WO2020039954A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020039954A1
WO2020039954A1 PCT/JP2019/031307 JP2019031307W WO2020039954A1 WO 2020039954 A1 WO2020039954 A1 WO 2020039954A1 JP 2019031307 W JP2019031307 W JP 2019031307W WO 2020039954 A1 WO2020039954 A1 WO 2020039954A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
bit
gradation
output
display device
Prior art date
Application number
PCT/JP2019/031307
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 田尻
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2020039954A1 publication Critical patent/WO2020039954A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to a display device that displays an image using a light modulation element.
  • gradation control is performed by a PWM (Pulse Width Modulation) method.
  • PWM Pulse Width Modulation
  • the brightness of the light source is kept constant and the width of the light emission time of the light source is changed according to the brightness, thereby enabling a multi-step gradation expression.
  • a technique has been proposed in which one frame is divided into a plurality of subframes, and the luminance of the light source is variably controlled in subframe units (see Patent Document 1).
  • image data for each gradation is transferred to the light modulation element prior to a display period for each gradation.
  • a display device includes a light source that outputs light that is a source of illumination light and a bit plane for each gradation bit within a display period allocated to each of the plurality of gradation bits.
  • a light modulation element for modulating the illumination light based on the data; a display period of the lowest gradation bit of the plurality of gradation bits as T1; and a display period of the gradation bit one stage higher than the lowest as T2.
  • a period control unit that variably controls a display period for each gradation bit in the light modulation element so that T2 ⁇ T1> T2 ⁇ 1/2, and a light source at least in a display period of the lowest gradation bit.
  • a light source output controller for variably controlling the output.
  • the display period of the lowest gradation bit of the plurality of gradation bits is T1
  • the display period of the gradation bit one step higher than the lowest is T2.
  • the display period for each gradation bit in the light modulation element is variably controlled so that T2 ⁇ T1> T2 ⁇ 1/2, and at least the output of the light source in the display period of the least significant gradation bit is variably controlled.
  • FIG. 9 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a comparative example.
  • 1 is a configuration diagram schematically illustrating a configuration example of a projector as a display device according to a first embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram schematically illustrating an example of a frame configuration of an image in the display device according to the first embodiment.
  • FIG. 2 is a block diagram schematically illustrating a configuration example of a control system of the display device according to the first embodiment.
  • 9 is a timing chart illustrating an example of light emission control of a light source in a display device according to a comparative example.
  • FIG. 9 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in a display device according to a comparative example. 5 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a first modification of the first embodiment.
  • FIG. 11 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a second modification of the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating an example of an ideal output waveform and an actual output waveform of a light source in the display device according to the first embodiment.
  • 9 is a timing chart illustrating an example of light emission control of a light source in a display device according to a second embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of an output waveform of a light source in the display device according to the first embodiment and an output waveform of a light source in the display device according to the second embodiment.
  • FIG. 1 First Embodiment (Technique for lowering the light source output so as to lengthen the display period of LSB) 1.1 Configuration of Display Device According to First Embodiment (FIGS. 2 to 4) 1.2 Control Operation of Display Device According to First Embodiment (FIGS. 5 to 8) 1.3 Effects 1.4 Modifications of First Embodiment (FIGS. 9 to 11) 2. 2. Second Embodiment (Technique for shortening light emission time of light source so as to lengthen display period of LSB) (FIGS. 12 to 13) 3. Other embodiments
  • Comparative Example> (Overview and Issues of PWM Display Device According to Comparative Example)
  • a light source continuously emits light having a constant luminance to a light modulation element.
  • the light modulation element controls the modulation of light into two states of light and dark for each pixel according to the luminance of an image to be displayed.
  • the display device as light modulation control, on (light emission) / (non-light emission) off control of light reaching the image display surface is performed in a pulsed manner.
  • the light modulation element changes the pulse width of light by changing the on / off switching timing for each pixel, and performs gradation expression. By irradiating the light modulated in this manner on the image display surface, an image is displayed in multiple gradations.
  • an image of 16 gradations can be represented by combining at least four types of images having different luminances within a predetermined period (usually one frame). That is, when expressing 16 gradations, first, the luminance is quantized into, for example, four gradation bits for each pixel. Then, for example, one frame of image data is represented by a combination of four types of image data weighted by each gradation bit. At this time, a group of image data for each gradation bit is usually called a “bit plane”.
  • the bit plane is an information surface of luminance for each gradation bit.
  • the output of the light source is controlled to be constant.
  • a technique for variably controlling the output of a light source has been proposed in order to improve image quality and the like.
  • FIG. 1 illustrates an example of light emission control of a light source in a display device according to a comparative example.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-78866
  • one frame is divided into a plurality of subframes SF1, SF2, SF3, and SF4 having different lengths.
  • the display periods of R (red), G (green), and B (blue) are dispersed in one frame.
  • the display period is shortened in the order of the plurality of subframes SF1, SF2, SF3, and SF4.
  • a bit plane of gradation bits corresponding to the display period of each color is displayed for each subframe.
  • the emission intensity of each color is changed for each subframe in synchronization with the display period of each color. This makes it possible to express the gradation more precisely than in the case where the output of the light source is controlled to be constant, and particularly, the gradation expression on the dark side is improved.
  • the emission intensity of each color is changed for each subframe, but the display period of each gradation bit of each color and the emission The period is fixed.
  • the light emission intensity of each color of the sub-frames SF2, SF3, and SF4 changes, but FIG. 1B and FIG. 1C. There is no change in the light emission period of each color.
  • bit plane data for each gradation it is necessary to transfer bit plane data for each gradation to the light modulation element in advance before a display period for each gradation.
  • the data of the bit plane of the sub-frame SF4 in FIG. 1A needs to be transferred to the light modulation element within the display period of the sub-frame SF3 earlier than that. Therefore, the transfer period during which the data of the bit plane is transferred needs to be shorter than at least the display period of the least significant gradation bit (LSB).
  • LSB least significant gradation bit
  • FIG. 2 schematically illustrates a configuration example of the display device according to the first embodiment of the present disclosure.
  • FIG. 2 illustrates a single-panel projector 10 as an example of the display device.
  • the projector 10 includes a plurality of light sources, a plurality of condensing optical systems, a color combining unit 13, an illumination optical system 14, a TIR (Total Internal Internal Reflection) prism 15, a display panel 16, and a projection optical system 17.
  • a plurality of light sources a plurality of condensing optical systems
  • a color combining unit 13 an illumination optical system 14
  • a TIR (Total Internal Internal Reflection) prism 15, a display panel 16, and a projection optical system 17.
  • Each of the plurality of light sources outputs a color light which is a source of the illumination light.
  • the plurality of light sources include a red light source 11R, a green light source 11G, and a blue light source 11B.
  • Each of the plurality of light sources is composed of a solid-state light source such as a semiconductor laser (LD: Laser Diode) or an LED (Light Emitting Diode).
  • LD Laser Diode
  • LED Light Emitting Diode
  • the plurality of light-collecting optical systems include a red light-collecting optical system 12R, a green light-collecting optical system 12G, and a blue light-collecting optical system 12B.
  • Each of the red light collecting optical system 12R, the green light collecting optical system 12G, and the blue light collecting optical system 12B includes a light collecting lens and the like.
  • the red light condensing optical system 12R is provided on the optical path of the red light emitted from the red light source 11R, and condenses the red light toward the color combining unit 13.
  • the green light condensing optical system 12G is provided on the optical path of the green light emitted from the green light source 11G, and condenses the green light toward the color combining unit 13.
  • the blue light condensing optical system 12B is provided on the optical path of the blue light emitted from the blue light source 11B, and condenses the blue light toward the color combining unit 13.
  • the color combining unit 13 has a first dichroic mirror 31 and a second dichroic mirror 32.
  • the first dichroic mirror 31 is provided on an optical path of blue light and green light.
  • the first dichroic mirror 31 has a property of transmitting blue light and reflecting green light, and combines the optical paths of blue light and green light.
  • the second dichroic mirror 32 is provided on an optical path of the blue light, the green light, and the red light after being combined by the first dichroic mirror 31.
  • the second dichroic mirror 32 has a property of transmitting blue light and green light and reflecting red light, and combines the optical paths of blue light and green light with the optical path of red light.
  • the illumination optical system 14 includes a light collecting optical system 41, a light pipe 42, and a light collecting optical system 43. Each color light from a plurality of light sources enters the illumination optical system 14 via the color synthesis unit 13.
  • the condenser optical system 41 and the condenser optical system 43 include a condenser lens and the like.
  • the condensing optical system 41 condenses each color light toward the light pipe 42.
  • the light pipe 42 equalizes each color light to generate illumination light of each color.
  • the condensing optical system 43 condenses the illumination light of each color from the light pipe 42 toward the TIR prism 15.
  • the display panel 16 is illuminated at a desired angle by the illumination light of each color generated by the illumination optical system 14 via the TIR prism 15.
  • the TIR prism 15 has a pair of prisms having a triangular cross section.
  • the TIR prism 15 deflects illumination light from the illumination optical system 14 toward the display panel 16 at a desired angle. Further, the TIR prism 15 emits a projection image from the display panel 16 toward the projection optical system 17.
  • the display panel 16 is a light modulation element such as a mirror array device having a plurality of mirrors.
  • the display panel 16 generates a projection image by modulating the illumination light for each color based on the image signal Vin.
  • the illumination light is deflected toward the projection optical system 17 via the TIR prism 15 by changing the tilt angle of each mirror based on the image signal Vin.
  • the mirror array device is a micromirror array device such as a DMD (Digital Micromirror Device) in which a plurality of micromirrors corresponding to pixels are arranged in an array (matrix).
  • the projection optical system 17 includes, for example, a plurality of lenses, and projects a projection image generated by the display panel 16 onto a projection surface such as a screen 18.
  • FIG. 3 schematically shows an example of a frame configuration of an image in the projector 10.
  • the projector 10 uses a single display panel 16 and is a so-called single-panel type, and performs full-color display in a time-division manner.
  • one frame is equally divided into R, G, and B sub-frames for display as shown in FIG.
  • Light of each wavelength of R, G, and B is emitted from the plurality of light sources in a time division manner in synchronization with the period of the subframe.
  • the display panel 16 is irradiated with illumination light of each color in a time-division manner.
  • the display panel 16 generates a projection image of each color in a time-division manner with respect to the illumination light of each color in synchronization with the timing of irradiation of each color light.
  • FIG. 4 schematically illustrates a configuration example of a control system of the projector 10.
  • the projector 10 includes a sub-frame control unit 51, a PWM sequence control unit 52, a bit plane generation unit 53, and a light source output control unit 54.
  • the sub-frame control unit 51 controls the period of each color sub-frame in one frame of the input image signal Vin.
  • the PWM sequence control unit 52 is a period control unit that controls a display period for each gradation bit of each color within a period of a subframe of each color. As shown in FIGS. 6 and 8 described later, the PWM sequence control unit 52 sets the display period of the lowest gradation bit of the plurality of gradation bits in the subframe period of each color to T1 and the display period of the lowermost gradation bit to be lower than the lowest. Assuming that the display period of the gradation bit of one higher order is T2, The display period of each gray scale bit on the display panel 16 is variably controlled so that T2 ⁇ T1> T2 ⁇ 1/2.
  • the display period T1 of the lowermost grayscale bit exceeds the display period T2 of the uppermost grayscale bit, the grayscale relationship between the lowermost grayscale bit and the upper grayscale bit is reversed.
