WO2020043445A1 - Procede de controle d'un moteur a combustion interne avec double admission - Google Patents

Procede de controle d'un moteur a combustion interne avec double admission Download PDF

Info

Publication number
WO2020043445A1
WO2020043445A1 PCT/EP2019/071149 EP2019071149W WO2020043445A1 WO 2020043445 A1 WO2020043445 A1 WO 2020043445A1 EP 2019071149 W EP2019071149 W EP 2019071149W WO 2020043445 A1 WO2020043445 A1 WO 2020043445A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas inlet
intake
pressure
valve
Prior art date
Application number
PCT/EP2019/071149
Other languages
English (en)
Inventor
Thierry Colliou
Stéphane Venturi
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2020043445A1 publication Critical patent/WO2020043445A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/446Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M2023/008Apparatus for adding secondary air to fuel-air mixture by injecting compressed air directly into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10308Equalizing conduits, e.g. between intake ducts or between plenum chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of controlling the gas intake of an internal combustion engine.
  • the power delivered by an internal combustion engine is dependent on the amount of air introduced into the combustion chamber of this engine, the amount of air which is itself proportional to the density of this air.
  • a turbocharger In the case of supercharging by a turbocharger, the latter comprises a rotary turbine, single flow or dual flow, connected by an axis to a rotary compressor.
  • the exhaust gases from the engine pass through the turbine which is then driven in rotation. This rotation is then transmitted to the compressor which, by its rotation, compresses the outside air before it is introduced into the combustion chamber.
  • Patent applications FR 2995354, FR 2995355 and FR 2998924 describe examples of the control method for an internal combustion engine equipped with double supercharging. Although satisfactory, these systems remain expensive, complex and require significant power to compress the gas at the intake.
  • patent application FR3015578 uses a double distributor (intake plenum) and an electric compressor to quickly vary the aerodynamics of the gases.
  • the internal combustion engine can be powered either by a single plenum, or by both simultaneously.
  • the implementation of this technology is based on a valve which is controlled slowly (this valve does not allow opening during the cycle).
  • this technology also requires significant power to compress the gas.
  • Another solution is to control the actuation of the intake valve to increase the kinetics of the gases introduced into the cylinder.
  • Such technology is described in particular in patent application W012085450. This solution can be complex to implement.
  • Patent application WO 94/15080 describes a four-stroke engine, the intake phase of which is carried out in two phases.
  • the volume of pressurized air used during the second phase is pressurized by the two compression cycles of the crankcase of the four-stroke cycle.
  • Such a solution is complex and bulky and requires a specific casing to compress the gas.
  • this solution has a difficulty related to lubrication, because the sump cannot be used to keep the oil.
  • the present invention relates to a method for controlling the admission of a cylinder of an internal combustion engine.
  • the cylinder is connected to two gas inlets, a first gas inlet at a first pressure, and a second gas inlet at a second pressure greater than the first pressure.
  • the method controls the admission of gas into the cylinder by first admitting gas from the first gas inlet, then by admitting gas from the second gas inlet.
  • the combustion engine functions as a supercharged internal combustion engine and thus makes it possible to increase the power delivered by the internal combustion engine compared to an internal combustion engine without supercharging.
  • the combustion engine functions as a supercharged internal combustion engine and thus makes it possible to increase the power delivered by the internal combustion engine compared to an internal combustion engine without supercharging.
  • by requiring a more limited amount of gas at the second press it is possible to reduce the power required for compression of the gas.
  • the invention relates to a method for controlling an internal combustion engine comprising at least one cylinder fitted with a piston, at least one intake valve, at least one exhaust valve, a first gas inlet at a first pressure P1, and at least a second gas inlet at a second pressure P2 strictly greater than said first pressure P1, said first and second gas inlets are connected to at least one inlet valve.
  • the admission of gas into said cylinder is controlled by admission of gas from said first gas inlet, followed by admission of gas from said second gas inlet with a predetermined delay during the intake phase.
  • said second pressure P2 of said second gas inlet is generated by means of a compression system, in particular a turbocharging device, said compression system being connected to said second gas inlet.
  • the gas is stored at said second pressure P2 in a gas storage means at said second pressure P2 connected to said second gas inlet.
  • said first pressure P1 corresponds substantially to atmospheric pressure.
  • the gas from said second gas inlet is admitted into said cylinder substantially until the end of the intake phase.
  • the admission of gas from said second gas inlet is delayed with respect to the admission of gas from said first gas inlet by a time corresponding between 20 and 80% of the duration of phase d 'admission.
  • the intake of gas from said first gas inlet is started substantially at the start of the intake phase.
  • the gas from said first and second gas inlets is collected in an intake manifold connected to said first and second gas inlets and distributing the gas in said cylinder by means of said inlet valve.
  • a valve disposed on said second gas inlet or a valve disposed on the connection between said first and second gas inlets is controlled to control the admission of gas from said first gas inlet and said second gas inlet.
  • said cylinder comprises two intake valves, each intake valve being connected to one of said first or second gas inlets.
  • the gas inlet is controlled by opening the inlet valve connected to said second gas inlet during the opening of the inlet valve connected to said first gas inlet.
  • the gas inlet is checked by opening a valve arranged between the first gas inlet and the second gas inlet.
  • the admission of gas is controlled by successive opening of said two intake valves.
  • gas from the second gas inlet is prevented from entering said first gas inlet by means of a non-return valve disposed on said first gas inlet.
  • the invention relates to a control system for an internal combustion engine comprising at least one cylinder fitted with a piston, at least one intake valve, at least one exhaust valve, d 'a first gas inlet at a first pressure P1, and at least a second gas inlet at a second pressure P2 strictly greater than said first pressure P1.
  • Said control system implements the control method according to one of the preceding characteristics.
  • Figure 1 illustrates the pressure in a cylinder during admission without supercharging according to the prior art.
  • FIG. 2 illustrates the pressure in a cylinder during an intake with supercharging according to the prior art.
  • FIG. 3 illustrates the pressure in a cylinder during an admission by means of the control method according to the invention.
  • FIG. 4 illustrates a first embodiment of the invention.
  • FIG. 5 illustrates a variant of the first embodiment of the invention.
  • Figure 6 illustrates a second embodiment of the invention.
  • FIG. 7 illustrates a third embodiment of the invention.
  • FIG. 8 illustrates a variant of the third embodiment of the invention.
  • FIG. 9 illustrates a first implementation of the opening of the intake valves for the third embodiment of the invention.
  • FIG. 10 illustrates a second implementation of the opening of the intake valves for the third embodiment of the invention.
  • Figure 1 1 illustrates a third implementation of the opening of the intake valves for the third embodiment of the invention.
  • FIG. 12 illustrates a fourth implementation of the opening of the intake valves for the third embodiment of the invention.
  • the present invention relates to a method for controlling the intake of an internal combustion engine.
  • the internal combustion engines concerned by the present invention may in particular be petrol, diesel, gas, ethanol or other fuel engines. They can be direct or indirect injection. They can be used for an on-board application (for example automotive, heavy goods vehicles, two-wheelers, aeronautics, boats, etc.) or for a stationary application (for example generator).
  • the internal combustion engine preferably a four-stroke engine, comprises at least one cylinder which delimits a combustion chamber, and which is equipped with:
  • At least one exhaust valve for the exhaust of gases after combustion in the cylinder at least one exhaust valve for the exhaust of gases after combustion in the cylinder.
  • the internal combustion engine further comprises:
  • gas inlet a second gas inlet (gas inlet), the gas being at a second pressure P2 strictly greater than the first pressure P1.
  • Each of the gas inlets is connected to at least one inlet valve.
  • the first and second gas inlets can take the form of a conduit in which the gas flows at their respective pressures.
  • the gas concerned may comprise air, a mixture of air and fuel, a mixture of air and burnt gases, or a mixture of air, fuel and burnt gases.
  • the intake phase is controlled by two intake stages: we start with the intake of gas from the first gas inlet, then we continue with the intake of gas from the second gas inlet later, with a predetermined delay, during the admission phase.
  • the time of the internal combustion engine is called the intake phase. If it’s a four-stroke engine, it’s the time between exhaust and compression. During the intake phase, the piston descends from its top dead center to its bottom dead center.
  • the admission of gas from the second gas inlet makes it possible to fill the cylinder with a gas having a pressure P2 greater than the pressure P1.
  • the quantity of gas (mass of gas) in the cylinder is high, and may correspond to the quantity of air which would be obtained in the case of a supercharged internal combustion engine. This result can be achieved without having to supply a gas inlet at pressure P2 over the entire duration of the intake phase.
  • the power required to obtain this quantity of gas in the cylinder is less than that used for a conventional supercharged internal combustion engine.
  • the performance of the internal combustion engine is improved, or identical with a power necessary to achieve reduced supercharging.
  • FIGS 1 to 3 explain the general operation of the invention, and its advantages compared to the prior art. These curves illustrate schematically and in a nonlimiting manner, the pressure P of the gas at the inlet as a function of the time t, during the intake phase (between the top admission TDC dead center area, and the low intake dead center area PMB).
  • Figure 1 corresponds to the pressure curve P of an internal combustion engine without supercharging according to the prior art.
  • the intake pressure remains at pressure P1, corresponding to atmospheric pressure.
  • the power delivered by the internal combustion engine is not optimal, since the mass admitted only depends on the displacement of the internal combustion engine.
  • FIG. 2 corresponds to the pressure curve P of an internal combustion engine with supercharging according to the prior art.
  • the intake pressure remains at pressure P2 (higher than pressure P1).
  • the power delivered by the internal combustion engine is greater than the power delivered by the internal combustion engine without supercharging of FIG. 1, because the quantity of gas in the cylinder is greater.
  • FIG. 3 corresponds to the pressure curve P of an internal combustion engine controlled by the control method according to an embodiment of the invention.
  • the first part of the intake between the top TDC intake neutral point and the instant T (corresponding to the time of admission of the gas from the second gas inlet), only the gas from the first gas inlet at pressure P1 is admitted into the cylinder.
  • the gas coming from the second gas inlet at pressure P2 is admitted into the cylinder.
  • the pressure of the gas at the intake P into the cylinder is close to the pressure P2.
  • the power delivered by the internal combustion engine is identical to the power of the internal combustion engine with supercharging of Figure 2.
  • the amount of power required for intake is reduced, thereby increasing the performance of the supercharging system.
  • the second pressure P2 of the second gas inlet can be generated by means of a compression system connected to the second gas inlet.
  • the compression system can be a turbocharging device, or a driven compressor; the compression system can be driven mechanically thanks to the power recovered in the exhaust gases, in particular by a turbine or mechanically driven or by an electric motor.
  • This embodiment allows easy adaptation to a supercharged internal combustion engine.
  • the gas at pressure P2 can be stored in a gas storage means (for example a compressed gas tank), which is connected to the second gas inlet.
  • a gas storage means for example a compressed gas tank
  • the first pressure P1 can correspond substantially to atmospheric pressure. This configuration allows a simplicity of design of the internal combustion engine.
  • the first pressure P1 can be higher than atmospheric pressure.
