WO2020044789A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020044789A1
WO2020044789A1 PCT/JP2019/026609 JP2019026609W WO2020044789A1 WO 2020044789 A1 WO2020044789 A1 WO 2020044789A1 JP 2019026609 W JP2019026609 W JP 2019026609W WO 2020044789 A1 WO2020044789 A1 WO 2020044789A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
substrate
etching solution
inhibitor
substrate processing
Prior art date
Application number
PCT/JP2019/026609
Other languages
French (fr)
Japanese (ja)
Inventor
世 根来
小林 健司
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019075345A external-priority patent/JP7170578B2/en
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to US17/262,807 priority Critical patent/US11670517B2/en
Priority to KR1020217003571A priority patent/KR102544412B1/en
Priority to CN201980055805.7A priority patent/CN112602179A/en
Publication of WO2020044789A1 publication Critical patent/WO2020044789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • the substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
  • Patent Literature 1 discloses a substrate processing apparatus that supplies TMAH to a substrate and etches a polysilicon film formed on the substrate.
  • the polysilicon film is composed of a large number of fine silicon single crystals. Silicon single crystals exhibit anisotropy with respect to TMAH. That is, the etching rate (etching amount per unit time) when TMAH is supplied to the silicon single crystal differs for each silicon crystal plane (etching anisotropy).
  • the orientation of the crystal plane exposed on the surface of the polysilicon film is various, and differs for each location of the polysilicon film. In addition, the orientation of the crystal plane exposed on the surface of the polysilicon film differs for each polysilicon film.
  • the etching amount of the polysilicon film is slightly different depending on the location of the polysilicon film.
  • the etching amount of the polysilicon film is slightly different for each polysilicon film. With the miniaturization of the pattern formed on the substrate, such non-uniform etching may not be allowed.
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of uniformly etching an etching target including polysilicon while suppressing etching of a non-etching target different from silicon single crystal or polysilicon. To provide.
  • One embodiment of the present invention is a substrate processing method for supplying an alkaline etching solution to a substrate on which an etching target including polysilicon and a non-etching target different from the etching target are exposed, Forming an alkaline etchant comprising a quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched; Etching the non-etching target object by supplying the etching liquid prepared in the etching liquid preparing step to the substrate where the etching target and the non-etching target are exposed.
  • an alkaline etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor is applied to a substrate on which an etching target including polysilicon and a non-etching target different from the etching target are exposed.
  • an etching target including polysilicon and a non-etching target different from the etching target are exposed.
  • the quaternary ammonium hydroxide When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions.
  • the silicon single crystal contained in the etching target reacts with hydroxide ions and is dissolved in the etching solution.
  • the etching rate of the etching target is higher than the etching rate of the non-etching target. Thereby, the etching target is selectively etched.
  • the inhibitor inhibits contact between the hydroxide ion and the object to be etched. That is, the inhibitor acts as a three-dimensional barrier for hydroxide ions, and reduces the number of hydroxide ions that react with the etching target. Thereby, the etching rate of the etching target decreases. Further, the etching rate does not decrease uniformly on a plurality of crystal planes of the silicon single crystal, but relatively decreases on a crystal plane having a high etching rate among them. As a result, the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the etching of the silicon single crystal included in the etching object approaches the isotropic etching, and the etching object is etched with a uniform etching amount in any place.
  • the object to be etched may be a part of the substrate itself, or may be a part or all of a laminate formed on the substrate (a base material such as a silicon wafer). If the etching conditions such as the orientation of the crystal plane and the temperature are the same, the etching rate of the silicon single crystal when the alkaline etching solution containing the quaternary ammonium hydroxide, the water and the inhibitor is supplied, And an etching rate of a silicon single crystal when an alkaline etching solution containing the quaternary ammonium hydroxide and the water and not containing the inhibitor is supplied.
  • the etching solution forming step includes a concentration determining step of determining a concentration of the inhibitor in the etching solution based on a difference between etching rates on a plurality of crystal planes of the silicon single crystal constituting the polysilicon.
  • the concentration of the inhibitor in the etching solution prepared in the etching solution forming step is not less than 20% by mass and less than 100% by mass.
  • the molecule of the inhibitor is larger than the hydroxide ion.
  • hydroxide ions in the etching solution are blocked by the inhibitor in the etching solution. If the number of molecules of the inhibitor present in the etching solution is the same, the larger the molecule of the inhibitor, the more difficult it is for hydroxide ions to reach the etching target. When an inhibitor having one molecule larger than hydroxide ions is used as in this configuration, the number of hydroxide ions in contact with the etching target can be effectively reduced.
  • the etching liquid forming step includes a pre-discharge mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor before the etching liquid is discharged from a discharge port, and the selective etching step Includes an ejection step of ejecting the etching solution created in the etching solution creation step toward the substrate through the ejection port.
  • the quaternary ammonium hydroxide, water, and the inhibitor are mixed not before being discharged from the discharge port but before being discharged from the discharge port.
  • an etching solution is prepared in which the quaternary ammonium hydroxide, water, and the inhibitor are uniformly mixed.
  • the etchant is discharged from the discharge port toward the substrate, and is supplied to the substrate. Therefore, the substrate can be treated more uniformly than in the case where the quaternary ammonium hydroxide, water, and the inhibitor are mixed after being discharged from the discharge port.
  • the pre-discharge mixing step may be an in-tank mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a tank connected to the discharge port via a pipe. Then, an in-flow channel mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a flow channel (pipe or nozzle) for guiding the liquid toward the discharge port may be employed. .
  • the etching liquid forming step is an aerial mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a space between the discharge port and the substrate instead of the pre-discharge mixing step. And a mixing step on a substrate for mixing the quaternary ammonium hydroxide, the water and the inhibitor on the substrate.
  • the substrate processing method further includes, before the selective etching step, a natural oxide film removing step of supplying an oxide film removing solution to the substrate to remove a natural oxide film of the object to be etched.
  • the oxide film removing liquid is supplied to the substrate, and the natural oxide film of the etching target is removed from the surface layer of the etching target. Thereafter, an etching solution is supplied to the substrate, and the object to be etched is selectively etched.
  • the natural oxide film to be etched is mainly composed of silicon oxide.
  • the etchant is a liquid that etches an etching target with little or no etching of silicon oxide. This is because hydroxide ions react with silicon, but do not or rarely react with silicon oxide. Therefore, the etching target can be efficiently etched by removing the natural oxide film of the etching target in advance.
  • the etching target is a thin film obtained by performing a plurality of steps including a deposition step of depositing polysilicon and a heat treatment step of heating the polysilicon deposited in the deposition step.
  • the etching target that has been subjected to the heat treatment step of heating the deposited polysilicon is etched with an alkaline etchant. Heating the deposited polysilicon under appropriate conditions increases the polysilicon grain size. Therefore, the size of the silicon single crystal included in the etching target is increased as compared with the case where the heat treatment step is not performed. This means that the number of silicon single crystals exposed on the surface of the etching target decreases, and the influence of anisotropy increases. Therefore, by supplying an etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor to such an etching target, the influence of anisotropy can be effectively reduced.
  • the etching solution forming step includes a dissolved oxygen concentration changing step of reducing a dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, the water, and the inhibitor.
  • the dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, water, and the inhibitor is reduced. Accordingly, the concentration of dissolved oxygen in the etching solution prepared from these decreases.
  • an etching solution having a high dissolved oxygen concentration is supplied to the substrate, a part of the surface layer of the etching target is oxidized and changes to silicon oxide. This means that the etching rate of the object to be etched is further reduced. Therefore, by supplying an etchant having a low dissolved oxygen concentration to the substrate, it is possible to reduce the anisotropy of the silicon single crystal while suppressing a decrease in the etching rate of the etching target.
  • the dissolved oxygen concentration changing step at least one of the quaternary ammonium hydroxide, the water, and the inhibitor is lower than an oxygen concentration in air (about 21 vol% (volume percent concentration)). It may be a gas dissolving step of dissolving a low oxygen gas having an oxygen concentration, or the pressure in a tank for storing at least one of the quaternary ammonium hydroxide, the water, and the inhibitor. It may be a step other than the gas dissolving step, such as a pressure reducing step for lowering the pressure.
  • the substrate processing method further includes an atmosphere oxygen concentration changing step of reducing an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate.
  • the etchant is supplied to the substrate in a state where the oxygen concentration in the atmosphere is low. This reduces the amount of oxygen dissolved from the atmosphere into the etching solution, thereby suppressing an increase in the concentration of dissolved oxygen.
  • an etching solution having a high dissolved oxygen concentration is supplied to the substrate, the etching rate of the object to be etched is further reduced. Therefore, a further decrease in the etching rate can be suppressed by reducing the oxygen concentration in the atmosphere.
  • the inhibitor is glycol
  • the etching solution forming step is a step of forming the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. It is.
  • TMAH tetramethylammonium hydroxide
  • Another embodiment of the present invention is a substrate processing apparatus that supplies an alkaline etchant to an exposed substrate, including an etching target including polysilicon and a non-etching target different from the etching target,
  • the alkaline etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched.
  • Etching liquid to be created, and the etching liquid created by the etching liquid creating means is supplied to the substrate where the etching target and the non-etching target are exposed, thereby etching the non-etching target.
  • a selective etching means for etching the object to be etched while suppressing the etching that. According to this configuration, the same effect as the above-described effect can be obtained.
  • At least one of the following features may be added to the substrate processing apparatus.
  • the etching solution preparing means includes a concentration determining means for determining a concentration of the inhibitor in the etching solution based on a difference in etching rate between a plurality of crystal planes of the silicon single crystal constituting the polysilicon.
  • the concentration of the inhibitor in the etching solution prepared by the etching solution preparation means is not less than 20% by mass and less than 100% by mass.
  • the molecule of the inhibitor is larger than the hydroxide ion. According to this configuration, the same effect as the above-described effect can be obtained.
  • the selective etching means includes a discharge port for discharging the etchant created by the etchant creation means toward the substrate, and the etching solution creation means includes a step before the etchant is discharged from the discharge port. And mixing means for mixing the quaternary ammonium hydroxide, the water and the inhibitor. According to this configuration, the same effect as the above-described effect can be obtained.
  • the substrate processing apparatus supplies an oxide film removing solution to the substrate before the etching solution created by the etching solution creating unit is supplied to the substrate, and removes a natural oxide film of the etching target. It further includes a natural oxide film removing means. According to this configuration, the same effect as the above-described effect can be obtained.
  • the etching solution preparing means includes a dissolved oxygen concentration changing means for lowering a dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, the water and the inhibitor. According to this configuration, the same effect as the above-described effect can be obtained.
  • the substrate processing apparatus further includes an atmosphere oxygen concentration changing unit that reduces an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate. According to this configuration, the same effect as the above-described effect can be obtained.
  • the inhibitor is glycol
  • the etching solution preparing means includes means for preparing the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. It is.
  • TMAH tetramethylammonium hydroxide
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. It is the schematic diagram which looked at the substrate processing apparatus from the side.
  • FIG. 3 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed horizontally. FIG. 3 is an enlarged view in which a part of FIG. 2 is enlarged. It is a schematic diagram which shows the chemical
  • FIG. 3 is a block diagram illustrating hardware of a control device.
  • FIG. 3 is a block diagram illustrating hardware of a control device.
  • FIG. 8 is a schematic diagram illustrating an example of a cross section of the substrate before and after the processing illustrated in FIG. 7 is performed. It is a flowchart for explaining an example of substrate processing performed by a substrate processing device. It is a figure for explaining a mechanism assumed when contact between hydroxide ion and polysilicon is inhibited by an inhibitor. It is a figure for explaining a mechanism assumed when contact between hydroxide ion and polysilicon is inhibited by an inhibitor. 4 is a graph showing an example of a relationship between an etching rate of three crystal planes of a silicon single crystal and a concentration of propylene glycol in an etching solution. FIG.
  • FIG. 9 is a schematic diagram illustrating a chemical solution processing unit provided in a substrate processing apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a process diagram showing an example of a flow from creation of a new etching solution to discharge of a used etching solution from an immersion tank. It is a schematic diagram which shows the chemical
  • FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above.
  • FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transported from the carrier C on the load port LP, and a carrier on the load port LP.
  • a transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
  • the transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2.
  • the indexer robot IR transports the substrate W between the load port LP and the center robot CR
  • the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2.
  • the center robot CR includes a hand H1 that supports the substrate W
  • the indexer robot IR includes a hand H2 that supports the substrate W.
  • each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
  • FIG. 2 is a schematic view of the inside of the processing unit 2 provided in the substrate processing apparatus 1 as viewed horizontally.
  • FIG. 3 is an enlarged view in which a part of FIG. 2 is enlarged.
  • FIG. 2 shows a state in which the lifting frame 32 and the blocking member 33 are located at the lower position
  • FIG. 3 shows a state in which the lifting frame 32 and the blocking member 33 are located at the upper position.
  • TMAH means an aqueous solution of TMAH unless otherwise specified.
  • the processing unit 2 includes a box-shaped chamber 4 having an internal space, and a spin chuck 10 that rotates around a vertical rotation axis A1 passing through the center of the substrate W while horizontally holding one substrate W in the chamber 4. And a cylindrical processing cup 23 surrounding the spin chuck 10 around the rotation axis A1.
  • the chamber 4 includes a box-shaped partition wall 6 provided with a loading / unloading port 6b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 6b.
  • the chamber 4 further includes a rectifying plate 8 disposed below an air blow port 6 a opened on the ceiling surface of the partition wall 6.
  • An FFU 5 fan filter unit
  • An FFU 5 fan filter unit
  • the exhaust duct 9 for discharging the gas in the chamber 4 is connected to the processing cup 23.
  • the air outlet 6 a is provided at the upper end of the chamber 4, and the exhaust duct 9 is arranged at the lower end of the chamber 4. Part of the exhaust duct 9 is arranged outside the chamber 4.
  • the rectifying plate 8 partitions the internal space of the partition 6 into an upper space Su above the rectifying plate 8 and a lower space SL below the rectifying plate 8.
  • the upper space Su between the ceiling surface of the partition 6 and the upper surface of the current plate 8 is a diffusion space in which clean air is diffused.
  • the lower space SL between the lower surface of the current plate 8 and the floor surface of the partition 6 is a processing space in which processing of the substrate W is performed.
  • the spin chuck 10 and the processing cup 23 are arranged in the lower space SL.
  • the vertical distance from the floor surface of the partition 6 to the lower surface of the current plate 8 is longer than the vertical distance from the upper surface of the current plate 8 to the ceiling surface of the partition 6.
  • the FFU 5 sends clean air to the upper space Su via the air outlet 6a.
  • the clean air supplied to the upper space Su strikes the current plate 8 and diffuses in the upper space Su.
  • the clean air in the upper space Su passes through a plurality of through holes vertically penetrating the current plate 8 and flows downward from the entire area of the current plate 8.
  • the clean air supplied to the lower space SL is drawn into the processing cup 23 and discharged from the lower end of the chamber 4 through the exhaust duct 9. As a result, a uniform downward flow (downflow) of clean air flowing downward from the current plate 8 is formed in the lower space SL.
  • the processing of the substrate W is performed in a state where a downward flow of clean air is formed.
  • the spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding the substrate W in a horizontal position above the spin base 12, and a central portion of the spin base 12. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13.
  • the spin chuck 10 is not limited to a sandwich type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12.
  • a vacuum-type chuck that holds the substrate W horizontally may be used.
  • the spin base 12 includes an upper surface 12u arranged below the substrate W.
  • the upper surface 12u of the spin base 12 is parallel to the lower surface of the substrate W.
  • the upper surface 12u of the spin base 12 is a facing surface facing the lower surface of the substrate W.
  • the upper surface 12u of the spin base 12 has an annular shape surrounding the rotation axis A1.
  • the outer diameter of the upper surface 12u of the spin base 12 is larger than the outer diameter of the substrate W.
  • the chuck pin 11 protrudes upward from the outer peripheral portion of the upper surface 12u of the spin base 12.
  • the chuck pin 11 is held on a spin base 12.
  • the substrate W is held by the plurality of chuck pins 11 with the lower surface of the substrate W separated from the upper surface 12u of the spin base 12.
  • the processing unit 2 includes the lower surface nozzle 15 that discharges the processing liquid toward the center of the lower surface of the substrate W.
  • the lower surface nozzle 15 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle cylindrical portion extending downward from the nozzle disk portion.
  • the liquid discharge port 15p of the lower surface nozzle 15 is open at the center of the upper surface of the nozzle disk portion. In a state where the substrate W is held by the spin chuck 10, the liquid discharge port 15p of the lower surface nozzle 15 is vertically opposed to the center of the lower surface of the substrate W.
  • the substrate processing apparatus 1 includes a lower rinsing liquid pipe 16 for guiding the rinsing liquid to the lower surface nozzle 15, and a lower rinsing liquid valve 17 interposed in the lower rinsing liquid pipe 16.
  • a lower rinsing liquid valve 17 When the lower rinsing liquid valve 17 is opened, the rinsing liquid guided by the lower rinsing liquid pipe 16 is discharged upward from the lower nozzle 15 and supplied to the center of the lower surface of the substrate W.
  • the rinsing liquid supplied to the lower nozzle 15 is pure water (deionized water: DIW (Deionized Water)).
  • the rinsing liquid supplied to the lower surface nozzle 15 is not limited to pure water, but may be IPA (isopropyl alcohol), carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 1 to 100 ppm). May be any of
  • the lower rinsing liquid valve 17 includes a valve body provided with an internal flow path through which liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be another actuator.
  • the control device 3 opens and closes the lower rinse liquid valve 17 by controlling the actuator.
  • the substrate processing apparatus 1 includes: a lower gas pipe 20 that guides an inert gas supplied to the lower central opening 18 through a lower cylindrical passage 19; a lower gas valve 21 interposed in the lower gas pipe 20; A lower gas flow control valve 22 for changing the flow rate of the inert gas supplied from the pipe 20 to the lower cylindrical passage 19 is provided.
  • the inert gas supplied from the lower gas pipe 20 to the lower cylindrical passage 19 is a nitrogen gas.
  • the inert gas is not limited to nitrogen gas, but may be another inert gas such as helium gas or argon gas. These inert gases are low oxygen gases having an oxygen concentration lower than the oxygen concentration in air (about 21 vol%).
  • the nitrogen gas supplied from the lower gas pipe 20 to the lower cylindrical passage 19 is discharged upward from the lower central opening 18 at a flow rate corresponding to the degree of opening of the lower gas flow control valve 22. You. Thereafter, the nitrogen gas flows radially in all directions in the space between the lower surface of the substrate W and the upper surface 12u of the spin base 12. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas, and the oxygen concentration in the atmosphere is reduced. The oxygen concentration in the space between the substrate W and the spin base 12 is changed according to the degree of opening of the lower gas valve 21 and the lower gas flow control valve 22.
  • the lower gas valve 21 and the lower gas flow control valve 22 are included in an atmosphere oxygen concentration changing unit that changes the oxygen concentration in the atmosphere in contact with the substrate W.
  • the processing cup 23 includes a plurality of guards 25 for receiving the liquid discharged outward from the substrate W, a plurality of cups 26 for receiving the liquid guided downward by the plurality of guards 25, a plurality of guards 25, and a plurality of cups. 26 and a cylindrical outer wall member 24 surrounding the outer wall member 24.
  • FIG. 2 shows an example in which two guards 25 and two cups 26 are provided.
  • the guard 25 includes a cylindrical guard tubular portion 25b surrounding the spin chuck 10, and an annular guard ceiling 25a extending obliquely upward from the upper end of the guard tubular portion 25b toward the rotation axis A1.
  • the plurality of guard ceiling portions 25a are vertically overlapped, and the plurality of guard tubular portions 25b are arranged concentrically.
  • the plurality of cups 26 are respectively arranged below the plurality of guard tubular portions 25b.
  • the cup 26 forms an annular liquid receiving groove that opens upward.
  • the processing unit 2 includes a guard elevating unit 27 for individually elevating and lowering a plurality of guards 25.
  • the guard elevating unit 27 positions the guard 25 at an arbitrary position from the upper position to the lower position.
  • the upper position is a position where the upper end 25u of the guard 25 is located above the holding position where the substrate W held by the spin chuck 10 is located.
  • the lower position is a position where the upper end 25u of the guard 25 is disposed below the holding position.
  • the annular upper end of the guard ceiling 25a corresponds to the upper end 25u of the guard 25.
  • the upper end 25u of the guard 25 surrounds the substrate W and the spin base 12 in plan view.
  • the processing liquid supplied to the substrate W is shaken off from the substrate W.
  • the upper end 25u of at least one guard 25 is disposed above the substrate W. Therefore, the processing liquid such as the chemical liquid or the rinsing liquid discharged from the substrate W is received by any of the guards 25 and guided to the cup 26 corresponding to the guard 25.
  • the processing unit 2 includes a lifting frame 32 disposed above the spin chuck 10, a blocking member 33 suspended from the lifting frame 32, and a central nozzle 45 inserted into the blocking member 33. And a blocking member elevating unit 31 that raises and lowers the lifting frame 32 to raise and lower the blocking member 33 and the center nozzle 45.
  • the lifting frame 32, the blocking member 33, and the center nozzle 45 are arranged below the current plate 8.
  • the blocking member 33 includes a disk portion 36 disposed above the spin chuck 10 and a cylindrical portion 37 extending downward from the outer peripheral portion of the disk portion 36.
  • the blocking member 33 includes an upwardly concave cup-shaped inner surface.
  • the inner surface of the blocking member 33 includes a lower surface 36L of the disk portion 36 and an inner peripheral surface 37i of the cylindrical portion 37.
  • the lower surface 36L of the disk portion 36 may be referred to as the lower surface 36L of the blocking member 33.
  • a lower surface 36L of the disk portion 36 is a facing surface facing the upper surface of the substrate W.
  • the lower surface 36L of the disk portion 36 is parallel to the upper surface of the substrate W.
  • the inner peripheral surface 37i of the cylindrical portion 37 extends downward from the outer peripheral edge of the lower surface 36L of the disk portion 36.
  • the inner diameter of the cylindrical portion 37 increases as approaching the lower end of the inner peripheral surface 37i of the cylindrical portion 37.
  • the inner diameter of the lower end of the inner peripheral surface 37i of the cylindrical portion 37 is larger than the diameter of the substrate W.
  • the inner diameter of the lower end of the inner peripheral surface 37i of the cylindrical portion 37 may be larger than the outer diameter of the spin base 12.
  • a lower surface 36L of the disk portion 36 is an annular shape surrounding the rotation axis A1.
  • the inner peripheral edge of the lower surface 36L of the disk portion 36 forms an upper central opening 38 that opens at the center of the lower surface 36L of the disk portion 36.
  • the inner peripheral surface of the blocking member 33 forms a through hole extending upward from the upper central opening 38.
  • the through hole of the blocking member 33 penetrates the blocking member 33 up and down.
  • the center nozzle 45 is inserted into a through hole of the blocking member 33.
  • the outer diameter of the lower end of the center nozzle 45 is smaller than the diameter of the upper center opening 38.
  • the inner peripheral surface of the blocking member 33 is coaxial with the outer peripheral surface of the central nozzle 45.
  • the inner peripheral surface of the blocking member 33 surrounds the outer peripheral surface of the central nozzle 45 at intervals in a radial direction (a direction orthogonal to the rotation axis A1).
  • the inner peripheral surface of the blocking member 33 and the outer peripheral surface of the central nozzle 45 form an upper cylindrical passage 39 extending vertically.
  • the center nozzle 45 protrudes upward from the lifting frame 32 and the blocking member 33.
  • the lower end of the center nozzle 45 is disposed above the lower surface 36 ⁇ / b> L of the disk portion 36.
  • a processing liquid such as a chemical liquid or a rinsing liquid is discharged downward from the lower end of the central nozzle 45.
  • the blocking member 33 includes a cylindrical connecting portion 35 extending upward from the disk portion 36 and an annular flange portion 34 extending outward from the upper end of the connecting portion 35.
  • the flange portion 34 is disposed above the disk portion 36 and the cylindrical portion 37 of the blocking member 33.
  • the flange 34 is parallel to the disk 36.
  • the outer diameter of the flange portion 34 is smaller than the outer diameter of the cylindrical portion 37.
  • the flange portion 34 is supported by a lower plate 32L of the lifting frame 32 described later.
  • the elevating frame 32 includes an upper plate 32 u located above the flange portion 34 of the blocking member 33, a downward extending from the upper plate 32 u, a side ring 32 s surrounding the flange portion 34, and an inner side extending from the lower end of the side ring 32 s. And an annular lower plate 32L positioned below the flange portion 34 of the blocking member 33.
  • the outer peripheral portion of the flange portion 34 is disposed between the upper plate 32u and the lower plate 32L.
  • the outer peripheral portion of the flange portion 34 is vertically movable between the upper plate 32u and the lower plate 32L.
  • the lifting frame 32 and the blocking member 33 are positioned to restrict the relative movement of the lifting frame 32 and the blocking member 33 in the circumferential direction (direction around the rotation axis A1) in a state where the blocking member 33 is supported by the lifting frame 32.
  • It includes a projection 41 and a positioning hole 42.
  • FIG. 2 shows an example in which a plurality of positioning projections 41 are provided on the lower plate 32L, and a plurality of positioning holes 42 are provided on the flange portion 34.
  • the positioning projection 41 may be provided on the flange portion 34, and the positioning hole 42 may be provided on the lower plate 32L.
  • the plurality of positioning protrusions 41 are arranged on a circle having a center arranged on the rotation axis A1.
  • the plurality of positioning holes 42 are arranged on a circle having a center located on the rotation axis A1.
  • the plurality of positioning holes 42 are arranged in the circumferential direction with the same regularity as the plurality of positioning protrusions 41.
  • the positioning protrusion 41 projecting upward from the upper surface of the lower plate 32L is inserted into a positioning hole 42 extending upward from the lower surface of the flange portion 34. Thereby, the movement of the blocking member 33 in the circumferential direction with respect to the lifting frame 32 is restricted.
  • the blocking member 33 includes a plurality of upper support portions 43 protruding downward from the inner surface of the blocking member 33.
  • the spin chuck 10 includes a plurality of lower support portions 44 that support the plurality of upper support portions 43, respectively.
  • the plurality of upper support portions 43 are surrounded by the tubular portion 37 of the blocking member 33.
  • the lower end of the upper support portion 43 is disposed above the lower end of the tubular portion 37.
  • the radial distance from the rotation axis A1 to the upper support portion 43 is larger than the radius of the substrate W.
  • the radial distance from the rotation axis A1 to the lower support portion 44 is larger than the radius of the substrate W.
  • the lower support portion 44 protrudes upward from the upper surface 12u of the spin base 12.
  • the lower support part 44 is arranged outside the chuck pin 11.
  • the plurality of upper support portions 43 are arranged on a circle having a center arranged on the rotation axis A1.
  • the plurality of lower support portions 44 are arranged on a circle having a center located on the rotation axis A1.
  • the plurality of lower support portions 44 are arranged in the circumferential direction with the same regularity as the plurality of upper support portions 43.
  • the plurality of lower supports 44 rotate around the rotation axis A1 together with the spin base 12.
  • the rotation angle of the spin base 12 is changed by a spin motor 14.
  • the plurality of upper support portions 43 respectively overlap the plurality of lower support portions 44 in plan view.
  • the blocking member elevating unit 31 is connected to the elevating frame 32.
  • the blocking member lifting / lowering unit 31 lowers the lifting frame 32 in a state where the flange portion 34 of the blocking member 33 is supported by the lower plate 32L of the lifting frame 32, the blocking member 33 also moves down.
  • the shut-off member elevating unit 31 lowers the shut-off member 33 in a state where the spin base 12 is arranged at a reference rotation angle at which the plurality of upper support portions 43 respectively overlap the lower support portions 44 in plan view, the upper support The lower end of the part 43 contacts the upper end of the lower support part 44. Thereby, the plurality of upper support portions 43 are supported by the plurality of lower support portions 44, respectively.
  • the lower plate 32 ⁇ / b> L of the lifting frame 32 moves to the flange portion of the blocking member 33. It moves downward with respect to 34.
  • the lower plate 32L separates from the flange portion 34, and the positioning projection 41 comes out of the positioning hole 42.
  • the lifting frame 32 and the center nozzle 45 move downward with respect to the blocking member 33, the height difference between the lower end of the center nozzle 45 and the lower surface 36L of the disk portion 36 of the blocking member 33 is reduced.
  • the lifting frame 32 is disposed at a height (a lower position described later) at which the flange portion 34 of the blocking member 33 does not contact the upper plate 32 u of the lifting frame 32.
  • the blocking member elevating unit 31 positions the elevating frame 32 at an arbitrary position from the upper position (the position shown in FIG. 3) to the lower position (the position shown in FIG. 2).
  • the upper position is a position where the positioning projection 41 is inserted into the positioning hole 42 and the flange portion 34 of the blocking member 33 is in contact with the lower plate 32L of the lifting frame 32. That is, the upper position is a position where the blocking member 33 is suspended from the lifting frame 32.
  • the lower position is a position where the lower plate 32L is separated from the flange portion 34 and the positioning protrusion 41 comes out of the positioning hole 42. That is, the lower position is a position where the connection between the lifting frame 32 and the blocking member 33 is released, and the blocking member 33 does not contact any part of the lifting frame 32.
  • the lower end of the cylindrical portion 37 of the blocking member 33 is disposed below the lower surface of the substrate W, and the upper surface of the substrate W and the lower surface 36L of the blocking member 33 are connected.
  • the space therebetween is surrounded by the cylindrical portion 37 of the blocking member 33. Therefore, the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33 is shielded from not only the atmosphere above the blocking member 33 but also the atmosphere around the blocking member 33. Thereby, the degree of sealing of the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33 can be increased.
  • the blocking member 33 does not collide with the lifting frame 32 even if the blocking member 33 is rotated around the rotation axis A1 with respect to the lifting frame 32.
  • the upper support portion 43 of the blocking member 33 is supported by the lower support portion 44 of the spin chuck 10, the upper support portion 43 and the lower support portion 44 mesh with each other, and the relative positions of the upper support portion 43 and the lower support portion 44 in the circumferential direction. Movement is regulated.
  • the spin motor 14 rotates in this state, the torque of the spin motor 14 is transmitted to the blocking member 33 via the upper support 43 and the lower support 44.
  • the blocking member 33 rotates at the same speed in the same direction as the spin base 12 with the lifting frame 32 and the center nozzle 45 stationary.
  • the center nozzle 45 includes a plurality of liquid discharge ports for discharging liquid and gas discharge ports for discharging gas.
  • the plurality of liquid discharge ports include a first chemical liquid discharge port 46 for discharging a first chemical liquid, a second chemical liquid discharge port 47 for discharging a second chemical liquid, and an upper rinse liquid discharge port 48 for discharging a rinse liquid.
  • the gas discharge port is an upper gas discharge port 49 for discharging an inert gas.
  • the first chemical liquid discharge port 46, the second chemical liquid discharge port 47, and the upper rinse liquid discharge port 48 are open at the lower end of the center nozzle 45.
  • the upper gas discharge port 49 is open on the outer peripheral surface of the center nozzle 45.
