WO2020040361A1 - Thin film, formation method therefor, and perovskite solar cell comprising thin film - Google Patents

Thin film, formation method therefor, and perovskite solar cell comprising thin film Download PDF

Info

Publication number
WO2020040361A1
WO2020040361A1 PCT/KR2018/016019 KR2018016019W WO2020040361A1 WO 2020040361 A1 WO2020040361 A1 WO 2020040361A1 KR 2018016019 W KR2018016019 W KR 2018016019W WO 2020040361 A1 WO2020040361 A1 WO 2020040361A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
forming
solar cell
type
perovskite solar
Prior art date
Application number
PCT/KR2018/016019
Other languages
French (fr)
Korean (ko)
Inventor
염준호
양리앙
김도형
김수경
소준영
시불라케빈
이유선
최동혁
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2020040361A1 publication Critical patent/WO2020040361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film, a method for forming the same, and a perovskite solar cell including the thin film (THIN FILM, METHOD OF FORMING THIN FILM, PEROVSKITE SOLARCELL INCLUDING THIN FILM), and more particularly, an electron transport layer on a predetermined substrate. Or by coating a solution for forming a hole transport layer to form a thin film through a crosslinking reaction, not only to increase the solvent resistance of the organic semiconductor, but also to maintain the electron mobility, a thin film and its formation method and a perovskite comprising the thin film It relates to a skylight solar cell.
  • the electron transporting layer is an electron transporting material
  • the electron mobility that can transport electrons must be high, and the hole transporting layer must have a high hole mobility that can transport holes.
  • Such materials include organic semiconductor materials (e.g., n-type; fullerene derivatives, etc., p-type; PEDOT: PSS, etc.) or inorganic semiconductor materials (e.g., n-type; TiO 2 , SnO 2 , ZnO P, NiOx, etc.) may be used.
  • these materials can be solution based processes, for example, spin coating, slot coating, bar coating, sol-gel coating. ), A hydrothermal method, or the like, or a vapor deposition method such as sputtering, evaporation, atomic layer deposition, or the like.
  • a vapor deposition method such as sputtering, evaporation, atomic layer deposition, or the like.
  • organic materials are deposited in solution based processes.
  • solution-treated titanium dioxide TiO 2
  • inorganic material solution-treated titanium dioxide (TiO 2 ) is typically used as an inorganic material.
  • a process of manufacturing a high crystalline based TiO 2 film requires a high temperature based process of 500 ° C., which may cause hysteresis in the device.
  • Such titanium dioxide based devices are not known to be highly reliable.
  • n-type organic material is a fullerene-based material is Phenyl-C61-Butyric acid Methyl ester (PCBM).
  • PCBM Phenyl-C61-Butyric acid Methyl ester
  • the PCBM has a high electron mobility and high solubility in an organic solvent, and thus is easily used in a solution-based process, and is used in hybrid perovskite solar cells.
  • PCBM is highly soluble in solutions used in hybrid perovskite solar cells, such as DiMethylFormamide (DMF) and DiMethyl SulfOxide (DMSO). That is, in the case of coating perovskite on the n-type fullerene-based PCBM, since the PCBM film may be dissolved, it is limited to an application field based on thin film manufacturing.
  • DMF DiMethylFormamide
  • DMSO DiMethyl SulfOxide
  • the crosslinker which is an insulator, reduces the excellent electron mobility of the crosslinked PCBM. For this reason, in this case, the amount of the crosslinking agent must be limited, and there is a limit to improving the solvent resistance. In fact, the paper shows that UV-vis spectroscopy shows that about 80% of PCBM is lost.
  • An object of the present invention by coating a solution for forming an electron transporting layer or a hole transporting layer on a predetermined substrate to form a thin film through a crosslinking reaction, not only to increase the solvent resistance of the organic semiconductor, but also to maintain the electron mobility,
  • the present invention provides a thin film, a method of forming the same, and a perovskite solar cell including the thin film.
  • Method of forming a thin film the step of coating a solution for forming an electron or hole transport layer on a predetermined substrate; And forming a thin film through a crosslinking reaction of the solution, wherein the solution is, together with an organic semiconductor material, a semiconductor consisting of an azide group functional group and a phenyl diisocyanate (PDI) functional group.
  • Type crosslinker may be included.
  • the organic semiconductor material and the semiconductor cross-linking agent may be composed of a ratio of 70% and 30%.
  • the solvent of the solution may be a polar protic organic solvent.
  • the solvent is one of DMF (N, N-dimethylformamide), DMSO (DiMethyl SulfOxide), Acetone (Acetone), Acetonitrile, Dichloromethane, THF (Tetrahydrofuran), or a mixture of two or more. It may have been.
  • the solvent may have a final concentration of 3 mg / mL.
  • the semiconductor crosslinking agent may include n-type chromophore provided with pi conjugation when the organic semiconductor material is n-type.
  • the semiconductor crosslinking agent may include a p-type chromophore having pie conjugation when the organic semiconductor material is p-type.
  • the organic semiconductor material may be an n-type fullerene derivative having an alkyl group.
  • the fullerene derivative may be PCBM (Phenyl-C61-Butyric acid Methyl ester).
  • the organic semiconductor material may be P3HT (poly (3-hexylthiophene)) having a p-type having an alkyl group.
  • the coating step may be any one of spin coating, gravure offset coating, bar coating, slot-die coating, and roll coating.
  • the forming step may induce a crosslinking reaction through heat treatment or UV treatment, and when the heat treatment is performed, it may be performed at 180 ° C. for 1 minute.
  • the thin film according to the embodiment of the present invention may be a thin film formed by the thin film forming method according to any one of claims 1 to 12.
  • the perovskite solar cell in the perovskite solar cell in which the substrate, the transparent electrode layer, the electron transport layer, the photoactive layer, the hole transport layer, the metal electrode is laminated from the lower layer, the electron transport layer
  • the hole transport layer may be coated with a solution formed by mixing an organic semiconductor material and a semiconductor crosslinking agent in a solvent, and formed into a thin film through a crosslinking reaction of the solution, wherein the semiconductor crosslinking agent includes an azide functional group and a phenyl diisocyanate. It may be composed of a functional group.
  • the electron transport layer may be an n-type organic semiconductor material having an alkyl group, n-type chromophores with pie conjugation is provided in the semiconductor cross-linking agent.
  • the hole transport layer, the organic semiconductor material may be a p-type having an alkyl group
  • the semiconductor-type cross-linking agent may include a p-type chromophore provided with pie conjugation.
  • the present invention proposes a method for producing a thin film having excellent stability using an electron transport layer incorporating a semiconductor crosslinker through the present invention, and a perovskite solar cell without an existing inorganic electron transport layer or a hole blocking layer requiring a high temperature process.
  • the p-type of the semiconductor material is changed, it can also be applied to the hole transport layer can be applied to a variety of organic semiconductor-based devices.
  • FIG. 1 is a view for explaining a thin film forming method according to an embodiment of the present invention.
  • Figure 3 shows the absorption spectrum of the PCBM in the state that the semiconductor cross-linking agent is not included
  • FIG. 4 is a view showing an absorption spectrum of a thin film formed in FIG. 1;
  • FIG. 6 is a cross-sectional view of a perovskite solar cell including the thin film of FIG. 1;
  • FIG. 1 is a view for explaining a thin film forming method according to an embodiment of the present invention.
  • a solution 20 for forming an electron transporting layer or a hole transporting layer may be coated on a predetermined substrate 10 to form a thin film 21 through a crosslinking reaction.
  • the substrate 10 may be a glass substrate, but may be any one of various substrates used in a conventional semiconductor device process, such as another substrate, such as a plastic substrate or a silicon substrate.