  • the first pressure P1 can be obtained by a compression system.
  • the second pressure P2 can then be obtained by a double compression system.
  • This implementation makes it possible to increase the quantity of gas in the cylinder, and consequently the power delivered by the internal combustion engine.
  • the first pressure P1 is between 0.1 and 0.2 MPa
  • the second pressure P2 is between 0.1 1 and 0.5 MPa.
  • the delay can be predetermined as a function of the operating point of the internal combustion engine and so as to minimize the power required for intake.
  • the admission of gas from the first gas inlet can start at the start of the intake phase.
  • the gas intake takes place throughout the duration of the intake phase.
  • the admission of gas from the first gas inlet can be terminated at the end of the intake phase, for example simultaneously with the end of the admission of gas from the second inlet of gas.
  • the admission of gas from the first gas inlet can be terminated before or during the start of the admission of gas from the second gas inlet.
  • the admission of gas from the first gas inlet can be stopped (automatically and / or mechanically) when the gas from the second gas inlet is admitted.
  • the gas from the second gas inlet can be prevented from entering the first gas inlet by means of a non-return valve disposed on the first gas inlet.
  • the gas from the second gas inlet can be prevented from entering the first gas inlet by a suitable control for the opening of the intake valves, or by a controlled valve placed on one of the gas inlets .
  • the cylinder may include a single intake valve. In this case, the two gas inlets are connected to this intake valve.
  • the cylinder may include at least two intake valves.
  • the gas from the two gas inlets can be collected in an intake manifold.
  • the intake manifold is arranged between the two gas inlets and the intake valve (s), to distribute the gas from the two gas inlets into the cylinder through the intake valve (s) .
  • a valve disposed on the second gas inlet it is possible to control a valve disposed on the second gas inlet, to control the admission of gas from the second gas inlet to the cylinder through the intake manifold. It can be an all-or-nothing two-way valve.
  • the valve operates at the same frequency as the intake valve (s).
  • the valve is opened from the predetermined delay, the inlet valve (s) being open.
  • a valve disposed on the connection between the first and second gas inlets it is possible to control a valve disposed on the connection between the first and second gas inlets, to control the admission of gas from the second gas inlet to the cylinder through the manifold of admission. It can be a two-way valve or a three-way valve.
  • the valve is opened from the predetermined delay, the inlet valve (s) being open.
  • the valve operates at the same frequency as the intake valve (s).
  • each intake valve can be connected to a single gas inlet.
  • a first inlet valve is connected to the first gas inlet and a second inlet valve is connected to the second gas inlet.
  • This embodiment has the advantage of not requiring an additional valve to implement the method according to the invention.
  • a variant of this third embodiment may consist in adding a pipe which connects the first intake valve to the second gas inlet, this pipe being equipped with a controlled valve, so as to admit the gas coming from the second inlet of gas homogeneously in the cylinder.
  • this third embodiment and its variant it is possible to control the admission of gas by opening the second intake valve connected to the second gas inlet during the opening of the first intake valve connected to the first inlet gas.
  • the two valves are opened simultaneously.
  • this third embodiment and its variant it is possible to control the admission of gas by successive opening of the two intake valves.
  • a check valve does not need to be used on the first gas inlet.
  • the present invention relates to a control system for an internal combustion engine, for controlling the admission of gas.
  • the internal combustion engine comprises at least one cylinder which delimits a combustion chamber, and is equipped with:
  • At least one exhaust valve for the exhaust of gases after combustion in the cylinder the exhaust valve being positioned in the cylinder head of the internal combustion engine.
  • the internal combustion engine further comprises:
  • gas inlet a second gas inlet (gas inlet), the gas being at a second pressure P2 strictly greater than the first pressure P1.
  • Each of the gas inlets is connected to at least one inlet valve.
  • the first and second gas inlets can take the form of a conduit through which the gas flows.
  • the gas concerned may comprise air, a mixture of air and fuel, a mixture of air and burnt gases, or a mixture of air, fuel and burnt gases.
  • the internal combustion engine control system implements the control method according to any one of the combinations of the variants described above.
  • FIG. 4 illustrates, schematically and without limitation, a first variant of the first embodiment of the invention.
  • the internal combustion engine is equipped with a cylinder 1.
  • the cylinder 1 comprises an intake valve 2 and an exhaust valve 3.
  • the internal combustion engine comprises a first gas inlet 4 at the first pressure P1, and a second gas inlet 5 at the second pressure P2, with the second pressure P2 strictly greater than the first pressure P1.
  • the first pressure P1 can be atmospheric pressure
  • the second pressure P2 can come from a compression system, such as a turbocharger (not shown) or from a compressed gas storage means (not shown ).
  • the first gas inlet 4 and the second gas inlet 5 are connected to an intake manifold 7.
  • the intake manifold 7 collects the intake gas and transfers it to the cylinder 1 through the intake valve 2 .
  • the second gas inlet 5 further comprises a two-way valve 6 controlled to control the admission of gas from the second gas inlet 5 to the cylinder 1.
  • the intake valve 2 is open throughout the duration of the intake phase, and the valve 6 is open from the predetermined delay and until the end of the intake phase, in order to obtain the desired quantity of gas in the cylinder 1.
  • the first gas inlet 4 comprises a non-return valve 8 which prevents the gas at pressure P2 from going to the first gas inlet 4.
  • FIG. 5 illustrates, schematically and without limitation, a second variant of the first embodiment of the invention.
  • the internal combustion engine is equipped with a cylinder 1.
  • the cylinder 1 has two intake valves 2 and two exhaust valves 3.
  • the internal combustion engine comprises a first gas inlet 4 at the first pressure P1, and a second gas inlet 5 at the second pressure P2, with the second pressure P2 strictly greater than the first pressure P1.
  • the first pressure P1 can be atmospheric pressure
  • the second pressure P2 can come from a compression system, such as a turbocharger (not shown) or from a compressed gas storage means (not shown ).
  • the first gas inlet 4 and the second gas inlet 5 are connected to an intake manifold 7.
  • the intake manifold 7 collects the intake gas and transfers it to the cylinder 1 through the two intake valves 2.
  • the second gas inlet 5 further comprises a two-way valve 6 controlled to control the admission of gas from the second gas inlet 5 to the cylinder 1.
  • the intake valves are open for throughout the duration of the intake phase, and the valve 6 is open from the predetermined delay and until the end of the intake phase, in order to obtain the desired quantity of gas in the cylinder 1.
  • the first gas inlet 4 comprises a non-return valve 8 which prevents the gas at pressure P2 from going to the first gas inlet 4.
  • FIG. 6 illustrates, schematically and without limitation, a second embodiment of the invention.
  • the internal combustion engine is equipped with a cylinder 1.
  • the cylinder 1 has two intake valves 2 and at least one exhaust valve 3.
  • the internal combustion engine comprises a first gas inlet 4 at the first pressure P1, and a second gas inlet 5 at the second pressure P2, with the second pressure P2 strictly greater than the first pressure P1.
  • the first pressure P1 can be atmospheric pressure
  • the second pressure P2 can come from a compression system, such as a turbocharger (not shown) or from a compressed gas storage means (not shown ).
  • the first gas inlet 4 and the second gas inlet 5 are connected to an intake manifold 7.
  • the intake manifold 7 collects the intake gas and transfers it to the cylinder 1 through the intake valve 2 .
  • a three-way valve 10 controlled to control the admission of gas from the second gas inlet 5 to the cylinder 1.
  • the intake valve (s) are open during the entire duration of the intake phase, and the valve 10 allows the passage of gas from the first gas inlet 4 throughout the first part of the intake phase, and allows the passage of gas from the second gas inlet 5 from the predetermined delay and until the end of the intake phase, in order to obtain the desired amount of gas in the cylinder 1.
  • FIG. 7 illustrates, schematically and without limitation, a third embodiment of the invention.
  • the internal combustion engine is equipped with a cylinder 1.
  • the cylinder 1 has two intake valves 2 and 2 'at least one exhaust valve 3.
  • the internal combustion engine comprises a first gas inlet 4 at the first pressure P1, and a second gas inlet 5 at the second pressure P2, with the second pressure P2 strictly greater than the first pressure P1.
  • the first pressure P1 can be atmospheric pressure
  • the second pressure P2 can come from a compression system, such as a turbocharger (not shown) or from a compressed gas storage means (not shown ).
  • the first gas inlet 4 is connected to a first inlet valve 2 and the second gas inlet is connected to a second inlet valve 2 ’.
  • the opening of the intake valves 2 and 2 ′ is controlled, the intake valve 2 ′ being open after the intake valve 2 from the predetermined delay and until the end of the admission phase.
  • An example of controlling the opening of the intake valves is illustrated in FIG. 9 will be detailed in the following description.
  • the first gas inlet 4 comprises a non-return valve 8 which prevents the gas at pressure P2 from going to the first gas inlet 4.
  • FIG. 8 illustrates, schematically and without limitation, a variant of the third embodiment of the invention.
  • the internal combustion engine is equipped with a cylinder 1.
  • the cylinder 1 has two intake valves 2 and 2 'and at least one exhaust valve 3.
  • the internal combustion engine comprises a first gas inlet 4 at the first pressure P1, and a second gas inlet 5 at the second pressure P2, with the second pressure P2 strictly greater than the first pressure P1.
  • the first pressure P1 can be atmospheric pressure
  • the second pressure P2 can come from a compression system, such as a turbocharger (not shown) or from a compressed gas storage means (not shown ).
  • the first gas inlet 4 is connected to a first inlet valve 2 and the second gas inlet is connected to a second inlet valve 2 ’.
  • the second gas inlet 5 is connected to the first gas inlet 4 by means of a pipe comprising a valve 1 1.
  • the opening of the intake valves 2 and 2 ′ is controlled, as well as the opening of the valve 1 1.
  • the intake valve 2 ' is opened after the intake valve 2 from the predetermined delay and until the end of the intake phase.
  • the valve 1 1 is open during the period during which the two intake valves 2 and 2 'are open. Examples of checking the opening of the intake valves are illustrated in FIGS. 9 to 12 and will be detailed in the following description.
  • the first gas inlet 4 comprises a non-return valve 8 which prevents the gas at pressure P2 from going to the first gas inlet 4.
  • FIGS 9 to 12 illustrate, schematically and without limitation, the openings of the intake valves, in particular for the embodiment of Figure 8.
  • the curves of the sections S of the valve opening 2 (curve S2) and 2 '(curve S2') as a function of time during the intake phase between the top admission TDC dead center and the low intake TDC neutral position. Note that in these figures, the valves begin to open a little before the indicated time, and close a little after the indicated time. This is a classic concept of a valve lift law, to take into account the mechanical phenomena used, and allowing to take advantage of the gas dynamics.
  • the intake valve 2 connected to the first gas inlet, is open throughout the duration of the intake phase, and the intake valve 2 ', connected to the second gas inlet is open from the predetermined delay T until the end of the intake phase.
  • the two intake valves 2 and 2 ’ are open.
  • the inlet valve 2 connected to the first gas inlet, is open from the top admission TDC dead center to the delay T, while the inlet valve 2 ', connected at the second gas inlet, is open from the predetermined delay T until the end of the intake phase. In this case, there is no (or little) overlap of the opening of the intake valves 2 and 2 ’.
  • the intake valve 2, connected to the first gas inlet is open from the top admission TDC neutral point to an instant situated before the bottom intake TDC neutral point, while the intake valve 2 ', connected to the second gas inlet, is open from the predetermined delay T until the end of the intake phase.
  • the two intake valves 2 and 2 ’ are open.
  • the intake valve 2, connected to the first gas inlet is open from the top intake TDC neutral point until an instant substantially later than the low intake intake TDC neutral point, while the inlet valve 2 ', connected to the second gas inlet, is open from the predetermined delay T to neutral low PMB admission.
  • the two intake valves 2 and 2' are open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

