicle is decelerated to a medium speed. Since the power is regenerated, the voltage Vref is returned and increased by that amount. During the next drawing, the elastic load energy supplied from the power supply 11 by the pneumatic die cushion device 31 increases, so that the voltage Vref of the storage device 6 is greatly reduced. Further, when the total energy E exceeds the peak, the elastic load energy starts to regenerate, so that the voltage Vref of the storage device 6 returns to an increase this time. Then, when the drawing is completed, the operation shifts to the operation of the inertial load accumulated energy again, and the same operation as in the first high-speed operation is performed at medium speed → high speed → stop.
 以上の図11~図18で示したように、本実施例においては、慣性負荷に蓄積されるエネルギと弾性負荷に蓄積されるエネルギとに従って、蓄積装置6の電圧指令Vrefを可変制御する。 As shown in FIGS. 11 to 18, in the present embodiment, the voltage command Vref of the storage device 6 is variably controlled according to the energy stored in the inertial load and the energy stored in the elastic load.
 本発明の第2の実施例を図19を参照しつつ説明する。本実施例では、実施例1との相違点についてのみ説明するものとし、本実施例で用いる図面において第1の実施例と同様の部材には同じ符号を付し、説明を省略する。 A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, only differences from the first embodiment will be described. In the drawings used in the present embodiment, the same members as those in the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted.
 本実施例は、電源装置をモータ電力変換装置に内蔵し、慣性負荷蓄積エネルギに基づいて蓄積装置の電圧を可変制御するものである。 In the present embodiment, the power supply device is incorporated in the motor power converter, and the voltage of the storage device is variably controlled based on the inertial load stored energy.
 図19は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 19 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 本実施例では、第1の実施例の蓄積装置6に代えて蓄電素子6Aを用いており、負荷として射出成型機をモータで駆動している。 In this embodiment, a storage element 6A is used in place of the storage device 6 of the first embodiment, and an injection molding machine is driven by a motor as a load.
 図19において、本実施例の電力変換システムのモータ電力変換装置2Aは、順変換器4、昇降圧電源回路5、蓄電素子6A、逆変換器7、制御回路8、及び、電圧指令演算回路15を備えている。また、制御回路8は、蓄積エネルギ演算回路14A(演算回路)及び位置速度電流制御回路16Aを備えている。 In FIG. 19, the motor power converter 2A of the power conversion system according to the present embodiment includes a forward converter 4, a step-up / step-down power supply circuit 5, a storage element 6A, an inverter 7, a control circuit 8, and a voltage command operation circuit 15. It has. Further, the control circuit 8 includes a stored energy calculation circuit 14A (calculation circuit) and a position / velocity current control circuit 16A.
 本実施例の蓄積エネルギ演算回路14Aは、加減速トルク演算回路42の出力である加減速トルクTαと、弾性負荷トルクTd(加減算演算器51の出力)とを位置速度電流制御回路16Aに出力するように構成されている。一般に、モータのトルク検出信号には、モータに印加されるすべての負荷のトルク成分が現れる。これに対して、本実施例では、慣性負荷に発生する加減速トルクTαと弾性負荷に発生する弾性負荷トルクTdの2つを分離することが可能になったので、この加減速トルクTαと弾性負荷トルクTdとを位置速度電流制御回路16Aにフィードバックしている。位置速度電流制御回路16Aは、蓄積エネルギ演算回路14Aからの加減速トルクTαおよび弾性負荷トルクTdを取り込む機能、すなわち、分離されたモニタトルク機能を有している。 The stored energy calculation circuit 14A of this embodiment outputs the acceleration / deceleration torque Tα output from the acceleration / deceleration torque calculation circuit 42 and the elastic load torque Td (the output of the addition / subtraction calculator 51) to the position / speed current control circuit 16A. It is configured as follows. Generally, a torque detection signal of a motor includes torque components of all loads applied to the motor. On the other hand, in the present embodiment, the acceleration / deceleration torque Tα generated in the inertial load and the elastic load torque Td generated in the elastic load can be separated from each other. The load torque Td is fed back to the position / speed current control circuit 16A. The position / velocity current control circuit 16A has a function of taking in the acceleration / deceleration torque Tα and the elastic load torque Td from the stored energy calculation circuit 14A, that is, a separate monitor torque function.
 また、位置速度電流制御回路16Aは、取り込んだ加減速トルクTαおよび弾性負荷トルクTdを上位装置13に出力する。上位装置13では、省エネルギ化を図るために何の動力を低減するかの検討に、加減速トルクTαおよび弾性負荷トルクTdが用いられる。すなわち、慣性負荷動力を低下させるのか、弾性負荷動力を低下させるのか、または、タクトタイムを変えたり弾性負荷トルクを変えたりするのか等、種々の条件を変えて運転を行うことで、個別に測定ができる加減速トルクTαおよび弾性負荷トルクTdを参照して検討することができる。 (4) The position / speed current control circuit 16A outputs the acquired acceleration / deceleration torque Tα and elastic load torque Td to the host device 13. In the host device 13, the acceleration / deceleration torque Tα and the elastic load torque Td are used for studying what power should be reduced in order to save energy. In other words, it is possible to measure individually by changing various conditions such as whether to reduce the inertial load power, the elastic load power, or the tact time or the elastic load torque. The acceleration / deceleration torque Tα and the elastic load torque Td can be considered.