  • the first and second chemicals include, for example, sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (for example, citric acid, oxalic acid, etc.), and organic alkalis (for example, TMAH: Liquid containing at least one of tetramethylammonium hydroxide, a surfactant, a polyhydric alcohol, and a corrosion inhibitor.
  • TMAH Liquid containing at least one of tetramethylammonium hydroxide, a surfactant, a polyhydric alcohol, and a corrosion inhibitor.
  • Sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, citric acid, oxalic acid, and TMAH are etching solutions.
  • the first chemical solution and the second chemical solution may be the same type of chemical solution or different types of chemical solutions.
  • FIG. 2 and the like show an example in which the first chemical is DHF (dilute hydrofluoric acid) and the second chemical is a mixture of TMAH and propylene glycol.
  • the rinsing liquid supplied to the central nozzle 45 is pure water, and the inert gas supplied to the central nozzle 45 is nitrogen gas.
  • the rinsing liquid supplied to the center nozzle 45 may be a rinsing liquid other than pure water.
  • the inert gas supplied to the center nozzle 45 may be an inert gas other than the nitrogen gas.
  • the substrate processing apparatus 1 includes a chemical solution preparation unit 61 for preparing an alkaline etching solution corresponding to the second chemical solution.
  • the etching solution is, for example, a liquid having a pH (hydrogen ion index) of 12 or more.
  • the etching solution is a solution containing a quaternary ammonium hydroxide, water (H2O), and an inhibitor.
  • FIG. 2 and the like show an example in which the quaternary ammonium hydroxide is TMAH and the inhibitor is PG (propylene glycol).
  • the etching solution is not quaternary ammonium hydroxide, water, and an inhibitor. It may further contain a substance.
  • TMAH TMAH
  • TBAH tetrabutylammonium hydroxide
  • TPeAH tetrapentylammonium hydroxide
  • THAH tetrahexylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TPAH tetraethylammonium hydroxide
  • Propylammonium hydroxide or may be other than these. These are all included in the organic alkali.
  • TMAH is not an aqueous solution but an anhydride. This is the same for other quaternary ammonium hydroxides such as TBAH.
  • the quaternary ammonium hydroxide When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions.
  • the inhibitor is a substance that inhibits contact between hydroxide ions generated from the quaternary ammonium hydroxide and an etching target including polysilicon.
  • the inhibitor molecule is larger than the hydroxide ion.
  • the inhibitor is preferably a water-soluble substance that is soluble in water.
  • the inhibitor may be a surfactant having both hydrophilic and hydrophobic groups.
  • the inhibitor may be an insoluble substance that does not dissolve in water as long as it is uniformly dispersed in a solution containing a quaternary ammonium hydroxide and water.
  • the inhibitor is, for example, glycol.
  • the glycol is, for example, at least one of ethylene glycol, diethylene glycol and propylene glycol.
  • the inhibitor may be a substance other than glycol, such as glycerin.
  • Glycol is an example of a substance that does not participate in the reaction between silicon (Si) and hydroxide ions (OH ⁇ ). That is, glycol is an example of a substance that does not react with atoms or the like involved in the reaction between silicon and hydroxide ions.
  • Glycol is an example of a substance that does not act as a catalyst in this reaction.
  • the glycol is propylene glycol.
  • the substrate processing apparatus 1 guides the first chemical liquid to the central nozzle 45, the first chemical liquid valve 51 interposed in the first chemical liquid pipe 50, and guides the second chemical liquid to the central nozzle 45.
  • An upper rinse liquid valve 55 is provided.
  • the substrate processing apparatus 1 further includes an upper gas pipe 56 for guiding a gas to the center nozzle 45, an upper gas valve 57 interposed in the upper gas pipe 56, and a gas supplied from the upper gas pipe 56 to the center nozzle 45.
  • An upper gas flow control valve 58 for changing the flow rate is provided.
  • the first chemical liquid valve 51 When the first chemical liquid valve 51 is opened, the first chemical liquid is supplied to the central nozzle 45 and is discharged downward from the first chemical liquid discharge port 46 opened at the lower end of the central nozzle 45.
  • the second chemical liquid valve 53 When the second chemical liquid valve 53 is opened, the second chemical liquid generated by the chemical liquid preparation unit 61 is supplied to the central nozzle 45 and is discharged downward from the second chemical liquid discharge port 47 opened at the lower end of the central nozzle 45.
  • the upper rinsing liquid valve 55 When the upper rinsing liquid valve 55 is opened, the rinsing liquid is supplied to the center nozzle 45 and discharged downward from the upper rinsing liquid discharge port 48 opened at the lower end of the center nozzle 45. Thereby, the chemical solution or the rinsing liquid is supplied to the upper surface of the substrate W.
  • the nitrogen gas guided by the upper gas pipe 56 is supplied to the center nozzle 45 at a flow rate corresponding to the degree of opening of the upper gas flow rate adjustment valve 58, and is opened at the outer peripheral surface of the center nozzle 45.
  • the gas is discharged obliquely downward from the upper gas discharge port 49.
  • the nitrogen gas flows downward in the upper cylindrical passage 39 while flowing in the upper cylindrical passage 39 in the circumferential direction.
  • the nitrogen gas that has reached the lower end of the upper tubular passage 39 flows downward from the lower end of the upper tubular passage 39.
  • the nitrogen gas flows radially in all directions in the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33.
  • the space between the substrate W and the blocking member 33 is filled with the nitrogen gas, and the oxygen concentration in the atmosphere is reduced.
  • the oxygen concentration in the space between the substrate W and the blocking member 33 is changed according to the degree of opening of the upper gas valve 57 and the upper gas flow control valve 58.
  • the upper gas valve 57 and the upper gas flow control valve 58 are included in the atmospheric oxygen concentration changing unit.
  • FIG. 4 is a schematic diagram showing a chemical solution creating unit 61 for creating a chemical solution supplied to the substrate W, and a dissolved oxygen concentration changing unit 67 for adjusting the dissolved oxygen concentration of the chemical solution.
  • the chemical liquid preparation unit 61 includes a tank 62 for storing an alkaline etching liquid corresponding to the second chemical liquid, and a circulation pipe 63 for forming an annular circulation path for circulating the etching liquid in the tank 62.
  • the chemical solution preparation unit 61 further includes a pump 64 for sending the etching solution in the tank 62 to the circulation pipe 63, and a filter 66 for removing foreign substances such as particles from the etching solution flowing in the circulation path.
  • the chemical solution preparation unit 61 may include a temperature controller 65 that changes the temperature of the etching solution in the tank 62 by heating or cooling the etching solution.
  • the upstream end and the downstream end of the circulation pipe 63 are connected to the tank 62.
  • the upstream end of the second chemical pipe 52 is connected to the circulation pipe 63, and the downstream end of the second chemical pipe 52 is connected to the center nozzle 45.
  • the pump 64, the temperature controller 65, and the filter 66 are interposed in the circulation pipe 63.
  • the temperature controller 65 may be a heater that heats the liquid at a temperature higher than room temperature (for example, 20 to 30 ° C.), a cooler that cools the liquid at a temperature lower than room temperature, And cooling functions.
  • the pump 64 always sends the etching solution in the tank 62 into the circulation pipe 63.
  • the etchant is sent from the tank 62 to the upstream end of the circulation pipe 63, and returns to the tank 62 from the downstream end of the circulation pipe 63.
  • the etching solution in the tank 62 circulates in the circulation path.
  • the temperature of the etching solution is adjusted by the temperature controller 65.
  • the etching solution in the tank 62 is maintained at a constant temperature.
  • the second chemical liquid valve 53 is opened, a part of the etching liquid flowing in the circulation pipe 63 is supplied to the central nozzle 45 via the second chemical liquid pipe 52.
  • the temperature of the etchant supplied to the central nozzle 45 may be room temperature or may be different from room temperature.
  • the substrate processing apparatus 1 includes a dissolved oxygen concentration changing unit 67 for adjusting the dissolved oxygen concentration of the etching solution.
  • the dissolved oxygen concentration changing unit 67 includes a gas supply pipe 68 for supplying gas into the tank 62 to dissolve the gas into the etching solution in the tank 62.
  • the dissolved oxygen concentration changing unit 67 further includes: an inert gas pipe 69 for supplying an inert gas to a gas supply pipe 68; an open state in which the inert gas flows from the inert gas pipe 69 to the gas supply pipe 68; An inert gas valve 70 that opens and closes between a closed state where the gas is blocked by an inert gas pipe 69, and an inert gas flow adjustment that changes the flow rate of the inert gas supplied from the inert gas pipe 69 to the gas supply pipe 68. And a valve 71.
  • the gas supply pipe 68 is a bubbling pipe including a gas discharge port 68p arranged in the etching solution in the tank 62.
  • the inert gas valve 70 When the inert gas valve 70 is opened, that is, when the inert gas valve 70 is switched from the closed state to the open state, the inert gas such as the nitrogen gas flows at a flow rate corresponding to the opening of the inert gas flow rate adjustment valve 71. The gas is discharged from the gas discharge port 68p. Thereby, many bubbles are formed in the etching solution in the tank 62, and the inert gas dissolves in the etching solution in the tank 62. At this time, dissolved oxygen is discharged from the etching solution, and the concentration of dissolved oxygen in the etching solution decreases. The dissolved oxygen concentration of the etching solution in the tank 62 is changed by changing the flow rate of the nitrogen gas discharged from the gas discharge port 68p.
  • the dissolved oxygen concentration changing unit 67 includes, in addition to the inert gas pipe 69 and the like, an oxygen-containing gas pipe 72 for supplying an oxygen-containing gas such as clean air to the gas supply pipe 68, and a gas from the oxygen-containing gas pipe 72.
  • An oxygen-containing gas valve 73 that opens and closes between an open state in which the oxygen-containing gas flows through the supply pipe 68 and a closed state in which the oxygen-containing gas is blocked by the oxygen-containing gas pipe 72, and supplies the gas from the oxygen-containing gas pipe 72 to the gas supply pipe 68.
  • an oxygen-containing gas flow control valve 74 for changing the flow rate of the oxygen-containing gas to be supplied.
  • air which is an example of the oxygen-containing gas
  • air is discharged from the gas discharge port 68p at a flow rate corresponding to the degree of opening of the oxygen-containing gas flow control valve 74.
  • air contains oxygen at a rate of about 21 vol%
  • nitrogen gas contains no or only trace amounts of oxygen. Therefore, the dissolved oxygen concentration of the etching solution in the tank 62 can be increased in a shorter time than when no air is supplied into the tank 62. For example, when the dissolved oxygen concentration of the etching solution becomes too low below the set value, air may be intentionally dissolved in the etching solution in the tank 62.
  • the dissolved oxygen concentration changing unit 67 may further include an oxygen concentration meter 75 for measuring the dissolved oxygen concentration of the etching solution.
  • FIG. 4 shows an example in which an oxygen concentration meter 75 is interposed in a measurement pipe 76.
  • the oxygen concentration meter 75 may be interposed in the circulation pipe 63.
  • the upstream end of the measurement pipe 76 is connected to the filter 66, and the downstream end of the measurement pipe 76 is connected to the tank 62.
  • the upstream end of the measurement pipe 76 may be connected to the circulation pipe 63.
  • Part of the etching solution in the circulation pipe 63 flows into the measurement pipe 76 and returns to the tank 62.
  • the oxygen concentration meter 75 measures the dissolved oxygen concentration of the etching solution flowing into the measurement pipe 76.
  • the opening degree of at least one of the inert gas valve 70, the inert gas flow control valve 71, the oxygen-containing gas valve 73, and the oxygen-containing gas flow control valve 74 is changed according to the measurement value of the
  • the chemical preparation unit 61 includes a hydroxide pipe 78 for guiding the quaternary ammonium hydroxide supplied to the tank 62, a hydroxide valve 79 for opening and closing the hydroxide pipe 78, and a hydroxide pipe 78. And a hydroxide flow control valve 80 for changing the flow rate of the quaternary ammonium hydroxide supplied to the tank 62.
  • the chemical preparation unit 61 further includes an inhibitor pipe 81 for guiding the inhibitor supplied to the tank 62, an inhibitor valve 82 for opening and closing the inhibitor pipe 81, and an inhibitor supplied to the tank 62 from the inhibitor pipe 81.
  • An inhibitory substance flow control valve 83 for changing the flow rate of the substance.
  • the quaternary ammonium hydroxide is supplied to the tank 62 at a flow rate corresponding to the hydroxide flow rate adjustment valve 80.
  • the inhibitory substance valve 82 is opened, the inhibitory substance is supplied to the tank 62 at a flow rate corresponding to the inhibitory substance flow rate adjustment valve 83.
  • the quaternary ammonium hydroxide supplied from the hydroxide pipe 78 to the tank 62 may be a quaternary ammonium hydroxide liquid or an aqueous solution of a quaternary ammonium hydroxide. Good.
  • the inhibitor supplied from the inhibitor pipe 81 to the tank 62 may be a liquid of the inhibitor or an aqueous solution of the inhibitor.
  • the chemical liquid preparation unit 61 may further include a stirrer for stirring the liquid in the tank 62.
  • the control unit 3 controls the inhibitor concentration changing unit including the hydroxide valve 79, the hydroxide flow control valve 80, the inhibitor valve 82, and the inhibitor flow control valve 83.
  • the hydroxide valve 79 and the inhibitor valve 82 are closed except when preparing an etchant or when changing the concentration of the inhibitor. In other words, when preparing the etchant or changing the concentration of the inhibitor, at least one of the hydroxide valve 79 and the inhibitor valve 82 is opened, and the concentration of the inhibitor in the etchant becomes an appropriate value. Be changed.
  • FIG. 5 is a block diagram showing hardware of the control device 3. As shown in FIG.
  • the control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a.
  • the computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information.
  • the peripheral device 3d includes an auxiliary storage device 3e that stores information such as the program P, a reading device 3f that reads information from the removable medium RM, and a communication device 3g that communicates with another device such as a host computer.
  • the control device 3 is connected to the input device and the display device.
  • the input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1.
  • the information is displayed on the screen of the display device.
  • the input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices.
  • a touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
  • the CPU 3b executes the program P stored in the auxiliary storage device 3e.
  • the program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be transmitted from the removable medium RM to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
  • the auxiliary storage device 3e and the removable medium RM are non-volatile memories that retain data even when power is not supplied.
  • the auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
  • the removable medium RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable medium RM is an example of a computer-readable recording medium on which the program P is recorded.
  • the removable medium RM is a non-transitory tangible recording medium (non-transitory ⁇ tangible ⁇ recording ⁇ medium).
  • the auxiliary storage device 3e stores a plurality of recipes.
  • the recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W.
  • the plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W.
  • the control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer. Each step described below is executed by the control device 3 controlling the substrate processing apparatus 1. In other words, the control device 3 is programmed to execute each step.
  • FIG. 6 is a schematic view showing an example of a cross section of the substrate W before and after the processing shown in FIG. 7 is performed.
  • FIG. 6 shows a cross section of the substrate W before the processing (etching) shown in FIG. 7 is performed
  • the right side of FIG. 6 shows a substrate W after the processing (etching) shown in FIG. 7 is performed.
  • 2 shows a cross section of FIG.
  • a plurality of recesses R1 recessed in the surface direction of the substrate W are formed on the side surface 92s of the concave portion 92.
  • the substrate W is composed of a laminated film 91 formed on a base material such as a silicon wafer and a thickness direction Dt of the substrate W from the outermost surface Ws of the substrate W (the surface W of the base material of the substrate W (In a direction perpendicular to).
  • the laminated film 91 includes a plurality of polysilicon films P1, P2, P3 and a plurality of silicon oxide films O1, O2, O3.
  • the polysilicon films P1 to P3 are examples of an etching target, and the silicon oxide films O1 to O3 are examples of a non-etching target.
  • Silicon oxide is a substance that does not dissolve or hardly dissolves in an alkaline etching solution containing a quaternary ammonium hydroxide.
  • the plurality of polysilicon films P1 to P3 and the plurality of silicon oxide films O1 to O3 are stacked in the thickness direction Dt of the substrate W such that the polysilicon film and the silicon oxide film are alternately replaced.
  • the polysilicon films P1 to P3 are thin films on which a deposition step of depositing polysilicon on the substrate W and a heat treatment step of heating the deposited polysilicon have been performed (see FIG. 7).
  • the polysilicon films P1 to P3 may be thin films on which no heat treatment process has been performed.
  • the concave portion 92 penetrates the plurality of polysilicon films P1 to P3 and the plurality of silicon oxide films O1 to O3 in the thickness direction Dt of the substrate W. Side surfaces of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3 are exposed at side surfaces 92s of the concave portions 92.
  • the concave portion 92 may be any of a trench, a via hole, and a contact hole, or may be other than these.
  • a natural oxide film is formed on the surface layers of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3.
  • the two-dot chain line on the left side of FIG. 6 indicates the contour of the native oxide film.
  • the natural oxide films of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3 are removed by supplying DHF, which is an example of an oxide film removing solution, and then the polysilicon films P1 to P3 are removed by supplying an etching solution.
  • DHF is an example of an oxide film removing solution
  • FIG. 7 is a process diagram for describing an example of the processing of the substrate W performed by the substrate processing apparatus 1.
  • Step S1 in FIG. 7 a loading step of loading the substrate W into the chamber 4 is performed.
  • the center robot CR supports the substrate W with the hand H1 in a state where the lifting frame 32 and the blocking member 33 are located at the upper position, and all the guards 25 are located at the lower position.
  • the hand H1 enters the chamber 4.
  • the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward.
  • the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped.
  • the center robot CR retracts the hand H1 from inside the chamber 4.
  • the upper gas valve 57 and the lower gas valve 21 are opened, and the upper central opening 38 of the blocking member 33 and the lower central opening 18 of the spin base 12 start discharging nitrogen gas.
  • the blocking member elevating unit 31 lowers the elevating frame 32 from the upper position to the lower position, and the guard elevating unit 27 raises one of the guards 25 from the lower position to the upper position.
  • the spin base 12 is held at a reference rotation angle at which the plurality of upper support portions 43 respectively overlap the plurality of lower support portions 44 in plan view. Therefore, the upper support 43 of the blocking member 33 is supported by the lower support 44 of the spin base 12, and the blocking member 33 is separated from the lifting frame 32.
  • the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 7).
  • a first chemical liquid supply step of supplying DHF, which is an example of the first chemical liquid, to the upper surface of the substrate W is performed (Step S3 in FIG. 7).
  • the first chemical liquid valve 51 is opened in a state where the blocking member 33 is located at the lower position, and the central nozzle 45 starts discharging DHF.
  • the DHF discharged from the center nozzle 45 collides with the center of the upper surface of the substrate W, and then flows outward along the upper surface of the rotating substrate W.
  • a DHF liquid film covering the entire upper surface of the substrate W is formed, and DHF is supplied to the entire upper surface of the substrate W.
  • the first chemical liquid valve 51 is closed, and the discharge of DHF is stopped.
  • a first rinse liquid supply step of supplying pure water, which is an example of a rinse liquid, to the upper surface of the substrate W is performed (Step S4 in FIG. 7).
  • the upper rinsing liquid valve 55 is opened while the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging pure water.
  • the pure water colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W.
  • DHF on the substrate W is washed away by pure water discharged from the center nozzle 45.
  • a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • a second chemical liquid supply step of supplying an etching liquid, which is an example of the second chemical liquid, to the upper surface of the substrate W is performed (Step S5 in FIG. 7).
  • the second chemical liquid valve 53 is opened in a state where the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging the etching liquid.
  • the guard elevating unit 27 may move at least one guard 25 vertically in order to switch the guard 25 that receives the liquid discharged from the substrate W.
  • the etchant colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W.
  • the pure water on the substrate W is replaced with an etchant discharged from the central nozzle 45.
  • a liquid film of the etchant covering the entire upper surface of the substrate W is formed.
  • a second rinsing liquid supply step of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W is performed (Step S6 in FIG. 7).
  • the upper rinsing liquid valve 55 is opened while the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging pure water.
  • the pure water colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W.
  • the etchant on the substrate W is washed away by pure water discharged from the center nozzle 45.
  • a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • Step S7 in FIG. 7 a drying step of drying the substrate W by rotating the substrate W is performed.
  • the spin motor 14 accelerates the substrate W in the rotation direction in a state in which the blocking member 33 is located at the lower position, and the substrate W during the period from the first chemical liquid supply step to the second rinse liquid supply step is removed.
  • the substrate W is rotated at a high rotation speed (for example, several thousand rpm) higher than the rotation speed. Thereby, the liquid is removed from the substrate W, and the substrate W is dried.
  • the spin motor 14 stops rotating. At this time, the spin motor 14 stops the spin base 12 at the reference rotation angle. Thus, the rotation of the substrate W is stopped (Step S8 in FIG. 7).
  • Step S9 in FIG. 7 an unloading step of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 31 raises the elevating frame 32 to the upper position, and the guard elevating unit 27 lowers all the guards 25 to the lower position. Further, the upper gas valve 57 and the lower gas valve 21 are closed, and the upper central opening 38 of the blocking member 33 and the lower central opening 18 of the spin base 12 stop discharging nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W. Thereafter, the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1.
  • the processed substrate W is carried out of the chamber 4.
  • FIGS. 8A and 8B are diagrams for explaining a mechanism assumed when contact between hydroxide ions and polysilicon is inhibited by an inhibitor. 8A and 8B show an example where the inhibitor is propylene glycol.
  • the quaternary ammonium hydroxide When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into a cation (cation) and a hydroxide ion (OH ⁇ ). Silicon contained in polysilicon reacts with hydroxide ions as represented by the formula “Si + 4OH ⁇ ⁇ Si (OH) 4 + 4e ⁇ ”. Thereby, the silicon contained in the polysilicon is dissolved in the etching solution, and the etching of the polysilicon to be etched proceeds.
  • the inhibitor acts as a three-dimensional barrier for hydroxide ions, and the hydroxide ions are suspended by the etching solution or absorbed or coordinated with polysilicon by the inhibitor, Blocked from moving towards polysilicon. Therefore, the number of hydroxide ions reaching the polysilicon decreases, and the etching rate of the polysilicon decreases. By such a mechanism, it is considered that the contact between the hydroxide ion and the polysilicon is inhibited by the inhibitor.
  • the etching rate is relatively largely reduced on the crystal plane having a high etching rate among the plurality of crystal planes of the silicon single crystal. .
  • the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the polysilicon is uniformly etched regardless of the plane orientation of the silicon single crystal exposed on the surface of the polysilicon. By such a mechanism, it is considered that the polysilicon is etched with a uniform etching amount at any place.
  • FIG. 9 is a graph showing an example of the relationship between the etching rates of three crystal planes of a silicon single crystal and the concentration of propylene glycol in the etching solution.
  • FIG. 9 shows the (110) plane, the (100) plane, and the (100) plane when a silicon single crystal is etched using three types of TMAHs (zero concentration, first concentration, and second concentration) having different concentrations of propylene glycol.
  • the measured value of the etching rate of the (111) plane is shown.
  • the etching conditions when the measured values shown in FIG. 9 were obtained were the same except for the concentration of propylene glycol in TMAH.
  • the temperature of TMAH is 40 ° C.
  • the concentration of TMAH to which propylene glycol is not added is 5 wt% (mass percent concentration).
  • the dissolved oxygen concentration of TMAH is previously reduced.
  • the concentration of propylene glycol is in the range from zero to the first concentration, the etching rate of the (110) plane and the (100) plane is sharply reduced, while the etching rate of the (111) plane is very slow. Has decreased. Therefore, in this range, as the concentration of propylene glycol increases, the difference between the maximum value of the etching rate and the minimum value of the etching rate decreases.
  • the rate of decrease in the etching rate decreases, but the first concentration Up to a value near the middle between the second concentration and the second concentration, the rate of decrease in the etching rate on the (110) plane and the (100) plane is larger than the rate of decrease in the etching rate on the (111) plane. Therefore, even when the concentration of propylene glycol is in a range up to a value near the middle between the first concentration and the second concentration, the difference between the maximum value of the etching rate and the minimum value of the etching rate decreases as the concentration of propylene glycol increases. are doing.
  • an inhibitor such as propylene glycol may be excessively administered to the etching solution.
  • an inhibitor such as propylene glycol may be excessively administered to the etching solution.
  • a small amount of propylene glycol for example, about 5 to 10 wt% is added, the effect of relaxing anisotropy is relatively small, but a large amount of propylene glycol (for example, 20 wt% or more) is added.
  • propylene glycol is excessively administered, a remarkable effect of alleviating anisotropy is observed.
  • control device 3 may determine the concentration of the inhibitor in the etchant based on a target value of a difference between etching rates on a plurality of crystal planes of silicon single crystal constituting polysilicon.
  • the target value of the difference between the etching rates may be specified in a recipe, or may be input to the control device 3 from an external device such as a host computer.
  • the alkaline etching solution containing the quaternary ammonium hydroxide, water, and the inhibitor is mixed with the etching objects P1 to P3 (see FIG. 6) and the etching objects P1 to P3.
  • Different non-etching targets O1 to O3 are supplied to the exposed substrate W.
  • the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions.
  • the silicon single crystal contained in the etching objects P1 to P3 reacts with hydroxide ions and is dissolved in the etching solution.
  • the etching rates of the etching objects P1 to P3 are higher than the etching rates of the non-etching objects O1 to O3. Thereby, the etching objects P1 to P3 are selectively etched.
  • the inhibitor inhibits contact between the hydroxide ions and the etching objects P1 to P3. That is, the inhibitor acts as a three-dimensional barrier for hydroxide ions, and reduces the number of hydroxide ions that react with the etching objects P1 to P3. Thereby, the etching rate of the etching objects P1 to P3 decreases. Further, the etching rate does not decrease uniformly on a plurality of crystal planes of the silicon single crystal, but relatively decreases on a crystal plane having a high etching rate among them. As a result, the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the etching of the silicon single crystal contained in the etching objects P1 to P3 approaches the isotropic etching, and the etching objects P1 to P3 are etched with a uniform etching amount in any place.
  • hydroxide ions in the etching solution are prevented from moving toward the polysilicon by an inhibitor suspended in the etching solution or adsorbed or coordinated with the polysilicon. If the number of inhibitory molecules present in the etching solution is the same, the larger the inhibitory molecule, the more difficult it is for hydroxide ions to reach the etching objects P1 to P3. If an inhibitor whose one molecule is larger than a hydroxide ion is used as in this embodiment, the number of hydroxide ions in contact with the etching objects P1 to P3 can be effectively reduced.
  • the quaternary ammonium hydroxide, water, and the inhibitor are mixed not before being discharged from the discharge port 47 but before being discharged from the discharge port 47.
  • an etching solution is prepared in which the quaternary ammonium hydroxide, water, and the inhibitor are uniformly mixed.
  • the etchant is discharged from the discharge port 47 toward the substrate W and supplied to the substrate W. Therefore, the substrate W can be treated more uniformly than when the quaternary ammonium hydroxide, water, and the inhibitor are mixed after being discharged from the discharge port 47.
  • DHF which is an example of the oxide film removing liquid
  • DHF which is an example of the oxide film removing liquid
  • the natural oxide films of the etching objects P1 to P3 are removed from the surface layers of the etching objects P1 to P3.
  • an etching solution is supplied to the substrate W, and the etching objects P1 to P3 are selectively etched.
  • the natural oxide films of the etching objects P1 to P3 are mainly composed of silicon oxide.
  • the etching liquid is a liquid that etches the etching objects P1 to P3 without etching or almost not etching the silicon oxide. This is because hydroxide ions react with silicon, but do not or rarely react with silicon oxide. Therefore, the etching objects P1 to P3 can be efficiently etched by removing the natural oxide films of the etching objects P1 to P3 in advance.
  • the etching targets P1 to P3 subjected to the heat treatment step of heating the deposited polysilicon are etched with an alkaline etching solution. Heating the deposited polysilicon under appropriate conditions increases the polysilicon grain size. Therefore, as compared with the case where the heat treatment step is not performed, the silicon single crystal contained in the etching objects P1 to P3 is larger. This means that the number of silicon single crystals exposed on the surfaces of the etching objects P1 to P3 decreases, and the influence of anisotropy increases. Therefore, by supplying an etching solution containing a quaternary ammonium hydroxide, water and an inhibitor to the etching objects P1 to P3, the influence of anisotropy can be effectively reduced.
  • the concentration of dissolved oxygen in at least one of the quaternary ammonium hydroxide, water, and the inhibitor is reduced. Accordingly, the concentration of dissolved oxygen in the etching solution prepared from these decreases.
  • an etching solution having a high dissolved oxygen concentration is supplied to the substrate W, a part of the surface layer of the etching objects P1 to P3 is oxidized and changes to silicon oxide. This means that the etching rates of the etching objects P1 to P3 are further reduced. Accordingly, by supplying an etching solution having a low dissolved oxygen concentration to the substrate W, it is possible to reduce the anisotropy of the silicon single crystal while suppressing a decrease in the etching rate of the etching objects P1 to P3.
  • the etching solution is supplied to the substrate W in a state where the oxygen concentration in the atmosphere is low. This reduces the amount of oxygen dissolved from the atmosphere into the etching solution, thereby suppressing an increase in the concentration of dissolved oxygen.
  • the etching rate of the etching objects P1 to P3 further decreases. Therefore, a further decrease in the etching rate can be suppressed by reducing the oxygen concentration in the atmosphere.
  • the substrate processing apparatus 101 is a batch-type apparatus that processes a plurality of substrates W at a time.
  • FIG. 10 is a schematic view showing a chemical processing unit 102 provided in a substrate processing apparatus 101 according to the second embodiment of the present invention. 10 and 11, the same components as those shown in FIGS. 1 to 9 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the substrate processing apparatus 101 includes a plurality of processing units that simultaneously supply a processing liquid to a plurality of substrates W, a loading operation for simultaneously loading the plurality of substrates W into the processing unit, and a unloading operation of the plurality of substrates W from the processing units. And a control unit 3 for controlling the substrate processing apparatus 101.
  • the plurality of processing units include the chemical processing unit 102 that supplies an alkaline etchant corresponding to the second chemical to the plurality of substrates W simultaneously.
  • the chemical processing unit 102 includes an immersion tank 103 for storing an etching liquid and simultaneously carrying a plurality of substrates W, and an overflow tank 104 for receiving the etching liquid overflowing from the immersion tank 103.
  • the plurality of processing units are a rinsing liquid processing unit for simultaneously supplying a rinsing liquid to the plurality of substrates W supplied with the etching liquid, and simultaneously drying the plurality of substrates W supplied with the rinsing liquid.
  • a drying processing unit is not shown.
  • the chemical treatment unit 102 includes, in addition to the immersion tank 103 and the overflow tank 104, a housing 105 that houses the immersion tank 103 and the overflow tank 104, a shutter 106 that opens and closes a loading / unloading port 105 a provided at an upper part of the housing 105, An opening / closing unit 107 for moving the shutter 106 between a closed position where the carry-in / out port 105a is closed by the shutter 106 and an open position where the carry-in / out port 105a is opened is included.
  • the plurality of substrates W pass vertically through the loading / unloading port 105a.
  • the transport unit moves the plurality of substrates W between the lower position where the plurality of substrates W are immersed in the etching liquid in the immersion tank 103 and the upper position where the plurality of substrates W is positioned above the etching liquid in the immersion tank 103.
  • Lifter 108 which moves up and down while holding the substrate W at the same time.