La présente invention concerne un procédé de contrôle de l'admission d'un cylindre (1) d'un moteur à combustion interne. Le cylindre est relié à deux entrées de gaz, une première entrée de gaz (4) à une première pression P1, et une deuxième entrée de gaz (5) à une deuxième pression P2 supérieure à la première pression P1. Le procédé contrôle l'admission de gaz dans le cylindre par admission d'abord du gaz issu de la première entrée de gaz (4), puis par admission du gaz issu de la deuxième entrée de gaz (5).

Description

PROCEDE DE CONTROLE D’UN MOTEUR A COMBUSTION INTERNE AVEC DOUBLE ADMISSION
La présente invention concerne le domaine du contrôle de l’admission de gaz d’un moteur à combustion interne.
Comme cela est largement connu, la puissance délivrée par un moteur à combustion interne est dépendante de la quantité d’air introduite dans la chambre de combustion de ce moteur, quantité d’air qui est elle-même proportionnelle à la densité de cet air.
Ainsi, il est habituel d'augmenter cette quantité d'air au moyen d’une compression de l’air extérieur avant qu'il ne soit admis dans cette chambre de combustion. Cette opération, appelée suralimentation, peut être réalisée par tous moyens, tel qu'un turbocompresseur ou un compresseur entraîné, qui peut être centrifuge ou volumétrique.
Dans le cas d'une suralimentation par un turbocompresseur, ce dernier comprend une turbine rotative, à simple flux ou à double flux, reliée par un axe à un compresseur rotatif. Les gaz d'échappement issus du moteur traversent la turbine qui est alors entraînée en rotation. Cette rotation est ensuite transmise au compresseur qui, de par sa rotation, comprime l'air extérieur avant qu'il ne soit introduit dans la chambre de combustion.
Toutefois, la suralimentation nécessite une puissance importante sur toute la durée de l’admission pour compresser le gaz à l’admission.
Afin d’améliorer les performances d’un moteur à combustion interne, des systèmes de suralimentation à double étage ont été développés. Les demandes de brevet FR 2995354, FR 2995355 et FR 2998924 décrivent des exemples de procédé de commande d’un moteur à combustion interne équipé d’une double suralimentation. Bien que donnant satisfaction, ces systèmes restent onéreux, complexes et nécessitent une puissance importante pour compresser le gaz à l’admission.
D’autres systèmes et procédés de contrôle de l’admission de gaz ont été développés dans le but d’améliorer les performances du moteur à combustion interne.
Par exemple, la demande de brevet FR3015578 (US2016348573) utilise un double répartiteur (plénum d’admission) et un compresseur électrique pour faire varier rapidement l’aérodynamique des gaz. En effet, le moteur à combustion interne peut être alimenté soit par un unique plénum, soit par les deux simultanément. La mise en œuvre de cette technologie est basée sur une vanne qui est commandée de manière lente (cette vanne ne permet pas une ouverture en cours de cycle). De plus, cette technologie nécessite également une puissance importante pour compresser le gaz.
Une autre solution repose sur le contrôle de l’actionnement de la soupape d’admission pour augmenter la cinétique des gaz introduits dans le cylindre. Une telle technologie est décrite notamment dans la demande de brevet W012085450. Cette solution peut être complexe à mettre en œuvre.
Le brevet US6776144 décrit quant-à-lui un moteur à cinq temps, avec un temps de recyclage du mélange carburé. Une telle solution est complexe et encombrante.
La demande de brevet WO 94/15080 décrit un moteur quatre temps dont la phase d’admission s’effectue en deux phases. Une première phase d’admission atmosphérique durant laquelle l’air entre par un orifice localisé dans la culasse. Et une seconde phase d’alimentation du cylindre alimenté par une réserve sous pression, au travers d’une lumière (type moteur deux temps) localisée en partie basse du cylindre. Le volume d’air sous pression utilisé durant la seconde phase est mis sous pression par les deux cycles de compression du carter du cycle quatre temps. Une telle solution est complexe et encombrante et nécessite de disposer d’un carter spécifique pour comprimer le gaz. De plus, cette solution possède une difficulté liée à la lubrification, car le carter ne peut pas être utiliser pour garder l’huile.
Afin de pallier ces inconvénients, la présente invention concerne un procédé de contrôle de l’admission d’un cylindre d’un moteur à combustion interne. Le cylindre est relié à deux entrées de gaz, une première entrée de gaz à une première pression, et une deuxième entrée de gaz à une deuxième pression supérieure à la première pression. Le procédé contrôle l’admission de gaz dans le cylindre par admission d’abord du gaz issu de la première entrée de gaz, puis par admission du gaz issu de la deuxième entrée de gaz. Ainsi, il est possible d’obtenir, de manière simple et peu encombrante, une pression dans le cylindre à la fin de la phase d’admission qui est proche de la deuxième pression, sans avoir à réaliser uniquement une admission d’un gaz à cette deuxième pression pendant toute la durée de la phase d’admission. De cette manière, le moteur à combustion fonctionne comme un moteur à combustion interne suralimenté et permet ainsi d’augmenter la puissance délivrée par le moteur à combustion interne par rapport à un moteur à combustion interne sans suralimentation. De plus, en ayant besoin d’une quantité plus limitée de gaz à la deuxième pression, il est possible de réduire la puissance nécessaire pour la compression du gaz. Le procédé selon l’invention
L’invention concerne un procédé de contrôle d’un moteur à combustion interne comprenant au moins un cylindre équipé d’un piston, d’au moins une soupape d’admission, d’au moins une soupape d’échappement, d’une première entrée de gaz à une première pression P1 , et d’au moins une deuxième entrée de gaz à une deuxième pression P2 strictement supérieure à ladite première pression P1 , lesdites première et deuxième entrées de gaz sont reliées à au moins une soupape d’admission. On contrôle l’admission de gaz au sein dudit cylindre par admission de gaz issu de ladite première entrée de gaz, suivi par une admission de gaz issu de ladite deuxième entrée de gaz avec un retard prédéterminé pendant la phase d’admission.
Selon un mode de réalisation de l’invention, on génère ladite deuxième pression P2 de ladite deuxième entrée de gaz au moyen d’un système de compression, notamment un dispositif de turbocompression, ledit système de compression étant relié à ladite deuxième entrée de gaz.
Alternativement, on stocke le gaz à ladite deuxième pression P2 dans un moyen de stockage de gaz à ladite deuxième pression P2 relié à ladite deuxième entrée de gaz.
Avantageusement, ladite première pression P1 correspond sensiblement à la pression atmosphérique.
Conformément à une mise en oeuvre, on admet dans ledit cylindre le gaz issu de ladite deuxième entrée de gaz sensiblement jusqu’à la fin de la phase d’admission.
Selon une caractéristique, on retarde l’admission de gaz issu de ladite deuxième entrée de gaz par rapport à l’admission de gaz issu de ladite première entrée de gaz d’un temps correspondant entre 20 et 80 % de la durée de la phase d’admission.
De manière avantageuse, on débute l’admission du gaz issu de ladite première entrée de gaz sensiblement au début de la phase d’admission.
Selon un aspect, on collecte le gaz issu desdites première et deuxième entrées de gaz dans un collecteur d’admission relié auxdites première et deuxième entrées de gaz et distribuant le gaz dans ledit cylindre au moyen de ladite soupape d’admission.
De préférence, on contrôle une vanne disposée sur ladite deuxième entrée de gaz ou une vanne disposée sur la connexion entre lesdites première et deuxième entrées de gaz pour contrôler l’admission du gaz issu de ladite première entrée de gaz et de ladite deuxième entrée de gaz.
En variante, ledit cylindre comporte deux soupapes d’admission, chaque soupape d’admission étant reliée à l’une desdites première ou deuxième entrées de gaz. Avantageusement, on contrôle l’admission de gaz par ouverture de la soupape d’admission reliée à ladite deuxième entrée de gaz pendant l’ouverture de la soupape d’admission reliée à ladite première entrée de gaz.
Conformément à un mode de réalisation, on contrôle d’admission de gaz par ouverture d’une vanne disposée entre la première entrée de gaz et la deuxième entrée de gaz.
De manière avantageuse, on contrôle l’admission de gaz par ouverture successive desdites deux soupapes d’admission.
Selon un aspect, on empêche le gaz issu de la deuxième entrée de gaz de pénétrer dans ladite première entrée de gaz au moyen d’un clapet anti-retour disposé sur ladite première entrée de gaz.
En outre, l’invention concerne un système de contrôle d’un moteur à combustion interne comprenant au moins un cylindre équipé d’un piston, d’au moins une soupape d’admission, d’au moins une soupape d’échappement, d’une première entrée de gaz à une première pression P1 , et d’au moins une deuxième entrée de gaz à une deuxième pression P2 strictement supérieure à ladite première pression P1. Ledit système de contrôle met en oeuvre le procédé de contrôle selon l’une des caractéristiques précédentes.