  • the display period T1 of the lowermost grayscale bit is less than half of the display period T2 of the grayscale bit of the next higher level, the display period T1 of the lowermost grayscale bit becomes the same as that of a general PWM type display device. It becomes equal to or less than that, and as shown in FIG. 7 described later, there is no room in the transfer time of the data to be transferred next, and a failure occurs in the data transfer.
  • the bit plane generation unit 53 generates bit plane data for each gradation bit corresponding to each of the plurality of gradation bits and displayed during the sub-frame of each color based on the image signal Vin.
  • the bit plane generation unit 53 transfers the generated bit plane data for each gradation bit to the display panel 16 for each gradation bit prior to the display period for each gradation bit.
  • the light source output control unit 54 determines the light source output control unit 54 based on the display period for each gradation bit of each color within the subframe period of each color determined by the PWM sequence control unit 52. , The output (light emission timing and light emission intensity) of each light source of the red light source 11R, the green light source 11G, and the blue light source 11B.
  • the light source output control unit variably controls the output of each light source in at least the display period of the lowest gradation bit.
  • the light source output control unit 54 outputs the output of each light source during the display period of the lowest gradation bit to the light source of each light source during the display period of the other gradation bits other than the lowest gradation bit among the plurality of gradation bits. Vary to output. As shown in FIGS. 6 and 8 described below, the light source output control unit 54 lowers the output of each light source during the display period of the lowest gradation bit than the output of the light source during the display period of the other gradation bits. Let it.
  • the display panel 16 modulates the illumination light based on the data of the bit plane for each gradation bit within the display period allocated to each of the plurality of gradation bits.
  • FIG. 5 is a timing chart illustrating an example of light emission control of a light source in a display device according to a comparative example.
  • FIG. 6 is a timing chart illustrating an example of light emission control of the light source in the display device (projector 10) according to the first embodiment.
  • FIG. 7 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the comparative example.
  • FIG. 8 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the first embodiment.
  • FIGS. 5 to 8 show timing charts in an arbitrary sub-frame period among the sub-frames of each color shown in FIG.
  • the same light emission control is performed for each color within the subframe period of each color.
  • FIG. 5A and FIG. 6A show the state of the brightness (gradation) of the display image (bit plane).
  • B shows the output state of the light source (red light source 11R, green light source 11G, or blue light source 11B) of a color corresponding to the color of the display image.
  • C shows the state of an arbitrary pixel of the display panel 16. The display panel 16 controls the display state of each pixel to two states of ON / OFF (light emission (bright) / non-light emission (dark)).
  • D shows the transfer timing of the bit plane data for each gradation bit transferred from the bit plane generation unit 53 to the display panel 16.
  • FIGS. 5 and 6 (A) and (D), and FIGS. Bit plane data is transferred in the order of b4, b3, b2, and b1, and the bit plane of each gradation bit is displayed.
  • the least significant gradation bit is b1
  • the gradation bit one stage higher than the gradation bit b1 is b2
  • the gradation bit one stage higher than the gradation bit b2 is b3
  • the gradation bit b3 is the same.
  • the gradation bit one step higher is b4.
  • FIG. 7 shows a more specific state of brightness (gradation) of a display image (bit plane) and a transfer timing of bit plane data in the display device according to the comparative example.
  • FIG. 7 shows, as a specific example, the state of the bit plane for each gray scale bit corresponding to the 16 gray scales, 15 gray scales, and 14 gray scales.
  • FIG. 8 shows a comparison between the display period of each gradation bit in the display device according to the comparative example and the display period of each gradation bit in the display device (example) according to the first embodiment.
  • FIG. 8 shows the output state of the light source and the transfer timing of bit plane data in the display device according to the first embodiment.
  • the display period T3 of the gradation bit b3 is 1 / of the display period T4 of the gradation bit b4,
  • the display period T2 of the gradation bit b2 is 1 / of the display period T3 of the gradation bit b3, and the display period T1 of the gradation bit b1 is ⁇ of the display period T2 of the gradation bit b2.
  • the display device in the display device according to the first embodiment, as shown in FIGS. 6A and 6B and FIG.
  • the output of the light source in the display period T1 of b1 is made lower than the output of the light source in the display period of another gradation bit.
  • the PWM sequence control unit 52 in order to maintain the original brightness of the image by the reduction in the output of the light source, the PWM sequence control unit 52 is more compared to the display device according to the comparative example.
  • the display period T1 of the lower gradation bit b1 is lengthened. Further, in the display device according to the first embodiment, as shown in FIG.
  • the display period T1 of the lowermost gradation bit b1 is made longer.
  • the PWM sequence control unit 52 appropriately adjusts the display period of the other gradation bits.
  • the display periods T4 and T3 of the gradation bits b4 and b3 are adjusted to be shorter than in the display device according to the comparative example.
  • the light source output control unit 54 is compared with the display device according to the comparative example in order to maintain the original brightness of the image by shortening the display periods T4 and T3.
  • the output of the light source in the display periods T4 and T3 of the gradation bits b4 and b3 is increased.
  • the display period T4 of the gradation bit b4 is adjusted to be shorter than that of the display device according to the comparative example.
  • the light source output control unit 54 sets the gradation bit b4 to be smaller than that of the display device according to the comparative example. The output of the light source in the display period T4 is increased.
  • the display period T1 (PWM width) of the least significant gradation bit b1 is T_b1, as shown in FIGS. 5A and 5D, FIGS.
  • the display period T1 of the lowest gradation bit b1 the data of the bit plane of the first gradation bit (b4) in the next subframe is transferred.
  • the display period T1 of the least significant gradation bit b1 is too short, as shown in FIG. 7, there is no room in the transfer time of the next data to be transferred, and a failure occurs in the data transfer.
  • the actual gradation (brightness) is an integral of the brightness due to the PWM control. Therefore, if the output of the light source of the lowest gradation bit b1 is P_b1, P_b1 ⁇ T_b1.
  • the output (P_b1_new) of the light source of the lowest gradation bit b1 is changed by the light source output control unit 54 to the output (P_b1) of the display device according to the comparative example. ) Is controlled (P_b1> P_b1_new).
  • the display period T1 (PWM width) of the least significant gradation bit b1 in the display device according to the first embodiment is T_b1_new.
  • P_b1 ⁇ T_b1 P_b1_new ⁇ T_b1_new
  • the relationship becomes T_b1 ⁇ T_b1_new. Therefore, in the display device according to the first embodiment, with respect to the data transfer time T_d, T_b1_new> T_d, and as shown in FIG. 5D and FIG. 6D and at the bottom of FIG. 7 and FIG. As compared with the display device according to the example, a large margin is provided for the data transfer time.
  • the display device it is possible to extend the display period of the least significant gradation bit as compared with a general PWM type display device. It is possible to secure a long data transfer time. That is, high frame rate and high resolution data can be transferred within the display period of the lowest gradation bit without increasing the data transfer speed. As a result, it is possible to increase the frame rate and increase the number of pixels while maintaining a circuit configuration with a low data transfer speed.
  • FIG. 9 illustrates an example of light emission control of a light source in a display device according to a first modification of the first embodiment.
  • the light source output control unit 54 decreases the output stepwise as the output of the light source at the start of the subframe period is high and the end of the subframe period is approaching.
  • light emission control as illustrated in FIG. 9 may be performed in response thereto. That is, the light source output control unit 54 sets the plurality of light source outputs so that the output of the light source at the start of the sub-frame period and the output of the light source at the end of the sub-frame period are close to each other (to be substantially the same). The output of the light source in each display period of the gray scale bit may be changed.
  • the output of the light source at the start of the sub-frame period and the output of the light source at the end of the sub-frame period are substantially equal to each other, at the time of display transition between two adjacent sub-frames (For example, at the time of transition from the red sub-frame to the green sub-frame shown in FIG. 3), the change in luminance is small, so that flicker and other flickers are suppressed, and the image quality is improved.
  • FIG. 10 illustrates an example of light emission control of a light source in a display device according to a second modification of the first embodiment.
  • FIG. 11 illustrates an example of an ideal output waveform and an actual output waveform of the light source in the display device according to the first embodiment.
  • the light source output control unit 54 discretely changes the output control of the light source.
  • continuous light emission control as shown in FIG. 10 may be performed. That is, the light source output control unit 54 may continuously change the output of the light source in each display period of the plurality of gradation bits.
  • Second Embodiment> a display device according to a second embodiment of the present disclosure will be described.
  • portions that are substantially the same as the components of the display device according to the first embodiment are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • FIG. 12 is a timing chart illustrating an example of light emission control of the light source in the display device according to the second embodiment.
  • FIG. 13 shows the output waveform of the light source in the display device according to the first embodiment (FIG. 13A) and the output waveform of the light source in the display device according to the second embodiment (FIG. 13B). ) Is shown.
  • (A) shows the state of the brightness (gradation) of the display image (bit plane).
  • (B) shows the output state of the light source (red light source 11R, green light source 11G, or blue light source 11B) of a color corresponding to the color of the display image.
  • (C) shows the state of an arbitrary pixel of the display panel 16.
  • (D) shows the transfer timing of the bit plane data for each gradation bit transferred from the bit plane generation unit 53 to the display panel 16.
  • the light source output control unit 54 controls the sub-color of each color similarly to the display device according to the comparative example (FIG. 5) except for the display period T1 of the lowest gradation bit b1. Light emission control is performed so that the output of the light source is constant during the frame period. However, in the display device according to the second embodiment, the light source output control unit 54 partially controls the output of the light source during the display period T1 of the lowest gradation bit b1 to display another gradation bit. The output of the light source during the period.
  • the display period T1 of the lowermost gradation bit b1 is set to a period of switching between subframes of each color.
  • the PWM sequence control unit 52 has the lowermost gradation bit.
  • the display period T1 of b1 is extended from T_b1 to T_b1_new.
  • the light source output control unit 54 according to the comparative example uses the light source output control unit 54 according to the comparative example in order to maintain the original brightness of the image by the length of the display period T1 of the lowest gradation bit b1.
  • the output of the light source in the display period T1 of the lowest gradation bit b1 is reduced in the middle of the display period T1.
  • the display period T_b1_new of the lowest gradation bit b1 in the display device according to the second embodiment is set to the lowest gradation bit in the display device according to the comparative example. It is about twice as long as the display period T_b1 of b1. For this reason, the light source output control unit 54 controls the output of the light source to be turned off when about half of the display period T1 has elapsed.
  • the light emission time of the light source is shortened only within the display period T1 of the lowest gradation bit b1, so that the display device is compared with a general PWM type display device.
  • the display period T1 of the lowest gradation bit b1 can be lengthened.
  • light emission adjustment is performed only in the display period T1 of the lowest gradation bit b1, and light emission in other display periods is performed. No adjustments need to be made.
  • the display device of the present disclosure is applied to a projector, but the display device of the present disclosure can be applied to devices other than the projector.
  • the present technology can also have the following configurations.
  • the present technology having the following configuration, at least the display period of the lowest gradation bit and the output of the light source are optimized, so that it is possible to increase the frame rate and increase the number of pixels.
  • a light source that outputs light that is a source of illumination light, Within a display period allocated to each of the plurality of gradation bits, a light modulation element that modulates the illumination light based on bit plane data for each gradation bit, T2 ⁇ T1> T2 ⁇ 1/2, where T1 is the display period of the lowermost grayscale bit of the plurality of grayscale bits and T2 is the display period of the grayscale bit one level higher than the lowermost grayscale bit.
  • a period control unit that variably controls a display period for each of the gradation bits in the light modulation element,
  • a light source output control unit that variably controls an output of the light source during a display period of at least the least significant gradation bit.