  • the chemical processing unit 102 includes two chemical nozzles 109 provided with a second chemical liquid outlet 47 for discharging an alkaline etching liquid corresponding to the second chemical, a drain pipe 116 for discharging the liquid in the immersion tank 103, including.
  • the chemical solution nozzle 109 discharges the etchant
  • the etchant is supplied into the immersion tank 103 and an upward flow is formed in the etchant in the immersion tank 103.
  • the drain valve 117 interposed in the drain pipe 116 is opened, the liquid in the immersion tank 103 such as the etching solution is discharged to the drain pipe 116.
  • the upstream end of the drainage pipe 116 is connected to the bottom of the immersion tank 103.
  • the circulation pipe 63 for circulating the etching liquid in the tank 62 of the chemical liquid preparation unit 61 is connected to two chemical liquid nozzles 109 via a chemical liquid pipe 110.
  • the chemical pipe 110 guides the etchant supplied from the circulation pipe 63 toward the two chemical nozzles 109, and guides the etchant supplied from the common pipe 110c to the two chemical nozzles 109, respectively.
  • two branch pipes 110b The upstream end of the branch pipe 110b is connected to the common pipe 110c, and the downstream end of the branch pipe 110b is connected to the chemical nozzle 109.
  • the chemical liquid valve 114 interposed in the common pipe 110c is opened.
  • the etching liquid in the common pipe 110c is supplied to the two chemical liquid nozzles 109 via the two branch pipes 110b, and is discharged from the two chemical liquid nozzles 109.
  • the chemical liquid valve 114 is closed, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is stopped.
  • the chemical liquid valve 114 is closed except when the empty immersion tank 103 is filled with the etching liquid.
  • the overflow tank 104 is connected to a common pipe 110c via a return pipe 115.
  • the upstream end of the return pipe 115 is connected to the overflow tank 104, and the downstream end of the return pipe 115 is connected to the common pipe 110 c at a position downstream of the chemical liquid valve 114.
  • the etching liquid overflowing from the immersion tank 103 to the overflow tank 104 is sent again to the two chemical liquid nozzles 109 by the pump 113 and is filtered by the filter 111 before reaching the two chemical liquid nozzles 109.
  • Chemical treatment unit 102 may include a temperature controller 112 that changes the temperature of the etching solution in immersion tank 103 by heating or cooling the etching solution.
  • the dissolved oxygen concentration changing unit 67 that adjusts the dissolved oxygen concentration of the etching solution includes at least one unit that dissolves a low oxygen gas having an oxygen concentration lower than the oxygen concentration in air (about 21 vol%) in the etching solution in the immersion tank 103. It further includes three gas nozzles 118.
  • FIG. 10 shows an example in which two gas nozzles 118 are provided and the low oxygen gas is a nitrogen gas. The two gas nozzles 118 are attached to the immersion tank 103, and discharge nitrogen gas inside the immersion tank 103.
  • the dissolved oxygen concentration changing unit 67 includes a gas supply pipe 119 for supplying nitrogen gas to at least one gas nozzle 118, an open state in which nitrogen gas flows from the gas supply pipe 119 to at least one gas nozzle 118, and a gas supply pipe 119.
  • a gas valve 120 that opens and closes between a closed state and a gas flow adjustment valve 121 that changes the flow rate of nitrogen gas supplied from the gas supply pipe 119 to at least one gas nozzle 118.
  • the dissolved oxygen concentration changing unit 67 further includes a purge gas supply pipe 122 for supplying a low oxygen gas such as a nitrogen gas into the housing 105, an open state in which the nitrogen gas flows from the purge gas supply pipe 122 to the housing 105, and a purge gas supply for the nitrogen gas. And a purge gas valve 123 that opens and closes between a closed state blocked by the supply pipe 122.
  • the dissolved oxygen concentration changing unit 67 further includes a gas discharge pipe 124 for guiding the gas in the housing 105 to the outside of the housing 105, and a gas discharge pipe 124 when the pressure in the housing 105 exceeds the upper limit pressure. And a relief valve 125 for discharging gas.
  • FIG. 11 is a process diagram showing an example of a flow from creation of a new etching solution to discharge of the used etching solution from the immersion tank 103.
  • control device 3 controlling the substrate processing apparatus 101.
  • the control device 3 is programmed to cause the substrate processing apparatus 101 to execute the following operation.
  • FIG. 10 and FIG. 11 will be referred to.
  • the etching liquid supplied to the immersion tank 103 of the chemical processing unit 102 is created by the chemical creating unit 61 (step S11 in FIG. 11). Specifically, TMAH is supplied from the hydroxide pipe 78 into the tank 62, and propylene glycol is supplied from the inhibitory substance pipe 81 into the tank 62. Thereby, TMAH and propylene glycol are mixed in the tank 62, and an etchant is created. Further, an inert gas such as a nitrogen gas is supplied from the gas supply pipe 68 into the tank 62. Thereby, the dissolved oxygen concentration of the etching solution in the tank 62 decreases (Step S12 in FIG. 11).
  • the purge gas valve 123 is opened, and the supply of the nitrogen gas from the purge gas supply pipe 122 to the housing 105 is started (Step S13 in FIG. 11).
  • the inside of the housing 105 is filled with the inert gas.
  • the chemical liquid valve 114 is opened, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is started (Step S14 in FIG. 11).
  • the chemical liquid valve 114 is closed, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is stopped.
  • Step S15 in FIG. 11 This suppresses an increase in the concentration of dissolved oxygen in the etching solution in the immersion tank 103.
  • the lifter 108 descends from the upper position to the lower position while holding the plurality of substrates W. Thereafter, the opening / closing unit 107 moves the shutter 106 from the open position to the closed position. Thereby, all the substrates W included in one batch are submerged in the etching solution in the immersion tank 103 (Step S16 in FIG. 11). Therefore, the etchant is simultaneously supplied to the plurality of substrates W, and the etching target such as the polysilicon films P1 to P3 (see FIG. 6) is etched.
  • the opening / closing unit 107 moves the shutter 106 to the open position, and the lifter 108 moves up to the upper position.
  • the gas valve 120 is closed, and the dissolution of the nitrogen gas in the etching solution in the immersion tank 103 is stopped (Step S17 in FIG. 11). Further, the purge gas valve 123 is closed, and the supply of the nitrogen gas from the purge gas supply pipe 122 to the housing 105 is stopped (Step S18 in FIG. 11). Thereafter, the drain valve 117 is opened, and the etching solution in the immersion tank 103 is discharged to the drain pipe 116 (Step S19 in FIG. 11). When the inside of the immersion tank 103 becomes empty, a new etching solution prepared in advance is supplied to the immersion tank 103 (Steps S11 to S14 in FIG. 11).
  • TMAH and propylene glycol may be mixed in the space between the discharge port 47 of the central nozzle 45 and the substrate W, or may be mixed on the substrate W.
  • TMAH and propylene glycol may be mixed not between inside the tank 62 but between the tank 62 and the discharge port 47 of the center nozzle 45.
  • the inhibitory substance pipe 81 for guiding propylene glycol may be connected to the flow path of the chemical solution from the tank 62 to the discharge port 47 of the center nozzle 45 instead of the tank 62.
  • FIG. 12 shows an example in which the inhibitory substance pipe 81 is connected to the second chemical liquid pipe 52.
  • TMAH is stored in the tank 62
  • an aqueous solution of propylene glycol is stored in the tank 131.
  • the inhibitor pipe 81 may be connected to the center nozzle 45.
  • a liquid of propylene glycol may be stored in the tank 131.
  • the propylene glycol in the tank 131 is sent from the tank 131 to the inhibitory substance pipe 81 by the pump 132, and the second chemical liquid pipe It is mixed with TMAH in 52 or in the central nozzle 45.
  • TMAH TMAH
  • propylene glycol TMAH
  • water TMAH
  • the alkaline etching solution containing TMAH and propylene glycol may be supplied not to the upper surface of the substrate W but to the lower surface of the substrate W.
  • the etching liquid may be supplied to both the upper surface and the lower surface of the substrate W.
  • the etchant may be discharged to the lower surface nozzle 15.
  • the dissolved oxygen concentration changing unit 67 may be omitted from the substrate processing apparatus. That is, an etchant that does not reduce the concentration of dissolved oxygen may be supplied to the substrate W.
  • the tubular portion 37 may be omitted from the blocking member 33.
  • the upper support 43 and the lower support 44 may be omitted from the blocking member 33 and the spin chuck 10.
  • the blocking member 33 may be omitted from the processing unit 2.
  • a nozzle for discharging a processing liquid such as a first chemical liquid toward the substrate W may be provided in the processing unit 2.
  • the nozzle may be a scan nozzle movable horizontally in the chamber 4 or a fixed nozzle fixed to the partition 6 of the chamber 4.
  • the nozzle may have a plurality of liquid discharge ports for supplying the processing liquid to the upper surface or the lower surface of the substrate W by simultaneously discharging the processing liquid toward a plurality of positions separated in the radial direction of the substrate W. In this case, at least one of the flow rate, temperature, and concentration of the processing liquid to be discharged may be changed for each liquid discharge port.
  • the number of polysilicon films included in the laminated film 91 may be one.
  • the number of silicon oxide films included in the stacked film 91 may be one.
  • the concave portion 92 may penetrate only the silicon oxide film in the thickness direction Dt of the substrate W. That is, the surface of the polysilicon film may be the bottom surface of the concave portion 92. In this case, a plurality of recesses 92 may be provided in the substrate W.
  • the non-etching target may be a substance other than silicon oxide.
  • the substrate processing apparatus is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
  • the chemical solution creating unit 61 is an example of an etchant creating means and an etchant manufacturer.
  • the center nozzle 45 is an example of a selective etching unit and a selective etching nozzle.
  • the second chemical liquid discharge port 47 is an example of a discharge port.
  • the second chemical liquid pipe 52, the tank 62, the hydroxide pipe 78, and the inhibitory substance pipe 81 are an example of a mixing unit and a mixer.
  • the central nozzle 45, particularly the first chemical liquid discharge port 46, is an example of a natural oxide film removing means and a natural oxide film remover.
  • the dissolved oxygen concentration changing unit 67 is an example of a dissolved oxygen concentration changing unit and a dissolved oxygen concentration changer.
  • the lower gas valve 21, the lower gas flow control valve 22, the upper gas valve 57, and the upper gas flow control valve 58 are an example of an atmosphere oxygen concentration changing unit and an atmosphere oxygen concentration changer.
  • Substrate processing apparatus 15 Lower surface nozzle 18: Lower central opening 21: Lower gas valve 22: Lower gas flow control valve 45: Central nozzle 46: First chemical liquid discharge port 47: Second chemical liquid discharge port 49: Upper gas discharge port 52 : Second chemical liquid pipe 57: Upper gas valve 58: Upper gas flow rate adjusting valve 61: Chemical liquid preparation unit 62: Tank 67: Dissolved oxygen concentration changing unit 78: Hydroxide pipe 81: Inhibiting substance pipe 91: Laminated film 92: Depression 101 : Substrate processing apparatus 109: chemical solution nozzle 118: gas nozzles O1 to O3: silicon oxide films P1 to P3: polysilicon film W: substrate

Abstract

In the present invention, an alkaline etchant containing a quaternary ammonium hydroxide, water, and an inhibitory substance for inhibiting contact between hydroxide ions generated from the quaternary ammonium hydroxide and objects P1 to P3 to be etched is prepared. The prepared etchant is supplied to a substrate in which the polysilicon-containing objects P1 to P3 to be etched and objects O1 to O3 not to be etched, which are different from the objects P1 to P3 to be etched, are exposed, thereby etching the objects P1 to P3 to be etched while preventing the objects O1 to O3 not to be etched from being etched.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この出願は、2018年8月31日提出の日本国特許出願2018-163796号と、2019年4月11日提出の日本国特許出願2019-075345号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2018-163796 filed on August 31, 2018 and Japanese Patent Application No. 2019-075345 filed on April 11, 2019. Is incorporated herein by reference in its entirety.
 本発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象の基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. The substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。特許文献1には、TMAHを基板に供給して、基板に形成されたポリシリコン膜をエッチングする基板処理装置が開示されている。 製造 In a manufacturing process of a semiconductor device or a liquid crystal display device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used. Patent Literature 1 discloses a substrate processing apparatus that supplies TMAH to a substrate and etches a polysilicon film formed on the substrate.
特開2013-258391号公報JP 2013-258391 A
 半導体装置や液晶表示装置などの製造工程では、ポリシリコン膜および酸化シリコン膜が露出した基板にTMAHなどのエッチング液を供給して、酸化シリコン膜のエッチングを抑えながら、ポリシリコン膜をエッチングする場合がある。この場合、選択比(ポリシリコン膜のエッチング速度/酸化シリコン膜のエッチング速度)を高い値に維持しながら、ポリシリコン膜を均一にエッチングすることが要求される。 In a manufacturing process of a semiconductor device or a liquid crystal display device, when an etching solution such as TMAH is supplied to a substrate where a polysilicon film and a silicon oxide film are exposed, the polysilicon film is etched while suppressing the etching of the silicon oxide film. There is. In this case, it is necessary to uniformly etch the polysilicon film while maintaining the selectivity (etching rate of polysilicon film / etching rate of silicon oxide film) at a high value.
 ポリシリコン膜は、多数の微小なシリコン単結晶で構成されている。シリコン単結晶は、TMAHに対して異方性を示す。つまり、シリコン単結晶にTMAHを供給したときのエッチング速度(単位時間あたりのエッチング量)は、シリコンの結晶面ごとに異なる(エッチングの異方性)。ポリシリコン膜の表面で露出する結晶面の方位は様々であり、ポリシリコン膜の場所ごとに異なる。加えて、ポリシリコン膜の表面で露出する結晶面の方位は、ポリシリコン膜ごとに異なる。 The polysilicon film is composed of a large number of fine silicon single crystals. Silicon single crystals exhibit anisotropy with respect to TMAH. That is, the etching rate (etching amount per unit time) when TMAH is supplied to the silicon single crystal differs for each silicon crystal plane (etching anisotropy). The orientation of the crystal plane exposed on the surface of the polysilicon film is various, and differs for each location of the polysilicon film. In addition, the orientation of the crystal plane exposed on the surface of the polysilicon film differs for each polysilicon film.
 シリコン単結晶に異方性があるので、ポリシリコン膜をTMAHでエッチングすると、僅かではあるが、ポリシリコン膜のエッチング量が、ポリシリコン膜の場所ごとに異なる。複数枚のポリシリコン膜をTMAHでエッチングするときも、僅かではあるが、ポリシリコン膜のエッチング量が、ポリシリコン膜ごとに異なる。基板上に形成されるパターンの微細化に伴い、この程度のエッチングの不均一も許容されない場合がある。 の Since the silicon single crystal has anisotropy, if the polysilicon film is etched with TMAH, the etching amount of the polysilicon film is slightly different depending on the location of the polysilicon film. When a plurality of polysilicon films are etched by TMAH, the etching amount of the polysilicon film is slightly different for each polysilicon film. With the miniaturization of the pattern formed on the substrate, such non-uniform etching may not be allowed.
 そこで、本発明の目的の一つは、シリコン単結晶またはポリシリコンとは異なる非エッチング対象物のエッチングを抑えながら、ポリシリコンを含むエッチング対象物を均一にエッチングできる基板処理方法および基板処理装置を提供することである。 Therefore, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of uniformly etching an etching target including polysilicon while suppressing etching of a non-etching target different from silicon single crystal or polysilicon. To provide.
 本発明の一実施形態は、ポリシリコンを含むエッチング対象物と、前記エッチング対象物とは異なる非エッチング対象物と、が露出した基板にアルカリ性のエッチング液を供給する基板処理方法であって、第4級アンモニウム水酸化物と、水と、前記第4級アンモニウム水酸化物から生じた水酸化物イオンと前記エッチング対象物との接触を阻害する阻害物質と、を含むアルカリ性の前記エッチング液を作成するエッチング液作成工程と、前記エッチング液作成工程で作成された前記エッチング液を、前記エッチング対象物と前記非エッチング対象物とが露出した前記基板に供給することにより、前記非エッチング対象物のエッチングを抑えながら前記エッチング対象物をエッチングする選択エッチング工程とを含む、基板処理方法を提供する。 One embodiment of the present invention is a substrate processing method for supplying an alkaline etching solution to a substrate on which an etching target including polysilicon and a non-etching target different from the etching target are exposed, Forming an alkaline etchant comprising a quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched; Etching the non-etching target object by supplying the etching liquid prepared in the etching liquid preparing step to the substrate where the etching target and the non-etching target are exposed. A selective etching step of etching the object to be etched while suppressing etching. That.
 この構成によれば、第4級アンモニウム水酸化物と水と阻害物質とを含むアルカリ性のエッチング液を、ポリシリコンを含むエッチング対象物とエッチング対象物とは異なる非エッチング対象物とが露出した基板に供給する。第4級アンモニウム水酸化物が水に溶けると、第4級アンモニウム水酸化物は、陽イオン(カチオン)と水酸化物イオンとに分離する。エッチング対象物に含まれるシリコン単結晶は、水酸化物イオンと反応し、エッチング液に溶ける。エッチング対象物のエッチング速度は、非エッチング対象物のエッチング速度よりも大きい。これにより、エッチング対象物が選択的にエッチングされる。 According to this configuration, an alkaline etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor is applied to a substrate on which an etching target including polysilicon and a non-etching target different from the etching target are exposed. To supply. When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions. The silicon single crystal contained in the etching target reacts with hydroxide ions and is dissolved in the etching solution. The etching rate of the etching target is higher than the etching rate of the non-etching target. Thereby, the etching target is selectively etched.
 阻害物質は、水酸化物イオンとエッチング対象物との接触を阻害する。つまり、阻害物質は、水酸化物イオンにとって立体的な障壁となり、エッチング対象物と反応する水酸化物イオンの数を減少させる。これにより、エッチング対象物のエッチング速度が低下する。さらに、エッチング速度は、シリコン単結晶の複数の結晶面において均一に減少するのではなく、これらのうちエッチング速度が高い結晶面で相対的に大きく低下する。これにより、複数の結晶面におけるエッチング速度の差が減少し、エッチング液に対するシリコン単結晶の異方性が低下する。つまり、エッチング対象物に含まれるシリコン単結晶のエッチングが等方性エッチングに近づき、エッチング対象物がいずれの場所でも均一なエッチング量でエッチングされる。 (4) The inhibitor inhibits contact between the hydroxide ion and the object to be etched. That is, the inhibitor acts as a three-dimensional barrier for hydroxide ions, and reduces the number of hydroxide ions that react with the etching target. Thereby, the etching rate of the etching target decreases. Further, the etching rate does not decrease uniformly on a plurality of crystal planes of the silicon single crystal, but relatively decreases on a crystal plane having a high etching rate among them. As a result, the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the etching of the silicon single crystal included in the etching object approaches the isotropic etching, and the etching object is etched with a uniform etching amount in any place.
 前記エッチング対象物は、前記基板自体の一部であってもよいし、前記基板(シリコンウエハなどの母材)上に形成された積層物の一部または全部であってもよい。結晶面の方位や温度などのエッチング条件が同じであれば、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを含むアルカリ性のエッチング液を供給したときのシリコン単結晶のエッチング速度は、前記第4級アンモニウム水酸化物と前記水とを含み、前記阻害物質を含まないアルカリ性のエッチング液を供給したときのシリコン単結晶のエッチング速度よりも小さい。 エ ッ チ ン グ The object to be etched may be a part of the substrate itself, or may be a part or all of a laminate formed on the substrate (a base material such as a silicon wafer). If the etching conditions such as the orientation of the crystal plane and the temperature are the same, the etching rate of the silicon single crystal when the alkaline etching solution containing the quaternary ammonium hydroxide, the water and the inhibitor is supplied, And an etching rate of a silicon single crystal when an alkaline etching solution containing the quaternary ammonium hydroxide and the water and not containing the inhibitor is supplied.
 前記実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。 In the above embodiment, at least one of the following features may be added to the substrate processing method.
 前記エッチング液作成工程は、前記ポリシリコンを構成するシリコン単結晶の複数の結晶面におけるエッチング速度の差に基づいて前記エッチング液における前記阻害物質の濃度を決定する濃度決定工程を含む。 The etching solution forming step includes a concentration determining step of determining a concentration of the inhibitor in the etching solution based on a difference between etching rates on a plurality of crystal planes of the silicon single crystal constituting the polysilicon.
 前記エッチング液作成工程で作成される前記エッチング液における前記阻害物質の濃度は、20質量パーセント濃度以上、100質量パーセント濃度未満である。 (4) The concentration of the inhibitor in the etching solution prepared in the etching solution forming step is not less than 20% by mass and less than 100% by mass.
 前記阻害物質の分子は、前記水酸化物イオンよりも大きい。 分子 The molecule of the inhibitor is larger than the hydroxide ion.
 前述のように、エッチング液中の水酸化物イオンは、エッチング液中の阻害物質に遮られる。エッチング液中に存在する阻害物質の分子の数が同じであれば、阻害物質の分子が大きいほど、水酸化物イオンがエッチング対象物に到達し難い。この構成のように、1つの分子が水酸化物イオンよりも大きい阻害物質を用いれば、エッチング対象物に接触する水酸化物イオンの数を効果的に減らすことができる。 よ う As described above, hydroxide ions in the etching solution are blocked by the inhibitor in the etching solution. If the number of molecules of the inhibitor present in the etching solution is the same, the larger the molecule of the inhibitor, the more difficult it is for hydroxide ions to reach the etching target. When an inhibitor having one molecule larger than hydroxide ions is used as in this configuration, the number of hydroxide ions in contact with the etching target can be effectively reduced.
 前記エッチング液作成工程は、前記エッチング液が吐出口から吐出される前に、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する吐出前混合工程を含み、前記選択エッチング工程は、前記エッチング液作成工程で作成された前記エッチング液を前記基板に向けて前記吐出口に吐出させる吐出工程を含む。 The etching liquid forming step includes a pre-discharge mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor before the etching liquid is discharged from a discharge port, and the selective etching step Includes an ejection step of ejecting the etching solution created in the etching solution creation step toward the substrate through the ejection port.
 この構成によれば、第4級アンモニウム水酸化物と水と阻害物質とを、吐出口から吐出された後ではなく、吐出口から吐出される前に混合する。これにより、第4級アンモニウム水酸化物と水と阻害物質とが均一に混ざり合ったエッチング液が作成される。その後、エッチング液が基板に向けて吐出口から吐出され、基板に供給される。したがって、吐出口から吐出された後に第4級アンモニウム水酸化物と水と阻害物質とを混合する場合に比べて、基板を均一に処理できる。 According to this configuration, the quaternary ammonium hydroxide, water, and the inhibitor are mixed not before being discharged from the discharge port but before being discharged from the discharge port. As a result, an etching solution is prepared in which the quaternary ammonium hydroxide, water, and the inhibitor are uniformly mixed. Thereafter, the etchant is discharged from the discharge port toward the substrate, and is supplied to the substrate. Therefore, the substrate can be treated more uniformly than in the case where the quaternary ammonium hydroxide, water, and the inhibitor are mixed after being discharged from the discharge port.
 前記吐出前混合工程は、配管を介して前記吐出口に接続されたタンクの中で前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合するタンク内混合工程であってもよいし、前記吐出口の方に液体を案内する流路(配管またはノズル)内で前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する流路内混合工程であってもよい。前記エッチング液作成工程は、前記吐出前混合工程に代えて、前記吐出口と前記基板との間の空間で前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する空中混合工程と、前記基板上で前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する基板上混合工程と、のいずれかを含んでいてもよい。 The pre-discharge mixing step may be an in-tank mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a tank connected to the discharge port via a pipe. Then, an in-flow channel mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a flow channel (pipe or nozzle) for guiding the liquid toward the discharge port may be employed. . The etching liquid forming step is an aerial mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor in a space between the discharge port and the substrate instead of the pre-discharge mixing step. And a mixing step on a substrate for mixing the quaternary ammonium hydroxide, the water and the inhibitor on the substrate.
 前記基板処理方法は、前記選択エッチング工程の前に、酸化膜除去液を前記基板に供給して、前記エッチング対象物の自然酸化膜を除去する自然酸化膜除去工程をさらに含む。 The substrate processing method further includes, before the selective etching step, a natural oxide film removing step of supplying an oxide film removing solution to the substrate to remove a natural oxide film of the object to be etched.
 この構成によれば、酸化膜除去液が基板に供給され、エッチング対象物の自然酸化膜がエッチング対象物の表層から除去される。その後、エッチング液が基板に供給され、エッチング対象物が選択的にエッチングされる。エッチング対象物の自然酸化膜は、主として酸化シリコンで構成されている。エッチング液は、酸化シリコンをエッチングせずにもしくは殆どエッチングせずに、エッチング対象物をエッチングする液体である。これは、水酸化物イオンがケイ素と反応するものの、酸化シリコンとは反応しないもしくは殆ど反応しないからである。したがって、エッチング対象物の自然酸化膜を予め除去することにより、エッチング対象物を効率的にエッチングできる。 According to this configuration, the oxide film removing liquid is supplied to the substrate, and the natural oxide film of the etching target is removed from the surface layer of the etching target. Thereafter, an etching solution is supplied to the substrate, and the object to be etched is selectively etched. The natural oxide film to be etched is mainly composed of silicon oxide. The etchant is a liquid that etches an etching target with little or no etching of silicon oxide. This is because hydroxide ions react with silicon, but do not or rarely react with silicon oxide. Therefore, the etching target can be efficiently etched by removing the natural oxide film of the etching target in advance.
 前記エッチング対象物は、ポリシリコンを堆積させる堆積工程と、前記堆積工程で堆積した前記ポリシリコンを加熱する熱処理工程と、を含む複数の工程を実行することにより得られた薄膜である。 The etching target is a thin film obtained by performing a plurality of steps including a deposition step of depositing polysilicon and a heat treatment step of heating the polysilicon deposited in the deposition step.
 この構成によれば、堆積したポリシリコンを加熱する熱処理工程が行われたエッチング対象物を、アルカリ性のエッチング液でエッチングする。堆積したポリシリコンを適切な条件下で加熱すると、ポリシリコンの粒度(グレインサイズ)が増加する。したがって、熱処理工程が行われない場合と比較して、エッチング対象物に含まれるシリコン単結晶が大型化している。これは、エッチング対象物の表面で露出するシリコン単結晶の数が減少し、異方性の影響が高まることを意味する。したがって、このようなエッチング対象物に第4級アンモニウム水酸化物と水と阻害物質とを含むエッチング液を供給することにより、異方性の影響を効果的に低下させることができる。 According to this configuration, the etching target that has been subjected to the heat treatment step of heating the deposited polysilicon is etched with an alkaline etchant. Heating the deposited polysilicon under appropriate conditions increases the polysilicon grain size. Therefore, the size of the silicon single crystal included in the etching target is increased as compared with the case where the heat treatment step is not performed. This means that the number of silicon single crystals exposed on the surface of the etching target decreases, and the influence of anisotropy increases. Therefore, by supplying an etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor to such an etching target, the influence of anisotropy can be effectively reduced.
 前記エッチング液作成工程は、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる溶存酸素濃度変更工程を含む。 The etching solution forming step includes a dissolved oxygen concentration changing step of reducing a dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, the water, and the inhibitor.
 この構成によれば、第4級アンモニウム水酸化物と水と阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる。したがって、これらから作成されるエッチング液の溶存酸素濃度が低下する。溶存酸素濃度が高いエッチング液が基板に供給されると、エッチング対象物の表層の一部が酸化され、酸化シリコンに変化する。これは、エッチング対象物のエッチング速度がさらに低下することを意味する。したがって、溶存酸素濃度が低いエッチング液を基板に供給することにより、エッチング対象物のエッチング速度の低下を抑えながら、シリコン単結晶の異方性を低下させることができる。 According to this configuration, the dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, water, and the inhibitor is reduced. Accordingly, the concentration of dissolved oxygen in the etching solution prepared from these decreases. When an etching solution having a high dissolved oxygen concentration is supplied to the substrate, a part of the surface layer of the etching target is oxidized and changes to silicon oxide. This means that the etching rate of the object to be etched is further reduced. Therefore, by supplying an etchant having a low dissolved oxygen concentration to the substrate, it is possible to reduce the anisotropy of the silicon single crystal while suppressing a decrease in the etching rate of the etching target.
 前記溶存酸素濃度変更工程は、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つに、空気中の酸素濃度(約21vol%(体積パーセント濃度))よりも低い酸素濃度を有する低酸素ガスを溶解させるガス溶解工程であってもよいし、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つを貯留するタンク内の気圧を低下させる減圧工程などの前記ガス溶解工程以外の工程であってもよい。 In the dissolved oxygen concentration changing step, at least one of the quaternary ammonium hydroxide, the water, and the inhibitor is lower than an oxygen concentration in air (about 21 vol% (volume percent concentration)). It may be a gas dissolving step of dissolving a low oxygen gas having an oxygen concentration, or the pressure in a tank for storing at least one of the quaternary ammonium hydroxide, the water, and the inhibitor. It may be a step other than the gas dissolving step, such as a pressure reducing step for lowering the pressure.
 前記基板処理方法は、前記基板に保持されている前記エッチング液に接する雰囲気中の酸素濃度を低下させる雰囲気酸素濃度変更工程をさらに含む。 The substrate processing method further includes an atmosphere oxygen concentration changing step of reducing an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate.
 この構成によれば、雰囲気中の酸素濃度が低い状態でエッチング液が基板に供給される。これにより、雰囲気からエッチング液に溶け込む酸素が減少し、溶存酸素濃度の上昇が抑えられる。溶存酸素濃度が高いエッチング液が基板に供給されると、エッチング対象物のエッチング速度がさらに低下してしまう。したがって、雰囲気中の酸素濃度を低下させることにより、エッチング速度のさらなる低下を抑えることができる。 According to this configuration, the etchant is supplied to the substrate in a state where the oxygen concentration in the atmosphere is low. This reduces the amount of oxygen dissolved from the atmosphere into the etching solution, thereby suppressing an increase in the concentration of dissolved oxygen. When an etching solution having a high dissolved oxygen concentration is supplied to the substrate, the etching rate of the object to be etched is further reduced. Therefore, a further decrease in the etching rate can be suppressed by reducing the oxygen concentration in the atmosphere.
 前記阻害物質は、グリコールである。 The inhibitor is glycol.
 前記エッチング液作成工程は、前記第4級アンモニウム水酸化物としてのTMAH(テトラメチルアンモニウムハイドロオキサイド)と、前記水と、前記グリコールとしてのプロピレングリコールと、を含むアルカリ性の前記エッチング液を作成する工程である。 The etching solution forming step is a step of forming the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. It is.
