WO2020041977A1 - 一种多模光网络终端ont及无源光网络pon系统 - Google Patents

一种多模光网络终端ont及无源光网络pon系统 Download PDF

Info

Publication number
WO2020041977A1
WO2020041977A1 PCT/CN2018/102741 CN2018102741W WO2020041977A1 WO 2020041977 A1 WO2020041977 A1 WO 2020041977A1 CN 2018102741 W CN2018102741 W CN 2018102741W WO 2020041977 A1 WO2020041977 A1 WO 2020041977A1
Authority
WO
WIPO (PCT)
Prior art keywords
ont
mode
optical
module
signal
Prior art date
Application number
PCT/CN2018/102741
Other languages
English (en)
French (fr)
Inventor
林华枫
曾小飞
张军
郑刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880096923.8A priority Critical patent/CN112640481B/zh
Priority to PCT/CN2018/102741 priority patent/WO2020041977A1/zh
Publication of WO2020041977A1 publication Critical patent/WO2020041977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the embodiments of the present application relate to the field of optical networks, and in particular, to a multimode optical network terminal ONT and a passive optical network PON system.
  • a passive optical network mainly includes an optical line terminal (OLT) located at the central office, an optical distribution network (ODN), and at least one optical network unit (optical network) located at the user end. unit (ONU) or at least one optical network terminal (ONT).
  • the ODN provides an optical transmission channel between the OLT and the ONU.
  • the ODN includes passive components such as optical fibers and passive optical splitters.
  • FIG. 1 is an example diagram of a system architecture of a PON provided in the prior art. It can be divided into multiple modes of PON according to different uplink and downlink speeds and uplink and downlink wavelengths. For example, Ethernet passive optical network (EPON), Gigabit-capable passive optical network (GPON) ), And 10Gbit-capable passive optical network (XG-PON).
  • EPON Ethernet passive optical network
  • GPON Gigabit-capable passive optical network
  • XG-PON 10Gbit-capable passive optical network
  • the existing PON system needs to be upgraded. For example, upgrading from a GPON system to an XG-PON system.
  • upgrading from a GPON system to an XG-PON system For example, upgrading from a GPON system to an XG-PON system.
  • the optical signals of two or more single-mode OLTs can be multiplexed into the same ODN through a multiplexer / demultiplexer to implement the OLT upgrade.
  • upgrade on demand Users who need to be upgraded can be replaced with ONTs in high-rate mode; or, single-mode ONTs can be replaced with multi-mode ONTs, which can be plugged and unplugged from ONT optical modules in different modes in the multi-mode ONT.
  • the multimode ONT protocol processing module in the multimode ONT enables the multimode ONT to work in different modes.
  • the above-mentioned upgrade methods all implement the upgrade of the PON system through manual operation, and the upgrade operation is relatively complicated.
  • the ONT since the ONT is a user-side device, it may be in a different location and the upgrade workload is large. Even if a user uses a multi-mode ONT, a staff member needs to visit the home or send an optical module to the user. The user still needs to complete the replacement of the ONT optical module by himself.
  • the embodiments of the present application provide a multimode optical network terminal ONT and a passive optical network PON system, which solves the problem that the ONT upgrade operation is more complicated.
  • an embodiment of the present application provides a multi-mode ONT, including: the multi-mode ONT includes an ONT control management module, a service processing module, N ONT protocol processing modules, and M ONT optical modules, where N is greater than or equal to An integer of 1 and M is an integer greater than or equal to 1.
  • the ONT control management module is connected to the service processing module, N ONT protocol processing modules, and M ONT optical modules, respectively;
  • the service processing module is connected to N ONT protocol processing modules ;
  • One ONT protocol processing module is connected to at least one ONT optical module, and one ONT optical module is connected to at least one ONT protocol processing module.
  • the ONT control management module is used to control N ONT protocol processing modules and M ONT optical modules to work in P modes according to P mode control signals.
  • the modes include uplink rate, downlink rate, uplink wavelength, and downlink wavelength.
  • P is greater than or An integer equal to 2.
  • the ONT optical module is used to obtain the downlink optical signal of the corresponding mode according to the mode control signal, convert the downlink optical signal of the corresponding mode to the downlink electrical signal of the corresponding mode, and transmit the downlink electrical signal of the corresponding mode to the ONT Protocol processing module.
  • the ONT protocol processing module is configured to obtain service information from a downlink electrical signal of a corresponding mode according to a mode protocol corresponding to the mode control signal, and transmit the service information to the service processing module.
  • the ONT protocol processing module is further configured to convert the service information obtained from the service processing module into an uplink electrical signal of the corresponding mode protocol and transmit the uplink electrical signal of the corresponding mode protocol according to the mode protocol corresponding to the mode control signal.
  • the ONT optical module is further configured to convert the uplink electrical signal of the corresponding mode protocol into the uplink optical signal of the corresponding mode according to the mode control signal, and send the uplink optical signal of the corresponding mode.
  • the multi-mode ONT provided in the embodiment of the present application controls N ONT protocol processing modules and M ONT optical modules to work in P modes through P mode control signals. Therefore, without manual operation, the multi-mode ONT can control signals according to the mode.
  • the multi-mode ONT autonomously implements the upgrade from one mode to another, effectively reducing the complexity of the multi-mode ONT upgrade operation. , And the engineering time and cost of the upgrade operation.
  • connection mode of the N ONT protocol processing modules and the M ONT optical modules can be jointly determined according to factors such as the working mode of the ONT protocol processing module and the ONT optical modules, and the number of modules.
  • the N ONT protocol processing modules and the M ONT optical modules may include the following connection modes.
  • the multimode ONT includes an ONT protocol processing module and an ONT optical module.
  • the ONT protocol processing module is a multi-mode ONT protocol processing module
  • the ONT optical module is a transceiving adjustable multi-mode ONT optical module.
  • the transceiving adjustable multimode ONT optical module is used to obtain the i-th downlink optical signal according to the i-th mode control signal, convert the i-th downlink optical signal into the i-th downlink power signal, and convert the i-th downlink power signal Transmission to the multi-mode ONT protocol processing module, where i is an integer, i takes 1 to P, and the i-th mode control signal is used to control the multi-mode ONT protocol processing module and the transmit / receive adjustable multi-mode ONT optical module to work in the i-th mode.
  • the downlink rate of the i downlink optical signal is the downlink rate corresponding to the i-th mode
  • the downlink wavelength of the i-th downlink optical signal is the downlink wavelength corresponding to the i-th mode.
  • a multi-mode ONT protocol processing module is configured to obtain service information from an i-th downlink signal according to the i-th protocol and transmit the service information to the service processing module.
  • the multi-mode ONT protocol processing module is further configured to convert the service information obtained from the service processing module into an uplink electrical signal corresponding to the i-mode protocol according to the i-th protocol, and convert the uplink corresponding to the i-mode protocol to the uplink.
  • the electrical signal is transmitted to the transceiver multi-mode ONT optical module.
  • the transceiving tunable multi-mode ONT optical module is further configured to convert the uplink electrical signal corresponding to the i-th protocol into the i-th uplink optical signal according to the i-th mode control signal, and send the i-th uplink optical signal.
  • the uplink rate is the uplink rate corresponding to the i-th mode
  • the uplink wavelength of the i-th uplink optical signal is the uplink wavelength corresponding to the i-th mode.
  • the multi-mode ONT In order for the multi-mode ONT to implement control according to the P mode control signals, it works in P modes.
  • the transceiver multi-tunable ONT optical module it can include R receiving channels and T transmitting channels, where R is an integer greater than or equal to 1. , T is an integer greater than or equal to 1. Specifically, the following implementation manners may be included.
  • the transmit-receive adjustable multi-mode ONT optical module may include one receiving channel and one transmitting channel.
  • the receiving channel includes a tunable wavelength filter, a multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier.
  • the transmitting channel includes a multi-rate laser driver and a multi-rate tunable wavelength laser.
  • the transmit / receive adjustable multi-mode ONT optical module also includes an ONT optical module control management module and a multiplexer / demultiplexer.
  • the ONT optical module control management module is respectively connected to a multi-rate laser driver, a multi-rate tunable wavelength laser, a tunable wavelength filter, a multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier;
  • the multi-rate laser The driver is connected to a multi-rate tunable wavelength laser;
  • the multi-rate tunable wavelength laser is connected to a multiplexer / demultiplexer;
  • the tunable wavelength filter is connected to a multi-rate photodetector and a multiplexer / demultiplexer respectively;
  • Rate transimpedance amplifier connection; multirate transimpedance amplifier is connected to multirate limiting amplifier.
  • the ONT optical module control management module is configured to control the receiving channel and the transmitting channel to work in the i-th mode according to the i-th mode control signal.
  • the multiplexer / demultiplexer is used to transmit the downlink optical signal in the range of the i-th mode of the downlink optical signal to the receiving channel.
  • the wavelength tunable filter is configured to obtain an i-th downlink optical signal from the downlink optical signal obtained by the multiplexer / demultiplexer according to the i-th mode control signal, and transmit the i-th downlink optical signal to the multi-rate photodetector.
  • the multi-rate photodetector is configured to convert the i-th downlink optical signal into an i-th downlink electrical signal according to the i-th mode control signal, and transmit the i-th downlink electrical signal to a multi-rate transimpedance amplifier.
  • a multi-rate transimpedance amplifier is used to amplify the i-th downlink electrical signal and transmit the amplified i-th downlink electrical signal to the multi-rate limiting amplifier.
  • a multi-rate limiting amplifier is used to adjust the amplitude of the amplified i-th downlink electrical signal.
  • a multi-rate laser driver is used to convert the uplink electrical signal corresponding to the i-mode protocol received from the multi-mode ONT protocol processing module into a first-rate tunable wavelength laser according to the i-th mode control signal.
  • the i uplink electrical signal corresponds to the i-th uplink electrical signal and transmits the i-th uplink electrical signal to the multi-rate tunable wavelength laser.
  • a multiplexer / demultiplexer is used to couple the i-th uplink optical signal into the ODN. It should be noted that coupling can also be understood as conduction, that is, the i-th uplink optical signal is transmitted to the ODN.
  • the P-mode controllable multi-mode ONT optical module is controlled to work in P modes through the P mode control signals. Without manual operation, the multi-mode ONT can work in any of the P modes according to the mode control signals.
  • the multi-mode ONT independently implements the upgrade from one mode to another, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • the transmit / receive adjustable multi-mode ONT optical module may include two receiving channels and two transmitting channels.
  • the first receiving channel includes a first wavelength filter, a first photodetector, a first transimpedance amplifier, and a first limiting amplifier.
  • the first transmitting channel includes a first laser driver and a first laser
  • the second receiving channel includes a second Wavelength filter, second photodetector, second transimpedance amplifier, and second limiting amplifier.
  • the second transmission channel includes a second laser driver and a second laser.
  • the transceiver multi-mode ONT optical module also includes ONT optical module control. Management module and multiplexer / demultiplexer.
  • the ONT optical module control management module and the first laser driver, the first laser, the first wavelength filter, the first photodetector, the first transimpedance amplifier, the first limiting amplifier, the second laser driver, and the second The laser, the second wavelength filter, the second photodetector, the second transimpedance amplifier and the second limiting amplifier are connected;
  • the first laser driver is connected to the first laser;
  • the first laser is connected to the multiplexer / demultiplexer;
  • the first The wavelength filter is connected to the multiplexer and the demultiplexer and the first photodetector;
  • the first photodetector is connected to the first transimpedance amplifier;
  • the first transimpedance amplifier is connected to the first limiting amplifier;
  • the second laser driver is connected to the first Two lasers are connected;
  • the second laser is connected to the multiplexer / demultiplexer;
  • the second wavelength filter is connected to the multiplexer / demultiplexer and the second photodetector;
  • the ONT optical module control and management module is configured to control the first receiving channel and the first transmitting channel to work in the first mode according to the first mode control signal.
  • the ONT optical module control management module is further configured to control the second receiving channel and the second transmitting channel to work in the second mode according to the second mode control signal.
  • the first mode control signal is any one of the P mode control signals
  • the second mode control signal is any one of the P mode control signals
  • the first mode control signal and the second mode control The signals are different, and the first mode corresponding to the first mode control signal is different from the second mode corresponding to the second mode control signal.
  • the multimode ONT includes two ONT protocol processing modules and two ONT optical modules.
  • ONT also includes a multiplexer / demultiplexer.
  • the ONT control management module is connected to the service processing module, the first ONT protocol processing module, the first ONT optical module, the second ONT protocol processing module, and the second ONT optical module, respectively; the service processing module is respectively connected to the first ONT protocol processing module.
  • the second ONT protocol processing module Connected to the second ONT protocol processing module; the first ONT protocol processing module is connected to the first ONT optical module; the second ONT protocol processing module is connected to the second ONT optical module; the multiplexer / demultiplexer is connected to the first ONT optical module and The second ONT optical module is connected.
  • the ONT control management module is configured to control the first ONT protocol processing module and the first ONT optical module to work in the first mode according to the first mode control signal.
  • the ONT control management module is further configured to control the second ONT protocol processing module and the second ONT optical module to work in the second mode according to the second mode control signal.
  • the multiplexer / demultiplexer is used to transmit the downlink optical signal in the range of the first mode of the downlink optical signal to the first ONT optical module; the first ONT optical module is used to control according to the first mode
  • the signal obtains the first downlink optical signal from the downlink optical signal obtained by the multiplexer / demultiplexer, converts the first downlink optical signal into a first downlink electrical signal, and transmits the first downlink electrical signal to the first ONT.
  • a protocol processing module is configured according to The first mode protocol acquires service information from the first downlink power signal and transmits the service information to a service processing module.
  • the multiplexer / demultiplexer is also used to transmit the downstream optical signal in the second mode of the downstream optical signal to the second ONT optical module; the second ONT optical module is used to control the signal from the multiplexer according to the second mode.
  • the second downlink optical signal is obtained from the downlink optical signal obtained by the demultiplexer, and the second downlink optical signal is converted into a second downlink electrical signal, and the second downlink electrical signal is transmitted to a second ONT protocol processing module, and the second downstream optical signal is
  • the downlink rate of the signal is the downlink rate corresponding to the second mode, and the downlink wavelength of the second downlink optical signal is the downlink wavelength corresponding to the second mode.
  • the second ONT protocol processing module is configured to transmit the second downlink electrical signal according to the second mode protocol. To obtain business information, and transmit the business information to the business processing module.
  • the first ONT protocol processing module is further configured to convert the service information obtained from the service processing module into an uplink electrical signal corresponding to the first mode protocol and convert the uplink corresponding to the first mode protocol according to the first mode protocol.
  • the electrical signal is transmitted to the first ONT optical module; the first ONT optical module is further configured to convert the uplink electrical signal corresponding to the first mode protocol into the first uplink optical signal according to the first mode control signal and pass the multiplexer / demultiplexer
  • the first uplink optical signal is coupled into the ODN, the uplink rate of the first uplink optical signal is the uplink rate corresponding to the first mode, and the uplink wavelength of the first uplink optical signal is the uplink wavelength corresponding to the first mode.
  • the second ONT protocol processing module is further configured to convert service information obtained from the service processing module into an uplink electrical signal corresponding to the second mode protocol according to the second mode protocol, and transmit the uplink electrical signal corresponding to the second mode protocol to the first Two ONT optical modules; the second ONT optical module is further configured to convert the uplink electrical signal corresponding to the second mode protocol into a second uplink optical signal according to the second mode control signal, and convert the second uplink optical signal through a multiplexer / demultiplexer
  • the signal is coupled into the ODN, the uplink rate of the second uplink optical signal is the uplink rate corresponding to the second mode, and the uplink wavelength of the second uplink optical signal is the uplink wavelength corresponding to the second mode.
  • the ONT also includes a multiplexer / demultiplexer and an electronic switch.
  • the ONT protocol processing module is a multi-mode ONT protocol processing module.
  • the ONT control management module is connected to the service processing module, the multimode ONT protocol processing module, the electronic switch, the first ONT optical module and the second ONT optical module respectively;
  • the business processing module is connected to the multimode ONT protocol processing module;
  • the multimode ONT The protocol processing module is connected to the electronic switch;
  • the electronic switch is connected to the first ONT optical module and the second ONT optical module respectively;
  • the multiplexer / demultiplexer is connected to the first ONT optical module and the second ONT optical module, respectively.
  • the ONT control management module is configured to control the multi-mode ONT protocol processing module and the first ONT optical module to work in the first mode according to the first mode control signal.
  • the ONT control management module is further configured to control the multi-mode ONT protocol processing module and the second ONT optical module to work in the second mode according to the second mode control signal.
  • the multiplexer / demultiplexer is used to transmit the downlink optical signal in the range of the first mode of the downlink optical signal to the first ONT optical module; the first ONT optical module is used to control according to the first mode
  • the signal obtains the first downlink optical signal from the downlink optical signal obtained by the multiplexer and demultiplexer, converts the first downlink optical signal into a first downlink electrical signal, and transmits the first downlink electrical signal to the multi-mode ONT protocol.
  • the multi-mode ONT protocol processing module for The first mode protocol acquires service information from the first downlink power signal and transmits the service information to a service processing module.