  • the light source output control unit outputs the output of the light source during the display period of the least significant grayscale bit during a display period of another grayscale bit other than the least significant grayscale bit of the plurality of grayscale bits.
  • the display device according to (1) wherein the display device changes the output of the light source.
  • the period control unit controls a display period for each of the grayscale bits within a period of one subframe,
  • the light source output control unit so that the output of the light source at the start of the period of the sub-frame and the output of the light source at the end of the period of the sub-frame approach each other, each of the plurality of gradation bits
  • the light source output control unit partially lowers the output of the light source during the display period of the least significant gray scale bit than the output of the light source during the display period of the other gray scale bit.
  • the display device according to (1).
  • a bit for generating bit plane data for each gradation bit based on an image signal and transferring the bit plane data to the light modulation element for each gradation bit prior to a display period for each gradation bit The display device according to any one of (1) to (6), further including a plane generation unit.
  • a projection optical system that projects an image generated by the light modulation element,

Abstract

A display device according to the present invention is provided with: a light source for outputting light which becomes a source of illumination light; an optical modulation element that modulates the illumination light on the basis of bit plane data for each gradation bit within a display period allocated to each of the gradation bits; a period control unit that variably controls the display period for each of the gradation bits in the optical modulation element so as to achieve T2≥T1>T2·1/2, where T1 denotes a display period for a lowest-order gradation bit among the gradation bits, and T2 denotes a display period for a gradation bit higher by one order than the lowest-order gradation bit; and a light source output control unit that variably controls an output from the light source at least in the display period of the lowest-order gradation bit.

Description

表示装置Display device
 本開示は、光変調素子によって画像を表示する表示装置に関する。 The present disclosure relates to a display device that displays an image using a light modulation element.
 例えばマイクロミラーアレイ(MMA)等のミラーアレイデバイスを光変調素子として用いた表示装置では、PWM(Pulse Width Modulation;パルス幅変調)方式による階調制御が行われている。一般的なPWM方式では、光源の輝度の大きさを一定に保ち、光源の発光時間の幅を輝度に応じて変化させることによって多段階の階調表現を可能にしている。また、PWM方式において、1フレームを複数のサブフレームに分割し、サブフレーム単位で光源の輝度を可変制御する技術も提案されている(特許文献1参照)。PWM方式による階調制御では、階調ごとの表示期間に先だって、階調ごとの画像データが光変調素子に転送される。 In a display device using a mirror array device such as a micro mirror array (MMA) as a light modulation element, gradation control is performed by a PWM (Pulse Width Modulation) method. In a general PWM method, the brightness of the light source is kept constant and the width of the light emission time of the light source is changed according to the brightness, thereby enabling a multi-step gradation expression. Further, in the PWM method, a technique has been proposed in which one frame is divided into a plurality of subframes, and the luminance of the light source is variably controlled in subframe units (see Patent Document 1). In gradation control by the PWM method, image data for each gradation is transferred to the light modulation element prior to a display period for each gradation.
特開2007-78866号公報JP 2007-78866 A
 高解像度化(高画素化)および高階調化が進むにつれて光変調素子への画像データのデータ転送速度には高速化が要求される一方、回路構成上、データ転送速度の高速化が困難な場合がある。 When higher resolution (higher pixels) and higher gradations are required, the data transfer speed of image data to the light modulation element needs to be increased, while the circuit configuration makes it difficult to increase the data transfer speed. There is.
 高フレームレート化および高画素化を行うことが可能な表示装置を提供することが望ましい。 こ と が It is desirable to provide a display device capable of increasing the frame rate and the number of pixels.
 本開示の一実施の形態に係る表示装置は、照明光の元となる光を出力する光源と、複数の階調ビットのそれぞれに割り振られた表示期間内で、階調ビットごとのビットプレーンのデータに基づいて照明光を変調する光変調素子と、複数の階調ビットのうち最下位の階調ビットの表示期間をT1、最下位よりも1段階上位の階調ビットの表示期間をT2としたとき、T2≧T1>T2・1/2となるように、光変調素子における階調ビットごとの表示期間を可変制御する期間制御部と、少なくとも最下位の階調ビットの表示期間における光源の出力を可変制御する光源出力制御部とを備える。 A display device according to an embodiment of the present disclosure includes a light source that outputs light that is a source of illumination light and a bit plane for each gradation bit within a display period allocated to each of the plurality of gradation bits. A light modulation element for modulating the illumination light based on the data; a display period of the lowest gradation bit of the plurality of gradation bits as T1; and a display period of the gradation bit one stage higher than the lowest as T2. Then, a period control unit that variably controls a display period for each gradation bit in the light modulation element so that T2 ≧ T1> T2 ・ 1/2, and a light source at least in a display period of the lowest gradation bit. A light source output controller for variably controlling the output.
 本開示の一実施の形態に係る表示装置では、複数の階調ビットのうち最下位の階調ビットの表示期間をT1、最下位よりも1段階上位の階調ビットの表示期間をT2としたとき、T2≧T1>T2・1/2となるように、光変調素子における階調ビットごとの表示期間が可変制御され、少なくとも最下位の階調ビットの表示期間における光源の出力が可変制御される。 In the display device according to an embodiment of the present disclosure, the display period of the lowest gradation bit of the plurality of gradation bits is T1, and the display period of the gradation bit one step higher than the lowest is T2. At this time, the display period for each gradation bit in the light modulation element is variably controlled so that T2 ≧ T1> T2 ・ 1/2, and at least the output of the light source in the display period of the least significant gradation bit is variably controlled. You.
比較例に係る表示装置における光源の発光制御の一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a comparative example. 本開示の第1の実施の形態に係る表示装置としてのプロジェクタの一構成例を概略的に示す構成図である。1 is a configuration diagram schematically illustrating a configuration example of a projector as a display device according to a first embodiment of the present disclosure. 第1の実施の形態に係る表示装置における画像のフレーム構成の一例を概略的に示す説明図である。FIG. 3 is an explanatory diagram schematically illustrating an example of a frame configuration of an image in the display device according to the first embodiment. 第1の実施の形態に係る表示装置の制御系の一構成例を概略的に示すブロック図である。FIG. 2 is a block diagram schematically illustrating a configuration example of a control system of the display device according to the first embodiment. 比較例に係る表示装置における光源の発光制御の一例を示すタイミングチャートである。9 is a timing chart illustrating an example of light emission control of a light source in a display device according to a comparative example. 第1の実施の形態に係る表示装置における光源の発光制御の一例を示すタイミングチャートである。5 is a timing chart illustrating an example of light emission control of a light source in the display device according to the first embodiment. 比較例に係る表示装置における階調ビットごとのデータ転送の転送タイミングの一例を示すタイミングチャートである。9 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in a display device according to a comparative example. 第1の実施の形態に係る表示装置における階調ビットごとのデータ転送の転送タイミングの一例を示すタイミングチャートである。5 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the first embodiment. 第1の実施の形態の第1の変形例に係る表示装置における光源の発光制御の一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a first modification of the first embodiment. 第1の実施の形態の第2の変形例に係る表示装置における光源の発光制御の一例を示す説明図である。FIG. 11 is an explanatory diagram illustrating an example of light emission control of a light source in a display device according to a second modification of the first embodiment. 第1の実施の形態に係る表示装置における光源の理想的な出力波形と実際の出力波形との一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of an ideal output waveform and an actual output waveform of a light source in the display device according to the first embodiment. 第2の実施の形態に係る表示装置における光源の発光制御の一例を示すタイミングチャートである。9 is a timing chart illustrating an example of light emission control of a light source in a display device according to a second embodiment. 第1の実施の形態に係る表示装置における光源の出力波形と第2の実施の形態に係る表示装置における光源の出力波形との一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of an output waveform of a light source in the display device according to the first embodiment and an output waveform of a light source in the display device according to the second embodiment.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 0.比較例(図1)
 1.第1の実施の形態(LSBの表示期間が長くなるように光源出力を低下させる技術)
  1.1 第1の実施の形態に係る表示装置の構成(図2~図4)
  1.2 第1の実施の形態に係る表示装置の制御動作(図5~図8)
  1.3 効果
  1.4 第1の実施の形態の変形例(図9~図11)
 2.第2の実施の形態(LSBの表示期間が長くなるように光源の発光時間を短くする技術)(図12~図13)
 3.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be made in the following order.
0. Comparative example (FIG. 1)
1. First Embodiment (Technique for lowering the light source output so as to lengthen the display period of LSB)
1.1 Configuration of Display Device According to First Embodiment (FIGS. 2 to 4)
1.2 Control Operation of Display Device According to First Embodiment (FIGS. 5 to 8)
1.3 Effects 1.4 Modifications of First Embodiment (FIGS. 9 to 11)
2. 2. Second Embodiment (Technique for shortening light emission time of light source so as to lengthen display period of LSB) (FIGS. 12 to 13)
3. Other embodiments
<0.比較例>
(比較例に係るPWM方式の表示装置の概要と課題)
 一般的なPWM方式で階調表現を行う表示装置では、光変調素子に、光源から輝度の一定の光を連続的に照射する。光変調素子は、表示しようとする画像の輝度に応じて、画素ごとに光を明暗2つの状態に変調制御する。このとき、表示装置では、光の変調制御として、画像表示面に到達する光をパルス状にオン(発光)/(非発光)オフ制御する。そして、光変調素子は、画素ごとにオン/オフの切り替えタイミングを変化させることにより、光のパルス幅を変化させ、階調表現を行う。このようにして変調された光が画像表示面に照射されることにより多段階の階調で画像が表示される。
<0. Comparative Example>
(Overview and Issues of PWM Display Device According to Comparative Example)
In a display device that performs gradation expression by a general PWM method, a light source continuously emits light having a constant luminance to a light modulation element. The light modulation element controls the modulation of light into two states of light and dark for each pixel according to the luminance of an image to be displayed. At this time, in the display device, as light modulation control, on (light emission) / (non-light emission) off control of light reaching the image display surface is performed in a pulsed manner. Then, the light modulation element changes the pulse width of light by changing the on / off switching timing for each pixel, and performs gradation expression. By irradiating the light modulated in this manner on the image display surface, an image is displayed in multiple gradations.
 PWM方式で階調表現する場合、例えば16階調の画像は、所定期間(通常、1フレーム)内において、輝度の異なる少なくとも4種類の画像を組み合わせることにより表現することが可能である。すなわち、16階調を表現する場合には、まず、輝度を画素ごとに例えば4つの階調ビットに量子化する。そして、例えば1フレームの画像データを、各階調ビットで重み付けされた4種類の画像データの組み合わせで表現する。このとき、階調ビットごとの画像データの集まりは、通常、「ビットプレーン」と称される。ビットプレーンは、階調ビットごとの輝度の情報面である。 In the case of gradation representation by the PWM method, for example, an image of 16 gradations can be represented by combining at least four types of images having different luminances within a predetermined period (usually one frame). That is, when expressing 16 gradations, first, the luminance is quantized into, for example, four gradation bits for each pixel. Then, for example, one frame of image data is represented by a combination of four types of image data weighted by each gradation bit. At this time, a group of image data for each gradation bit is usually called a “bit plane”. The bit plane is an information surface of luminance for each gradation bit.
 上述した一般的なPWM方式の表示装置では、光源の出力は一定に制御される。これに対して、画質改善等を図るために、光源の出力を可変制御する技術が提案されている。 で は In the above-described general PWM type display device, the output of the light source is controlled to be constant. On the other hand, a technique for variably controlling the output of a light source has been proposed in order to improve image quality and the like.