 なお、図19においては、一般産業機械用負荷として射出成型機35の射出軸34を例示している。モータ負荷としての射出軸34は、慣性負荷を除けば弾性負荷や重力負荷ではなくエネルギを蓄積しないため、弾性負荷蓄積エネルギ演算回路46は積分クリア信号2のCLR2を常時ONとしてその出力を零として無効にする。ただし、慣性負荷蓄積エネルギ演算回路44は有効にしてエネルギ蓄積演算を行う。積分クリア信号CLR1,CLR2はパラメータで外部から常時ON設定ができ、エネルギが蓄積できない負荷の時はONとするよう設定できる。またONの設定は、上位装置13からも設定することができる。 In FIG. 19, the injection shaft 34 of the injection molding machine 35 is illustrated as a load for general industrial machines. Since the injection shaft 34 as the motor load does not store energy other than the elastic load and the gravitational load except for the inertial load, the elastic load storage energy calculation circuit 46 always turns on the CLR2 of the integration clear signal 2 and sets its output to zero. To disable. However, the inertial load storage energy calculation circuit 44 is enabled to perform the energy storage calculation. The integration clear signals CLR1 and CLR2 can be always set to ON from the outside by using parameters, and can be set to be ON when the load cannot store energy. The ON setting can also be set from the host device 13.
 その他の構成は第1の実施例と同様である。 Other configurations are the same as those of the first embodiment.
 本願発明においては、蓄電装置に回生エネルギが戻っても過充電されることはがないため、蓄電装置として蓄電素子6A(例えば、電解コンデンサ)を用いる場合に、蓄電素子6Aに予め設定される電圧範囲の上限マージンを削減して電圧範囲の上限を引き上げ、電解コンデンサの容量を増加させずに蓄積できるエネルギを上昇することができ、更に損失を低減することができる。したがって、本実施例のように、順変換器4、昇降圧電源回路5、及び、蓄電素子6A(電解コンデンサ)をモータ電力変換装置2Aに内蔵することができる。 In the present invention, since the rechargeable energy is not overcharged even when the regenerative energy returns to the power storage device, when the power storage device 6A (for example, an electrolytic capacitor) is used as the power storage device, the voltage preset in the power storage device 6A. By reducing the upper limit margin of the range and raising the upper limit of the voltage range, the energy that can be stored without increasing the capacity of the electrolytic capacitor can be increased, and the loss can be further reduced. Therefore, as in the present embodiment, the forward converter 4, the step-up / step-down power supply circuit 5, and the power storage element 6A (electrolytic capacitor) can be built in the motor power converter 2A.
 また、図19に示す制御回路8内の蓄積エネルギ演算回路14及び電圧指令演算回路15の蓄電素子6A(電解コンデンサ)の適正電圧Vref出力までのブロックとPI調節器17はソフトウェア処理であり、位置速度電流制御回路16AのCPU72が処理しているので、新たなCPUを追加する必要がない。 Further, the blocks up to the output of the appropriate voltage Vref of the storage element 6A (electrolytic capacitor) of the storage energy calculation circuit 14 and the voltage command calculation circuit 15 in the control circuit 8 and the PI adjuster 17 shown in FIG. Since the processing is performed by the CPU 72 of the speed current control circuit 16A, there is no need to add a new CPU.
 本発明の第3の実施例を図20及び図21を参照しつつ説明する。本実施例では、第1の実施例との相違点についてのみ説明するものとし、本実施例で用いる図面において第1の実施例と同様の部材には同じ符号を付し、説明を省略する。 A third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, only the differences from the first embodiment will be described. In the drawings used in the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 本実施例は、モータ負荷として、スライド25とサーボダイクッション装置32とを有し、スライド25とサーボダイクッション装置32との電源系統を別電源としたサーボダイクッション付プレス機12Aを用いるものである。 The present embodiment uses a press machine 12A with a servo die cushion having a slide 25 and a servo die cushion device 32 as a motor load, and using a separate power supply for the power supply system of the slide 25 and the servo die cushion device 32. is there.
 図20は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 20 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 図20においては、第1の実施例(図7)に対して空圧式ダイクッション装置31がサーボダイクッション装置32に置き換えられ、ダイクッション用のモータ103により下側から反力が与えられ、ダイクッション用のモータ103はダイクッション用モータ電力変換装置121(AC入力)で制御される構成になっている。 In FIG. 20, the pneumatic die cushion device 31 is replaced with a servo die cushion device 32 with respect to the first embodiment (FIG. 7), and a reaction force is applied from below by a die cushion motor 103, and the die is driven. The cushion motor 103 is controlled by a die cushion motor power converter 121 (AC input).
 ダイクッション用のモータ103は、交流モータ109にエンコーダ110が内蔵されている。また、ダイクッション用モータ電力変換装置121(AC入力)のモータ電力変換回路107には順変換器や逆変換器などの機能(図示せず)が内蔵されているので3相交流の交流電源11から電力が供給され、逆変換器の入力は一定の直流電圧が与えられる。すなわち、モータ電力変換回路107は、昇降圧電源回路のない標準的なモータ電力変換装置である。 交流 The motor 103 for the die cushion has an encoder 110 built in an AC motor 109. In addition, the motor power conversion circuit 107 of the die cushion motor power conversion device 121 (AC input) incorporates functions (not shown) such as a forward converter and an inverse converter. And a constant DC voltage is applied to the input of the inverter. That is, motor power conversion circuit 107 is a standard motor power conversion device without a step-up / step-down power supply circuit.