  • the multiplexer / demultiplexer is used to transmit the downstream optical signal in the second mode of the downstream optical signal to the second ONT optical module; the second ONT optical module is used to control the signal from the multiplexer according to the second mode control signal
  • the second downlink optical signal is obtained from the downlink optical signal obtained by the wave filter, and the second downlink optical signal is converted into the second downlink electrical signal, and the second downlink electrical signal is transmitted to the multi-mode ONT protocol processing module;
  • the electronic switch is used for The second mode control signal is gated to the path of the second ONT optical module, and transmits the second downlink power signal to the multi-mode ONT protocol processing module; the multi-mode ONT protocol processing module is further used for powering down from the second downlink according to the second mode protocol.
  • the service information is obtained in the signal, and the service information is transmitted to the service processing module.
  • the multimode ONT protocol processing module is further configured to convert the service information obtained from the service processing module into an uplink electrical signal corresponding to the first mode protocol and convert the uplink corresponding to the first mode protocol according to the first mode protocol.
  • the electrical signal is transmitted to the first ONT optical module;
  • the electronic switch is used to gate the path with the first ONT optical module according to the first mode control signal and transmit the uplink electrical signal corresponding to the first mode protocol to the first ONT optical module;
  • the first ONT optical module is further configured to convert an uplink electrical signal corresponding to the first mode protocol into a first uplink optical signal according to the first mode control signal, and couple the first uplink optical signal to the ODN through a multiplexer / demultiplexer.
  • the multimode ONT protocol processing module is further configured to convert service information obtained from the service processing module into an uplink electrical signal corresponding to the second mode protocol and transmit the uplink electrical signal corresponding to the second mode protocol to the second mode protocol according to the second mode protocol.
  • Two ONT optical modules; electronic switches for gating the path to the second ONT optical module according to the second mode control signal to transmit the uplink electrical signals corresponding to the second mode protocol to the second ONT optical module; the second ONT optical module And is further configured to convert the uplink electrical signal corresponding to the second mode protocol into a second uplink optical signal according to the second mode control signal, and couple the second uplink optical signal into the ODN through a multiplexer / demultiplexer.
  • an embodiment of the present application provides a tunable multi-mode ONT optical module, including: R receiving channels and T sending channels, where R is an integer greater than or equal to 1, and T is an integer greater than or equal to 1. .
  • the receiving channel is used to obtain the downlink optical signal of the corresponding mode according to the mode control signal, and converts the downlink optical signal of the corresponding mode into the downlink electrical signal of the corresponding mode, and transmits the downlink electrical signal of the corresponding mode to the ONT protocol processing module;
  • the sending channel Is used to convert the uplink electrical signal of the corresponding mode protocol obtained from the ONT protocol processing module into the uplink optical signal of the corresponding mode according to the mode control signal, and send the uplink optical signal of the corresponding mode.
  • the transmit / receive adjustable multi-mode ONT optical module controls the transmit / receive adjustable multi-mode ONT optical module to work in P modes through P mode control signals. No manual operation is required.
  • the multi-mode ONT can work according to the mode control signal In any of the P modes, the multi-mode ONT can automatically upgrade from one mode to another during the multi-mode ONT upgrade process, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • an embodiment of the present application provides a communication device, including: at least one processor, a memory, a bus, and a communication interface, where the memory is used to store a computer program, so that the computer program is implemented as The function of the multi-mode ONT according to the first aspect.
  • an embodiment of the present application provides a passive optical network PON system, including: the multimode ONT described in the first aspect or the communication device described in the second aspect, and an ODN and an OLT.
  • an embodiment of the present application provides a chip system that includes a processor and may further include a memory for implementing a function of the multi-mode ONT described in the first aspect or a communication device described in the second aspect.
  • the names of the multi-mode ONT and the communication device do not limit the device itself. In actual implementation, these devices may appear under other names. As long as the functions of each device are similar to the embodiments of the present application, they belong to the scope of the claims of the present application and their equivalent technologies.
  • FIG. 1 is an example diagram of a system architecture of a PON provided by the prior art
  • FIG. 2 is an example diagram of an upgraded PON system architecture provided by the prior art
  • FIG. 3 is a structural example diagram of a multimode ONT provided by an embodiment of this application.
  • FIG. 4 is a structural example diagram of another multimode ONT provided by an embodiment of the present application.
  • FIG. 5 is a structural example diagram of a transmit-receive adjustable multi-mode ONT optical module according to an embodiment of the present application
  • FIG. 6 is a structural example diagram of another transmit-receive adjustable multi-mode ONT optical module according to an embodiment of the present application.
  • FIG. 7 is a structural example diagram of still another transmit-receive adjustable multi-mode ONT optical module according to an embodiment of the present application.
  • FIG. 8 is a structural example diagram of still another multimode ONT according to an embodiment of the present application.
  • FIG. 9 is a structural example diagram of still another multi-mode ONT according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 11 is a structural example diagram of a communication device according to an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • the PON is an optical access network that provides users with high bandwidth and full services.
  • the OLT is a core component of the PON and provides a fiber-optic interface of a user-oriented passive optical network.
  • One end of the OLT is connected upward to the upper-layer network to complete the uplink access of the PON.
  • the upper layer network can be an Internet Protocol (IP) backbone network or a public switched telephone network (PSTN).
  • IP Internet Protocol
  • PSTN public switched telephone network
  • the other end of the OLT is connected to the user equipment through the ODN to complete the downstream transmission of the PON, and implements functions such as control, management, and ranging of the user equipment.
  • the client device can be an ONU or an ONT.
  • One end of the user equipment is connected to the OLT through the ODN, and the other end of the user equipment is connected to other terminal equipment, such as a computer, a fixed phone, and the like.
  • ONU works in conjunction with OLT to implement Layer 2 and Layer 3 functions of the Ethernet and provide users with voice, data and multimedia services. For example, the ONU can choose to receive data sent by the OLT; respond to management commands sent by the OLT and make corresponding adjustments; cache the user's Ethernet data and send it to the uplink in the sending window allocated by the OLT; other users Management functions.
  • the ONT may be part of the ONU.
  • ONT can be located directly at the user side, while ONU is an optical network unit, and there may be other networks between the user and the user, such as Ethernet.
  • the ONU can be connected to various types of digital subscriber lines (DSL) or gateway equipment of an Ethernet access port, and the gateway equipment is then connected to a network terminal.
  • DSL digital subscriber lines
  • gateway equipment of an Ethernet access port, and the gateway equipment is then connected to a network terminal.
  • the user equipment is collectively referred to as an ONT.
  • the mode of PON can also be called the working mode of PON.
  • mode control signals can be used to control each device included in the PON to work in the corresponding mode.
  • the mode includes an uplink rate, a downlink rate, an uplink wavelength, and a downlink wavelength.
  • the so-called uplink refers to the ONT to the OLT.
  • the uplink can also be called the uplink or uplink optical path.
  • the so-called downlink refers to the route from the OLT to the ONT.
  • the downlink can also be called the downlink or the downlink optical path.
  • the GPON mode is a mode of the PON.
  • GPON is a PON in which each device included in the PON works in a GPON mode.
  • the downstream rate of GPON mode can be 2.488 Gbit / s (second, s)
  • the upstream rate of GPON mode can be 1.244Gbit / s
  • the downstream wavelength of GPON mode can be 1480 to 1500 nanometers (nanometre, nm)
  • the upstream wavelength of the GPON mode can be 1290-1330nm or 1300-1320nm.
  • the uplink and downlink rates of the optical signals transmitted by the OLT included in GPON are the uplink and downlink rates corresponding to the GPON mode.
  • the uplink and downlink wavelengths of the optical signals transmitted by the OLT included in GPON are the uplink and downlink wavelengths corresponding to the GPON mode.
  • the uplink and downlink rates of the optical signals transmitted by the ONT included in GPON are the uplink and downlink rates corresponding to the GPON mode.
  • the upstream and downstream wavelengths of the optical signals transmitted by the ONT included in GPON are the upstream and downstream wavelengths corresponding to the GPON mode.
  • the XG-PON mode can be another mode of PON.
  • XG-PON is a PON in which each device included in the PON works in XG-PON mode.
  • the downstream rate of XG-PON mode can be 9.953Gbit / s, and the upstream rate of XG-PON mode can be 2.488GGbit / s;
  • the downstream wavelength of XG-PON mode can be 1575 ⁇ 1580nm, and the upstream wavelength of XG-PON mode can be 1260 ⁇ 1280nm.
  • the uplink and downlink rates of the optical signals transmitted by the OLT included in the XG-PON are the uplink and downlink rates corresponding to the XG-PON mode.
  • the uplink and downlink wavelengths of the optical signals transmitted by the OLT included in XG-PON are the uplink and downlink wavelengths corresponding to the XG-PON mode.
  • the uplink and downlink rates of the optical signals transmitted by the ONT included in XG-PON are the uplink and downlink rates corresponding to the XG-PON mode.
  • the upstream and downstream wavelengths of the optical signals transmitted by the ONT included in XG-PON are the upstream and downstream wavelengths corresponding to the XG-PON mode.
  • the values of the downlink rate and uplink rate of the GPON mode and XG-PON mode may also be other values specified in the standard.
  • This embodiment of the present application is only an example here, and this is no longer limited.
  • FIG. 2 is an example diagram of an upgraded PON system architecture provided in the prior art.
  • an OLT in the XG-PON mode is added, and the optical signals of the OLT in the GPON mode and the OLT in the XG-PON mode are multiplexed into the same ODN through a multiplexer / demultiplexer to implement OLT upgrade.
  • upgrade on demand Users who need to be upgraded can be replaced with ONTs in XG-PON mode.
  • ONT optical modules of different modes in the multimode ONT can be plugged in and out, and the multimode ONT protocol processing module in the multimode ONT can be used to make the multimode ONT work in different modes.
  • the above-mentioned upgrade methods all implement the upgrade of the PON system through manual operation, and the upgrade operation is relatively complicated.
  • the ONT since the ONT is a user-side device, it may be in a different location and the upgrade workload is large. Even if a user uses a multi-mode ONT, a staff member needs to visit the home or send an optical module to the user. The user still needs to complete the replacement of the ONT optical module by himself.
  • an embodiment of the present application provides a multi-mode ONT.
  • the multi-mode ONT includes an ONT control management module, N ONT protocol processing modules, and M ONT optical modules.
  • the ONT control management module is based on P
  • Each mode control signal controls N ONT protocol processing modules and M ONT optical modules to work in P modes. Therefore, without manual operation, a multi-mode ONT can work in any of P modes according to the mode control signal.
  • the multi-mode ONT independently implements an upgrade from one mode to another, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • FIG. 3 is a structural example diagram of a multimode ONT provided by an embodiment of the present application.
  • the multi-mode ONT includes an ONT control management module, a service processing module, N ONT protocol processing modules, and M ONT optical modules, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 1.
  • the ONT control management module is connected to the service processing module, N ONT protocol processing modules, and M ONT optical modules
  • the service processing module is connected to N ONT protocol processing modules
  • one ONT protocol processing module is connected to at least one ONT optical module.
  • An ONT optical module is connected to at least one ONT protocol processing module.
  • the ONT control management module is used to control N ONT protocol processing modules and M ONT optical modules to work in P modes according to P mode control signals, where P is an integer greater than or equal to 2.
  • the ONT control management module sends a mode control signal to an ONT protocol processing module and an ONT optical module connected to the ONT protocol processing module, and controls an ONT protocol processing module and one connected to the ONT protocol processing module.
  • the ONT optical module works in the corresponding mode according to the mode control signal.
  • the ONT protocol processing module is a multi-mode ONT protocol processing module.
  • the ONT protocol processing module can be connected to multiple corresponding modes.
  • ONT optical module or a transceiving tunable multimode ONT optical module If an ONT protocol processing module works in one mode, the ONT protocol processing module can be connected to an ONT optical module in the corresponding mode.
  • the ONT optical module is a multi-mode ONT optical module capable of transmitting and receiving. In this case, the ONT optical module can be connected to multiple ONT protocols in corresponding modes. Module or a multimode ONT protocol processing module. If an ONT optical module works in one mode, the ONT optical module can be connected to the ONT protocol processing module of the corresponding mode.
  • the specific connection mode of the N ONT protocol processing modules and the M ONT optical modules can be jointly determined according to factors such as the working mode of the ONT protocol processing module and the ONT optical modules, and the number of modules.
  • specific connection modes of the N ONT protocol processing modules and the M ONT optical modules reference may be made to the description of the following embodiment.
  • the ONT optical module is used to obtain the downlink optical signal of the corresponding mode according to the mode control signal, convert the downlink optical signal of the corresponding mode to the downlink electrical signal of the corresponding mode, and transmit the downlink electrical signal of the corresponding mode to the ONT Protocol processing module.
  • the ONT protocol processing module is configured to obtain service information from a downlink electrical signal of a corresponding mode according to a mode protocol corresponding to the mode control signal, and transmit the service information to the service processing module.
  • Business processing module for processing business information. Processing methods are different for different business types.
  • the service information may be user information or system information.
  • the processing method may be transmitting service information to other terminal devices connected to it.
  • a service processing module is used to obtain service information and transmit the service information to the ONT protocol processing module of the corresponding mode among the N ONT protocol processing modules according to the mode control signal.
  • the ONT protocol processing module is further configured to convert service information obtained from the service processing module into an uplink electrical signal of the corresponding mode protocol according to the mode protocol corresponding to the mode control signal, and transmit the uplink electrical signal of the corresponding mode protocol to the ONT optical module.
  • the ONT optical module is also used to convert the uplink electrical signal of the corresponding mode protocol into the uplink optical signal of the corresponding mode according to the mode control signal, and send the uplink optical signal of the corresponding mode, that is, the uplink optical signal is transmitted to the OLT through the ODN.
  • the above ONT optical module implements the specific implementation of photoelectric conversion and electro-optical conversion.
  • the ONT protocol processing module obtains service information from the downlink electrical signal of the corresponding mode and converts the service information into the uplink electrical signal of the corresponding mode protocol.
  • service processing module for processing service information reference may be made to the existing technology, which is not repeatedly described in the embodiment of the present application.
  • the multi-mode ONT may also include a clock module and a power module.
  • Clock module used to synchronize the time of other modules included in the multimode ONT.
  • the power module provides power to the multi-mode ONT and enables the multi-mode ONT to receive or send optical signals.
  • the multi-mode ONT provided in the embodiment of the present application controls N ONT protocol processing modules and M ONT optical modules to work in P modes through P mode control signals. Therefore, without manual operation, the multi-mode ONT can control signals according to the mode.
  • the multi-mode ONT autonomously implements the upgrade from one mode to another, effectively reducing the complexity of the multi-mode ONT upgrade operation. .
  • connection modes of N ONT protocol processing modules and M ONT optical modules are exemplified by factors such as the working mode of the ONT protocol processing module and ONT optical modules included in the multi-mode ONT.
  • the multi-mode ONT includes an ONT protocol processing module and an ONT optical module.
  • FIG. 4 is a structural example diagram of another multimode ONT provided by an embodiment of the present application.
  • the ONT protocol processing module may be a multi-mode ONT protocol processing module
  • the ONT optical module may be a transceiving tunable multi-mode ONT optical module, wherein the multi-mode ONT protocol processing module is connected to the transceiving tunable multi-mode ONT optical module.
  • the transmit / receive tunable multimode ONT optical module may be an independent pluggable module, or it may be fixed on the multimode ONT.
  • a multi-mode ONT can be a system-on-chip (SOC).
  • the transmit-receive adjustable multi-mode ONT optical module is used to obtain the i-th downlink optical signal from the received downlink optical signal according to the i-th mode control signal, and convert the i-th downlink optical signal into the i-th downlink power signal. Signal to transmit the i-th downlink electrical signal to the multi-mode ONT protocol processing module.
  • acquiring the i-th downlink optical signal may be acquiring a downlink optical signal of a corresponding wavelength according to a specific downlink wavelength in a band range of the i-th mode.
  • the downlink wavelength of the i-th downlink optical signal may be a specific downlink wavelength in the band range of the i-th mode.
  • the downlink rate of the i-th downlink optical signal may be a specific downlink rate in the band range of the i-th mode.
  • the electric signal refers to a voltage or a current that changes with time.
  • the i-th downlink signal is a downlink power signal corresponding to the i-th mode.
  • a multi-mode ONT protocol processing module is configured to analyze the i-th downlink signal according to the i-th protocol, obtain service information from the i-th downlink signal, and transmit the service information to the service processing module.
  • the multi-mode ONT protocol processing module is also used to obtain service information from the service processing module, encapsulate the service information according to the i-th protocol, convert the service information into an uplink electrical signal corresponding to the i-th protocol, and
  • the uplink electrical signal corresponding to the ith mode protocol is transmitted to the transceiving adjustable multi-mode ONT optical module.
  • the uplink electrical signal corresponding to the ith mode protocol is the result of the ONT protocol processing module encapsulating the service information according to the ith mode protocol.
  • the transceiving adjustable multimode ONT optical module is also used to convert the uplink electrical signal corresponding to the i-th protocol into the i-th uplink electrical signal according to the i-th mode control signal, and then convert the i-th uplink electrical signal to the i-th uplink optical signal And send the i-th uplink optical signal.