 図1は、比較例に係る表示装置における光源の発光制御の一例を示している。
 例えば特許文献1(特開2007-78866号公報)では、図1の(a)に示したように、1フレームを、長さの異なる複数のサブフレームSF1,SF2,SF3,SF4に分割し、R(赤),G(緑),B(青)の各色の表示期間を1フレーム内で分散させる。図1の(a)の例では、複数のサブフレームSF1,SF2,SF3,SF4の順に、表示期間が短くなっている。各色の表示期間に対応した階調ビットのビットプレーンが各サブフレームごとに表示される。この際、図1の(b),(c)に示したように、各色の表示期間に同期させて、各サブフレームごとに各色の発光強度を変化させる。これにより、光源の出力を一定に制御する場合に比べて、階調をより精細に表現することが可能となり、特に、暗部側の階調表現が改善される。
FIG. 1 illustrates an example of light emission control of a light source in a display device according to a comparative example.
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-78866), as shown in FIG. 1A, one frame is divided into a plurality of subframes SF1, SF2, SF3, and SF4 having different lengths. The display periods of R (red), G (green), and B (blue) are dispersed in one frame. In the example of FIG. 1A, the display period is shortened in the order of the plurality of subframes SF1, SF2, SF3, and SF4. A bit plane of gradation bits corresponding to the display period of each color is displayed for each subframe. At this time, as shown in FIGS. 1B and 1C, the emission intensity of each color is changed for each subframe in synchronization with the display period of each color. This makes it possible to express the gradation more precisely than in the case where the output of the light source is controlled to be constant, and particularly, the gradation expression on the dark side is improved.
 上記比較例の技術では、図1の(b),(c)に示したように、各サブフレーム単位で各色の発光強度を変化させているが、各色の各階調ビットの表示期間、および発光期間は固定されている。例えば、図1の(b)と図1の(c)とでは、サブフレームSF2,SF3,SF4の各色の発光強度が変化しているが、図1の(b)と図1の(c)とで各色の発光期間には変化がない。 In the technique of the comparative example, as shown in FIGS. 1B and 1C, the emission intensity of each color is changed for each subframe, but the display period of each gradation bit of each color and the emission The period is fixed. For example, in FIG. 1B and FIG. 1C, the light emission intensity of each color of the sub-frames SF2, SF3, and SF4 changes, but FIG. 1B and FIG. 1C. There is no change in the light emission period of each color.
 一方、一般に、PWM方式による階調制御では、階調ごとの表示期間に先だって、階調ごとのビットプレーンのデータを事前に光変調素子に転送する必要がある。例えば、図1の(a)におけるサブフレームSF4のビットプレーンのデータは、それよりも前のサブフレームSF3の表示期間内で光変調素子に転送する必要がある。従って、ビットプレーンのデータが転送される転送期間は、少なくとも最下位の階調ビット(LSB)の表示期間よりも短くする必要がある。図1の(a)の例では、最も短いサブフレームSF4の期間内に、次のフレーム用のビットプレーンのデータを送る必要がある。 On the other hand, generally, in gradation control by the PWM method, it is necessary to transfer bit plane data for each gradation to the light modulation element in advance before a display period for each gradation. For example, the data of the bit plane of the sub-frame SF4 in FIG. 1A needs to be transferred to the light modulation element within the display period of the sub-frame SF3 earlier than that. Therefore, the transfer period during which the data of the bit plane is transferred needs to be shorter than at least the display period of the least significant gradation bit (LSB). In the example of FIG. 1A, it is necessary to send the data of the bit plane for the next frame within the shortest sub-frame SF4.
 ここで、各色の最下位の階調ビットの表示期間は、1フレーム内で表示する階調により算術的に決定される。例えば60Hzで1フレームを表示し、1フレーム内で均等にR,G,Bを切り替え、階調を256段階で表現する場合、各色の最下位の階調ビットの表示期間は下記のようになる。
 (最下位の階調ビットの表示期間)=(1/60)×(1/3)×(1/256)=21.7μs
Here, the display period of the lowest gradation bit of each color is arithmetically determined by the gradation displayed in one frame. For example, when one frame is displayed at 60 Hz and R, G, and B are switched evenly within one frame and the gradation is expressed in 256 levels, the display period of the lowest gradation bit of each color is as follows. .
(Display period of the lowest gradation bit) = (1/60) × (1/3) × (1/256) = 21.7 μs
 この最下位の階調ビットの表示期間内で、光変調素子の全画素の表示切り替え、および次に表示するビットプレーンのデータの転送を行わなくてはならない。光変調素子の画素数が例えば1920×1080の場合は、およそ100Gbpsの転送レートが必要になる。対応可能なデータ転送速度は光変調素子の回路構成で制約を受けるために、例えば、60fps用として設計された光変調素子では、画質改善をしようとしても倍速での駆動はできない。また、高画素化を行おうとすれば、それに対応して高速な回路設計をする必要がある。 (4) During the display period of the least significant gradation bit, display switching of all pixels of the light modulation element and data transfer of a bit plane to be displayed next must be performed. When the number of pixels of the light modulation element is, for example, 1920 × 1080, a transfer rate of about 100 Gbps is required. Since the data transfer speed that can be supported is limited by the circuit configuration of the light modulation element, the light modulation element designed for 60 fps, for example, cannot be driven at double speed to improve image quality. In order to increase the number of pixels, it is necessary to design a high-speed circuit correspondingly.
 そこで、高フレームレート化および高画素化を行うことが可能な表示装置の開発が望まれる。 Therefore, it is desired to develop a display device capable of increasing the frame rate and the number of pixels.
 以下、本実施の形態では、比較例に係る表示装置に比べて、最下位の階調ビットの表示期間を長くすることで、データ転送期間を長く確保し、高フレームレート化および高画素化を実現する技術を説明する。 Hereinafter, in the present embodiment, as compared with the display device according to the comparative example, by extending the display period of the lowest gradation bit, a longer data transfer period is ensured, and a higher frame rate and a higher pixel count are achieved. The technology to be realized will be described.
<1.第1の実施の形態>
[1.1 第1の実施の形態に係る表示装置の構成]
(表示装置の全体構成)
 図2は、本開示の第1の実施の形態に係る表示装置の一構成例を概略的に示している。図2では、表示装置の一例として、単板式のプロジェクタ10を示す。
<1. First Embodiment>
[1.1 Configuration of Display Device According to First Embodiment]
(Overall configuration of display device)
FIG. 2 schematically illustrates a configuration example of the display device according to the first embodiment of the present disclosure. FIG. 2 illustrates a single-panel projector 10 as an example of the display device.
 プロジェクタ10は、複数の光源と、複数の集光光学系と、色合成部13と、照明光学系14と、TIR(Total Internal Reflection)プリズム15と、表示パネル16と、投射光学系17とを備えている。 The projector 10 includes a plurality of light sources, a plurality of condensing optical systems, a color combining unit 13, an illumination optical system 14, a TIR (Total Internal Internal Reflection) prism 15, a display panel 16, and a projection optical system 17. Have.
 複数の光源はそれぞれ、照明光の元となる色光を出力する。複数の光源は、赤色光源11Rと、緑色光源11Gと、青色光源11Bとを有している。複数の光源はそれぞれ、例えば半導体レーザ(LD:Laser Diode)やLED(Light Emitting Diode)等の固体光源で構成されている。 光源 Each of the plurality of light sources outputs a color light which is a source of the illumination light. The plurality of light sources include a red light source 11R, a green light source 11G, and a blue light source 11B. Each of the plurality of light sources is composed of a solid-state light source such as a semiconductor laser (LD: Laser Diode) or an LED (Light Emitting Diode).
 複数の集光光学系は、赤色集光光学系12Rと、緑色集光光学系12Gと、青色集光光学系12Bとを有している。赤色集光光学系12R、緑色集光光学系12G、および青色集光光学系12Bはそれぞれ、集光レンズ等を含んでいる。赤色集光光学系12Rは、赤色光源11Rから発せられた赤色光の光路上に設けられ、赤色光を色合成部13に向けて集光する。緑色集光光学系12Gは、緑色光源11Gから発せられた緑色光の光路上に設けられ、緑色光を色合成部13に向けて集光する。青色集光光学系12Bは、青色光源11Bから発せられた青色光の光路上に設けられ、青色光を色合成部13に向けて集光する。 The plurality of light-collecting optical systems include a red light-collecting optical system 12R, a green light-collecting optical system 12G, and a blue light-collecting optical system 12B. Each of the red light collecting optical system 12R, the green light collecting optical system 12G, and the blue light collecting optical system 12B includes a light collecting lens and the like. The red light condensing optical system 12R is provided on the optical path of the red light emitted from the red light source 11R, and condenses the red light toward the color combining unit 13. The green light condensing optical system 12G is provided on the optical path of the green light emitted from the green light source 11G, and condenses the green light toward the color combining unit 13. The blue light condensing optical system 12B is provided on the optical path of the blue light emitted from the blue light source 11B, and condenses the blue light toward the color combining unit 13.
 色合成部13は、第1のダイクロイックミラー31と、第2のダイクロイックミラー32とを有している。第1のダイクロイックミラー31は、青色光および緑色光の光路上に設けられている。第1のダイクロイックミラー31は、青色光を透過し、緑色光を反射する特性を有し、青色光および緑色光の光路を合成する。第2のダイクロイックミラー32は、第1のダイクロイックミラー31によって合成された後の青色光および緑色光と、赤色光との光路上に設けられている。第2のダイクロイックミラー32は、青色光および緑色光を透過し、赤色光を反射する特性を有し、青色光および緑色光の光路と、赤色光の光路とを合成する。 The color combining unit 13 has a first dichroic mirror 31 and a second dichroic mirror 32. The first dichroic mirror 31 is provided on an optical path of blue light and green light. The first dichroic mirror 31 has a property of transmitting blue light and reflecting green light, and combines the optical paths of blue light and green light. The second dichroic mirror 32 is provided on an optical path of the blue light, the green light, and the red light after being combined by the first dichroic mirror 31. The second dichroic mirror 32 has a property of transmitting blue light and green light and reflecting red light, and combines the optical paths of blue light and green light with the optical path of red light.
 照明光学系14は、集光光学系41と、ライトパイプ42と、集光光学系43とを有している。照明光学系14には、色合成部13を介して、複数の光源からの各色光が入射する。集光光学系41および集光光学系43は、集光レンズ等を含んでいる。集光光学系41は、各色光をライトパイプ42に向けて集光する。ライトパイプ42は、各色光を均一化して各色の照明光を生成する。集光光学系43は、ライトパイプ42からの各色の照明光をTIRプリズム15に向けて集光する。表示パネル16は、TIRプリズム15を介して、照明光学系14によって生成された各色の照明光によって所望の角度で照明される。 The illumination optical system 14 includes a light collecting optical system 41, a light pipe 42, and a light collecting optical system 43. Each color light from a plurality of light sources enters the illumination optical system 14 via the color synthesis unit 13. The condenser optical system 41 and the condenser optical system 43 include a condenser lens and the like. The condensing optical system 41 condenses each color light toward the light pipe 42. The light pipe 42 equalizes each color light to generate illumination light of each color. The condensing optical system 43 condenses the illumination light of each color from the light pipe 42 toward the TIR prism 15. The display panel 16 is illuminated at a desired angle by the illumination light of each color generated by the illumination optical system 14 via the TIR prism 15.
 TIRプリズム15は、断面が三角形状の一対のプリズムを有している。TIRプリズム15は、照明光学系14からの照明光を表示パネル16に向けて所望の角度で偏向する。また、TIRプリズム15は、表示パネル16からの投影画像を投射光学系17に向けて出射する。 The TIR prism 15 has a pair of prisms having a triangular cross section. The TIR prism 15 deflects illumination light from the illumination optical system 14 toward the display panel 16 at a desired angle. Further, the TIR prism 15 emits a projection image from the display panel 16 toward the projection optical system 17.