 本発明の他の実施形態は、ポリシリコンを含むエッチング対象物と、前記エッチング対象物とは異なる非エッチング対象物と、が露出した基板にアルカリ性のエッチング液を供給する基板処理装置であって、第4級アンモニウム水酸化物と、水と、前記第4級アンモニウム水酸化物から生じた水酸化物イオンと前記エッチング対象物との接触を阻害する阻害物質と、を含むアルカリ性の前記エッチング液を作成するエッチング液作成手段と、前記エッチング液作成手段が作成した前記エッチング液を、前記エッチング対象物と前記非エッチング対象物とが露出した前記基板に供給することにより、前記非エッチング対象物のエッチングを抑えながら前記エッチング対象物をエッチングする選択エッチング手段とを含む、基板処理装置を提供する。この構成によれば、前述の効果と同様な効果を奏することができる。 Another embodiment of the present invention is a substrate processing apparatus that supplies an alkaline etchant to an exposed substrate, including an etching target including polysilicon and a non-etching target different from the etching target, The alkaline etching solution containing a quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched. Etching liquid to be created, and the etching liquid created by the etching liquid creating means is supplied to the substrate where the etching target and the non-etching target are exposed, thereby etching the non-etching target. And a selective etching means for etching the object to be etched while suppressing the etching. That. According to this configuration, the same effect as the above-described effect can be obtained.
 前記実施形態において、以下の特徴の少なくとも一つが、前記基板処理装置に加えられてもよい。 In the above embodiment, at least one of the following features may be added to the substrate processing apparatus.
 前記エッチング液作成手段は、前記ポリシリコンを構成するシリコン単結晶の複数の結晶面におけるエッチング速度の差に基づいて前記エッチング液における前記阻害物質の濃度を決定する濃度決定手段を含む。 The etching solution preparing means includes a concentration determining means for determining a concentration of the inhibitor in the etching solution based on a difference in etching rate between a plurality of crystal planes of the silicon single crystal constituting the polysilicon.
 前記エッチング液作成手段が作成した前記エッチング液における前記阻害物質の濃度は、20質量パーセント濃度以上、100質量パーセント濃度未満である。 濃度 The concentration of the inhibitor in the etching solution prepared by the etching solution preparation means is not less than 20% by mass and less than 100% by mass.
 前記阻害物質の分子は、前記水酸化物イオンよりも大きい。この構成によれば、前述の効果と同様な効果を奏することができる。 分子 The molecule of the inhibitor is larger than the hydroxide ion. According to this configuration, the same effect as the above-described effect can be obtained.
 前記選択エッチング手段は、前記エッチング液作成手段が作成した前記エッチング液を前記基板に向けて吐出する吐出口を含み、前記エッチング液作成手段は、前記エッチング液が前記吐出口から吐出される前に、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する混合手段を含む。この構成によれば、前述の効果と同様な効果を奏することができる。 The selective etching means includes a discharge port for discharging the etchant created by the etchant creation means toward the substrate, and the etching solution creation means includes a step before the etchant is discharged from the discharge port. And mixing means for mixing the quaternary ammonium hydroxide, the water and the inhibitor. According to this configuration, the same effect as the above-described effect can be obtained.
 前記基板処理装置は、前記エッチング液作成手段が作成した前記エッチング液が前記基板に供給される前に、酸化膜除去液を前記基板に供給して、前記エッチング対象物の自然酸化膜を除去する自然酸化膜除去手段をさらに含む。この構成によれば、前述の効果と同様な効果を奏することができる。 The substrate processing apparatus supplies an oxide film removing solution to the substrate before the etching solution created by the etching solution creating unit is supplied to the substrate, and removes a natural oxide film of the etching target. It further includes a natural oxide film removing means. According to this configuration, the same effect as the above-described effect can be obtained.
 前記エッチング液作成手段は、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる溶存酸素濃度変更手段を含む。この構成によれば、前述の効果と同様な効果を奏することができる。 The etching solution preparing means includes a dissolved oxygen concentration changing means for lowering a dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, the water and the inhibitor. According to this configuration, the same effect as the above-described effect can be obtained.
 前記基板処理装置は、前記基板に保持されている前記エッチング液に接する雰囲気中の酸素濃度を低下させる雰囲気酸素濃度変更手段をさらに含む。この構成によれば、前述の効果と同様な効果を奏することができる。 The substrate processing apparatus further includes an atmosphere oxygen concentration changing unit that reduces an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate. According to this configuration, the same effect as the above-described effect can be obtained.
 前記阻害物質は、グリコールである。 The inhibitor is glycol.
 前記エッチング液作成手段は、前記第4級アンモニウム水酸化物としてのTMAH(テトラメチルアンモニウムハイドロオキサイド)と、前記水と、前記グリコールとしてのプロピレングリコールと、を含むアルカリ性の前記エッチング液を作成する手段である。 The etching solution preparing means includes means for preparing the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. It is.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or other objects, features, and effects of the present invention will be apparent from the following description of embodiments with reference to the accompanying drawings.
本発明の第1実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. 基板処理装置を側方から見た模式図である。It is the schematic diagram which looked at the substrate processing apparatus from the side. 基板処理装置に備えられた処理ユニットの内部を水平に見た模式図である。FIG. 3 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed horizontally. 図2の一部を拡大した拡大図である。FIG. 3 is an enlarged view in which a part of FIG. 2 is enlarged. 基板に供給される薬液を作成する薬液作成ユニットと、薬液の溶存酸素濃度を調整する溶存酸素濃度変更ユニットとを示す模式図である。It is a schematic diagram which shows the chemical | medical solution preparation unit which produces | generates the chemical | medical solution supplied to a board | substrate, and the dissolved oxygen concentration change unit which adjusts the dissolved oxygen concentration of a chemical | medical solution. 制御装置のハードウェアを示すブロック図である。FIG. 3 is a block diagram illustrating hardware of a control device. 図7に示す処理が行われる前後の基板の断面の一例を示す模式図である。FIG. 8 is a schematic diagram illustrating an example of a cross section of the substrate before and after the processing illustrated in FIG. 7 is performed. 基板処理装置によって実行される基板の処理の一例について説明するための工程図である。It is a flowchart for explaining an example of substrate processing performed by a substrate processing device. 水酸化物イオンとポリシリコンとの接触が阻害物質によって阻害されるときに想定されるメカニズムを説明するための図である。It is a figure for explaining a mechanism assumed when contact between hydroxide ion and polysilicon is inhibited by an inhibitor. 水酸化物イオンとポリシリコンとの接触が阻害物質によって阻害されるときに想定されるメカニズムを説明するための図である。It is a figure for explaining a mechanism assumed when contact between hydroxide ion and polysilicon is inhibited by an inhibitor. シリコン単結晶の3つの結晶面のエッチング速度とエッチング液中のプロピレングリコールの濃度との関係の一例を示すグラフである。4 is a graph showing an example of a relationship between an etching rate of three crystal planes of a silicon single crystal and a concentration of propylene glycol in an etching solution. 本発明の第2実施形態に係る基板処理装置に備えられた薬液処理ユニットを示す模式図である。FIG. 9 is a schematic diagram illustrating a chemical solution processing unit provided in a substrate processing apparatus according to a second embodiment of the present invention. 新しいエッチング液を作成してから使用済みのエッチング液を浸漬槽から排出するまでの流れの一例を示す工程図である。FIG. 3 is a process diagram showing an example of a flow from creation of a new etching solution to discharge of a used etching solution from an immersion tank. 本発明の第3実施形態に係る薬液作成ユニットを示す模式図である。It is a schematic diagram which shows the chemical | medical solution preparation unit which concerns on 3rd Embodiment of this invention.
 図1Aは、本発明の第1実施形態に係る基板処理装置1を上から見た模式図である。図1Bは、基板処理装置1を側方から見た模式図である。 FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above. FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
 図1Aに示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容するキャリアCを保持するロードポートLPと、ロードポートLP上のキャリアCから搬送された基板Wを処理する複数の処理ユニット2と、ロードポートLP上のキャリアCと処理ユニット2との間で基板Wを搬送する搬送ロボットと、基板処理装置1を制御する制御装置3とを備えている。 As shown in FIG. 1A, the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transported from the carrier C on the load port LP, and a carrier on the load port LP. A transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
 搬送ロボットは、ロードポートLP上のキャリアCに対して基板Wの搬入および搬出を行うインデクサロボットIRと、複数の処理ユニット2に対して基板Wの搬入および搬出を行うセンターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送し、センターロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。センターロボットCRは、基板Wを支持するハンドH1を含み、インデクサロボットIRは、基板Wを支持するハンドH2を含む。 The transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2. The indexer robot IR transports the substrate W between the load port LP and the center robot CR, and the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2. The center robot CR includes a hand H1 that supports the substrate W, and the indexer robot IR includes a hand H2 that supports the substrate W.
 複数の処理ユニット2は、平面視でセンターロボットCRのまわりに配置された複数のタワーTWを形成している。図1Aは、4つのタワーTWが形成されている例を示している。センターロボットCRは、いずれのタワーTWにもアクセス可能である。図1Bに示すように、各タワーTWは、上下に積層された複数(たとえば3つ)の処理ユニット2を含む。 (4) The plurality of processing units 2 form a plurality of towers TW arranged around the center robot CR in plan view. FIG. 1A shows an example in which four towers TW are formed. The center robot CR can access any of the towers TW. As shown in FIG. 1B, each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
 図2は、基板処理装置1に備えられた処理ユニット2の内部を水平に見た模式図である。図3は、図2の一部を拡大した拡大図である。図2は、昇降フレーム32および遮断部材33が下位置に位置している状態を示しており、図3は、昇降フレーム32および遮断部材33が上位置に位置している状態を示している。以下の説明において、TMAHは、特に断りがない限り、TMAHの水溶液を意味する。 FIG. 2 is a schematic view of the inside of the processing unit 2 provided in the substrate processing apparatus 1 as viewed horizontally. FIG. 3 is an enlarged view in which a part of FIG. 2 is enlarged. FIG. 2 shows a state in which the lifting frame 32 and the blocking member 33 are located at the lower position, and FIG. 3 shows a state in which the lifting frame 32 and the blocking member 33 are located at the upper position. In the following description, TMAH means an aqueous solution of TMAH unless otherwise specified.
 処理ユニット2は、内部空間を有する箱型のチャンバー4と、チャンバー4内で1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック10と、回転軸線A1まわりにスピンチャック10を取り囲む筒状の処理カップ23とを含む。 The processing unit 2 includes a box-shaped chamber 4 having an internal space, and a spin chuck 10 that rotates around a vertical rotation axis A1 passing through the center of the substrate W while horizontally holding one substrate W in the chamber 4. And a cylindrical processing cup 23 surrounding the spin chuck 10 around the rotation axis A1.
 チャンバー4は、基板Wが通過する搬入搬出口6bが設けられた箱型の隔壁6と、搬入搬出口6bを開閉するシャッター7とを含む。チャンバー4は、さらに、隔壁6の天井面で開口する送風口6aの下方に配置された整流板8を含む。クリーンエアー(フィルターによってろ過された空気)を送るFFU5(ファン・フィルター・ユニット)は、送風口6aの上に配置されている。チャンバー4内の気体を排出する排気ダクト9は、処理カップ23に接続されている。送風口6aは、チャンバー4の上端部に設けられており、排気ダクト9は、チャンバー4の下端部に配置されている。排気ダクト9の一部は、チャンバー4の外に配置されている。 The chamber 4 includes a box-shaped partition wall 6 provided with a loading / unloading port 6b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 6b. The chamber 4 further includes a rectifying plate 8 disposed below an air blow port 6 a opened on the ceiling surface of the partition wall 6. An FFU 5 (fan filter unit) that sends clean air (air filtered by a filter) is disposed above the air outlet 6a. The exhaust duct 9 for discharging the gas in the chamber 4 is connected to the processing cup 23. The air outlet 6 a is provided at the upper end of the chamber 4, and the exhaust duct 9 is arranged at the lower end of the chamber 4. Part of the exhaust duct 9 is arranged outside the chamber 4.
 整流板8は、隔壁6の内部空間を整流板8の上方の上空間Suと整流板8の下方の下空間SLとに仕切っている。隔壁6の天井面と整流板8の上面との間の上空間Suは、クリーンエアーが拡散する拡散空間である。整流板8の下面と隔壁6の床面との間の下空間SLは、基板Wの処理が行われる処理空間である。スピンチャック10や処理カップ23は、下空間SLに配置されている。隔壁6の床面から整流板8の下面までの鉛直方向の距離は、整流板8の上面から隔壁6の天井面までの鉛直方向の距離よりも長い。 The rectifying plate 8 partitions the internal space of the partition 6 into an upper space Su above the rectifying plate 8 and a lower space SL below the rectifying plate 8. The upper space Su between the ceiling surface of the partition 6 and the upper surface of the current plate 8 is a diffusion space in which clean air is diffused. The lower space SL between the lower surface of the current plate 8 and the floor surface of the partition 6 is a processing space in which processing of the substrate W is performed. The spin chuck 10 and the processing cup 23 are arranged in the lower space SL. The vertical distance from the floor surface of the partition 6 to the lower surface of the current plate 8 is longer than the vertical distance from the upper surface of the current plate 8 to the ceiling surface of the partition 6.
 FFU5は、送風口6aを介して上空間Suにクリーンエアーを送る。上空間Suに供給されたクリーンエアーは、整流板8に当たって上空間Suを拡散する。上空間Su内のクリーンエアーは、整流板8を上下に貫通する複数の貫通孔を通過し、整流板8の全域から下方に流れる。下空間SLに供給されたクリーンエアーは、処理カップ23内に吸い込まれ、排気ダクト9を通じてチャンバー4の下端部から排出される。これにより、整流板8から下方に流れる均一なクリーンエアーの下降流(ダウンフロー)が、下空間SLに形成される。基板Wの処理は、クリーンエアーの下降流が形成されている状態で行われる。 The FFU 5 sends clean air to the upper space Su via the air outlet 6a. The clean air supplied to the upper space Su strikes the current plate 8 and diffuses in the upper space Su. The clean air in the upper space Su passes through a plurality of through holes vertically penetrating the current plate 8 and flows downward from the entire area of the current plate 8. The clean air supplied to the lower space SL is drawn into the processing cup 23 and discharged from the lower end of the chamber 4 through the exhaust duct 9. As a result, a uniform downward flow (downflow) of clean air flowing downward from the current plate 8 is formed in the lower space SL. The processing of the substrate W is performed in a state where a downward flow of clean air is formed.
 スピンチャック10は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース12の中央部から下方に延びるスピン軸13と、スピン軸13を回転させることによりスピンベース12および複数のチャックピン11を回転させるスピンモータ14とを含む。スピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面12uに吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding the substrate W in a horizontal position above the spin base 12, and a central portion of the spin base 12. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13. The spin chuck 10 is not limited to a sandwich type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12. Thus, a vacuum-type chuck that holds the substrate W horizontally may be used.
 スピンベース12は、基板Wの下方に配置される上面12uを含む。スピンベース12の上面12uは、基板Wの下面と平行である。スピンベース12の上面12uは、基板Wの下面に対向する対向面である。スピンベース12の上面12uは、回転軸線A1を取り囲む円環状である。スピンベース12の上面12uの外径は、基板Wの外径よりも大きい。チャックピン11は、スピンベース12の上面12uの外周部から上方に突出している。チャックピン11は、スピンベース12に保持されている。基板Wは、基板Wの下面がスピンベース12の上面12uから離れた状態で複数のチャックピン11に保持される。 The spin base 12 includes an upper surface 12u arranged below the substrate W. The upper surface 12u of the spin base 12 is parallel to the lower surface of the substrate W. The upper surface 12u of the spin base 12 is a facing surface facing the lower surface of the substrate W. The upper surface 12u of the spin base 12 has an annular shape surrounding the rotation axis A1. The outer diameter of the upper surface 12u of the spin base 12 is larger than the outer diameter of the substrate W. The chuck pin 11 protrudes upward from the outer peripheral portion of the upper surface 12u of the spin base 12. The chuck pin 11 is held on a spin base 12. The substrate W is held by the plurality of chuck pins 11 with the lower surface of the substrate W separated from the upper surface 12u of the spin base 12.
 処理ユニット2は、基板Wの下面中央部に向けて処理液を吐出する下面ノズル15を含む。下面ノズル15は、スピンベース12の上面12uと基板Wの下面との間に配置されたノズル円板部と、ノズル円板部から下方に延びるノズル筒状部とを含む。下面ノズル15の液吐出口15pは、ノズル円板部の上面中央部で開口している。基板Wがスピンチャック10に保持されている状態では、下面ノズル15の液吐出口15pが、基板Wの下面中央部に上下に対向する。 The processing unit 2 includes the lower surface nozzle 15 that discharges the processing liquid toward the center of the lower surface of the substrate W. The lower surface nozzle 15 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle cylindrical portion extending downward from the nozzle disk portion. The liquid discharge port 15p of the lower surface nozzle 15 is open at the center of the upper surface of the nozzle disk portion. In a state where the substrate W is held by the spin chuck 10, the liquid discharge port 15p of the lower surface nozzle 15 is vertically opposed to the center of the lower surface of the substrate W.
 基板処理装置1は、下面ノズル15にリンス液を案内する下リンス液配管16と、下リンス液配管16に介装された下リンス液バルブ17とを含む。下リンス液バルブ17が開かれると、下リンス液配管16によって案内されたリンス液が、下面ノズル15から上方に吐出され、基板Wの下面中央部に供給される。下面ノズル15に供給されるリンス液は、純水(脱イオン水:DIW(Deionized Water))である。下面ノズル15に供給されるリンス液は、純水に限らず、IPA(イソプロピルアルコール)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、1~100ppm程度)の塩酸水のいずれかであってもよい。 The substrate processing apparatus 1 includes a lower rinsing liquid pipe 16 for guiding the rinsing liquid to the lower surface nozzle 15, and a lower rinsing liquid valve 17 interposed in the lower rinsing liquid pipe 16. When the lower rinsing liquid valve 17 is opened, the rinsing liquid guided by the lower rinsing liquid pipe 16 is discharged upward from the lower nozzle 15 and supplied to the center of the lower surface of the substrate W. The rinsing liquid supplied to the lower nozzle 15 is pure water (deionized water: DIW (Deionized Water)). The rinsing liquid supplied to the lower surface nozzle 15 is not limited to pure water, but may be IPA (isopropyl alcohol), carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 1 to 100 ppm). May be any of
 図示はしないが、下リンス液バルブ17は、液体が流れる内部流路と内部流路を取り囲む環状の弁座とが設けられたバルブボディと、弁座に対して移動可能な弁体と、弁体が弁座に接触する閉位置と弁体が弁座から離れた開位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、下リンス液バルブ17を開閉させる。 Although not shown, the lower rinsing liquid valve 17 includes a valve body provided with an internal flow path through which liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve. An actuator for moving the valve body between a closed position where the body contacts the valve seat and an open position where the valve body is away from the valve seat. The same applies to other valves. The actuator may be a pneumatic actuator or an electric actuator, or may be another actuator. The control device 3 opens and closes the lower rinse liquid valve 17 by controlling the actuator.
 下面ノズル15の外周面とスピンベース12の内周面は、上下に延びる下筒状通路19を形成している。下筒状通路19は、スピンベース12の上面12uの中央部で開口する下中央開口18を含む。下中央開口18は、下面ノズル15のノズル円板部の下方に配置されている。基板処理装置1は、下筒状通路19を介して下中央開口18に供給される不活性ガスを案内する下ガス配管20と、下ガス配管20に介装された下ガスバルブ21と、下ガス配管20から下筒状通路19に供給される不活性ガスの流量を変更する下ガス流量調整バルブ22とを備えている。 外 周 An outer peripheral surface of the lower nozzle 15 and an inner peripheral surface of the spin base 12 form a lower tubular passage 19 extending vertically. The lower cylindrical passage 19 includes a lower central opening 18 that opens at the center of the upper surface 12u of the spin base 12. The lower center opening 18 is arranged below the nozzle disk portion of the lower surface nozzle 15. The substrate processing apparatus 1 includes: a lower gas pipe 20 that guides an inert gas supplied to the lower central opening 18 through a lower cylindrical passage 19; a lower gas valve 21 interposed in the lower gas pipe 20; A lower gas flow control valve 22 for changing the flow rate of the inert gas supplied from the pipe 20 to the lower cylindrical passage 19 is provided.
 下ガス配管20から下筒状通路19に供給される不活性ガスは、窒素ガスである。不活性ガスは、窒素ガスに限らず、ヘリウムガスやアルゴンガスなどの他の不活性ガスであってもよい。これらの不活性ガスは、空気中の酸素濃度(約21vol%)よりも低い酸素濃度を有する低酸素ガスである。 不 The inert gas supplied from the lower gas pipe 20 to the lower cylindrical passage 19 is a nitrogen gas. The inert gas is not limited to nitrogen gas, but may be another inert gas such as helium gas or argon gas. These inert gases are low oxygen gases having an oxygen concentration lower than the oxygen concentration in air (about 21 vol%).
 下ガスバルブ21が開かれると、下ガス配管20から下筒状通路19に供給された窒素ガスが、下ガス流量調整バルブ22の開度に対応する流量で、下中央開口18から上方に吐出される。その後、窒素ガスは、基板Wの下面とスピンベース12の上面12uとの間の空間をあらゆる方向に放射状に流れる。これにより、基板Wとスピンベース12との間の空間が窒素ガスで満たされ、雰囲気中の酸素濃度が低減される。基板Wとスピンベース12との間の空間の酸素濃度は、下ガスバルブ21および下ガス流量調整バルブ22の開度に応じて変更される。下ガスバルブ21および下ガス流量調整バルブ22は、基板Wに接する雰囲気中の酸素濃度を変更する雰囲気酸素濃度変更ユニットに含まれる。 When the lower gas valve 21 is opened, the nitrogen gas supplied from the lower gas pipe 20 to the lower cylindrical passage 19 is discharged upward from the lower central opening 18 at a flow rate corresponding to the degree of opening of the lower gas flow control valve 22. You. Thereafter, the nitrogen gas flows radially in all directions in the space between the lower surface of the substrate W and the upper surface 12u of the spin base 12. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas, and the oxygen concentration in the atmosphere is reduced. The oxygen concentration in the space between the substrate W and the spin base 12 is changed according to the degree of opening of the lower gas valve 21 and the lower gas flow control valve 22. The lower gas valve 21 and the lower gas flow control valve 22 are included in an atmosphere oxygen concentration changing unit that changes the oxygen concentration in the atmosphere in contact with the substrate W.
 処理カップ23は、基板Wから外方に排出された液体を受け止める複数のガード25と、複数のガード25によって下方に案内された液体を受け止める複数のカップ26と、複数のガード25と複数のカップ26とを取り囲む円筒状の外壁部材24とを含む。図2は、2つのガード25と2つのカップ26とが設けられている例を示している。 The processing cup 23 includes a plurality of guards 25 for receiving the liquid discharged outward from the substrate W, a plurality of cups 26 for receiving the liquid guided downward by the plurality of guards 25, a plurality of guards 25, and a plurality of cups. 26 and a cylindrical outer wall member 24 surrounding the outer wall member 24. FIG. 2 shows an example in which two guards 25 and two cups 26 are provided.
 ガード25は、スピンチャック10を取り囲む円筒状のガード筒状部25bと、ガード筒状部25bの上端部から回転軸線A1に向かって斜め上に延びる円環状のガード天井部25aとを含む。複数のガード天井部25aは、上下に重なっており、複数のガード筒状部25bは、同心円状に配置されている。複数のカップ26は、それぞれ、複数のガード筒状部25bの下方に配置されている。カップ26は、上向きに開いた環状の受液溝を形成している。 The guard 25 includes a cylindrical guard tubular portion 25b surrounding the spin chuck 10, and an annular guard ceiling 25a extending obliquely upward from the upper end of the guard tubular portion 25b toward the rotation axis A1. The plurality of guard ceiling portions 25a are vertically overlapped, and the plurality of guard tubular portions 25b are arranged concentrically. The plurality of cups 26 are respectively arranged below the plurality of guard tubular portions 25b. The cup 26 forms an annular liquid receiving groove that opens upward.
 処理ユニット2は、複数のガード25を個別に昇降させるガード昇降ユニット27を含む。ガード昇降ユニット27は、上位置から下位置までの任意の位置にガード25を位置させる。上位置は、ガード25の上端25uがスピンチャック10に保持されている基板Wが配置される保持位置よりも上方に配置される位置である。下位置は、ガード25の上端25uが保持位置よりも下方に配置される位置である。ガード天井部25aの円環状の上端は、ガード25の上端25uに相当する。ガード25の上端25uは、平面視で基板Wおよびスピンベース12を取り囲んでいる。 The processing unit 2 includes a guard elevating unit 27 for individually elevating and lowering a plurality of guards 25. The guard elevating unit 27 positions the guard 25 at an arbitrary position from the upper position to the lower position. The upper position is a position where the upper end 25u of the guard 25 is located above the holding position where the substrate W held by the spin chuck 10 is located. The lower position is a position where the upper end 25u of the guard 25 is disposed below the holding position. The annular upper end of the guard ceiling 25a corresponds to the upper end 25u of the guard 25. The upper end 25u of the guard 25 surrounds the substrate W and the spin base 12 in plan view.
 スピンチャック10が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wから振り切られる。処理液が基板Wに供給されるとき、少なくとも一つのガード25の上端25uが、基板Wよりも上方に配置される。したがって、基板Wから排出された薬液やリンス液などの処理液は、いずれかのガード25に受け止められ、このガード25に対応するカップ26に案内される。 (4) When the processing liquid is supplied to the substrate W while the spin chuck 10 is rotating the substrate W, the processing liquid supplied to the substrate W is shaken off from the substrate W. When the processing liquid is supplied to the substrate W, the upper end 25u of at least one guard 25 is disposed above the substrate W. Therefore, the processing liquid such as the chemical liquid or the rinsing liquid discharged from the substrate W is received by any of the guards 25 and guided to the cup 26 corresponding to the guard 25.
 図3に示すように、処理ユニット2は、スピンチャック10の上方に配置された昇降フレーム32と、昇降フレーム32から吊り下げられた遮断部材33と、遮断部材33に挿入された中心ノズル45と、昇降フレーム32を昇降させることにより遮断部材33および中心ノズル45を昇降させる遮断部材昇降ユニット31とを含む。昇降フレーム32、遮断部材33、および中心ノズル45は、整流板8の下方に配置されている。 As shown in FIG. 3, the processing unit 2 includes a lifting frame 32 disposed above the spin chuck 10, a blocking member 33 suspended from the lifting frame 32, and a central nozzle 45 inserted into the blocking member 33. And a blocking member elevating unit 31 that raises and lowers the lifting frame 32 to raise and lower the blocking member 33 and the center nozzle 45. The lifting frame 32, the blocking member 33, and the center nozzle 45 are arranged below the current plate 8.
 遮断部材33は、スピンチャック10の上方に配置された円板部36と、円板部36の外周部から下方に延びる筒状部37とを含む。遮断部材33は、上向きに凹んだカップ状の内面を含む。遮断部材33の内面は、円板部36の下面36Lと筒状部37の内周面37iとを含む。以下では、円板部36の下面36Lを、遮断部材33の下面36Lということがある。 The blocking member 33 includes a disk portion 36 disposed above the spin chuck 10 and a cylindrical portion 37 extending downward from the outer peripheral portion of the disk portion 36. The blocking member 33 includes an upwardly concave cup-shaped inner surface. The inner surface of the blocking member 33 includes a lower surface 36L of the disk portion 36 and an inner peripheral surface 37i of the cylindrical portion 37. Hereinafter, the lower surface 36L of the disk portion 36 may be referred to as the lower surface 36L of the blocking member 33.
 円板部36の下面36Lは、基板Wの上面に対向する対向面である。円板部36の下面36Lは、基板Wの上面と平行である。筒状部37の内周面37iは、円板部36の下面36Lの外周縁から下方に延びている。筒状部37の内径は、筒状部37の内周面37iの下端に近づくにしたがって増加している。筒状部37の内周面37iの下端の内径は、基板Wの直径よりも大きい。筒状部37の内周面37iの下端の内径は、スピンベース12の外径より大きくてもよい。遮断部材33が後述する下位置(図2に示す位置)に配置されると、基板Wは、筒状部37の内周面37iによって取り囲まれる。 下面 A lower surface 36L of the disk portion 36 is a facing surface facing the upper surface of the substrate W. The lower surface 36L of the disk portion 36 is parallel to the upper surface of the substrate W. The inner peripheral surface 37i of the cylindrical portion 37 extends downward from the outer peripheral edge of the lower surface 36L of the disk portion 36. The inner diameter of the cylindrical portion 37 increases as approaching the lower end of the inner peripheral surface 37i of the cylindrical portion 37. The inner diameter of the lower end of the inner peripheral surface 37i of the cylindrical portion 37 is larger than the diameter of the substrate W. The inner diameter of the lower end of the inner peripheral surface 37i of the cylindrical portion 37 may be larger than the outer diameter of the spin base 12. When the blocking member 33 is arranged at a lower position (a position shown in FIG. 2) described later, the substrate W is surrounded by the inner peripheral surface 37i of the tubular portion 37.
 円板部36の下面36Lは、回転軸線A1を取り囲む円環状である。円板部36の下面36Lの内周縁は、円板部36の下面36Lの中央部で開口する上中央開口38を形成している。遮断部材33の内周面は、上中央開口38から上方に延びる貫通穴を形成している。遮断部材33の貫通穴は、遮断部材33を上下に貫通している。中心ノズル45は、遮断部材33の貫通穴に挿入されている。中心ノズル45の下端の外径は、上中央開口38の直径よりも小さい。 下面 A lower surface 36L of the disk portion 36 is an annular shape surrounding the rotation axis A1. The inner peripheral edge of the lower surface 36L of the disk portion 36 forms an upper central opening 38 that opens at the center of the lower surface 36L of the disk portion 36. The inner peripheral surface of the blocking member 33 forms a through hole extending upward from the upper central opening 38. The through hole of the blocking member 33 penetrates the blocking member 33 up and down. The center nozzle 45 is inserted into a through hole of the blocking member 33. The outer diameter of the lower end of the center nozzle 45 is smaller than the diameter of the upper center opening 38.
 遮断部材33の内周面は、中心ノズル45の外周面と同軸である。遮断部材33の内周面は、径方向(回転軸線A1に直交する方向)に間隔をあけて中心ノズル45の外周面を取り囲んでいる。遮断部材33の内周面と中心ノズル45の外周面とは、上下に延びる上筒状通路39を形成している。中心ノズル45は、昇降フレーム32および遮断部材33から上方に突出している。遮断部材33が昇降フレーム32から吊り下げられているとき、中心ノズル45の下端は、円板部36の下面36Lよりも上方に配置されている。薬液やリンス液などの処理液は、中心ノズル45の下端から下方に吐出される。 内 The inner peripheral surface of the blocking member 33 is coaxial with the outer peripheral surface of the central nozzle 45. The inner peripheral surface of the blocking member 33 surrounds the outer peripheral surface of the central nozzle 45 at intervals in a radial direction (a direction orthogonal to the rotation axis A1). The inner peripheral surface of the blocking member 33 and the outer peripheral surface of the central nozzle 45 form an upper cylindrical passage 39 extending vertically. The center nozzle 45 protrudes upward from the lifting frame 32 and the blocking member 33. When the blocking member 33 is suspended from the lifting frame 32, the lower end of the center nozzle 45 is disposed above the lower surface 36 </ b> L of the disk portion 36. A processing liquid such as a chemical liquid or a rinsing liquid is discharged downward from the lower end of the central nozzle 45.