  • the i-th uplink power signal is an uplink power signal corresponding to the i-th mode.
  • the uplink rate of the i-th uplink optical signal is the uplink rate corresponding to the i-th mode
  • the uplink wavelength of the i-th uplink optical signal is the uplink wavelength corresponding to the i-th mode.
  • i is an integer, i ranges from 1 to P, and the i-th mode control signal is any of the P mode control signals.
  • the i-th mode control signal is used to control the multi-mode ONT protocol processing module and the transceiver.
  • the tunable multimode ONT optical module works in the i-th mode. For example, if the i-th mode control signal is a GPON mode control signal, the GPON mode control signal is used to control the multi-mode ONT protocol processing module and the transceiving adjustable multi-mode ONT optical module to work in the GPON mode.
  • the i-th mode control signal is an XG-PON mode control signal
  • the XG-PON mode control signal is used to control the multi-mode ONT protocol processing module and the transmit / receive adjustable multi-mode ONT optical module to work in the XG-PON mode.
  • the multi-mode ONT provided in the embodiment of the present application controls the multi-mode ONT protocol processing module and the transmit / receive adjustable multi-mode ONT optical module to work in P modes through P mode control signals. Therefore, without manual operation, the multi-mode ONT can be based on The mode control signal works in any of the P modes, so that during the multi-mode ONT upgrade process, the multi-mode ONT autonomously implements the upgrade from one mode to another, effectively reducing the multi-mode ONT upgrade operation. Complexity.
  • the multi-mode ONT In order for the multi-mode ONT to implement control according to the P mode control signals, it works in P modes.
  • the transceiver multi-tunable ONT optical module it can include R receiving channels and T transmitting channels, where R is an integer greater than or equal to 1. , T is an integer greater than or equal to 1. Specifically, the following implementation manners may be included.
  • the transmit-receive adjustable multi-mode ONT optical module may include one receiving channel and one transmitting channel.
  • FIG. 5 is a structural example diagram of a transmit-receive adjustable multi-mode ONT optical module according to an embodiment of the present application.
  • the receiving channel includes a wavelength tunable filter, a multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier.
  • the transmitting channel includes a multi-rate laser driver and a multi-rate tunable laser.
  • the transmit / receive adjustable multi-mode ONT optical module also includes an ONT optical module control management module and a multiplexer / demultiplexer.
  • the optical path included in the multiplexer / demultiplexer can be set according to the sum of the number of receiving channels and transmitting channels included in the tunable multimode ONT optical module.
  • One optical path corresponds to one optical signal band, and different optical paths correspond to different Optical signal band, which guides optical signals into different channels according to different optical signal bands.
  • the receiving channel refers to the "downlink optical path" from the OLT to the ONT
  • the sending channel refers to the "uplink optical path" from the ONT to the OLT.
  • the multiplexer / demultiplexer is used to direct the downstream optical signal from the transceiving tunable multimode ONT optical module to the external optical port into the receiving channel according to the optical signal band corresponding to the downstream optical path, that is, to the wavelength tunable filter.
  • the multiplexer / demultiplexer is also used to direct the upstream optical signal into the external optical port of the tunable multi-mode ONT optical module, which is coupled to the ODN and transmits the upstream optical signal to the OLT through the ODN.
  • the optical path included in the multiplexer / demultiplexer can be a physical optical path implemented by an optical fiber or a virtual optical path implemented by other media.
  • a multiplexer / demultiplexer passes through a tunable wavelength filter and a multi-rate tunable laser. Wireless transmission, the medium can be air.
  • the ONT optical module control management module is respectively connected to a multi-rate laser driver, a multi-rate tunable wavelength laser, a tunable wavelength filter, a multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier;
  • the multi-rate laser The driver is connected to a multi-rate tunable wavelength laser;
  • the multi-rate tunable wavelength laser is connected to a multiplexer / demultiplexer;
  • the tunable wavelength filter is connected to a multi-rate photodetector and a multiplexer / demultiplexer respectively;
  • Rate transimpedance amplifier connection; multirate transimpedance amplifier is connected to multirate limiting amplifier.
  • the ONT optical module control management module is configured to transmit the i-th mode control signal to the receiving channel, and control the receiving channel to work in the i-th mode.
  • the wavelength tunable filter is configured to obtain an i-th downlink optical signal from the downlink optical signal obtained by the multiplexer / demultiplexer according to the i-th mode control signal, and transmit the i-th downlink optical signal to the multi-rate photodetector.
  • the wavelength tunable filter mainly filters the downstream optical signals according to the wavelength, and the downstream optical signals of one downstream wavelength corresponding to the i-th mode pass, and the downstream optical signals of other wavelengths are filtered out.
  • the downlink rate of the i-th downlink optical signal is not limited, and may be any downlink rate corresponding to the i-th mode.
  • a multi-rate photodetector is used to convert an i-th downlink optical signal into an i-th downlink electrical signal according to the i-th mode control signal, and transmit the i-th downlink electrical signal to a multi-rate transimpedance amplifier.
  • a multi-rate transimpedance amplifier is used to amplify the i-th downlink electrical signal and transmit the amplified i-th downlink electrical signal to the multi-rate limiting amplifier. For example, you can control the amplification of the electrical signal by adjusting the resistance of the transimpedance amplifier, and the amplification or reduction of the electrical signal can be reflected by the change in the amplitude of the electrical signal.
  • a multi-rate limiting amplifier is used to adjust the amplitude of the amplified i-th downlink electrical signal. For example, the amplitudes of the amplified i-th downlink electrical signals received by the multi-rate limiting amplifier are not uniform. After limiting and shaping, the amplified i-th downlink electrical signals of the same magnitude are output.
  • the ONT optical module controls the management module and is also used to transmit the i-th mode control signal to the transmission channel to control the transmission channel to work in the i-th mode.
  • the laser driver is an intermediate device for electrical-electrical signal conversion in order to meet the laser light-emitting conditions, for example, to change the amplitude of an electrical signal, or to change the current of an electrical signal.
  • the laser driver may be a multi-rate laser driver, and the laser may be a multi-rate tunable wavelength laser.
  • a multi-rate laser driver is configured to convert an uplink electrical signal corresponding to the i-th protocol received from the multi-mode ONT protocol processing module into an i-th uplink that drives a multi-rate tunable wavelength laser according to the i-th mode control signal. Electrical signal and transmitting the i-th uplink electrical signal to a multi-rate tunable wavelength laser.
  • a multi-rate tunable wavelength laser for converting an i-th uplink electrical signal obtained from a multi-rate laser driver into an i-th uplink optical signal according to an i-th mode control signal, and transmitting the i-th uplink optical signal to a multiplexer / demultiplexer .
  • the multiplexer / demultiplexer is configured to couple the i-th uplink optical signal into the ODN, and transmit the i-th uplink optical signal to the OLT through the ODN.
  • the multi-rate tunable wavelength laser can send uplink optical signals of different wavelengths to meet the requirements of different mode protocols. For example, in the GPON mode, the multi-rate tunable wavelength laser emits an upstream optical signal with a wavelength of 1290 to 1330 nm; in the XG-PON mode, the multi-rate tunable wavelength laser emits an upstream optical signal with a wavelength of 1260 to 1280 nm. Similarly, under the control of the ONT optical module control management module, the wavelength tunable filter can selectively receive a downstream optical signal of a specific wavelength.
  • the wavelength tunable filter receives downstream optical signals with a wavelength of 1480 to 1500 nm, and filters out other downstream optical signals.
  • the wavelength tunable filter receives 1575 to 1580 nm.
  • the downstream optical signals of the filter filter out the downstream optical signals of other wavelengths.
  • the various other multi-rate devices included in the tunable multi-mode ONT optical module for transmission and reception, under the control of the ONT optical module control management module, also work at the rates corresponding to different modes.
  • the P-mode controllable multi-mode ONT optical module is controlled to work in P modes through the P mode control signals. Without manual operation, the multi-mode ONT can work in any of the P modes according to the mode control signals.
  • the multi-mode ONT independently implements the upgrade from one mode to another, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • the transmit / receive adjustable multi-mode ONT optical module may include two receiving channels and two transmitting channels.
  • FIG. 6 is a structural example diagram of another transmit-receive adjustable multi-mode ONT optical module according to an embodiment of the present application.
  • the first receiving channel includes a first wavelength filter, a first photodetector, a first transimpedance amplifier, and a first limiting amplifier; the first transmitting channel includes a first laser driver and a first laser.
  • the second receiving channel includes a second wavelength filter, a second photodetector, a second transimpedance amplifier, and a second limiting amplifier; the second transmitting channel includes a second laser driver and a second laser.
  • the transmit / receive adjustable multi-mode ONT optical module also includes an ONT optical module control management module and a multiplexer / demultiplexer.
  • the multiplexer / demultiplexer may include four optical paths, and the four optical paths may be virtual optical paths or physical optical paths.
  • the ONT optical module control management module and the first laser driver, the first laser, the first wavelength filter, the first photodetector, the first transimpedance amplifier, the first limiting amplifier, the second laser driver, and the second The laser, the second wavelength filter, the second photodetector, the second transimpedance amplifier and the second limiting amplifier are connected;
  • the first laser driver is connected to the first laser;
  • the first laser is connected to the multiplexer / demultiplexer;
  • the first The wavelength filter is connected to the multiplexer and the demultiplexer and the first photodetector;
  • the first photodetector is connected to the first transimpedance amplifier;
  • the first transimpedance amplifier is connected to the first limiting amplifier;
  • the second laser driver is connected to the first Two lasers are connected;
  • the second laser is connected to the multiplexer / demultiplexer;
  • the second wavelength filter is connected to the multiplexer / demultiplexer and the second photodetector;
  • the ONT optical module control management module is configured to receive the first mode control signal transmitted by the ONT control management module, transmit the first mode control signal to the first receiving channel and the first sending channel, and control the work of the first receiving channel and the first sending channel. In the first mode.
  • the ONT optical module control management module is further configured to receive the second mode control signal transmitted by the ONT control management module, transmit the second mode control signal to the second receiving channel and the second sending channel, and control the second receiving channel and the second sending channel. Works in second mode.
  • the first mode control signal is any one of the P mode control signals. For example, if the first mode control signal is a GPON mode control signal, the GPON mode control signal is used to control the first receiving channel and the first transmitting channel to work in the GPON mode. If the first mode control signal is an XG-PON mode control signal, the XG-PON mode control signal is used to control the first receiving channel and the first transmitting channel to work in the XG-PON mode.
  • the second mode control signal is any one of the P mode control signals. For example, if the second mode control signal is a GPON mode control signal, the GPON mode control signal is used to control the second receiving channel and the second transmitting channel to work in the GPON mode. If the second mode control signal is an XG-PON mode control signal, the XG-PON mode control signal is used to control the second receiving channel and the second sending channel to work in the XG-PON mode.
  • the first mode corresponding to the first mode control signal is different from the second mode corresponding to the second mode control signal.
  • the second mode control signal may be an XG-PON mode control signal; or, if the first mode control signal is an XG-PON mode control signal, the second mode control signal may be Control signal for GPON mode.
  • the multiplexer / demultiplexer is used to transmit the downlink optical signal in the range of the first mode of the downlink optical signal to the receiving channel.
  • the first wavelength filter is configured to obtain a first downlink optical signal from a downlink optical signal acquired by the multiplexer / demultiplexer according to the first mode control signal, and transmit the first downlink optical signal to the multi-rate photodetector.
  • the first photodetector is configured to convert a first downlink optical signal into a first downlink electrical signal according to a first mode control signal, and transmit the first downlink electrical signal to a multi-rate transimpedance amplifier.
  • the first downlink power signal is a downlink power signal corresponding to the first mode.
  • the first transimpedance amplifier is used to amplify the first downlink electrical signal and transmit the amplified first downlink electrical signal to the first limiting amplifier. For example, increase the impedance of the first downlink electrical signal.
  • the first limiting amplifier is used to adjust the amplitude of the amplified first downlink electrical signal.
  • the downlink rate of the first downlink optical signal is the downlink rate corresponding to the first mode.
  • the downlink wavelength of the first downlink optical signal is the downlink wavelength corresponding to the first mode.
  • the multiplexer / demultiplexer is also used to transmit the downstream optical signal in the second mode of the downstream optical signal to the receiving channel.
  • the second wavelength filter is configured to acquire a second downlink optical signal from the downlink optical signal acquired by the multiplexer / demultiplexer according to the second mode control signal, and transmit the second downlink optical signal to the second photodetector.
  • the second photodetector is configured to convert the second downlink optical signal into a second downlink electrical signal according to the second mode control signal, and transmit the second downlink electrical signal to the second transimpedance amplifier.
  • the second transimpedance amplifier is used to amplify the second downlink electrical signal and transmit the amplified second downlink electrical signal to the second limiting amplifier.
  • the second limiting amplifier is used to adjust the amplitude of the amplified second downlink electrical signal.
  • the downlink rate of the second downlink optical signal is the downlink rate corresponding to the second mode
  • the downlink wavelength of the second downlink optical signal Is the downlink wavelength corresponding to the second mode
  • a first laser driver is configured to convert an uplink electrical signal corresponding to the first mode protocol received from the multi-mode ONT protocol processing module into a first uplink power to drive the first laser according to the first mode control signal. Signal, and transmits a first uplink electrical signal to a first laser.
  • the first uplink power signal is an uplink power signal corresponding to the first mode.
  • the first laser is configured to convert a first uplink electrical signal obtained from the first laser driver into a first uplink optical signal according to the first mode control signal, and transmit the first uplink optical signal to the multiplexer / demultiplexer.
  • the multiplexer / demultiplexer is further configured to couple the first uplink optical signal into the ODN, and transmit the first uplink optical signal to the OLT through the ODN.
  • the uplink rate of the first uplink optical signal is the uplink rate corresponding to the first mode
  • the uplink wavelength of the first uplink optical signal Is the uplink wavelength corresponding to the first mode
  • the second laser driver is configured to convert the uplink electrical signal corresponding to the second mode protocol received from the multi-mode ONT protocol processing module into a second uplink electrical signal that drives the second laser to emit light according to the second mode control signal, and convert the first The two uplink electrical signals are transmitted to a second laser.
  • the second uplink power signal is an uplink power signal corresponding to the second mode.
  • the second laser is configured to convert the second uplink electrical signal obtained from the second laser driver into a second uplink optical signal according to the second mode control signal, and transmit the second uplink optical signal to the multiplexer / demultiplexer.
  • the multiplexer / demultiplexer is further configured to couple the second uplink optical signal into the ODN, and transmit the second uplink optical signal to the OLT through the ODN.
  • the uplink rate of the second uplink optical signal is the uplink rate corresponding to the second mode
  • the uplink wavelength of the second uplink optical signal Is the uplink wavelength corresponding to the second mode
  • the multimode ONT optical module is controlled to operate in two modes through two mode control signals. Therefore, without manual operation, the multimode ONT can work in any of the two modes according to the mode control signal.
  • One mode enables the multi-mode ONT to independently upgrade from one mode to another during the multi-mode ONT upgrade process, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • the transmit / receive adjustable multi-mode ONT optical module may include two receiving channels and one transmitting channel.
  • FIG. 7 is a structural example diagram of still another transceiver-tunable multi-mode ONT optical module according to an embodiment of the present application.
  • the first receiving channel includes a first wavelength filter, a first photodetector, a first transimpedance amplifier, and a first limiting amplifier;
  • the second receiving channel includes a second wavelength filter, a second photodetector, and a second transimpedance Amplifier and second limiting amplifier;
  • the transmission channel includes a multi-rate laser driver and a multi-rate tunable wavelength laser.
  • the transmit / receive adjustable multi-mode ONT optical module also includes an ONT optical module control management module and a multiplexer / demultiplexer.
  • the multiplexer / demultiplexer may include three optical paths, and the three optical paths may be virtual optical paths or physical optical paths. For details, reference may be made to the description of the multiplexer / demultiplexer in Mode 1, which is not repeatedly described in the embodiment of the present application.
  • the ONT optical module control management module and the multi-rate laser driver the multi-rate tunable wavelength laser, the first wavelength filter, the first photodetector, the first transimpedance amplifier, the first limiter amplifier, and the second wavelength filter respectively.
  • the second photodetector, the second transimpedance amplifier and the second limiting amplifier are connected; the multi-rate laser driver is connected to the multi-rate tunable wavelength laser; the multi-rate tunable wavelength laser is connected to the multiplexer;
  • the wavelength filter is respectively connected with the multiplexer and the demultiplexer and the first photodetector; the first photodetector is connected with the first transimpedance amplifier; the first transimpedance amplifier is connected with the first limiting amplifier; It is connected with the multiplexer and the second photodetector; the second photodetector is connected with the second transimpedance amplifier; the second transimpedance amplifier is connected with the second limiting amplifier.
  • the ONT optical module control management module is configured to receive the first mode control signal transmitted by the ONT control management module, transmit the first mode control signal to the first receiving channel and the sending channel, and control the first receiving channel and the sending channel to work in the first mode. .