Présentation succincte des figures
D'autres caractéristiques et avantages du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
La figure 1 illustre la pression dans un cylindre lors d’une admission sans suralimentation selon l’art antérieur.
La figure 2 illustre la pression dans un cylindre lors d’une admission avec suralimentation selon l’art antérieur.
La figure 3 illustre la pression dans un cylindre lors d’une admission au moyen du procédé de contrôle selon l’invention.
La figure 4 illustre un premier mode de réalisation de l’invention.
La figure 5 illustre une variante du premier mode de réalisation de l’invention.
La figure 6 illustre un deuxième mode de réalisation de l’invention.
La figure 7 illustre un troisième mode de réalisation de l’invention.
La figure 8 illustre une variante du troisième mode de réalisation de l’invention.
La figure 9 illustre une première mise en oeuvre de l’ouverture des soupapes d’admission pour le troisième mode de réalisation de l’invention. La figure 10 illustre une deuxième mise en oeuvre de l’ouverture des soupapes d’admission pour le troisième mode de réalisation de l’invention.
La figure 1 1 illustre une troisième mise en oeuvre de l’ouverture des soupapes d’admission pour le troisième mode de réalisation de l’invention.
La figure 12 illustre une quatrième mise en oeuvre de l’ouverture des soupapes d’admission pour le troisième mode de réalisation de l’invention.
Description détaillée de l'invention
La présente invention concerne un procédé de contrôle de l’admission d’un moteur à combustion interne.
Les moteurs à combustion interne concernés par la présente invention peuvent être notamment les moteurs essence, Diesel, gaz, éthanol ou autre carburant. Ils peuvent être à injection directe ou indirecte. Ils peuvent être employés pour une application embarquée (par exemple domaine automobile, poids lourds, deux-roues, aéronautique, bateaux, etc.) ou pour une application stationnaire (par exemple groupe électrogène).
De manière classique, le moteur à combustion interne, de préférence un moteur quatre temps, comporte au moins un cylindre qui délimite une chambre de combustion, et qui est équipé d’ :
- un piston, qui a un mouvement de translation rectiligne, et qui génère une rotation d’un vilebrequin,
- au moins une soupape d’admission pour l’admission d’un gaz dans le cylindre, la soupape d’admission étant située dans la culasse du moteur à combustion interne,
- au moins une soupape d’échappement pour l’échappement des gaz après la combustion dans le cylindre.
Selon l’invention, le moteur à combustion interne comporte en outre :
- une première entrée de gaz (arrivée de gaz), le gaz étant à une première pression P1 ,
- une deuxième entrée de gaz (arrivée de gaz), le gaz étant à une deuxième pression P2 strictement supérieure à la première pression P1.
Chacune des entrées de gaz est reliée à au moins une soupape d’admission.
Les première et deuxième entrées de gaz peuvent prendre la forme d’un conduit dans lequel circule le gaz à leurs pressions respectives. Le gaz concerné peut comprendre de l’air, un mélange d’air et de carburant, un mélange d’air et de gaz brûlés, ou un mélange d’air, de carburant et de gaz brûlés.
Pour ce moteur, on commande la phase d’admission par deux étapes d’admission : on débute par l’admission du gaz issu de la première entrée de gaz, puis on poursuit par l’admission du gaz issu de la deuxième entrée de gaz plus tardivement, avec un retard prédéterminé, durant la phase d’admission.
On appelle phase d’admission, un temps du moteur à combustion interne. S’il s’agit d’un moteur quatre temps, il s’agit du temps entre l’échappement et la compression. Pendant la phase d’admission, le piston descend de son point mort haut à son point mort bas.
L’admission du gaz issu de la deuxième entrée de gaz, permet de remplir le cylindre avec un gaz ayant une pression P2 supérieure à la pression P1 . Ainsi la quantité de gaz (masse de gaz) dans le cylindre est élevée, et peut correspondre à la quantité d’air qui serait obtenue dans le cas d’un moteur à combustion interne suralimenté. Ce résultat peut être atteint sans avoir à fournir une admission d’un gaz à la pression P2 sur toute la durée de la phase d’admission. Ainsi, la puissance nécessaire pour obtenir cette quantité de gaz dans le cylindre est inférieure à celle utilisée pour un moteur à combustion interne suralimenté classique. Les performances du moteur à combustion interne s’en retrouvent améliorées, ou identiques avec une puissance nécessaire pour réaliser la suralimentation réduite.
Les figures 1 à 3 permettent d’expliquer le fonctionnement général de l’invention, et ses avantages par rapport à l’art antérieur. Ces courbes illustrent schématiquement et de manière non limitative, la pression P du gaz à l’admission en fonction du temps t, durant la phase d’admission (entre la zone du point mort haut admission PMH, et la zone du point mort bas admission PMB).
La figure 1 correspond à la courbe de pression P d’un moteur à combustion interne sans suralimentation selon l’art antérieur. Dans ce cas, durant toute la phase d’admission, la pression d’admission reste à la pression P1 , correspondant à la pression atmosphérique. Dans ce cas, la puissance délivrée par le moteur à combustion interne n’est pas optimale, car la masse admise ne dépend que de la cylindrée du moteur à combustion interne.
La figure 2 correspond à la courbe de pression P d’un moteur à combustion interne avec suralimentation selon l’art antérieur. Dans ce cas, durant toute la phase d’admission, la pression d’admission reste à la pression P2 (supérieure à la pression P1 ). Dans ce cas, la puissance délivrée par le moteur à combustion interne est supérieure à la puissance délivrée par le moteur à combustion interne sans suralimentation de la figure 1 , car la quantité de gaz dans le cylindre est plus importante. La figure 3 correspond à la courbe de pression P d’un moteur à combustion interne contrôlé par le procédé de contrôle selon un mode de réalisation de l’invention. Durant la première partie de l’admission, entre le point mort haut admission PMH et l’instant T (correspondant au moment de l’admission du gaz issu de la deuxième entré de gaz), seul le gaz issu de la première entrée de gaz à la pression P1 est admis dans le cylindre. Durant la deuxième partie de l’admission, entre l’instant T et le point mort bas admission PMB (voire après), le gaz issu de la deuxième entrée de gaz à la pression P2 est admis dans le cylindre. Ainsi, à la fin de la phase d’admission, la pression du gaz à l’admission P dans le cylindre est proche de la pression P2. Ainsi, la puissance délivrée par le moteur à combustion interne est identique à la puissance du moteur à combustion interne avec suralimentation de la figure 2. De plus, étant donné qu’il n’est pas nécessaire de fournir une quantité de gaz à la pression P2 pendant toute la durée de la phase d’admission, la quantité de puissance nécessaire pour l’admission est réduite, augmentant ainsi les performances du système de suralimentation.
Selon un aspect de l’invention, on peut générer la deuxième pression P2 de la deuxième entrée de gaz au moyen d’un système de compression relié à la deuxième entrée de gaz. Par exemple, le système de compression peut être un dispositif de turbocompression, ou un compresseur entraîné ; l’entrainement du système de compression peut être réalisé mécaniquement grâce à la puissance récupérée dans les gaz d’échappement notamment par une turbine ou entraînée mécaniquement ou par un moteur électrique. Ce mode de réalisation permet une adaptation aisée à un moteur à combustion interne suralimenté.
Alternativement, le gaz à la pression P2 peut être stocké dans un moyen de stockage de gaz (par exemple un réservoir de gaz comprimé), qui est relié à la deuxième entrée de gaz. Cette configuration permet de se passer d’un système de compression.
Avantageusement, la première pression P1 peut correspondre sensiblement à la pression atmosphérique. Cette configuration permet une simplicité de conception du moteur à combustion interne.
En variante, la première pression P1 peut être supérieure à la pression atmosphérique. Par exemple, la première pression P1 peut être obtenue par un système de compression. Dans ce cas, la deuxième pression P2 peut alors être obtenue par un double système de compression. Cette mise en œuvre, permet d’augmenter la quantité de gaz dans le cylindre, et par conséquent la puissance délivrée par le moteur à combustion interne. Selon un exemple de réalisation, la première pression P1 est comprise entre 0.1 et 0.2 MPa, et la deuxième pression P2 est comprise entre 0.1 1 et 0.5 MPa.
Selon un mode de réalisation de l’invention, on peut admettre dans le cylindre le gaz issu de la deuxième entrée de gaz jusqu’à la fin de la phase d’admission (jusqu’au point mort bas admission ou plus tard en cas de retard de fermeture de l’admission important). Ce mode de réalisation permet de garantir la quantité d’air présente dans le cylindre à la fin de la phase d’admission.