  • the substrate 10 may have a transparent electrode layer formed in advance.
  • the solution 20 is formed of an n-type or p-type organic semiconductor material having an alkyl group (n-type; fullerene derivative, p-type; P 3 HT [poly (3-hexylthiophene)], etc.) to form an electron transporting layer or a hole transporting layer.
  • a PDI-DA semiconductor crosslinker composed of an azide functional group and a phenyl diisocyanate (PDI) functional group is included.
  • the molecular structure of the semiconductor crosslinking agent may be represented as shown in FIG. 2.
  • 2 is a diagram showing the molecular structure of a semiconductor crosslinking agent.
  • the semiconductor crosslinking agent includes an n-type chromophore with pi conjugation when the n-type organic semiconductor material is applied, and a pie conjugation when the p-type organic semiconductor material is applied.
  • P-type chromophores with gating are included.
  • the solution 20 for forming the electron transport layer may include a fullerene derivative, and may be representatively a Phenyl-C61-Butyric acid Methyl ester (PCBM).
  • PCBM Phenyl-C61-Butyric acid Methyl ester
  • the organic semiconductor material and the semiconductor crosslinking agent are composed of 70% and 30%.
  • the solvent is a polar aprotic organic solvent having a final concentration of 3 mg / mL, for example, N, N-dimethylformamide (DMF), DiMethyl SulfOxide (DMSO), Acetone, Acetonitrile, Acetonitrile, It may be one of dichloromethane, THF (Tetrahydrofuran) or a mixture of two or more.
  • concentration of the solvent may vary depending on the desired thickness.
  • the solution 20 may use various methods, for example, spin coating, gravure offset coating, bar coating, slot-die coating, roll coating, or the like when coating on the substrate 10.
  • This solution 20 is made into a thin film 21 through a solution based process.
  • the solution 20 is coated with a predetermined thickness (about 10nm) on the substrate 10, and then formed into a thin film 21 through heat treatment or ultraviolet treatment for the crosslinking reaction.
  • the heat treatment may be performed at 100 to 200 ° C. for 10 seconds to several tens of minutes, preferably at 180 ° C. for 1 minute.
  • Crosslinking reactions occur in which the azide groups are alkyl groups of PCBM or any other type of organic material.
  • the PDI-DA structure is independent of the crosslinking reaction.
  • FIG. 3 is a view showing an absorption spectrum of the PCBM in the state that the semiconductor cross-linking agent is not included
  • Figure 4 is a view showing the absorption spectrum of the thin film formed in FIG.
  • Figure 3 is a graph showing the change in UV-vis spectroscopy (UV-vis spectroscopy) before and after immersing the PCBM thin film in the DMF solution for 2 minutes.
  • FIG. 4 is a graph showing changes in UV-vis spectroscopy before and after soaking the thin film 21 formed by crosslinking reaction between the semiconductor crosslinking agent and the PCBM in a DMF solution for 2 minutes.
  • 5 is a diagram illustrating a change in electron mobility.
  • Electron mobility may vary depending on the ratio of the PCBM or crosslinking reaction conditions.
  • the electron mobility is maintained at 10 ⁇ 5 (cm ⁇ V ⁇ 1 ⁇ s ⁇ 1 ) or more even after the crosslinking reaction occurs, and 10 ⁇ 4 (cm ⁇ V ⁇ 1 when the ratio of PCBM is increased. S -1 ) or more can be maintained.
  • FIG. 6 is a cross-sectional view of a perovskite solar cell including the thin film of FIG. 1.
  • the perovskite solar cell 100 includes a substrate 110, a transparent electrode layer 120, an electron transport layer 130, a photoactive layer 140, a hole transport layer 150, and a metal electrode 160. It includes. That is, in the perovskite solar cell 100, the substrate 110, the transparent electrode layer 120, the electron transport layer 130, the photoactive layer 140, the hole transport layer 150, and the metal electrode 160 are stacked from the lower layer. It has a structure that becomes.
  • the thin film 21 of FIG. 1 may correspond to the electron transport layer 130 or the hole transport layer 150.
  • the case in which the thin film 21 is formed in the electron transport layer 130 will be described for convenience of description.
  • the substrate 110 may be a glass substrate, a plastic substrate (PET substrate, PES substrate, etc.), a silicon substrate, or the like.
  • the transparent electrode layer 120 is formed by thinly depositing a transparent electrode material on the substrate 110.
  • the transparent electrode may be formed of indium tin oxide (ITO), transparent conducting oxide (TCO), silver nanowier, carbon nanotube (CNT), graphene, Conductive polymers may be applied.
  • the transparent electrode layer 120 is washed with a mixed solution of acetone, ultrapure water and 2-propanol (IPA) for 30 minutes before forming the electron transport layer 130, and then UV / Ozone ) For 30 minutes.
  • IPA 2-propanol
  • the electron transport layer 130 is formed on the transparent electrode layer 120 by coating a solution consisting of a mixture of a PCBM and a semiconductor crosslinking agent in a solvent, and then formed by heat treatment or ultraviolet treatment for a crosslinking reaction.
  • PCBM and a semiconductor type crosslinking agent are comprised by the ratio of 70:30, and a solvent is the density
  • the solution is spin coated to a thickness of about 10 nm on the transparent electrode layer 120.
  • the heat treatment is carried out at 180 ° C. for 1 minute.
  • the photoactive layer 140 has 35% by weight of methyl ammonium iodide (CH 3 NH 3 I) and lead iodide (PbI 2 ) in a 1: 1 ratio of N, N-dimethylformamide (N, N-dimethylformamide, DMF).
  • CH 3 NH 3 I methyl ammonium iodide
  • PbI 2 lead iodide
  • the solution dispersed in is formed as a perovskite layer on the electron transport layer 130 through spin coating.
  • the photoactive layer 140 is heat-treated at 100 °C.
  • the hole transport layer 150 is composed of organic spiroza molecule (Spiro-OMeTAD), chlorobenzene, 4-tert-butylpyridine, and lithium bis (trifluoromethylsulfonyl) amide (lithium bis). (trifluoromethylsulfonyl) imide) is mixed into a thin film on the photoactive layer 140 through spin coating.
  • Spiro-OMeTAD organic spiroza molecule
  • chlorobenzene 4-tert-butylpyridine
  • lithium bis (trifluoromethylsulfonyl) amide lithium bis.
  • (trifluoromethylsulfonyl) imide) is mixed into a thin film on the photoactive layer 140 through spin coating.
  • the organic spiroza molecule (Spiro-OMeTAD) is 2,2 ', 7,7'-tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'-spirobi-fluorene.
  • Chlorobenzene may be 723 mg / mL
  • 4-tert-butylpyridine is 288 ⁇ L / mL
  • lithium bis (trifluoromethylsulfonyl) amide may be 520 mg / mL.
  • the metal electrode 160 may be formed of gold (Au) to a thickness of 80 nm.
  • the embodiment is the perovskite solar cell of FIG. 6.
  • a solution of PCBM dissolved in 3 mg / mL of chloroform was coated by spin coating to form a PCBM thin film, that is, an electron transport layer. Layers other than the electron transport layer are formed in the same manner as described in FIG.
  • the example shows a perovskite solar cell using a PCBM electron transporter containing a semiconductor crosslinking agent
  • the comparative example shows a perovskite solar cell using only an electron transporter of PCBM without a semiconductor crosslinking agent.
  • the open voltage was 0.92 V
  • the short-circuit current density was 16.7 mA / cm 2
  • the curve factor was 44.8%.
  • the energy conversion efficiency (PCE) was 6.90%.
  • the embodiment exhibits an open voltage of 0.97V, a short circuit current density of 17.7 mA / cm 2 and a curve factor of 62.0%, resulting in an energy conversion efficiency (PCE) of 10.60%.
  • the example shows device performance with improved energy conversion efficiency (PCE) characteristics than the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a thin film, a formation method therefor, and a perovskite solar cell comprising the thin film. A thin film forming method according to an embodiment of the present invention comprises the steps of: coating, on a predetermined substrate, a solution for forming an electron or hole transport layer; and forming a thin film through the cross-linking reaction of the solution, wherein the solution can comprise, together with an organic semiconductor material, a semiconductor-type cross-linking agent composed of an azide-based functional group and a phenyl diisocyanate (PDI)-based functional group.