  • the ONT optical module control management module is further configured to receive the second mode control signal transmitted by the ONT control management module, transmit the second mode control signal to the second receiving channel and the sending channel, and control the second receiving channel and the sending channel to work in the second mode. mode.
  • the two-mode ONT optical module is controlled by two mode control signals to work in two modes. Therefore, without manual operation, the multi-mode ONT can work in any of the two modes according to the mode control signal.
  • One mode enables the multi-mode ONT to independently upgrade from one mode to another during the multi-mode ONT upgrade process, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • the multi-rate tunable wavelength laser may also be replaced with a multi-rate fixed wavelength laser.
  • Multi-rate fixed-wavelength lasers can use the upstream wavelength of GPON mode of 1290 to 1330 nm, or the upstream wavelength of XG-PON mode of 1260 to 1280 nm.
  • the transmit / receive tunable multimode ONT optical module can only send uplink optical signals in one mode.
  • the two receiving channels may also be unified.
  • the receiving channel includes a broad-spectrum filter or a removal filter, a broad-spectrum multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier.
  • the transmit-receive tunable multi-mode ONT uses wide-spectrum reception, it is not possible to specifically distinguish the downlink wavelength of the GPON mode or the downlink wavelength of the XG-PON mode in the ODN line, so the transmit-receive tunable multi-mode ONT can only work in the downlink single wavelength Scenes.
  • the above embodiments are merely examples, which are not limited thereto.
  • the ONT optical module control management module in the above-mentioned transmit-receive adjustable multi-mode ONT optical module may also be connected to the ONT control management module in the multi-mode ONT, and is configured to receive the mode control signal transmitted by the ONT control management module.
  • the ONT control management module can also directly transmit the mode control signal to the laser driver.
  • the multimode ONT includes two ONT protocol processing modules and two ONT optical modules.
  • FIG. 8 is a structural example diagram of still another multimode ONT provided by an embodiment of the present application.
  • the multimode ONT also includes a multiplexer / demultiplexer.
  • the ONT control management module is connected to the service processing module, the first ONT protocol processing module, the first ONT optical module, the second ONT protocol processing module, and the second ONT optical module, respectively; the service processing module is respectively connected to the first ONT protocol processing module.
  • the second ONT protocol processing module Connected to the second ONT protocol processing module; the first ONT protocol processing module is connected to the first ONT optical module; the second ONT protocol processing module is connected to the second ONT optical module; the multiplexer / demultiplexer is connected to the first ONT optical module and The second ONT optical module is connected.
  • the ONT control management module is configured to control the first ONT protocol processing module and the first ONT optical module to work in the first mode according to the first mode control signal.
  • the ONT control management module is further configured to control the second ONT protocol processing module and the second ONT optical module to work in the second mode according to the second mode control signal.
  • the multiplexer / demultiplexer is configured to transmit a downlink optical signal in a range of the first mode of the downlink optical signal to the first ONT optical module.
  • a first ONT optical module configured to obtain a first downstream optical signal from a downstream optical signal of a downstream optical signal obtained by a multiplexer / demultiplexer according to a first mode control signal, and convert the first downstream optical signal into a first
  • the downlink power signal transmits the first downlink power signal to the first ONT protocol processing module.
  • the first ONT protocol processing module is configured to analyze the first downlink power signal according to the first mode protocol, obtain service information from the first downlink power signal, and transmit the service information to the service processing module.
  • the multiplexer / demultiplexer is further configured to transmit a downstream optical signal within a second mode wavelength range of the downstream optical signal to a second ONT optical module.
  • a second ONT optical module configured to obtain a second downlink optical signal from a downlink optical signal of a downlink optical signal obtained by a multiplexer / demultiplexer according to a second mode control signal, and convert the second downlink optical signal into a second downlink power signal; Signal, transmitting the second downlink power signal to the second ONT protocol processing module.
  • the second ONT protocol processing module is configured to analyze the second downlink power signal according to the second mode protocol, obtain service information from the second downlink power signal, and transmit the service information to the service processing module.
  • the first ONT protocol processing module is further configured to obtain service information obtained from the service processing module, encapsulate the service information according to the first mode protocol, convert the service information into an uplink electrical signal corresponding to the first mode protocol, and The uplink electrical signal corresponding to the first mode protocol is transmitted to the first ONT optical module.
  • the first ONT optical module is further configured to convert the uplink electrical signal corresponding to the first mode protocol into the first uplink electrical signal according to the first mode control signal, and then convert the first uplink electrical signal into the first uplink optical signal, and pass the
  • the multiplexer / demultiplexer couples the first uplink optical signal into the ODN, and transmits the first uplink optical signal to the OLT through the ODN.
  • the second ONT protocol processing module is further configured to obtain service information from the service processing module, encapsulate the service information according to the second mode protocol, convert the service information into an uplink electrical signal corresponding to the second mode protocol, and correspond to the second mode protocol.
  • the uplink electrical signal is transmitted to the second ONT optical module.
  • the second ONT optical module is further configured to convert the uplink electrical signal corresponding to the second mode protocol into a second uplink electrical signal according to the second mode control signal, and then convert the second uplink electrical signal into a second uplink optical signal, and pass the
  • the multiplexer / demultiplexer couples the second uplink optical signal into the ODN, and transmits the second uplink optical signal to the OLT through the ODN.
  • first ONT protocol processing module the first ONT optical module
  • second ONT protocol processing module the second ONT optical module
  • multiplexer / demultiplexer may be independent modules or integrated modules. The application example does not limit this.
  • the multi-mode ONT provided in the embodiment of the present application integrates the two modes of the ONT into one ONT, and controls the two ONT protocol processing modules and the two ONT optical modules to work in two modes through two mode control signals.
  • Manual operation the multi-mode ONT can work in either of the two modes according to the mode control signal, so that during the multi-mode ONT upgrade process, the multi-mode ONT autonomously implements the upgrade from one mode to another. Effectively reduce the complexity of multi-mode ONT upgrade operation.
  • the multi-mode ONT includes one ONT protocol processing module and two ONT optical modules.
  • FIG. 9 is a structural example diagram of still another multimode ONT provided by an embodiment of the present application.
  • the multimode ONT also includes a multiplexer / demultiplexer and an electronic switch.
  • the ONT protocol processing module is a multimode ONT protocol processing module.
  • the ONT control management module is connected to the service processing module, the multimode ONT protocol processing module, the electronic switch, the first ONT optical module and the second ONT optical module respectively;
  • the business processing module is connected to the multimode ONT protocol processing module;
  • the multimode ONT The protocol processing module is connected to the electronic switch;
  • the electronic switch is connected to the first ONT optical module and the second ONT optical module respectively;
  • the multiplexer / demultiplexer is connected to the first ONT optical module and the second ONT optical module, respectively.
  • the ONT control management module is configured to control the multi-mode ONT protocol processing module and the first ONT optical module to work in the first mode according to the first mode control signal.
  • the ONT control management module is further configured to control the multi-mode ONT protocol processing module and the second ONT optical module to work in the second mode according to the second mode control signal.
  • a multiplexer / demultiplexer is configured to transmit a downlink optical signal in a range of a first mode of the downlink optical signal to a first ONT optical module.
  • a first ONT optical module configured to acquire a first downlink optical signal from a downlink optical signal of a downlink optical signal acquired by a multiplexer / demultiplexer according to a first mode control signal, and convert the first downlink optical signal into a first A downlink power signal transmits the first downlink power signal to the first ONT protocol processing module.
  • An electronic switch is used to gate the path with the first ONT optical module according to the first mode control signal, and transmit the first downlink electrical signal to the multi-mode ONT protocol processing module.
  • the multi-mode ONT protocol processing module is configured to analyze the first downlink power signal according to the first mode protocol, obtain service information from the first downlink power signal, and transmit the service information to the service processing module.
  • the multiplexer / demultiplexer is further configured to transmit a downstream optical signal within a second mode wavelength range of the downstream optical signal to a second ONT optical module.
  • a second ONT optical module configured to obtain a second downlink optical signal from the received downlink optical signal according to the second mode control signal, convert the second downlink optical signal into a second downlink power signal, and convert the second downlink power signal Transmission to the second ONT protocol processing module.
  • the electronic switch is further configured to gate the path with the second ONT optical module according to the second mode control signal, and transmit the second downlink electrical signal to the multi-mode ONT protocol processing module.
  • the multi-mode ONT protocol processing module is further configured to analyze the second downlink power signal according to the second mode protocol, obtain service information from the second downlink power signal, and transmit the service information to the service processing module.
  • the multimode ONT protocol processing module is further configured to obtain service information from the service processing module, encapsulate the service information according to the first mode protocol, convert the service information into an uplink electrical signal corresponding to the first mode protocol, and The uplink electrical signal corresponding to the first mode protocol is transmitted to the first ONT optical module.
  • the electronic switch is further configured to gate the path with the first ONT optical module according to the first mode control signal, and transmit the uplink electrical signal corresponding to the first mode protocol to the first ONT optical module.
  • the first ONT optical module is further configured to convert an uplink electrical signal corresponding to the first mode protocol into a first uplink electrical signal according to a first mode control signal, and then convert the first uplink electrical signal into a first uplink optical signal, and
  • the first uplink optical signal is coupled into the ODN through a multiplexer and demultiplexer, and the first uplink optical signal is transmitted to the OLT through the ODN.
  • the multi-mode ONT protocol processing module is further configured to obtain service information from the service processing module, encapsulate the service information according to the second mode protocol, convert the service information into an uplink electrical signal corresponding to the second mode protocol, and correspond to the second mode protocol.
  • the uplink electrical signal is transmitted to the second ONT optical module.
  • the electronic switch is further configured to gate the path with the second ONT optical module according to the second mode control signal, and transmit the uplink electrical signal corresponding to the second mode protocol to the second ONT optical module.
  • the second ONT optical module is further configured to convert the uplink electrical signal corresponding to the second mode protocol into a second uplink electrical signal according to the second mode control signal, and then convert the second uplink electrical signal into a second uplink optical signal, and pass the
  • the multiplexer / demultiplexer couples the second uplink optical signal into the ODN, and transmits the second uplink optical signal to the OLT through the ODN.
  • first ONT optical module the second ONT optical module
  • multiplexer / demultiplexer may be independent modules or integrated modules, which are not limited in the embodiment of the present application.
  • the multi-mode ONT integrateds the multi-mode ONT protocol processing module and two modes of ONT optical modules into one ONT, and controls the operation of the two ONT protocol processing modules and two ONT optical modules through two mode control signals.
  • multi-mode ONT can work in any of the two modes according to the mode control signal without manual operation, so that during the multi-mode ONT upgrade process, the multi-mode ONT autonomously realizes the change from one The mode upgrade to another mode effectively reduces the complexity of the multi-mode ONT upgrade operation.
  • FIG. 10 is a flowchart of a communication method according to an embodiment of the present application. This method is applied to the multi-mode ONT described in any of the foregoing embodiments.
  • a multi-mode ONT includes an ONT control management module, a service processing module, N ONT protocol processing modules, and M ONT optical modules.
  • N is an integer greater than or equal to 1
  • M is an integer greater than or equal to 1.
  • the ONT control management module Connected to service processing modules, N ONT protocol processing modules and M ONT optical modules, service processing modules are connected to N ONT protocol processing modules, one ONT protocol processing module is connected to at least one ONT optical module, and one ONT optical module is connected to at least An ONT protocol processing module.
  • the method includes:
  • the ONT control management module controls N ONT protocol processing modules and M ONT optical modules to work in P modes according to P mode control signals.
  • the ONT optical module obtains a downlink optical signal of a corresponding mode according to the mode control signal, converts the downlink optical signal of the corresponding mode into a downlink electrical signal of the corresponding mode, and transmits the downlink electrical signal of the corresponding mode to the ONT protocol processing module.
  • the ONT protocol processing module acquires service information from the downlink electrical signal of the corresponding mode according to the mode protocol corresponding to the mode control signal, and transmits the service information to the service processing module.
  • the ONT protocol processing module converts the service information obtained from the service processing module into the uplink electrical signal of the corresponding mode protocol according to the mode protocol corresponding to the mode control signal, and transmits the uplink electrical signal of the corresponding mode protocol to the ONT optical module.
  • the ONT optical module converts the uplink electrical signal of the corresponding mode protocol into the uplink optical signal of the corresponding mode according to the mode control signal, and sends the uplink optical signal of the corresponding mode.
  • the communication method provided in the embodiment of the present application controls N ONT protocol processing modules and M ONT optical modules to work in P modes through P mode control signals. Therefore, without manual operation, the multimode ONT can work according to the mode control signals. In any of the P modes, the multi-mode ONT can automatically upgrade from one mode to another during the multi-mode ONT upgrade process, effectively reducing the complexity of the multi-mode ONT upgrade operation.
  • the service processing module, the ONT protocol processing module, and the ONT control management module included in the multi-mode ONT described in the foregoing embodiments may be independent modules or two-in-one as a whole. chip.
  • the business processing module is integrated with the ONT protocol processing module and the ONT control management module is independent; or the business processing module is integrated with the ONT control management module and the ONT protocol processing module is independent; or the ONT protocol processing module is integrated with the ONT control management module and the business The processing module is independent.
  • the ONT control management module may be a Central Processing Unit (CPU), a Microcontroller Unit (MCU), and the like.
  • the multi-mode ONT described in the embodiments of the present application can be used in all time division multiplexing (TDM) PONs, including but not limited to EPON, GPON, 10G EPON, XG-PON, XGS-PON, And possible 25G PON or 50G PON in the future.
  • TDM time division multiplexing
  • the multi-mode ONT described in the embodiments of the present application can be a full-mode ONT and support all PON modes.
  • each network element such as a multi-mode ONT
  • each network element includes a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the multi-mode ONT is divided into functional modules, and each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • a communication device 1100 provided by an embodiment of the present application is used to implement the function of the multi-mode ONT in the foregoing embodiment.
  • the communication device 1100 may be a multi-mode ONT or a device in a multi-mode ONT.
  • the communication device 1100 may be a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the communication device 1100 includes at least one processor 1101, and is configured to implement functions of a multi-mode ONT provided by various embodiments of the present application.
  • the processor 1101 may be configured to control a multi-mode ONT to work in P modes according to P mode control signals, convert a downlink optical signal of a corresponding mode into a downlink electrical signal of a corresponding mode, and according to a mode protocol corresponding to the mode control signal.
  • P mode control signals convert a downlink optical signal of a corresponding mode into a downlink electrical signal of a corresponding mode
  • the communication device 1100 may further include at least one memory 1102 for storing program instructions and / or data.
  • the memory 1102 and the processor 1101 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 1101 may operate in cooperation with the memory 1102.
  • the processor 1101 may execute program instructions stored in the memory 1102. At least one of the at least one memory may be included in a processor.
  • the communication device 1100 may further include a communication interface 1103 for communicating with other devices through a transmission medium, so that the devices used in the communication device 1100 may communicate with other devices.
  • a communication interface 1103 for communicating with other devices through a transmission medium, so that the devices used in the communication device 1100 may communicate with other devices.
  • the communication device is a multi-mode ONT
  • the other device is an OLT.
  • the processor 1101 uses the communication interface 1103 to send and receive data, and is used to implement the method performed by the multimode ONT described in the embodiment corresponding to FIG. 10.
  • the embodiment of the present application is not limited to the specific connection medium between the communication interface 1103, the processor 1101, and the memory 1102.
  • the communication interface 1103, the processor 1101, and the memory 1102 are connected by a bus 1104 in FIG. 11.
  • the bus is indicated by a thick line in FIG. 11.
  • the connection between other components is only a schematic description. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The disclosed methods, steps and logic block diagrams in the embodiments of the present application are executed.
  • a general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and / or data.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may be divided.
  • the combination can either be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or another programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, an SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种多模光网络终端ONT及无源光网络PON系统,涉及光网络领域,解决了ONT升级操作较复杂的问题。具体方案为:ONT包括ONT控制管理模块、N个ONT协议处理模块和M个ONT光模块,ONT控制管理模块分别与N个ONT协议处理模块和M个ONT光模块连接;一个ONT协议处理模块连接至少一个ONT光模块,一个ONT光模块连接至少一个ONT协议处理模块;ONT控制管理模块,用于根据P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,模式包括上行速率、下行速率、上行波长和下行波长,P为大于或等于2的整数。本申请实施例用于ONT升级的过程中。