 表示パネル16は、例えば複数のミラーを有するミラーアレイデバイス等の光変調素子である。表示パネル16は、画像信号Vinに基づいて照明光を各色ごとに変調することで、投影画像を生成する。表示パネル16がミラーアレイデバイスで構成されている場合、画像信号Vinに基づいて各ミラーのチルト角度を変化させることによって、TIRプリズム15を介して照明光を投影光学系17に向けて偏向する。ミラーアレイデバイスは、画素に相当する複数のマイクロミラーがアレイ状(マトリクス状)に配置されてなるDMD(Digital Micromirror Device)等のマイクロミラーアレイデバイスである。 The display panel 16 is a light modulation element such as a mirror array device having a plurality of mirrors. The display panel 16 generates a projection image by modulating the illumination light for each color based on the image signal Vin. When the display panel 16 is formed of a mirror array device, the illumination light is deflected toward the projection optical system 17 via the TIR prism 15 by changing the tilt angle of each mirror based on the image signal Vin. The mirror array device is a micromirror array device such as a DMD (Digital Micromirror Device) in which a plurality of micromirrors corresponding to pixels are arranged in an array (matrix).
 投射光学系17は、例えば複数のレンズを含んで構成され、表示パネル16によって生成された投影画像を、スクリーン18等の投影面に投影する。 The projection optical system 17 includes, for example, a plurality of lenses, and projects a projection image generated by the display panel 16 onto a projection surface such as a screen 18.
 図3は、プロジェクタ10における画像のフレーム構成の一例を概略的に示している。 FIG. 3 schematically shows an example of a frame configuration of an image in the projector 10.
 プロジェクタ10は単一の表示パネル16を用いた、いわゆる単板式のため、時分割方式でフルカラー表示を行う。カラー表示を行う際には、図3に示すように1フレームを均等にR,G,Bの各色のサブフレームに分割して表示を行う。複数の光源からは、サブフレームの期間に同期して、R,G,Bの各色の波長の光を時分割方式で出射する。表示パネル16には、各色の照明光が時分割で照射される。表示パネル16は、各色光が照射されるタイミングに同期して、各色の照明光に対して、各色の投影画像を時分割で生成する。 The projector 10 uses a single display panel 16 and is a so-called single-panel type, and performs full-color display in a time-division manner. When performing color display, one frame is equally divided into R, G, and B sub-frames for display as shown in FIG. Light of each wavelength of R, G, and B is emitted from the plurality of light sources in a time division manner in synchronization with the period of the subframe. The display panel 16 is irradiated with illumination light of each color in a time-division manner. The display panel 16 generates a projection image of each color in a time-division manner with respect to the illumination light of each color in synchronization with the timing of irradiation of each color light.
(表示装置の制御系の構成)
 図4は、プロジェクタ10の制御系の一構成例を概略的に示している。
(Configuration of display device control system)
FIG. 4 schematically illustrates a configuration example of a control system of the projector 10.
 プロジェクタ10は、サブフレーム制御部51と、PWMシーケンス制御部52と、ビットプレーン生成部53と、光源出力制御部54とを備えている。 The projector 10 includes a sub-frame control unit 51, a PWM sequence control unit 52, a bit plane generation unit 53, and a light source output control unit 54.
 サブフレーム制御部51は、入力された画像信号Vinの1フレーム内における各色のサブフレームの期間を制御する。 The sub-frame control unit 51 controls the period of each color sub-frame in one frame of the input image signal Vin.
 PWMシーケンス制御部52は、各色のサブフレームの期間内で各色の階調ビットごとの表示期間を制御する期間制御部である。PWMシーケンス制御部52は、後述する図6および図8に示すように、各色のサブフレームの期間内における複数の階調ビットのうち最下位の階調ビットの表示期間をT1、最下位よりも1段階上位の階調ビットの表示期間をT2としたとき、
T2≧T1>T2・1/2となるように、表示パネル16における階調ビットごとの表示期間を可変制御する。最下位の階調ビットの表示期間T1が、1段階上位の階調ビットの表示期間T2を超えると、最下位の階調ビットと1段階上位の階調ビットとの階調の関係が逆転してしまう。最下位の階調ビットの表示期間T1が、1段階上位の階調ビットの表示期間T2の半分以下になると、最下位の階調ビットの表示期間T1が、一般的なPWM方式の表示装置と同等またはそれ以下となってしまい、後述する図7に示すように、次に転送すべきデータの転送時間に余裕が無くなり、データの転送に破綻が生じる。
The PWM sequence control unit 52 is a period control unit that controls a display period for each gradation bit of each color within a period of a subframe of each color. As shown in FIGS. 6 and 8 described later, the PWM sequence control unit 52 sets the display period of the lowest gradation bit of the plurality of gradation bits in the subframe period of each color to T1 and the display period of the lowermost gradation bit to be lower than the lowest. Assuming that the display period of the gradation bit of one higher order is T2,
The display period of each gray scale bit on the display panel 16 is variably controlled so that T2 ≧ T1> T2 · 1/2. When the display period T1 of the lowermost grayscale bit exceeds the display period T2 of the uppermost grayscale bit, the grayscale relationship between the lowermost grayscale bit and the upper grayscale bit is reversed. Would. When the display period T1 of the lowermost grayscale bit is less than half of the display period T2 of the grayscale bit of the next higher level, the display period T1 of the lowermost grayscale bit becomes the same as that of a general PWM type display device. It becomes equal to or less than that, and as shown in FIG. 7 described later, there is no room in the transfer time of the data to be transferred next, and a failure occurs in the data transfer.
 ビットプレーン生成部53は、画像信号Vinに基づいて、各色のサブフレームの期間に表示される、複数の階調ビットのそれぞれに対応する階調ビットごとのビットプレーンのデータを生成する。ビットプレーン生成部53は、生成した階調ビットごとのビットプレーンのデータを、階調ビットごとの表示期間に先だって、階調ビットごとに表示パネル16に転送する。 The bit plane generation unit 53 generates bit plane data for each gradation bit corresponding to each of the plurality of gradation bits and displayed during the sub-frame of each color based on the image signal Vin. The bit plane generation unit 53 transfers the generated bit plane data for each gradation bit to the display panel 16 for each gradation bit prior to the display period for each gradation bit.
 光源出力制御部54は、PWMシーケンス制御部52によって決定された、各色のサブフレームの期間内での各色の階調ビットごとの表示期間に基づいて、後述する図6および図8に示すように、赤色光源11R、緑色光源11G、および青色光源11Bの各光源の出力(発光タイミングおよび発光強度)を可変制御する。光源出力制御部54は、少なくとも最下位の階調ビットの表示期間における各光源の出力を可変制御する。光源出力制御部54は、最下位の階調ビットの表示期間における各光源の出力を、複数の階調ビットのうち最下位の階調ビット以外の他の階調ビットの表示期間における各光源の出力に対して変化させる。光源出力制御部54は、後述する図6および図8に示すように、最下位の階調ビットの表示期間における各光源の出力を、他の階調ビットの表示期間における光源の出力よりも低下させる。 As shown in FIGS. 6 and 8 described later, the light source output control unit 54 determines the light source output control unit 54 based on the display period for each gradation bit of each color within the subframe period of each color determined by the PWM sequence control unit 52. , The output (light emission timing and light emission intensity) of each light source of the red light source 11R, the green light source 11G, and the blue light source 11B. The light source output control unit variably controls the output of each light source in at least the display period of the lowest gradation bit. The light source output control unit 54 outputs the output of each light source during the display period of the lowest gradation bit to the light source of each light source during the display period of the other gradation bits other than the lowest gradation bit among the plurality of gradation bits. Vary to output. As shown in FIGS. 6 and 8 described below, the light source output control unit 54 lowers the output of each light source during the display period of the lowest gradation bit than the output of the light source during the display period of the other gradation bits. Let it.
 表示パネル16は、複数の階調ビットのそれぞれに割り振られた表示期間内で、階調ビットごとのビットプレーンのデータに基づいて照明光を変調する。 The display panel 16 modulates the illumination light based on the data of the bit plane for each gradation bit within the display period allocated to each of the plurality of gradation bits.
[1.2 第1の実施の形態に係る表示装置の制御動作]
 図5は、比較例に係る表示装置における光源の発光制御の一例を示すタイミングチャートである。図6は、第1の実施の形態に係る表示装置(プロジェクタ10)における光源の発光制御の一例を示すタイミングチャートである。図7は、比較例に係る表示装置における階調ビットごとのデータ転送の転送タイミングの一例を示すタイミングチャートである。図8は、第1の実施の形態に係る表示装置における階調ビットごとのデータ転送の転送タイミングの一例を示すタイミングチャートである。
[1.2 Control Operation of Display Device According to First Embodiment]
FIG. 5 is a timing chart illustrating an example of light emission control of a light source in a display device according to a comparative example. FIG. 6 is a timing chart illustrating an example of light emission control of the light source in the display device (projector 10) according to the first embodiment. FIG. 7 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the comparative example. FIG. 8 is a timing chart illustrating an example of a transfer timing of data transfer for each gradation bit in the display device according to the first embodiment.
 図5ないし図8には、図3に示した各色のサブフレームのうち、任意のサブフレームの期間におけるタイミングチャートを示す。比較例および第1の実施の形態に係る表示装置では、各色につき、各色のサブフレームの期間内で同様の発光制御が行われる。 FIGS. 5 to 8 show timing charts in an arbitrary sub-frame period among the sub-frames of each color shown in FIG. In the display device according to the comparative example and the first embodiment, the same light emission control is performed for each color within the subframe period of each color.
 図5および図6において、(A)は表示画像(ビットプレーン)の明るさ(階調)の状態を示す。(B)は、表示画像の色に対応する色の光源(赤色光源11R、緑色光源11G、または青色光源11B)の出力の状態を示す。(C)は、表示パネル16の任意の画素の状態を示す。なお、表示パネル16は、各画素の表示状態をオン/オフ(発光(明)/非発光(暗))の2状態に制御する。(D)は、ビットプレーン生成部53から表示パネル16へと転送される階調ビットごとのビットプレーンのデータの転送タイミングを示す。 5A and FIG. 6A show the state of the brightness (gradation) of the display image (bit plane). (B) shows the output state of the light source (red light source 11R, green light source 11G, or blue light source 11B) of a color corresponding to the color of the display image. (C) shows the state of an arbitrary pixel of the display panel 16. The display panel 16 controls the display state of each pixel to two states of ON / OFF (light emission (bright) / non-light emission (dark)). (D) shows the transfer timing of the bit plane data for each gradation bit transferred from the bit plane generation unit 53 to the display panel 16.
 比較例および第1の実施の形態に係る表示装置では、図5および図6の(A),(D)と図7および図8とに示したように、サブフレームの期間内で階調ビットb4,b3,b2,b1の順に、ビットプレーンのデータの転送が行われ、各階調ビットのビットプレーンの表示がなされる。ここで、最下位の階調ビットはb1、階調ビットb1に対し1段階上位の階調ビットはb2、階調ビットb2に対し1段階上位の階調ビットはb3、階調ビットb3に対し1段階上位の階調ビットはb4とする。 In the display device according to the comparative example and the first embodiment, as shown in FIGS. 5 and 6, (A) and (D), and FIGS. Bit plane data is transferred in the order of b4, b3, b2, and b1, and the bit plane of each gradation bit is displayed. Here, the least significant gradation bit is b1, the gradation bit one stage higher than the gradation bit b1 is b2, the gradation bit one stage higher than the gradation bit b2 is b3, and the gradation bit b3 is the same. The gradation bit one step higher is b4.