Description

박막 및 그 형성 방법과 박막을 포함하는 페로브스카이트 태양전지Thin films, methods of forming the same, and perovskite solar cells comprising the thin films
본 발명은 박막 및 그 형성 방법과 박막을 포함하는 페로브스카이트 태양전지(THIN FILM, METHOD OF FORMING THIN FILM, PEROVSKITE SOLARCELL INCLUDING THIN FILM)에 관한 것으로서, 보다 상세하게는 소정의 기판 상에 전자 수송층 또는 홀 수송층을 형성하기 위한 용액을 코팅하여 가교반응을 통해 박막으로 형성함으로써, 유기 반도체의 솔벤트 저항성을 높일 뿐만 아니라, 전자이동도를 유지하기 위한, 박막 및 그 형성 방법과 박막을 포함하는 페로브스카이트 태양전지에 관한 것이다.The present invention relates to a thin film, a method for forming the same, and a perovskite solar cell including the thin film (THIN FILM, METHOD OF FORMING THIN FILM, PEROVSKITE SOLARCELL INCLUDING THIN FILM), and more particularly, an electron transport layer on a predetermined substrate. Or by coating a solution for forming a hole transport layer to form a thin film through a crosslinking reaction, not only to increase the solvent resistance of the organic semiconductor, but also to maintain the electron mobility, a thin film and its formation method and a perovskite comprising the thin film It relates to a skylight solar cell.
페로브스카이트(perovskite) 구조 물질을 이용한 태양전지는 기존 실리콘 재질의 태양전지에 비해 고효율 특성을 나타내는 차세대 태양전지로 각광을 받고 있다. 이러한 태양전지는 전자(electron) 혹은 정공(hole)을 전달할 수 있는 물질이 중요하다.Solar cells using perovskite structural materials are in the spotlight as next generation solar cells that exhibit high efficiency characteristics compared to conventional silicon solar cells. In such a solar cell, a material capable of transferring electrons or holes is important.
여기서, 전자 수송층은 전자 수송 물질인 경우에 전자를 수송할 수 있는 전자이동도가 높아야 하고, 홀 수송층은 정공을 수송할 수 있는 정공이동도가 높아야 한다. 이러한 소재에는 유기 반도체 물질(예를 들어, n형; 플러렌계 유도체[fullerene derivatives] 등, p형; PEDOT:PSS 등) 또는 무기 반도체 물질(예를 들어, n형; TiO2, SnO2, ZnO 등, p형; NiOx 등)이 이용될 수 있다.Herein, when the electron transporting layer is an electron transporting material, the electron mobility that can transport electrons must be high, and the hole transporting layer must have a high hole mobility that can transport holes. Such materials include organic semiconductor materials (e.g., n-type; fullerene derivatives, etc., p-type; PEDOT: PSS, etc.) or inorganic semiconductor materials (e.g., n-type; TiO 2 , SnO 2 , ZnO P, NiOx, etc.) may be used.
그리고, 이러한 소재는 물질에 따라 용액 기반 공정(solution based processes) 예를 들어, 스핀 코팅(spin coating), 슬롯 코팅(slot coating), 바 코팅(bar coating), 졸-겔 코팅(sol-gel coating), 하이드로써멀법(hydrothermal method) 등으로 제조되거나, 증착법 예를 들어, 스퍼터링(sputtering), 진공증착(evaporation), 원자층 증착(atomic layer deposition) 등으로 제조된다. 일반적으로, 유기 소재는 용액 기반 공정으로 증착된다.And, depending on the material, these materials can be solution based processes, for example, spin coating, slot coating, bar coating, sol-gel coating. ), A hydrothermal method, or the like, or a vapor deposition method such as sputtering, evaporation, atomic layer deposition, or the like. Generally, organic materials are deposited in solution based processes.
한편, n형 반도체 물질의 경우에는 무기 소재로서 용액 처리된 이산화티타늄(TiO2)을 대표적으로 사용하였다. Meanwhile, in the case of an n-type semiconductor material, solution-treated titanium dioxide (TiO 2 ) is typically used as an inorganic material.
그런데, 고결정성 기반 이산화티타늄 필름(high crystalline based TiO2 film)을 제조하는 과정에서는 500℃의 고온 기반 공정이 필요하므로 디바이스에서 히스테리시스(hysteresis)를 일으킬 수 있다. 이와 같은 이산화티타늄 기반의 디바이스는 신뢰성이 높지 않다고 알려져 있다.However, a process of manufacturing a high crystalline based TiO 2 film requires a high temperature based process of 500 ° C., which may cause hysteresis in the device. Such titanium dioxide based devices are not known to be highly reliable.
이로 인해, 최근에는 이산화티타늄 대신에 n형 유기 소재를 이용하여 저온 기반 공정, 고효율, 고신뢰성 디바이스 제조 기술 개발에 관한 연구가 진행되고 있다.Therefore, in recent years, research has been conducted on the development of low temperature-based processes, high efficiency, and high reliability device manufacturing technology using n-type organic materials instead of titanium dioxide.
대표적인 n형 유기 소재는 플러렌 계열의 물질로서 PCBM(Phenyl-C61-Butyric acid Methyl ester)이 있다. 이러한 PCBM은 전자이동도가 높고 유기 용매에서 용해도가 높기 때문에 용액 기반 공정을 활용하기 용이한 물질로서, 하이브리드 페로브스카이트 태양전지에 이용되고 있다.Representative n-type organic material is a fullerene-based material is Phenyl-C61-Butyric acid Methyl ester (PCBM). The PCBM has a high electron mobility and high solubility in an organic solvent, and thus is easily used in a solution-based process, and is used in hybrid perovskite solar cells.
하지만, PCBM은 하이브리드 페로브스카이트 태양전지에 사용되는 용액 예를 들어, DMF(DiMethylFormamide), DMSO(DiMethyl SulfOxide) 등에 용해도가 높다. 즉, n형 플러렌 계열의 PCBM 상에 페로브스카이트를 코팅하는 경우에는 PCBM 필름이 용해되어 나올 수 있기 때문에 박막 제조를 바탕으로 한 응용 분야에 제한적이다.However, PCBM is highly soluble in solutions used in hybrid perovskite solar cells, such as DiMethylFormamide (DMF) and DiMethyl SulfOxide (DMSO). That is, in the case of coating perovskite on the n-type fullerene-based PCBM, since the PCBM film may be dissolved, it is limited to an application field based on thin film manufacturing.
이와 관련하여, 가교반응(crosslinking)을 이용하여 PCBM의 솔벤트 저항성(solvent resistance)를 향상시키는 논문(Highly Efficient Perovskite Solar Cells with Crosslinked PCBM Interlayers, W Qiu et al, J Mater Chem A, 2017, 5, 2466)이 제안된 바 있다.In this regard, a paper on improving solvent resistance of PCBM using crosslinking (Highly Efficient Perovskite Solar Cells with Crosslinked PCBM Interlayers, W Qiu et al, J Mater Chem A, 2017, 5, 2466 ) Has been proposed.
해당 논문에서는 16-diazidohexane(DAZH)에 포함된 아마이드 그룹(amide group)이 자외선 조건에서 반응성 질소(reactive N)로 바뀌며, PCBM과 가교반응을 일으킨다.In this paper, the amide group contained in 16-diazidohexane (DAZH) is converted to reactive N under ultraviolet light and crosslinks with PCBM.
그런데, 해당 논문의 경우에는 절연체인 가교제(crosslinker)로 인해 가교된 PCBM의 우수한 전자이동도를 떨어뜨린다. 이로 인해, 이 경우에는 가교제의 양을 제한적으로 사용할 수 밖에 없으며, 솔벤트 저항성을 향상시키는데 한계가 있다. 실제로, 해당 논문에서는 보여진 자외선 가시광선 분광법(UV-vis spectroscopy)을 통해 80% 가량의 PCBM이 손실되는 것을 확인할 수 있다.However, in the case of this paper, the crosslinker, which is an insulator, reduces the excellent electron mobility of the crosslinked PCBM. For this reason, in this case, the amount of the crosslinking agent must be limited, and there is a limit to improving the solvent resistance. In fact, the paper shows that UV-vis spectroscopy shows that about 80% of PCBM is lost.
따라서, 기존에는 플러렌 계열 혹은 다른 종류의 유기 반도체의 솔벤트 저항성을 향상시키면서 전자이동도를 유지할 수 있는 방법이 제안될 필요가 있다.Therefore, there is a need to propose a method capable of maintaining electron mobility while improving solvent resistance of a fullerene-based or another type of organic semiconductor.
본 발명의 목적은 소정의 기판 상에 전자 수송층 또는 홀 수송층을 형성하기 위한 용액을 코팅하여 가교반응을 통해 박막으로 형성함으로써, 유기 반도체의 솔벤트 저항성을 높일 뿐만 아니라, 전자이동도를 유지하기 위한, 박막 및 그 형성 방법과 박막을 포함하는 페로브스카이트 태양전지를 제공하는데 있다.An object of the present invention by coating a solution for forming an electron transporting layer or a hole transporting layer on a predetermined substrate to form a thin film through a crosslinking reaction, not only to increase the solvent resistance of the organic semiconductor, but also to maintain the electron mobility, The present invention provides a thin film, a method of forming the same, and a perovskite solar cell including the thin film.
본 발명의 실시예에 따른 박막의 형성방법은, 소정의 기판 상에 전자 또는 홀 수송층을 형성하기 위한 용액을 코팅하는 단계; 및 상기 용액의 가교반응을 통해 박막을 형성하는 단계;를 포함하되, 상기 용액은, 유기 반도체 물질과 함께, 아지드계(azid group) 작용기와 페닐 디이소시아네이트(Phenyl DiIsocyanate, PDI) 작용기로 구성된 반도체형 가교제(crosslinker)가 포함되는 것일 수 있다.Method of forming a thin film according to an embodiment of the present invention, the step of coating a solution for forming an electron or hole transport layer on a predetermined substrate; And forming a thin film through a crosslinking reaction of the solution, wherein the solution is, together with an organic semiconductor material, a semiconductor consisting of an azide group functional group and a phenyl diisocyanate (PDI) functional group. Type crosslinker may be included.
상기 유기 반도체 물질과 상기 반도체형 가교제는, 70%와 30%의 비율로 구성되는 것일 수 있다.The organic semiconductor material and the semiconductor cross-linking agent may be composed of a ratio of 70% and 30%.
상기 용액의 용매는, 극성 지양자성 유기 용매인 것일 수 있다.The solvent of the solution may be a polar protic organic solvent.
상기 용매는, DMF(N,N-dimethylformamide), DMSO(DiMethyl SulfOxide), 아세톤(Acetone), 아세토나이트릴(Acetonitrile), 디클로로메탄(Dichloromethane), THF(Tetrahydrofuran) 중 어느 하나의 것 또는 둘 이상의 혼합된 것일 수 있다.The solvent is one of DMF (N, N-dimethylformamide), DMSO (DiMethyl SulfOxide), Acetone (Acetone), Acetonitrile, Dichloromethane, THF (Tetrahydrofuran), or a mixture of two or more. It may have been.
상기 용매는, 최종 농도가 3mg/mL일 수 있다.The solvent may have a final concentration of 3 mg / mL.
상기 반도체형 가교제는, 상기 유기 반도체 물질이 n형일 경우에 파이 콘쥬게이션(pi conjugation)이 구비된 n형 크로모포어(chromophore)가 포함되는 것일 수 있다.The semiconductor crosslinking agent may include n-type chromophore provided with pi conjugation when the organic semiconductor material is n-type.
상기 반도체형 가교제는, 상기 유기 반도체 물질이 p형일 경우에 파이 콘쥬게이션이 구비된 p형 크로모포어가 포함되는 것일 수 있다.The semiconductor crosslinking agent may include a p-type chromophore having pie conjugation when the organic semiconductor material is p-type.
상기 유기 반도체 물질은, 알킬기를 가진 n형으로 플러렌 유도체일 수 있다.The organic semiconductor material may be an n-type fullerene derivative having an alkyl group.
상기 플러렌 유도체는, PCBM(Phenyl-C61-Butyric acid Methyl ester)일 수 있다.The fullerene derivative may be PCBM (Phenyl-C61-Butyric acid Methyl ester).
상기 유기 반도체 물질은, 알킬기를 가진 p형으로 P3HT(poly(3-hexylthiophene))일 수 있다.The organic semiconductor material may be P3HT (poly (3-hexylthiophene)) having a p-type having an alkyl group.
상기 코팅 단계는, 스핀 코팅, 그라비아 오프셋 코팅, 바 코팅, 슬롯-다이 코팅, 롤 코팅 중 어느 하나의 방식을 이용하는 것일 수 있다.The coating step may be any one of spin coating, gravure offset coating, bar coating, slot-die coating, and roll coating.
상기 형성 단계는, 열처리 또는 자외선처리를 통해 가교반응을 유도하고, 상기 열처리를 진행할 경우에, 180℃에서 1분간 진행하는 것일 수 있다.The forming step may induce a crosslinking reaction through heat treatment or UV treatment, and when the heat treatment is performed, it may be performed at 180 ° C. for 1 minute.
또한, 본 발명의 실시예에 따른 박막은, 제 1 항 내지 제 12 항 중 어느 한 항에 기재된 박막 형성방법으로 형성된 박막일 수 있다.In addition, the thin film according to the embodiment of the present invention may be a thin film formed by the thin film forming method according to any one of claims 1 to 12.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지는, 하부층부터 기판, 투명전극층, 전자수송층, 광활성층, 정공수송층, 금속전극이 적층되는 페로브스카이트 태양전지에 있어서, 상기 전자수송층 또는 상기 정공수송층은, 유기 반도체 물질과 반도체형 가교제를 용매에 혼합하여 구성된 용액을 코팅하고, 상기 용액의 가교반응을 통해 박막으로 형성하되, 상기 반도체형 가교제는, 아지드계 작용기와 페닐 디이소시아네이트 작용기로 구성된 것일 수 있다.In addition, the perovskite solar cell according to an embodiment of the present invention, in the perovskite solar cell in which the substrate, the transparent electrode layer, the electron transport layer, the photoactive layer, the hole transport layer, the metal electrode is laminated from the lower layer, the electron transport layer Alternatively, the hole transport layer may be coated with a solution formed by mixing an organic semiconductor material and a semiconductor crosslinking agent in a solvent, and formed into a thin film through a crosslinking reaction of the solution, wherein the semiconductor crosslinking agent includes an azide functional group and a phenyl diisocyanate. It may be composed of a functional group.
상기 전자수송층은, 상기 유기 반도체 물질이 알킬기를 가진 n형이고, 상기 반도체형 가교제에 파이 콘쥬게이션이 구비된 n형 크로모포어가 포함되는 것일 수 있다.The electron transport layer may be an n-type organic semiconductor material having an alkyl group, n-type chromophores with pie conjugation is provided in the semiconductor cross-linking agent.
상기 정공수송층은, 상기 유기 반도체 물질이 알킬기를 가진 p형이고, 상기 반도체형 가교제에 파이 콘쥬게이션이 구비된 p형 크로모포어가 포함되는 것일 수 있다.The hole transport layer, the organic semiconductor material may be a p-type having an alkyl group, the semiconductor-type cross-linking agent may include a p-type chromophore provided with pie conjugation.
상기 결과를 통해 본 발명을 통한 반도체형 crosslinker를 도입한 전자 수송층을 이용한 안정성이 뛰어난 박막 제조 방법을 제시하고, 고온의 공정이 필요한 기존의 무기물 전자 수송층 혹은 hole blocking layer가 없는 페로브스카이트 태양전지를 구현하였고, 더 나아가 반도체물질을 p-type을 바꿀 경우 정공 수송층으로도 적용될 수 있어 다양한 유기물 반도체 기반 소자에 응용될 수 있다. Through the above results, the present invention proposes a method for producing a thin film having excellent stability using an electron transport layer incorporating a semiconductor crosslinker through the present invention, and a perovskite solar cell without an existing inorganic electron transport layer or a hole blocking layer requiring a high temperature process. In addition, if the p-type of the semiconductor material is changed, it can also be applied to the hole transport layer can be applied to a variety of organic semiconductor-based devices.
도 1은 본 발명의 실시예에 따른 박막 형성방법을 설명하는 도면,1 is a view for explaining a thin film forming method according to an embodiment of the present invention;
도 2는 반도체형 가교제의 분자 구조를 나타낸 도면, 2 is a diagram showing the molecular structure of a semiconductor crosslinking agent,
도 3은 반도체형 가교제가 포함되지 않은 상태에서 PCBM의 흡수 스펙트럼을 나타낸 도면, Figure 3 shows the absorption spectrum of the PCBM in the state that the semiconductor cross-linking agent is not included,
도 4는 상기 도 1에서 형성된 박막의 흡수 스펙트럼을 나타낸 도면,4 is a view showing an absorption spectrum of a thin film formed in FIG. 1;
도 5는 전자이동도의 변화를 나타내는 도면, 5 is a view showing a change in electron mobility;
도 6은 상기 도 1의 박막을 포함하는 페로브스카이트 태양전지의 단면을 나타낸 도면,6 is a cross-sectional view of a perovskite solar cell including the thin film of FIG. 1;
도 7은 실시예와 비교예의 광전류 밀도 및 전압 특성을 비교한 그래프이다.7 is a graph comparing photocurrent density and voltage characteristics of Examples and Comparative Examples.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in the following description and the accompanying drawings, detailed descriptions of well-known functions or configurations that may obscure the subject matter of the present invention will be omitted. In addition, it should be noted that like elements are denoted by the same reference numerals as much as possible throughout the drawings.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are properly defined as terms for explaining their own invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various modifications that can be substituted for them at the time of the present application It should be understood that there may be equivalents and variations.
첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 본 발명은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.In the accompanying drawings, some components are exaggerated, omitted, or schematically illustrated, and the size of each component does not entirely reflect the actual size. The invention is not limited by the relative size or spacing drawn in the accompanying drawings.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.When any part of the specification is to "include" any component, this means that it may further include other components, except to exclude other components unless specifically stated otherwise. In addition, when a part is "connected" with another part, this includes not only the "directly connected", but also the "electrically connected" with another element in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. Terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features, numbers, steps It is to be understood that the present invention does not exclude the possibility of the presence or the addition of any operation, a component, a part, or a combination thereof.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.
도 1은 본 발명의 실시예에 따른 박막 형성방법을 설명하는 도면이다.1 is a view for explaining a thin film forming method according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 소정의 기판(10) 상에 전자 수송층 또는 홀 수송층을 형성하기 위한 용액(20)을 코팅하여 가교반응을 통해 박막(21)을 형성할 수 있다.As shown in FIG. 1, a solution 20 for forming an electron transporting layer or a hole transporting layer may be coated on a predetermined substrate 10 to form a thin film 21 through a crosslinking reaction.
여기서, 기판(10)은 유리 기판일 수 있지만, 그 밖에 다른 기판, 예컨대 플라스틱 기판이나 실리콘 기판 등 통상의 반도체소자 공정에서 사용되는 다양한 기판 중 어느 하나일 수 있다. 특히, 기판(10)은 태양전지를 제조하는 경우에, 투명전극층이 미리 형성될 수 있다.Here, the substrate 10 may be a glass substrate, but may be any one of various substrates used in a conventional semiconductor device process, such as another substrate, such as a plastic substrate or a silicon substrate. In particular, in the case of manufacturing a solar cell, the substrate 10 may have a transparent electrode layer formed in advance.
그리고, 용액(20)은 전자 수송층 혹은 홀 수송층을 형성하기 위해 알킬기를 가진 n형 또는 p형 유기 반도체 물질(n형; 플러렌 유도체 등, p형; P3HT[poly(3-hexylthiophene)] 등)과 함께, 아지드계 작용기와 페닐 디이소시아네이트(Phenyl DiIsocyanate, PDI) 작용기로 구성된 PDI-DA 반도체형 가교제(crosslinker)가 포함된다. The solution 20 is formed of an n-type or p-type organic semiconductor material having an alkyl group (n-type; fullerene derivative, p-type; P 3 HT [poly (3-hexylthiophene)], etc.) to form an electron transporting layer or a hole transporting layer. Together, a PDI-DA semiconductor crosslinker composed of an azide functional group and a phenyl diisocyanate (PDI) functional group is included.
반도체형 가교제의 분자 구조는 도 2와 같이 나타낼 수 있다. 도 2는 반도체형 가교제의 분자 구조를 나타낸 도면이다. 이때, 반도체형 가교제는 n형 유기 반도체 물질을 적용할 경우에 파이 콘쥬게이션(pi conjugation)이 구비된 n형 크로모포어(chromophore)가 포함되며, p형 유기 반도체 물질을 적용할 경우에 파이 콘쥬게이션이 구비된 p형 크로모포어가 포함된다.The molecular structure of the semiconductor crosslinking agent may be represented as shown in FIG. 2. 2 is a diagram showing the molecular structure of a semiconductor crosslinking agent. In this case, the semiconductor crosslinking agent includes an n-type chromophore with pi conjugation when the n-type organic semiconductor material is applied, and a pie conjugation when the p-type organic semiconductor material is applied. P-type chromophores with gating are included.
여기서, 전자수송층을 형성하기 위한 용액(20)은 플러렌 유도체가 포함되며, 대표적으로 PCBM(Phenyl-C61-Butyric acid Methyl ester)일 수 있다. 그리고, 유기 반도체 물질과 반도체형 가교제는 70%와 30%의 비율로 구성된다. Here, the solution 20 for forming the electron transport layer may include a fullerene derivative, and may be representatively a Phenyl-C61-Butyric acid Methyl ester (PCBM). The organic semiconductor material and the semiconductor crosslinking agent are composed of 70% and 30%.
여기서, PCBM의 양이 늘면 전도도가 증가하고, 반도체형 가교제의 양을 늘리면 가교 반응을 더 잘 일으켜 솔벤트 저항성이 올라간다.In this case, when the amount of PCBM increases, the conductivity increases, and when the amount of the semiconductor crosslinking agent is increased, the crosslinking reaction is better, and the solvent resistance increases.
또한, 용매(solvent)는 최종 농도가 3mg/mL의 극성 비양자성 유기 용매로서, 예컨대, DMF(N,N-dimethylformamide), DMSO(DiMethyl SulfOxide), 아세톤(Acetone), 아세토나이트릴(Acetonitrile), 디클로로메탄(Dichloromethane), THF(Tetrahydrofuran) 중 어느 하나의 것 또는 둘 이상의 혼합된 것일 수 있다. 용매의 농도는 원하는 두께에 따라 달라질 수 있다. In addition, the solvent is a polar aprotic organic solvent having a final concentration of 3 mg / mL, for example, N, N-dimethylformamide (DMF), DiMethyl SulfOxide (DMSO), Acetone, Acetonitrile, Acetonitrile, It may be one of dichloromethane, THF (Tetrahydrofuran) or a mixture of two or more. The concentration of the solvent may vary depending on the desired thickness.
한편, 용액(20)은 기판(10) 상에 코팅할 때 다양한 방식 예를 들어, 스핀 코팅, 그라비아 오프셋 코팅, 바 코팅, 슬롯-다이 코팅, 롤 코팅 등을 이용할 수 있다. 이러한 용액(20)은 용액 기반 공정(solution based process)을 통해 박막(21)으로 제조된다.Meanwhile, the solution 20 may use various methods, for example, spin coating, gravure offset coating, bar coating, slot-die coating, roll coating, or the like when coating on the substrate 10. This solution 20 is made into a thin film 21 through a solution based process.
이때, 용액(20)은 기판(10) 상에 소정 두께(약 10㎚)로 코팅된 다음, 가교반응을 위한 열처리 또는 자외선처리를 통해 박막(21)으로 형성된다. 이 경우, 열처리는 100∼200℃에서, 10초에서 수십분까지 진행할 수 있으며, 바람직하게는 180℃에서 1분간 진행할 수 있다.At this time, the solution 20 is coated with a predetermined thickness (about 10nm) on the substrate 10, and then formed into a thin film 21 through heat treatment or ultraviolet treatment for the crosslinking reaction. In this case, the heat treatment may be performed at 100 to 200 ° C. for 10 seconds to several tens of minutes, preferably at 180 ° C. for 1 minute.
한편, 가교 반응은 아지드 그룹이 PCBM 또는 어떤 다른 형태의 유기물질의 알킬 그룹과 일어난다. PDI-DA 구조는 가교 반응과 무관하다.Crosslinking reactions, on the other hand, occur in which the azide groups are alkyl groups of PCBM or any other type of organic material. The PDI-DA structure is independent of the crosslinking reaction.
도 3은 반도체형 가교제가 포함되지 않은 상태에서 PCBM의 흡수 스펙트럼을 나타낸 도면이고, 도 4는 상기 도 1에서 형성된 박막의 흡수 스펙트럼을 나타낸 도면이다.3 is a view showing an absorption spectrum of the PCBM in the state that the semiconductor cross-linking agent is not included, Figure 4 is a view showing the absorption spectrum of the thin film formed in FIG.
먼저, 도 3은 PCBM 박막을 DMF 용액에 2분간 담기 전과 담근 후의 자외선 가시광선 분광법(UV-vis spectroscopy)의 변화를 나타낸 그래프이다. First, Figure 3 is a graph showing the change in UV-vis spectroscopy (UV-vis spectroscopy) before and after immersing the PCBM thin film in the DMF solution for 2 minutes.
도 3을 참조하면, PCBM 박막의 흡수 스펙트럼은 PCBM 박막을 DMF 용액에 담근 후에 급격히 줄어드는 것을 알 수 있다.Referring to FIG. 3, it can be seen that the absorption spectrum of the PCBM thin film is rapidly reduced after the PCBM thin film is immersed in the DMF solution.
다음, 도 4는 반도체형 가교제와 PCBM이 가교반응을 통해 형성된 박막(21)을 DMF 용액에 2분간 담기 전과 담근 후의 자외선 가시광선 분광법(UV-vis spectroscopy)의 변화를 나타낸 그래프이다.Next, FIG. 4 is a graph showing changes in UV-vis spectroscopy before and after soaking the thin film 21 formed by crosslinking reaction between the semiconductor crosslinking agent and the PCBM in a DMF solution for 2 minutes.
도 4를 참조하면, 반도체형 가교제와 PCBM이 가교반응을 통해 형성된 박막(21)의 흡수 스펙트럼은 전혀 줄어들지 않는 것을 알 수 있다. 이는 PCBM이 DMF와 같은 용매에서의 솔벤트 저항성(solvent resistance)이 급격하게 향상되었음을 의미한다.Referring to FIG. 4, it can be seen that the absorption spectrum of the thin film 21 formed through the crosslinking reaction between the semiconductor crosslinking agent and the PCBM does not decrease at all. This means that PCBM has dramatically improved solvent resistance in solvents such as DMF.
도 5는 전자이동도의 변화를 나타내는 도면이다. 5 is a diagram illustrating a change in electron mobility.
전자이동도는 PCBM의 비율(ratio) 또는 가교반응 조건에 따라 변화될 수 있다.Electron mobility may vary depending on the ratio of the PCBM or crosslinking reaction conditions.
도 5를 참조하면, 전자이동도는 가교반응이 일어난 후에도 10-5 (㎝·V-1·s-1 ) 이상을 유지하고, PCBM의 비율을 늘리는 경우에 10-4 (㎝·V-1·s-1 ) 이상을 유지할 수 있다.Referring to FIG. 5, the electron mobility is maintained at 10 −5 (cm · V −1 · s −1 ) or more even after the crosslinking reaction occurs, and 10 −4 (cm · V −1 when the ratio of PCBM is increased. S -1 ) or more can be maintained.
도 6은 상기 도 1의 박막을 포함하는 페로브스카이트 태양전지의 단면을 나타낸 도면이다.6 is a cross-sectional view of a perovskite solar cell including the thin film of FIG. 1.
도 6을 참조하면, 페로브스카이트 태양전지(100)는 기판(110), 투명전극층(120), 전자수송층(130), 광활성층(140), 정공수송층(150), 금속전극(160)을 포함한다. 즉, 페로브스카이트 태양전지(100)는 하부층부터 기판(110), 투명전극층(120), 전자수송층(130), 광활성층(140), 정공수송층(150), 금속전극(160)이 적층되는 구조를 갖는다.Referring to FIG. 6, the perovskite solar cell 100 includes a substrate 110, a transparent electrode layer 120, an electron transport layer 130, a photoactive layer 140, a hole transport layer 150, and a metal electrode 160. It includes. That is, in the perovskite solar cell 100, the substrate 110, the transparent electrode layer 120, the electron transport layer 130, the photoactive layer 140, the hole transport layer 150, and the metal electrode 160 are stacked from the lower layer. It has a structure that becomes.
상기 도 1의 박막(21)은 전자수송층(130) 또는 정공수송층(150)에 해당될 수 있으나, 여기서는 설명의 편의상 전자수송층(130)에 형성되는 경우에 대해 설명하기로 한다. The thin film 21 of FIG. 1 may correspond to the electron transport layer 130 or the hole transport layer 150. Here, the case in which the thin film 21 is formed in the electron transport layer 130 will be described for convenience of description.
기판(110)은 유리 기판, 플라스틱 기판(PET 기판, PES 기판 등), 실리콘 기판 등일 수 있다.The substrate 110 may be a glass substrate, a plastic substrate (PET substrate, PES substrate, etc.), a silicon substrate, or the like.
투명전극층(120)은 기판(110) 상에 투명전극 물질을 얇게 증착시켜 형성한다. 여기서, 투명전극은 인듐 주석 산화물(Indium Tin Oxide, ITO), 투명 전도성 산화물(Transparent Conducting Oxide, TCO), 은나노와이어(silver nanowier), 탄소나노튜브(Carbon NanoTube, CNT), 그래핀(graphene), 전도성 고분자(conducting polymer) 등이 적용될 수도 있다.The transparent electrode layer 120 is formed by thinly depositing a transparent electrode material on the substrate 110. The transparent electrode may be formed of indium tin oxide (ITO), transparent conducting oxide (TCO), silver nanowier, carbon nanotube (CNT), graphene, Conductive polymers may be applied.
그런데, 투명전극층(120)은 전자수송층(130)을 형성하기에 앞서, 아세톤, 초순수 및 2-프로판올(2-propanol, IPA)의 혼합 용액으로 30분간 세정한 후, 자외선/오존(UV/Ozone)으로 30분간 처리한다.However, the transparent electrode layer 120 is washed with a mixed solution of acetone, ultrapure water and 2-propanol (IPA) for 30 minutes before forming the electron transport layer 130, and then UV / Ozone ) For 30 minutes.
전자수송층(130)은 투명전극층(120) 상에 PCBM과 반도체형 가교제를 용매에 혼합하여 구성된 용액으로 코팅한 후, 가교반응을 위한 열처리 또는 자외선처리를 통해 형성된다. 여기서, PCBM과 반도체형 가교제는 70:30의 비율로 구성하고, 용매는 3mg/mL의 농도이다. 용액은 투명전극층(120)에 약 10nm 두께로 스핀 코팅된다. 열처리는 180℃에서 1분 동안 진행된다.The electron transport layer 130 is formed on the transparent electrode layer 120 by coating a solution consisting of a mixture of a PCBM and a semiconductor crosslinking agent in a solvent, and then formed by heat treatment or ultraviolet treatment for a crosslinking reaction. Here, PCBM and a semiconductor type crosslinking agent are comprised by the ratio of 70:30, and a solvent is the density | concentration of 3 mg / mL. The solution is spin coated to a thickness of about 10 nm on the transparent electrode layer 120. The heat treatment is carried out at 180 ° C. for 1 minute.
광활성층(140)은 요오드화메틸암모늄(CH3NH3I)과 요오드화납(PbI2)이 1:1 비율의 35중량%로 N,N-다이메틸폼아마이드(N,N-dimethylformamide, DMF)에 분산된 용액을 스핀 코팅을 통해 전자수송층(130) 상에 페로브스카이트층으로 형성된다. 이때, 광활성층(140)은 100℃로 열처리가 진행된다.The photoactive layer 140 has 35% by weight of methyl ammonium iodide (CH 3 NH 3 I) and lead iodide (PbI 2 ) in a 1: 1 ratio of N, N-dimethylformamide (N, N-dimethylformamide, DMF). The solution dispersed in is formed as a perovskite layer on the electron transport layer 130 through spin coating. At this time, the photoactive layer 140 is heat-treated at 100 ℃.
정공수송층(150)은 유기 스피로자 분자(Spiro-OMeTAD), 클로로벤젠(chlorobenzene), 4-tert-부틸피리딘(4-tert-butylpyridine), 리튬 비스(트리플루오로메틸술포닐)아미드(lithium bis(trifluoromethylsulfonyl)imide)가 혼합된 용액을 스핀 코팅을 통해 광활성층(140) 상에 박막으로 형성된다.The hole transport layer 150 is composed of organic spiroza molecule (Spiro-OMeTAD), chlorobenzene, 4-tert-butylpyridine, and lithium bis (trifluoromethylsulfonyl) amide (lithium bis). (trifluoromethylsulfonyl) imide) is mixed into a thin film on the photoactive layer 140 through spin coating.
여기서, 유기 스피로자 분자(Spiro-OMeTAD)는 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobi-fluorene이다. 클로로벤젠은 723mg/mL, 4-tert-부틸피리딘은 288μL/mL, 리튬 비스(트리플루오로메틸술포닐)아미드는 520 mg/mL일 수 있다.Herein, the organic spiroza molecule (Spiro-OMeTAD) is 2,2 ', 7,7'-tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'-spirobi-fluorene. Chlorobenzene may be 723 mg / mL, 4-tert-butylpyridine is 288 μL / mL, and lithium bis (trifluoromethylsulfonyl) amide may be 520 mg / mL.
금속전극(160)은 금(Au) 재질로 80㎚의 두께로 형성될 수 있다.The metal electrode 160 may be formed of gold (Au) to a thickness of 80 nm.
도 7은 실시예와 비교예의 광전류 밀도 및 전압 특성을 비교한 그래프이다.7 is a graph comparing photocurrent density and voltage characteristics of Examples and Comparative Examples.
도 7을 참조하면, 실시예는 도 6의 페로브스카이트 태양전지이다. 비교예는 PCBM을 3mg/mL의 클로로포름(chloroform)에 용해한 용액을 스핀 코팅을 통해 코팅하여 PCBM 박막 즉, 전자수송층을 형성한다. 전자수송층 이외의 다른 층은 도 6에 기재된 방식과 동일하게 형성된다. Referring to FIG. 7, the embodiment is the perovskite solar cell of FIG. 6. In Comparative Example, a solution of PCBM dissolved in 3 mg / mL of chloroform was coated by spin coating to form a PCBM thin film, that is, an electron transport layer. Layers other than the electron transport layer are formed in the same manner as described in FIG.
즉, 실시예는 반도체형 가교제가 포함된 PCBM 전자수송체를 사용한 페로브스카이트 태양전지를 나타내고, 비교예는 반도체형 가교제 없이 PCBM만 전자수송체를 사용한 페로브스카이트 태양전지를 나타낸다.That is, the example shows a perovskite solar cell using a PCBM electron transporter containing a semiconductor crosslinking agent, and the comparative example shows a perovskite solar cell using only an electron transporter of PCBM without a semiconductor crosslinking agent.
실시예와 비교예에 대한 태양전지 성능 평가는 실리콘 다이오드(si diode)로 캘리브레이션(calibration)된 AM 15 조건에서 100 mW/cm2 세기의 빛을 조사할 수 있는 크세논 램프(Xe lamp)를 이용한 솔라 시뮬레이터로 광원을 형성하였다. 또한, 광조사에 따른 소자 내부 광전류 밀도-전압 특성 변화는 키슬리 2400 소스미터(Keithley 2400 source meter)를 이용하여 기록하였다. 아울러, 태양전지의 에너지 변환 효율(Power Conversion Efficiency, PCE)은 아래 수학식 1을 통해 계산하였다.Solar cell performance evaluation of the Examples and Comparative Examples was performed using a Xen lamp, which can irradiate 100 mW / cm 2 intensity light under an AM 15 condition calibrated with a silicon diode. The light source was formed with a simulator. In addition, the photocurrent density-voltage characteristic change of the device according to light irradiation was recorded using a Keithley 2400 source meter. In addition, the energy conversion efficiency of the solar cell (Power Conversion Efficiency, PCE) was calculated through the following equation (1).
Figure PCTKR2018016019-appb-M000001
Figure PCTKR2018016019-appb-M000001
비교예는 개방전압이 0.92V, 단락전류밀도가 16.7mA/cm2, 곡선인자가 44.8%로서, 결과적으로 에너지 변환 효율(PCE)이 6.90%를 나타낸다. 반면에, 실시예는 개방전압이 0.97V, 단락전류밀도가 17.7mA/cm2, 곡선인자가 62.0%로서, 결과적으로 에너지 변환 효율(PCE)이 10.60%를 나타낸다In the comparative example, the open voltage was 0.92 V, the short-circuit current density was 16.7 mA / cm 2 , and the curve factor was 44.8%. As a result, the energy conversion efficiency (PCE) was 6.90%. On the other hand, the embodiment exhibits an open voltage of 0.97V, a short circuit current density of 17.7 mA / cm 2 and a curve factor of 62.0%, resulting in an energy conversion efficiency (PCE) of 10.60%.
이와 같이, 실시예는 비교예 보다 에너지 변환 효율(PCE) 특성이 더 향상된 소자 성능을 나타낸다.As such, the example shows device performance with improved energy conversion efficiency (PCE) characteristics than the comparative example.
비록 상기 설명이 다양한 실시예들에 적용되는 본 발명의 신규한 특징들에 초점을 맞추어 설명되었지만, 본 기술 분야에 숙달된 기술을 가진 사람은 본 발명의 범위를 벗어나지 않으면서도 상기 설명된 장치 및 방법의 형태 및 세부 사항에서 다양한 삭제, 대체, 및 변경이 가능함을 이해할 것이다. 따라서, 본 발명의 범위는 상기 설명에서보다는 첨부된 특허청구범위에 의해 정의된다. 특허청구범위의 균등 범위 안의 모든 변형은 본 발명의 범위에 포섭된다.Although the foregoing description has been focused on the novel features of the invention as applied to various embodiments, those skilled in the art will appreciate that the apparatus and method described above without departing from the scope of the invention. It will be understood that various deletions, substitutions, and changes in the form and details of the invention are possible. Accordingly, the scope of the invention is defined by the appended claims rather than in the foregoing description. All modifications within the scope of equivalents of the claims are to be embraced within the scope of the present invention.

Claims (22)

  1. 소정의 기판 상에 전자 또는 홀 수송층을 형성하기 위한 용액을 코팅하는 단계; 및Coating a solution for forming an electron or hole transport layer on a predetermined substrate; And
    상기 용액의 가교반응을 통해 박막을 형성하는 단계;를 포함하되, Forming a thin film through the cross-linking reaction of the solution; including;
    상기 용액은, 유기 반도체 물질과 함께, 아지드계(azid group) 작용기와 페닐 디이소시아네이트(Phenyl DiIsocyanate, PDI) 작용기로 구성된 반도체형 가교제(crosslinker)가 포함되는 것인 박막의 형성 방법.The solution includes a semiconductor crosslinker composed of an azid group functional group and a phenyl diisocyanate (PDI) functional group together with an organic semiconductor material.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 물질과 상기 반도체형 가교제는, 70%와 30%의 비율소 구성되는 것인 박막의 형성 방법.The organic semiconductor material and the semiconductor cross-linking agent is a method of forming a thin film which is composed of a proportion of 70% and 30%.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 용액의 용매는, 극성 지양자성 유기 용매인 것인 박막의 형성 방법.The solvent of the said solution is a formation method of the thin film which is a polar protic organic solvent.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 용매는, DMF(N,N-dimethylformamide), DMSO(DiMethyl SulfOxide), 아세톤(Acetone), 아세토나이트릴(Acetonitrile), 디클로로메탄(Dichloromethane), THF(Tetrahydrofuran) 중 어느 하나의 것 또는 둘 이상의 혼합된 것인 박막의 형성 방법.The solvent is one of DMF (N, N-dimethylformamide), DMSO (DiMethyl SulfOxide), Acetone (Acetone), Acetonitrile, Dichloromethane, THF (Tetrahydrofuran), or a mixture of two or more. The method of forming a thin film.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 용매는, 최종 농도가 3mg/mL인 박막의 형성 방법.The solvent is a method of forming a thin film having a final concentration of 3 mg / mL.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 반도체형 가교제는, The semiconductor crosslinking agent,
    상기 유기 반도체 물질이 n형일 경우에 파이 콘쥬게이션(pi conjugation)이 구비된 n형 크로모포어(chromophore)가 포함되는 것인 박막의 형성 방법.And n-type chromophore with pi conjugation when the organic semiconductor material is n-type.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 반도체형 가교제는, The semiconductor crosslinking agent,
    상기 유기 반도체 물질이 p형일 경우에 파이 콘쥬게이션이 구비된 p형 크로모포어가 포함되는 것인 박막의 형성 방법.If the organic semiconductor material is a p-type, the method of forming a thin film comprising a p-type chromophor with pie conjugation.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 물질은, 알킬기를 가진 n형으로 플러렌 유도체인 박막의 형성 방법.The organic semiconductor material is an n-type fullerene derivative having an alkyl group.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 플러렌 유도체는, PCBM(Phenyl-C61-Butyric acid Methyl ester)인 박막의 형성 방법.The fullerene derivative is a method of forming a thin film is PCBM (Phenyl-C61-Butyric acid Methyl ester).
  10. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 물질은, 알킬기를 가진 p형으로 P3HT(poly(3-hexylthiophene))인 박막의 형성 방법.The organic semiconductor material is a p-type having an alkyl group P3HT (poly (3-hexylthiophene)) forming method of the thin film.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 코팅 단계는,The coating step,
    스핀 코팅, 그라비아 오프셋 코팅, 바 코팅, 슬롯-다이 코팅, 롤 코팅 중 어느 하나의 방식을 이용하는 것인 박막의 형성 방법.Method of forming a thin film using any one of spin coating, gravure offset coating, bar coating, slot-die coating, roll coating.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 형성 단계는, 열처리 또는 자외선처리를 통해 가교반응을 유도하고,The forming step, induces a crosslinking reaction through heat treatment or ultraviolet treatment,
    상기 열처리를 진행할 경우에, 180℃에서 1분간 진행하는 것인 박막의 형성 방법.In the case of performing the heat treatment, the method of forming a thin film to proceed for 1 minute at 180 ℃.
  13. 제 1 항에 따른 박막 형성방법으로 형성된 박막.A thin film formed by the method of forming a thin film according to claim 1.
  14. 하부층부터 기판, 투명전극층, 전자수송층, 광활성층, 정공수송층, 금속전극이 적층되는 페로브스카이트 태양전지에 있어서,In a perovskite solar cell in which a substrate, a transparent electrode layer, an electron transport layer, a photoactive layer, a hole transport layer, and a metal electrode are stacked from a lower layer,
    상기 전자수송층 또는 상기 정공수송층은, The electron transport layer or the hole transport layer,
    유기 반도체 물질과 반도체형 가교제를 용매에 혼합하여 구성된 용액을 코팅하고, 상기 용액의 가교반응을 통해 박막으로 형성하되,The organic semiconductor material and the semiconductor cross-linking agent is mixed with a solvent to coat a solution, and formed into a thin film through the cross-linking reaction of the solution,
    상기 반도체형 가교제는, The semiconductor crosslinking agent,
    아지드계 작용기와 페닐 디이소시아네이트 작용기로 구성된 것인 페로브스카이트 태양전지.A perovskite solar cell comprising an azide functional group and a phenyl diisocyanate functional group.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 유기 반도체 물질과 상기 반도체형 가교제는, 70%와 30%의 비율로 구성되는 것인 페로브스카이트 태양전지.The organic semiconductor material and the semiconductor cross-linking agent, perovskite solar cell is composed of a ratio of 70% and 30%.
  16. 제 14 항에 있어서,The method of claim 14,
    상기 전자수송층은, The electron transport layer,
    상기 유기 반도체 물질이 알킬기를 가진 n형이고, 상기 반도체형 가교제에 파이 콘쥬게이션이 구비된 n형 크로모포어가 포함되는 것인 페로브스카이트 태양전지.The perovskite solar cell of claim 1, wherein the organic semiconductor material is an n-type having an alkyl group, and the n-type chromophore having pie conjugation is included in the semiconductor-type crosslinking agent.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 유기 반도체 물질은, 플러렌 유도체인 것인 페로브스카이트 태양전지.The organic semiconductor material is a perovskite solar cell is a fullerene derivative.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 플러렌 유도체는, PCBM(Phenyl-C61-Butyric acid Methyl ester)인 페로브스카이트 태양전지.The fullerene derivative is a perovskite solar cell of PCBM (Phenyl-C61-Butyric acid Methyl ester).
  19. 제 14 항에 있어서,The method of claim 14,
    상기 정공수송층은, The hole transport layer,
    상기 유기 반도체 물질이 알킬기를 가진 p형이고, 상기 반도체형 가교제에 파이 콘쥬게이션이 구비된 p형 크로모포어가 포함되는 것인 페로브스카이트 태양전지.The organic semiconductor material is a p-type having an alkyl group, the perovskite solar cell comprising a p-type chromophore provided with pie conjugation in the semiconductor cross-linking agent.
  20. 제 14 항에 있어서,The method of claim 14,
    상기 용액의 용매는, 극성 지양자성 유기 용매인 것인 페로브스카이트 태양전지.The solvent of the solution is a perovskite solar cell that is a polar protic organic solvent.
  21. 제 20 항에 있어서,The method of claim 20,
    상기 용매는, DMF(N,N-dimethylformamide), DMSO(DiMethyl SulfOxide), 아세톤(Acetone), 아세토나이트릴(Acetonitrile), 디클로로메탄(Dichloromethane), THF(Tetrahydrofuran) 중 어느 하나의 것 또는 둘 이상의 혼합된 것인 페로브스카이트 태양전지.The solvent is one of DMF (N, N-dimethylformamide), DMSO (DiMethyl SulfOxide), acetone (Acetone), acetonitrile, Dichloromethane, THF (Tetrahydrofuran), or a mixture of two or more. Perovskite solar cell which became.
  22. 제 21 항에 있어서,The method of claim 21,
    상기 용매는, 최종 농도가 3mg/mL인 페로브스카이트 태양전지.The solvent is a perovskite solar cell of the final concentration of 3mg / mL.
PCT/KR2018/016019 2018-08-24 2018-12-17 Thin film, formation method therefor, and perovskite solar cell comprising thin film WO2020040361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180099091A KR102065554B1 (en) 2018-08-24 2018-08-24 Thin film, method of forming thin film, perovskite solarcell including thin film
KR10-2018-0099091 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040361A1 true WO2020040361A1 (en) 2020-02-27

Family

ID=69153261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016019 WO2020040361A1 (en) 2018-08-24 2018-12-17 Thin film, formation method therefor, and perovskite solar cell comprising thin film

Country Status (2)

Country Link
KR (1) KR102065554B1 (en)
WO (1) WO2020040361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285035A (en) * 2021-05-19 2021-08-20 华能新能源股份有限公司 Conjugated polymer doping-based composite functional film and preparation method and application thereof
WO2024067311A1 (en) * 2022-09-28 2024-04-04 Tcl科技集团股份有限公司 Photoelectric device and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215864A1 (en) * 2006-03-17 2007-09-20 Luebben Silvia D Use of pi-conjugated organoboron polymers in thin-film organic polymer electronic devices
JP2010283316A (en) * 2009-06-08 2010-12-16 Keiichi Uno Protective sheet for solar cell, and solar cell module using the same
KR20150054900A (en) * 2012-09-07 2015-05-20 노발레드 게엠베하 Charge transporting semi-conducting material and semi-conducting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513599B2 (en) * 2004-07-29 2010-07-28 セイコーエプソン株式会社 Composition for conductive material, conductive material, hole transport layer, electronic device and electronic apparatus
JP2010005864A (en) * 2008-06-25 2010-01-14 Nagano Jeco Co Ltd Hopper dryer and tank loaded on hopper dryer, and method for using hopper dryer
EP2566875B1 (en) * 2010-05-03 2016-01-06 Merck Patent GmbH Formulations and electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215864A1 (en) * 2006-03-17 2007-09-20 Luebben Silvia D Use of pi-conjugated organoboron polymers in thin-film organic polymer electronic devices
JP2010283316A (en) * 2009-06-08 2010-12-16 Keiichi Uno Protective sheet for solar cell, and solar cell module using the same
KR20150054900A (en) * 2012-09-07 2015-05-20 노발레드 게엠베하 Charge transporting semi-conducting material and semi-conducting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMAIA DIAZ DE ZERIO: "Glass Forming Acceptor Alloys for Highly Effiient and Thermally Stable Ternary Organic Solar Cells", ADVANCED FUNCTIONAL MATERIALS, vol. 8, no. 28, pages 1 - 18, XP055688410 *
LIANG YAO: "Catalyst-Free, Fast, and Tunable Synthesis for Robust Covalent Polymer Network Semiconducting Thin Films", ADVANCED FUNCTIONAL MATERIALS, vol. 28, no. 17, pages 1 - 8, XP055688409 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285035A (en) * 2021-05-19 2021-08-20 华能新能源股份有限公司 Conjugated polymer doping-based composite functional film and preparation method and application thereof
WO2024067311A1 (en) * 2022-09-28 2024-04-04 Tcl科技集团股份有限公司 Photoelectric device and manufacturing method therefor

Also Published As

Publication number Publication date
KR102065554B1 (en) 2020-01-13

Similar Documents

Publication Publication Date Title
JP5649970B2 (en) Processing additives for manufacturing organic photovoltaic cells
US10714270B2 (en) Photoelectric conversion device and method for manufacturing the same
WO2014109610A1 (en) Method for manufacturing high-efficiency inorganic-organic hybrid solar cell
WO2012002694A4 (en) Organic solar cell and manufacturing method thereof
CN104795499A (en) Organic and inorganic hybrid perovskite-based solar cell and method for manufacturing same
WO2013180361A1 (en) Functional layer for organic electron device containing non-conjugated polymer having amine group, and organic electron device containing same
US20090194167A1 (en) Methods of Forming Photoactive Layer
WO2010120082A2 (en) Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
WO2015167230A1 (en) Solar cell and manufacturing method therefor
WO2015167225A1 (en) Organic solar cell and manufacturing method therefor
WO2011062457A2 (en) Organic-inorganic hybrid solar cell and manufacturing method thereof
KR20190043316A (en) Perovskite solar cell and preparation method thereof
WO2011040750A2 (en) Parallel-type tandem organic solar cell
WO2014200309A1 (en) Organic photovoltaic cell and method for manufacturing same
WO2020040361A1 (en) Thin film, formation method therefor, and perovskite solar cell comprising thin film
WO2010107261A2 (en) Solar cell and a production method therefor
WO2016209005A1 (en) Perovskite-based solar cell using graphene as conductive transparent electrode
WO2010110590A2 (en) Solar cell, and method for producing same
WO2017217727A1 (en) Organic solar cell and method for manufacturing same
WO2011078537A2 (en) Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same
EP2985801B1 (en) Photoactive layer, organic solar cell comprising same, and manufacturing method therefor
WO2017078302A1 (en) Broadband sensing all-polymer organic optoelectronic device
WO2017155362A1 (en) Organic solar cell and method for manufacturing same
KR101076404B1 (en) Polymer Solar Cell with Polyaniline Graft Copolymer and Method for Preparing the Same
WO2013100284A1 (en) Method for manufacturing organic solar cell and the organic solar cell manufacturing by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930722

Country of ref document: EP

Kind code of ref document: A1