Description

一种多模光网络终端ONT及无源光网络PON系统 技术领域
本申请实施例涉及光网络领域,尤其涉及一种多模光网络终端ONT及无源光网络PON系统。
背景技术
无源光网络(passive optical network,PON)主要包括位于中心局端的光线路终端(optical line terminal,OLT)、光分配网(optical distribution network,ODN)和位于用户端的至少一个光网络单元(optical network unit,ONU)或至少一个光网络终端(optical network terminal,ONT)。ODN为OLT和ONU之间提供光传输通道,ODN包括光纤和无源光分路器(splitter)等无源器件。图1为现有技术提供的一种PON的系统架构示例图。根据上下行速率和上下行波长的不同可以分为多种模式的PON,例如,以太无源光网络(ethernet passive optical network,EPON)、G比特无源光网络(gigabit-capable passive optical network,GPON)和10G比特无源光网络(10gigabit-capable passive optical network,XG-PON)等。
随着各种业务的发展,用户对带宽的需求越来越大,因此,需要对现有的PON系统进行升级。例如,从GPON系统升级到XG-PON系统。在OLT侧,增加OLT,可以通过合波分波器,将两种或两种以上单一模式的OLT的光信号复用到同一个ODN中实现OLT升级。在ONT侧,按需升级,需要升级的用户可以替换为高速率模式的ONT;或者,将单模ONT替换为多模ONT,可以通过插拔多模ONT中的不同模式的ONT光模块,配合多模ONT中的多模ONT协议处理模块使多模ONT工作在不同的模式。
但是,上述升级方法都是通过人工操作来实现PON系统的升级,升级操作较复杂。而且,由于ONT是用户端的设备,可能处于不同的位置,升级工作量较大。即使用户使用多模ONT也需要工作人员上门或者寄光模块给用户,依然需要用户自助完成更换ONT光模块。
发明内容
本申请实施例提供一种多模光网络终端ONT及无源光网络PON系统,解决了ONT升级操作较复杂的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种多模ONT,包括:该多模ONT包括ONT控制管理模块、业务处理模块、N个ONT协议处理模块和M个ONT光模块,N为大于或等于1的整数,M为大于或等于1的整数;其中,ONT控制管理模块分别与业务处理模块、N个ONT协议处理模块和M个ONT光模块连接;业务处理模块与N个ONT协议处理模块连接;一个ONT协议处理模块连接至少一个ONT光模块,一个ONT光模块连接至少一个ONT协议处理模块。ONT控制管理模块,用于根据P个模式控 制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,模式包括上行速率、下行速率、上行波长和下行波长,P为大于或等于2的整数。
对于下行链路,ONT光模块,用于根据模式控制信号获取对应模式的下行光信号,并将对应模式的下行光信号转换为对应模式的下行电信号,将对应模式的下行电信号传输至ONT协议处理模块。ONT协议处理模块,用于根据模式控制信号对应的模式协议从对应模式的下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,ONT协议处理模块,还用于根据模式控制信号对应的模式协议将从业务处理模块获取的业务信息转换为对应模式协议的上行电信号,并将对应模式协议的上行电信号传输至ONT光模块。ONT光模块,还用于根据模式控制信号将对应模式协议的上行电信号转换为对应模式的上行光信号,并发送对应模式的上行光信号。
本申请实施例提供的多模ONT,通过P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性,以及升级操作的工程时间和成本。
N个ONT协议处理模块与M个ONT光模块的具体连接方式可以根据ONT协议处理模块和ONT光模块的工作模式以及模块个数等因素共同确定。示例性的,N个ONT协议处理模块与M个ONT光模块可以包括以下连接方式。
在第一种可能的设计中,当N=1,且M=1时,多模ONT包括一个ONT协议处理模块和一个ONT光模块。ONT协议处理模块为多模ONT协议处理模块,ONT光模块为收发可调多模ONT光模块。
对于下行链路,收发可调多模ONT光模块,用于根据第i模式控制信号获取第i下行光信号,并将第i下行光信号转换为第i下行电信号,将第i下行电信号传输至多模ONT协议处理模块,其中,i为整数,i取1至P,第i模式控制信号用于控制多模ONT协议处理模块和收发可调多模ONT光模块工作于第i模式,第i下行光信号的下行速率为第i模式对应的下行速率,第i下行光信号的下行波长为第i模式对应的下行波长。多模ONT协议处理模块,用于根据第i模式协议从第i下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,多模ONT协议处理模块,还用于根据第i模式协议将从业务处理模块获取的业务信息转换为对应第i模式协议的上行电信号,并将对应第i模式协议的上行电信号传输至收发可调多模ONT光模块。收发可调多模ONT光模块,还用于根据第i模式控制信号将对应第i模式协议的上行电信号转换为第i上行光信号,并发送第i上行光信号,第i上行光信号的上行速率为第i模式对应的上行速率,第i上行光信号的上行波长为第i模式对应的上行波长。
为了多模ONT实现根据P个模式控制信号的控制工作于P种模式,对于收发可调多模ONT光模块可以包括R路接收通道和T路发送通道,其中,R为大于或等于1的整数,T为大于或等于1的整数。具体的可以包括以下实现方式。
方式一,当R=1,且T=1时,收发可调多模ONT光模块可以包括一路接收通道和一路发送通道。接收通道包括波长可调滤波器、多速率光电探测器、多速率跨阻放 大器和多速率限幅放大器;发送通道包括多速率激光驱动器和多速率可调波长激光器。收发可调多模ONT光模块还包括ONT光模块控制管理模块和合波分波器。其中,ONT光模块控制管理模块分别与多速率激光驱动器、多速率可调波长激光器、波长可调滤波器、多速率光电探测器、多速率跨阻放大器和多速率限幅放大器连接;多速率激光驱动器与多速率可调波长激光器连接;多速率可调波长激光器与合波分波器连接;波长可调滤波器分别与多速率光电探测器和合波分波器连接;多速率光电探测器与多速率跨阻放大器连接;多速率跨阻放大器与多速率限幅放大器连接。
ONT光模块控制管理模块,用于根据第i模式控制信号控制接收通道和发送通道工作于第i模式。
对于下行链路,合波分波器,用于将下行光信号中第i模式的波段范围内的下行光信号传输至接收通道。具体的,波长可调滤波器,用于根据第i模式控制信号从合波分波器获取到的下行光信号中获取第i下行光信号,并将第i下行光信号传输至多速率光电探测器。多速率光电探测器,用于根据第i模式控制信号将第i下行光信号转换为第i下行电信号,并将第i下行电信号传输至多速率跨阻放大器。多速率跨阻放大器,用于放大第i下行电信号,并将放大后的第i下行电信号传输至多速率限幅放大器。多速率限幅放大器,用于调整放大后的第i下行电信号的幅度。
对于上行链路,多速率激光驱动器,用于根据第i模式控制信号将从多模ONT协议处理模块接收到的对应第i模式协议的上行电信号转换为驱使多速率可调波长激光器发光的第i上行电信号,即对应第i模式的上行电信号,并将第i上行电信号传输至多速率可调波长激光器。多速率可调波长激光器,用于根据第i模式控制信号将从多速率激光驱动器获取的第i上行电信号转换为第i上行光信号,并将第i上行光信号传输至合波分波器。合波分波器,用于将第i上行光信号耦合入ODN。需要说明的是,耦合也可以理解为传导,即将第i上行光信号传导入ODN。
从而,通过P个模式控制信号控制收发可调多模ONT光模块工作于P种模式,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
方式二,当R=2,且T=2时,收发可调多模ONT光模块可以包括两路接收通道和两路发送通道。第一接收通道包括第一波长滤波器、第一光电探测器、第一跨阻放大器和第一限幅放大器,第一发送通道包括第一激光驱动器和第一激光器,第二接收通道包括第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器,第二发送通道包括第二激光驱动器和第二激光器,收发可调多模ONT光模块还包括ONT光模块控制管理模块和合波分波器。其中,ONT光模块控制管理模块分别与第一激光驱动器、第一激光器、第一波长滤波器、第一光电探测器、第一跨阻放大器、第一限幅放大器、第二激光驱动器、第二激光器、第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器连接;第一激光驱动器与第一激光器连接;第一激光器与合波分波器连接;第一波长滤波器分别与合波分波器和第一光电探测器连接;第一光电探测器与第一跨阻放大器连接;第一跨阻放大器与第一限幅放大器连接;第二激光驱动器与第二激光器连接;第二激光器与合波分波器连接;第二波长滤波器分别与 合波分波器和第二光电探测器连接;第二光电探测器与第二跨阻放大器连接;第二跨阻放大器与第二限幅放大器连接;ONT光模块控制管理模块,用于根据第一模式控制信号控制第一接收通道获取第一下行光信号,并将第一下行光信号转换为第一下行电信号。
ONT光模块控制管理模块,用于根据第一模式控制信号控制第一接收通道和第一发送通道工作于第一模式。
ONT光模块控制管理模块,还用于根据第二模式控制信号控制第二接收通道和第二发送通道工作于第二模式。
其中,第一模式控制信号为P个模式控制信号中任一种模式控制信号,第二模式控制信号为P个模式控制信号中任一种模式控制信号,第一模式控制信号与第二模式控制信号不同,第一模式控制信号对应的第一模式与第二模式控制信号对应的第二模式不同。
在第二种可能的设计中,当N=2,且M=2时,多模ONT包括两个ONT协议处理模块和两个ONT光模块。ONT还包括合波分波器。
其中,ONT控制管理模块分别与业务处理模块、第一ONT协议处理模块、第一ONT光模块、第二ONT协议处理模块和第二ONT光模块连接;业务处理模块分别与第一ONT协议处理模块和第二ONT协议处理模块连接;第一ONT协议处理模块与第一ONT光模块连接;第二ONT协议处理模块与第二ONT光模块连接;合波分波器分别与第一ONT光模块和第二ONT光模块连接。
ONT控制管理模块,用于根据第一模式控制信号控制第一ONT协议处理模块和第一ONT光模块工作于第一模式。
ONT控制管理模块,还用于根据第二模式控制信号控制第二ONT协议处理模块和第二ONT光模块工作于第二模式。
对于下行链路,合波分波器,用于将下行光信号中第一模式的波段范围内的下行光信号传输至第一ONT光模块;第一ONT光模块,用于根据第一模式控制信号从合波分波器获取的下行光信号中获取第一下行光信号,并将第一下行光信号转换为第一下行电信号,将第一下行电信号传输至第一ONT协议处理模块,第一下行光信号的下行速率为第一模式对应的下行速率,第一下行光信号的下行波长为第一模式对应的下行波长;第一ONT协议处理模块,用于根据第一模式协议从第一下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
合波分波器,还用于将下行光信号中第二模式的波段范围内的下行光信号传输至第二ONT光模块;第二ONT光模块,用于根据第二模式控制信号从合波分波器获取的下行光信号中获取第二下行光信号,并将第二下行光信号转换为第二下行电信号,将第二下行电信号传输至第二ONT协议处理模块,第二下行光信号的下行速率为第二模式对应的下行速率,第二下行光信号的下行波长为第二模式对应的下行波长;第二ONT协议处理模块,用于根据第二模式协议从第二下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,第一ONT协议处理模块,还用于根据第一模式协议将从业务处理模块获取的业务信息转换为对应第一模式协议的上行电信号,并将对应第一模式协议 的上行电信号传输至第一ONT光模块;第一ONT光模块,还用于根据第一模式控制信号将对应第一模式协议的上行电信号转换为第一上行光信号,并通过合波分波器将第一上行光信号耦合入ODN,第一上行光信号的上行速率为第一模式对应的上行速率,第一上行光信号的上行波长为第一模式对应的上行波长。
第二ONT协议处理模块,还用于根据第二模式协议将从业务处理模块获取的业务信息转换为对应第二模式协议的上行电信号,并将对应第二模式协议的上行电信号传输至第二ONT光模块;第二ONT光模块,还用于根据第二模式控制信号将对应第二模式协议的上行电信号转换为第二上行光信号,并通过合波分波器将第二上行光信号耦合入ODN,第二上行光信号的上行速率为第二模式对应的上行速率,第二上行光信号的上行波长为第二模式对应的上行波长。
在第三种可能的设计中,当N=1,且M=2时,多模ONT包括一个ONT协议处理模块和两个ONT光模块。ONT还包括合波分波器和电子开关,ONT协议处理模块为多模ONT协议处理模块。其中,ONT控制管理模块分别与业务处理模块、多模ONT协议处理模块、电子开关、第一ONT光模块和第二ONT光模块连接;业务处理模块与多模ONT协议处理模块连接;多模ONT协议处理模块与电子开关连接;电子开关分别与第一ONT光模块和第二ONT光模块连接;合波分波器分别与第一ONT光模块和第二ONT光模块连接。
ONT控制管理模块,用于根据第一模式控制信号控制多模ONT协议处理模块和第一ONT光模块工作于第一模式。
ONT控制管理模块,还用于根据第二模式控制信号控制多模ONT协议处理模块和第二ONT光模块工作于第二模式。
对于下行链路,合波分波器,用于将下行光信号中第一模式的波段范围内的下行光信号传输至第一ONT光模块;第一ONT光模块,用于根据第一模式控制信号从合波分波器获取的下行光信号中获取第一下行光信号,并将第一下行光信号转换为第一下行电信号,将第一下行电信号传输至多模ONT协议处理模块;电子开关,用于根据第一模式控制信号选通与第一ONT光模块的通路,将第一下行电信号传输至多模ONT协议处理模块;多模ONT协议处理模块,用于根据第一模式协议从第一下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
合波分波器,用于将下行光信号中第二模式的波段范围内的下行光信号传输至第二ONT光模块;第二ONT光模块,用于根据第二模式控制信号从合波分波器获取的下行光信号中获取第二下行光信号,并将第二下行光信号转换为第二下行电信号,将第二下行电信号传输至多模ONT协议处理模块;电子开关,用于根据第二模式控制信号选通与第二ONT光模块的通路,将第二下行电信号传输至多模ONT协议处理模块;多模ONT协议处理模块,还用于根据第二模式协议从第二下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,多模ONT协议处理模块,还用于根据第一模式协议将从业务处理模块获取的业务信息转换为对应第一模式协议的上行电信号,并将对应第一模式协议的上行电信号传输至第一ONT光模块;电子开关,用于根据第一模式控制信号选通与第一ONT光模块的通路,将对应第一模式协议的上行电信号传输至第一ONT光模块; 第一ONT光模块,还用于根据第一模式控制信号将对应第一模式协议的上行电信号转换为第一上行光信号,并通过合波分波器将第一上行光信号耦合入ODN。
多模ONT协议处理模块,还用于根据第二模式协议将从业务处理模块获取的业务信息转换为对应第二模式协议的上行电信号,并将对应第二模式协议的上行电信号传输至第二ONT光模块;电子开关,用于根据第二模式控制信号选通与第二ONT光模块的通路,将对应第二模式协议的上行电信号传输至第二ONT光模块;第二ONT光模块,还用于根据第二模式控制信号将对应第二模式协议的上行电信号转换为第二上行光信号,并通过合波分波器将第二上行光信号耦合入ODN。
第二方面,本申请实施例提供了一种收发可调多模ONT光模块,包括:R路接收通道和T路发送通道,R为大于或等于1的整数,T为大于或等于1的整数。接收通道,用于根据模式控制信号获取对应模式的下行光信号,并将对应模式的下行光信号转换为对应模式的下行电信号,将对应模式的下行电信号传输至ONT协议处理模块;发送通道,用于根据模式控制信号将从ONT协议处理模块获取到的对应模式协议的上行电信号转换为对应模式的上行光信号,并发送对应模式的上行光信号。
本申请实施例提供的收发可调多模ONT光模块,通过P个模式控制信号控制收发可调多模ONT光模块工作于P种模式,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
在一种可能的设计中,如上述方式一所述的R=1,且T=1,或者上述方式二所述的R=2,且T=2。
第三方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、存储器、总线和通信接口,其中,存储器用于存储计算机程序,使得计算机程序被至少一个处理器执行时实现如上述第一方面所述的多模ONT的功能。
第四方面,本申请实施例提供了一种无源光网络PON系统,包括:上述第一方面描述的多模ONT或第二方面描述的通信装置,以及ODN和OLT。
第五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面描述的多模ONT的功能或第二方面描述的通信装置的功能。
另外,上述任意方面的设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请实施例中,多模ONT和通信装置等名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请实施例类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为现有技术提供的一种PON的系统架构示例图;
图2为现有技术提供的一种升级后的PON的系统架构示例图;
图3为本申请实施例提供的一种多模ONT的结构示例图;
图4为本申请实施例提供的另一种多模ONT的结构示例图;
图5为本申请实施例提供的一种收发可调多模ONT光模块的结构示例图;
图6为本申请实施例提供的另一种收发可调多模ONT光模块的结构示例图;
图7为本申请实施例提供的又一种收发可调多模ONT光模块的结构示例图;
图8为本申请实施例提供的又一种多模ONT的结构示例图;
图9为本申请实施例提供的再一种多模ONT的结构示例图;
图10为本申请实施例提供的一种通信方法的流程图;
图11为本申请实施例提供的一种通信装置的结构示例图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
PON是一种为用户提供高带宽和全业务的光接入网。其中,OLT是PON的核心部件,提供面向用户的无源光网络的光纤接口。OLT的一端向上连接上层网络,完成PON的上行接入。上层网络可以是互联网协议(internet protocol,IP)骨干网或公共交换电话网络(public switched telephone network,PSTN)。OLT的另一端通过ODN向下连接用户端设备,完成PON的下行传输,实现对用户端设备的控制、管理和测距等功能。用户端设备可以是ONU或ONT。
用户端设备的一端向上通过ODN连接OLT,用户端设备的另一端向下连接其他终端设备,例如,电脑,固定电话等。ONU与OLT配合使用,实现以太网二层和三层功能,为用户提供语音、数据和多媒体业务。例如,ONU可以实现选择接收OLT发送的数据;响应OLT发出的管理命令,并作相应的调整;对用户的以太网数据进行缓存,并在OLT分配的发送窗口中向上行链路发送;其他用户管理功能。
需要说明的是,ONT可以属于ONU的一部分。ONT和ONU的区别在于ONT可以直接位于用户端,而ONU是光网络单元,与用户间还可能有其它的网络,比如以太网。ONU可以连接各种类型的数字用户线路(digital subscriber line,DSL)或者以太网接入口的网关设备,网关设备再连接到网络终端。为了描述方便,在本申请实施例中,用户端设备统一称为ONT。
PON的模式也可以称为PON的工作模式。在实际应用中,可以使用模式控制信号控制PON包括的各个设备工作于对应的模式。可以理解的,模式包括上行速率、下行速率、上行波长和下行波长。所谓上行指从ONT到OLT,上行也可以称为上行链路或上行光路。所谓下行指从OLT到ONT,下行也可以称为下行链路或下行光路。
示例性的,GPON模式是PON的一种模式。GPON为PON包括的各个设备工作于GPON模式的PON。GPON模式的下行速率可以为2.488吉比特(Gbit)/秒(second,s),GPON模式的上行速率可以为1.244Gbit/s;GPON模式的下行波长可以为1480~1500纳米(nanometre,nm),GPON模式的上行波长可以为1290~1330nm或1300~1320nm。相应的,GPON包括的OLT传输的光信号的上下行速率为对应GPON模式 的上下行速率。GPON包括的OLT传输的光信号的上下行波长为对应GPON模式的上下行波长。GPON包括的ONT传输的光信号的上下行速率为对应GPON模式的上下行速率。GPON包括的ONT传输的光信号的上下行波长为对应GPON模式的上下行波长。
可选择的,XG-PON模式可以是PON的另一种模式。XG-PON为PON包括的各个设备工作于XG-PON模式的PON。XG-PON模式的下行速率可以为9.953Gbit/s,XG-PON模式的上行速率可以为2.488GGbit/s;XG-PON模式的下行波长可以为1575~1580nm,XG-PON模式的上行波长可以为1260~1280nm。相应的,XG-PON包括的OLT传输的光信号的上下行速率为对应XG-PON模式的上下行速率。XG-PON包括的OLT传输的光信号的上下行波长为对应XG-PON模式的上下行波长。XG-PON包括的ONT传输的光信号的上下行速率为对应XG-PON模式的上下行速率。XG-PON包括的ONT传输的光信号的上下行波长为对应XG-PON模式的上下行波长。
需要说明的是,上述GPON模式和XG-PON模式的下行速率的取值和上行速率的取值还可以是标准中规定的其他取值,本申请实施例在此只是举例说明,对此不再限定。
随着各种业务的发展,用户对带宽的需求越来越大,因此,需要对现有的PON系统进行升级。例如,从GPON系统升级到XG-PON系统。图2为现有技术提供的一种升级后的PON的系统架构示例图。在OLT侧,如图2所示,增加XG-PON模式的OLT,通过合波分波器,将GPON模式的OLT和XG-PON模式的OLT的光信号复用到同一个ODN中实现OLT升级。在ONT侧,按需升级,需要升级的用户可以替换为XG-PON模式的ONT,不需要升级的用户可以继续使用G-PON模式的ONT;或者,将单模ONT替换为多模ONT,用户可以通过插拔多模ONT中的不同模式的ONT光模块,配合多模ONT中的多模ONT协议处理模块使多模ONT工作在不同的模式。
但是,上述升级方法都是通过人工操作来实现PON系统的升级,升级操作较复杂。而且,由于ONT是用户端的设备,可能处于不同的位置,升级工作量较大。即使用户使用多模ONT也需要工作人员上门或者寄光模块给用户,依然需要用户自助完成更换ONT光模块。
为了解决ONT升级操作较复杂的问题,本申请实施例提供一种多模ONT,该多模ONT包括ONT控制管理模块、N个ONT协议处理模块和M个ONT光模块,ONT控制管理模块根据P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图3为本申请实施例提供的一种多模ONT的结构示例图。如图3所示,多模ONT包括ONT控制管理模块、业务处理模块、N个ONT协议处理模块和M个ONT光模块,N为大于或等于1的整数,M为大于或等于1的整数。
其中,ONT控制管理模块分别与业务处理模块、N个ONT协议处理模块和M个ONT光模块连接;业务处理模块与N个ONT协议处理模块连接;一个ONT协议处理 模块连接至少一个ONT光模块,一个ONT光模块连接至少一个ONT协议处理模块。
ONT控制管理模块,用于根据P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,P为大于或等于2的整数。
可理解的,ONT控制管理模块向一个ONT协议处理模块和与该一个ONT协议处理模块连接的一个ONT光模块发送模式控制信号,控制一个ONT协议处理模块和与该一个ONT协议处理模块连接的一个ONT光模块根据模式控制信号工作于对应模式。
需要说明的是,若一个ONT协议处理模块可以工作于不同的模式下,该ONT协议处理模块为多模ONT协议处理模块,在这种情况下,该ONT协议处理模块可以连接多个对应模式的ONT光模块或一个收发可调多模ONT光模块。若一个ONT协议处理模块工作于一种模式下,该ONT协议处理模块可以连接对应模式的ONT光模块。同理,若一个ONT光模块可以工作于不同的模式下,该ONT光模块为收发可调多模ONT光模块,在这种情况下,该ONT光模块可以连接多个对应模式的ONT协议处理模块或一个多模ONT协议处理模块。若一个ONT光模块工作于一种模式下,该ONT光模块可以连接对应模式的ONT协议处理模块。
N个ONT协议处理模块与M个ONT光模块的具体连接方式可以根据ONT协议处理模块和ONT光模块的工作模式以及模块个数等因素共同确定。对于N个ONT协议处理模块与M个ONT光模块的具体的连接方式可以参考下面实施例的说明。
对于下行链路,ONT光模块,用于根据模式控制信号获取对应模式的下行光信号,并将对应模式的下行光信号转换为对应模式的下行电信号,将对应模式的下行电信号传输至ONT协议处理模块。
ONT协议处理模块,用于根据模式控制信号对应的模式协议从对应模式的下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
业务处理模块,用于处理业务信息。针对不同的业务类型的处理方式不同。例如,业务信息可以是用户信息也可以是系统信息。处理方式可以是将业务信息传输至与其连接的其他终端设备。
对于上行链路,业务处理模块,用于获取业务信息,并根据模式控制信号将业务信息传输至N个ONT协议处理模块中对应模式的ONT协议处理模块。
ONT协议处理模块,还用于根据模式控制信号对应的模式协议将从业务处理模块获取的业务信息转换为对应模式协议的上行电信号,并将对应模式协议的上行电信号传输至ONT光模块。
ONT光模块,还用于根据模式控制信号将对应模式协议的上行电信号转换为对应模式的上行光信号,并发送对应模式的上行光信号,即通过ODN将上行光信号传输至OLT。
需要说明的是,上述ONT光模块实现光电转换和电光转换的具体的实现方式,ONT协议处理模块从对应模式的下行电信号中获取业务信息和将业务信息转换为对应模式协议的上行电信号的具体的实现方式,以及业务处理模块对业务信息的处理的具体的实现方式均可以参考现有技术,本申请实施例在此不再赘述。
另外,多模ONT还可以包括是时钟模块和电源模块。时钟模块,用于同步多模ONT包括的其他模块的时间。电源模块为多模ONT提供电能,能够使多模ONT接收 或发送光信号。
本申请实施例提供的多模ONT,通过P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
下面通过多模ONT包括的ONT协议处理模块与ONT光模块的工作模式以及模块个数等因素对N个ONT协议处理模块与M个ONT光模块的连接方式进行举例说明。
在第一种可实现方式中,当N=1,且M=1时,多模ONT包括一个ONT协议处理模块和一个ONT光模块。图4为本申请实施例提供的另一种多模ONT的结构示例图。ONT协议处理模块可以为多模ONT协议处理模块,ONT光模块可以为收发可调多模ONT光模块,其中,多模ONT协议处理模块与收发可调多模ONT光模块连接。
需要说明的是,收发可调多模ONT光模块可以是一个独立的可插拔的模块,也可以是固定在多模ONT上。多模ONT可以是一个系统级芯片(system on chip,SOC)。
对于下行链路,收发可调多模ONT光模块,用于根据第i模式控制信号从接收到的下行光信号中获取第i下行光信号,并将第i下行光信号转换为第i下行电信号,将第i下行电信号传输至多模ONT协议处理模块。
示例的,获取第i下行光信号可以是根据第i模式的波段范围内的一个具体的下行波长获取对应波长的下行光信号。第i下行光信号的下行波长可以是第i模式的波段范围内的一个具体的下行波长。第i下行光信号的下行速率可以是第i模式的波段范围内的一个具体的下行速率。另外,电信号是指随着时间而变化的电压或电流。第i下行电信号为对应第i模式的下行电信号。
多模ONT协议处理模块,用于根据第i模式协议解析第i下行电信号,从第i下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,多模ONT协议处理模块,还用于从业务处理模块获取的业务信息,根据第i模式协议封装业务信息,将业务信息转换为对应第i模式协议的上行电信号,并将对应第i模式协议的上行电信号传输至收发可调多模ONT光模块。对应第i模式协议的上行电信号为ONT协议处理模块根据第i模式协议对业务信息进行封装的结果。
收发可调多模ONT光模块,还用于根据第i模式控制信号将对应第i模式协议的上行电信号转换为第i上行电信号,再将第i上行电信号转换为第i上行光信号,并发送第i上行光信号。第i上行电信号为对应第i模式的上行电信号。第i上行光信号的上行速率为第i模式对应的上行速率,第i上行光信号的上行波长为第i模式对应的上行波长。
需要说明的是,i为整数,i取1至P,第i模式控制信号为P个模式控制信号中任一种模式控制信号,第i模式控制信号用于控制多模ONT协议处理模块和收发可调多模ONT光模块工作于第i模式。例如,若第i模式控制信号为GPON模式控制信号,GPON模式控制信号用于控制多模ONT协议处理模块和收发可调多模ONT光模块工作于GPON模式。若第i模式控制信号为XG-PON模式控制信号,XG-PON模式控制信号用于控制多模ONT协议处理模块和收发可调多模ONT光模块工作于XG-PON模 式。
本申请实施例提供的多模ONT,通过P个模式控制信号控制多模ONT协议处理模块和收发可调多模ONT光模块工作于P种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
为了多模ONT实现根据P个模式控制信号的控制工作于P种模式,对于收发可调多模ONT光模块可以包括R路接收通道和T路发送通道,其中,R为大于或等于1的整数,T为大于或等于1的整数。具体的可以包括以下实现方式。
方式一,当R=1,且T=1时,收发可调多模ONT光模块可以包括一路接收通道和一路发送通道。图5为本申请实施例提供的一种收发可调多模ONT光模块的结构示例图。接收通道包括波长可调滤波器、多速率光电探测器、多速率跨阻放大器和多速率限幅放大器;发送通道包括多速率激光驱动器和多速率可调波长激光器。收发可调多模ONT光模块还包括ONT光模块控制管理模块和合波分波器。
需要说明的是,可以根据收发可调多模ONT光模块包括的接收通道和发送通道的路数总和设置合波分波器包括的光路,一个光路对应一个光信号波段,不同的光路对应不同的光信号波段,根据不同的光信号波段将光信号引导进入不同的通道。对于ONT而言,接收通道是指从OLT到ONT的“下行光路”,发送通道是指ONT到OLT的“上行光路”。对于下行光路,合波分波器用于根据下行光路对应的光信号波段将下行光信号从收发可调多模ONT光模块对外光口引导进入接收通道,即引导进入到波长可调滤波器。对于上行光路,合波分波器还用于将上行光信号引导进入收发可调多模ONT光模块对外光口,耦合入ODN,通过ODN将上行光信号传输至OLT。另外,合波分波器包括的光路可以是由光纤实现的物理光路,也可以是其他介质实现的虚拟光路,例如,合波分波器与波长可调滤波器和多速率可调波长激光器通过无线传输,介质可以是空气。
其中,ONT光模块控制管理模块分别与多速率激光驱动器、多速率可调波长激光器、波长可调滤波器、多速率光电探测器、多速率跨阻放大器和多速率限幅放大器连接;多速率激光驱动器与多速率可调波长激光器连接;多速率可调波长激光器与合波分波器连接;波长可调滤波器分别与多速率光电探测器和合波分波器连接;多速率光电探测器与多速率跨阻放大器连接;多速率跨阻放大器与多速率限幅放大器连接。
对于下行链路,ONT光模块控制管理模块,用于向接收通道传输第i模式控制信号,控制接收通道工作于第i模式。
具体的,波长可调滤波器,用于根据第i模式控制信号从合波分波器获取到的下行光信号中获取第i下行光信号,并将第i下行光信号传输至多速率光电探测器。需要说明的是,波长可调滤波器主要是根据波长对下行光信号进行筛选,符合对应第i模式的一个下行波长的下行光信号通过,其他的波长的下行光信号过滤掉。而在本申请实施例中,对于第i下行光信号的下行速率不做作限定,可以是第i模式对应的任意一个下行速率。
多速率光电探测器,用于根据第i模式控制信号将第i下行光信号转换为第i下行 电信号,并将第i下行电信号传输至多速率跨阻放大器。
多速率跨阻放大器,用于放大第i下行电信号,并将放大后的第i下行电信号传输至多速率限幅放大器。例如,可以通过调整跨阻放大器的电阻来控制电信号的放大倍数,电信号的放大或缩小可以通过电信号幅度的改变体现出来。
多速率限幅放大器,用于调整放大后的第i下行电信号的幅度。例如,多速率限幅放大器接到到的放大后的第i下行电信号的幅度不统一,经过限幅整形,输出同样大小幅度的放大后的第i下行电信号信号。
对于上行链路,ONT光模块控制管理模块,还用于向发送通道传输第i模式控制信号,控制发送通道工作于第i模式。
激光驱动器是一个为了满足激光器发光条件的一个电-电信号转换的中间器件,例如,改变电信号的幅度,或者,改变电信号的电流。在本申请实施例中,激光驱动器可以是多速率激光驱动器,激光器可以是多速率可调波长激光器。
具体的,多速率激光驱动器,用于根据第i模式控制信号将从多模ONT协议处理模块接收到的对应第i模式协议的上行电信号转换为驱使多速率可调波长激光器发光的第i上行电信号,并将第i上行电信号传输至多速率可调波长激光器。
多速率可调波长激光器,用于根据第i模式控制信号将从多速率激光驱动器获取的第i上行电信号转换为第i上行光信号,并将第i上行光信号传输至合波分波器。
合波分波器,用于将第i上行光信号耦合入ODN,通过ODN将第i上行光信号传输至OLT。
从上述方式一可知,在ONT光模块控制管理模块的控制下,多速率可调波长激光器可以发出不同波长的上行光信号,以满足不同模式协议的要求。例如,在GPON模式下,多速率可调波长激光器发出波长为1290~1330nm的上行光信号;在XG-PON模式下,多速率可调波长激光器发出波长为1260~1280nm的上行光信号。同样,在ONT光模块控制管理模块的控制下,波长可调滤波器可以选择性的接收特定的波长的下行光信号。例如,在GPON模式下,波长可调滤波器接收波长为1480~1500nm的下行光信号,过滤掉其他波长的下行光信号;在XG-PON模式下,波长可调滤波器接收波长为1575~1580nm的下行光信号,过滤掉其他波长的下行光信号。收发可调多模ONT光模块包括的其他各种多速率器件,在ONT光模块控制管理模块的控制下,同样工作在不同的模式对应的速率下。
从而,通过P个模式控制信号控制收发可调多模ONT光模块工作于P种模式,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
方式二,当R=2,且T=2时,收发可调多模ONT光模块可以包括两路接收通道和两路发送通道。图6为本申请实施例提供的另一种收发可调多模ONT光模块的结构示例图。第一接收通道包括第一波长滤波器、第一光电探测器、第一跨阻放大器和第一限幅放大器;第一发送通道包括第一激光驱动器和第一激光器。第二接收通道包括第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器;第二发送通道包括第二激光驱动器和第二激光器。收发可调多模ONT光模块还包括ONT光模块 控制管理模块和合波分波器。合波分波器可以包括4路光路,该4路光路可以是虚拟光路也可以是物理光路。具体的可以参考方式一中关于合波分波器的阐述,本申请实施例在此不再赘述。另外,下述任一实施例中所述的合波分波器也可以参考方式一中关于合波分波器的阐述,本申请实施例在此不再赘述。
其中,ONT光模块控制管理模块分别与第一激光驱动器、第一激光器、第一波长滤波器、第一光电探测器、第一跨阻放大器、第一限幅放大器、第二激光驱动器、第二激光器、第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器连接;第一激光驱动器与第一激光器连接;第一激光器与合波分波器连接;第一波长滤波器分别与合波分波器和第一光电探测器连接;第一光电探测器与第一跨阻放大器连接;第一跨阻放大器与第一限幅放大器连接;第二激光驱动器与第二激光器连接;第二激光器与合波分波器连接;第二波长滤波器分别与合波分波器和第二光电探测器连接;第二光电探测器与第二跨阻放大器连接;第二跨阻放大器与第二限幅放大器连接。
ONT光模块控制管理模块,用于接收ONT控制管理模块传输的第一模式控制信号,向第一接收通道和第一发送通道传输第一模式控制信号,控制第一接收通道和第一发送通道工作于第一模式。
ONT光模块控制管理模块,还用于接收ONT控制管理模块传输的第二模式控制信号,向第二接收通道和第二发送通道传输第二模式控制信号,控制第二接收通道和第二发送通道工作于第二模式。
其中,第一模式控制信号为P个模式控制信号中任一种模式控制信号。例如,若第一模式控制信号为GPON模式控制信号,GPON模式控制信号用于控制第一接收通道和第一发送通道工作于GPON模式。若第一模式控制信号为XG-PON模式控制信号,XG-PON模式控制信号用于控制第一接收通道和第一发送通道工作于XG-PON模式。
第二模式控制信号为P个模式控制信号中任一种模式控制信号。例如,若第二模式控制信号为GPON模式控制信号,GPON模式控制信号用于控制第二接收通道和第二发送通道工作于GPON模式。若第二模式控制信号为XG-PON模式控制信号,XG-PON模式控制信号用于控制第二接收通道和第二发送通道工作于XG-PON模式。
第一模式控制信号对应的第一模式与第二模式控制信号对应的第二模式不同。例如,若第一模式控制信号为GPON模式控制信号,第二模式控制信号可以为XG-PON模式控制信号;或者,若第一模式控制信号为XG-PON模式控制信号,第二模式控制信号可以为GPON模式控制信号。
对于下行链路,合波分波器,用于将下行光信号中第一模式的波段范围内的下行光信号传输至接收通道。
第一波长滤波器,用于根据第一模式控制信号从合波分波器获取到的下行光信号中获取第一下行光信号,并将第一下行光信号传输至多速率光电探测器。
第一光电探测器,用于根据第一模式控制信号将第一下行光信号转换为第一下行电信号,并将第一下行电信号传输至多速率跨阻放大器。第一下行电信号为第一模式对应的下行电信号。
第一跨阻放大器,用于放大第一下行电信号,并将放大后的第一下行电信号传输至第一限幅放大器。例如,调大第一下行电信号的阻抗。
第一限幅放大器,用于调整放大后的第一下行电信号的幅度。
在多模ONT协议处理模块和收发可调多模ONT光模块工作于第一模式的情况下,第一下行光信号的下行速率为第一模式对应的下行速率。第一下行光信号的下行波长为第一模式对应的下行波长。
合波分波器,还用于将下行光信号中第二模式的波段范围内的下行光信号传输至接收通道。
第二波长滤波器,用于根据第二模式控制信号从合波分波器获取到的下行光信号中获取第二下行光信号,并将第二下行光信号传输至第二光电探测器。
第二光电探测器,用于根据第二模式控制信号将第二下行光信号转换为第二下行电信号,并将第二下行电信号传输至第二跨阻放大器。
第二跨阻放大器,用于放大第二下行电信号,并将放大后的第二下行电信号传输至第二限幅放大器。
第二限幅放大器,用于调整放大后的第二下行电信号的幅度。
在多模ONT协议处理模块和收发可调多模ONT光模块工作于第二模式的情况下,第二下行光信号的下行速率为第二模式对应的下行速率,第二下行光信号的下行波长为第二模式对应的下行波长。
对于上行链路,第一激光驱动器,用于根据第一模式控制信号将从多模ONT协议处理模块接收到的对应第一模式协议的上行电信号转换为驱使第一激光器发光的第一上行电信号,并将第一上行电信号传输至第一激光器。第一上行电信号为第一模式对应的上行电信号。
第一激光器,用于根据第一模式控制信号将从第一激光驱动器获取的第一上行电信号转换为第一上行光信号,并将第一上行光信号传输至合波分波器。
合波分波器,还用于将第一上行光信号耦合入ODN,通过ODN将第一上行光信号传输至OLT。
在多模ONT协议处理模块和收发可调多模ONT光模块工作于第一模式的情况下,第一上行光信号的上行速率为第一模式对应的上行速率,第一上行光信号的上行波长为第一模式对应的上行波长。
第二激光驱动器,用于根据第二模式控制信号将从多模ONT协议处理模块接收到的对应第二模式协议的上行电信号转换为驱使第二激光器发光的第二上行电信号,并将第二上行电信号传输至第二激光器。第二上行电信号为第二模式对应的上行电信号。
第二激光器,用于根据第二模式控制信号将从第二激光驱动器获取的第二上行电信号转换为第二上行光信号,并将第二上行光信号传输至合波分波器。
合波分波器,还用于将第二上行光信号耦合入ODN,通过ODN将第二上行光信号传输至OLT。
在多模ONT协议处理模块和收发可调多模ONT光模块工作于第二模式的情况下,第二上行光信号的上行速率为第二模式对应的上行速率,第二上行光信号的上行波长为第二模式对应的上行波长。
从上述方式二可知,通过两个模式控制信号控制收发可调多模ONT光模块工作于两种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于两种模式 中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
方式三,当R=2,且T=1时,收发可调多模ONT光模块可以包括两路接收通道和一路发送通道。图7为本申请实施例提供的又一种收发可调多模ONT光模块的结构示例图。第一接收通道包括第一波长滤波器、第一光电探测器、第一跨阻放大器和第一限幅放大器;第二接收通道包括第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器;发送通道包括多速率激光驱动器和多速率可调波长激光器。收发可调多模ONT光模块还包括ONT光模块控制管理模块和合波分波器。合波分波器可以包括3路光路,该3路光路可以是虚拟光路也可以是物理光路。具体的可以参考方式一中关于合波分波器的阐述,本申请实施例在此不再赘述。
其中,ONT光模块控制管理模块分别与多速率激光驱动器、多速率可调波长激光器、第一波长滤波器、第一光电探测器、第一跨阻放大器、第一限幅放大器、第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器连接;多速率激光驱动器与多速率可调波长激光器连接;多速率可调波长激光器与合波分波器连接;第一波长滤波器分别与合波分波器和第一光电探测器连接;第一光电探测器与第一跨阻放大器连接;第一跨阻放大器与第一限幅放大器连接;第二波长滤波器分别与合波分波器和第二光电探测器连接;第二光电探测器与第二跨阻放大器连接;第二跨阻放大器与第二限幅放大器连接。
ONT光模块控制管理模块,用于接收ONT控制管理模块传输的第一模式控制信号,向第一接收通道和发送通道传输第一模式控制信号,控制第一接收通道和发送通道工作于第一模式。
ONT光模块控制管理模块,还用于接收ONT控制管理模块传输的第二模式控制信号,向第二接收通道和发送通道传输第二模式控制信号,控制第二接收通道和发送通道工作于第二模式。
具体的详细解释可以参考图6中对于第一接收通道和第二接收通道的阐述,以及图5中对于发送通道的阐述,本申请实施例在此不再赘述。
从上述方式三可知,通过两个模式控制信号控制收发可调多模ONT光模块工作于两种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于两种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
可选择的,在上述方式三中,多速率可调波长激光器也可以替换为多速率固定波长激光器。多速率固定波长的激光器可以选用GPON模式的上行波长1290~1330nm,也可以采用XG-PON模式的上行波长1260~1280nm。在这种情况下,收发可调多模ONT光模块只能发送一种模式的上行光信号。进一步的,也可以将两个接收通道合一。例如,接收通道包括宽谱滤波器或者去掉滤波器,宽谱多速率光电探测器、多速率跨阻放大器、多速率限幅放大器。由于该收发可调多模ONT利用宽谱接收,不能具体区分ODN线路中的GPON模式的下行波长还是XG-PON模式的下行波长,所以该收发可调多模ONT只能工作在下行单波长的场景。
当然,收发可调多模ONT光模块中接收通道的个数和发送通道的个数还可以设置 为其他的组合方式,例如,R=1,且T=2。上述实施例只是举例说明,对此不作限定。
上述收发可调多模ONT光模块中的ONT光模块控制管理模块还可以与多模ONT中的ONT控制管理模块连接,用于接收ONT控制管理模块传输的模式控制信号。当然,ONT控制管理模块也可以将模式控制信号直接传输至激光驱动器。
在第二种可实现方式中,当N=2,且M=2时,多模ONT包括两个ONT协议处理模块和两个ONT光模块。图8为本申请实施例提供的又一种多模ONT的结构示例图。多模ONT还包括合波分波器。
其中,ONT控制管理模块分别与业务处理模块、第一ONT协议处理模块、第一ONT光模块、第二ONT协议处理模块和第二ONT光模块连接;业务处理模块分别与第一ONT协议处理模块和第二ONT协议处理模块连接;第一ONT协议处理模块与第一ONT光模块连接;第二ONT协议处理模块与第二ONT光模块连接;合波分波器分别与第一ONT光模块和第二ONT光模块连接。
ONT控制管理模块,用于根据第一模式控制信号控制第一ONT协议处理模块和第一ONT光模块工作于第一模式。
ONT控制管理模块,还用于根据第二模式控制信号控制第二ONT协议处理模块和第二ONT光模块工作于第二模式。
第一模式控制信号和第二模式控制信号的详细解释可以参考上述实施例的阐述,本申请实施例在此不再赘述。
对于下行链路,合波分波器,用于将下行光信号中第一模式的波段范围内的下行光信号传输至第一ONT光模块。
第一ONT光模块,用于根据第一模式控制信号从合波分波器获取的下行光信号中下行光信号中获取第一下行光信号,并将第一下行光信号转换为第一下行电信号,将第一下行电信号传输至第一ONT协议处理模块。
第一ONT协议处理模块,用于根据第一模式协议解析第一下行电信号,从第一下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
合波分波器,还用于将下行光信号中第二模式的波段范围内的下行光信号传输至第二ONT光模块。
第二ONT光模块,用于根据第二模式控制信号从合波分波器获取的下行光信号中下行光信号中获取第二下行光信号,并将第二下行光信号转换为第二下行电信号,将第二下行电信号传输至第二ONT协议处理模块。
第二ONT协议处理模块,用于根据第二模式协议解析第二下行电信号,从第二下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,第一ONT协议处理模块,还用于从业务处理模块获取的业务信息,根据第一模式协议封装业务信息,将业务信息转换为对应第一模式协议的上行电信号,并将对应第一模式协议的上行电信号传输至第一ONT光模块。
第一ONT光模块,还用于根据第一模式控制信号将对应第一模式协议的上行电信号转换为第一上行电信号,再将第一上行电信号转换为第一上行光信号,并通过合波分波器将第一上行光信号耦合入ODN,通过ODN将第一上行光信号传输至OLT。
第二ONT协议处理模块,还用于从业务处理模块获取的业务信息,根据第二模式 协议封装业务信息,将业务信息转换为对应第二模式协议的上行电信号,并将对应第二模式协议的上行电信号传输至第二ONT光模块。
第二ONT光模块,还用于根据第二模式控制信号将对应第二模式协议的上行电信号转换为第二上行电信号,再将第二上行电信号转换为第二上行光信号,并通过合波分波器将第二上行光信号耦合入ODN,通过ODN将第二上行光信号传输至OLT。
需要说明的是,第一ONT协议处理模块、第一ONT光模块、第二ONT协议处理模块、第二ONT光模块和合波分波器可以是独立的模块,也可以是合一的模块,本申请实施例对此不作限定。
本申请实施例提供的多模ONT,将两种模式的ONT集成做成一个ONT,通过两个模式控制信号控制两个ONT协议处理模块和两个ONT光模块工作于两种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于两种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
在第三种可实现方式中,当N=1,且M=2时,多模ONT包括一个ONT协议处理模块和两个ONT光模块。图9为本申请实施例提供的再一种多模ONT的结构示例图。多模ONT还包括合波分波器和电子开关,ONT协议处理模块为多模ONT协议处理模块。
其中,ONT控制管理模块分别与业务处理模块、多模ONT协议处理模块、电子开关、第一ONT光模块和第二ONT光模块连接;业务处理模块与多模ONT协议处理模块连接;多模ONT协议处理模块与电子开关连接;电子开关分别与第一ONT光模块和第二ONT光模块连接;合波分波器分别与第一ONT光模块和第二ONT光模块连接。
ONT控制管理模块,用于根据第一模式控制信号控制多模ONT协议处理模块和第一ONT光模块工作于第一模式。
ONT控制管理模块,还用于根据第二模式控制信号控制多模ONT协议处理模块和第二ONT光模块工作于第二模式。
对于下行链路,具体的,合波分波器,用于将下行光信号中第一模式的波段范围内的下行光信号传输至第一ONT光模块。
第一ONT光模块,用于根据第一模式控制信号从合波分波器获取的下行光信号中的下行光信号中获取第一下行光信号,并将第一下行光信号转换为第一下行电信号,将第一下行电信号传输至第一ONT协议处理模块。
电子开关,用于根据第一模式控制信号选通与第一ONT光模块的通路,将第一下行电信号传输至多模ONT协议处理模块。
多模ONT协议处理模块,用于根据第一模式协议解析第一下行电信号,从第一下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
合波分波器,还用于将下行光信号中第二模式的波段范围内的下行光信号传输至第二ONT光模块。
第二ONT光模块,用于根据第二模式控制信号从接收到的下行光信号中获取第二下行光信号,并将第二下行光信号转换为第二下行电信号,将第二下行电信号传输至 第二ONT协议处理模块。
电子开关,还用于根据第二模式控制信号选通与第二ONT光模块的通路,将第二下行电信号传输至多模ONT协议处理模块。
多模ONT协议处理模块,还用于根据第二模式协议解析第二下行电信号,从第二下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路,多模ONT协议处理模块,还用于从业务处理模块获取的业务信息,根据第一模式协议封装业务信息,将业务信息转换为对应第一模式协议的上行电信号,并将为对应第一模式协议的上行电信号传输至第一ONT光模块。
电子开关,还用于根据第一模式控制信号选通与第一ONT光模块的通路,将为对应第一模式协议的上行电信号传输至第一ONT光模块。
第一ONT光模块,还用于根据第一模式控制信号将为对应第一模式协议的上行电信号转换为第一上行电信号,再将第一上行电信号转换为第一上行光信号,并通过合波分波器将第一上行光信号耦合入ODN,通过ODN将第一上行光信号传输至OLT。
多模ONT协议处理模块,还用于从业务处理模块获取的业务信息,根据第二模式协议封装业务信息,将业务信息转换为对应第二模式协议的上行电信号,并将对应第二模式协议的上行电信号传输至第二ONT光模块。
电子开关,还用于根据第二模式控制信号选通与第二ONT光模块的通路,将对应第二模式协议的上行电信号传输至第二ONT光模块。
第二ONT光模块,还用于根据第二模式控制信号将对应第二模式协议的上行电信号转换为第二上行电信号,再将第二上行电信号转换为第二上行光信号,并通过合波分波器将第二上行光信号耦合入ODN,通过ODN将第二上行光信号传输至OLT。
需要说明的是,第一ONT光模块、第二ONT光模块和合波分波器可以是独立的模块,也可以是合一的模块,本申请实施例对此不作限定。
本申请实施例提供的多模ONT,将多模ONT协议处理模块和两种模式的ONT光模块集成到一个ONT,通过两个模式控制信号控制两个ONT协议处理模块和两个ONT光模块工作于两种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于两种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
上述各个实施例对N个ONT协议处理模块与M个ONT光模块的具体的连接方式只是举例说明,在实际应用中,可以根据需要设计N个ONT协议处理模块与M个ONT光模块的具体连接方式。当然,上述对于收发可调多模ONT光模块的举例说明也可以应用到其他多模ONT的实现方式中。
图10为本申请实施例提供的一种通信方法的流程图。该方法应用于上述任一实施例所述的多模ONT。多模ONT包括ONT控制管理模块、业务处理模块、N个ONT协议处理模块和M个ONT光模块,N为大于或等于1的整数,M为大于或等于1的整数,其中,ONT控制管理模块分别与业务处理模块、N个ONT协议处理模块和M个ONT光模块连接,业务处理模块与N个ONT协议处理模块连接,一个ONT协议处理模块连接至少一个ONT光模块,一个ONT光模块连接至少一个ONT协议处理模块。所述方法包括:
S1001、ONT控制管理模块根据P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式。
对于下行链路:
S1002、ONT光模块根据模式控制信号获取对应模式的下行光信号,并将对应模式的下行光信号转换为对应模式的下行电信号,将对应模式的下行电信号传输至ONT协议处理模块。
S1003、ONT协议处理模块根据模式控制信号对应的模式协议从对应模式的下行电信号中获取业务信息,并将业务信息传输至业务处理模块。
对于上行链路:
S1004、ONT协议处理模块根据模式控制信号对应的模式协议将从业务处理模块获取的业务信息转换为对应模式协议的上行电信号,并将对应模式协议的上行电信号传输至ONT光模块。
S1005、ONT光模块根据模式控制信号将对应模式协议的上行电信号转换为对应模式的上行光信号,并发送对应模式的上行光信号。
本申请实施例提供的通信方法,通过P个模式控制信号控制N个ONT协议处理模块和M个ONT光模块工作于P种模式,从而,无需人工操作,多模ONT便可以根据模式控制信号工作于P种模式中的任一种模式,使得在多模ONT升级的过程中,多模ONT自主实现从一种模式升级到另一种模式,有效地减少了多模ONT升级操作的复杂性。
需要说明的是,上述各个实施例中所述的多模ONT中包括的业务处理模块、ONT协议处理模块和ONT控制管理模块分别可以是独立的模块,也可以进行两两合一,作为一个集成芯片。例如,业务处理模块与ONT协议处理模块集成,ONT控制管理模块独立;或者,业务处理模块与ONT控制管理模块集成,ONT协议处理模块独立;或者,ONT协议处理模块与ONT控制管理模块集成,业务处理模块独立。本申请实施例对此不作限定。另外,ONT控制管理模块可以是中央处理器(Central Processing Unit,CPU)、微控制单元(microcontroller unit,MCU)等。
另外,本申请的各个实施例所述的多模ONT可以用在所有时分复用(time division multiplexing,TDM)PON中,包括但不限于EPON、GPON、10G EPON、XG-PON、XGS-PON,以及未来可能的25G PON或者50G PON中。本申请的各个实施例所述的多模ONT可以做一个全模ONT,支持所有PON模式。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如多模ONT为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例对多模ONT进行功能模块的划分,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可 以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图11所示为本申请实施例提供的通信装置1100,用于实现上述实施例中多模ONT的功能。该通信装置1100可以是多模ONT,也可以是多模ONT中的装置。其中,该通信装置1100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1100包括至少一个处理器1101,用于实现本申请各个实施例提供的多模ONT的功能。示例性地,处理器1101可以用于根据P个模式控制信号控制多模ONT工作于P种模式,将对应模式的下行光信号转换为对应模式的下行电信号,根据模式控制信号对应的模式协议从对应模式的下行电信号中获取业务信息等等,具体参见上述各个实施例中的详细描述,此处不做赘述。
通信装置1100还可以包括至少一个存储器1102,用于存储程序指令和/或数据。存储器1102和处理器1101耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1101可能和存储器1102协同操作。处理器1101可能执行存储器1102中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1100还可以包括通信接口1103,用于通过传输介质和其它设备进行通信,从而用于通信装置1100中的装置可以和其它设备进行通信。示例性地,若通信装置为多模ONT,该其它设备为OLT。处理器1101利用通信接口1103收发数据,并用于实现图10对应的实施例中所述的多模ONT所执行的方法。
本申请实施例中不限定上述通信接口1103、处理器1101以及存储器1102之间的具体连接介质。本申请实施例在图11中以通信接口1103、处理器1101以及存储器1102之间通过总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种多模光网络终端ONT,其特征在于,包括:ONT控制管理模块、业务处理模块、N个ONT协议处理模块和M个ONT光模块,N为大于或等于1的整数,M为大于或等于1的整数;
    其中,所述ONT控制管理模块分别与所述业务处理模块、所述N个ONT协议处理模块和所述M个ONT光模块连接;
    所述业务处理模块与所述N个ONT协议处理模块连接;
    一个所述ONT协议处理模块连接至少一个所述ONT光模块,一个所述ONT光模块连接至少一个所述ONT协议处理模块;
    所述ONT控制管理模块,用于根据P个模式控制信号控制所述N个ONT协议处理模块和所述M个ONT光模块工作于P种模式,所述模式包括上行速率、下行速率、上行波长和下行波长,P为大于或等于2的整数;
    所述ONT光模块,用于根据所述模式控制信号获取对应模式的下行光信号,并将所述对应模式的下行光信号转换为对应模式的下行电信号,将所述对应模式的下行电信号传输至所述ONT协议处理模块。
  2. 根据权利要求1所述的多模ONT,其特征在于,
    所述ONT协议处理模块,用于根据所述模式控制信号对应的模式协议从所述对应模式的下行电信号中获取业务信息,并将所述业务信息传输至所述业务处理模块;
    所述ONT协议处理模块,还用于根据所述模式控制信号对应的模式协议将从所述业务处理模块获取的业务信息转换为对应模式协议的上行电信号,并将所述对应模式协议的上行电信号传输至所述ONT光模块;
    所述ONT光模块,还用于根据所述模式控制信号将所述对应模式协议的上行电信号转换为对应模式的上行光信号,并发送所述对应模式的上行光信号。
  3. 根据权利要求1或2所述的多模ONT,其特征在于,当N=1,且M=1时,所述ONT协议处理模块为多模ONT协议处理模块,所述ONT光模块为收发可调多模ONT光模块;
    所述收发可调多模ONT光模块,用于根据第i模式控制信号获取第i下行光信号,并将所述第i下行光信号转换为第i下行电信号,将所述第i下行电信号传输至所述多模ONT协议处理模块,其中,i为整数,i取1至P,所述第i模式控制信号用于控制所述多模ONT协议处理模块和所述收发可调多模ONT光模块工作于第i模式,所述第i下行光信号的下行速率为所述第i模式对应的下行速率,所述第i下行光信号的下行波长为所述第i模式对应的下行波长;
    所述多模ONT协议处理模块,用于根据第i模式协议从所述第i下行电信号中获取业务信息,并将所述业务信息传输至所述业务处理模块。
  4. 根据权利要求3所述的多模ONT,其特征在于,
    所述多模ONT协议处理模块,还用于根据所述第i模式协议将从所述业务处理模块获取的业务信息转换为对应第i模式协议的上行电信号,并将所述对应第i模式协议的上行电信号传输至所述收发可调多模ONT光模块;
    所述收发可调多模ONT光模块,还用于根据所述第i模式控制信号将所述对应第 i模式协议的上行电信号转换为第i上行光信号,并发送所述第i上行光信号,所述第i上行光信号的上行速率为所述第i模式对应的上行速率,所述第i上行光信号的上行波长为所述第i模式对应的上行波长。
  5. 根据权利要求3或4所述的多模ONT,其特征在于,所述收发可调多模ONT光模块包括R路接收通道和T路发送通道,R为大于或等于1的整数,T为大于或等于1的整数。
  6. 根据权利要求5所述的多模ONT,其特征在于,当R=2,且T=2时,所述第一接收通道包括第一波长滤波器、第一光电探测器、第一跨阻放大器和第一限幅放大器,所述第一发送通道包括第一激光驱动器和第一激光器,所述第二接收通道包括第二波长滤波器、第二光电探测器、第二跨阻放大器和第二限幅放大器,所述第二发送通道包括第二激光驱动器和第二激光器,所述收发可调多模ONT光模块还包括ONT光模块控制管理模块和合波分波器;
    其中,所述ONT光模块控制管理模块分别与所述第一激光驱动器、所述第一激光器、所述第一波长滤波器、所述第一光电探测器、所述第一跨阻放大器、所述第一限幅放大器、所述第二激光驱动器、所述第二激光器、所述第二波长滤波器、所述第二光电探测器、所述第二跨阻放大器和所述第二限幅放大器连接;
    所述第一激光驱动器与所述第一激光器连接;
    所述第一激光器与所述合波分波器连接;
    所述第一波长滤波器分别与所述合波分波器和所述第一光电探测器连接;
    所述第一光电探测器与所述第一跨阻放大器连接;
    所述第一跨阻放大器与所述第一限幅放大器连接;
    所述第二激光驱动器与所述第二激光器连接;
    所述第二激光器与所述合波分波器连接;
    所述第二波长滤波器分别与所述合波分波器和所述第二光电探测器连接;
    所述第二光电探测器与所述第二跨阻放大器连接;
    所述第二跨阻放大器与所述第二限幅放大器连接;
    所述ONT光模块控制管理模块,用于根据第一模式控制信号控制所述第一接收通道和所述第一发送通道工作于第一模式;
    所述ONT光模块控制管理模块,还用于根据第二模式控制信号控制所述第二接收通道和所述第二发送通道工作于第二模式;
    其中,所述第一模式控制信号为所述P个模式控制信号中任一种模式控制信号,所述第二模式控制信号为所述P个模式控制信号中任一种模式控制信号,所述第一模式控制信号对应的第一模式与所述第二模式控制信号对应的第二模式不同。
  7. 根据权利要求1或2所述的多模ONT,其特征在于,当N=2,且M=2时,所述ONT还包括合波分波器;
    其中,所述ONT控制管理模块分别与所述业务处理模块、第一ONT协议处理模块、第一ONT光模块、第二ONT协议处理模块和第二ONT光模块连接;
    所述业务处理模块分别与所述第一ONT协议处理模块和所述第二ONT协议处理模块连接;
    所述第一ONT协议处理模块与所述第一ONT光模块连接;
    所述第二ONT协议处理模块与所述第二ONT光模块连接;
    所述合波分波器分别与所述第一ONT光模块和所述第二ONT光模块连接;
    所述ONT控制管理模块,用于根据第一模式控制信号控制所述第一ONT协议处理模块和所述第一ONT光模块工作于第一模式,所述第一模式控制信号为所述P个模式控制信号中任一种模式控制信号;
    所述合波分波器,用于将下行光信号中所述第一模式的波段范围内的下行光信号传输至所述第一ONT光模块;
    所述ONT控制管理模块,还用于根据第二模式控制信号控制所述第二ONT协议处理模块和所述第二ONT光模块工作于第二模式,所述第二模式控制信号为所述P个模式控制信号中任一种模式控制信号,所述第一模式控制信号对应的第一模式与所述第二模式控制信号对应的第二模式不同;
    所述合波分波器,还用于将下行光信号中所述第二模式的波段范围内的下行光信号传输至所述第二ONT光模块。
  8. 根据权利要求7所述的多模ONT,其特征在于,
    所述合波分波器,还用于将所述第一ONT光模块转换得到的第一上行光信号耦合入光分配网ODN,所述第一上行光信号的上行速率为所述第一模式对应的上行速率,所述第一上行光信号的上行波长为所述第一模式对应的上行波长;
    所述合波分波器,还用于将所述第二ONT光模块转换得到的第二上行光信号耦合入ODN,所述第二上行光信号的上行速率为所述第二模式对应的上行速率,所述第二上行光信号的上行波长为所述第二模式对应的上行波长。
  9. 根据权利要求1或2所述的多模ONT,其特征在于,当N=1,且M=2时,所述ONT还包括合波分波器和电子开关,所述ONT协议处理模块为多模ONT协议处理模块;
    其中,所述ONT控制管理模块分别与所述业务处理模块、所述多模ONT协议处理模块、所述电子开关、第一ONT光模块和第二ONT光模块连接;
    所述业务处理模块与所述多模ONT协议处理模块连接;
    所述多模ONT协议处理模块与所述电子开关连接;
    所述电子开关分别与所述第一ONT光模块和所述第二ONT光模块连接;
    所述合波分波器分别与所述第一ONT光模块和所述第二ONT光模块连接;
    所述ONT控制管理模块,用于根据第一模式控制信号控制所述多模ONT协议处理模块和所述第一ONT光模块工作于第一模式,所述第一模式控制信号为所述P个模式控制信号中任一种模式控制信号;
    所述电子开关,用于根据所述第一模式控制信号选通与所述第一ONT光模块的通路,将所述第一ONT光模块转换得到的第一下行电信号传输至所述多模ONT协议处理模块;
    所述ONT控制管理模块,还用于根据第二模式控制信号控制所述多模ONT协议处理模块和所述第二ONT光模块工作于第二模式,所述第二模式控制信号为所述P个模式控制信号中任一种模式控制信号,所述第一模式控制信号对应的第一模式与所 述第二模式控制信号对应的第二模式不同;
    所述电子开关,还用于根据所述第二模式控制信号选通与所述第二ONT光模块的通路,将所述第二ONT光模块转换得到的第二下行电信号传输至所述多模ONT协议处理模块。
  10. 根据权利要求9所述的多模ONT,其特征在于,
    所述电子开关,还用于根据所述第一模式控制信号选通与所述第一ONT光模块的通路,将所述多模ONT协议处理模块转换得到的对应第一模式协议的上行电信号传输至所述第一ONT光模块;
    所述电子开关,还用于根据所述第二模式控制信号选通与所述第二ONT光模块的通路,将所述多模ONT协议处理模块转换得到的对应第二模式协议的上行电信号传输至所述第二ONT光模块。
  11. 一种收发可调多模光网络终端ONT光模块,其特征在于,包括:R路接收通道和T路发送通道,R为大于或等于1的整数,T为大于或等于1的整数;
    所述接收通道,用于根据模式控制信号获取对应模式的下行光信号,并将所述对应模式的下行光信号转换为对应模式的下行电信号,将所述对应模式的下行电信号传输至ONT协议处理模块;
    所述发送通道,用于根据所述模式控制信号将从ONT协议处理模块获取到的对应模式协议的上行电信号转换为对应模式的上行光信号,并发送所述对应模式的上行光信号。
  12. 一种通信装置,其特征在于,包括:至少一个处理器、存储器、总线和通信接口,其中,所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如上述权利要求1-10中任一项权利要求所述的多模光网络终端ONT的功能。
  13. 一种无源光网络PON系统,其特征在于,包括:权利要求1-10中任一项权利要求所述的多模光网络终端ONT或权利要求12所述的通信装置,以及光分配网ODN和光线路终端OLT。
  14. 一种芯片系统,其特征在于,该芯片系统包括处理器,还可以包括存储器,用于实现上述权利要求1-10中任一项权利要求所述的多模光网络终端ONT的功能。
PCT/CN2018/102741 2018-08-28 2018-08-28 一种多模光网络终端ont及无源光网络pon系统 WO2020041977A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880096923.8A CN112640481B (zh) 2018-08-28 2018-08-28 一种多模光网络终端ont及无源光网络pon系统
PCT/CN2018/102741 WO2020041977A1 (zh) 2018-08-28 2018-08-28 一种多模光网络终端ont及无源光网络pon系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102741 WO2020041977A1 (zh) 2018-08-28 2018-08-28 一种多模光网络终端ont及无源光网络pon系统

Publications (1)

Publication Number Publication Date
WO2020041977A1 true WO2020041977A1 (zh) 2020-03-05

Family

ID=69644826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102741 WO2020041977A1 (zh) 2018-08-28 2018-08-28 一种多模光网络终端ont及无源光网络pon系统

Country Status (2)

Country Link
CN (1) CN112640481B (zh)
WO (1) WO2020041977A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135502A (zh) * 2023-10-27 2023-11-28 武汉长光科技有限公司 批量升级onu的方法、装置、olt及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070223922A1 (en) * 2006-03-24 2007-09-27 Fujitsu Limited Optical transmission device, optical transmission method, and computer product
CN101217826A (zh) * 2007-12-27 2008-07-09 华为技术有限公司 实现不同模式业务接入的设备及方法
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101540935A (zh) * 2008-03-17 2009-09-23 日本电气株式会社 光传输设备、光传输系统及设备控制方法
CN101783980A (zh) * 2010-03-15 2010-07-21 中兴通讯股份有限公司 光传输装置和无源光网络系统
US20180124483A1 (en) * 2016-03-18 2018-05-03 Sumitomo Electric Industries, Ltd. Optical signal repeater, optical communication system, and method of switching port in optical signal repeater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345284A (ja) * 2005-06-09 2006-12-21 Sumitomo Electric Ind Ltd 伝送システムおよび局側装置
CN101075851B (zh) * 2007-06-22 2010-09-29 华为技术有限公司 光模块传输模式判断方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070223922A1 (en) * 2006-03-24 2007-09-27 Fujitsu Limited Optical transmission device, optical transmission method, and computer product
CN101217826A (zh) * 2007-12-27 2008-07-09 华为技术有限公司 实现不同模式业务接入的设备及方法
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101540935A (zh) * 2008-03-17 2009-09-23 日本电气株式会社 光传输设备、光传输系统及设备控制方法
CN101783980A (zh) * 2010-03-15 2010-07-21 中兴通讯股份有限公司 光传输装置和无源光网络系统
US20180124483A1 (en) * 2016-03-18 2018-05-03 Sumitomo Electric Industries, Ltd. Optical signal repeater, optical communication system, and method of switching port in optical signal repeater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135502A (zh) * 2023-10-27 2023-11-28 武汉长光科技有限公司 批量升级onu的方法、装置、olt及存储介质
CN117135502B (zh) * 2023-10-27 2024-01-12 武汉长光科技有限公司 批量升级onu的方法、装置、olt及存储介质

Also Published As

Publication number Publication date
CN112640481A (zh) 2021-04-09
CN112640481B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
EP3386120B1 (en) Optical network unit onu registration method, apparatus, and system
EP2071865B1 (en) A method and a network for processing of wavelength division multiplexed data
US8238753B2 (en) Optical line terminal
US20090180782A1 (en) Apparatus, system, computer program, and method for providing a multimedia-over-coax-alliance network in conjunction with an optical network
JP4977215B2 (ja) 下位互換性を有するpon共存
EP2056495A1 (en) Electrical point-to-multipoint repeater for PON
US20150043909A1 (en) Methods and Systems for Increasing Reach and/or Split in Passive Optical Networks
CN102106103A (zh) 光网络
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
WO2017186098A1 (en) Channel bonding in multiple-wavelength passive optical networks (pons)
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
JP5457557B2 (ja) 波長分割多重アクセスネットワークを動作させるための装置および方法
WO2019141037A1 (zh) 通信网络及相关设备
JP2013529001A (ja) 長距離ボックス及び長距離ボックスのアップリンク/ダウンリンク光に対する処理方法
CN103313150A (zh) 基于直调激光器的混合波分时分复用无源光网络传输系统
JP2010166279A (ja) 光通信システムおよび光集線装置
KR101762973B1 (ko) 다중포트 수동 광 네트워크 확장장치 및 이를 이용한 광신호 전송방법
EP2843853A1 (en) Optical module and preparation method therefor
WO2020041977A1 (zh) 一种多模光网络终端ont及无源光网络pon系统
TW201828621A (zh) 無源光網路pon的通信方法、裝置和系統
TW201213910A (en) Reflective semiconductor optical amplifier for optical networks
CN116887084B (zh) Olt设备和wdm-pon系统
Hamdan et al. Performance Analysis of 80 Gb/s XGS-PON Configuration for Future Co-Existing Scenario
EP4047835A1 (en) Automatic wavelength setting system for optical communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932187

Country of ref document: EP

Kind code of ref document: A1