 遮断部材33は、円板部36から上方に延びる筒状の接続部35と、接続部35の上端部から外方に延びる環状のフランジ部34とを含む。フランジ部34は、遮断部材33の円板部36および筒状部37よりも上方に配置されている。フランジ部34は、円板部36と平行である。フランジ部34の外径は、筒状部37の外径よりも小さい。フランジ部34は、後述する昇降フレーム32の下プレート32Lに支持されている。 The blocking member 33 includes a cylindrical connecting portion 35 extending upward from the disk portion 36 and an annular flange portion 34 extending outward from the upper end of the connecting portion 35. The flange portion 34 is disposed above the disk portion 36 and the cylindrical portion 37 of the blocking member 33. The flange 34 is parallel to the disk 36. The outer diameter of the flange portion 34 is smaller than the outer diameter of the cylindrical portion 37. The flange portion 34 is supported by a lower plate 32L of the lifting frame 32 described later.
 昇降フレーム32は、遮断部材33のフランジ部34の上方に位置する上プレート32uと、上プレート32uから下方に延びており、フランジ部34を取り囲むサイドリング32sと、サイドリング32sの下端部から内方に延びており、遮断部材33のフランジ部34の下方に位置する環状の下プレート32Lとを含む。フランジ部34の外周部は、上プレート32uと下プレート32Lとの間に配置されている。フランジ部34の外周部は、上プレート32uと下プレート32Lとの間で上下に移動可能である。 The elevating frame 32 includes an upper plate 32 u located above the flange portion 34 of the blocking member 33, a downward extending from the upper plate 32 u, a side ring 32 s surrounding the flange portion 34, and an inner side extending from the lower end of the side ring 32 s. And an annular lower plate 32L positioned below the flange portion 34 of the blocking member 33. The outer peripheral portion of the flange portion 34 is disposed between the upper plate 32u and the lower plate 32L. The outer peripheral portion of the flange portion 34 is vertically movable between the upper plate 32u and the lower plate 32L.
 昇降フレーム32および遮断部材33は、遮断部材33が昇降フレーム32に支持されている状態で、周方向(回転軸線A1まわりの方向)への昇降フレーム32および遮断部材33の相対移動を規制する位置決め突起41および位置決め穴42を含む。図2は、複数の位置決め突起41が下プレート32Lに設けられており、複数の位置決め穴42がフランジ部34に設けられている例を示している。位置決め突起41がフランジ部34に設けられ、位置決め穴42が下プレート32Lに設けられてもよい。 The lifting frame 32 and the blocking member 33 are positioned to restrict the relative movement of the lifting frame 32 and the blocking member 33 in the circumferential direction (direction around the rotation axis A1) in a state where the blocking member 33 is supported by the lifting frame 32. It includes a projection 41 and a positioning hole 42. FIG. 2 shows an example in which a plurality of positioning projections 41 are provided on the lower plate 32L, and a plurality of positioning holes 42 are provided on the flange portion 34. The positioning projection 41 may be provided on the flange portion 34, and the positioning hole 42 may be provided on the lower plate 32L.
 複数の位置決め突起41は、回転軸線A1上に配置された中心を有する円上に配置されている。同様に、複数の位置決め穴42は、回転軸線A1上に配置された中心を有する円上に配置されている。複数の位置決め穴42は、複数の位置決め突起41と同じ規則性で周方向に配列されている。下プレート32Lの上面から上方に突出する位置決め突起41は、フランジ部34の下面から上方に延びる位置決め穴42に挿入されている。これにより、昇降フレーム32に対する周方向への遮断部材33の移動が規制される。 The plurality of positioning protrusions 41 are arranged on a circle having a center arranged on the rotation axis A1. Similarly, the plurality of positioning holes 42 are arranged on a circle having a center located on the rotation axis A1. The plurality of positioning holes 42 are arranged in the circumferential direction with the same regularity as the plurality of positioning protrusions 41. The positioning protrusion 41 projecting upward from the upper surface of the lower plate 32L is inserted into a positioning hole 42 extending upward from the lower surface of the flange portion 34. Thereby, the movement of the blocking member 33 in the circumferential direction with respect to the lifting frame 32 is restricted.
 遮断部材33は、遮断部材33の内面から下方に突出する複数の上支持部43を含む。スピンチャック10は、複数の上支持部43をそれぞれ支持する複数の下支持部44を含む。複数の上支持部43は、遮断部材33の筒状部37によって取り囲まれている。上支持部43の下端は、筒状部37の下端よりも上方に配置されている。回転軸線A1から上支持部43までの径方向の距離は、基板Wの半径よりも大きい。同様に、回転軸線A1から下支持部44までの径方向の距離は、基板Wの半径よりも大きい。下支持部44は、スピンベース12の上面12uから上方に突出している。下支持部44は、チャックピン11よりも外側に配置されている。 The blocking member 33 includes a plurality of upper support portions 43 protruding downward from the inner surface of the blocking member 33. The spin chuck 10 includes a plurality of lower support portions 44 that support the plurality of upper support portions 43, respectively. The plurality of upper support portions 43 are surrounded by the tubular portion 37 of the blocking member 33. The lower end of the upper support portion 43 is disposed above the lower end of the tubular portion 37. The radial distance from the rotation axis A1 to the upper support portion 43 is larger than the radius of the substrate W. Similarly, the radial distance from the rotation axis A1 to the lower support portion 44 is larger than the radius of the substrate W. The lower support portion 44 protrudes upward from the upper surface 12u of the spin base 12. The lower support part 44 is arranged outside the chuck pin 11.
 複数の上支持部43は、回転軸線A1上に配置された中心を有する円上に配置されている。同様に、複数の下支持部44は、回転軸線A1上に配置された中心を有する円上に配置されている。複数の下支持部44は、複数の上支持部43と同じ規則性で周方向に配列されている。複数の下支持部44は、スピンベース12と共に回転軸線A1まわりに回転する。スピンベース12の回転角は、スピンモータ14によって変更される。スピンベース12が基準回転角に配置されると、平面視において、複数の上支持部43が、それぞれ、複数の下支持部44に重なる。 The plurality of upper support portions 43 are arranged on a circle having a center arranged on the rotation axis A1. Similarly, the plurality of lower support portions 44 are arranged on a circle having a center located on the rotation axis A1. The plurality of lower support portions 44 are arranged in the circumferential direction with the same regularity as the plurality of upper support portions 43. The plurality of lower supports 44 rotate around the rotation axis A1 together with the spin base 12. The rotation angle of the spin base 12 is changed by a spin motor 14. When the spin base 12 is arranged at the reference rotation angle, the plurality of upper support portions 43 respectively overlap the plurality of lower support portions 44 in plan view.
 遮断部材昇降ユニット31は、昇降フレーム32に連結されている。遮断部材33のフランジ部34が昇降フレーム32の下プレート32Lに支持されている状態で、遮断部材昇降ユニット31が昇降フレーム32を下降させると、遮断部材33も下降する。平面視で複数の上支持部43がそれぞれ複数の下支持部44に重なる基準回転角にスピンベース12が配置されている状態で、遮断部材昇降ユニット31が遮断部材33を下降させると、上支持部43の下端部が下支持部44の上端部に接触する。これにより、複数の上支持部43がそれぞれ複数の下支持部44に支持される。 The blocking member elevating unit 31 is connected to the elevating frame 32. When the blocking member lifting / lowering unit 31 lowers the lifting frame 32 in a state where the flange portion 34 of the blocking member 33 is supported by the lower plate 32L of the lifting frame 32, the blocking member 33 also moves down. When the shut-off member elevating unit 31 lowers the shut-off member 33 in a state where the spin base 12 is arranged at a reference rotation angle at which the plurality of upper support portions 43 respectively overlap the lower support portions 44 in plan view, the upper support The lower end of the part 43 contacts the upper end of the lower support part 44. Thereby, the plurality of upper support portions 43 are supported by the plurality of lower support portions 44, respectively.
 遮断部材33の上支持部43がスピンチャック10の下支持部44に接触した後に、遮断部材昇降ユニット31が昇降フレーム32を下降させると、昇降フレーム32の下プレート32Lが遮断部材33のフランジ部34に対して下方に移動する。これにより、下プレート32Lがフランジ部34から離れ、位置決め突起41が位置決め穴42から抜け出る。さらに、昇降フレーム32および中心ノズル45が遮断部材33に対して下方に移動するので、中心ノズル45の下端と遮断部材33の円板部36の下面36Lとの高低差が減少する。このとき、昇降フレーム32は、遮断部材33のフランジ部34が昇降フレーム32の上プレート32uに接触しない高さ(後述する下位置)に配置される。 After the upper supporting portion 43 of the blocking member 33 contacts the lower supporting portion 44 of the spin chuck 10 and the blocking member lifting / lowering unit 31 lowers the lifting frame 32, the lower plate 32 </ b> L of the lifting frame 32 moves to the flange portion of the blocking member 33. It moves downward with respect to 34. As a result, the lower plate 32L separates from the flange portion 34, and the positioning projection 41 comes out of the positioning hole 42. Furthermore, since the lifting frame 32 and the center nozzle 45 move downward with respect to the blocking member 33, the height difference between the lower end of the center nozzle 45 and the lower surface 36L of the disk portion 36 of the blocking member 33 is reduced. At this time, the lifting frame 32 is disposed at a height (a lower position described later) at which the flange portion 34 of the blocking member 33 does not contact the upper plate 32 u of the lifting frame 32.
 遮断部材昇降ユニット31は、上位置(図3に示す位置)から下位置(図2に示す位置)までの任意の位置に昇降フレーム32を位置させる。上位置は、位置決め突起41が位置決め穴42に挿入されており、遮断部材33のフランジ部34が昇降フレーム32の下プレート32Lに接触している位置である。つまり、上位置は、遮断部材33が昇降フレーム32から吊り下げられた位置である。下位置は、下プレート32Lがフランジ部34から離れており、位置決め突起41が位置決め穴42から抜け出た位置である。つまり、下位置は、昇降フレーム32および遮断部材33の連結が解除され、遮断部材33が昇降フレーム32のいずれの部分にも接触しない位置である。 The blocking member elevating unit 31 positions the elevating frame 32 at an arbitrary position from the upper position (the position shown in FIG. 3) to the lower position (the position shown in FIG. 2). The upper position is a position where the positioning projection 41 is inserted into the positioning hole 42 and the flange portion 34 of the blocking member 33 is in contact with the lower plate 32L of the lifting frame 32. That is, the upper position is a position where the blocking member 33 is suspended from the lifting frame 32. The lower position is a position where the lower plate 32L is separated from the flange portion 34 and the positioning protrusion 41 comes out of the positioning hole 42. That is, the lower position is a position where the connection between the lifting frame 32 and the blocking member 33 is released, and the blocking member 33 does not contact any part of the lifting frame 32.
 昇降フレーム32および遮断部材33を下位置に移動させると、遮断部材33の筒状部37の下端が基板Wの下面よりも下方に配置され、基板Wの上面と遮断部材33の下面36Lとの間の空間が、遮断部材33の筒状部37によって取り囲まれる。そのため、基板Wの上面と遮断部材33の下面36Lとの間の空間は、遮断部材33の上方の雰囲気だけでなく、遮断部材33のまわりの雰囲気からも遮断される。これにより、基板Wの上面と遮断部材33の下面36Lとの間の空間の密閉度を高めることができる。 When the lifting frame 32 and the blocking member 33 are moved to the lower position, the lower end of the cylindrical portion 37 of the blocking member 33 is disposed below the lower surface of the substrate W, and the upper surface of the substrate W and the lower surface 36L of the blocking member 33 are connected. The space therebetween is surrounded by the cylindrical portion 37 of the blocking member 33. Therefore, the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33 is shielded from not only the atmosphere above the blocking member 33 but also the atmosphere around the blocking member 33. Thereby, the degree of sealing of the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33 can be increased.
 さらに、昇降フレーム32および遮断部材33が下位置に配置されると、昇降フレーム32に対して遮断部材33を回転軸線A1まわりに回転させても、遮断部材33は、昇降フレーム32に衝突しない。遮断部材33の上支持部43がスピンチャック10の下支持部44に支持されると、上支持部43および下支持部44が噛み合い、周方向への上支持部43および下支持部44の相対移動が規制される。この状態で、スピンモータ14が回転すると、スピンモータ14のトルクが上支持部43および下支持部44を介して遮断部材33に伝達される。これにより、遮断部材33は、昇降フレーム32および中心ノズル45が静止した状態で、スピンベース12と同じ方向に同じ速度で回転する。 Further, when the lifting frame 32 and the blocking member 33 are arranged at the lower position, the blocking member 33 does not collide with the lifting frame 32 even if the blocking member 33 is rotated around the rotation axis A1 with respect to the lifting frame 32. When the upper support portion 43 of the blocking member 33 is supported by the lower support portion 44 of the spin chuck 10, the upper support portion 43 and the lower support portion 44 mesh with each other, and the relative positions of the upper support portion 43 and the lower support portion 44 in the circumferential direction. Movement is regulated. When the spin motor 14 rotates in this state, the torque of the spin motor 14 is transmitted to the blocking member 33 via the upper support 43 and the lower support 44. Thus, the blocking member 33 rotates at the same speed in the same direction as the spin base 12 with the lifting frame 32 and the center nozzle 45 stationary.
 中心ノズル45は、液体を吐出する複数の液吐出口と、ガスを吐出するガス吐出口とを含む。複数の液吐出口は、第1薬液を吐出する第1薬液吐出口46と、第2薬液を吐出する第2薬液吐出口47と、リンス液を吐出する上リンス液吐出口48とを含む。ガス吐出口は、不活性ガスを吐出する上ガス吐出口49である。第1薬液吐出口46、第2薬液吐出口47、および上リンス液吐出口48は、中心ノズル45の下端で開口している。上ガス吐出口49は、中心ノズル45の外周面で開口している。 The center nozzle 45 includes a plurality of liquid discharge ports for discharging liquid and gas discharge ports for discharging gas. The plurality of liquid discharge ports include a first chemical liquid discharge port 46 for discharging a first chemical liquid, a second chemical liquid discharge port 47 for discharging a second chemical liquid, and an upper rinse liquid discharge port 48 for discharging a rinse liquid. The gas discharge port is an upper gas discharge port 49 for discharging an inert gas. The first chemical liquid discharge port 46, the second chemical liquid discharge port 47, and the upper rinse liquid discharge port 48 are open at the lower end of the center nozzle 45. The upper gas discharge port 49 is open on the outer peripheral surface of the center nozzle 45.
 第1薬液および第2薬液は、たとえば、硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえばTMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、多価アルコール、および腐食防止剤のうちの少なくとも1つを含む液である。硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、クエン酸、蓚酸、およびTMAHは、エッチング液である。 The first and second chemicals include, for example, sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (for example, citric acid, oxalic acid, etc.), and organic alkalis (for example, TMAH: Liquid containing at least one of tetramethylammonium hydroxide, a surfactant, a polyhydric alcohol, and a corrosion inhibitor. Sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, citric acid, oxalic acid, and TMAH are etching solutions.
 第1薬液および第2薬液は、同種の薬液であってもよいし、互いに異なる種類の薬液であってもよい。図2等は、第1薬液がDHF(希フッ酸)であり、第2薬液がTMAHとプロピレングリコールとの混合液である例を示している。また、図2等は、中心ノズル45に供給されるリンス液が純水であり、中心ノズル45に供給される不活性ガスが窒素ガスである例を示している。中心ノズル45に供給されるリンス液は、純水以外のリンス液であってもよい。中心ノズル45に供給される不活性ガスは、窒素ガス以外の不活性ガスであってもよい。 The first chemical solution and the second chemical solution may be the same type of chemical solution or different types of chemical solutions. FIG. 2 and the like show an example in which the first chemical is DHF (dilute hydrofluoric acid) and the second chemical is a mixture of TMAH and propylene glycol. 2 and the like show an example in which the rinsing liquid supplied to the central nozzle 45 is pure water, and the inert gas supplied to the central nozzle 45 is nitrogen gas. The rinsing liquid supplied to the center nozzle 45 may be a rinsing liquid other than pure water. The inert gas supplied to the center nozzle 45 may be an inert gas other than the nitrogen gas.
 基板処理装置1は、第2薬液に相当するアルカリ性のエッチング液を作成する薬液作成ユニット61を備えている。エッチング液は、たとえばpH(水素イオン指数)が12以上の液体である。エッチング液は、第4級アンモニウム水酸化物と、水(H2O)と、阻害物質と、を含む溶液である。図2等は、第4級アンモニウム水酸化物がTMAHであり、阻害物質がPG(プロピレングリコール)である例を示している。基板Wの表面(母材の表面)または基板W上に形成された積層体の表面を酸化する酸化剤でなければ、エッチング液は、第4級アンモニウム水酸化物、水、および阻害物質以外の物質をさらに含んでいてもよい。 The substrate processing apparatus 1 includes a chemical solution preparation unit 61 for preparing an alkaline etching solution corresponding to the second chemical solution. The etching solution is, for example, a liquid having a pH (hydrogen ion index) of 12 or more. The etching solution is a solution containing a quaternary ammonium hydroxide, water (H2O), and an inhibitor. FIG. 2 and the like show an example in which the quaternary ammonium hydroxide is TMAH and the inhibitor is PG (propylene glycol). If the oxidizing agent is not an oxidizing agent that oxidizes the surface of the substrate W (the surface of the base material) or the surface of the stacked body formed on the substrate W, the etching solution is not quaternary ammonium hydroxide, water, and an inhibitor. It may further contain a substance.
 第4級アンモニウム水酸化物は、TMAH、TBAH(テトラブチルアンモニウムヒドロキシド)、TPeAH(テトラペンチルアンモニウムヒドロキシド)、THAH(テトラヘキシルアンモニウムヒドロキシド)、TEAH(テトラエチルアンモニウムヒドロキシド)、およびTPAH(テトラプロピルアンモニウムヒドロキシド)の少なくとも一つであってもよいし、これら以外であってもよい。これらはいずれも有機アルカリに含まれる。なお、この段落では、TMAHは、水溶液ではなく、無水物を表している。これは、TBAHなどの他の第4級アンモニウム水酸化物についても同様である。 The quaternary ammonium hydroxides are TMAH, TBAH (tetrabutylammonium hydroxide), TPeAH (tetrapentylammonium hydroxide), THAH (tetrahexylammonium hydroxide), TEAH (tetraethylammonium hydroxide), and TPAH (tetraethylammonium hydroxide). Propylammonium hydroxide), or may be other than these. These are all included in the organic alkali. In this paragraph, TMAH is not an aqueous solution but an anhydride. This is the same for other quaternary ammonium hydroxides such as TBAH.
 第4級アンモニウム水酸化物が水に溶けると、第4級アンモニウム水酸化物は、陽イオン(カチオン)と水酸化物イオンとに分離する。阻害物質は、第4級アンモニウム水酸化物から生じた水酸化物イオンとポリシリコンを含むエッチング対象物との接触を阻害する物質である。阻害物質の分子は、水酸化物イオンより大きいことが好ましい。また、阻害物質は、水に溶ける水溶性物質であることが好ましい。阻害物質は、親水基および疎水基の両方を有する界面活性剤であってもよい。第4級アンモニウム水酸化物と水とを含む溶液に均一に分散するのであれば、阻害物質は、水に溶けない不溶性物質であってもよい。 と When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions. The inhibitor is a substance that inhibits contact between hydroxide ions generated from the quaternary ammonium hydroxide and an etching target including polysilicon. Preferably, the inhibitor molecule is larger than the hydroxide ion. Further, the inhibitor is preferably a water-soluble substance that is soluble in water. The inhibitor may be a surfactant having both hydrophilic and hydrophobic groups. The inhibitor may be an insoluble substance that does not dissolve in water as long as it is uniformly dispersed in a solution containing a quaternary ammonium hydroxide and water.
 阻害物質は、たとえば、グリコールである。グリコールは、たとえば、エチレングリコール、ジエチレングリコールおよびプロピレングリコールの少なくとも一つである。阻害物質は、グリセリンなどのグリコール以外の物質であってもよい。グリコールは、ケイ素(Si)と水酸化物イオン(OH)との反応に関与しない物質の一例である。つまり、グリコールは、ケイ素と水酸化物イオンとの反応に関与する原子等と反応しない物質の一例である。グリコールは、この反応に触媒としても作用しない物質の一例である。グリコールは、プロピレングリコールであることが好ましい。 The inhibitor is, for example, glycol. The glycol is, for example, at least one of ethylene glycol, diethylene glycol and propylene glycol. The inhibitor may be a substance other than glycol, such as glycerin. Glycol is an example of a substance that does not participate in the reaction between silicon (Si) and hydroxide ions (OH ). That is, glycol is an example of a substance that does not react with atoms or the like involved in the reaction between silicon and hydroxide ions. Glycol is an example of a substance that does not act as a catalyst in this reaction. Preferably, the glycol is propylene glycol.
 基板処理装置1は、中心ノズル45に第1薬液を案内する第1薬液配管50と、第1薬液配管50に介装された第1薬液バルブ51と、中心ノズル45に第2薬液を案内する第2薬液配管52と、第2薬液配管52に介装された第2薬液バルブ53と、中心ノズル45にリンス液を案内する上リンス液配管54と、上リンス液配管54に介装された上リンス液バルブ55とを備えている。基板処理装置1は、さらに、中心ノズル45にガスを案内する上ガス配管56と、上ガス配管56に介装された上ガスバルブ57と、上ガス配管56から中心ノズル45に供給されるガスの流量を変更する上ガス流量調整バルブ58とを備えている。 The substrate processing apparatus 1 guides the first chemical liquid to the central nozzle 45, the first chemical liquid valve 51 interposed in the first chemical liquid pipe 50, and guides the second chemical liquid to the central nozzle 45. A second chemical liquid pipe 52, a second chemical liquid valve 53 interposed in the second chemical liquid pipe 52, an upper rinse liquid pipe 54 for guiding the rinse liquid to the center nozzle 45, and an upper rinse liquid pipe 54 An upper rinse liquid valve 55 is provided. The substrate processing apparatus 1 further includes an upper gas pipe 56 for guiding a gas to the center nozzle 45, an upper gas valve 57 interposed in the upper gas pipe 56, and a gas supplied from the upper gas pipe 56 to the center nozzle 45. An upper gas flow control valve 58 for changing the flow rate is provided.
 第1薬液バルブ51が開かれると、第1薬液が中心ノズル45に供給され、中心ノズル45の下端で開口する第1薬液吐出口46から下方に吐出される。第2薬液バルブ53が開かれると、薬液作成ユニット61で生成された第2薬液が中心ノズル45に供給され、中心ノズル45の下端で開口する第2薬液吐出口47から下方に吐出される。上リンス液バルブ55が開かれると、リンス液が中心ノズル45に供給され、中心ノズル45の下端で開口する上リンス液吐出口48から下方に吐出される。これにより、薬液またはリンス液が基板Wの上面に供給される。 When the first chemical liquid valve 51 is opened, the first chemical liquid is supplied to the central nozzle 45 and is discharged downward from the first chemical liquid discharge port 46 opened at the lower end of the central nozzle 45. When the second chemical liquid valve 53 is opened, the second chemical liquid generated by the chemical liquid preparation unit 61 is supplied to the central nozzle 45 and is discharged downward from the second chemical liquid discharge port 47 opened at the lower end of the central nozzle 45. When the upper rinsing liquid valve 55 is opened, the rinsing liquid is supplied to the center nozzle 45 and discharged downward from the upper rinsing liquid discharge port 48 opened at the lower end of the center nozzle 45. Thereby, the chemical solution or the rinsing liquid is supplied to the upper surface of the substrate W.
 上ガスバルブ57が開かれると、上ガス配管56によって案内された窒素ガスが、上ガス流量調整バルブ58の開度に対応する流量で、中心ノズル45に供給され、中心ノズル45の外周面で開口する上ガス吐出口49から斜め下方に吐出される。その後、窒素ガスは、上筒状通路39内を周方向に流れながら、上筒状通路39内を下方に流れる。上筒状通路39の下端に達した窒素ガスは、上筒状通路39の下端から下方に流れ出る。その後、窒素ガスは、基板Wの上面と遮断部材33の下面36Lとの間の空間をあらゆる方向に放射状に流れる。これにより、基板Wと遮断部材33との間の空間が窒素ガスで満たされ、雰囲気中の酸素濃度が低減される。基板Wと遮断部材33との間の空間の酸素濃度は、上ガスバルブ57および上ガス流量調整バルブ58の開度に応じて変更される。上ガスバルブ57および上ガス流量調整バルブ58は、雰囲気酸素濃度変更ユニットに含まれる。 When the upper gas valve 57 is opened, the nitrogen gas guided by the upper gas pipe 56 is supplied to the center nozzle 45 at a flow rate corresponding to the degree of opening of the upper gas flow rate adjustment valve 58, and is opened at the outer peripheral surface of the center nozzle 45. The gas is discharged obliquely downward from the upper gas discharge port 49. Thereafter, the nitrogen gas flows downward in the upper cylindrical passage 39 while flowing in the upper cylindrical passage 39 in the circumferential direction. The nitrogen gas that has reached the lower end of the upper tubular passage 39 flows downward from the lower end of the upper tubular passage 39. Thereafter, the nitrogen gas flows radially in all directions in the space between the upper surface of the substrate W and the lower surface 36L of the blocking member 33. Thereby, the space between the substrate W and the blocking member 33 is filled with the nitrogen gas, and the oxygen concentration in the atmosphere is reduced. The oxygen concentration in the space between the substrate W and the blocking member 33 is changed according to the degree of opening of the upper gas valve 57 and the upper gas flow control valve 58. The upper gas valve 57 and the upper gas flow control valve 58 are included in the atmospheric oxygen concentration changing unit.
 図4は、基板Wに供給される薬液を作成する薬液作成ユニット61と、薬液の溶存酸素濃度を調整する溶存酸素濃度変更ユニット67とを示す模式図である。 FIG. 4 is a schematic diagram showing a chemical solution creating unit 61 for creating a chemical solution supplied to the substrate W, and a dissolved oxygen concentration changing unit 67 for adjusting the dissolved oxygen concentration of the chemical solution.
 薬液作成ユニット61は、第2薬液に相当するアルカリ性のエッチング液を貯留するタンク62と、タンク62内のエッチング液を循環させる環状の循環路を形成する循環配管63とを含む。薬液作成ユニット61は、さらに、タンク62内のエッチング液を循環配管63に送るポンプ64と、循環路を流れるエッチング液からパーティクルなどの異物を除去するフィルター66とを含む。薬液作成ユニット61は、これらに加えて、エッチング液の加熱または冷却によってタンク62内のエッチング液の温度を変更する温度調節器65を含んでいてもよい。 The chemical liquid preparation unit 61 includes a tank 62 for storing an alkaline etching liquid corresponding to the second chemical liquid, and a circulation pipe 63 for forming an annular circulation path for circulating the etching liquid in the tank 62. The chemical solution preparation unit 61 further includes a pump 64 for sending the etching solution in the tank 62 to the circulation pipe 63, and a filter 66 for removing foreign substances such as particles from the etching solution flowing in the circulation path. In addition to the above, the chemical solution preparation unit 61 may include a temperature controller 65 that changes the temperature of the etching solution in the tank 62 by heating or cooling the etching solution.
 循環配管63の上流端および下流端は、タンク62に接続されている。第2薬液配管52の上流端は、循環配管63に接続されており、第2薬液配管52の下流端は、中心ノズル45に接続されている。ポンプ64、温度調節器65、およびフィルター66は、循環配管63に介装されている。温度調節器65は、室温(たとえば20~30℃)よりも高い温度で液体を加熱するヒータであってもよいし、室温よりも低い温度で液体を冷却するクーラーであってもよいし、加熱および冷却の両方の機能を有していてもよい。 上流 The upstream end and the downstream end of the circulation pipe 63 are connected to the tank 62. The upstream end of the second chemical pipe 52 is connected to the circulation pipe 63, and the downstream end of the second chemical pipe 52 is connected to the center nozzle 45. The pump 64, the temperature controller 65, and the filter 66 are interposed in the circulation pipe 63. The temperature controller 65 may be a heater that heats the liquid at a temperature higher than room temperature (for example, 20 to 30 ° C.), a cooler that cools the liquid at a temperature lower than room temperature, And cooling functions.
 ポンプ64は、常時、タンク62内のエッチング液を循環配管63内に送る。エッチング液は、タンク62から循環配管63の上流端に送られ、循環配管63の下流端からタンク62に戻る。これにより、タンク62内のエッチング液が循環路を循環する。エッチング液が循環路を循環している間に、エッチング液の温度が温度調節器65によって調節される。これにより、タンク62内のエッチング液は、一定の温度に維持される。第2薬液バルブ53が開かれると、循環配管63内を流れるエッチング液の一部が、第2薬液配管52を介して中心ノズル45に供給される。中心ノズル45に供給されるエッチング液の温度は、室温であってもよいし、室温とは異なっていてもよい。 The pump 64 always sends the etching solution in the tank 62 into the circulation pipe 63. The etchant is sent from the tank 62 to the upstream end of the circulation pipe 63, and returns to the tank 62 from the downstream end of the circulation pipe 63. Thereby, the etching solution in the tank 62 circulates in the circulation path. While the etching solution is circulating in the circulation path, the temperature of the etching solution is adjusted by the temperature controller 65. Thereby, the etching solution in the tank 62 is maintained at a constant temperature. When the second chemical liquid valve 53 is opened, a part of the etching liquid flowing in the circulation pipe 63 is supplied to the central nozzle 45 via the second chemical liquid pipe 52. The temperature of the etchant supplied to the central nozzle 45 may be room temperature or may be different from room temperature.
 基板処理装置1は、エッチング液の溶存酸素濃度を調整する溶存酸素濃度変更ユニット67を備えている。溶存酸素濃度変更ユニット67は、タンク62内にガスを供給することによりタンク62内のエッチング液にガスを溶け込ませるガス供給配管68を含む。溶存酸素濃度変更ユニット67は、さらに、不活性ガスをガス供給配管68に供給する不活性ガス配管69と、不活性ガス配管69からガス供給配管68に不活性ガスが流れる開状態と不活性ガスが不活性ガス配管69でせき止められる閉状態との間で開閉する不活性ガスバルブ70と、不活性ガス配管69からガス供給配管68に供給される不活性ガスの流量を変更する不活性ガス流量調整バルブ71とを含む。 The substrate processing apparatus 1 includes a dissolved oxygen concentration changing unit 67 for adjusting the dissolved oxygen concentration of the etching solution. The dissolved oxygen concentration changing unit 67 includes a gas supply pipe 68 for supplying gas into the tank 62 to dissolve the gas into the etching solution in the tank 62. The dissolved oxygen concentration changing unit 67 further includes: an inert gas pipe 69 for supplying an inert gas to a gas supply pipe 68; an open state in which the inert gas flows from the inert gas pipe 69 to the gas supply pipe 68; An inert gas valve 70 that opens and closes between a closed state where the gas is blocked by an inert gas pipe 69, and an inert gas flow adjustment that changes the flow rate of the inert gas supplied from the inert gas pipe 69 to the gas supply pipe 68. And a valve 71.
 ガス供給配管68は、タンク62内のエッチング液中に配置されたガス吐出口68pを含むバブリング配管である。不活性ガスバルブ70が開かれると、つまり、不活性ガスバルブ70が閉状態から開状態に切り替えられると、窒素ガスなどの不活性ガスが、不活性ガス流量調整バルブ71の開度に対応する流量でガス吐出口68pから吐出される。これにより、タンク62内のエッチング液中に多数の気泡が形成され、不活性ガスがタンク62内のエッチング液に溶け込む。このとき、溶存酸素がエッチング液から排出され、エッチング液の溶存酸素濃度が低下する。タンク62内のエッチング液の溶存酸素濃度は、ガス吐出口68pから吐出される窒素ガスの流量を変更することにより変更される。 The gas supply pipe 68 is a bubbling pipe including a gas discharge port 68p arranged in the etching solution in the tank 62. When the inert gas valve 70 is opened, that is, when the inert gas valve 70 is switched from the closed state to the open state, the inert gas such as the nitrogen gas flows at a flow rate corresponding to the opening of the inert gas flow rate adjustment valve 71. The gas is discharged from the gas discharge port 68p. Thereby, many bubbles are formed in the etching solution in the tank 62, and the inert gas dissolves in the etching solution in the tank 62. At this time, dissolved oxygen is discharged from the etching solution, and the concentration of dissolved oxygen in the etching solution decreases. The dissolved oxygen concentration of the etching solution in the tank 62 is changed by changing the flow rate of the nitrogen gas discharged from the gas discharge port 68p.
 溶存酸素濃度変更ユニット67は、不活性ガス配管69等に加えて、クリーンエアーなどの酸素を含む酸素含有ガスをガス供給配管68に供給する酸素含有ガス配管72と、酸素含有ガス配管72からガス供給配管68に酸素含有ガスが流れる開状態と酸素含有ガスが酸素含有ガス配管72でせき止められる閉状態との間で開閉する酸素含有ガスバルブ73と、酸素含有ガス配管72からガス供給配管68に供給される酸素含有ガスの流量を変更する酸素含有ガス流量調整バルブ74とを含んでいてもよい。 The dissolved oxygen concentration changing unit 67 includes, in addition to the inert gas pipe 69 and the like, an oxygen-containing gas pipe 72 for supplying an oxygen-containing gas such as clean air to the gas supply pipe 68, and a gas from the oxygen-containing gas pipe 72. An oxygen-containing gas valve 73 that opens and closes between an open state in which the oxygen-containing gas flows through the supply pipe 68 and a closed state in which the oxygen-containing gas is blocked by the oxygen-containing gas pipe 72, and supplies the gas from the oxygen-containing gas pipe 72 to the gas supply pipe 68. And an oxygen-containing gas flow control valve 74 for changing the flow rate of the oxygen-containing gas to be supplied.
 酸素含有ガスバルブ73が開かれると、酸素含有ガスの一例である空気が、酸素含有ガス流量調整バルブ74の開度に対応する流量でガス吐出口68pから吐出される。これにより、タンク62内のエッチング液中に多数の気泡が形成され、空気がタンク62内のエッチング液に溶け込む。空気は、約21vol%の割合で酸素を含むのに対し、窒素ガスは、酸素を含まないもしくは極微量しか酸素を含まない。したがって、タンク62内に空気を供給しない場合に比べて、短時間でタンク62内のエッチング液の溶存酸素濃度を上昇させることができる。たとえばエッチング液の溶存酸素濃度が設定値よりも低くなりすぎた場合は、タンク62内のエッチング液に意図的に空気を溶け込ませてもよい。 When the oxygen-containing gas valve 73 is opened, air, which is an example of the oxygen-containing gas, is discharged from the gas discharge port 68p at a flow rate corresponding to the degree of opening of the oxygen-containing gas flow control valve 74. As a result, many bubbles are formed in the etching solution in the tank 62, and the air dissolves in the etching solution in the tank 62. Air contains oxygen at a rate of about 21 vol%, whereas nitrogen gas contains no or only trace amounts of oxygen. Therefore, the dissolved oxygen concentration of the etching solution in the tank 62 can be increased in a shorter time than when no air is supplied into the tank 62. For example, when the dissolved oxygen concentration of the etching solution becomes too low below the set value, air may be intentionally dissolved in the etching solution in the tank 62.
 溶存酸素濃度変更ユニット67は、さらに、エッチング液の溶存酸素濃度を測定する酸素濃度計75を含んでいてもよい。図4は、酸素濃度計75が測定配管76に介装されている例を示している。酸素濃度計75は、循環配管63に介装されていてもよい。測定配管76の上流端は、フィルター66に接続されており、測定配管76の下流端は、タンク62に接続されている。測定配管76の上流端は、循環配管63に接続されていてもよい。循環配管63内のエッチング液の一部は、測定配管76に流れ込み、タンク62に戻る。酸素濃度計75は、測定配管76内に流入したエッチング液の溶存酸素濃度を測定する。不活性ガスバルブ70、不活性ガス流量調整バルブ71、酸素含有ガスバルブ73、および酸素含有ガス流量調整バルブ74の少なくとも一つの開度は、酸素濃度計75の測定値に応じて変更される。 The dissolved oxygen concentration changing unit 67 may further include an oxygen concentration meter 75 for measuring the dissolved oxygen concentration of the etching solution. FIG. 4 shows an example in which an oxygen concentration meter 75 is interposed in a measurement pipe 76. The oxygen concentration meter 75 may be interposed in the circulation pipe 63. The upstream end of the measurement pipe 76 is connected to the filter 66, and the downstream end of the measurement pipe 76 is connected to the tank 62. The upstream end of the measurement pipe 76 may be connected to the circulation pipe 63. Part of the etching solution in the circulation pipe 63 flows into the measurement pipe 76 and returns to the tank 62. The oxygen concentration meter 75 measures the dissolved oxygen concentration of the etching solution flowing into the measurement pipe 76. The opening degree of at least one of the inert gas valve 70, the inert gas flow control valve 71, the oxygen-containing gas valve 73, and the oxygen-containing gas flow control valve 74 is changed according to the measurement value of the oxygen concentration meter 75.
 薬液作成ユニット61は、タンク62に供給される第4級アンモニウム水酸化物を案内する水酸化物配管78と、水酸化物配管78を開閉する水酸化物バルブ79と、水酸化物配管78からタンク62に供給される第4級アンモニウム水酸化物の流量を変更する水酸化物流量調整バルブ80とを含む。薬液作成ユニット61は、さらに、タンク62に供給される阻害物質を案内する阻害物質配管81と、阻害物質配管81を開閉する阻害物質バルブ82と、阻害物質配管81からタンク62に供給される阻害物質の流量を変更する阻害物質流量調整バルブ83とを含む。 The chemical preparation unit 61 includes a hydroxide pipe 78 for guiding the quaternary ammonium hydroxide supplied to the tank 62, a hydroxide valve 79 for opening and closing the hydroxide pipe 78, and a hydroxide pipe 78. And a hydroxide flow control valve 80 for changing the flow rate of the quaternary ammonium hydroxide supplied to the tank 62. The chemical preparation unit 61 further includes an inhibitor pipe 81 for guiding the inhibitor supplied to the tank 62, an inhibitor valve 82 for opening and closing the inhibitor pipe 81, and an inhibitor supplied to the tank 62 from the inhibitor pipe 81. An inhibitory substance flow control valve 83 for changing the flow rate of the substance.
 水酸化物バルブ79が開かれると、第4級アンモニウム水酸化物が、水酸化物流量調整バルブ80に対応する流量でタンク62に供給される。同様に、阻害物質バルブ82が開かれると、阻害物質が、阻害物質流量調整バルブ83に対応する流量でタンク62に供給される。水酸化物配管78からタンク62に供給される第4級アンモニウム水酸化物は、第4級アンモニウム水酸化物の液体であってもよいし、第4級アンモニウム水酸化物の水溶液であってもよい。同様に、阻害物質配管81からタンク62に供給される阻害物質は、阻害物質の液体であってもよいし、阻害物質の水溶液であってもよい。薬液作成ユニット61は、タンク62内の液体を攪拌する攪拌器をさらに備えていてもよい。 When the hydroxide valve 79 is opened, the quaternary ammonium hydroxide is supplied to the tank 62 at a flow rate corresponding to the hydroxide flow rate adjustment valve 80. Similarly, when the inhibitory substance valve 82 is opened, the inhibitory substance is supplied to the tank 62 at a flow rate corresponding to the inhibitory substance flow rate adjustment valve 83. The quaternary ammonium hydroxide supplied from the hydroxide pipe 78 to the tank 62 may be a quaternary ammonium hydroxide liquid or an aqueous solution of a quaternary ammonium hydroxide. Good. Similarly, the inhibitor supplied from the inhibitor pipe 81 to the tank 62 may be a liquid of the inhibitor or an aqueous solution of the inhibitor. The chemical liquid preparation unit 61 may further include a stirrer for stirring the liquid in the tank 62.
 第4級アンモニウム水酸化物および阻害物質の少なくとも一方がタンク62に供給されると、タンク62内のエッチング液に含まれる阻害物質の濃度が変わる。水酸化物バルブ79、水酸化物流量調整バルブ80、阻害物質バルブ82、および阻害物質流量調整バルブ83を含む阻害物質濃度変更ユニットは、制御装置3によって制御される。エッチング液を作成するときや、阻害物質の濃度を変更するとき以外は、水酸化物バルブ79および阻害物質バルブ82は閉じられている。言い換えると、エッチング液を作成するときや、阻害物質の濃度を変更するときは、水酸化物バルブ79および阻害物質バルブ82の少なくとも一方が開かれ、エッチング液における阻害物質の濃度が適切な値に変更される。 (4) When at least one of the quaternary ammonium hydroxide and the inhibitor is supplied to the tank 62, the concentration of the inhibitor contained in the etching solution in the tank 62 changes. The control unit 3 controls the inhibitor concentration changing unit including the hydroxide valve 79, the hydroxide flow control valve 80, the inhibitor valve 82, and the inhibitor flow control valve 83. The hydroxide valve 79 and the inhibitor valve 82 are closed except when preparing an etchant or when changing the concentration of the inhibitor. In other words, when preparing the etchant or changing the concentration of the inhibitor, at least one of the hydroxide valve 79 and the inhibitor valve 82 is opened, and the concentration of the inhibitor in the etchant becomes an appropriate value. Be changed.
 図5は、制御装置3のハードウェアを示すブロック図である。 FIG. 5 is a block diagram showing hardware of the control device 3. As shown in FIG.
 制御装置3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するCPU3b(central processing unit:中央処理装置)と、情報を記憶する主記憶装置3cとを含む。周辺装置3dは、プログラムP等の情報を記憶する補助記憶装置3eと、リムーバブルメディアRMから情報を読み取る読取装置3fと、ホストコンピュータ等の他の装置と通信する通信装置3gとを含む。 The control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a. The computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information. The peripheral device 3d includes an auxiliary storage device 3e that stores information such as the program P, a reading device 3f that reads information from the removable medium RM, and a communication device 3g that communicates with another device such as a host computer.
 制御装置3は、入力装置および表示装置に接続されている。入力装置は、ユーザーやメンテナンス担当者などの操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置の画面に表示される。入力装置は、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置および表示装置を兼ねるタッチパネルディスプレイが基板処理装置1に設けられていてもよい。 The control device 3 is connected to the input device and the display device. The input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1. The information is displayed on the screen of the display device. The input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices. A touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
 CPU3bは、補助記憶装置3eに記憶されたプログラムPを実行する。補助記憶装置3e内のプログラムPは、制御装置3に予めインストールされたものであってもよいし、読取装置3fを通じてリムーバブルメディアRMから補助記憶装置3eに送られたものであってもよいし、ホストコンピュータなどの外部装置から通信装置3gを通じて補助記憶装置3eに送られたものであってもよい。 (4) The CPU 3b executes the program P stored in the auxiliary storage device 3e. The program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be transmitted from the removable medium RM to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
 補助記憶装置3eおよびリムーバブルメディアRMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。リムーバブルメディアRMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアRMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。リムーバブルメディアRMは、一時的ではない有形の記録媒体(non-transitory tangible recording medium)である。 (4) The auxiliary storage device 3e and the removable medium RM are non-volatile memories that retain data even when power is not supplied. The auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive. The removable medium RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The removable medium RM is an example of a computer-readable recording medium on which the program P is recorded. The removable medium RM is a non-transitory tangible recording medium (non-transitory \ tangible \ recording \ medium).
 補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。制御装置3は、ホストコンピュータによって指定されたレシピにしたがって基板Wが処理されるように基板処理装置1を制御する。後述する各工程は、制御装置3が基板処理装置1を制御することにより実行される。言い換えると、制御装置3は、各工程を実行するようにプログラムされている。 The auxiliary storage device 3e stores a plurality of recipes. The recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W. The plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W. The control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer. Each step described below is executed by the control device 3 controlling the substrate processing apparatus 1. In other words, the control device 3 is programmed to execute each step.
 図6は、図7に示す処理が行われる前後の基板Wの断面の一例を示す模式図である。 FIG. 6 is a schematic view showing an example of a cross section of the substrate W before and after the processing shown in FIG. 7 is performed.
 図6の左側は、図7に示す処理(エッチング)が行われる前の基板Wの断面を示しており、図6の右側は、図7に示す処理(エッチング)が行われた後の基板Wの断面を示している。図6の右側に示すように、基板Wがエッチングされると、基板Wの面方向(基板Wの厚み方向Dtに直交する方向)に凹んだ複数のリセスR1が凹部92の側面92sに形成される。 6 shows a cross section of the substrate W before the processing (etching) shown in FIG. 7 is performed, and the right side of FIG. 6 shows a substrate W after the processing (etching) shown in FIG. 7 is performed. 2 shows a cross section of FIG. As shown on the right side of FIG. 6, when the substrate W is etched, a plurality of recesses R1 recessed in the surface direction of the substrate W (the direction orthogonal to the thickness direction Dt of the substrate W) are formed on the side surface 92s of the concave portion 92. You.
 図6に示すように、基板Wは、シリコンウエハなどの母材の上に形成された積層膜91と、基板Wの最表面Wsから基板Wの厚み方向Dt(基板Wの母材の表面に直交する方向)に凹んだ凹部92とを含む。積層膜91は、複数のポリシリコン膜P1、P2、P3と複数の酸化シリコン膜O1、O2、O3とを含む。ポリシリコン膜P1~P3は、エッチング対象物の一例であり、酸化シリコン膜O1~O3は、非エッチング対象物の一例である。酸化シリコンは、第4級アンモニウム水酸化物を含むアルカリ性のエッチング液に溶解しないもしくは殆ど溶解しない物質である。 As shown in FIG. 6, the substrate W is composed of a laminated film 91 formed on a base material such as a silicon wafer and a thickness direction Dt of the substrate W from the outermost surface Ws of the substrate W (the surface W of the base material of the substrate W (In a direction perpendicular to). The laminated film 91 includes a plurality of polysilicon films P1, P2, P3 and a plurality of silicon oxide films O1, O2, O3. The polysilicon films P1 to P3 are examples of an etching target, and the silicon oxide films O1 to O3 are examples of a non-etching target. Silicon oxide is a substance that does not dissolve or hardly dissolves in an alkaline etching solution containing a quaternary ammonium hydroxide.
 複数のポリシリコン膜P1~P3および複数の酸化シリコン膜O1~O3は、ポリシリコン膜と酸化シリコン膜とが交互に入れ替わるように基板Wの厚み方向Dtに積層されている。ポリシリコン膜P1~P3は、基板W上にポリシリコンを堆積させる堆積工程と、堆積したポリシリコンを加熱する熱処理工程と、が行われた薄膜である(図7参照)。ポリシリコン膜P1~P3は、熱処理工程が行われていない薄膜であってもよい。 (4) The plurality of polysilicon films P1 to P3 and the plurality of silicon oxide films O1 to O3 are stacked in the thickness direction Dt of the substrate W such that the polysilicon film and the silicon oxide film are alternately replaced. The polysilicon films P1 to P3 are thin films on which a deposition step of depositing polysilicon on the substrate W and a heat treatment step of heating the deposited polysilicon have been performed (see FIG. 7). The polysilicon films P1 to P3 may be thin films on which no heat treatment process has been performed.
 図6に示すように、凹部92は、複数のポリシリコン膜P1~P3および複数の酸化シリコン膜O1~O3を基板Wの厚み方向Dtに貫通している。ポリシリコン膜P1~P3および酸化シリコン膜O1~O3の側面は、凹部92の側面92sで露出している。凹部92は、トレンチ、ビアホール、およびコンタクトホールのいずれかであってもよいし、これら以外であってもよい。 凹 部 As shown in FIG. 6, the concave portion 92 penetrates the plurality of polysilicon films P1 to P3 and the plurality of silicon oxide films O1 to O3 in the thickness direction Dt of the substrate W. Side surfaces of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3 are exposed at side surfaces 92s of the concave portions 92. The concave portion 92 may be any of a trench, a via hole, and a contact hole, or may be other than these.
 図7に示す処理(エッチング)が開始される前は、ポリシリコン膜P1~P3および酸化シリコン膜O1~O3の表層に自然酸化膜が形成されている。図6の左側の二点鎖線は、自然酸化膜の輪郭を示している。以下では、酸化膜除去液の一例であるDHFの供給によってポリシリコン膜P1~P3および酸化シリコン膜O1~O3の自然酸化膜を除去し、その後、エッチング液の供給によってポリシリコン膜P1~P3を選択的にエッチングする処理について説明する。 前 Before the processing (etching) shown in FIG. 7 is started, a natural oxide film is formed on the surface layers of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3. The two-dot chain line on the left side of FIG. 6 indicates the contour of the native oxide film. Hereinafter, the natural oxide films of the polysilicon films P1 to P3 and the silicon oxide films O1 to O3 are removed by supplying DHF, which is an example of an oxide film removing solution, and then the polysilicon films P1 to P3 are removed by supplying an etching solution. The selective etching process will be described.
 図7は、基板処理装置1によって実行される基板Wの処理の一例について説明するための工程図である。 FIG. 7 is a process diagram for describing an example of the processing of the substrate W performed by the substrate processing apparatus 1.
 以下では、図1A、図2、図3、および図7を参照して、基板処理装置1によって実行される基板Wの処理の一例について説明する。基板処理装置1では、図7中のスタート以降の工程が実行される。 Hereinafter, an example of the processing of the substrate W performed by the substrate processing apparatus 1 will be described with reference to FIGS. 1A, 2, 3, and 7. In the substrate processing apparatus 1, the steps after the start in FIG. 7 are executed.
 基板処理装置1によって基板Wが処理されるときは、チャンバー4内に基板Wを搬入する搬入工程が行われる(図7のステップS1)。 (4) When the substrate W is processed by the substrate processing apparatus 1, a loading step of loading the substrate W into the chamber 4 is performed (Step S1 in FIG. 7).
 具体的には、昇降フレーム32および遮断部材33が上位置に位置しており、全てのガード25が下位置に位置している状態で、センターロボットCRが、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のチャックピン11の上に置く。その後、複数のチャックピン11が基板Wの外周面に押し付けられ、基板Wが把持される。センターロボットCRは、基板Wをスピンチャック10の上に置いた後、ハンドH1をチャンバー4の内部から退避させる。 Specifically, the center robot CR supports the substrate W with the hand H1 in a state where the lifting frame 32 and the blocking member 33 are located at the upper position, and all the guards 25 are located at the lower position. , The hand H1 enters the chamber 4. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. Thereafter, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from inside the chamber 4.
 次に、上ガスバルブ57および下ガスバルブ21が開かれ、遮断部材33の上中央開口38およびスピンベース12の下中央開口18が窒素ガスの吐出を開始する。これにより、基板Wに接する雰囲気中の酸素濃度が低減される。さらに、遮断部材昇降ユニット31が昇降フレーム32を上位置から下位置に下降させ、ガード昇降ユニット27がいずれかのガード25を下位置から上位置に上昇させる。このとき、スピンベース12は、平面視で複数の上支持部43がそれぞれ複数の下支持部44に重なる基準回転角に保持されている。したがって、遮断部材33の上支持部43がスピンベース12の下支持部44に支持され、遮断部材33が昇降フレーム32から離れる。その後、スピンモータ14が駆動され、基板Wの回転が開始される(図7のステップS2)。 Next, the upper gas valve 57 and the lower gas valve 21 are opened, and the upper central opening 38 of the blocking member 33 and the lower central opening 18 of the spin base 12 start discharging nitrogen gas. Thereby, the oxygen concentration in the atmosphere in contact with the substrate W is reduced. Further, the blocking member elevating unit 31 lowers the elevating frame 32 from the upper position to the lower position, and the guard elevating unit 27 raises one of the guards 25 from the lower position to the upper position. At this time, the spin base 12 is held at a reference rotation angle at which the plurality of upper support portions 43 respectively overlap the plurality of lower support portions 44 in plan view. Therefore, the upper support 43 of the blocking member 33 is supported by the lower support 44 of the spin base 12, and the blocking member 33 is separated from the lifting frame 32. Thereafter, the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 7).
 次に、第1薬液の一例であるDHFを基板Wの上面に供給する第1薬液供給工程が行われる(図7のステップS3)。 Next, a first chemical liquid supply step of supplying DHF, which is an example of the first chemical liquid, to the upper surface of the substrate W is performed (Step S3 in FIG. 7).
 具体的には、遮断部材33が下位置に位置している状態で第1薬液バルブ51が開かれ、中心ノズル45がDHFの吐出を開始する。中心ノズル45から吐出されたDHFは、基板Wの上面中央部に衝突した後、回転している基板Wの上面に沿って外方に流れる。これにより、基板Wの上面全域を覆うDHFの液膜が形成され、基板Wの上面全域にDHFが供給される。第1薬液バルブ51が開かれてから所定時間が経過すると、第1薬液バルブ51が閉じられ、DHFの吐出が停止される。 Specifically, the first chemical liquid valve 51 is opened in a state where the blocking member 33 is located at the lower position, and the central nozzle 45 starts discharging DHF. The DHF discharged from the center nozzle 45 collides with the center of the upper surface of the substrate W, and then flows outward along the upper surface of the rotating substrate W. Thus, a DHF liquid film covering the entire upper surface of the substrate W is formed, and DHF is supplied to the entire upper surface of the substrate W. When a predetermined time has elapsed since the first chemical liquid valve 51 was opened, the first chemical liquid valve 51 is closed, and the discharge of DHF is stopped.
 次に、リンス液の一例である純水を基板Wの上面に供給する第1リンス液供給工程が行われる(図7のステップS4)。 Next, a first rinse liquid supply step of supplying pure water, which is an example of a rinse liquid, to the upper surface of the substrate W is performed (Step S4 in FIG. 7).
 具体的には、遮断部材33が下位置に位置している状態で上リンス液バルブ55が開かれ、中心ノズル45が純水の吐出を開始する。基板Wの上面中央部に衝突した純水は、回転している基板Wの上面に沿って外方に流れる。基板W上のDHFは、中心ノズル45から吐出された純水によって洗い流される。これにより、基板Wの上面全域を覆う純水の液膜が形成される。上リンス液バルブ55が開かれてから所定時間が経過すると、上リンス液バルブ55が閉じられ、純水の吐出が停止される。 Specifically, the upper rinsing liquid valve 55 is opened while the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging pure water. The pure water colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W. DHF on the substrate W is washed away by pure water discharged from the center nozzle 45. As a result, a liquid film of pure water covering the entire upper surface of the substrate W is formed. When a predetermined time has elapsed since the opening of the upper rinsing liquid valve 55, the upper rinsing liquid valve 55 is closed, and the discharge of pure water is stopped.
 次に、第2薬液の一例であるエッチング液を基板Wの上面に供給する第2薬液供給工程が行われる(図7のステップS5)。 Next, a second chemical liquid supply step of supplying an etching liquid, which is an example of the second chemical liquid, to the upper surface of the substrate W is performed (Step S5 in FIG. 7).
 具体的には、遮断部材33が下位置に位置している状態で第2薬液バルブ53が開かれ、中心ノズル45がエッチング液の吐出を開始する。エッチング液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード25を切り替えるために、少なくとも一つのガード25を鉛直に移動させてもよい。基板Wの上面中央部に衝突したエッチング液は、回転している基板Wの上面に沿って外方に流れる。基板W上の純水は、中心ノズル45から吐出されたエッチング液に置換される。これにより、基板Wの上面全域を覆うエッチング液の液膜が形成される。第2薬液バルブ53が開かれてから所定時間が経過すると、第2薬液バルブ53が閉じられ、エッチング液の吐出が停止される。 Specifically, the second chemical liquid valve 53 is opened in a state where the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging the etching liquid. Before the discharge of the etching liquid is started, the guard elevating unit 27 may move at least one guard 25 vertically in order to switch the guard 25 that receives the liquid discharged from the substrate W. The etchant colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W. The pure water on the substrate W is replaced with an etchant discharged from the central nozzle 45. As a result, a liquid film of the etchant covering the entire upper surface of the substrate W is formed. When a predetermined time has elapsed since the second chemical liquid valve 53 was opened, the second chemical liquid valve 53 is closed, and the discharge of the etching liquid is stopped.
 次に、リンス液の一例である純水を基板Wの上面に供給する第2リンス液供給工程が行われる(図7のステップS6)。 Next, a second rinsing liquid supply step of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W is performed (Step S6 in FIG. 7).
 具体的には、遮断部材33が下位置に位置している状態で上リンス液バルブ55が開かれ、中心ノズル45が純水の吐出を開始する。基板Wの上面中央部に衝突した純水は、回転している基板Wの上面に沿って外方に流れる。基板W上のエッチング液は、中心ノズル45から吐出された純水によって洗い流される。これにより、基板Wの上面全域を覆う純水の液膜が形成される。上リンス液バルブ55が開かれてから所定時間が経過すると、上リンス液バルブ55が閉じられ、純水の吐出が停止される。 Specifically, the upper rinsing liquid valve 55 is opened while the blocking member 33 is located at the lower position, and the center nozzle 45 starts discharging pure water. The pure water colliding with the center of the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W. The etchant on the substrate W is washed away by pure water discharged from the center nozzle 45. As a result, a liquid film of pure water covering the entire upper surface of the substrate W is formed. When a predetermined time has elapsed since the opening of the upper rinsing liquid valve 55, the upper rinsing liquid valve 55 is closed, and the discharge of pure water is stopped.
 次に、基板Wの回転によって基板Wを乾燥させる乾燥工程が行われる(図7のステップS7)。 Next, a drying step of drying the substrate W by rotating the substrate W is performed (Step S7 in FIG. 7).
 具体的には、遮断部材33が下位置に位置している状態でスピンモータ14が基板Wを回転方向に加速させ、第1薬液供給工程から第2リンス液供給工程までの期間における基板Wの回転速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。これにより、液体が基板Wから除去され、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンモータ14が回転を停止する。このとき、スピンモータ14は、基準回転角でスピンベース12を停止させる。これにより、基板Wの回転が停止される(図7のステップS8)。 Specifically, the spin motor 14 accelerates the substrate W in the rotation direction in a state in which the blocking member 33 is located at the lower position, and the substrate W during the period from the first chemical liquid supply step to the second rinse liquid supply step is removed. The substrate W is rotated at a high rotation speed (for example, several thousand rpm) higher than the rotation speed. Thereby, the liquid is removed from the substrate W, and the substrate W is dried. When a predetermined time has elapsed since the start of the high-speed rotation of the substrate W, the spin motor 14 stops rotating. At this time, the spin motor 14 stops the spin base 12 at the reference rotation angle. Thus, the rotation of the substrate W is stopped (Step S8 in FIG. 7).
 次に、基板Wをチャンバー4から搬出する搬出工程が行われる(図7のステップS9)。 Next, an unloading step of unloading the substrate W from the chamber 4 is performed (Step S9 in FIG. 7).
 具体的には、遮断部材昇降ユニット31が昇降フレーム32を上位置まで上昇させ、ガード昇降ユニット27が全てのガード25を下位置まで下降させる。さらに、上ガスバルブ57および下ガスバルブ21が閉じられ、遮断部材33の上中央開口38とスピンベース12の下中央開口18とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。 Specifically, the blocking member elevating unit 31 raises the elevating frame 32 to the upper position, and the guard elevating unit 27 lowers all the guards 25 to the lower position. Further, the upper gas valve 57 and the lower gas valve 21 are closed, and the upper central opening 38 of the blocking member 33 and the lower central opening 18 of the spin base 12 stop discharging nitrogen gas. After that, the center robot CR causes the hand H1 to enter the chamber 4. The center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W. Thereafter, the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. Thus, the processed substrate W is carried out of the chamber 4.
 図8Aおよび図8Bは、水酸化物イオンとポリシリコンとの接触が阻害物質によって阻害されるときに想定されるメカニズムを説明するための図である。図8Aおよび図8Bは、阻害物質がプロピレングリコールである例を示している。 FIGS. 8A and 8B are diagrams for explaining a mechanism assumed when contact between hydroxide ions and polysilicon is inhibited by an inhibitor. 8A and 8B show an example where the inhibitor is propylene glycol.
 第4級アンモニウム水酸化物が水に溶けると、第4級アンモニウム水酸化物は、陽イオン(カチオン)と水酸化物イオン(OH)とに分離する。ポリシリコンに含まれるケイ素は、式「Si+4OH→Si(OH)+4e」で表されるように、水酸化物イオンと反応する。これにより、ポリシリコンに含まれるケイ素がエッチング液に溶解し、エッチング対象物であるポリシリコンのエッチングが進む。 When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into a cation (cation) and a hydroxide ion (OH ). Silicon contained in polysilicon reacts with hydroxide ions as represented by the formula “Si + 4OH → Si (OH) 4 + 4e ”. Thereby, the silicon contained in the polysilicon is dissolved in the etching solution, and the etching of the polysilicon to be etched proceeds.
 阻害物質がエッチング液に含まれる場合、阻害物質が、水酸化物イオンにとって立体的な障壁となり、水酸化物イオンが、エッチング液中に浮遊したまたはポリシリコンに吸着または配位した阻害物質によって、ポリシリコンに向かって移動するのを遮られる。そのため、ポリシリコンに到達する水酸化物イオンの数が減少し、ポリシリコンのエッチング速度が低下する。このようなメカニズムで、水酸化物イオンとポリシリコンとの接触が阻害物質によって阻害されると考えられる。 When an inhibitor is included in the etching solution, the inhibitor acts as a three-dimensional barrier for hydroxide ions, and the hydroxide ions are suspended by the etching solution or absorbed or coordinated with polysilicon by the inhibitor, Blocked from moving towards polysilicon. Therefore, the number of hydroxide ions reaching the polysilicon decreases, and the etching rate of the polysilicon decreases. By such a mechanism, it is considered that the contact between the hydroxide ion and the polysilicon is inhibited by the inhibitor.
 エッチング速度の低下はポリシリコンに含まれるシリコン単結晶の複数の結晶面で発生するものの、エッチング速度は、シリコン単結晶の複数の結晶面のうちエッチング速度が高い結晶面で相対的に大きく低下する。これにより、複数の結晶面におけるエッチング速度の差が減少し、エッチング液に対するシリコン単結晶の異方性が低下する。つまり、ポリシリコンの表面で露出するシリコン単結晶の面方位にかかわらず、ポリシリコンが均一にエッチングされる。このようなメカニズムで、ポリシリコンがいずれの場所でも均一なエッチング量でエッチングされると考えられる。 Although the decrease in the etching rate occurs on a plurality of crystal planes of the silicon single crystal contained in the polysilicon, the etching rate is relatively largely reduced on the crystal plane having a high etching rate among the plurality of crystal planes of the silicon single crystal. . As a result, the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the polysilicon is uniformly etched regardless of the plane orientation of the silicon single crystal exposed on the surface of the polysilicon. By such a mechanism, it is considered that the polysilicon is etched with a uniform etching amount at any place.
 図9は、シリコン単結晶の3つの結晶面のエッチング速度とエッチング液中のプロピレングリコールの濃度との関係の一例を示すグラフである。 FIG. 9 is a graph showing an example of the relationship between the etching rates of three crystal planes of a silicon single crystal and the concentration of propylene glycol in the etching solution.
 図9は、プロピレングリコールの濃度が異なる3種類のTMAH(濃度零、第1濃度、第2濃度)を用いてシリコン単結晶をエッチングしたときの、(110)面、(100)面、および(111)面のエッチング速度の測定値を示している。図9に示す測定値が得られたときのエッチング条件は、TMAH中のプロピレングリコールの濃度を除き同一である。たとえば、TMAHの温度は40℃であり、プロピレングリコールが添加されていないTMAHの濃度は5wt%(質量パーセント濃度)である。TMAHは、予め溶存酸素濃度が低下されている。 FIG. 9 shows the (110) plane, the (100) plane, and the (100) plane when a silicon single crystal is etched using three types of TMAHs (zero concentration, first concentration, and second concentration) having different concentrations of propylene glycol. The measured value of the etching rate of the (111) plane is shown. The etching conditions when the measured values shown in FIG. 9 were obtained were the same except for the concentration of propylene glycol in TMAH. For example, the temperature of TMAH is 40 ° C., and the concentration of TMAH to which propylene glycol is not added is 5 wt% (mass percent concentration). The dissolved oxygen concentration of TMAH is previously reduced.
 図9に示すように、プロピレングリコールの濃度が零の場合、(110)面のエッチング速度が最も大きく、(111)面のエッチング速度が最も小さい。図9中の3つの曲線を見ると分かるように、プロピレングリコールをTMAHに加えると、エッチング速度が減少している。さらに、いずれの結晶面も、プロピレングリコールの濃度が増加するにしたがってエッチング速度が減少している。 示 す As shown in FIG. 9, when the concentration of propylene glycol is zero, the etching rate on the (110) plane is the highest and the etching rate on the (111) plane is the lowest. As can be seen from the three curves in FIG. 9, the addition of propylene glycol to TMAH decreases the etch rate. Further, the etching rate of each crystal plane decreases as the concentration of propylene glycol increases.
 しかしながら、プロピレングリコールの濃度が零から第1濃度までの範囲では、(110)面および(100)面のエッチング速度が急激に減少している一方で、(111)面のエッチング速度は非常に緩やかに減少している。そのため、この範囲では、プロピレングリコールの濃度が増加するにしたがって、エッチング速度の最大値とエッチング速度の最小値との差が減少している。 However, when the concentration of propylene glycol is in the range from zero to the first concentration, the etching rate of the (110) plane and the (100) plane is sharply reduced, while the etching rate of the (111) plane is very slow. Has decreased. Therefore, in this range, as the concentration of propylene glycol increases, the difference between the maximum value of the etching rate and the minimum value of the etching rate decreases.
 プロピレングリコールの濃度が第1濃度を超えると、エッチング速度の減少率(プロピレングリコールの濃度の変化量の絶対値に対するエッチング速度の変化量の絶対値の割合)が低下しているものの、第1濃度と第2濃度の中間付近の値までは、(110)面および(100)面のエッチング速度の減少率が、(111)面のエッチング速度の減少率よりも大きい。したがって、プロピレングリコールの濃度が第1濃度と第2濃度の中間付近の値までの範囲でも、プロピレングリコールの濃度が増加するにしたがって、エッチング速度の最大値とエッチング速度の最小値との差が減少している。 When the propylene glycol concentration exceeds the first concentration, the rate of decrease in the etching rate (the ratio of the absolute value of the change in the etching rate to the absolute value of the change in the concentration of the propylene glycol) decreases, but the first concentration Up to a value near the middle between the second concentration and the second concentration, the rate of decrease in the etching rate on the (110) plane and the (100) plane is larger than the rate of decrease in the etching rate on the (111) plane. Therefore, even when the concentration of propylene glycol is in a range up to a value near the middle between the first concentration and the second concentration, the difference between the maximum value of the etching rate and the minimum value of the etching rate decreases as the concentration of propylene glycol increases. are doing.
 このように、シリコン単結晶に対して異方性を示すTMAHにプロピレングリコールを添加すると、面方位選択性、つまり、エッチング速度の最大値とエッチング速度の最小値との差が減少し、TMAHに対するシリコン単結晶の異方性が低下する。その一方で、プロピレングリコールの濃度が第1濃度と第2濃度の中間付近の値までの範囲では、プロピレングリコールの濃度が増加するにしたがって、(110)面および(100)面のエッチング速度が大きい減少率で減少する。したがって、要求されるエッチングの均一性とエッチング速度に応じてプロピレングリコールの濃度を設定すればよい。 As described above, when propylene glycol is added to TMAH exhibiting anisotropy with respect to a silicon single crystal, plane orientation selectivity, that is, the difference between the maximum value of the etching rate and the minimum value of the etching rate decreases, and the The anisotropy of the silicon single crystal decreases. On the other hand, when the concentration of propylene glycol is in a range up to a value near the middle between the first concentration and the second concentration, as the concentration of propylene glycol increases, the etching rates of the (110) plane and the (100) plane increase. Decreases at a decreasing rate. Therefore, the concentration of propylene glycol may be set according to the required etching uniformity and etching rate.
 たとえば、プロピレングリコールなどの阻害物質をエッチング液に過剰に投与してもよい。図9に示す測定結果によると、プロピレングリコールを少量(たとえば5~10wt%程度)加えたときは、異方性の緩和の効果が相対的に小さいものの、プロピレングリコールを多量(たとえば20wt%以上)加えたとき、つまり、プロピレングリコールを過剰に投与したときは、顕著な異方性の緩和の効果が認められる。 For example, an inhibitor such as propylene glycol may be excessively administered to the etching solution. According to the measurement results shown in FIG. 9, when a small amount of propylene glycol (for example, about 5 to 10 wt%) is added, the effect of relaxing anisotropy is relatively small, but a large amount of propylene glycol (for example, 20 wt% or more) is added. When added, that is, when propylene glycol is excessively administered, a remarkable effect of alleviating anisotropy is observed.
 プロピレングリコールの過剰投与により顕著な異方性の緩和の効果が得られる反面、エッチングレートが減少する不利な点もあるため、プロピレングリコールをどの程度過剰投与するかは、異方性の緩和の要請と、スループットの要請のバランスから決定すればよい。たとえば、制御装置3は、ポリシリコンを構成するシリコン単結晶の複数の結晶面におけるエッチング速度の差の目標値に基づいて、エッチング液における阻害物質の濃度を決定してもよい。エッチング速度の差の目標値は、レシピで指定されていてもよいし、ホストコンピュータなどの外部装置から制御装置3に入力されてもよい。 Although excessive administration of propylene glycol can significantly reduce the anisotropy, it also has the disadvantage of lowering the etching rate. And the balance between throughput requirements. For example, control device 3 may determine the concentration of the inhibitor in the etchant based on a target value of a difference between etching rates on a plurality of crystal planes of silicon single crystal constituting polysilicon. The target value of the difference between the etching rates may be specified in a recipe, or may be input to the control device 3 from an external device such as a host computer.
 以上のように本実施形態では、第4級アンモニウム水酸化物と水と阻害物質とを含むアルカリ性のエッチング液を、エッチング対象物P1~P3(図6参照)とエッチング対象物P1~P3とは異なる非エッチング対象物O1~O3(図6参照)とが露出した基板Wに供給する。第4級アンモニウム水酸化物が水に溶けると、第4級アンモニウム水酸化物は、陽イオン(カチオン)と水酸化物イオンとに分離する。エッチング対象物P1~P3に含まれるシリコン単結晶は、水酸化物イオンと反応し、エッチング液に溶ける。エッチング対象物P1~P3のエッチング速度は、非エッチング対象物O1~O3のエッチング速度よりも大きい。これにより、エッチング対象物P1~P3が選択的にエッチングされる。 As described above, in the present embodiment, the alkaline etching solution containing the quaternary ammonium hydroxide, water, and the inhibitor is mixed with the etching objects P1 to P3 (see FIG. 6) and the etching objects P1 to P3. Different non-etching targets O1 to O3 (see FIG. 6) are supplied to the exposed substrate W. When the quaternary ammonium hydroxide is dissolved in water, the quaternary ammonium hydroxide separates into cations (cations) and hydroxide ions. The silicon single crystal contained in the etching objects P1 to P3 reacts with hydroxide ions and is dissolved in the etching solution. The etching rates of the etching objects P1 to P3 are higher than the etching rates of the non-etching objects O1 to O3. Thereby, the etching objects P1 to P3 are selectively etched.
 阻害物質は、水酸化物イオンとエッチング対象物P1~P3との接触を阻害する。つまり、阻害物質は、水酸化物イオンにとって立体的な障壁となり、エッチング対象物P1~P3と反応する水酸化物イオンの数を減少させる。これにより、エッチング対象物P1~P3のエッチング速度が低下する。さらに、エッチング速度は、シリコン単結晶の複数の結晶面において均一に減少するのではなく、これらのうちエッチング速度が高い結晶面で相対的に大きく低下する。これにより、複数の結晶面におけるエッチング速度の差が減少し、エッチング液に対するシリコン単結晶の異方性が低下する。つまり、エッチング対象物P1~P3に含まれるシリコン単結晶のエッチングが等方性エッチングに近づき、エッチング対象物P1~P3がいずれの場所でも均一なエッチング量でエッチングされる。 The inhibitor inhibits contact between the hydroxide ions and the etching objects P1 to P3. That is, the inhibitor acts as a three-dimensional barrier for hydroxide ions, and reduces the number of hydroxide ions that react with the etching objects P1 to P3. Thereby, the etching rate of the etching objects P1 to P3 decreases. Further, the etching rate does not decrease uniformly on a plurality of crystal planes of the silicon single crystal, but relatively decreases on a crystal plane having a high etching rate among them. As a result, the difference between the etching rates in the plurality of crystal planes decreases, and the anisotropy of the silicon single crystal with respect to the etching solution decreases. That is, the etching of the silicon single crystal contained in the etching objects P1 to P3 approaches the isotropic etching, and the etching objects P1 to P3 are etched with a uniform etching amount in any place.
 前述のように、エッチング液中の水酸化物イオンは、エッチング液中に浮遊したまたはポリシリコンに吸着または配位した阻害物質によって、ポリシリコンに向かって移動するのを遮られる。エッチング液中に存在する阻害物質の分子の数が同じであれば、阻害物質の分子が大きいほど、水酸化物イオンがエッチング対象物P1~P3に到達し難い。本実施形態のように、1つの分子が水酸化物イオンよりも大きい阻害物質を用いれば、エッチング対象物P1~P3に接触する水酸化物イオンの数を効果的に減らすことができる。 (4) As described above, hydroxide ions in the etching solution are prevented from moving toward the polysilicon by an inhibitor suspended in the etching solution or adsorbed or coordinated with the polysilicon. If the number of inhibitory molecules present in the etching solution is the same, the larger the inhibitory molecule, the more difficult it is for hydroxide ions to reach the etching objects P1 to P3. If an inhibitor whose one molecule is larger than a hydroxide ion is used as in this embodiment, the number of hydroxide ions in contact with the etching objects P1 to P3 can be effectively reduced.
 本実施形態では、第4級アンモニウム水酸化物と水と阻害物質とを、吐出口47から吐出された後ではなく、吐出口47から吐出される前に混合する。これにより、第4級アンモニウム水酸化物と水と阻害物質とが均一に混ざり合ったエッチング液が作成される。その後、エッチング液が基板Wに向けて吐出口47から吐出され、基板Wに供給される。したがって、吐出口47から吐出された後に第4級アンモニウム水酸化物と水と阻害物質とを混合する場合に比べて、基板Wを均一に処理できる。 In the present embodiment, the quaternary ammonium hydroxide, water, and the inhibitor are mixed not before being discharged from the discharge port 47 but before being discharged from the discharge port 47. As a result, an etching solution is prepared in which the quaternary ammonium hydroxide, water, and the inhibitor are uniformly mixed. After that, the etchant is discharged from the discharge port 47 toward the substrate W and supplied to the substrate W. Therefore, the substrate W can be treated more uniformly than when the quaternary ammonium hydroxide, water, and the inhibitor are mixed after being discharged from the discharge port 47.
 本実施形態では、酸化膜除去液の一例であるDHFが基板Wに供給され、エッチング対象物P1~P3の自然酸化膜がエッチング対象物P1~P3の表層から除去される。その後、エッチング液が基板Wに供給され、エッチング対象物P1~P3が選択的にエッチングされる。エッチング対象物P1~P3の自然酸化膜は、主として酸化シリコンで構成されている。エッチング液は、酸化シリコンをエッチングせずにもしくは殆どエッチングせずに、エッチング対象物P1~P3をエッチングする液体である。これは、水酸化物イオンがケイ素と反応するものの、酸化シリコンとは反応しないもしくは殆ど反応しないからである。したがって、エッチング対象物P1~P3の自然酸化膜を予め除去することにより、エッチング対象物P1~P3を効率的にエッチングできる。 In this embodiment, DHF, which is an example of the oxide film removing liquid, is supplied to the substrate W, and the natural oxide films of the etching objects P1 to P3 are removed from the surface layers of the etching objects P1 to P3. Thereafter, an etching solution is supplied to the substrate W, and the etching objects P1 to P3 are selectively etched. The natural oxide films of the etching objects P1 to P3 are mainly composed of silicon oxide. The etching liquid is a liquid that etches the etching objects P1 to P3 without etching or almost not etching the silicon oxide. This is because hydroxide ions react with silicon, but do not or rarely react with silicon oxide. Therefore, the etching objects P1 to P3 can be efficiently etched by removing the natural oxide films of the etching objects P1 to P3 in advance.
 本実施形態では、堆積したポリシリコンを加熱する熱処理工程が行われたエッチング対象物P1~P3を、アルカリ性のエッチング液でエッチングする。堆積したポリシリコンを適切な条件下で加熱すると、ポリシリコンの粒度(グレインサイズ)が増加する。したがって、熱処理工程が行われない場合と比較して、エッチング対象物P1~P3に含まれるシリコン単結晶が大型化している。これは、エッチング対象物P1~P3の表面で露出するシリコン単結晶の数が減少し、異方性の影響が高まることを意味する。したがって、このようなエッチング対象物P1~P3に第4級アンモニウム水酸化物と水と阻害物質とを含むエッチング液を供給することにより、異方性の影響を効果的に低下させることができる。 In this embodiment, the etching targets P1 to P3 subjected to the heat treatment step of heating the deposited polysilicon are etched with an alkaline etching solution. Heating the deposited polysilicon under appropriate conditions increases the polysilicon grain size. Therefore, as compared with the case where the heat treatment step is not performed, the silicon single crystal contained in the etching objects P1 to P3 is larger. This means that the number of silicon single crystals exposed on the surfaces of the etching objects P1 to P3 decreases, and the influence of anisotropy increases. Therefore, by supplying an etching solution containing a quaternary ammonium hydroxide, water and an inhibitor to the etching objects P1 to P3, the influence of anisotropy can be effectively reduced.
 本実施形態では、第4級アンモニウム水酸化物と水と阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる。したがって、これらから作成されるエッチング液の溶存酸素濃度が低下する。溶存酸素濃度が高いエッチング液が基板Wに供給されると、エッチング対象物P1~P3の表層の一部が酸化され、酸化シリコンに変化する。これは、エッチング対象物P1~P3のエッチング速度がさらに低下することを意味する。したがって、溶存酸素濃度が低いエッチング液を基板Wに供給することにより、エッチング対象物P1~P3のエッチング速度の低下を抑えながら、シリコン単結晶の異方性を低下させることができる。 In this embodiment, the concentration of dissolved oxygen in at least one of the quaternary ammonium hydroxide, water, and the inhibitor is reduced. Accordingly, the concentration of dissolved oxygen in the etching solution prepared from these decreases. When an etching solution having a high dissolved oxygen concentration is supplied to the substrate W, a part of the surface layer of the etching objects P1 to P3 is oxidized and changes to silicon oxide. This means that the etching rates of the etching objects P1 to P3 are further reduced. Accordingly, by supplying an etching solution having a low dissolved oxygen concentration to the substrate W, it is possible to reduce the anisotropy of the silicon single crystal while suppressing a decrease in the etching rate of the etching objects P1 to P3.
 本実施形態では、雰囲気中の酸素濃度が低い状態でエッチング液が基板Wに供給される。これにより、雰囲気からエッチング液に溶け込む酸素が減少し、溶存酸素濃度の上昇が抑えられる。溶存酸素濃度が高いエッチング液が基板Wに供給されると、エッチング対象物P1~P3のエッチング速度がさらに低下してしまう。したがって、雰囲気中の酸素濃度を低下させることにより、エッチング速度のさらなる低下を抑えることができる。 In the present embodiment, the etching solution is supplied to the substrate W in a state where the oxygen concentration in the atmosphere is low. This reduces the amount of oxygen dissolved from the atmosphere into the etching solution, thereby suppressing an increase in the concentration of dissolved oxygen. When an etching solution having a high dissolved oxygen concentration is supplied to the substrate W, the etching rate of the etching objects P1 to P3 further decreases. Therefore, a further decrease in the etching rate can be suppressed by reducing the oxygen concentration in the atmosphere.
 次に、第2実施形態について説明する。 Next, a second embodiment will be described.
 第1実施形態に対する第2実施形態の主要な相違点は、基板処理装置101が複数枚の基板Wを一括して処理するバッチ式の装置であることである。 The main difference between the first embodiment and the second embodiment is that the substrate processing apparatus 101 is a batch-type apparatus that processes a plurality of substrates W at a time.
 図10は、本発明の第2実施形態に係る基板処理装置101に備えられた薬液処理ユニット102を示す模式図である。図10および図11において、前述の図1~図9に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 FIG. 10 is a schematic view showing a chemical processing unit 102 provided in a substrate processing apparatus 101 according to the second embodiment of the present invention. 10 and 11, the same components as those shown in FIGS. 1 to 9 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 基板処理装置101は、複数枚の基板Wに処理液を同時に供給する複数の処理ユニットと、複数枚の基板Wを同時に処理ユニットに搬入する搬入動作と複数枚の基板Wを同時に処理ユニットから搬出する搬出動作とを行う搬送ユニットと、基板処理装置101を制御する制御装置3とを備えている。 The substrate processing apparatus 101 includes a plurality of processing units that simultaneously supply a processing liquid to a plurality of substrates W, a loading operation for simultaneously loading the plurality of substrates W into the processing unit, and a unloading operation of the plurality of substrates W from the processing units. And a control unit 3 for controlling the substrate processing apparatus 101.
 複数の処理ユニットは、第2薬液に相当するアルカリ性のエッチング液を複数枚の基板Wに同時に供給する薬液処理ユニット102を含む。薬液処理ユニット102は、エッチング液を貯留すると共に複数枚の基板Wが同時に搬入される浸漬槽103と、浸漬槽103からあふれたエッチング液を受け止めるオーバーフロー槽104とを含む。図示はしないが、複数の処理ユニットは、エッチング液が供給された複数枚の基板Wにリンス液を同時に供給するリンス液処理ユニットと、リンス液が供給された複数枚の基板Wを同時に乾燥させる乾燥処理ユニットとをさらに含む。 The plurality of processing units include the chemical processing unit 102 that supplies an alkaline etchant corresponding to the second chemical to the plurality of substrates W simultaneously. The chemical processing unit 102 includes an immersion tank 103 for storing an etching liquid and simultaneously carrying a plurality of substrates W, and an overflow tank 104 for receiving the etching liquid overflowing from the immersion tank 103. Although not shown, the plurality of processing units are a rinsing liquid processing unit for simultaneously supplying a rinsing liquid to the plurality of substrates W supplied with the etching liquid, and simultaneously drying the plurality of substrates W supplied with the rinsing liquid. A drying processing unit.
 薬液処理ユニット102は、浸漬槽103およびオーバーフロー槽104に加えて、浸漬槽103およびオーバーフロー槽104を収容するハウジング105と、ハウジング105の上部に設けられた搬入搬出口105aを開閉するシャッター106と、搬入搬出口105aがシャッター106で閉じられる閉位置と搬入搬出口105aが開かれる開位置との間でシャッター106を移動させる開閉ユニット107とを含む。複数枚の基板Wは、搬入搬出口105aを上下に通過する。搬送ユニットは、複数枚の基板Wが浸漬槽103内のエッチング液に浸漬される下位置と複数枚の基板Wが浸漬槽103内のエッチング液の上方に位置する上位置との間で複数枚の基板Wを同時に保持しながら昇降するリフター108を含む。 The chemical treatment unit 102 includes, in addition to the immersion tank 103 and the overflow tank 104, a housing 105 that houses the immersion tank 103 and the overflow tank 104, a shutter 106 that opens and closes a loading / unloading port 105 a provided at an upper part of the housing 105, An opening / closing unit 107 for moving the shutter 106 between a closed position where the carry-in / out port 105a is closed by the shutter 106 and an open position where the carry-in / out port 105a is opened is included. The plurality of substrates W pass vertically through the loading / unloading port 105a. The transport unit moves the plurality of substrates W between the lower position where the plurality of substrates W are immersed in the etching liquid in the immersion tank 103 and the upper position where the plurality of substrates W is positioned above the etching liquid in the immersion tank 103. Lifter 108 which moves up and down while holding the substrate W at the same time.
 薬液処理ユニット102は、第2薬液に相当するアルカリ性のエッチング液を吐出する第2薬液吐出口47が設けられた2つの薬液ノズル109と、浸漬槽103内の液体を排出する排液配管116とを含む。薬液ノズル109がエッチング液を吐出すると、エッチング液が浸漬槽103内に供給されると共に、上昇流が浸漬槽103内のエッチング液中に形成される。また、排液配管116に介装された排液バルブ117が開かれると、エッチング液などの浸漬槽103内の液体が排液配管116に排出される。排液配管116の上流端は、浸漬槽103の底部に接続されている。 The chemical processing unit 102 includes two chemical nozzles 109 provided with a second chemical liquid outlet 47 for discharging an alkaline etching liquid corresponding to the second chemical, a drain pipe 116 for discharging the liquid in the immersion tank 103, including. When the chemical solution nozzle 109 discharges the etchant, the etchant is supplied into the immersion tank 103 and an upward flow is formed in the etchant in the immersion tank 103. Further, when the drain valve 117 interposed in the drain pipe 116 is opened, the liquid in the immersion tank 103 such as the etching solution is discharged to the drain pipe 116. The upstream end of the drainage pipe 116 is connected to the bottom of the immersion tank 103.
 薬液作成ユニット61のタンク62内のエッチング液を循環させる循環配管63は、薬液配管110を介して2つの薬液ノズル109に接続されている。薬液配管110は、循環配管63から供給されたエッチング液を2つの薬液ノズル109に向けて案内する共通配管110cと、共通配管110cから供給されたエッチング液を2つの薬液ノズル109にそれぞれ案内する2つの分岐配管110bとを含む。分岐配管110bの上流端は、共通配管110cに接続されており、分岐配管110bの下流端は、薬液ノズル109に接続されている。 The circulation pipe 63 for circulating the etching liquid in the tank 62 of the chemical liquid preparation unit 61 is connected to two chemical liquid nozzles 109 via a chemical liquid pipe 110. The chemical pipe 110 guides the etchant supplied from the circulation pipe 63 toward the two chemical nozzles 109, and guides the etchant supplied from the common pipe 110c to the two chemical nozzles 109, respectively. And two branch pipes 110b. The upstream end of the branch pipe 110b is connected to the common pipe 110c, and the downstream end of the branch pipe 110b is connected to the chemical nozzle 109.
 空の浸漬槽103をエッチング液で満たすときは、共通配管110cに介装された薬液バルブ114が開かれる。これにより、共通配管110c内のエッチング液が、2つの分岐配管110bを介して2つの薬液ノズル109に供給され、2つの薬液ノズル109から吐出される。そして、浸漬槽103の中がエッチング液で満たされると、薬液バルブ114が閉じられ、タンク62から浸漬槽103へのエッチング液の供給が停止される。薬液バルブ114は、空の浸漬槽103をエッチング液で満たすとき以外は閉じられている。 (4) When the empty immersion tank 103 is filled with the etching liquid, the chemical liquid valve 114 interposed in the common pipe 110c is opened. Thus, the etching liquid in the common pipe 110c is supplied to the two chemical liquid nozzles 109 via the two branch pipes 110b, and is discharged from the two chemical liquid nozzles 109. When the inside of the immersion tank 103 is filled with the etching liquid, the chemical liquid valve 114 is closed, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is stopped. The chemical liquid valve 114 is closed except when the empty immersion tank 103 is filled with the etching liquid.
 オーバーフロー槽104は、リターン配管115を介して共通配管110cに接続されている。リターン配管115の上流端は、オーバーフロー槽104に接続されており、リターン配管115の下流端は、薬液バルブ114の下流の位置で共通配管110cに接続されている。浸漬槽103からオーバーフロー槽104にあふれたエッチング液は、ポンプ113によって再び2つの薬液ノズル109に送られると共に、2つの薬液ノズル109に達する前にフィルター111によってろ過される。薬液処理ユニット102は、エッチング液の加熱または冷却によって浸漬槽103内のエッチング液の温度を変更する温度調節器112を含んでいてもよい。 The overflow tank 104 is connected to a common pipe 110c via a return pipe 115. The upstream end of the return pipe 115 is connected to the overflow tank 104, and the downstream end of the return pipe 115 is connected to the common pipe 110 c at a position downstream of the chemical liquid valve 114. The etching liquid overflowing from the immersion tank 103 to the overflow tank 104 is sent again to the two chemical liquid nozzles 109 by the pump 113 and is filtered by the filter 111 before reaching the two chemical liquid nozzles 109. Chemical treatment unit 102 may include a temperature controller 112 that changes the temperature of the etching solution in immersion tank 103 by heating or cooling the etching solution.
 エッチング液の溶存酸素濃度を調整する溶存酸素濃度変更ユニット67は、空気中の酸素濃度(約21vol%)よりも低い酸素濃度を有する低酸素ガスを浸漬槽103内のエッチング液に溶解させる少なくとも一つのガスノズル118をさらに含む。図10は、2つのガスノズル118が設けられており、低酸素ガスが窒素ガスである例を示している。2つのガスノズル118は、浸漬槽103に取り付けられており、浸漬槽103の内部で窒素ガスを吐出する。 The dissolved oxygen concentration changing unit 67 that adjusts the dissolved oxygen concentration of the etching solution includes at least one unit that dissolves a low oxygen gas having an oxygen concentration lower than the oxygen concentration in air (about 21 vol%) in the etching solution in the immersion tank 103. It further includes three gas nozzles 118. FIG. 10 shows an example in which two gas nozzles 118 are provided and the low oxygen gas is a nitrogen gas. The two gas nozzles 118 are attached to the immersion tank 103, and discharge nitrogen gas inside the immersion tank 103.
 溶存酸素濃度変更ユニット67は、少なくとも一つのガスノズル118に窒素ガスを供給するガス供給配管119と、ガス供給配管119から少なくとも一つのガスノズル118に窒素ガスが流れる開状態と窒素ガスがガス供給配管119でせき止められる閉状態との間で開閉するガスバルブ120と、ガス供給配管119から少なくとも一つのガスノズル118に供給される窒素ガスの流量を変更するガス流量調整バルブ121とを含む。 The dissolved oxygen concentration changing unit 67 includes a gas supply pipe 119 for supplying nitrogen gas to at least one gas nozzle 118, an open state in which nitrogen gas flows from the gas supply pipe 119 to at least one gas nozzle 118, and a gas supply pipe 119. A gas valve 120 that opens and closes between a closed state and a gas flow adjustment valve 121 that changes the flow rate of nitrogen gas supplied from the gas supply pipe 119 to at least one gas nozzle 118.
 エッチング液が浸漬槽103の中にあるときにガスバルブ120が開かれると、窒素ガスが、ガス流量調整バルブ121の開度に対応する流量で2つのガスノズル118から吐出される。これにより、浸漬槽103内のエッチング液中に多数の気泡が形成され、窒素ガスが浸漬槽103内のエッチング液に溶け込む。このとき、溶存酸素がエッチング液から排出され、エッチング液の溶存酸素濃度が低下する。これにより、浸漬槽103内のエッチング液における溶存酸素濃度の上昇が抑えられる。 When the gas valve 120 is opened while the etchant is in the immersion tank 103, nitrogen gas is discharged from the two gas nozzles 118 at a flow rate corresponding to the degree of opening of the gas flow rate adjustment valve 121. As a result, many bubbles are formed in the etching solution in the immersion tank 103, and the nitrogen gas dissolves in the etching solution in the immersion tank 103. At this time, dissolved oxygen is discharged from the etching solution, and the concentration of dissolved oxygen in the etching solution decreases. This suppresses an increase in the concentration of dissolved oxygen in the etching solution in the immersion tank 103.
 溶存酸素濃度変更ユニット67は、さらに、窒素ガスなどの低酸素ガスをハウジング105の中に供給するパージガス供給配管122と、パージガス供給配管122からハウジング105に窒素ガスが流れる開状態と窒素ガスがパージガス供給配管122でせき止められる閉状態との間で開閉するパージガスバルブ123とを含む。溶存酸素濃度変更ユニット67は、さらに、ハウジング105内の気体をハウジング105の外に案内するガス排出配管124と、ハウジング105内の気圧が上限圧力を上回ると、ガス排出配管124を通じてハウジング105内の気体を排出するリリーフバルブ125とを含む。 The dissolved oxygen concentration changing unit 67 further includes a purge gas supply pipe 122 for supplying a low oxygen gas such as a nitrogen gas into the housing 105, an open state in which the nitrogen gas flows from the purge gas supply pipe 122 to the housing 105, and a purge gas supply for the nitrogen gas. And a purge gas valve 123 that opens and closes between a closed state blocked by the supply pipe 122. The dissolved oxygen concentration changing unit 67 further includes a gas discharge pipe 124 for guiding the gas in the housing 105 to the outside of the housing 105, and a gas discharge pipe 124 when the pressure in the housing 105 exceeds the upper limit pressure. And a relief valve 125 for discharging gas.
 パージガスバルブ123が開いているときに、シャッター106が閉じられると、搬入搬出口105aを通って排出される気体の量が減少するので、ハウジング105内の気圧が上昇する。ハウジング105内の気圧が上限圧力を上回ると、リリーフバルブ125が開き、ハウジング105内の気体がガス排出配管124に排出される。これにより、空気がハウジング105の中から排出され、ハウジング105の中が窒素ガスで満たされる。そのため、ハウジング105内の雰囲気から浸漬槽103内のエッチング液に溶け込む酸素が減少し、溶存酸素濃度の上昇が抑えられる。 (4) If the shutter 106 is closed while the purge gas valve 123 is open, the amount of gas discharged through the carry-in / out port 105a decreases, so that the air pressure in the housing 105 increases. When the pressure in the housing 105 exceeds the upper limit pressure, the relief valve 125 is opened, and the gas in the housing 105 is discharged to the gas discharge pipe 124. Thereby, air is discharged from the housing 105, and the inside of the housing 105 is filled with nitrogen gas. Therefore, the amount of oxygen dissolved in the etching solution in the immersion tank 103 from the atmosphere in the housing 105 is reduced, and an increase in the dissolved oxygen concentration is suppressed.
 図11は、新しいエッチング液を作成してから使用済みのエッチング液を浸漬槽103から排出するまでの流れの一例を示す工程図である。 FIG. 11 is a process diagram showing an example of a flow from creation of a new etching solution to discharge of the used etching solution from the immersion tank 103.
 後述する動作は、制御装置3が基板処理装置101を制御することにより実行される。言い換えると、制御装置3は、以下の動作を基板処理装置101に実行させるようにプログラムされている。以下では、図10および図11を参照する。 {Operations to be described later are executed by the control device 3 controlling the substrate processing apparatus 101. In other words, the control device 3 is programmed to cause the substrate processing apparatus 101 to execute the following operation. Hereinafter, FIG. 10 and FIG. 11 will be referred to.
 薬液処理ユニット102の浸漬槽103に供給されるエッチング液は、薬液作成ユニット61で作成される(図11のステップS11)。具体的には、TMAHが、水酸化物配管78からタンク62の中に供給され、プロピレングリコールが阻害物質配管81からタンク62の中に供給される。これにより、TMAHおよびプロピレングリコールが、タンク62内で混合され、エッチング液が作成される。さらに、窒素ガスなどの不活性ガスが、ガス供給配管68からタンク62の中に供給される。これにより、タンク62内のエッチング液の溶存酸素濃度が低下する(図11のステップS12)。 (4) The etching liquid supplied to the immersion tank 103 of the chemical processing unit 102 is created by the chemical creating unit 61 (step S11 in FIG. 11). Specifically, TMAH is supplied from the hydroxide pipe 78 into the tank 62, and propylene glycol is supplied from the inhibitory substance pipe 81 into the tank 62. Thereby, TMAH and propylene glycol are mixed in the tank 62, and an etchant is created. Further, an inert gas such as a nitrogen gas is supplied from the gas supply pipe 68 into the tank 62. Thereby, the dissolved oxygen concentration of the etching solution in the tank 62 decreases (Step S12 in FIG. 11).
 エッチング液の作成が完了すると、パージガスバルブ123が開かれ、パージガス供給配管122からハウジング105への窒素ガスの供給が開始される(図11のステップS13)。これにより、ハウジング105の中が不活性ガスで満たされる。その後、薬液バルブ114が開かれ、タンク62から浸漬槽103へのエッチング液の供給が開始される(図11のステップS14)。浸漬槽103の中がエッチング液で満たされると、薬液バルブ114が閉じられ、タンク62から浸漬槽103へのエッチング液の供給が停止される。その後、ガスバルブ120が開かれ、浸漬槽103内のエッチング液に対する窒素ガスの溶解が開始される(図11のステップS15)。これにより、浸漬槽103内のエッチング液における溶存酸素濃度の上昇が抑えられる。 When the preparation of the etching solution is completed, the purge gas valve 123 is opened, and the supply of the nitrogen gas from the purge gas supply pipe 122 to the housing 105 is started (Step S13 in FIG. 11). Thus, the inside of the housing 105 is filled with the inert gas. Thereafter, the chemical liquid valve 114 is opened, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is started (Step S14 in FIG. 11). When the inside of the immersion tank 103 is filled with the etching liquid, the chemical liquid valve 114 is closed, and the supply of the etching liquid from the tank 62 to the immersion tank 103 is stopped. Thereafter, the gas valve 120 is opened, and the dissolution of the nitrogen gas into the etching solution in the immersion tank 103 is started (Step S15 in FIG. 11). This suppresses an increase in the concentration of dissolved oxygen in the etching solution in the immersion tank 103.
 ガスノズル118からの窒素ガスの吐出が開始された後は、リフター108が、複数枚の基板Wを保持しながら、上位置から下位置に下降する。その後、開閉ユニット107がシャッター106を開位置から閉位置に移動させる。これにより、1つのバッチに含まれる全ての基板Wが浸漬槽103内のエッチング液に沈められる(図11のステップS16)。そのため、エッチング液が複数枚の基板Wに同時に供給され、ポリシリコン膜P1~P3(図6参照)などのエッチング対象物がエッチングされる。リフター108が下位置に移動してから所定時間が経過すると、開閉ユニット107がシャッター106を開位置に移動させ、リフター108が上位置まで上昇する。 (4) After the discharge of the nitrogen gas from the gas nozzle 118 is started, the lifter 108 descends from the upper position to the lower position while holding the plurality of substrates W. Thereafter, the opening / closing unit 107 moves the shutter 106 from the open position to the closed position. Thereby, all the substrates W included in one batch are submerged in the etching solution in the immersion tank 103 (Step S16 in FIG. 11). Therefore, the etchant is simultaneously supplied to the plurality of substrates W, and the etching target such as the polysilicon films P1 to P3 (see FIG. 6) is etched. When a predetermined time elapses after the lifter 108 moves to the lower position, the opening / closing unit 107 moves the shutter 106 to the open position, and the lifter 108 moves up to the upper position.
 このようにして、1つのバッチに含まれる全ての基板Wが、浸漬槽103内のエッチング液に浸漬され、その後、浸漬槽103から搬出される。この一連の流れがバッチごとに繰り返される。つまり、1つのバッチに含まれる全ての基板Wが浸漬槽103から搬出されると、前記と同様に、別のバッチに含まれる全ての基板Wが浸漬槽103内のエッチング液に浸漬され、エッチングされる。そして、浸漬槽103内のエッチング液の使用回数または使用時間が上限値に達すると、浸漬槽103内のエッチング液が新しいエッチング液に交換される。 に し て Thus, all the substrates W included in one batch are immersed in the etching solution in the immersion tank 103, and then are unloaded from the immersion tank 103. This series of flows is repeated for each batch. That is, when all the substrates W included in one batch are unloaded from the immersion tank 103, all the substrates W included in another batch are immersed in the etching solution in the immersion tank 103, as described above. Is done. Then, when the number of uses or the use time of the etching solution in the immersion tank 103 reaches the upper limit, the etching solution in the immersion tank 103 is replaced with a new etching solution.
 具体的には、ガスバルブ120が閉じられ、浸漬槽103内のエッチング液に対する窒素ガスの溶解が停止される(図11のステップS17)。さらに、パージガスバルブ123が閉じられ、パージガス供給配管122からハウジング105への窒素ガスの供給が停止される(図11のステップS18)。その後、排液バルブ117が開かれ、浸漬槽103内のエッチング液が排液配管116に排出される(図11のステップS19)。浸漬槽103の中が空になると、予め作成された新しいエッチング液が、浸漬槽103に供給される(図11のステップS11~ステップS14)。 Specifically, the gas valve 120 is closed, and the dissolution of the nitrogen gas in the etching solution in the immersion tank 103 is stopped (Step S17 in FIG. 11). Further, the purge gas valve 123 is closed, and the supply of the nitrogen gas from the purge gas supply pipe 122 to the housing 105 is stopped (Step S18 in FIG. 11). Thereafter, the drain valve 117 is opened, and the etching solution in the immersion tank 103 is discharged to the drain pipe 116 (Step S19 in FIG. 11). When the inside of the immersion tank 103 becomes empty, a new etching solution prepared in advance is supplied to the immersion tank 103 (Steps S11 to S14 in FIG. 11).
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications are possible.
 たとえば、TMAHとプロピレングリコールとを、中心ノズル45の吐出口47と基板Wとの間の空間で混合してもよいし、基板W上で混合してもよい。もしくは、タンク62の内部ではなく、タンク62と中心ノズル45の吐出口47との間で、TMAHとプロピレングリコールとを混合してもよい。具体的には、プロピレングリコールを案内する阻害物質配管81を、タンク62ではなく、タンク62から中心ノズル45の吐出口47までの薬液の流路に接続してもよい。 {For example, TMAH and propylene glycol may be mixed in the space between the discharge port 47 of the central nozzle 45 and the substrate W, or may be mixed on the substrate W. Alternatively, TMAH and propylene glycol may be mixed not between inside the tank 62 but between the tank 62 and the discharge port 47 of the center nozzle 45. Specifically, the inhibitory substance pipe 81 for guiding propylene glycol may be connected to the flow path of the chemical solution from the tank 62 to the discharge port 47 of the center nozzle 45 instead of the tank 62.
 図12は、阻害物質配管81が第2薬液配管52に接続されている例を示している。図12に示す例では、TMAHがタンク62に貯留されており、プロピレングリコールの水溶液がタンク131に貯留されている。阻害物質配管81は、中心ノズル45に接続されていてもよい。プロピレングリコールの水溶液ではなく、プロピレングリコールの液体がタンク131に貯留されていてもよい。 FIG. 12 shows an example in which the inhibitory substance pipe 81 is connected to the second chemical liquid pipe 52. In the example shown in FIG. 12, TMAH is stored in the tank 62, and an aqueous solution of propylene glycol is stored in the tank 131. The inhibitor pipe 81 may be connected to the center nozzle 45. Instead of the aqueous solution of propylene glycol, a liquid of propylene glycol may be stored in the tank 131.
 阻害物質配管81が第2薬液配管52および中心ノズル45のいずれに接続されている場合も、タンク131内のプロピレングリコールは、ポンプ132によってタンク131から阻害物質配管81に送られ、第2薬液配管52内または中心ノズル45内でTMAHと混合される。これにより、TMAHとプロピレングリコールと水とを含むアルカリ性のエッチング液が、中心ノズル45の吐出口47から吐出される。 Regardless of whether the inhibitory substance pipe 81 is connected to either the second chemical liquid pipe 52 or the center nozzle 45, the propylene glycol in the tank 131 is sent from the tank 131 to the inhibitory substance pipe 81 by the pump 132, and the second chemical liquid pipe It is mixed with TMAH in 52 or in the central nozzle 45. As a result, an alkaline etching solution containing TMAH, propylene glycol, and water is discharged from the discharge port 47 of the central nozzle 45.
 TMAHとプロピレングリコールとを含むアルカリ性のエッチング液を、基板Wの上面ではなく、基板Wの下面に供給してもよい。もしくは、基板Wの上面および下面の両方にエッチング液を供給してもよい。これらの場合、下面ノズル15にエッチング液を吐出させればよい。 (4) The alkaline etching solution containing TMAH and propylene glycol may be supplied not to the upper surface of the substrate W but to the lower surface of the substrate W. Alternatively, the etching liquid may be supplied to both the upper surface and the lower surface of the substrate W. In these cases, the etchant may be discharged to the lower surface nozzle 15.
 溶存酸素濃度変更ユニット67が基板処理装置から省略されてもよい。つまり、溶存酸素濃度を低下させていないエッチング液を基板Wに供給してもよい。 The dissolved oxygen concentration changing unit 67 may be omitted from the substrate processing apparatus. That is, an etchant that does not reduce the concentration of dissolved oxygen may be supplied to the substrate W.
 遮断部材33から筒状部37が省略されてもよい。上支持部43および下支持部44が遮断部材33およびスピンチャック10から省略されてもよい。 筒 The tubular portion 37 may be omitted from the blocking member 33. The upper support 43 and the lower support 44 may be omitted from the blocking member 33 and the spin chuck 10.
 遮断部材33が処理ユニット2から省略されてもよい。この場合、第1薬液などの処理液を基板Wに向けて吐出するノズルを処理ユニット2に設ければよい。ノズルは、チャンバー4内で水平に移動可能なスキャンノズルであってもよいし、チャンバー4の隔壁6に対して固定された固定ノズルであってもよい。ノズルは、基板Wの径方向に離れた複数の位置に向けて同時に処理液を吐出することにより、基板Wの上面または下面に処理液を供給する複数の液吐出口を備えていてもよい。この場合、吐出される処理液の流量、温度、および濃度の少なくとも一つを、液吐出口ごとに変化させてもよい。 The blocking member 33 may be omitted from the processing unit 2. In this case, a nozzle for discharging a processing liquid such as a first chemical liquid toward the substrate W may be provided in the processing unit 2. The nozzle may be a scan nozzle movable horizontally in the chamber 4 or a fixed nozzle fixed to the partition 6 of the chamber 4. The nozzle may have a plurality of liquid discharge ports for supplying the processing liquid to the upper surface or the lower surface of the substrate W by simultaneously discharging the processing liquid toward a plurality of positions separated in the radial direction of the substrate W. In this case, at least one of the flow rate, temperature, and concentration of the processing liquid to be discharged may be changed for each liquid discharge port.
 積層膜91に含まれるポリシリコン膜の枚数は1枚であってもよい。同様に、積層膜91に含まれる酸化シリコン膜の枚数は1枚であってもよい。 枚 数 The number of polysilicon films included in the laminated film 91 may be one. Similarly, the number of silicon oxide films included in the stacked film 91 may be one.
 ポリシリコン膜上に酸化シリコン膜が形成されている場合、凹部92は、酸化シリコン膜だけを基板Wの厚み方向Dtに貫通していてもよい。つまり、ポリシリコン膜の表面が凹部92の底面であってもよい。この場合、複数の凹部92が基板Wに設けられていてもよい。 When the silicon oxide film is formed on the polysilicon film, the concave portion 92 may penetrate only the silicon oxide film in the thickness direction Dt of the substrate W. That is, the surface of the polysilicon film may be the bottom surface of the concave portion 92. In this case, a plurality of recesses 92 may be provided in the substrate W.
 非エッチング対象物は、酸化シリコン以外の物質であってもよい。 The non-etching target may be a substance other than silicon oxide.
 基板処理装置は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
 前述の全ての構成の2つ以上が組み合わされてもよい。前述の全ての工程の2つ以上が組み合わされてもよい。 2Two or more of all the above-described configurations may be combined. Two or more of all the steps described above may be combined.
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters described in the claims.
 薬液作成ユニット61は、エッチング液作成手段およびエッチング液メーカーの一例である。中心ノズル45は、選択エッチング手段および選択エッチングノズルの一例である。第2薬液吐出口47は、吐出口の一例である。第2薬液配管52、タンク62、水酸化物配管78、および阻害物質配管81は、混合手段およびミキサーの一例である。中心ノズル45、特に、第1薬液吐出口46は、自然酸化膜除去手段および自然酸化膜リムーバーの一例である。溶存酸素濃度変更ユニット67は、溶存酸素濃度変更手段および溶存酸素濃度チェンジャーの一例である。下ガスバルブ21、下ガス流量調整バルブ22、上ガスバルブ57、および上ガス流量調整バルブ58は、雰囲気酸素濃度変更手段および雰囲気酸素濃度チェンジャーの一例である。 (4) The chemical solution creating unit 61 is an example of an etchant creating means and an etchant manufacturer. The center nozzle 45 is an example of a selective etching unit and a selective etching nozzle. The second chemical liquid discharge port 47 is an example of a discharge port. The second chemical liquid pipe 52, the tank 62, the hydroxide pipe 78, and the inhibitory substance pipe 81 are an example of a mixing unit and a mixer. The central nozzle 45, particularly the first chemical liquid discharge port 46, is an example of a natural oxide film removing means and a natural oxide film remover. The dissolved oxygen concentration changing unit 67 is an example of a dissolved oxygen concentration changing unit and a dissolved oxygen concentration changer. The lower gas valve 21, the lower gas flow control valve 22, the upper gas valve 57, and the upper gas flow control valve 58 are an example of an atmosphere oxygen concentration changing unit and an atmosphere oxygen concentration changer.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used for clarifying the technical contents of the present invention, and the present invention is interpreted by limiting to these specific examples. Instead, the spirit and scope of the invention is limited only by the appended claims.
1    :基板処理装置
15   :下面ノズル
18   :下中央開口
21   :下ガスバルブ
22   :下ガス流量調整バルブ
45   :中心ノズル
46   :第1薬液吐出口
47   :第2薬液吐出口
49   :上ガス吐出口
52   :第2薬液配管
57   :上ガスバルブ
58   :上ガス流量調整バルブ
61   :薬液作成ユニット
62   :タンク
67   :溶存酸素濃度変更ユニット
78   :水酸化物配管
81   :阻害物質配管
91   :積層膜
92   :凹部
101  :基板処理装置
109  :薬液ノズル
118  :ガスノズル
O1~O3:酸化シリコン膜
P1~P3:ポリシリコン膜
W    :基板
1: Substrate processing apparatus 15: Lower surface nozzle 18: Lower central opening 21: Lower gas valve 22: Lower gas flow control valve 45: Central nozzle 46: First chemical liquid discharge port 47: Second chemical liquid discharge port 49: Upper gas discharge port 52 : Second chemical liquid pipe 57: Upper gas valve 58: Upper gas flow rate adjusting valve 61: Chemical liquid preparation unit 62: Tank 67: Dissolved oxygen concentration changing unit 78: Hydroxide pipe 81: Inhibiting substance pipe 91: Laminated film 92: Depression 101 : Substrate processing apparatus 109: chemical solution nozzle 118: gas nozzles O1 to O3: silicon oxide films P1 to P3: polysilicon film W: substrate

Claims (21)

  1.  ポリシリコンを含むエッチング対象物と、前記エッチング対象物とは異なる非エッチング対象物と、が露出した基板にアルカリ性のエッチング液を供給する基板処理方法であって、
     第4級アンモニウム水酸化物と、水と、前記第4級アンモニウム水酸化物から生じた水酸化物イオンと前記エッチング対象物との接触を阻害する阻害物質と、を含むアルカリ性の前記エッチング液を作成するエッチング液作成工程と、
     前記エッチング液作成工程で作成された前記エッチング液を、前記エッチング対象物と前記非エッチング対象物とが露出した前記基板に供給することにより、前記非エッチング対象物のエッチングを抑えながら前記エッチング対象物をエッチングする選択エッチング工程とを含む、基板処理方法。
    An etching object including polysilicon, a non-etching object different from the etching object, and a substrate processing method for supplying an alkaline etching solution to an exposed substrate,
    The alkaline etching solution containing quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched; An etching solution making process to be made;
    By supplying the etchant created in the etchant creating step to the substrate where the etching target and the non-etching target are exposed, the etching target is suppressed while suppressing the etching of the non-etching target. A selective etching step of etching a substrate.
  2.  前記エッチング液作成工程は、前記ポリシリコンを構成するシリコン単結晶の複数の結晶面におけるエッチング速度の差の目標値に基づいて前記エッチング液における前記阻害物質の濃度を決定する濃度決定工程を含む、請求項1に記載の基板処理方法。 The etching solution forming step includes a concentration determining step of determining the concentration of the inhibitor in the etching solution based on a target value of a difference between etching rates on a plurality of crystal planes of the silicon single crystal constituting the polysilicon. The substrate processing method according to claim 1.
  3.  前記エッチング液作成工程で作成される前記エッチング液における前記阻害物質の濃度は、20質量パーセント濃度以上、100質量パーセント濃度未満である、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the concentration of the inhibitor in the etching solution created in the etching solution creating step is equal to or greater than 20 percent by mass and less than 100 percent by mass.
  4.  前記阻害物質の分子は、前記水酸化物イオンよりも大きい、請求項1~3のいずれか一項に記載の基板処理方法。 (4) The substrate processing method according to any one of (1) to (3), wherein the molecule of the inhibitor is larger than the hydroxide ion.
  5.  前記エッチング液作成工程は、前記エッチング液が吐出口から吐出される前に、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する吐出前混合工程を含み、
     前記選択エッチング工程は、前記エッチング液作成工程で作成された前記エッチング液を前記基板に向けて前記吐出口に吐出させる吐出工程を含む、請求項1~4のいずれか一項に記載の基板処理方法。
    The etching solution forming step includes, before the etching solution is discharged from a discharge port, a pre-discharge mixing step of mixing the quaternary ammonium hydroxide, the water, and the inhibitor,
    The substrate processing according to any one of claims 1 to 4, wherein the selective etching step includes an ejection step of ejecting the etching solution created in the etching solution creation step toward the ejection port toward the substrate. Method.
  6.  前記選択エッチング工程の前に、酸化膜除去液を前記基板に供給して、前記エッチング対象物の自然酸化膜を除去する自然酸化膜除去工程をさらに含む、請求項1~5のいずれか一項に記載の基板処理方法。 The method according to any one of claims 1 to 5, further comprising, before the selective etching step, a natural oxide film removing step of supplying an oxide film removing liquid to the substrate to remove a natural oxide film of the object to be etched. 4. The substrate processing method according to 1.
  7.  前記エッチング対象物は、ポリシリコンを堆積させる堆積工程と、前記堆積工程で堆積した前記ポリシリコンを加熱する熱処理工程と、を含む複数の工程を実行することにより得られた薄膜である、請求項1~6のいずれか一項に記載の基板処理方法。 The said etching object is a thin film obtained by performing a some process including the deposition process which deposits polysilicon, and the heat treatment process which heats the said polysilicon deposited in the said deposition process, The claim | item. 7. The substrate processing method according to any one of 1 to 6.
  8.  前記エッチング液作成工程は、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる溶存酸素濃度変更工程を含む、請求項1~7のいずれか一項に記載の基板処理方法。 8. The method according to claim 1, wherein the etching solution forming step includes a dissolved oxygen concentration changing step of reducing a dissolved oxygen concentration of at least one of the quaternary ammonium hydroxide, the water, and the inhibitor. The substrate processing method according to claim 1.
  9.  前記基板に保持されている前記エッチング液に接する雰囲気中の酸素濃度を低下させる雰囲気酸素濃度変更工程をさらに含む、請求項1~8のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 8, further comprising an atmosphere oxygen concentration changing step of reducing an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate.
  10.  前記阻害物質は、グリコールである、請求項1~9のいずれか一項に記載の基板処理方法。 (10) The substrate processing method according to any one of (1) to (9), wherein the inhibitor is glycol.
  11.  前記エッチング液作成工程は、前記第4級アンモニウム水酸化物としてのTMAH(テトラメチルアンモニウムハイドロオキサイド)と、前記水と、前記グリコールとしてのプロピレングリコールと、を含むアルカリ性の前記エッチング液を作成する工程である、請求項10に記載の基板処理方法。 The etching solution forming step is a step of forming the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. The substrate processing method according to claim 10, wherein
  12.  ポリシリコンを含むエッチング対象物と、前記エッチング対象物とは異なる非エッチング対象物と、が露出した基板にアルカリ性のエッチング液を供給する基板処理装置であって、
     第4級アンモニウム水酸化物と、水と、前記第4級アンモニウム水酸化物から生じた水酸化物イオンと前記エッチング対象物との接触を阻害する阻害物質と、を含むアルカリ性の前記エッチング液を作成するエッチング液作成手段と、
     前記エッチング液作成手段が作成した前記エッチング液を、前記エッチング対象物と前記非エッチング対象物とが露出した前記基板に供給することにより、前記非エッチング対象物のエッチングを抑えながら前記エッチング対象物をエッチングする選択エッチング手段とを含む、基板処理装置。
    An etching object including polysilicon, a non-etching object different from the etching object, and a substrate processing apparatus for supplying an alkaline etchant to an exposed substrate,
    The alkaline etching solution containing quaternary ammonium hydroxide, water, and an inhibitor that inhibits contact between the hydroxide ion generated from the quaternary ammonium hydroxide and the object to be etched; Means for preparing an etchant to be prepared;
    By supplying the etching solution created by the etching solution creating means to the substrate where the etching object and the non-etching object are exposed, the etching object is suppressed while suppressing the etching of the non-etching object. A substrate processing apparatus comprising: selective etching means for performing etching.
  13.  前記エッチング液作成手段は、前記ポリシリコンを構成するシリコン単結晶の複数の結晶面におけるエッチング速度の差の目標値に基づいて前記エッチング液における前記阻害物質の濃度を決定する濃度決定手段を含む、請求項12に記載の基板処理装置。 The etchant creating means includes a concentration determining means for determining a concentration of the inhibitor in the etchant based on a target value of a difference between etching rates on a plurality of crystal planes of the silicon single crystal constituting the polysilicon, The substrate processing apparatus according to claim 12.
  14.  前記エッチング液作成手段が作成した前記エッチング液における前記阻害物質の濃度は、20質量パーセント濃度以上、100質量パーセント濃度未満である、請求項12または13に記載の基板処理装置。 14. The substrate processing apparatus according to claim 12, wherein the concentration of the inhibitor in the etching solution created by the etching solution creating unit is 20% by mass or more and less than 100% by mass.
  15.  前記阻害物質の分子は、前記水酸化物イオンよりも大きい、請求項12~14のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 12 to 14, wherein the molecule of the inhibitor is larger than the hydroxide ion.
  16.  前記選択エッチング手段は、前記エッチング液作成手段が作成した前記エッチング液を前記基板に向けて吐出する吐出口を含み、
     前記エッチング液作成手段は、前記エッチング液が前記吐出口から吐出される前に、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とを混合する混合手段を含む、請求項12~15のいずれか一項に記載の基板処理装置。
    The selective etching unit includes a discharge port that discharges the etchant created by the etchant creation unit toward the substrate,
    16. The etching liquid producing means according to claim 12, further comprising a mixing means for mixing said quaternary ammonium hydroxide, said water and said inhibitor before said etching liquid is discharged from said discharge port. The substrate processing apparatus according to claim 1.
  17.  前記エッチング液作成手段が作成した前記エッチング液が前記基板に供給される前に、酸化膜除去液を前記基板に供給して、前記エッチング対象物の自然酸化膜を除去する自然酸化膜除去手段をさらに含む、請求項12~16のいずれか一項に記載の基板処理装置。 Before the etchant created by the etchant creating means is supplied to the substrate, a natural oxide film removing means for supplying an oxide film removing liquid to the substrate to remove a natural oxide film of the object to be etched is provided. The substrate processing apparatus according to any one of claims 12 to 16, further comprising:
  18.  前記エッチング液作成手段は、前記第4級アンモニウム水酸化物と前記水と前記阻害物質とのうちの少なくとも一つの溶存酸素濃度を低下させる溶存酸素濃度変更手段を含む、請求項12~17のいずれか一項に記載の基板処理装置。 18. The etching liquid producing means according to claim 12, wherein said etching liquid producing means includes a dissolved oxygen concentration changing means for decreasing a dissolved oxygen concentration of at least one of said quaternary ammonium hydroxide, said water and said inhibitor. The substrate processing apparatus according to claim 1.
  19.  前記基板に保持されている前記エッチング液に接する雰囲気中の酸素濃度を低下させる雰囲気酸素濃度変更手段をさらに含む、請求項12~18のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 12 to 18, further comprising: an atmosphere oxygen concentration changing unit that reduces an oxygen concentration in an atmosphere in contact with the etching solution held on the substrate.
  20.  前記阻害物質は、グリコールである、請求項12~19のいずれか一項に記載の基板処理装置。 (20) The substrate processing apparatus according to any one of (12) to (19), wherein the inhibitor is glycol.
  21.  前記エッチング液作成手段は、前記第4級アンモニウム水酸化物としてのTMAH(テトラメチルアンモニウムハイドロオキサイド)と、前記水と、前記グリコールとしてのプロピレングリコールと、を含むアルカリ性の前記エッチング液を作成する手段である、請求項20に記載の基板処理装置。 The etching solution preparing means includes means for preparing the alkaline etching solution containing TMAH (tetramethylammonium hydroxide) as the quaternary ammonium hydroxide, the water, and propylene glycol as the glycol. 21. The substrate processing apparatus according to claim 20, wherein
PCT/JP2019/026609 2018-08-31 2019-07-04 Substrate processing method and substrate processing device WO2020044789A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/262,807 US11670517B2 (en) 2018-08-31 2019-07-04 Substrate processing method and substrate processing device
KR1020217003571A KR102544412B1 (en) 2018-08-31 2019-07-04 Substrate processing method and substrate processing apparatus
CN201980055805.7A CN112602179A (en) 2018-08-31 2019-07-04 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-163796 2018-08-31
JP2018163796 2018-08-31
JP2019075345A JP7170578B2 (en) 2018-08-31 2019-04-11 Substrate processing method and substrate processing apparatus
JP2019-075345 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020044789A1 true WO2020044789A1 (en) 2020-03-05

Family

ID=69642951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026609 WO2020044789A1 (en) 2018-08-31 2019-07-04 Substrate processing method and substrate processing device

Country Status (1)

Country Link
WO (1) WO2020044789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796744B (en) * 2020-08-31 2023-03-21 日商斯庫林集團股份有限公司 Substrate processing method and substrate processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005261A (en) * 2004-06-21 2006-01-05 Renesas Technology Corp Method for detecting impurity in processing liquid
JP2008277715A (en) * 2007-04-26 2008-11-13 Mallinckrodt Baker Inc Planarizing solution for planarizing low temperature polysilicon film panel
WO2012029450A1 (en) * 2010-08-31 2012-03-08 三菱瓦斯化学株式会社 Silicon etchant and method for producing transistor by using same
JP2012199521A (en) * 2011-03-04 2012-10-18 Fujifilm Corp Formation method of capacitor structure and silicon etching liquid for use therein
JP2013251459A (en) * 2012-06-01 2013-12-12 Tokyo Ohka Kogyo Co Ltd Silicon anisotropic etching method
JP2013258391A (en) * 2012-05-15 2013-12-26 Dainippon Screen Mfg Co Ltd Generation method of chemical liquid for substrate processing, generation unit of chemical liquid for substrate processing, and substrate processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005261A (en) * 2004-06-21 2006-01-05 Renesas Technology Corp Method for detecting impurity in processing liquid
JP2008277715A (en) * 2007-04-26 2008-11-13 Mallinckrodt Baker Inc Planarizing solution for planarizing low temperature polysilicon film panel
WO2012029450A1 (en) * 2010-08-31 2012-03-08 三菱瓦斯化学株式会社 Silicon etchant and method for producing transistor by using same
JP2012199521A (en) * 2011-03-04 2012-10-18 Fujifilm Corp Formation method of capacitor structure and silicon etching liquid for use therein
JP2013258391A (en) * 2012-05-15 2013-12-26 Dainippon Screen Mfg Co Ltd Generation method of chemical liquid for substrate processing, generation unit of chemical liquid for substrate processing, and substrate processing system
JP2013251459A (en) * 2012-06-01 2013-12-12 Tokyo Ohka Kogyo Co Ltd Silicon anisotropic etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796744B (en) * 2020-08-31 2023-03-21 日商斯庫林集團股份有限公司 Substrate processing method and substrate processing device

Similar Documents

Publication Publication Date Title
JP7064905B2 (en) Board processing method and board processing equipment
KR102544412B1 (en) Substrate processing method and substrate processing apparatus
KR102182116B1 (en) Substrate processing method and substrate processing apparatus
WO2020044789A1 (en) Substrate processing method and substrate processing device
TWI769416B (en) Substrate processing method and substrate processing apparatus
WO2022044639A1 (en) Substrate processing method and substrate processing apparatus
WO2022044590A1 (en) Substrate processing method and substrate processing device
JP7176936B2 (en) Substrate processing method and substrate processing apparatus
US20230307258A1 (en) Substrate processing apparatus and substrate processing method
JP2024060140A (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217003571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853537

Country of ref document: EP

Kind code of ref document: A1