 なお、図20では、交流電源11からの電力供給用の配線を1本線で示し3本の斜線を付することで3相配線であることを示している。また、ダイクッション用モータ電力変換装置121の制御回路108は、第1の実施例で示した位置速度電流制御回路16(図10参照)と同様の構成を有しており、蓄積エネルギ演算回路14としての機能は有していない。なお、ダイクッション用モータ電力変換装置121(AC入力)の制御回路108には、上位装置13からモータ駆動指令が与えられ、ダイクッション用のモータ103の運転モードは、絞り加工期間中は上金型と下金型でブランク材を挟んでいるのでトルク制御で反力を与える。このトルク制御は、空圧式ダイクッション装置31を用いた場合の反力と同じトルクを与えている。なお、絞り加工期間中以外は位置制御または速度制御で運転される。 In FIG. 20, wiring for supplying power from the AC power supply 11 is indicated by a single line, and three diagonal lines indicate three-phase wiring. The control circuit 108 of the die cushion motor power converter 121 has the same configuration as the position / velocity / current control circuit 16 (see FIG. 10) shown in the first embodiment. Does not have the function as A motor drive command is given from the host device 13 to the control circuit 108 of the die cushion motor power conversion device 121 (AC input), and the operation mode of the die cushion motor 103 is set during the drawing process. Since the blank is sandwiched between the mold and the lower mold, a reaction force is given by torque control. This torque control gives the same torque as the reaction force when the pneumatic die cushion device 31 is used. It is operated by position control or speed control except during the drawing process.
 図21は、本実施例に係るサーボダイクッション付プレス機の構造を模式的に説明する図である。 FIG. 21 is a diagram schematically illustrating the structure of the press with a servo die cushion according to the present embodiment.
 図21において、サーボダイクッション付プレス機12Aは、第1の実施例で示した空圧式ダイクッション付プレス機12(図3参照)と比較して、空圧式ダイクッション装置31をサーボダイクッション装置32に変更し、また、サーボダイクッション装置32を駆動するダイクッション用のモータ103を有している。 In FIG. 21, the press machine 12A with a servo die cushion is different from the press machine 12 with a pneumatic die cushion shown in the first embodiment (see FIG. 3) in that the pneumatic die cushion device 31 is a servo die cushion device. 32, and has a die cushion motor 103 for driving the servo die cushion device 32.
 その他の構成は第1の実施例と同様である。 Other configurations are the same as those of the first embodiment.
 本発明の第4の実施例を図22を参照しつつ説明する。本実施例では、第3の実施例との相違点についてのみ説明するものとし、本実施例で用いる図面において第3の実施例と同様の部材には同じ符号を付し、説明を省略する。 A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, only the differences from the third embodiment will be described. In the drawings used in the present embodiment, the same members as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 本実施例は、第3の実施例のサーボダイクッション付プレス機12Aにおけるサーボダイクッション装置32の電源を昇降圧電源回路5の入力(言い換えると、順変換器4の出力)から供給するようにしたものである。 In the present embodiment, the power of the servo die cushion device 32 in the press machine 12A with the servo die cushion of the third embodiment is supplied from the input of the step-up / step-down power supply circuit 5 (in other words, the output of the forward converter 4). It was done.
 図22は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 22 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 図22において、ダイクッション用モータ電力変換装置121A(DC入力)の入力電源は電源装置1の昇降圧電源回路5の入力側P0-N間に接続されている。つまり、ダイクッション用モータ電力変換装置121A(DC入力)は、順変換器4の出力に接続されているため直流電源入力であり、モータ電力変換回路107Aには順変換器としての機能は不要である。 In FIG. 22, the input power of the die cushion motor power converter 121A (DC input) is connected between the input sides P0-N of the step-up / step-down power supply circuit 5 of the power supply 1. In other words, the die cushion motor power converter 121A (DC input) is a DC power input because it is connected to the output of the forward converter 4, and the motor power conversion circuit 107A does not need the function as a forward converter. is there.
 その他の構成は第3の実施例と同様である。 Other configurations are the same as in the third embodiment.
 モータ3(以降、スライドモータ3とも記載する)とダイクッション用のモータ103は、絞り加工切削中はお互いに押し合い方向にトルクを出すのでスライドモータ3が力行方向で運転するとダイクッション用のモータ103は回生運転となる。逆にスライドモータ3が回生方向で運転するとダイクッション用のモータ103は力行運転となる。例えばスライドモータ3が力行で運転するときは電源11側から電力を供給してほしい時であり、この時ダイクッション用のモータ103は回生であって電源から供給される電力が余剰である状態となる。ダイクッション用モータ電力変換装置121A(DC入力)は、昇降圧電源回路としての機能を有していないので、スライドモータ3と電圧レベルが同じとなるため、両者を電源装置1の順変換器4と接続することができる。この状態においては、ダイクッション用のモータ103の回生電力は昇降圧電源回路5で、例えば、昇圧されてスライドモータ3の力行電力として供給できるので、電源11側からの電力の供給を抑制または無くすことができ省エネルギを達成することができる。 The motor 3 (hereinafter, also referred to as a slide motor 3) and the die cushion motor 103 generate torque in the direction of pressing each other during drawing and cutting. Therefore, when the slide motor 3 operates in the power running direction, the motor 103 for the die cushion is used. Means regenerative operation. Conversely, when the slide motor 3 operates in the regenerative direction, the motor 103 for the die cushion is in power running operation. For example, when the slide motor 3 operates in power running, it is necessary to supply power from the power supply 11 side. At this time, the die cushion motor 103 is in a regenerative state and the power supplied from the power supply is in a surplus state. Become. Since the motor power converter for die cushion 121A (DC input) does not have a function as a step-up / step-down power supply circuit, the voltage level is the same as that of the slide motor 3; And can be connected. In this state, the regenerative power of the die cushion motor 103 can be boosted and supplied as powering power of the slide motor 3 by the step-up / step-down power supply circuit 5, for example, so that power supply from the power supply 11 is suppressed or eliminated. Energy saving can be achieved.
 また、逆の場合として、スライドモータ3が回生であれば、蓄積装置6電圧が回生状態を予測してすでに電圧は低下状態にあるので、その電圧から回生が始まる。この時、ダイクッション用のモータ103は力行であるから電源11側から電力を供給することができ、両者双方から電源を供給することはない。 In the opposite case, if the slide motor 3 is regenerating, the voltage of the storage device 6 predicts a regenerative state and the voltage is already in a reduced state, so the regenerative operation starts from that voltage. At this time, since the motor 103 for die cushion is power running, power can be supplied from the power supply 11 side, and power is not supplied from both.
 以上のように、絞り加工切削中は力行と回生がバランス良く切り替わるため、電源装置1の直流電圧P0-N間は電圧どちらが回生状態になってもほぼ一定に保たれる。このため、弾性負荷蓄積エネルギ演算回路46を無効状態、すなわちクリア信号CLR2をONで運転しても問題ないという効果が得られる。なお、絞り加工切削の終了時はスライドモータ3は慣性負荷にエネルギ蓄積されるので、慣性負荷蓄積エネルギ演算回路44は有効(クリア信号CLR1はOFF)として運転する必要がある。 As described above, since the powering and the regeneration are switched in a well-balanced state during the drawing and cutting, the DC voltage P0-N of the power supply device 1 is kept substantially constant regardless of which voltage is in the regeneration state. Therefore, there is an effect that there is no problem even if the elastic load accumulated energy calculation circuit 46 is operated in an invalid state, that is, the clear signal CLR2 is turned on. Since energy is accumulated in the inertia load of the slide motor 3 at the end of the drawing cutting, the inertia load accumulated energy calculation circuit 44 needs to be operated with the validity (clear signal CLR1 is OFF).
 本発明の第5の実施例を図23を参照しつつ説明する。本実施例では、第1の実施例との相違点についてのみ説明するものとし、本実施例で用いる図面において第1の実施例と同様の部材には同じ符号を付し、説明を省略する。 A fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, only the differences from the first embodiment will be described. In the drawings used in the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 本実施例は、昇降装置を負荷としてモータで駆動する場合を例示するものである。 The present embodiment is an example of a case where the lifting device is driven by a motor using a load.
 図23は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 23 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 本実施例では、
 図23において、本実施例の昇降装置82は、巻き上げ機76(図5参照)を備えている。昇降装置82は、重力負荷として最も回生状態を説明し易い負荷である。本実施例の昇降負荷としては重力方向に高低差の大きい昇降機は想定しておらず、フロア内のかごや荷物の昇降装置、上下棚間の収納部品の昇降装置、装置内を上下に搬送する部品搬送を想定している。荷物77の上昇時は、重力とは逆方向の動作のためモータ3は力行状態で運転し、下降時は落下を抑えながら下降するのでモータ3は回生状態になる。
In this embodiment,
23, the lifting device 82 of the present embodiment includes a hoist 76 (see FIG. 5). The elevating device 82 is a load that can most easily explain the regenerative state as a gravitational load. As the lifting load of the present embodiment, a lifting device having a large difference in height in the direction of gravity is not assumed, and a lifting device for a car or luggage on the floor, a lifting device for storage components between upper and lower shelves, and a component for vertically transporting the inside of the device. Transport is assumed. When the load 77 rises, the motor 3 operates in a power running state due to the operation in the direction opposite to the gravity, and when the load 77 descends, it descends while suppressing the fall, so that the motor 3 enters a regenerative state.
 また、図23において、蓄積エネルギ演算回路14B(演算回路)では、第1の実施例の蓄積エネルギ演算回路14(図7参照)と比較して、弾性負荷蓄積エネルギ演算ブロック41が重力負荷蓄積エネルギ演算ブロック79に置き換えられている。また、重力負荷蓄積エネルギ演算ブロック79は、重力負荷動力演算回路80と重力負荷蓄積エネルギ演算回路81とを有している。ただし、重力負荷トルクTwは、上記(式12)のようにTq-Tαであり、重力負荷動力演算回路80で重力負荷動力Pwが演算され、重力負荷蓄積エネルギ演算回路81で重力負荷蓄積エネルギEwが演算される。 Further, in FIG. 23, in the stored energy calculation circuit 14B (calculation circuit), compared with the stored energy calculation circuit 14 of the first embodiment (see FIG. 7), the elastic load stored energy calculation block 41 has the gravity load stored energy. The calculation block 79 has been replaced. The gravity load accumulated energy calculation block 79 includes a gravity load power calculation circuit 80 and a gravity load accumulated energy calculation circuit 81. However, the gravitational load torque Tw is Tq−Tα as in the above (Equation 12), the gravitational load power calculation circuit 80 calculates the gravitational load power Pw, and the gravitational load storage energy calculation circuit 81 calculates the gravitational load storage energy Ew. Is calculated.
 慣性負荷蓄積エネルギ演算ブロック40の出力Eαと重力負荷蓄積エネルギ演算ブロック79の出力Ewは、加算演算器50で加算され総負荷蓄積エネルギEが電源装置1の電圧指令演算回路15に出力される。 出力 The output Eα of the inertial load accumulated energy calculation block 40 and the output Ew of the gravity load accumulated energy calculation block 79 are added by the addition calculator 50, and the total load accumulated energy E is output to the voltage command calculation circuit 15 of the power supply device 1.
 その他の構成は第1の実施例と同様である。 Other configurations are the same as those of the first embodiment.
 以上のように構成した本実施例においても、第1の実施例と同様に上記(式17)に示す蓄積装置6の電圧指令Vrefが得られる。 Also in the present embodiment configured as described above, the voltage command Vref of the storage device 6 shown in the above (Equation 17) is obtained as in the first embodiment.
 本発明の第6の実施例を図24を参照しつつ説明する。本実施例では、実施例1との相違点についてのみ説明するものとし、本実施例で用いる図面において実施例1と同様の部材には同じ符号を付し、説明を省略する。 A sixth embodiment of the present invention will be described with reference to FIG. In the present embodiment, only differences from the first embodiment will be described. In the drawings used in the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 本実施例は、モータをリニアモータおよびエンコーダで構成するものである。 In this embodiment, the motor is constituted by a linear motor and an encoder.
 図24は、本実施例に係る電力変換システムの一例を模式的に示す図である。 FIG. 24 is a diagram schematically illustrating an example of the power conversion system according to the present embodiment.
 図24において、モータ3Cは、リニアモータ9Cと、リニアモータ9Cの位置を取得するための位置検出器(リニアエンコーダ、ホールセンサ)10Cとにより構成されている。 In FIG. 24, the motor 3C includes a linear motor 9C and a position detector (linear encoder, Hall sensor) 10C for acquiring the position of the linear motor 9C.
 本実施例のリニアモータ9Cに係る物理量と、第1の実施例で示した交流モータ9に係る物理量とは次のように対応している。すなわち、リニアモータ9Cにおける速度v(m/s)、推力Fq(N)、質量M(kg)、及び、(1/2)Mv^2は、交流モータ9(すなわち、回転型サーボモータ)の角速度ω(rad/s)、トルクTq(N・m)、慣性モーメントJ(kg・m^2)、及び、慣性負荷エネルギ(1/2)Jω^2にそれぞれ対応している。 物理 The physical quantity related to the linear motor 9C of the present embodiment and the physical quantity related to the AC motor 9 shown in the first embodiment correspond as follows. That is, the speed v (m / s), thrust Fq (N), mass M (kg), and (1/2) Mv ^ 2 of the linear motor 9C are the same as those of the AC motor 9 (that is, the rotary servomotor). It corresponds to angular velocity ω (rad / s), torque Tq (N · m), moment of inertia J (kg · mkg2), and inertia load energy (1 /) Jω ^ 2, respectively.
 また、リニアモータ9Cにおける慣性負荷動力Pα、走行動力Pd、慣性負荷エネルギEα、及び、走行エネルギEd(交流モータ9の場合の上記(式3)~(式6)にそれぞれ対応する)は、下記(式24)~(式27)でそれぞれ表される。 The inertial load power Pα, the running power Pd, the inertial load energy Eα, and the running energy Ed (corresponding to the above (Equation 3) to (Equation 6) in the case of the AC motor 9) in the linear motor 9C are as follows. (Expression 24) to (Expression 27).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 上記(式25)においては、走行速度v(m/s)=dl/dt、常時推力Fq(N)である。 に お い て In the above (Equation 25), the traveling speed v (m / s) = dl / dt and the constant thrust Fq (N).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 すなわち、図24において、蓄積エネルギ演算回路14C(演算回路)では、第1の実施例の蓄積エネルギ演算回路14(図7参照)と比較して、慣性モーメントJに係る加減速トルク演算回路42が質量Mに係る加減速トルク演算回路142に置き換えられており、位置速度電流制御回路16Cでは、加減速トルク演算回路142に質量Mを出力するとともに、モータ負荷トルクTqに代えて推力Fqを出力するように構成されている。 That is, in FIG. 24, in the stored energy calculation circuit 14C (calculation circuit), the acceleration / deceleration torque calculation circuit 42 related to the moment of inertia J is different from the stored energy calculation circuit 14 of the first embodiment (see FIG. 7). The acceleration / deceleration torque calculation circuit 142 relating to the mass M is replaced. The position / speed current control circuit 16C outputs the mass M to the acceleration / deceleration torque calculation circuit 142 and outputs the thrust Fq instead of the motor load torque Tq. It is configured as follows.
 その他の構成は第1の実施例と同様である。 Other configurations are the same as those of the first embodiment.
 以上のように、リニアモータを用いる場合においても第1の実施例と同様に制御することができる。 As described above, even when a linear motor is used, control can be performed in the same manner as in the first embodiment.
 <付記>
 なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
<Appendix>
Note that the present invention is not limited to the above-described embodiment, and includes various modifications and combinations without departing from the gist of the present invention. In addition, the present invention is not limited to the configuration including all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted. Further, the above-described respective configurations, functions, and the like may be realized by designing a part or all of them, for example, with an integrated circuit. In addition, the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
 1…電源装置、2,2A…モータ電力変換装置(電力変換装置)、3…モータ、3C…リニアモータ、4…順変換器、5…昇降圧電源回路(昇圧電源回路、降圧電源回路)、6…蓄電装置、6A…蓄電素子、7…逆変換器(電力変換部)、8,108…制御回路(制御部)、9…交流モータ、9C…交流モータ(リニアモータ)、10…エンコーダ、10C…位置検出器(リニアエンコーダ、ホールセンサ)、11…交流電源、12…空圧式ダイクッション付プレス機、12A…サーボダイクッション付プレス機、13…上位装置、14,14A,14B,14C…蓄積エネルギ演算回路(演算回路)、15…電圧指令演算回路、16,16A…位置速度電流制御回路、17…調節器、18…絶縁増幅器、20…スライドモータ、21…スライド駆動手段、22…クランク軸、23…クランク偏心部、24…コネクションロッド、25…スライド、26…スライドギブ、27…ボルスタ、28…ベッド、29…上金型、30…下金型、31…空圧式ダイクッション装置、32…サーボダイクッション装置、34…射出軸、35…射出成型機、40…慣性負荷蓄積エネルギ演算ブロック、41…弾性負荷蓄積エネルギ演算ブロック、42,142…加減速トルク演算回路、43…加減速動力演算回路、44…慣性負荷蓄積エネルギ演算回路、45…弾性負荷動力演算回路、46…弾性負荷蓄積エネルギ演算回路、47…満充電時エネルギ設定ブロック、48…比例係数ブロック、49…平方根演算回路、50…加算演算器、51…加減算演算器、52…平滑コンデンサ、53…スイッチング素子、54…ダイオード、55…全波整流器、56…抵抗器、58…昇圧リアクトル、58A…降圧リアクトル、59…U相電流検出器(電流検出器)、60…W相電流検出器(電流検出器)、61…駆動回路、62…位置速度磁極位置演算回路、63…速度制御回路(ASR)、64…軸電流制御回路(ACR)、65…軸電流制御回路(ACR)、66…相変換回路、67…回路、68…変換回路、73,74…モード切替スイッチ、75…パラメータエリア、76…巻き上げ機、77…荷物(又は、荷物等を収容するかご)、78…ロープ、79…重力負荷蓄積エネルギ演算ブロック、80…重力負荷動力演算回路、81…重力負荷蓄積エネルギ演算回路、82…昇降装置、103…ダイクッション用モータ、107,107A…モータ電力変換回路、109…交流モータ、110…エンコーダ、120…モータ負荷、121,121A…ダイクッション用モータ電力変換装置 DESCRIPTION OF SYMBOLS 1 ... Power supply device, 2, 2A ... Motor power conversion device (power conversion device), 3 ... Motor, 3C ... Linear motor, 4 ... Forward converter, 5 ... Step-up / step-down power supply circuit (step-up power supply circuit, step-down power supply circuit), Reference Signs List 6: power storage device, 6A: storage element, 7: inverter (power conversion unit), 8, 108: control circuit (control unit), 9: AC motor, 9C: AC motor (linear motor), 10: encoder, 10C: Position detector (linear encoder, Hall sensor), 11: AC power supply, 12: Press machine with pneumatic die cushion, 12A: Press machine with servo die cushion, 13: Host device, 14, 14A, 14B, 14C ... Accumulated energy calculation circuit (calculation circuit), 15: voltage command calculation circuit, 16, 16A: position / velocity current control circuit, 17: regulator, 18: insulation amplifier, 20: slide motor, 21: slur Drive means, 22 ... crankshaft, 23 ... crank eccentric part, 24 ... connection rod, 25 ... slide, 26 ... slide gib, 27 ... bolster, 28 ... bed, 29 ... upper mold, 30 ... lower mold, 31 ... pneumatic die cushion device, 32 ... servo die cushion device, 34 ... injection shaft, 35 ... injection molding machine, 40 ... inertia load storage energy calculation block, 41 ... elastic load storage energy calculation block, 42, 142 ... acceleration / deceleration torque Calculation circuit, 43: acceleration / deceleration power calculation circuit, 44: inertial load storage energy calculation circuit, 45: elastic load power calculation circuit, 46: elastic load storage energy calculation circuit, 47: full charge energy setting block, 48: proportional coefficient Block, 49: square root operation circuit, 50: addition operation unit, 51: addition / subtraction operation unit, 52: smoothing capacitor, 53: switch 54, diode, 55, full-wave rectifier, 56, resistor, 58, step-up reactor, 58A, step-down reactor, 59, U-phase current detector (current detector), 60, W-phase current detector (current Detector), 61: drive circuit, 62: position / speed magnetic pole position calculation circuit, 63: speed control circuit (ASR), 64: axis current control circuit (ACR), 65: axis current control circuit (ACR), 66: phase Conversion circuit, 67: circuit, 68: conversion circuit, 73, 74: mode changeover switch, 75: parameter area, 76: hoisting machine, 77: luggage (or basket for storing luggage, etc.), 78: rope, 79 ... Gravity load storage energy calculation block, 80: gravity load power calculation circuit, 81: gravity load storage energy calculation circuit, 82: lifting device, 103: die cushion motor, 107, 107A ... Over data power conversion circuit, 109 ... AC motor, 110 ... encoder, 120 ... motor load, 121, 121a ... die cushion motor power converter

Claims (12)

  1.  モータに電力を供給する電力変換装置と、
     前記電力変換装置に電力を供給する電源装置とを備える電力変換システムにおいて、
     前記電力変換装置は、
     電力を変換する電力変換部と、前記電力変換部を制御する制御部と、前記電力変換部内の電流を検出する電流検出部と、を有し、
     前記電源装置は、
     電圧に応じて電力を蓄積する蓄積装置と、電圧指令に基づいて前記蓄積装置の電圧を変更する昇降圧電源回路と、前記蓄積装置に蓄積するエネルギを演算して前記電圧指令として前記昇降圧電源回路へ出力する演算回路と、を有し、
     前記制御部は、前記モータが備えるエンコーダからの情報と前記電流検出部で検出した電流値とを用いて前記モータの力行エネルギ或いは回生エネルギを算出し、
     前記演算回路は、前記制御部で算出した前記モータの力行エネルギ或いは回生エネルギに基づいて前記蓄積装置に蓄積するエネルギを演算するものである電力変換システム。
    A power converter for supplying power to the motor,
    In a power conversion system including a power supply device that supplies power to the power conversion device,
    The power converter,
    A power conversion unit that converts power, a control unit that controls the power conversion unit, and a current detection unit that detects a current in the power conversion unit,
    The power supply,
    A storage device for storing power according to a voltage, a step-up / step-down power supply circuit for changing a voltage of the storage device based on a voltage command, and an energy storage device for calculating energy to be stored in the storage device as the voltage command And an arithmetic circuit for outputting to the circuit,
    The control unit calculates power running energy or regenerative energy of the motor using information from an encoder included in the motor and a current value detected by the current detection unit,
    The power conversion system, wherein the arithmetic circuit is configured to calculate energy stored in the storage device based on power running energy or regenerative energy of the motor calculated by the control unit.