 図7には、比較例に係る表示装置における、より具体的な表示画像(ビットプレーン)の明るさ(階調)の状態と、ビットプレーンのデータの転送タイミングとを示す。図7には、具体例として、16階調、15階調、および14階調の明るさに対応する階調ビットごとのビットプレーンの状態を示す。図8には、比較例に係る表示装置における各階調ビットの表示期間と第1の実施の形態に係る表示装置(実施例)における各階調ビットの表示期間とを比較して示す。また、図8には、第1の実施の形態に係る表示装置における光源の出力の状態と、ビットプレーンのデータの転送タイミングとを示す。 FIG. 7 shows a more specific state of brightness (gradation) of a display image (bit plane) and a transfer timing of bit plane data in the display device according to the comparative example. FIG. 7 shows, as a specific example, the state of the bit plane for each gray scale bit corresponding to the 16 gray scales, 15 gray scales, and 14 gray scales. FIG. 8 shows a comparison between the display period of each gradation bit in the display device according to the comparative example and the display period of each gradation bit in the display device (example) according to the first embodiment. FIG. 8 shows the output state of the light source and the transfer timing of bit plane data in the display device according to the first embodiment.
 図5の(A)、図7および図8に示したように、比較例に係る表示装置では、例えば、階調ビットb3の表示期間T3は階調ビットb4の表示期間T4の1/2、階調ビットb2の表示期間T2は階調ビットb3の表示期間T3の1/2、階調ビットb1の表示期間T1は階調ビットb2の表示期間T2の1/2とされている。 As shown in FIGS. 5A, 7 and 8, in the display device according to the comparative example, for example, the display period T3 of the gradation bit b3 is 1 / of the display period T4 of the gradation bit b4, The display period T2 of the gradation bit b2 is 1 / of the display period T3 of the gradation bit b3, and the display period T1 of the gradation bit b1 is の of the display period T2 of the gradation bit b2.
 比較例に係る表示装置では、図5の(B)に示したように、サブフレームの切り替わりで色の切り替えが行われるのみで、各色のサブフレームの期間内では光源の出力は一定に制御される。 In the display device according to the comparative example, as shown in FIG. 5B, only the color switching is performed by switching the subframe, and the output of the light source is controlled to be constant during the subframe period of each color. You.
 これに対して、第1の実施の形態に係る表示装置では、図6の(A),(B)、および図8に示したように、光源出力制御部54が、最下位の階調ビットb1の表示期間T1における光源の出力を、他の階調ビットの表示期間における光源の出力よりも低下させる。第1の実施の形態に係る表示装置では、光源の出力を低下させた分、画像の本来の明るさを保つために、PWMシーケンス制御部52が、比較例に係る表示装置に比べて、最下位の階調ビットb1の表示期間T1を長くする。また、第1の実施の形態に係る表示装置では、図8に示したように、サブフレームの全体の期間は比較例と同様であるため、最下位の階調ビットb1の表示期間T1を長くした分、PWMシーケンス制御部52が、他の階調ビットの表示期間を適宜、調整する。例えば、図6の(B)の例では、比較例に係る表示装置に比べて、階調ビットb4,b3の表示期間T4,T3が短くなるように調整している。この場合、図6の(B)の例では、表示期間T4,T3を短くした分、画像の本来の明るさを保つために、光源出力制御部54が、比較例に係る表示装置に比べて、階調ビットb4,b3の表示期間T4,T3における光源の出力を高くする。図8の例では、比較例に係る表示装置に比べて、階調ビットb4の表示期間T4が短くなるように調整している。この場合、図8の例では、表示期間T4を短くした分、画像の本来の明るさを保つために、光源出力制御部54が、比較例に係る表示装置に比べて、階調ビットb4の表示期間T4における光源の出力を高くする。 On the other hand, in the display device according to the first embodiment, as shown in FIGS. 6A and 6B and FIG. The output of the light source in the display period T1 of b1 is made lower than the output of the light source in the display period of another gradation bit. In the display device according to the first embodiment, in order to maintain the original brightness of the image by the reduction in the output of the light source, the PWM sequence control unit 52 is more compared to the display device according to the comparative example. The display period T1 of the lower gradation bit b1 is lengthened. Further, in the display device according to the first embodiment, as shown in FIG. 8, since the entire period of the subframe is the same as that of the comparative example, the display period T1 of the lowermost gradation bit b1 is made longer. As a result, the PWM sequence control unit 52 appropriately adjusts the display period of the other gradation bits. For example, in the example of FIG. 6B, the display periods T4 and T3 of the gradation bits b4 and b3 are adjusted to be shorter than in the display device according to the comparative example. In this case, in the example of FIG. 6B, the light source output control unit 54 is compared with the display device according to the comparative example in order to maintain the original brightness of the image by shortening the display periods T4 and T3. The output of the light source in the display periods T4 and T3 of the gradation bits b4 and b3 is increased. In the example of FIG. 8, the display period T4 of the gradation bit b4 is adjusted to be shorter than that of the display device according to the comparative example. In this case, in the example of FIG. 8, in order to maintain the original brightness of the image by the shortened display period T4, the light source output control unit 54 sets the gradation bit b4 to be smaller than that of the display device according to the comparative example. The output of the light source in the display period T4 is increased.
(データの転送時間について)
 次に、最下位の階調ビットb1の表示期間T1とビットプレーンのデータの転送時間との関係について説明する。
(About data transfer time)
Next, the relationship between the display period T1 of the lowest gradation bit b1 and the transfer time of bit plane data will be described.
 比較例に係る表示装置では、最下位の階調ビットb1の表示期間T1(PWM幅)をT_b1とすると、図5の(A),(D)、図7および図8に示したように、階調ビットごとのビットプレーンのデータ転送時間T_dは最大でもT_d=T_b1までの時間しか確保できない。最下位の階調ビットb1の表示期間T1では、次のサブフレームにおける最初の階調ビット(b4)のビットプレーンのデータが転送される。このため、最下位の階調ビットb1の表示期間T1が短くなりすぎると、図7に示したように、次に転送すべきデータの転送時間に余裕が無くなり、データの転送に破綻が生じる。 In the display device according to the comparative example, assuming that the display period T1 (PWM width) of the least significant gradation bit b1 is T_b1, as shown in FIGS. 5A and 5D, FIGS. The data transfer time T_d of the bit plane for each gradation bit can be secured at most only up to T_d = T_b1. In the display period T1 of the lowest gradation bit b1, the data of the bit plane of the first gradation bit (b4) in the next subframe is transferred. For this reason, if the display period T1 of the least significant gradation bit b1 is too short, as shown in FIG. 7, there is no room in the transfer time of the next data to be transferred, and a failure occurs in the data transfer.
 比較例に係る表示装置では、実際の階調(明るさ)は、PWM制御なので明るさの積分になるので、最下位の階調ビットb1の光源の出力をP_b1とすると、
 P_b1×T_b1となる。
In the display device according to the comparative example, the actual gradation (brightness) is an integral of the brightness due to the PWM control. Therefore, if the output of the light source of the lowest gradation bit b1 is P_b1,
P_b1 × T_b1.
 これに対して、第1の実施の形態に係る表示装置では、光源出力制御部54によって、最下位の階調ビットb1の光源の出力(P_b1_new)が、比較例に係る表示装置の出力(P_b1)よりも低くなるように制御される(P_b1>P_b1_new)。この場合、最下位の階調ビットb1に関し、比較例に係る表示装置と同じ階調(明るさ)を表示しようとすると、以下の関係が成り立つ。なお、第1の実施の形態に係る表示装置における最下位の階調ビットb1の表示期間T1(PWM幅)をT_b1_newとする。
 P_b1×T_b1=P_b1_new×T_b1_new
On the other hand, in the display device according to the first embodiment, the output (P_b1_new) of the light source of the lowest gradation bit b1 is changed by the light source output control unit 54 to the output (P_b1) of the display device according to the comparative example. ) Is controlled (P_b1> P_b1_new). In this case, if the same gradation (brightness) as that of the display device according to the comparative example is to be displayed for the least significant gradation bit b1, the following relationship is established. Note that the display period T1 (PWM width) of the least significant gradation bit b1 in the display device according to the first embodiment is T_b1_new.
P_b1 × T_b1 = P_b1_new × T_b1_new
 ここで、P_b1>P_b1_newという関係から、T_b1<T_b1_newという関係になる。従って第1の実施の形態に係る表示装置では、データ転送時間T_dに関し、T_b1_new>T_dとなり、図5および図6の(D)と図7および図8の最下段とに示したように、比較例に係る表示装置に比べて、データの転送時間に大幅な余裕が生まれることになる。 Here, from the relationship P_b1> P_b1_new, the relationship becomes T_b1 <T_b1_new. Therefore, in the display device according to the first embodiment, with respect to the data transfer time T_d, T_b1_new> T_d, and as shown in FIG. 5D and FIG. 6D and at the bottom of FIG. 7 and FIG. As compared with the display device according to the example, a large margin is provided for the data transfer time.
[1.3 効果]
 以上説明したように、第1の実施の形態に係る表示装置によれば、少なくとも最下位の階調ビットの表示期間および光源の出力を最適化するようにしたので、高フレームレート化および高画素化を行うことが可能となる。
[1.3 Effects]
As described above, according to the display device according to the first embodiment, at least the display period of the lowest gradation bit and the output of the light source are optimized. Can be performed.
 第1の実施の形態に係る表示装置によれば、一般的なPWM方式の表示装置に比べて、最下位の階調ビットの表示期間を広げることが可能になるので、階調ごとのビットプレーンのデータの転送時間を長く確保することが可能になる。つまり、データの転送速度を速めることなく、高フレームレートや高解像度のデータを最下位の階調ビットの表示期間内に転送することが可能なる。これにより、データ転送速度の低い回路構成のまま高フレームレート化および高画素化を行うことが可能となる。 According to the display device according to the first embodiment, it is possible to extend the display period of the least significant gradation bit as compared with a general PWM type display device. It is possible to secure a long data transfer time. That is, high frame rate and high resolution data can be transferred within the display period of the lowest gradation bit without increasing the data transfer speed. As a result, it is possible to increase the frame rate and increase the number of pixels while maintaining a circuit configuration with a low data transfer speed.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。 効果 Note that the effects described in this specification are merely examples, and the present invention is not limited thereto. Other effects may be provided. The same applies to the effects of the other embodiments described below.
[1.4 第1の実施の形態の変形例]
(第1の変形例)
 図9は、第1の実施の形態の第1の変形例に係る表示装置における光源の発光制御の一例を示している。
[1.4 Modification of First Embodiment]
(First Modification)
FIG. 9 illustrates an example of light emission control of a light source in a display device according to a first modification of the first embodiment.
 第1の実施の形態に係る表示装置では、光源出力制御部54が、サブフレームの期間の開始時の光源の出力が高く、サブフレームの期間の終了が近付くに従い、出力を段階的に低下させるような制御を行うような例を示したが、これに対して、図9に示すような発光制御を行うようにしてもよい。すなわち、光源出力制御部54が、サブフレームの期間の開始時の光源の出力とサブフレームの期間の終了時の光源の出力とが互いに近付くように(同程度の出力となるように)、複数の階調ビットのそれぞれの表示期間における光源の出力を変化させるようにしてもよい。 In the display device according to the first embodiment, the light source output control unit 54 decreases the output stepwise as the output of the light source at the start of the subframe period is high and the end of the subframe period is approaching. Although an example in which such control is performed has been described, light emission control as illustrated in FIG. 9 may be performed in response thereto. That is, the light source output control unit 54 sets the plurality of light source outputs so that the output of the light source at the start of the sub-frame period and the output of the light source at the end of the sub-frame period are close to each other (to be substantially the same). The output of the light source in each display period of the gray scale bit may be changed.