Conformément à une mise en oeuvre de l’invention, on peut retarder l’admission du gaz issu de la deuxième entrée de gaz par rapport à l’admission du gaz issu de la première entrée de gaz d’un temps correspondant entre 20 et 80 % de la durée de la phase d’admission. Un tel retard prédéterminé assure un compromis entre la quantité de gaz dans le cylindre à la fin de la phase d’admission, et la puissance utilisée pour l’admission.
De préférence, le retard peut être prédéterminé en fonction du point de fonctionnement du moteur à combustion interne et de manière à minimiser la puissance nécessaire pour l’admission.
De manière avantageuse, on peut débuter l’admission du gaz issu de la première entrée de gaz au début de la phase d’admission. Ainsi, l’admission de gaz se déroule pendant toute la durée de la phase d’admission.
Selon une première variante de réalisation, on peut terminer l’admission du gaz issu de la première entrée de gaz à la fin de la phase d’admission, par exemple simultanément à la fin de l’admission du gaz issu de la deuxième entrée de gaz.
Selon une deuxième variante de réalisation, on peut terminer l’admission du gaz issu de la première entrée de gaz avant ou pendant le début de l’admission du gaz issu de la deuxième entrée de gaz.
De préférence, l’admission du gaz issu de la première entrée de gaz peut être arrêtée (de manière automatique et/ou mécanique) lors de l’admission du gaz issu de la deuxième entrée de gaz.
Conformément à une mise en oeuvre de l’invention, on peut empêcher le gaz issu de la deuxième entrée de gaz de pénétrer dans la première entrée de gaz au moyen d’un clapet anti retour disposé sur la première entrée de gaz.
En variante, on peut empêcher le gaz issu de la deuxième entrée de gaz de pénétrer dans la première entrée de gaz par une commande adaptée de l’ouverture des soupapes d’admission, ou d’une vanne commandée placée sur une des entrées de gaz. En outre, le cylindre peut comprendre une seule soupape d’admission. Dans ce cas, les deux entrées de gaz sont reliées à cette soupape d’admission.
Alternativement, le cylindre peut comprendre au moins deux soupapes d’admission.
Selon un aspect de l’invention, on peut collecter le gaz issu des deux entrées de gaz dans un collecteur d’admission. Le collecteur d’admission est disposé entre les deux entrées de gaz et la ou les soupape(s) d’admission, pour distribuer le gaz provenant des deux entrées de gaz dans le cylindre au travers du ou des soupape(s) d’admission.
Selon un premier mode de réalisation de l’invention, on peut contrôler une vanne disposée sur la deuxième entrée de gaz, pour contrôler l’admission du gaz issu de la deuxième entrée de gaz vers le cylindre au travers du collecteur d’admission. Il peut s’agir d’une vanne deux voies du type tout ou rien. La vanne fonctionne à la même fréquence que la (les) soupape(s) d’admission. Pour ce mode de réalisation, on ouvre la vanne à partir du retard prédéterminé, la ou les soupape(s) d’admission étant ouverte(s).
Selon un deuxième mode de réalisation de l’invention, on peut contrôler une vanne disposée sur la connexion entre les première et deuxième entrées de gaz, pour contrôler l’admission du gaz issu de la deuxième entrée de gaz vers le cylindre au travers du collecteur d’admission. Il peut s’agir d’une vanne deux voies ou d’une vanne trois voies. Pour ce mode de réalisation, on ouvre la vanne à partir du retard prédéterminé, la ou les soupape(s) d’admission étant ouverte(s). La vanne fonctionne à la même fréquence que la (les) soupape(s) d’admission.
Ces deux modes de réalisation présentent l’avantage de nécessiter la commande d’une seule vanne pour mettre en oeuvre le procédé selon l’invention (sans ouvertures dissociées de soupapes d’admission).
Selon un troisième mode de réalisation de l’invention, dans le cas où le cylindre comporte au moins deux soupapes d’admission, chaque soupape d’admission peut être reliée à une unique entrée de gaz. Selon un exemple de réalisation, une première soupape d’admission est reliée à la première entrée de gaz et une deuxième soupape d’admission est reliée à la deuxième entrée de gaz.
Ce mode de réalisation présente l’avantage de ne pas nécessiter de vanne supplémentaire pour mettre en oeuvre le procédé selon l’invention.
Une variante de ce troisième mode de réalisation peut consister à ajouter une conduite qui relie la première soupape d’admission à la deuxième entrée de gaz, cette conduite étant équipée d’une vanne commandée, de manière à admettre le gaz issu de la deuxième entrée de gaz de manière homogène dans le cylindre. Pour ce troisième mode de réalisation et sa variante, on peut contrôler l’admission de gaz par ouverture de la deuxième soupape d’admission reliée à la deuxième entrée de gaz pendant l’ouverture de la première soupape d’admission reliée à la première entrée de gaz. Ainsi, pendant une partie de la phase d’admission les deux soupapes sont ouvertes simultanément.
Alternativement, pour ce troisième mode de réalisation et sa variante, on peut contrôler l’admission de gaz par une ouverture successive des deux soupapes d’admission. En d’autres termes, dans un premier temps on ouvre la première soupape d’admission reliée à la première entrée de gaz, et une fois que celle-ci est fermée (ou quasiment fermée), on ouvre la deuxième soupape d’admission reliée à la deuxième entrée de gaz. Dans ce cas, un clapet anti-retour n’a pas besoin d’être utilisé sur la première entrée de gaz.
En outre, la présente invention concerne un système de contrôle d’un moteur à combustion interne, pour contrôler l’admission de gaz. De manière classique, le moteur à combustion interne comporte au moins un cylindre qui délimite une chambre de combustion, et est équipé d’ :
- un piston, qui a un mouvement de translation rectiligne, et qui génère une rotation du vilebrequin,
- au moins une soupape d’admission pour l’admission d’un gaz dans le cylindre, la soupape d’admission étant située dans la culasse du moteur à combustion interne,
- au moins une soupape d’échappement pour l’échappement des gaz après la combustion dans le cylindre, la soupape d’échappement étant positionnée dans la culasse du moteur à combustion interne.
Selon l’invention, le moteur à combustion interne comporte en outre :
- une première entrée de gaz (arrivée de gaz), le gaz étant à une première pression P1 ,
- une deuxième entrée de gaz (arrivée de gaz), le gaz étant à une deuxième pression P2 strictement supérieure à la première pression P1.
Chacune des entrées de gaz est reliée à au moins une soupape d’admission.
Les première et deuxième entrées de gaz peuvent prendre la forme d’un conduit dans lequel circule le gaz.
Le gaz concerné peut comprendre de l’air, un mélange d’air et de carburant, un mélange d’air et de gaz brûlés, ou un mélange d’air, de carburant et de gaz brûlés. Selon l’invention, le système de contrôle du moteur à combustion interne met en oeuvre le procédé de contrôle selon l’une quelconque des combinaisons des variantes décrites ci-dessus.
La figure 4 illustre, schématiquement et de manière non limitative, une première variante du premier mode de réalisation de l’invention. Le moteur à combustion interne est équipé d’un cylindre 1. Le cylindre 1 comporte une soupape d’admission 2 et une soupape d’échappement 3. En outre, le moteur à combustion interne comprend une première entrée de gaz 4 à la première pression P1 , et une deuxième entrée de gaz 5 à la deuxième pression P2, avec la deuxième pression P2 strictement supérieure à la première pression P1. Selon un exemple, la première pression P1 peut être la pression atmosphérique, et la deuxième pression P2 peut provenir d’un système de compression, tel qu’un turbocompresseur (non représenté) ou d’un moyen de stockage de gaz comprimé (non représenté).
La première entrée de gaz 4 et la deuxième entrée de gaz 5 sont reliées à un collecteur d’admission 7. Le collecteur d’admission 7 collecte le gaz d’admission et le transfère vers le cylindre 1 au travers la soupape d’admission 2.
La deuxième entrée de gaz 5 comporte en outre une vanne deux voies 6 commandée pour contrôler l’admission du gaz issu de la deuxième entrée de gaz 5 vers le cylindre 1. Pour cette première variante de réalisation, la soupape d’admission 2 est ouverte pendant toute la durée de la phase d’admission, et la vanne 6 est ouverte à partir du retard prédéterminé et jusqu’à la fin de la phase d’admission, afin d’obtenir la quantité de gaz désirée dans le cylindre 1.
De plus, la première entrée de gaz 4 comprend un clapet anti-retour 8 qui empêche le gaz à la pression P2 de se diriger vers la première entrée de gaz 4.
La figure 5 illustre, schématiquement et de manière non limitative, une deuxième variante du premier mode de réalisation de l’invention. Le moteur à combustion interne est équipé d’un cylindre 1. Le cylindre 1 comporte deux soupapes d’admission 2 et deux soupapes d’échappement 3. En outre, le moteur à combustion interne comprend une première entrée de gaz 4 à la première pression P1 , et une deuxième entrée de gaz 5 à la deuxième pression P2, avec la deuxième pression P2 strictement supérieure à la première pression P1 . Selon un exemple, la première pression P1 peut être la pression atmosphérique, et la deuxième pression P2 peut provenir d’un système de compression, tel qu’un turbocompresseur (non représenté) ou d’un moyen de stockage de gaz comprimé (non représenté). La première entrée de gaz 4 et la deuxième entrée de gaz 5 sont reliées à un collecteur d’admission 7. Le collecteur d’admission 7 collecte le gaz d’admission et le transfère vers le cylindre 1 au travers des deux soupapes d’admission 2.
La deuxième entrée de gaz 5 comporte en outre une vanne deux voies 6 commandée pour contrôler l’admission du gaz issu de la deuxième entrée de gaz 5 vers le cylindre 1. Pour cette deuxième variante de réalisation, les soupapes d’admission sont ouvertes pendant toute la durée de la phase d’admission, et la vanne 6 est ouverte à partir du retard prédéterminé et jusqu’à la fin de la phase d’admission, afin d’obtenir la quantité de gaz désirée dans le cylindre 1.
De plus, la première entrée de gaz 4 comprend un clapet anti-retour 8 qui empêche le gaz à la pression P2 de se diriger vers la première entrée de gaz 4.
La figure 6 illustre, schématiquement et de manière non limitative, un deuxième mode de réalisation de l’invention. Le moteur à combustion interne est équipé d’un cylindre 1 . Le cylindre 1 comporte deux soupapes d’admission 2 et au moins une soupape d’échappement 3. En outre, le moteur à combustion interne comprend une première entrée de gaz 4 à la première pression P1 , et une deuxième entrée de gaz 5 à la deuxième pression P2, avec la deuxième pression P2 strictement supérieure à la première pression P1 . Selon un exemple, la première pression P1 peut être la pression atmosphérique, et la deuxième pression P2 peut provenir d’un système de compression, tel qu’un turbocompresseur (non représenté) ou d’un moyen de stockage de gaz comprimé (non représenté).
La première entrée de gaz 4 et la deuxième entrée de gaz 5 sont reliées à un collecteur d’admission 7. Le collecteur d’admission 7 collecte le gaz d’admission et le transfère vers le cylindre 1 au travers la soupape d’admission 2.
Au niveau de la connexion entre la première entrée de gaz 4 et la deuxième entrée de gaz 5 est disposée une vanne trois voies 10 commandée pour contrôler l’admission du gaz issu de la deuxième entrée de gaz 5 vers le cylindre 1 . Pour ce deuxième mode de réalisation, la ou les soupapes d’admission sont ouvertes pendant toute la durée de la phase d’admission, et la vanne 10 permet le passage du gaz issu de la première entrée de gaz 4 pendant toute la première partie de la phase d’admission, et permet le passage du gaz issu de la deuxième entrée de gaz 5 à partir du retard prédéterminé et jusqu’à la fin de la phase d’admission, afin d’obtenir la quantité de gaz désirée dans le cylindre 1 .
Une variante de réalisation de la figure 6 pourrait consister en un cylindre comportant une seule soupape d’admission. Une autre variante de réalisation de la figure 6 pourrait consister par le remplacement de la vanne trois voies 10 par une vanne deux voies qui relie le collecteur d’admission 7 à une seule des entrées de gaz 4 ou 5. La figure 7 illustre, schématiquement et de manière non limitative, un troisième mode de réalisation de l’invention. Le moteur à combustion interne est équipé d’un cylindre 1 . Le cylindre 1 comporte deux soupapes d’admission 2 et 2’ au moins une soupape d’échappement 3. En outre, le moteur à combustion interne comprend une première entrée de gaz 4 à la première pression P1 , et une deuxième entrée de gaz 5 à la deuxième pression P2, avec la deuxième pression P2 strictement supérieure à la première pression P1. Selon un exemple, la première pression P1 peut être la pression atmosphérique, et la deuxième pression P2 peut provenir d’un système de compression, tel qu’un turbocompresseur (non représenté) ou d’un moyen de stockage de gaz comprimé (non représenté).
La première entrée de gaz 4 est reliée à une première soupape d’admission 2 et la deuxième entrée de gaz est reliée à une deuxième soupape d’admission 2’.
Pour ce troisième mode de réalisation, on contrôle l’ouverture des soupapes d’admission 2 et 2’, la soupape d’admission 2’ étant ouverte après la soupape d’admission 2 à partir du retard prédéterminé et jusqu’à la fin de la phase d’admission. Un exemple de contrôle de l’ouverture des soupapes d’admission est illustré en figure 9 sera détaillé dans la suite de la description.
De plus, la première entrée de gaz 4 comprend un clapet anti-retour 8 qui empêche le gaz à la pression P2 de se diriger vers la première entrée de gaz 4.
La figure 8 illustre, schématiquement et de manière non limitative, une variante du troisième mode de réalisation de l’invention. Le moteur à combustion interne est équipé d’un cylindre 1 . Le cylindre 1 comporte deux soupapes d’admission 2 et 2’ et au moins une soupape d’échappement 3. En outre, le moteur à combustion interne comprend une première entrée de gaz 4 à la première pression P1 , et une deuxième entrée de gaz 5 à la deuxième pression P2, avec la deuxième pression P2 strictement supérieure à la première pression P1 . Selon un exemple, la première pression P1 peut être la pression atmosphérique, et la deuxième pression P2 peut provenir d’un système de compression, tel qu’un turbocompresseur (non représenté) ou d’un moyen de stockage de gaz comprimé (non représenté).
La première entrée de gaz 4 est reliée à une première soupape d’admission 2 et la deuxième entrée de gaz est reliée à une deuxième soupape d’admission 2’.
En outre, la deuxième entrée de gaz 5 est reliée à la première entrée de gaz 4 au moyen d’une conduite comprenant une vanne 1 1.
Pour cette variante du troisième mode de réalisation, on contrôle l’ouverture des soupapes d’admission 2 et 2’, ainsi que l’ouverture de la vanne 1 1. La soupape d’admission 2’ est ouverte après la soupape d’admission 2 à partir du retard prédéterminé et jusqu’à la fin de la phase d’admission. De plus, la vanne 1 1 est ouverte pendant la période pendant laquelle les deux soupapes d’admission 2 et 2’ sont ouvertes. Des exemples de contrôle de l’ouverture des soupapes d’admission sont illustrés en figures 9 à 12 et seront détaillés dans la suite de la description.
De plus, la première entrée de gaz 4 comprend un clapet anti-retour 8 qui empêche le gaz à la pression P2 de se diriger vers la première entrée de gaz 4.
Les figures 9 à 12 illustrent, schématiquement et de manière non limitative, les ouvertures des soupapes d’admission, notamment pour le mode de réalisation de la figure 8. Sur ces figures, on représente les courbes des sections S d’ouverture des soupapes 2 (courbe S2) et 2’ (courbe S2’) en fonction du temps pendant la phase d’admission entre le point mort haut admission PMH et le point mort bas admission PMB. A noter que sur ces figures, les soupapes commencent à s’ouvrir un peu avant le moment indiqué, et se ferment un peu après le moment indiqué. Il s’agit d’une conception classique d’une loi de levée de soupape, pour prendre en compte les phénomènes mécaniques mis en oeuvre, et permettant de profiter de la dynamique des gaz.
Pour l’exemple de la figure 9, la soupape d’admission 2, reliée à la première entrée de gaz, est ouverte pendant toute la durée de la phase d’admission, et la soupape d’admission 2’, reliée à la deuxième entrée de gaz est ouverte depuis le retard prédéterminé T jusqu’à la fin de la phase d’admission. Dans ce cas, entre le retard prédéterminé T et le point mort bas admission PMB, les deux soupapes d’admission 2 et 2’ sont ouvertes.
Pour l’exemple de la figure 10, la soupape d’admission 2, reliée à la première entrée de gaz, est ouverte depuis le point mort haut admission PMH jusqu’au retard T, alors que la soupape d’admission 2’, reliée à la deuxième entrée de gaz, est ouverte depuis le retard prédéterminé T jusqu’à la fin de la phase d’admission. Dans ce cas, il n’y aucun (ou peu) chevauchement de l’ouverture des soupapes d’admission 2 et 2’.
Pour l’exemple de la figure 1 1 , la soupape d’admission 2, reliée à la première entrée de gaz est ouverte depuis le point mort haut admission PMH jusqu’à un instant situé avant le point mort bas admission PMB, alors que la soupape d’admission 2’, reliée à la deuxième entrée de gaz, est ouverte depuis le retard prédéterminé T jusqu’à la fin de la phase d’admission. Dans ce cas, entre le retard prédéterminé T et l’instant de fermeture de la soupape d’admission 2, les deux soupapes d’admission 2 et 2’ sont ouvertes.
Pour l’exemple de la figure 12, la soupape d’admission 2, reliée à la première entrée de gaz est ouverte depuis le point mort haut admission PMH jusqu’à un instant sensiblement plus tard que le point mort bas admission PMB, alors que la soupape d’admission 2’, reliée à la deuxième entrée de gaz, est ouverte depuis le retard prédéterminé T jusqu’au point mort bas admission PMB. Dans ce cas, entre le retard prédéterminé T et l’instant de fermeture de la soupape d’admission 2’, les deux soupapes d’admission 2 et 2’ sont ouvertes.

Claims

Revendications
1 ) Procédé de contrôle d’un moteur à combustion interne comprenant au moins un cylindre (1 ) équipé d’un piston, d’au moins une soupape d’admission (2, 2’), d’au moins une soupape d’échappement (3), d’une première entrée de gaz (4) à une première pression P1 , et d’au moins une deuxième entrée de gaz (5) à une deuxième pression P2 strictement supérieure à ladite première pression P1 , lesdites première (4) et deuxième (5) entrées de gaz sont reliées à au moins une soupape d’admission (2), caractérisé en ce que l’on contrôle l’admission de gaz au sein dudit cylindre (1 ) par admission de gaz issu de ladite première entrée de gaz (4), suivi par une admission de gaz issu de ladite deuxième entrée de gaz (5) avec un retard prédéterminé pendant la phase d’admission.
2) Procédé de contrôle selon la revendication 1 , dans lequel on génère ladite deuxième pression P2 de ladite deuxième entrée de gaz (5) au moyen d’un système de compression, notamment un dispositif de turbocompression, ledit système de compression étant relié à ladite deuxième entrée de gaz (5).
3) Procédé de contrôle selon la revendication 1 , dans lequel on stocke le gaz à ladite deuxième pression P2 dans un moyen de stockage de gaz à ladite deuxième pression P2 relié à ladite deuxième entrée de gaz (5).
4) Procédé de contrôle selon l’une des revendications précédentes, dans lequel ladite première pression P1 correspond sensiblement à la pression atmosphérique.
5) Procédé de contrôle selon l’une des revendications précédentes, dans lequel on admet dans ledit cylindre le gaz issu de ladite deuxième entrée de gaz (5) sensiblement jusqu’à la fin de la phase d’admission.
6) Procédé de contrôle selon l’une des revendications précédentes, dans lequel on retarde l’admission de gaz issu de ladite deuxième entrée de gaz (5) par rapport à l’admission de gaz issu de ladite première entrée de gaz (4) d’un temps (T) correspondant entre 20 et 80 % de la durée de la phase d’admission.
7) Procédé de contrôle selon l’une des revendications précédentes, dans lequel on débute l’admission du gaz issu de ladite première entrée de gaz (4) sensiblement au début de la phase d’admission. 8) Procédé de contrôle selon l’une des revendications précédentes, dans lequel on collecte le gaz issu desdites première (4) et deuxième (5) entrées de gaz dans un collecteur d’admission (7) relié auxdites première (4) et deuxième (5) entrées de gaz et distribuant le gaz dans ledit cylindre (1 ) au moyen de ladite soupape d’admission (2).
9) Procédé de contrôle selon la revendication 8, dans lequel on contrôle une vanne (6) disposée sur ladite deuxième entrée de gaz (5) ou une vanne (10) disposée sur la connexion entre lesdites première (4) et deuxième (5) entrées de gaz pour contrôler l’admission du gaz issu de ladite première entrée de gaz (4) et de ladite deuxième entrée de gaz (5).
10) Procédé de contrôle selon l’une des revendications 1 à 7, dans lequel ledit cylindre (1 ) comporte deux soupapes d’admission (2, 2’), chaque soupape d’admission étant reliée à l’une desdites première (4) ou deuxième (5) entrées de gaz.
1 1 ) Procédé de contrôle selon la revendication 10, dans lequel on contrôle l’admission de gaz par ouverture de la soupape d’admission (2’) reliée à ladite deuxième entrée de gaz (5) pendant l’ouverture de la soupape d’admission (2) reliée à ladite première entrée de gaz (4).
12) Procédé de contrôle selon la revendication 1 1 , dans lequel on contrôle d’admission de gaz par ouverture d’une vanne (1 1 ) disposée entre la première entrée de gaz (4) et la deuxième entrée de gaz (5).
13) Procédé de contrôle selon la revendication 10, dans lequel on contrôle l’admission de gaz par ouverture successive desdites deux soupapes d’admission (2, 2’).
14) Procédé de contrôle selon l’une des revendications précédentes, dans lequel on empêche le gaz issu de la deuxième entrée de gaz (5) de pénétrer dans ladite première entrée de gaz (4) au moyen d’un clapet anti-retour (8) disposé sur ladite première entrée de gaz (4).
15) Système de contrôle d’un moteur à combustion interne comprenant au moins un cylindre (1 ) équipé d’un piston, d’au moins une soupape d’admission (2, 2’), d’au moins une soupape d’échappement (3), d’une première entrée de gaz (4) à une première pression P1 , et d’au moins une deuxième entrée (5) de gaz à une deuxième pression P2 strictement supérieure à ladite première pression P1 , caractérisé en ce que ledit système de contrôle met en œuvre le procédé de contrôle selon l’une des revendications précédentes.
PCT/EP2019/071149 2018-08-30 2019-08-06 Procede de controle d'un moteur a combustion interne avec double admission WO2020043445A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857783 2018-08-30
FR1857783A FR3085440A1 (fr) 2018-08-30 2018-08-30 Procede de controle d'un moteur a combustion interne avec double admission

Publications (1)

Publication Number Publication Date
WO2020043445A1 true WO2020043445A1 (fr) 2020-03-05

Family

ID=66867183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/071149 WO2020043445A1 (fr) 2018-08-30 2019-08-06 Procede de controle d'un moteur a combustion interne avec double admission

Country Status (2)

Country Link
FR (1) FR3085440A1 (fr)
WO (1) WO2020043445A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498429A (en) * 1981-09-07 1985-02-12 Mazda Motor Corporation Fuel intake system for supercharged engine
DE3737823A1 (de) * 1987-11-06 1989-08-10 Schatz Oskar Verfahren zum betrieb eines verbrennungsmotors und verbrennungsmotor zur durchfuehrung des verfahrens
WO1994015080A1 (fr) 1992-12-22 1994-07-07 Antonio Bernardini Moteur a combustion interne modifie a distribution par rotation et/ou a exploitation de la reserve d'air dans le carter
US6135088A (en) * 1997-09-09 2000-10-24 Institut Francais Du Petrole Controlled self-ignition 4-stroke engine operating process
US6470681B1 (en) * 2002-01-03 2002-10-29 Kevin Orton Supercharged or turbocharged engine having ambient air intake port and charged air intake port
US6776144B1 (en) 2003-05-28 2004-08-17 Lennox G. Newman Five stroke internal combustion engine
WO2012085450A1 (fr) 2010-12-22 2012-06-28 Valeo Systemes De Controle Moteur Procede de commande d'au moins une soupape d'admission d'un moteur thermique fonctionnant selon un cycle a quatre temps
DE102012106353A1 (de) * 2011-07-13 2013-01-17 Ford Global Technologies, Llc Verfahren und System für einen turboaufgeladenen Motor
FR2995354A1 (fr) 2012-09-11 2014-03-14 IFP Energies Nouvelles Procede de determination d'une pression en amont d'un compresseur pour un moteur equipe d'une double suralimentation
FR2995355A1 (fr) 2012-09-11 2014-03-14 IFP Energies Nouvelles Procede de commande d'un moteur thermique equipe d'une double suralimentation
FR2998924A1 (fr) 2012-11-30 2014-06-06 IFP Energies Nouvelles Procede de commande d'un moteur thermique equipe d'une double suralimentation
FR3015578A1 (fr) 2013-12-19 2015-06-26 Valeo Sys Controle Moteur Sas Systeme d'admission d'air pour moteur thermique
US20170284318A1 (en) * 2016-03-30 2017-10-05 General Electric Company Systems and methods for reduced oil carryover

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498429A (en) * 1981-09-07 1985-02-12 Mazda Motor Corporation Fuel intake system for supercharged engine
DE3737823A1 (de) * 1987-11-06 1989-08-10 Schatz Oskar Verfahren zum betrieb eines verbrennungsmotors und verbrennungsmotor zur durchfuehrung des verfahrens
WO1994015080A1 (fr) 1992-12-22 1994-07-07 Antonio Bernardini Moteur a combustion interne modifie a distribution par rotation et/ou a exploitation de la reserve d'air dans le carter
US6135088A (en) * 1997-09-09 2000-10-24 Institut Francais Du Petrole Controlled self-ignition 4-stroke engine operating process
US6470681B1 (en) * 2002-01-03 2002-10-29 Kevin Orton Supercharged or turbocharged engine having ambient air intake port and charged air intake port
US6776144B1 (en) 2003-05-28 2004-08-17 Lennox G. Newman Five stroke internal combustion engine
WO2012085450A1 (fr) 2010-12-22 2012-06-28 Valeo Systemes De Controle Moteur Procede de commande d'au moins une soupape d'admission d'un moteur thermique fonctionnant selon un cycle a quatre temps
DE102012106353A1 (de) * 2011-07-13 2013-01-17 Ford Global Technologies, Llc Verfahren und System für einen turboaufgeladenen Motor
FR2995354A1 (fr) 2012-09-11 2014-03-14 IFP Energies Nouvelles Procede de determination d'une pression en amont d'un compresseur pour un moteur equipe d'une double suralimentation
FR2995355A1 (fr) 2012-09-11 2014-03-14 IFP Energies Nouvelles Procede de commande d'un moteur thermique equipe d'une double suralimentation
FR2998924A1 (fr) 2012-11-30 2014-06-06 IFP Energies Nouvelles Procede de commande d'un moteur thermique equipe d'une double suralimentation
FR3015578A1 (fr) 2013-12-19 2015-06-26 Valeo Sys Controle Moteur Sas Systeme d'admission d'air pour moteur thermique
US20160348573A1 (en) 2013-12-19 2016-12-01 Valeo Systemes De Controle Moteur Combustion engine air intake system
US20170284318A1 (en) * 2016-03-30 2017-10-05 General Electric Company Systems and methods for reduced oil carryover

Also Published As

Publication number Publication date
FR3085440A1 (fr) 2020-03-06

Similar Documents

Publication Publication Date Title
EP0069632B1 (fr) Procédé et dispositif de contrôle du clapet de décharge de l'échappement d'un moteur à combustion interne turbo-compressé
FR2500063A1 (fr) Moteur thermique a quatre temps susceptible de surpuissance temporaire
FR2909718A1 (fr) Moteur a combustion interne suralimente
EP2354499A1 (fr) Procédé de balayage des gaz brûlés résiduels d'un moteur multi cylindres à combustion interne suralimenté à injection directe fonctionnant à charges partielles
FR2865769A1 (fr) Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
FR2884866A1 (fr) Moteur a suralimentation sequentielle et a distribution variable
EP0691472B1 (fr) Moteur à combustion interne ayant un réservoir de stockage de pression d'utilisation spécifique
FR2922162A1 (fr) Systeme de motorisation hybride pneumatique-thermique de vehicule routier
WO2020043445A1 (fr) Procede de controle d'un moteur a combustion interne avec double admission
FR2580334A1 (fr) Systeme d'alimentation en carburant pour un moteur a combustion interne a turbocompresseur
WO2010066980A1 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable
EP1544434A1 (fr) Procédé de commande d'un moteur à combustion interne suralimenté
FR2868481A1 (fr) Procede de controle de la recirculation des gaz d'echappement d'un moteur suralimente a combustion interne et moteur utilisant un tel procede
WO2020043375A1 (fr) Dispositif et systeme de controle d'un moteur a combustion interne avec double admission et balayage
WO2012085450A1 (fr) Procede de commande d'au moins une soupape d'admission d'un moteur thermique fonctionnant selon un cycle a quatre temps
EP1489280B1 (fr) Procédé de combustion d'un moteur quatre temps suralimenté et moteur utilisant un tel procédé
FR2548269A1 (fr) Moteur a combustion interne du type diesel a suralimentation par gaz d'echappement
LU82264A1 (fr) Systeme de frein-moteur et procede de freinage correspondant
FR2973447A1 (fr) Procede de demarrage d'un moteur thermique a pistons en utilisant de l'air comprime et moteur
FR2980523A1 (fr) Procede et dispositif d'alimentation en air d'un moteur hybride pneumatique-thermique
FR2971813A1 (fr) Procede et dispositif d'alimentation en air d'un moteur pneumatique-thermique
EP3384144B1 (fr) Système et procédé permettant de désactiver au moins un cylindre d'un moteur, collecteur d'admission et échangeur de chaleur comprenant ledit système
FR2519695A1 (fr) Moteur a quatre temps auto-suralimente
FR2859759A1 (fr) Procede d'augmentation du rendement des moteurs suralimentes
FR2977914A1 (fr) Procede de fonctionnement d'un moteur thermique-pneumatique et moteur thermique-pneumatique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746520

Country of ref document: EP

Kind code of ref document: A1