  2.  請求項1に記載の電力変換システムにおいて、
     前記制御部は、前記エンコーダからの情報と前記電流検出部で検出した電流値とを用いて前記モータの角速度及びトルクを算出し、前記角速度とトルクと予め設定された慣性モーメント値とを用いて前記モータの力行エネルギ或いは回生エネルギを算出するものである電力変換システム。
    The power conversion system according to claim 1,
    The control unit calculates the angular velocity and torque of the motor using information from the encoder and the current value detected by the current detection unit, and uses the angular velocity and torque and a preset inertia moment value. A power conversion system for calculating power running energy or regenerative energy of the motor.
  3.  請求項1に記載の電力変換システムにおいて、
     前記演算回路は、前記蓄積装置に蓄積される電力量が前記回生エネルギによって最大電力量となるように前記蓄積装置に蓄積するエネルギを演算するものである電力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the arithmetic circuit is configured to calculate the energy stored in the storage device such that the amount of power stored in the storage device becomes the maximum amount of power by the regenerative energy.
  4.  請求項1に記載の電力変換システムにおいて、
     前記制御部は、前記モータに蓄えられた慣性エネルギ及び前記モータにより駆動されるモータ負荷に蓄えられた弾性エネルギに基づいて前記回生エネルギを算出するものである電力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the control unit is configured to calculate the regenerative energy based on inertial energy stored in the motor and elastic energy stored in a motor load driven by the motor.
  5.  請求項1に記載の電力変換システムにおいて、
     前記制御部は、前記モータにより駆動されるモータ負荷に蓄えられた慣性エネルギ及び前記モータ負荷に蓄えられた重力エネルギに基づいて前記回生エネルギを算出するものである電力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the control unit is configured to calculate the regenerative energy based on inertial energy stored in a motor load driven by the motor and gravitational energy stored in the motor load.
  6.  請求項2に記載の電力変換システムにおいて、
     前記慣性モーメント値は、前記モータの試運転時あるいはリアルタイムオートチューニング時に記憶されるものである電力変換システム。
    The power conversion system according to claim 2,
    The power conversion system, wherein the moment of inertia value is stored during a test run of the motor or during real-time automatic tuning.
  7.  電力を蓄積する蓄積装置を介して供給される電力を変換してモータに供給する手順と、
     前記モータが備えるエンコーダからの情報と前記モータに供給される電流値とを用いて前記モータの力行エネルギ或いは回生エネルギを算出する手順と、
     算出した前記モータの力行エネルギ或いは回生エネルギに基づいて前記蓄積装置に蓄積するエネルギを演算する手順と、
     前記蓄積装置に蓄積するエネルギの演算結果に基づいて前記蓄積装置に蓄積する電力を変更する手順と
    を有することを特徴とするモータ制御方法。
    Converting power supplied through a storage device that stores power and supplying the converted power to a motor;
    A procedure for calculating powering energy or regenerative energy of the motor using information from an encoder included in the motor and a current value supplied to the motor;
    Calculating energy to be stored in the storage device based on the calculated powering energy or regenerative energy of the motor;
    Changing the power stored in the storage device based on the calculation result of the energy stored in the storage device.
  8.  請求項7に記載のモータ制御方法において、
     前記エンコーダからの情報と前記モータに供給される電流値とを用いて前記モータの角速度及びトルクを算出し、算出した前記角速度及びトルクと予め設定された慣性モーメント値とを用いて前記モータの力行エネルギ或いは回生エネルギを算出することを特徴とするモータ制御方法。
    The motor control method according to claim 7,
    Calculate the angular velocity and torque of the motor using information from the encoder and the current value supplied to the motor, and use the calculated angular velocity and torque and a preset moment of inertia value to power the motor. A motor control method comprising calculating energy or regenerative energy.
  9.  請求項7に記載のモータ制御方法において、
     前記蓄積装置に蓄積される電力量が前記回生エネルギによって最大電力量となるように前記蓄積装置に蓄積するエネルギを演算することを特徴とするモータ制御方法。
    The motor control method according to claim 7,
    A motor control method, comprising calculating the energy stored in the storage device such that the amount of power stored in the storage device becomes the maximum amount of power by the regenerative energy.
  10.  請求項7に記載のモータ制御方法において、
     前記モータに蓄えられた慣性エネルギ及び前記モータにより駆動されるモータ負荷に蓄えられた弾性エネルギに基づいて前記回生エネルギを算出することを特徴とするモータ制御方法。
    The motor control method according to claim 7,
    A motor control method, comprising: calculating the regenerative energy based on inertial energy stored in the motor and elastic energy stored in a motor load driven by the motor.
  11.  請求項7に記載のモータ制御方法において、
     前記モータにより駆動されるモータ負荷に蓄えられた慣性エネルギ及び前記モータ負荷に蓄えられた重力エネルギに基づいて前記回生エネルギを算出することを特徴とするモータ制御方法。
    The motor control method according to claim 7,
    A motor control method, wherein the regenerative energy is calculated based on inertial energy stored in a motor load driven by the motor and gravitational energy stored in the motor load.
  12.  請求項8に記載のモータ制御方法において、
     前記慣性モーメント値は、前記モータの試運転時あるいはリアルタイムオートチューニング時に記憶されることを特徴とするモータ制御方法。
    The motor control method according to claim 8,
    The motor control method according to claim 1, wherein the moment of inertia value is stored during a test run of the motor or during real-time auto-tuning.
PCT/JP2019/026632 2018-08-31 2019-07-04 Electric power converting system, and motor control method WO2020044791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980054245.3A CN112585862B (en) 2018-08-31 2019-07-04 Power conversion system and motor control method
DE112019003804.4T DE112019003804T5 (en) 2018-08-31 2019-07-04 ELECTRICAL POWER CONVERSION SYSTEM AND ENGINE CONTROL PROCEDURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162405 2018-08-31
JP2018162405A JP7092620B2 (en) 2018-08-31 2018-08-31 Power conversion system and motor control method

Publications (1)

Publication Number Publication Date
WO2020044791A1 true WO2020044791A1 (en) 2020-03-05

Family

ID=69644116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026632 WO2020044791A1 (en) 2018-08-31 2019-07-04 Electric power converting system, and motor control method

Country Status (5)

Country Link
JP (1) JP7092620B2 (en)
CN (1) CN112585862B (en)
DE (1) DE112019003804T5 (en)
TW (1) TWI743541B (en)
WO (1) WO2020044791A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374053B2 (en) * 2020-08-03 2023-11-06 株式会社日立産機システム Power conversion equipment and metal processing equipment
TWI739541B (en) * 2020-08-05 2021-09-11 楊紫菱 Multi-function brushless motor driver
EP4239877A1 (en) * 2020-11-11 2023-09-06 Daikin Industries, Ltd. Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200048A (en) * 2010-03-23 2011-10-06 Hitachi Ltd Power supply device and power supply system
JP2013211957A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Rotary electric machine controller
JP2015006021A (en) * 2013-06-19 2015-01-08 トヨタ自動車株式会社 Motor drive device and motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124954B2 (en) * 2006-02-13 2013-01-23 株式会社日立製作所 AC motor system, control method of AC motor system, and power conversion apparatus related thereto
JP5674524B2 (en) 2011-03-29 2015-02-25 株式会社アドヴィックス Temperature estimation apparatus and temperature estimation method
JP6219099B2 (en) * 2013-08-27 2017-10-25 株式会社東芝 Power converter
WO2015118678A1 (en) * 2014-02-10 2015-08-13 株式会社日立産機システム Motor power conversion device
JP6312517B2 (en) * 2014-05-07 2018-04-18 山洋電気株式会社 Motor control device
WO2016194140A1 (en) 2015-06-02 2016-12-08 三菱電機株式会社 Elevator control device and elevator control method
JP6480316B2 (en) * 2015-12-04 2019-03-06 山洋電気株式会社 Motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200048A (en) * 2010-03-23 2011-10-06 Hitachi Ltd Power supply device and power supply system
JP2013211957A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Rotary electric machine controller
JP2015006021A (en) * 2013-06-19 2015-01-08 トヨタ自動車株式会社 Motor drive device and motor

Also Published As

Publication number Publication date
JP2020036488A (en) 2020-03-05
CN112585862B (en) 2023-07-25
JP7092620B2 (en) 2022-06-28
CN112585862A (en) 2021-03-30
TWI743541B (en) 2021-10-21
TW202011683A (en) 2020-03-16
DE112019003804T5 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2020044791A1 (en) Electric power converting system, and motor control method
US20100192788A1 (en) Motor drive control device
JP5665882B2 (en) Motor control device
JP5164540B2 (en) Method and apparatus for controlling motor drive device
US10749344B2 (en) Motor drive system including power storage device
CN110198147B (en) Motor drive system having electricity storage device
CN108574446B (en) Servomotor control device and servomotor control system
CN105393450B (en) Position control device
JP7189309B2 (en) Motor drive device having power storage device
JP5726929B2 (en) Construction machine and method for controlling construction machine
CN110086379B (en) Motor drive system having electricity storage device
KR20110122125A (en) Forklift
JP7078367B2 (en) Press device and control method of press device
JP7406379B2 (en) Power conversion system and motor control method using it
JP4849400B2 (en) Press machine drive unit
JP2009294102A (en) Method of measuring internal resistance of electric storage device and internal resistance measuring apparatus
CN110829471A (en) Motor drive system
JP2020031495A (en) Motor drive system having power storage device
JP2009055784A (en) Vehicle controlling apparatus, vehicle controlling method and vehicle
JP5097906B2 (en) Industrial machine control equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855199

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19855199

Country of ref document: EP

Kind code of ref document: A1