 サブフレームの期間の開始時の光源の出力とサブフレームの期間の終了時の光源の出力とが互いに同程度の出力となるように制御することで、隣接する2つのサブフレーム間の表示移行時(例えば図3に示した赤のサブフレームから緑のサブフレームへの移行時)に、輝度の変化が小さくなるのでフリッカーなどのちらつきが抑えられ画質が改善される。 By controlling the output of the light source at the start of the sub-frame period and the output of the light source at the end of the sub-frame period to be substantially equal to each other, at the time of display transition between two adjacent sub-frames (For example, at the time of transition from the red sub-frame to the green sub-frame shown in FIG. 3), the change in luminance is small, so that flicker and other flickers are suppressed, and the image quality is improved.
 その他の構成、動作および効果は、上記第1の実施の形態に係る表示装置と略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the display device according to the first embodiment.
(第2の変形例)
 図10は、第1の実施の形態の第2の変形例に係る表示装置における光源の発光制御の一例を示している。図11は、第1の実施の形態に係る表示装置における光源の理想的な出力波形と実際の出力波形との一例を示している。
(Second Modification)
FIG. 10 illustrates an example of light emission control of a light source in a display device according to a second modification of the first embodiment. FIG. 11 illustrates an example of an ideal output waveform and an actual output waveform of the light source in the display device according to the first embodiment.
 第1の実施の形態に係る表示装置および第1の変形例に係る表示装置では、光源出力制御部54が、光源の出力制御を離散的に変化させるようにしたが、これに対して、光源の発光立ち上がり特性を考慮して、図10に示すような連続的な発光制御を行うようにしてもよい。すなわち、光源出力制御部54が、複数の階調ビットのそれぞれの表示期間における光源の出力を連続的に変化させるようにしてもよい。 In the display device according to the first embodiment and the display device according to the first modification, the light source output control unit 54 discretely changes the output control of the light source. In consideration of the light emission rising characteristic of FIG. 10, continuous light emission control as shown in FIG. 10 may be performed. That is, the light source output control unit 54 may continuously change the output of the light source in each display period of the plurality of gradation bits.
 例えば図11の点線に示すように、理想的には各階調ビットの表示期間に合わせて、離散的に光源を発光させることが望ましいが、実際には固体光源の発光特性がある。このため、図11の実線で示すように理想値よりもずれた出力変化が起こり、階調の表示特性(ガンマカーブ)が想定よりずれてしまう。これに対し、図10に示すような連続的な出力変化になるような発光制御をすることで、急激な出力変化部分が少なくなるので、より正確なガンマカーブでの表示が可能になる。 {For example, as shown by a dotted line in FIG. 11, ideally, it is desirable that the light source emits light discretely in accordance with the display period of each gradation bit. However, there is actually an emission characteristic of a solid light source. For this reason, as shown by the solid line in FIG. 11, an output change that deviates from the ideal value occurs, and the display characteristics (gamma curve) of the gradation deviate from the assumption. On the other hand, by performing the light emission control such that the output changes continuously as shown in FIG. 10, the portion where the output changes suddenly is reduced, so that a more accurate gamma curve can be displayed.
 その他の構成、動作および効果は、上記第1の実施の形態に係る表示装置または第1の変形例に係る表示装置と略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the display device according to the first embodiment or the display device according to the first modification.
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る表示装置について説明する。なお、以下では、上記第1の実施の形態に係る表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
<2. Second Embodiment>
Next, a display device according to a second embodiment of the present disclosure will be described. In the following, portions that are substantially the same as the components of the display device according to the first embodiment are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 図12は、第2の実施の形態に係る表示装置における光源の発光制御の一例を示すタイミングチャートである。図13は、第1の実施の形態に係る表示装置における光源の出力波形(図13の(A))と第2の実施の形態に係る表示装置における光源の出力波形(図13の(B))との一例を示している。 FIG. 12 is a timing chart illustrating an example of light emission control of the light source in the display device according to the second embodiment. FIG. 13 shows the output waveform of the light source in the display device according to the first embodiment (FIG. 13A) and the output waveform of the light source in the display device according to the second embodiment (FIG. 13B). ) Is shown.
 図12において、(A)は表示画像(ビットプレーン)の明るさ(階調)の状態を示す。(B)は、表示画像の色に対応する色の光源(赤色光源11R、緑色光源11G、または青色光源11B)の出力の状態を示す。(C)は、表示パネル16の任意の画素の状態を示す。(D)は、ビットプレーン生成部53から表示パネル16へと転送される階調ビットごとのビットプレーンのデータの転送タイミングを示す。 In FIG. 12, (A) shows the state of the brightness (gradation) of the display image (bit plane). (B) shows the output state of the light source (red light source 11R, green light source 11G, or blue light source 11B) of a color corresponding to the color of the display image. (C) shows the state of an arbitrary pixel of the display panel 16. (D) shows the transfer timing of the bit plane data for each gradation bit transferred from the bit plane generation unit 53 to the display panel 16.
 第2の実施の形態に係る表示装置では、光源出力制御部54が、最下位の階調ビットb1の表示期間T1を除き、比較例に係る表示装置(図5)と同様に、各色のサブフレームの期間内では光源の出力が一定となるように発光制御する。ただし、第2の実施の形態に係る表示装置では、光源出力制御部54が、最下位の階調ビットb1の表示期間T1内で、光源の出力を部分的に、他の階調ビットの表示期間における光源の出力よりも低下させる。最下位の階調ビットb1の表示期間T1は、各色のサブフレームの切り替わりの期間に設定する。 In the display device according to the second embodiment, the light source output control unit 54 controls the sub-color of each color similarly to the display device according to the comparative example (FIG. 5) except for the display period T1 of the lowest gradation bit b1. Light emission control is performed so that the output of the light source is constant during the frame period. However, in the display device according to the second embodiment, the light source output control unit 54 partially controls the output of the light source during the display period T1 of the lowest gradation bit b1 to display another gradation bit. The output of the light source during the period. The display period T1 of the lowermost gradation bit b1 is set to a period of switching between subframes of each color.
 図12および図13の(B)の例では、第1の実施の形態に係る表示装置と同様に、比較例に係る表示装置に比べて、PWMシーケンス制御部52が、最下位の階調ビットb1の表示期間T1をT_b1からT_b1_newへと長くしている。第2の実施の形態に係る表示装置では、最下位の階調ビットb1の表示期間T1を長くした分、画像の本来の明るさを保つために、光源出力制御部54が、比較例に係る表示装置に比べて、最下位の階調ビットb1の表示期間T1における光源の出力を、表示期間T1の途中で低下させている。図12および図13の(B)の例では、第2の実施の形態に係る表示装置における最下位の階調ビットb1の表示期間T_b1_newを、比較例に係る表示装置における最下位の階調ビットb1の表示期間T_b1に対し2倍程度長くしている。このため、光源出力制御部54が、光源の出力を、表示期間T1の半分程度の期間が経過した時点でオフとなるように制御している。 In the example of FIGS. 12 and 13B, as in the display device according to the first embodiment, as compared with the display device according to the comparative example, the PWM sequence control unit 52 has the lowermost gradation bit. The display period T1 of b1 is extended from T_b1 to T_b1_new. In the display device according to the second embodiment, the light source output control unit 54 according to the comparative example uses the light source output control unit 54 according to the comparative example in order to maintain the original brightness of the image by the length of the display period T1 of the lowest gradation bit b1. Compared with the display device, the output of the light source in the display period T1 of the lowest gradation bit b1 is reduced in the middle of the display period T1. In the examples of FIGS. 12 and 13B, the display period T_b1_new of the lowest gradation bit b1 in the display device according to the second embodiment is set to the lowest gradation bit in the display device according to the comparative example. It is about twice as long as the display period T_b1 of b1. For this reason, the light source output control unit 54 controls the output of the light source to be turned off when about half of the display period T1 has elapsed.
 第2の実施の形態に係る表示装置によれば、最下位の階調ビットb1の表示期間T1内でのみ光源の発光時間を短くするようにしたので、一般的なPWM方式の表示装置に比べて、最下位の階調ビットb1の表示期間T1を長くできる。第2の実施の形態に係る表示装置では、一般的なPWM方式の表示装置に比べて、最下位の階調ビットb1の表示期間T1内のみの発光調整を行い、その他の表示期間での発光調整は行わなくて済む。 According to the display device according to the second embodiment, the light emission time of the light source is shortened only within the display period T1 of the lowest gradation bit b1, so that the display device is compared with a general PWM type display device. Thus, the display period T1 of the lowest gradation bit b1 can be lengthened. In the display device according to the second embodiment, as compared with a general PWM type display device, light emission adjustment is performed only in the display period T1 of the lowest gradation bit b1, and light emission in other display periods is performed. No adjustments need to be made.
 その他の構成、動作および効果は、上記第1の実施の形態に係る表示装置と略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the display device according to the first embodiment.
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
<3. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above embodiments, and various modifications can be made.
 例えば、上記第1の実施の形態では本開示の表示装置をプロジェクタに適用した場合について説明したが、本開示の表示装置はプロジェクタ以外にも適用可能である。 For example, in the first embodiment, a case has been described in which the display device of the present disclosure is applied to a projector, but the display device of the present disclosure can be applied to devices other than the projector.
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、少なくとも最下位の階調ビットの表示期間および光源の出力を最適化するようにしたので、高フレームレート化および高画素化を行うことが可能となる。
For example, the present technology can also have the following configurations.
According to the present technology having the following configuration, at least the display period of the lowest gradation bit and the output of the light source are optimized, so that it is possible to increase the frame rate and increase the number of pixels.
(1)
 照明光の元となる光を出力する光源と、
 複数の階調ビットのそれぞれに割り振られた表示期間内で、前記階調ビットごとのビットプレーンのデータに基づいて前記照明光を変調する光変調素子と、
 前記複数の階調ビットのうち最下位の階調ビットの表示期間をT1、前記最下位よりも1段階上位の階調ビットの表示期間をT2としたとき、T2≧T1>T2・1/2となるように、前記光変調素子における前記階調ビットごとの表示期間を可変制御する期間制御部と、
 少なくとも前記最下位の階調ビットの表示期間における前記光源の出力を可変制御する光源出力制御部と
 を備える
 表示装置。
(2)
 前記光源出力制御部は、前記最下位の階調ビットの表示期間における前記光源の出力を、前記複数の階調ビットのうち前記最下位の階調ビット以外の他の階調ビットの表示期間における前記光源の出力に対して変化させる
 上記(1)に記載の表示装置。
(3)
 前記光源出力制御部は、前記最下位の階調ビットの表示期間における前記光源の出力を、前記他の階調ビットの表示期間における前記光源の出力よりも低下させる
 上記(2)に記載の表示装置。
(4)
 前記期間制御部は、1つのサブフレームの期間内で前記階調ビットごとの表示期間を制御し、
 前記光源出力制御部は、前記サブフレームの期間の開始時の前記光源の出力と前記サブフレームの期間の終了時の前記光源の出力とが互いに近付くように、前記複数の階調ビットのそれぞれの表示期間における前記光源の出力を変化させる
 上記(2)または(3)に記載の表示装置。
(5)
 前記光源出力制御部は、前記複数の階調ビットのそれぞれの表示期間における前記光源の出力を連続的に変化させる
 上記(2)ないし(4)のいずれか1つに記載の表示装置。
(6)
 前記光源出力制御部は、前記最下位の階調ビットの表示期間内で、前記光源の出力を部分的に、前記他の階調ビットの表示期間における前記光源の出力よりも低下させる
 上記(2)に記載の表示装置。
(7)
 画像信号に基づいて前記階調ビットごとのビットプレーンのデータを生成し、前記階調ビットごとの表示期間に先だって、前記階調ビットごとに前記ビットプレーンのデータを前記光変調素子に転送するビットプレーン生成部、をさらに備える
 上記(1)ないし(6)のいずれか1つに記載の表示装置。
(8)
 前記光変調素子によって生成された画像を投影する投射光学系、をさらに備え、
 プロジェクタとして構成されている
 上記(1)ないし(7)のいずれか1つに記載の表示装置。
(1)
A light source that outputs light that is a source of illumination light,
Within a display period allocated to each of the plurality of gradation bits, a light modulation element that modulates the illumination light based on bit plane data for each gradation bit,
T2 ≧ T1> T2 ・ 1/2, where T1 is the display period of the lowermost grayscale bit of the plurality of grayscale bits and T2 is the display period of the grayscale bit one level higher than the lowermost grayscale bit. A period control unit that variably controls a display period for each of the gradation bits in the light modulation element,
A light source output control unit that variably controls an output of the light source during a display period of at least the least significant gradation bit.
(2)
The light source output control unit outputs the output of the light source during the display period of the least significant grayscale bit during a display period of another grayscale bit other than the least significant grayscale bit of the plurality of grayscale bits. The display device according to (1), wherein the display device changes the output of the light source.
(3)
The display according to (2), wherein the light source output control unit lowers an output of the light source during a display period of the least significant gray scale bit than an output of the light source during a display period of the other gray scale bit. apparatus.
(4)
The period control unit controls a display period for each of the grayscale bits within a period of one subframe,
The light source output control unit, so that the output of the light source at the start of the period of the sub-frame and the output of the light source at the end of the period of the sub-frame approach each other, each of the plurality of gradation bits The display device according to (2) or (3), wherein an output of the light source is changed during a display period.
(5)
The display device according to any one of (2) to (4), wherein the light source output control unit continuously changes the output of the light source in each display period of the plurality of grayscale bits.
(6)
The light source output control unit partially lowers the output of the light source during the display period of the least significant gray scale bit than the output of the light source during the display period of the other gray scale bit. The display device according to (1).
(7)
A bit for generating bit plane data for each gradation bit based on an image signal and transferring the bit plane data to the light modulation element for each gradation bit prior to a display period for each gradation bit The display device according to any one of (1) to (6), further including a plane generation unit.
(8)
A projection optical system that projects an image generated by the light modulation element,
The display device according to any one of (1) to (7), configured as a projector.
 本出願は、日本国特許庁において2018年8月20日に出願された日本特許出願番号第2018-154067号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2018-154407 filed on August 20, 2018 by the JPO, and hereby incorporated by reference in its entirety. Incorporated into application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Various modifications, combinations, sub-combinations, and modifications may occur to those skilled in the art, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that it is.

Claims (8)

  1.  照明光の元となる光を出力する光源と、
     複数の階調ビットのそれぞれに割り振られた表示期間内で、前記階調ビットごとのビットプレーンのデータに基づいて前記照明光を変調する光変調素子と、
     前記複数の階調ビットのうち最下位の階調ビットの表示期間をT1、前記最下位よりも1段階上位の階調ビットの表示期間をT2としたとき、T2≧T1>T2・1/2となるように、前記光変調素子における前記階調ビットごとの表示期間を可変制御する期間制御部と、
     少なくとも前記最下位の階調ビットの表示期間における前記光源の出力を可変制御する光源出力制御部と
     を備える
     表示装置。
    A light source that outputs light that is a source of illumination light,
    Within a display period allocated to each of the plurality of gradation bits, a light modulation element that modulates the illumination light based on bit plane data for each gradation bit,
    T2 ≧ T1> T2 ・ 1/2, where T1 is the display period of the lowermost grayscale bit of the plurality of grayscale bits and T2 is the display period of the grayscale bit one level higher than the lowermost grayscale bit. A period control unit that variably controls a display period for each of the gradation bits in the light modulation element,
    A light source output control unit that variably controls an output of the light source during a display period of at least the least significant gradation bit.
  2.  前記光源出力制御部は、前記最下位の階調ビットの表示期間における前記光源の出力を、前記複数の階調ビットのうち前記最下位の階調ビット以外の他の階調ビットの表示期間における前記光源の出力に対して変化させる
     請求項1に記載の表示装置。
    The light source output control unit outputs the output of the light source during the display period of the least significant grayscale bit during a display period of another grayscale bit other than the least significant grayscale bit of the plurality of grayscale bits. The display device according to claim 1, wherein the output is changed with respect to an output of the light source.
  3.  前記光源出力制御部は、前記最下位の階調ビットの表示期間における前記光源の出力を、前記他の階調ビットの表示期間における前記光源の出力よりも低下させる
     請求項2に記載の表示装置。
    3. The display device according to claim 2, wherein the light source output control unit reduces an output of the light source during a display period of the least significant grayscale bit than an output of the light source during a display period of the other grayscale bit. 4. .
  4.  前記期間制御部は、1つのサブフレームの期間内で前記階調ビットごとの表示期間を制御し、
     前記光源出力制御部は、前記サブフレームの期間の開始時の前記光源の出力と前記サブフレームの期間の終了時の前記光源の出力とが互いに近付くように、前記複数の階調ビットのそれぞれの表示期間における前記光源の出力を変化させる
     請求項2に記載の表示装置。
    The period control unit controls a display period for each of the grayscale bits within a period of one subframe,
    The light source output control unit, so that the output of the light source at the start of the period of the sub-frame and the output of the light source at the end of the period of the sub-frame approach each other, each of the plurality of gradation bits The display device according to claim 2, wherein an output of the light source is changed during a display period.
  5.  前記光源出力制御部は、前記複数の階調ビットのそれぞれの表示期間における前記光源の出力を連続的に変化させる
     請求項2に記載の表示装置。
    The display device according to claim 2, wherein the light source output control unit continuously changes the output of the light source in each display period of the plurality of gradation bits.
  6.  前記光源出力制御部は、前記最下位の階調ビットの表示期間内で、前記光源の出力を部分的に、前記他の階調ビットの表示期間における前記光源の出力よりも低下させる
     請求項2に記載の表示装置。
    The light source output control unit partially reduces the output of the light source during the display period of the least significant gradation bit to be lower than the output of the light source during the display period of the other gradation bit. The display device according to claim 1.
  7.  画像信号に基づいて前記階調ビットごとのビットプレーンのデータを生成し、前記階調ビットごとの表示期間に先だって、前記階調ビットごとに前記ビットプレーンのデータを前記光変調素子に転送するビットプレーン生成部、をさらに備える
     請求項1に記載の表示装置。
    A bit for generating bit plane data for each gradation bit based on an image signal, and transferring the bit plane data for each gradation bit to the light modulation element prior to a display period for each gradation bit. The display device according to claim 1, further comprising a plane generation unit.
  8.  前記光変調素子によって生成された画像を投影する投射光学系、をさらに備え、
     プロジェクタとして構成されている
     請求項1に記載の表示装置。
    A projection optical system that projects an image generated by the light modulation element,
    The display device according to claim 1, wherein the display device is configured as a projector.
PCT/JP2019/031307 2018-08-20 2019-08-08 Display device WO2020039954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154067 2018-08-20
JP2018-154067 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020039954A1 true WO2020039954A1 (en) 2020-02-27

Family

ID=69593131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031307 WO2020039954A1 (en) 2018-08-20 2019-08-08 Display device

Country Status (1)

Country Link
WO (1) WO2020039954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115810320A (en) * 2023-02-08 2023-03-17 山东云海国创云计算装备产业创新中心有限公司 Cooperative control method, system, equipment and storage medium for gray scale image display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012506A1 (en) * 1991-01-04 1992-07-23 Rank Brimar Limited Display device
JPH07212686A (en) * 1993-12-24 1995-08-11 Texas Instr Inc <Ti> Gradation representation method
JPH08146934A (en) * 1994-11-24 1996-06-07 Texas Instr Inc <Ti> Method for adjusting intensity of pulse-width modulated digital display pixel and display sysetm wherein method thereof is applied
WO2001069584A1 (en) * 2000-03-14 2001-09-20 Mitsubishi Denki Kabushiki Kaisha Image display and image displaying method
US20110128607A1 (en) * 2007-08-16 2011-06-02 Silicon Quest Kabushiki-Kaisha Display system for higher grayscale with a varying light source
WO2014112032A1 (en) * 2013-01-15 2014-07-24 Necディスプレイソリューションズ株式会社 Image display device and image display method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012506A1 (en) * 1991-01-04 1992-07-23 Rank Brimar Limited Display device
JPH07212686A (en) * 1993-12-24 1995-08-11 Texas Instr Inc <Ti> Gradation representation method
JPH08146934A (en) * 1994-11-24 1996-06-07 Texas Instr Inc <Ti> Method for adjusting intensity of pulse-width modulated digital display pixel and display sysetm wherein method thereof is applied
WO2001069584A1 (en) * 2000-03-14 2001-09-20 Mitsubishi Denki Kabushiki Kaisha Image display and image displaying method
US20110128607A1 (en) * 2007-08-16 2011-06-02 Silicon Quest Kabushiki-Kaisha Display system for higher grayscale with a varying light source
WO2014112032A1 (en) * 2013-01-15 2014-07-24 Necディスプレイソリューションズ株式会社 Image display device and image display method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115810320A (en) * 2023-02-08 2023-03-17 山东云海国创云计算装备产业创新中心有限公司 Cooperative control method, system, equipment and storage medium for gray scale image display
CN115810320B (en) * 2023-02-08 2023-05-05 山东云海国创云计算装备产业创新中心有限公司 Cooperative control method, system, equipment and storage medium for gray image display

Similar Documents

Publication Publication Date Title
US7083284B2 (en) Method and apparatus for sequencing light emitting devices in projection systems
US7147331B2 (en) Method of driving a spatial light modulator and projector
US8643681B2 (en) Color display system
US8064125B2 (en) Color sequential illumination for spatial light modulator
US20090147154A1 (en) Color display system
JP2006349731A (en) Image projector
JP2006301649A (en) Method and system for projecting image
US20090147033A1 (en) Color display system
US7969640B2 (en) Color display system
US7869115B2 (en) Display apparatus using pulsed light source
US20100090942A1 (en) Active matrix display device
US20180192013A1 (en) Image display device and image display method
WO2007040732A1 (en) Image display system and method
JP2007078866A (en) Spatial optical modulation system, driving method for same, and projector
JP4068551B2 (en) LIGHT SOURCE DEVICE AND ITS DRIVE METHOD AND VIDEO DISPLAY DEVICE
JP2016180802A (en) Projection control device, control method and program
WO2020039954A1 (en) Display device
US8665252B2 (en) Duty cycle calculation and implementation for solid state illuminators
JP6732841B2 (en) Image projection device
CN110753880B (en) Laser power management in laser projectors
CN112312099B (en) projection display device
JP2008026355A (en) Light source control device
US8643630B2 (en) Method and system for generating a display
US11178366B2 (en) Projector
US20220357642A1 (en) Display apparatus and projection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP