WO2020039675A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020039675A1
WO2020039675A1 PCT/JP2019/020194 JP2019020194W WO2020039675A1 WO 2020039675 A1 WO2020039675 A1 WO 2020039675A1 JP 2019020194 W JP2019020194 W JP 2019020194W WO 2020039675 A1 WO2020039675 A1 WO 2020039675A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
detection
pressure detection
display device
Prior art date
Application number
PCT/JP2019/020194
Other languages
French (fr)
Japanese (ja)
Inventor
岳 大野
泰 折田
成一郎 森
中村 達也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2020039675A1 publication Critical patent/WO2020039675A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a display device, and more particularly to a display device capable of specifying a position pointed by a pointer.
  • the touch panel is a device that specifies a position touched by an indicator such as a finger.
  • a touch panel has attracted attention as one of excellent user interface (UI) means.
  • UI user interface
  • Various types of touch panels such as a resistive type and a capacitive type have been commercialized.
  • the capacitive touch panels there is a projected capacitive touch panel (see, for example, JP-A-2012-103761 (Patent Document 1)).
  • a projection capacitive method touch detection is possible even when the front side of the sensor built in the touch panel is covered with a protective plate such as a glass plate having a thickness of about several mm.
  • the protection plate can be placed on the front surface, which makes it more robust, the touch detection is possible even when gloves are worn, and the life is longer because there are no moving parts.
  • WO 2000-044018 Patent Document 2
  • a key matrix including an array of a plurality of driving / receiving electrode pairs is provided. The electric field between the electrodes changes depending on an object that contacts the substrate, such as a finger. A change in the coupling capacitance (mutual electrode capacitance) accompanying this is detected as a charge amount.
  • Patent Document 3 discloses a proximity / contact sensor.
  • the first detecting means of the proximity / contact sensor has a sheet-like upper electrode layer and a sheet-like lower electrode layer.
  • the upper electrode layer has a plurality of upper electrodes that conduct electricity in one direction.
  • the lower electrode layer has a plurality of lower electrodes that are insulated from the upper electrode and are energized in another direction different from the current flow direction of the upper electrode, and are disposed to cross the upper electrode.
  • An intermediate layer that is deformed in accordance with the contact or pressure of the object is provided below the first detection unit.
  • a second detection means for detecting an electrical change according to the contact or pressing force of the object.
  • the approach of the target is determined based on an electrical change between the upper electrode and the lower electrode.
  • the object touches or presses the first detecting means based on the electrical change detected by the second detecting means, the position of the contact or pressing of the object and the pressure Values are specified. Switching is performed at predetermined intervals so that either one of the first detection means and the second detection means is connected to the ground.
  • JP 2012-103761 A International Publication No. 2000-0404018 International Publication No. 2014-080924
  • conductive foreign matter such as water droplets may adhere to the touch surface.
  • the adhesion of foreign matter can disturb the operation of pressure detection.
  • such a disturbance in the detection operation may be increased.
  • An advantage of some aspects of the invention is to provide a display device that can prevent pressure detection from being disturbed by a foreign substance on a touch surface. .
  • the display device of the present invention can specify the position indicated by the indicator.
  • the display device has a cover panel, a position detection layer, a display panel, a first charge detector, and an excitation signal source.
  • the cover panel has a first surface to be indicated by the indicator and a second surface opposite to the first surface.
  • the position detection layer is provided directly or indirectly on the second surface of the cover panel, and has a distance t from the first surface.
  • the position detection layer includes a plurality of first electrodes, a plurality of second electrodes, and an interlayer insulating film.
  • the plurality of first electrodes run in parallel with each other.
  • the plurality of second electrodes run in parallel with each other and intersect with the plurality of first electrodes.
  • the interlayer insulating film insulates between the plurality of first electrodes and the plurality of second electrodes in the thickness direction.
  • the display panel has a pressure detection electrode facing the position detection layer via the gap in the thickness direction, and supports the cover panel so that the second surface of the cover panel can bend toward the gap. I have.
  • the maximum length of a line connecting the first electrode and the second electrode at the shortest distance through an arbitrary point in the interval between the plurality of first electrodes and the plurality of second electrodes in plan view is represented by length s.
  • the inequality t> s / 2 is satisfied.
  • FIG. 2 is a partial cross-sectional view schematically illustrating a configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device of FIG. 1.
  • FIG. 2 is a plan view schematically showing a configuration of a touch panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial plan view schematically showing a configuration of the touch panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic partial sectional view taken along line VV in FIG. 4.
  • FIG. 2 is a diagram schematically illustrating a state in which a pointer comes into contact with the display device of FIG. 1.
  • FIG. 1 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device of FIG. 1.
  • FIG. 2 is a plan view schematically showing a configuration of a touch panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram schematically showing a configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart schematically showing a detection operation of the display device according to the first embodiment of the present invention.
  • FIG. 7 is a graph showing a relationship between a length s shown in FIG. 4 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 6.
  • FIG. 7 is a schematic diagram showing a state in which a line of electric force from a pressure detection electrode approaches a pointer above a distance of a length s between a column electrode and a row electrode.
  • FIG. 4 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1.
  • FIG. 3 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1.
  • FIG. 7 is a graph illustrating an example of a result of a mutual capacitance detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1.
  • FIG. 3 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when salt water adheres to a touch surface of the display device of FIG. 1.
  • FIG. 7 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 1.
  • FIG. 2 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to a touch surface of the display device of FIG. 1.
  • FIG. 9 is a partial cross-sectional view schematically illustrating a configuration of a display device according to a second embodiment of the present invention.
  • FIG. 18 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device in FIG. 17.
  • FIG. 18 is a diagram schematically illustrating a state in which a pointer comes into contact with the display device in FIG. 17.
  • FIG. 20 is a graph showing a relationship between a length s shown in FIG. 4 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 19.
  • FIG. 18 is a graph illustrating an example of a detection result of charges induced on the first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device in FIG. 17.
  • FIG. 18 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device in FIG. 17.
  • FIG. 18 is a diagram schematically illustrating a state in which a pointer comes into contact with the display device in FIG. 17.
  • FIG. 20 is a graph showing a relationship between a length s shown in FIG.
  • FIG. 18 is a graph illustrating an example of a detection result of charges induced on the second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device in FIG. 17.
  • FIG. 18 is a graph illustrating an example of a result of a mutual capacitance detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 17.
  • FIG. 18 is a graph illustrating an example of a detection result of charges induced on the first electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 17.
  • FIG. 18 is a graph illustrating an example of a detection result of charges induced on the second electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 17.
  • FIG. 18 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to the touch surface of the display device of FIG. 17.
  • FIG. 13 is a partial plan view schematically showing a planar layout of a first electrode and a second electrode of a touch panel according to Embodiment 3 of the present invention.
  • FIG. 28 is a partial plan view schematically showing a configuration of a first metal mesh in a broken line portion MGa in FIG. 27.
  • FIG. 29 is an enlarged view of a broken line portion MGb in FIG. 28.
  • FIG. 28 is a partial plan view schematically showing a configuration of a second metal mesh in a broken line portion MGa in FIG. 27.
  • FIG. 31 is an enlarged view of a broken line portion MGb in FIG. 30.
  • FIG. 28 is a partial plan view schematically showing a configuration of first and second metal meshes in a broken line portion MGa in FIG. 27.
  • FIG. 28 is a graph showing a relationship between a length s shown in FIG. 27 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 6.
  • FIG. 13 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of a display device according to Embodiment 3 of the present invention. is there.
  • FIG. 13 is a graph showing an example of a detection result of charges induced on the second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device according to Embodiment 3 of the present invention. is there.
  • FIG. 15 is a graph illustrating an example of a mutual capacitance detection operation result when a pseudo finger as a pointer is pressed against a clean touch surface of the display device according to Embodiment 3 of the present invention.
  • FIG. 15 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when salt water adheres to a touch surface of a display device according to Embodiment 3 of the present invention.
  • FIG. 15 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when salt water adheres to a touch surface of a display device according to Embodiment 3 of the present invention.
  • FIG. 14 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to the touch surface of the display device according to Embodiment 3 of the present invention.
  • FIG. 1 is a partial cross-sectional view schematically showing a configuration of a display device 101 according to the first embodiment.
  • FIG. 2 is an exploded perspective view schematically showing a layer configuration on the front side of the display device 101 (FIG. 1).
  • 3 and 4 are a plan view and a partial plan view schematically showing the configuration of touch panel 1 (FIG. 1).
  • FIG. 5 is a schematic partial sectional view taken along line VV in FIG.
  • FIG. 6 is a diagram schematically illustrating a state where the indicator 900 is in contact with the display device 101 (FIG. 1).
  • FIG. 7 is a block diagram schematically showing a configuration of the display device according to the first embodiment. In FIG. 2, the planar shape of each member is simplified and drawn.
  • the display device 101 can identify the position pointed by the pointer 900 (FIG. 6).
  • the display device 101 (FIG. 1) has a cover panel 13, a position detection layer LD, and a liquid crystal panel 2 (display panel).
  • the cover panel 13 has a touch surface F1 (first surface) to be designated by the indicator 900, and an inner surface F2 (second surface) opposite to the touch surface F1.
  • the touch panel 1 is constituted by the position detection layer LD and the base substrate 10 supporting the position detection layer LD.
  • the base substrate 10 is transparent and is made of, for example, glass or resin.
  • the touch panel 1 is joined to the inner surface F2 of the cover panel 13 via the adhesive 14 so that the position detection layer LD is located between the cover panel 13 and the base substrate 10. Therefore, the position detection layer LD is provided indirectly on the inner surface F2 of the cover panel 13 via the adhesive 14.
  • the position detection layer LD may be protected by being covered with the protective film 12.
  • the position detection layer LD has a distance t from the touch surface F1.
  • the position detection layer LD (FIG. 1) includes a plurality of column electrodes 21 (first electrodes), a plurality of row electrodes 31 (second electrodes), and an interlayer. And an insulating film 11 (FIG. 5).
  • the interlayer insulating film 11 insulates between the column electrode 21 and the row electrode 31 in the thickness direction (the vertical direction in FIG. 5). In other words, in a portion where the column electrode 21 and the row electrode 31 overlap in plan view, the space between the column electrode 21 and the row electrode 31 is blocked by the interlayer insulating film 11.
  • the detection area 9 (FIG. 1)
  • the position detection layer LD has a configuration in which detection cells CL (FIG. 4) are periodically and repeatedly arranged.
  • electrodes X0 to X19 are provided as the plurality of column electrodes 21, and electrodes Y0 to Y51 are specifically provided as the plurality of row electrodes 31.
  • 20 column electrodes and 52 row electrodes 31 are provided, but the numbers of the plurality of column electrodes 21 and row electrodes 31 are not particularly limited and are arbitrary.
  • Each of the column electrodes 21 is connected to the column terminal 4.
  • Each of the column terminals 4 is connected to an external terminal 8 via a lead wire 6.
  • Each of the row electrodes 31 is connected to a row terminal 5.
  • Each of the row terminals 5 is connected to an external terminal 8 via a lead wire 7.
  • the column electrode 21 and the row electrode 31 are made of a transparent conductor, for example, ITO (indium tin oxide).
  • the interlayer insulating film 11 is preferably a transparent film, for example, a silicon nitride film, a silicon oxide film, or an organic film.
  • the liquid crystal panel 2 (FIG. 1) has the pressure detection electrode 40 facing the position detection layer LD via the gap GP in the thickness direction (vertical direction in the figure).
  • the liquid crystal panel 2 supports the cover panel 13 so that the inner surface F2 of the cover panel 13 can bend toward the gap GP.
  • the liquid crystal panel 2 and the touch panel 1 are joined to each other by the double-sided tape 15 around the gap GP.
  • the gap GP is made of an elastic body, and is preferably made of a gas such as air.
  • the maximum length of a line connecting the column electrode 21 and the row electrode 31 at the shortest distance through an arbitrary point in the interval between the column electrode 21 and the row electrode 31 in plan view is shown. Defined as length s.
  • the length S1 of the line segment connected at the shortest distance corresponds to the length s.
  • the length S2 of the line segment connecting the column electrode 21 and the row electrode 31 at the shortest distance through the point P2 is shorter than the length S1, and is not the maximum length, and thus corresponds to the length s. do not do.
  • the inequality t> s / 2 is satisfied.
  • each of the column electrodes 21 has a plurality of diamond-shaped portions along the extending direction (vertical direction in FIG. 4). In each of the column electrodes 21, adjacent ones of the plurality of diamond-shaped portions are connected to each other in a pattern thinner than the diamond shape.
  • each of the row electrodes 31 has a plurality of diamond-shaped portions along the extending direction (lateral direction in FIG. 4). In each of the row electrodes 31, adjacent ones of the plurality of diamond-shaped portions are connected to each other in a pattern thinner than the diamond shape. The diamond-shaped portion of the column electrode 21 and the diamond-shaped portion of the row electrode 31 are separated from each other in plan view.
  • the position detection layer LD has a parallel region in which the column electrode 21 and the row electrode 31 face each other in parallel in a plan view with an interval therebetween.
  • the liquid crystal panel 2 (FIG. 1) has a TFT (Thin Film Transistor) substrate 60, an electrode structure described later, a liquid crystal layer 19, and a color filter substrate 18.
  • the liquid crystal layer 19 is sealed between the TFT substrate 60 and the color filter substrate by using a spacer 61.
  • the TFT substrate 60 is provided with a TFT for each pixel of the liquid crystal panel 2.
  • a polarizing plate 17 is provided on each of the front surface and the rear surface (the upper surface and the lower surface in FIG. 1) of the liquid crystal panel 2.
  • the pressure detection electrode 40 is disposed on the color filter substrate 18 and is separated from the liquid crystal layer 19 by the color filter substrate 18.
  • the pressure detection electrode 40 is electrically connected to a wiring on the TFT substrate 60 via, for example, the silver paste 16.
  • the liquid crystal layer 19 is disposed between the pressure detection electrode 40 and the above-mentioned electrode structure.
  • the electrode structure is for generating an electric field for controlling the orientation of the liquid crystal layer 19.
  • the liquid crystal panel 2 has an electrode structure for generating a lateral electric field on the TFT substrate 60.
  • an IPS (In Plane Switching) (registered trademark) system may be used as a method using the horizontal electric field.
  • the electrode structure has a structure in which the pixel electrode 51, the insulating film 55, and the common electrode 50 are stacked.
  • the pixel electrode 51 is provided in each of a plurality of pixels included in the liquid crystal panel 2 and has a relatively simple planar shape.
  • the common electrode 50 has a comb shape.
  • the orientation of the liquid crystal layer 19 is controlled by the fringe electric field between the common electrode 50 and the pixel electrode 51.
  • display device 101 has excitation signal source 80 and charge detector 82 (first charge detector).
  • the excitation signal source 80 can individually apply an excitation signal to the plurality of column electrodes 21 (first electrodes). Further, the excitation signal source 80 can apply an excitation signal to the pressure detection electrode 40. Further, the excitation signal source 80 operates so that the timing of applying the excitation signal to the plurality of column electrodes 21 and the timing of applying the excitation signal to the pressure detection electrode 40 are different. In addition, when the excitation signal is individually applied to the plurality of column electrodes 21, the pressure detection electrode 40 has a constant potential. On the other hand, when the excitation signal is applied to the pressure detection electrode 40, the plurality of column electrodes 21 and the plurality of row electrodes are used. The excitation signal source 80 operates so that 31 becomes the same constant potential. This operation is realized by being controlled by the control unit 90, for example.
  • the charge detector 82 can individually detect charges induced in the plurality of row electrodes 31 (second electrodes).
  • the display device 101 has a charge detector 81 (second charge detector) as shown in FIG.
  • the charge detector 81 can individually detect charges induced in the plurality of column electrodes 21.
  • the excitation signal source 80 applies an excitation signal to the pressure detection electrode 40
  • the charge detector 81 and the charge detector 82 operate. This operation is realized by being controlled by the control unit 90, for example.
  • the charge detectors 81 and 82 are, for example, detection integrators.
  • the detection integrator outputs an electric charge charged to the capacitance under the influence of the application of the excitation signal as an analog voltage value (count). This count has a proportional relationship with the electrode capacitance change amount.
  • step S100 pressure is detected. Specifically, first, in step S110, an excitation signal is applied from the excitation signal source 80 to the pressure detection electrode 40. Then, in step S120, charges are detected. Specifically, in step S121, the charges induced in the plurality of column electrodes 21 (first electrodes) are individually detected by the charge detector 81. In step 122, the charges induced in the plurality of row electrodes 31 (second electrodes) are individually detected by the charge detector 82.
  • step S200 based on the result of the above pressure detection, control unit 90 determines whether or not indicator 900 (FIG. 6) locally applies pressure on touch surface F1 (FIG. 6). I do. This determination can be made based on, for example, whether or not a peak having a certain intensity is detected, as shown in graphs of FIGS. 11 and 12 described later. The strength may be determined in advance. In that case, the display device 101 may include a storage unit (not shown) for storing the intensity. If the decision result in the step S200 is NO, the process returns to the step S100 again. On the other hand, when the result of the determination is YES, the process proceeds to step S300 described below.
  • step S300 an operation of position detection by a normal projection-type capacitance system is performed. That is, the mutual capacitance between the column electrode 21 and the row electrode 31 is detected. Specifically, first, in step S310, an excitation signal is individually applied to the plurality of column electrodes 21 (first electrodes) by the excitation signal source 80 while applying a constant potential to the pressure detection electrode 40. Then, in step S320, the charges induced in the plurality of row electrodes 31 are individually detected by the charge detector 82.
  • step S200 does not necessarily have to be performed. In particular, when it is necessary to detect the non-contact approach of the indicator 900, step S200 may be omitted. When step S200 is omitted, the order of step S100 and step S300 may be reversed.
  • step S120 the charges induced on the column electrodes 21 are individually detected, and the charges induced on the row electrodes 31 are individually detected. Therefore, the position of the indicator 900 can be detected not only in step 300 but also in step S100. In step S120, the position need not always be detected. When the position is not detected, the charges induced in the column electrodes 21 do not necessarily need to be individually detected. Further, the charges induced in the row electrodes 31 do not necessarily need to be individually detected. For example, the charge detector 81 may collectively detect the total charges induced in the plurality of row electrodes 31.
  • the capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21
  • the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31
  • the capacitance C3 is the capacitance between the pressure detection electrode 40 and the row electrode 31. This is the capacitance between the pointer and the indicator 900.
  • the indicator 900 is a conductor having the same size as one detection cell CL.
  • the pitch of the arrangement of the diamond-shaped portions in FIG. 4 is fixed at 5.6 mm.
  • the size of one detection cell CL is fixed at 5.6 mm square.
  • the thickness c (FIG. 1) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm.
  • the thickness of the adhesive 14 (FIG. 1) is fixed at 0.2 mm, and the thickness of the protective film 12 (FIG. 1) is negligible, so that the distance t is 0.7 mm, 1.2 mm, 1.7 mm. , Or 2.2 mm. For each distance t, the relationship between the capacity ratio and the length s is calculated.
  • FIG. 10 shows that when the pressure is detected, that is, when the column electrode 21 and the row electrode 31 are at the same constant potential and an excitation signal is applied to the pressure detection electrode 40, the lines of electric force from the pressure detection electrode 40
  • FIG. 7 is a schematic diagram showing a state in which the display approaches a pointer 900 above an interval of a length s between row electrodes 31.
  • the above-described capacitance ratio corresponds to the degree of coupling between the pressure detection electrode 40 and the indicator 900 passing between the column electrode 21 and the row electrode 31. Therefore, that the capacitance ratio is sufficiently suppressed means that the electric field between the pressure detection electrode 40 and the indicator 900 is sufficiently shielded by the column electrode 21 and the row electrode 31.
  • the dielectric constant of the gap GP is usually higher than when the gap GP is made of a gas such as air. Therefore, at the time of position detection, the electric field between the column electrode 21 and the row electrode 31 is easily coupled to the pressure detection electrode 40. As a result, the position detection sensitivity decreases. Although it is possible to suppress this decrease in sensitivity by increasing the distance between the column electrode 21 and the row electrode 31, it is necessary to reduce the area of the column electrode 21 or the row electrode 31. As a result of this area reduction, the parallel plate capacitance between the column electrode 21 or the row electrode 31 and the pressure detection electrode 40 decreases, and the ratio of the fringe capacitance component increases.
  • the fringe capacitance has a smaller capacitance change with distance change than the parallel plate capacitance. This means that the change in the capacitance between the column electrode 21 or the row electrode 31 and the pressure detection electrode 40 becomes slow with respect to the change in the distance. That is, the pressure detection sensitivity is reduced. Therefore, it is desirable that the gap GP is made of a gas such as air rather than a solid.
  • FIG. 11 shows an example of the output count of each of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. 12 shows an example of the output count of the detection integrator of each of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)).
  • step S122 the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)).
  • a distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the location of the pseudo finger.
  • FIG. 13 is a graph showing an example of a mutual capacitance detection operation result when a pseudo finger is pressed against a clean touch surface.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
  • FIG. 14 is a graph showing an example of output counts of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • FIG. 15 is a graph showing an example of the output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • a pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)).
  • step S122 step S122 (FIG. 8)
  • FIG. 16 is a graph showing an example of a mutual capacitance detection operation result when salt water adheres to the touch surface F1.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • step S310 FIG. 8
  • the touch surface F1 is not clean, as shown in FIG. 16, the count due to the indicator, that is, noise increases, so that position detection based on mutual capacitance detection may be difficult.
  • position detection (see FIGS. 11 and 12) accompanying pressure detection may be performed without depending on mutual capacitance detection. In this case, detection of multi-touch is difficult, but detection of single touch is possible.
  • FIGS. 11 and 12 by detecting the counts of the electrodes X0 to X19 and the electrodes Y0 to Y51, the position coordinates of the pointer can be detected.
  • the length s satisfying the inequality t> s / 2 is equal to the length of the column electrode 21 in the parallel region (the region where the side of the column electrode 21 and the side of the row electrode 31 face in parallel in FIG. 4 via the dimension s).
  • the distance from the row electrode 31 may be used. Accordingly, the column electrode 21 and the row electrode 31 sufficiently shield the space between the pressure detection electrode 40 and the touch surface F1 over the entire parallel region. Therefore, it is more sufficiently prevented that the pressure detection is disturbed by the foreign matter on the touch surface F1.
  • the liquid crystal panel 2 is a horizontal electric field type liquid crystal panel
  • the orientation of the liquid crystal layer 19 controlled by the horizontal electric field is easily disturbed by a vertical electric field generated due to charging of the liquid crystal panel 2. Therefore, a structure for removing static electricity from the liquid crystal panel 2 is required.
  • a structure capable of applying an external potential between the liquid crystal layer 19 and the gap GP is required.
  • the pressure detection electrode 40 by using the pressure detection electrode 40 as this structure, a dedicated structure for removing static electricity can be omitted. Thereby, the configuration of the liquid crystal panel 2 can be simplified.
  • step S100 not the charge of the pressure detection electrode 40 provided on the liquid crystal panel 2 but the charge of the column electrode 21 and the row electrode 31 which are arranged relatively far from the liquid crystal panel 2. Is detected. Thereby, the influence of the electromagnetic noise generated from the liquid crystal panel 2 on the detection can be suppressed.
  • an excitation signal may be applied to the column electrode 21 and the row electrode 31 to detect the charge of the pressure detection electrode 40.
  • the charge detector 81 and the charge detector 82 may operate. With this operation, the position indicated by the indicator 900 can be specified. Specifying the position by this method is not easily disturbed by a foreign substance on the touch surface F1. Therefore, position detection can be performed even in a state in which foreign matter has adhered to the touch surface F1.
  • FIG. 17 is a partial cross-sectional view schematically showing a configuration of a display device 102 according to the second embodiment.
  • FIG. 18 is an exploded perspective view schematically showing a layer configuration on the front side of display device 102 (FIG. 17).
  • FIG. 19 is a diagram schematically illustrating a state in which the indicator 900 is in contact with the display device 102 (FIG. 17).
  • the structure of the touch panel 1 included in the display device 102 is simplified by omitting the base substrate 10 and the adhesive 14 (FIG. 1: Embodiment 1). To achieve this, the position detection layer LD is provided directly on the inner surface F2 of the cover panel 13.
  • the remaining configuration is substantially the same as the configuration of the above-described first embodiment. Therefore, the same or corresponding elements are denoted by the same reference characters, and description thereof will not be repeated.
  • the capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21
  • the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31
  • C3 is the capacitance between the pressure detection electrode 40 and the indicator 900.
  • the indicator 900 is a conductor having the same size as one detection cell CL.
  • the pitch of the arrangement of the diamond-shaped portions in FIG. 4 is fixed at 5.6 mm.
  • the size of one detection cell CL is fixed at 5.6 mm square.
  • the thickness c (FIG. 17) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm.
  • the thickness c corresponds to the distance t.
  • the relationship between the capacity ratio and the length s is calculated. From the result of the calculation shown in FIG. 20, it can be seen that the capacity ratio sharply increases when the length s exceeds the threshold. This threshold is about twice the distance t. Therefore, as in the first embodiment, when the inequality t> s / 2 is satisfied, the capacitance ratio is sufficiently suppressed. When the capacitance ratio is sufficiently suppressed, it means that the electric field between the pressure detection electrode 40 and the indicator 900 is sufficiently shielded by the column electrode 21 and the row electrode 31.
  • FIG. 21 shows an example of the output count of the detection integrator of each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. 22 shows an example of an output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)).
  • step S122 the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)).
  • a distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the location of the pseudo finger.
  • FIG. 23 is a graph showing an example of the result of the mutual capacitance detection operation when a pseudo finger is pressed against a clean touch surface.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
  • FIG. 24 is a graph showing an example of the output count of the detection integrator of each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • FIG. 25 is a graph showing an example of an output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • a pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)).
  • step S122 step S122 (FIG. 8)
  • FIG. 26 is a graph showing an example of the result of the mutual capacitance detection operation when salt water adheres to the touch surface F1.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • step S310 FIG. 8
  • a column electrode and a row electrode made of a metal mesh are used instead of the column electrode 21 and the row electrode 31 made of a transparent conductor (FIG. 4: Embodiment 1).
  • Other configurations are almost the same as the configuration of the first embodiment described above, and therefore, the configuration of the column wiring and the row wiring will be mainly described below.
  • FIG. 27 is a partial plan view schematically showing a planar layout of column electrodes 21M (first electrodes) and row electrodes 31M (second electrodes) of touch panel 1 in the third embodiment.
  • the outer edges of each of the column electrode 21M and the row electrode 31M are shown, and the fine structure of each of the column electrode 21M and the row electrode 31M, specifically, a mesh pattern (FIGS. 28 to 32) ) Are not shown.
  • column electrode 21M and row electrode 31M are provided instead of column electrode 21 and row electrode 31 (FIG. 4: Embodiment 1).
  • an isolation region RS insulated from both the column electrode 21M and the row electrode 31M is provided between the column electrode 21M and the row electrode 31M. Similar to the case of the first embodiment (FIG. 4), any point in the interval (corresponding to the isolation region RS) between the plurality of column electrodes 21M and the plurality of row electrodes 31M in plan view (FIG. 27).
  • the maximum length of a line segment connecting the column electrode 21M and the row electrode 31M at the shortest distance through is defined as the length s.
  • the length S1 corresponds to the length s.
  • the length S2 is shorter than the length S1, and is not the maximum length, and thus does not correspond to the length s.
  • the inequality t> s / 2 is satisfied.
  • the position detection layer LD (FIG. 1) includes a first metal mesh 20 (described later with reference to FIG. 28) and a second A metal mesh 30 (described later with reference to FIG. 30).
  • These metal meshes are members having a mesh pattern made of a metal such as aluminum. By having a mesh pattern, a member having a light-transmitting property when viewed macroscopically can be formed using a metal material having no light-transmitting property.
  • the configuration of these metal meshes will be described.
  • FIG. 28 is a partial plan view schematically showing the configuration of the first metal mesh 20 in the broken line portion MGa in FIG.
  • FIG. 29 is an enlarged view of a broken line portion MGb in FIG. Note that the difference in the thickness of the solid line in each of FIG. 28 and FIG. 29 is for making the figure easier to see, and does not mean the difference in the thickness of the mesh pattern.
  • the mesh pattern preferably has a uniform thickness.
  • the small circles indicated by broken lines in FIG. 29 are drawn for explanation, and do not represent the configuration.
  • the second metal mesh 30 is shown by a two-dot chain line for reference.
  • the first metal mesh 20 has a first mesh pattern.
  • the first mesh pattern has a two-dimensional periodic structure (first periodic structure) in plan view.
  • first periodic structure first periodic structure
  • the first mesh pattern has a period P1 and a period P2 along the vertical direction and the horizontal direction, respectively.
  • the period P1 and the period P2 may be different from each other, or may be the same as each other.
  • the first mesh pattern has a locally broken portion.
  • the “disconnection portion” is a portion where the fine line structure of the mesh pattern is locally divided. Specifically, a disconnection portion 21c (first disconnection portion), a disconnection portion 22c, and a disconnection portion 23c are provided.
  • the first metal mesh 20 includes a plurality of column electrodes 21M, a plurality of first dummy electrodes 22, and a plurality of first floating electrodes 23.
  • the first dummy electrode 22 overlaps with the row electrode 31M (described later with reference to FIG. 30) in plan view. However, the first dummy electrode 22 is not provided in a region where the row electrode 31M and the column electrode 21M overlap in plan view.
  • the first floating electrode 23 is arranged between the column electrode 21M and the first dummy electrode 22.
  • the disconnection portion 21c insulates the first dummy electrode 22 and the first floating electrode 23 from the column electrode 21M. In other words, the disconnection portion 21c insulates the first metal mesh 20 from the column electrode 21M and a portion other than the column electrode 21M.
  • the disconnection portion 22c insulates the first floating electrode 23 from the first dummy electrode 22.
  • the disconnection portion 23c divides each of the first floating electrodes 23 into a plurality of portions that are insulated from each other.
  • a minute pattern (a pattern shown in a small circle in the figure) apart from the first mesh pattern may be provided at a broken portion of the first mesh pattern.
  • This minute pattern may be formed from the same material as the material of the first metal mesh 20.
  • This fine pattern is preferably a linear pattern extending in a direction different from the original direction of the first mesh pattern, and the linear pattern may be a direction orthogonal to the original direction of the first mesh pattern. preferable. Further, it is preferable that the length of the linear pattern is equal to the length at which the first mesh pattern is divided by the disconnection portion.
  • FIG. 30 is a partial plan view schematically showing the configuration of the second metal mesh 30 in the broken line portion MGa in FIG.
  • FIG. 31 is an enlarged view of a broken line portion MGb in FIG. Note that the difference in thickness between the solid lines in each of FIGS. 30 and 31 is for facilitating viewing of the drawing, and does not mean the difference in thickness between the mesh patterns.
  • the mesh pattern preferably has a uniform thickness. Also, the broken small circles in FIG. 31 are drawn for explanation, and do not represent the configuration.
  • the first metal mesh 20 is shown by a two-dot chain line for reference.
  • the second metal mesh 30 faces the first metal mesh 20 via the interlayer insulating film 11 (see FIG. 2) in the thickness direction.
  • the interlayer insulating film 11 may be provided over the entire detection area 9 (FIG. 3).
  • the second metal mesh 30 has a second mesh pattern.
  • the second mesh pattern has a two-dimensional periodic structure (second periodic structure) in plan view.
  • the second mesh pattern has a period P1 and a period P2 along the vertical direction and the horizontal direction, respectively. That is, the second mesh pattern has the same two periods as the first mesh pattern. However, as described later, there is a phase shift between the arrangement of the first mesh pattern and the arrangement of the second mesh pattern.
  • the second mesh pattern has a locally broken portion. Specifically, a disconnection portion 31c (second disconnection portion), a disconnection portion 32c, and a disconnection portion 33c are provided.
  • the second metal mesh 30 includes a plurality of row electrodes 31M, a plurality of second dummy electrodes 32, and a plurality of second floating electrodes 33.
  • the second dummy electrode 32 overlaps the column electrode 21M (FIG. 28) in plan view. However, the second dummy electrode 32 is not provided in a region where the column electrode 21M and the row electrode 31M overlap in plan view.
  • the second floating electrode 33 is disposed between the row electrode 31M and the second dummy electrode 32.
  • the disconnection part 31c insulates the second dummy electrode 32 and the second floating electrode 33 from the row electrode 31M.
  • the disconnection portion 31c insulates the second metal mesh 30 from the row electrode 31M and a portion other than the row electrode 31M.
  • the disconnection part 32 c insulates the second floating electrode 33 from the second dummy electrode 32.
  • the disconnection portion 33c divides each of the second floating electrodes 33 into a plurality of portions that are insulated from each other.
  • a minute pattern (a pattern shown in a small circle in the figure) apart from the second mesh pattern may be provided in the broken portion of the second mesh pattern.
  • This minute pattern may be formed from the same material as the material of the second metal mesh 30.
  • This fine pattern is preferably a linear pattern extending in a direction different from the original direction of the second mesh pattern, and the linear pattern is preferably a direction orthogonal to the original direction of the second mesh pattern. preferable. Further, it is preferable that the length of the linear pattern is equal to the length at which the second mesh pattern is divided by the disconnection portion.
  • FIG. 32 is a partial plan view schematically showing the configuration of the first metal mesh 20 and the second metal mesh 30 in the broken line portion MGa in FIG.
  • the first metal mesh 20 is represented by a relatively thick line
  • the second metal mesh 30 is represented by a relatively thin line, for easy understanding of the drawing.
  • the periodic structure of the first mesh pattern of the first metal mesh 20, that is, the first periodic structure corresponds to the thick line in the drawing, and the period of the second mesh pattern of the second metal mesh 30.
  • the structure, that is, the second periodic structure corresponds to the thin line in the figure.
  • the second periodic structure is complementary to the first periodic structure.
  • a phase shift is provided between the first periodic structure and the second periodic structure. This phase shift is preferably about a half cycle as shown.
  • the width of the fine metal wire constituting the first and second mesh patterns is 3 ⁇ m.
  • the break interval between the break portions of the first and second mesh patterns is 10 ⁇ m.
  • the width of the first floating electrode 23 (the horizontal dimension in FIG. 28) is 800 ⁇ m.
  • Each of the periods P1 and P2 (FIGS. 28, 30 and 32) is 400 ⁇ m.
  • the thickness of the base substrate 10 (FIG. 1) is 0.9 mm.
  • FIG. 33 is a graph showing the relationship between the length s shown in FIG. 27 and the calculated value of the capacitance ratio of the capacitance similar to the capacitance shown in FIG.
  • the capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21M
  • the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31M
  • the capacitance C3 is The capacitance between the pressure detection electrode 40 and the indicator 900.
  • the thickness c (FIG. 1) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm.
  • the thickness of the adhesive 14 (FIG. 1) is fixed at 0.2 mm
  • the thickness of the protective film 12 (FIG.
  • FIG. 34 shows an example of the output count of each of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. 35 shows an example of the output count of each detection integrator of the electrodes Y0 to Y51 constituting the row electrode 31M (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1.
  • FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) was detected (step S122 (step S122 (FIG. 8)). A distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the position of the pseudo finger.
  • FIG. 36 is a graph showing an example of the result of the mutual capacitance detection operation when a pseudo finger is pressed against a clean touch surface.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21M (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
  • FIG. 37 is a graph showing an example of output counts of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • FIG. 38 is a graph showing an example of the output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31M (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there.
  • a pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)).
  • step S121 the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected (step S122 (step S122 (FIG. 8)).
  • step S122 step S122 (FIG. 8)
  • FIG. 39 is a graph illustrating an example of a result of the mutual capacitance detection operation when salt water adheres to the touch surface F1.
  • Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21M (first electrode) (FIG. 8: step S310).
  • the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)).
  • step S310 FIG. 8
  • the touch surface F1 is not clean, as shown in FIG. 39, the count that is not caused by the indicator, that is, the noise increases, so that position detection based on mutual capacitance detection may be difficult.
  • position detection accompanying the pressure detection may be performed without depending on the mutual capacitance detection. In this case, detection of multi-touch is difficult, but detection of single touch is possible.
  • the position coordinates of the pointer can be detected by detecting the count of each of the electrodes X0 to X19 and the electrodes Y0 to Y51.
  • a metal material is used as a material for the row electrode and the column electrode, instead of a transparent conductive material.
  • the electric resistance of the electrode can be reduced. Therefore, the speed of the detection operation can be increased.
  • the inventor conducted an experiment in which each of Step S100 and Step S300 shown in FIG. 8 was performed once. As a result, the operation time in the third embodiment was reduced to about 1/3 of the operation time in the first embodiment.
  • the periodic structure of the second mesh pattern of the second metal mesh 30, that is, the second periodic structure is complementary to the periodic structure of the first mesh pattern of the first metal mesh 20, that is, the first periodic structure. It is a target. Thereby, the reflectance in the detection area 9 (FIG. 3) is made uniform. Therefore, it is possible to make the first metal mesh 20 and the second metal mesh 30 less visible.
  • a minute pattern is provided at a disconnection portion of the first and second mesh patterns. Accordingly, it is possible to prevent the translucency of the touch panel 1 from locally increasing in the disconnection portion. Therefore, the disconnection portion can be made hard to be visually recognized.
  • CL detection cell F1 touch surface (first surface), F2 inner surface (second surface), GP gap, LD position detection layer, RS separation region, X0 to X19, Y0 to Y51 electrodes, 1 touch panel, 2 liquid crystal panel (display) Panel), 9 detection area, 10 base substrate, 11 interlayer insulating film, 12 protective film, 13 cover panel, 14 adhesive, 15 double-sided tape, 16 silver paste, 17 polarizing plate, 18 color filter substrate, 19 liquid crystal layer, 20 First metal mesh, 21, 21M ⁇ column electrode (first electrode), 21c ⁇ disconnection part (first disconnection part), 22c, 23c ⁇ disconnection part, 31c ⁇ disconnection part (second disconnection part), 32c, 33c ⁇ disconnection part, 22 ⁇ th 1 dummy electrode, 23 ⁇ first floating electrode, 30 ⁇ second metal mesh, 31, 31M ⁇ row electrode (second electrode), 2 second dummy electrode, 33 second floating electrode, 40 pressure sensing electrode, 50 common electrode, 51 pixel electrode, 55 insulating film, 60 T

Abstract

A cover panel (13) comprises a first surface (F1) to be subject to pointing by a pointing body (900), and a second surface (F2) which is opposite to the first surface (F1). A position detection layer (LD) above the second surface (F2) has a distance t from the first surface (F1). The position detection layer (LD) comprises first electrodes (21) and second electrodes (31). A display panel (2) comprises a pressure detection electrode (40) which faces the position detection layer (LD) with a gap (GP) therebetween. Given that a length s is defined as the maximum length of line segments which, in plan view, pass through arbitrary points in gaps between the first electrodes (21) and the second electrodes (31) and which join the first electrodes (21) and the second electrodes (31) at the shortest distances, an inequality t>s/2 is satisfied.

Description

表示装置Display device
 本発明は、表示装置に関し、特に、指示体によって指示された位置を特定することができる表示装置に関するものである。 The present invention relates to a display device, and more particularly to a display device capable of specifying a position pointed by a pointer.
 近年、タッチパネルが付加された表示装置が用いられている。タッチパネルは、指などの指示体によによってタッチされた位置を特定する装置である。タッチパネルは、優れたユーザインタフェース(UI)手段の一つとして注目されている。抵抗膜方式および静電容量方式などの種々の方式のタッチパネルが製品化されている。 Recently, display devices with a touch panel have been used. The touch panel is a device that specifies a position touched by an indicator such as a finger. A touch panel has attracted attention as one of excellent user interface (UI) means. Various types of touch panels such as a resistive type and a capacitive type have been commercialized.
 静電容量方式のタッチパネルの一つとして、投影型静電容量(Projected Capacitive)方式のタッチパネルがある(例えば、特開2012-103761号公報(特許文献1)参照)。投写型静電容量方式によれば、タッチパネルに内蔵されているセンサの前面側が厚さ数mm程度のガラス板などの保護板で覆われている場合でも、タッチの検出が可能である。この方式は、保護板を前面に配置することができるので堅牢性に優れる点、手袋装着時でもタッチ検出が可能である点、および、可動部がないので長寿命である点、などの利点を有している。国際公開第2000-044018号(特許文献2)によれば、複数の駆動/受信電極対の配列からなるキー・マトリクスが設けられる。電極間の電界は、指など基板に接触する物によって変化する。これに伴う結合静電容量(相互電極静電容量)の変化が電荷量として検出される。 As one of the capacitive touch panels, there is a projected capacitive touch panel (see, for example, JP-A-2012-103761 (Patent Document 1)). According to the projection capacitive method, touch detection is possible even when the front side of the sensor built in the touch panel is covered with a protective plate such as a glass plate having a thickness of about several mm. This method has the following advantages: the protection plate can be placed on the front surface, which makes it more robust, the touch detection is possible even when gloves are worn, and the life is longer because there are no moving parts. Have. According to WO 2000-044018 (Patent Document 2), a key matrix including an array of a plurality of driving / receiving electrode pairs is provided. The electric field between the electrodes changes depending on an object that contacts the substrate, such as a finger. A change in the coupling capacitance (mutual electrode capacitance) accompanying this is detected as a charge amount.
 また最近では、投影型静電容量方式のタッチパネルに圧力検出機能を付与することが提案され始めている。例えば、国際公開第2014-080924号(特許文献3)によれば、近接・接触センサを開示している。近接・接触センサの第1検出手段は、シート状の上電極層と、シート状の下層電極層とを有している。上層電極層は、一の方向に通電する複数の上電極を有している。下層電極層は、上電極と絶縁され上電極の通電方向と異なる他の方向に通電し上電極と交差して配設される複数の下電極を有している。第1検出手段の下方には、対象物の接触または圧力に応じて変形する中間層が配設されている。中間層の下方には、対象物の接触または押圧力に応じた電気的な変化を検出する第2検出手段が配設されている。第1検出手段に対象物が接近した場合に、上電極および下電極間の電気的な変化に基づいて、対象物の接近が判定される。それとともに、対象物が第1検出手段に接触または押圧力を加えた場合に、第2検出手段で検出された電気的な変化に基づいて、対象物の接触または押圧の位置と、その圧力の値とが特定される。第1検出手段および第2検出手段のいずれか一方がグラウンドに接続するように、所定の間隔で切り替えが行われる。 Recently, it has recently been proposed to add a pressure detection function to a projected capacitive touch panel. For example, International Patent Application Publication No. 2014-080924 (Patent Document 3) discloses a proximity / contact sensor. The first detecting means of the proximity / contact sensor has a sheet-like upper electrode layer and a sheet-like lower electrode layer. The upper electrode layer has a plurality of upper electrodes that conduct electricity in one direction. The lower electrode layer has a plurality of lower electrodes that are insulated from the upper electrode and are energized in another direction different from the current flow direction of the upper electrode, and are disposed to cross the upper electrode. An intermediate layer that is deformed in accordance with the contact or pressure of the object is provided below the first detection unit. Below the intermediate layer, a second detection means for detecting an electrical change according to the contact or pressing force of the object is provided. When the target approaches the first detection means, the approach of the target is determined based on an electrical change between the upper electrode and the lower electrode. At the same time, when the object touches or presses the first detecting means, based on the electrical change detected by the second detecting means, the position of the contact or pressing of the object and the pressure Values are specified. Switching is performed at predetermined intervals so that either one of the first detection means and the second detection means is connected to the ground.
特開2012-103761号公報JP 2012-103761 A 国際公開第2000-044018号International Publication No. 2000-0404018 国際公開第2014-080924号International Publication No. 2014-080924
 タッチパネルの使用中、水滴など導電性の異物がタッチ面に付着することがあり得る。異物の付着は、圧力検出の動作を乱し得る。上記国際公開第2014-080924号に記載の技術においては、このような検出動作の乱れが大きくなることがあり得る。 中 During use of the touch panel, conductive foreign matter such as water droplets may adhere to the touch surface. The adhesion of foreign matter can disturb the operation of pressure detection. In the technology described in WO-A-2014-92424, such a disturbance in the detection operation may be increased.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、圧力検出がタッチ面上の異物によって乱されることを防止することができる表示装置を提供することである。 SUMMARY An advantage of some aspects of the invention is to provide a display device that can prevent pressure detection from being disturbed by a foreign substance on a touch surface. .
 本発明の表示装置は、指示体によって指示された位置を特定することができる。表示装置は、カバーパネルと、位置検出層と、表示パネルと、第1の電荷検出器と、励起信号源とを有している。カバーパネルは、指示体によって指示されることになる第1面と、第1面と反対の第2面とを有している。位置検出層は、カバーパネルの第2面上に直接的または間接的に設けられており、第1面から距離tを有している。位置検出層は、複数の第1電極と、複数の第2電極と、層間絶縁膜とを含む。複数の第1電極は互いに並走している。複数の第2電極は、互いに並走しており、複数の第1電極と交差している。層間絶縁膜は厚み方向において複数の第1電極と複数の第2電極との間を絶縁している。表示パネルは、厚み方向においてギャップを介して位置検出層に対向する圧力検出電極を有しており、カバーパネルの第2面がギャップに向かって撓むことができるようにカバーパネルを支持している。平面視における複数の第1電極と複数の第2電極との間の間隔中の任意の点を通って第1電極と第2電極とを最短距離で結ぶ線分の最大長さを長さsと定義したとき、t>s/2が満たされている。 表示 The display device of the present invention can specify the position indicated by the indicator. The display device has a cover panel, a position detection layer, a display panel, a first charge detector, and an excitation signal source. The cover panel has a first surface to be indicated by the indicator and a second surface opposite to the first surface. The position detection layer is provided directly or indirectly on the second surface of the cover panel, and has a distance t from the first surface. The position detection layer includes a plurality of first electrodes, a plurality of second electrodes, and an interlayer insulating film. The plurality of first electrodes run in parallel with each other. The plurality of second electrodes run in parallel with each other and intersect with the plurality of first electrodes. The interlayer insulating film insulates between the plurality of first electrodes and the plurality of second electrodes in the thickness direction. The display panel has a pressure detection electrode facing the position detection layer via the gap in the thickness direction, and supports the cover panel so that the second surface of the cover panel can bend toward the gap. I have. The maximum length of a line connecting the first electrode and the second electrode at the shortest distance through an arbitrary point in the interval between the plurality of first electrodes and the plurality of second electrodes in plan view is represented by length s. When t is defined, t> s / 2 is satisfied.
 本発明によれば、上記不等式t>s/2が満たされている。これにより、圧力検出電極と、指示体によって指示されるタッチ面であるカバーパネルの第1面との間が、位置検出層の第1電極および第2電極によって十分に遮蔽される。よって、タッチ面上の異物によって圧力検出が乱されることが防止される。 According to the present invention, the inequality t> s / 2 is satisfied. Thereby, the space between the pressure detection electrode and the first surface of the cover panel, which is the touch surface indicated by the indicator, is sufficiently shielded by the first electrode and the second electrode of the position detection layer. Therefore, disturbance of the pressure detection by the foreign matter on the touch surface is prevented.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1における表示装置の構成を概略的に示す部分断面図である。FIG. 2 is a partial cross-sectional view schematically illustrating a configuration of a display device according to Embodiment 1 of the present invention. 図1の表示装置の前面側の層構成を概略的に示す分解斜視図である。FIG. 2 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device of FIG. 1. 本発明の実施の形態1におけるタッチパネルの構成を概略的に示す平面図である。FIG. 2 is a plan view schematically showing a configuration of a touch panel according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるタッチパネルの構成を概略的に示す部分平面図である。FIG. 2 is a partial plan view schematically showing a configuration of the touch panel according to Embodiment 1 of the present invention. 図4の線V-Vに沿う概略的な部分断面図である。FIG. 5 is a schematic partial sectional view taken along line VV in FIG. 4. 図1の表示装置へ指示体が接触した状態を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a state in which a pointer comes into contact with the display device of FIG. 1. 本発明の実施の形態1における表示装置の構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration of a display device according to Embodiment 1 of the present invention. 本発明の実施の形態1における表示装置の検出動作を概略的に示すフロー図である。FIG. 4 is a flowchart schematically showing a detection operation of the display device according to the first embodiment of the present invention. 図4に示された長さsと、図6に示された容量の容量比の計算値との関係を示すグラフ図である。FIG. 7 is a graph showing a relationship between a length s shown in FIG. 4 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 6. 圧力検出電極からの電気力線が列電極および行電極の間の長さsの間隔の上方で指示体へと接近する様子を示す模式図である。FIG. 7 is a schematic diagram showing a state in which a line of electric force from a pressure detection electrode approaches a pointer above a distance of a length s between a column electrode and a row electrode. 図1の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 4 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1. 図1の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 3 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1. 図1の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 7 is a graph illustrating an example of a result of a mutual capacitance detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 1. 図1の表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 3 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when salt water adheres to a touch surface of the display device of FIG. 1. 図1の表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 7 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 1. 図1の表示装置のタッチ面へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 2 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to a touch surface of the display device of FIG. 1. 本発明の実施の形態2における表示装置の構成を概略的に示す部分断面図である。FIG. 9 is a partial cross-sectional view schematically illustrating a configuration of a display device according to a second embodiment of the present invention. 図17の表示装置の前面側の層構成を概略的に示す分解斜視図である。FIG. 18 is an exploded perspective view schematically illustrating a layer configuration on the front side of the display device in FIG. 17. 図17の表示装置へ指示体が接触した状態を模式的に示す図である。FIG. 18 is a diagram schematically illustrating a state in which a pointer comes into contact with the display device in FIG. 17. 図4に示された長さsと、図19に示された容量の容量比の計算値との関係を示すグラフ図である。FIG. 20 is a graph showing a relationship between a length s shown in FIG. 4 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 19. 図17の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a detection result of charges induced on the first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device in FIG. 17. 図17の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a detection result of charges induced on the second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device in FIG. 17. 図17の表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a result of a mutual capacitance detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device of FIG. 17. 図17の表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a detection result of charges induced on the first electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 17. 図17の表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a detection result of charges induced on the second electrode in a pressure detection operation when salt water adheres to the touch surface of the display device of FIG. 17. 図17の表示装置のタッチ面へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 18 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to the touch surface of the display device of FIG. 17. 本発明の実施の形態3におけるタッチパネルの第1電極および第2電極の平面レイアウトを概略的に示す部分平面図である。FIG. 13 is a partial plan view schematically showing a planar layout of a first electrode and a second electrode of a touch panel according to Embodiment 3 of the present invention. 図27の破線部MGaにおける第1金属メッシュの構成を概略的に示す部分平面図である。FIG. 28 is a partial plan view schematically showing a configuration of a first metal mesh in a broken line portion MGa in FIG. 27. 図28の破線部MGbの拡大図である。FIG. 29 is an enlarged view of a broken line portion MGb in FIG. 28. 図27の破線部MGaにおける第2金属メッシュの構成を概略的に示す部分平面図である。FIG. 28 is a partial plan view schematically showing a configuration of a second metal mesh in a broken line portion MGa in FIG. 27. 図30の破線部MGbの拡大図である。FIG. 31 is an enlarged view of a broken line portion MGb in FIG. 30. 図27の破線部MGaにおける第1および第2金属メッシュの構成を概略的に示す部分平面図である。FIG. 28 is a partial plan view schematically showing a configuration of first and second metal meshes in a broken line portion MGa in FIG. 27. 図27に示された長さsと、図6に示された容量の容量比の計算値との関係を示すグラフ図である。FIG. 28 is a graph showing a relationship between a length s shown in FIG. 27 and a calculated value of a capacitance ratio of the capacitance shown in FIG. 6. 本発明の実施の形態3における表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 13 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of a display device according to Embodiment 3 of the present invention. is there. 本発明の実施の形態3における表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 13 is a graph showing an example of a detection result of charges induced on the second electrode in a pressure detection operation when a pseudo finger as a pointer is pressed against a clean touch surface of the display device according to Embodiment 3 of the present invention. is there. 本発明の実施の形態3における表示装置の清浄なタッチ面へ指示体としての疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 15 is a graph illustrating an example of a mutual capacitance detection operation result when a pseudo finger as a pointer is pressed against a clean touch surface of the display device according to Embodiment 3 of the present invention. 本発明の実施の形態3における表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第1電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 15 is a graph illustrating an example of a detection result of charges induced on a first electrode in a pressure detection operation when salt water adheres to a touch surface of a display device according to Embodiment 3 of the present invention. 本発明の実施の形態3における表示装置のタッチ面へ塩水が付着した場合の圧力検出動作において第2電極に誘起された電荷の検出結果の例を示すグラフ図である。FIG. 15 is a graph illustrating an example of a detection result of charges induced on a second electrode in a pressure detection operation when salt water adheres to a touch surface of a display device according to Embodiment 3 of the present invention. 本発明の実施の形態3における表示装置のタッチ面へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。FIG. 14 is a graph illustrating an example of a result of a mutual capacitance detection operation when salt water adheres to the touch surface of the display device according to Embodiment 3 of the present invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
 <実施の形態1>
 (構成)
 図1は、本実施の形態1における表示装置101の構成を概略的に示す部分断面図である。図2は、表示装置101(図1)の前面側の層構成を概略的に示す分解斜視図である。図3および図4のそれぞれは、タッチパネル1(図1)の構成を概略的に示す平面図および部分平面図である。図5は、図4の線V-Vに沿う概略的な部分断面図である。図6は、表示装置101(図1)へ指示体900が接触した状態を模式的に示す図である。図7は、本実施の形態1における表示装置の構成を概略的に示すブロック図である。なお図2は、各部材の平面形状が簡素化されて描画されている。
<First Embodiment>
(Constitution)
FIG. 1 is a partial cross-sectional view schematically showing a configuration of a display device 101 according to the first embodiment. FIG. 2 is an exploded perspective view schematically showing a layer configuration on the front side of the display device 101 (FIG. 1). 3 and 4 are a plan view and a partial plan view schematically showing the configuration of touch panel 1 (FIG. 1). FIG. 5 is a schematic partial sectional view taken along line VV in FIG. FIG. 6 is a diagram schematically illustrating a state where the indicator 900 is in contact with the display device 101 (FIG. 1). FIG. 7 is a block diagram schematically showing a configuration of the display device according to the first embodiment. In FIG. 2, the planar shape of each member is simplified and drawn.
 表示装置101は、指示体900(図6)によって指示された位置を特定することができるものである。表示装置101(図1)は、カバーパネル13と、位置検出層LDと、液晶パネル2(表示パネル)とを有している。カバーパネル13は、指示体900によって指示されることになるタッチ面F1(第1面)と、タッチ面F1と反対の内面F2(第2面)とを有している。 The display device 101 can identify the position pointed by the pointer 900 (FIG. 6). The display device 101 (FIG. 1) has a cover panel 13, a position detection layer LD, and a liquid crystal panel 2 (display panel). The cover panel 13 has a touch surface F1 (first surface) to be designated by the indicator 900, and an inner surface F2 (second surface) opposite to the touch surface F1.
 本実施の形態においては、位置検出層LDと、それを支持するベース基板10とによって、タッチパネル1が構成されている。ベース基板10は、透明であり、例えば、ガラスまたは樹脂からなる。カバーパネル13とベース基板10との間に位置検出層LDが位置するように、タッチパネル1がカバーパネル13の内面F2上へ粘着材14を介して接合されている。よって位置検出層LDはカバーパネル13の内面F2上に粘着材14を介して間接的に設けられている。なお、位置検出層LDは、保護膜12に覆われることによって保護されていてよい。位置検出層LDはタッチ面F1から距離tを有している。 In the present embodiment, the touch panel 1 is constituted by the position detection layer LD and the base substrate 10 supporting the position detection layer LD. The base substrate 10 is transparent and is made of, for example, glass or resin. The touch panel 1 is joined to the inner surface F2 of the cover panel 13 via the adhesive 14 so that the position detection layer LD is located between the cover panel 13 and the base substrate 10. Therefore, the position detection layer LD is provided indirectly on the inner surface F2 of the cover panel 13 via the adhesive 14. Note that the position detection layer LD may be protected by being covered with the protective film 12. The position detection layer LD has a distance t from the touch surface F1.
 投影型静電容量方式による位置検出を実現するために、位置検出層LD(図1)は、複数の列電極21(第1電極)と、複数の行電極31(第2電極)と、層間絶縁膜11(図5)とを含む。層間絶縁膜11は厚み方向(図5における縦方向)において列電極21と行電極31との間を絶縁している。言い換えれば、平面視において列電極21と行電極31とが重なる部分において、列電極21と行電極31との間が層間絶縁膜11によって遮られている。検出エリア9(図3)において、複数の列電極21は互いに並走しており、また複数の行電極31は互いに並走している。図4に示されているように、複数の行電極31は複数の列電極21と交差している。言い換えれば、行電極31の各々が複数の列電極21と交差しており、かつ、列電極21の各々が複数の行電極31と交差している。位置検出層LDは、検出セルCL(図4)が周期的に繰り返し配置された構成を有している。 In order to realize position detection by the projection capacitance method, the position detection layer LD (FIG. 1) includes a plurality of column electrodes 21 (first electrodes), a plurality of row electrodes 31 (second electrodes), and an interlayer. And an insulating film 11 (FIG. 5). The interlayer insulating film 11 insulates between the column electrode 21 and the row electrode 31 in the thickness direction (the vertical direction in FIG. 5). In other words, in a portion where the column electrode 21 and the row electrode 31 overlap in plan view, the space between the column electrode 21 and the row electrode 31 is blocked by the interlayer insulating film 11. In the detection area 9 (FIG. 3), the plurality of column electrodes 21 run in parallel with each other, and the plurality of row electrodes 31 run in parallel with each other. As shown in FIG. 4, the plurality of row electrodes 31 intersect with the plurality of column electrodes 21. In other words, each of the row electrodes 31 crosses the plurality of column electrodes 21, and each of the column electrodes 21 crosses the plurality of row electrodes 31. The position detection layer LD has a configuration in which detection cells CL (FIG. 4) are periodically and repeatedly arranged.
 図3に示されているように、複数の列電極21として具体的には電極X0~X19が設けられており、複数の行電極31として具体的には電極Y0~Y51が設けられている。この場合、20個の列電極と、52個の行電極31とが設けられるが、複数の列電極21および行電極31の数は、特に限定されず任意である。列電極21の各々は列端子4に接続されている。列端子4の各々は引き出し配線6を経て外部端子8に接続されている。行電極31の各々は行端子5に接続されている。行端子5の各々は引き出し配線7を経て外部端子8に接続されている。 (3) As shown in FIG. 3, specifically, electrodes X0 to X19 are provided as the plurality of column electrodes 21, and electrodes Y0 to Y51 are specifically provided as the plurality of row electrodes 31. In this case, 20 column electrodes and 52 row electrodes 31 are provided, but the numbers of the plurality of column electrodes 21 and row electrodes 31 are not particularly limited and are arbitrary. Each of the column electrodes 21 is connected to the column terminal 4. Each of the column terminals 4 is connected to an external terminal 8 via a lead wire 6. Each of the row electrodes 31 is connected to a row terminal 5. Each of the row terminals 5 is connected to an external terminal 8 via a lead wire 7.
 列電極21および行電極31は、本実施の形態においては、透明導電体からなり、例えばITO(酸化インジウムスズ)からなる。層間絶縁膜11は、透明膜であることが好ましく、例えば、シリコン窒化膜、シリコン酸化膜、または有機膜である。 In the present embodiment, the column electrode 21 and the row electrode 31 are made of a transparent conductor, for example, ITO (indium tin oxide). The interlayer insulating film 11 is preferably a transparent film, for example, a silicon nitride film, a silicon oxide film, or an organic film.
 液晶パネル2(図1)は、厚み方向(図中、縦方向)においてギャップGPを介して位置検出層LDに対向する圧力検出電極40を有している。液晶パネル2は、カバーパネル13の内面F2がギャップGPに向かって撓むことができるようにカバーパネル13を支持している。このような支持構造を得るために、例えば、ギャップGPの周りで液晶パネル2とタッチパネル1とが両面テープ15によって互いに接合されている。ギャップGPは、弾性体からなり、好ましくは、空気などの気体からなる。 The liquid crystal panel 2 (FIG. 1) has the pressure detection electrode 40 facing the position detection layer LD via the gap GP in the thickness direction (vertical direction in the figure). The liquid crystal panel 2 supports the cover panel 13 so that the inner surface F2 of the cover panel 13 can bend toward the gap GP. In order to obtain such a support structure, for example, the liquid crystal panel 2 and the touch panel 1 are joined to each other by the double-sided tape 15 around the gap GP. The gap GP is made of an elastic body, and is preferably made of a gas such as air.
 図4を参照して、平面視における列電極21と行電極31との間の間隔中の任意の点を通って列電極21と行電極31とを最短距離で結ぶ線分の最大長さを長さsと定義する。図示されている例においては、平面視における複数の列電極21と複数の行電極31との間のすべての点が考慮された場合に、点P1を通って列電極21と行電極31とを最短距離で結ぶ線分の長さS1が、上記の長さsに対応する。なお、例えば、点P2を通って列電極21と行電極31とを最短距離で結ぶ線分の長さS2は、長さS1よりも短いので最大長さではなく、よって長さsには対応しない。このように定義された長さsと、距離t(図1)との関係として、不等式t>s/2が満たされる。 With reference to FIG. 4, the maximum length of a line connecting the column electrode 21 and the row electrode 31 at the shortest distance through an arbitrary point in the interval between the column electrode 21 and the row electrode 31 in plan view is shown. Defined as length s. In the illustrated example, when all points between the plurality of column electrodes 21 and the plurality of row electrodes 31 in plan view are considered, the column electrode 21 and the row electrode 31 pass through the point P1. The length S1 of the line segment connected at the shortest distance corresponds to the length s. In addition, for example, the length S2 of the line segment connecting the column electrode 21 and the row electrode 31 at the shortest distance through the point P2 is shorter than the length S1, and is not the maximum length, and thus corresponds to the length s. do not do. As a relationship between the length s thus defined and the distance t (FIG. 1), the inequality t> s / 2 is satisfied.
 具体的には、列電極21の各々は、その延在方向(図4における縦方向)に沿って、複数のダイヤモンド形状部を有している。列電極21の各々において、複数のダイヤモンド形状部のうち隣り合うものは、ダイヤモンド形状よりも細いパターンで互いに接続されている。同様に、行電極31の各々は、その延在方向(図4における横方向)に沿って、複数のダイヤモンド形状部を有している。行電極31の各々において、複数のダイヤモンド形状部のうち隣り合うものは、ダイヤモンド形状よりも細いパターンで互いに接続されている。列電極21のダイヤモンド形状部と、行電極31のダイヤモンド形状部とは、平面視において互いに離されている。列電極21のダイヤモンド形状部の辺と、行電極31のダイヤモンド形状部の辺とは、間隔を介して互いに対向しており、かつ互いに平行に延びている。よって位置検出層LDは、列電極21と行電極31とが平面視において間隔を介して平行に対向している平行領域を有している。平行領域における列電極21と行電極31との間の距離が長さS1=sに対応している。 Specifically, each of the column electrodes 21 has a plurality of diamond-shaped portions along the extending direction (vertical direction in FIG. 4). In each of the column electrodes 21, adjacent ones of the plurality of diamond-shaped portions are connected to each other in a pattern thinner than the diamond shape. Similarly, each of the row electrodes 31 has a plurality of diamond-shaped portions along the extending direction (lateral direction in FIG. 4). In each of the row electrodes 31, adjacent ones of the plurality of diamond-shaped portions are connected to each other in a pattern thinner than the diamond shape. The diamond-shaped portion of the column electrode 21 and the diamond-shaped portion of the row electrode 31 are separated from each other in plan view. The side of the diamond-shaped portion of the column electrode 21 and the side of the diamond-shaped portion of the row electrode 31 are opposed to each other with an interval therebetween and extend in parallel with each other. Therefore, the position detection layer LD has a parallel region in which the column electrode 21 and the row electrode 31 face each other in parallel in a plan view with an interval therebetween. The distance between the column electrode 21 and the row electrode 31 in the parallel region corresponds to the length S1 = s.
 液晶パネル2(図1)は、TFT(Thin Film Transistor:薄膜トランジスタ)基板60と、後述する電極構造と、液晶層19と、カラーフィルター基板18とを有している。TFT基板60とカラーフィルター基板との間に液晶層19がスペーサ61を用いて封止されている。TFT基板60には、液晶パネル2の画素毎にTFTが設けられている。液晶パネル2の前面および後面(図1における上面および下面)の各々には偏光板17が設けられている。圧力検出電極40は、カラーフィルター基板18上に配置されており、カラーフィルター基板18によって液晶層19から隔てられている。圧力検出電極40は、例えば、銀ペースト16を介してTFT基板60上の配線に電気的に接続されている。液晶層19は、圧力検出電極40と、上記電極構造との間に配置されている。 The liquid crystal panel 2 (FIG. 1) has a TFT (Thin Film Transistor) substrate 60, an electrode structure described later, a liquid crystal layer 19, and a color filter substrate 18. The liquid crystal layer 19 is sealed between the TFT substrate 60 and the color filter substrate by using a spacer 61. The TFT substrate 60 is provided with a TFT for each pixel of the liquid crystal panel 2. A polarizing plate 17 is provided on each of the front surface and the rear surface (the upper surface and the lower surface in FIG. 1) of the liquid crystal panel 2. The pressure detection electrode 40 is disposed on the color filter substrate 18 and is separated from the liquid crystal layer 19 by the color filter substrate 18. The pressure detection electrode 40 is electrically connected to a wiring on the TFT substrate 60 via, for example, the silver paste 16. The liquid crystal layer 19 is disposed between the pressure detection electrode 40 and the above-mentioned electrode structure.
 上記電極構造は、液晶層19の配向を制御するための電界を発生させるためのものである。本実施の形態においては、液晶パネル2は、横電界を発生させる電極構造をTFT基板60上に有している。横電界を用いる方式としては、IPS(In Plane Switching:登録商標)方式が用いられ得る。図1に示された例においては、特に、FFS方式の場合が図示されている。具体的には、電極構造は、画素電極51と、絶縁膜55と、コモン電極50とが積層された構造を有している。画素電極51は、液晶パネル2が有する複数の画素の各々に設けられており、比較的単純な平面形状を有している。コモン電極50は櫛歯形状を有している。コモン電極50と画素電極51との間のフリンジ電界によって液晶層19の配向が制御される。 The electrode structure is for generating an electric field for controlling the orientation of the liquid crystal layer 19. In the present embodiment, the liquid crystal panel 2 has an electrode structure for generating a lateral electric field on the TFT substrate 60. As a method using the horizontal electric field, an IPS (In Plane Switching) (registered trademark) system may be used. In the example shown in FIG. 1, the case of the FFS system is particularly illustrated. Specifically, the electrode structure has a structure in which the pixel electrode 51, the insulating film 55, and the common electrode 50 are stacked. The pixel electrode 51 is provided in each of a plurality of pixels included in the liquid crystal panel 2 and has a relatively simple planar shape. The common electrode 50 has a comb shape. The orientation of the liquid crystal layer 19 is controlled by the fringe electric field between the common electrode 50 and the pixel electrode 51.
 横電界方式においては、液晶パネル2の帯電に起因して縦電界が発生すると、液晶層19の配向制御へ悪影響が生じやすい。よって実用上、液晶パネル2から静電気を除去するための構造が必要である。この目的のために、液晶層19とギャップGPとの間において、外部電位が印加され得る構造が必要である。本実施の形態においては、この構造として圧力検出電極40を用いることができるので、静電気を除去するための専用の構造を省略することができる。よって、液晶層19とギャップGPとの間において、外部電位が印加され得る構造としては、圧力検出電極40のみが設けられていてよい。 (4) In the horizontal electric field method, when a vertical electric field is generated due to charging of the liquid crystal panel 2, the alignment control of the liquid crystal layer 19 is likely to be adversely affected. Therefore, a structure for removing static electricity from the liquid crystal panel 2 is practically required. For this purpose, a structure capable of applying an external potential between the liquid crystal layer 19 and the gap GP is required. In the present embodiment, since the pressure detecting electrode 40 can be used as this structure, a dedicated structure for removing static electricity can be omitted. Therefore, as a structure to which an external potential can be applied between the liquid crystal layer 19 and the gap GP, only the pressure detection electrode 40 may be provided.
 図7を参照して、表示装置101は、励起信号源80および電荷検出器82(第1の電荷検出器)を有している。励起信号源80は、複数の列電極21(第1電極)へ個別に励起信号を印加することができる。また励起信号源80は、圧力検出電極40へ励起信号を印加することができる。また励起信号源80は、複数の列電極21へ励起信号を印加するタイミングと、圧力検出電極40へ励起信号を印加するタイミングとが相違するように動作する。また、複数の列電極21へ個別に励起信号を印加するタイミングでは圧力検出電極40が定電位となり、一方、圧力検出電極40へ励起信号を印加するタイミングでは複数の列電極21と複数の行電極31とが等しい定電位になるように、励起信号源80は動作する。この動作は、例えば、制御部90によって制御されることによって実現される。電荷検出器82は、複数の行電極31(第2電極)に誘起された電荷を個別に検出することができる。 表示 Referring to FIG. 7, display device 101 has excitation signal source 80 and charge detector 82 (first charge detector). The excitation signal source 80 can individually apply an excitation signal to the plurality of column electrodes 21 (first electrodes). Further, the excitation signal source 80 can apply an excitation signal to the pressure detection electrode 40. Further, the excitation signal source 80 operates so that the timing of applying the excitation signal to the plurality of column electrodes 21 and the timing of applying the excitation signal to the pressure detection electrode 40 are different. In addition, when the excitation signal is individually applied to the plurality of column electrodes 21, the pressure detection electrode 40 has a constant potential. On the other hand, when the excitation signal is applied to the pressure detection electrode 40, the plurality of column electrodes 21 and the plurality of row electrodes are used. The excitation signal source 80 operates so that 31 becomes the same constant potential. This operation is realized by being controlled by the control unit 90, for example. The charge detector 82 can individually detect charges induced in the plurality of row electrodes 31 (second electrodes).
 また表示装置101は本実施の形態においては、図7に示されているように、電荷検出器81(第2の電荷検出器)を有している。電荷検出器81は、複数の列電極21に誘起された電荷を個別に検出することができる。励起信号源80が圧力検出電極40へ励起信号を印加したときに、電荷検出器81および電荷検出器82が動作する。この動作は、例えば、制御部90によって制御されることによって実現される。 In the present embodiment, the display device 101 has a charge detector 81 (second charge detector) as shown in FIG. The charge detector 81 can individually detect charges induced in the plurality of column electrodes 21. When the excitation signal source 80 applies an excitation signal to the pressure detection electrode 40, the charge detector 81 and the charge detector 82 operate. This operation is realized by being controlled by the control unit 90, for example.
 電荷検出器81,82は、例えば検出積分器である。検出積分器は、励起信号の印加の影響によって容量にチャージされた電荷をアナログ電圧値(カウント)として出力する。このカウントは電極の容量変化量と比例関係を有している。 The charge detectors 81 and 82 are, for example, detection integrators. The detection integrator outputs an electric charge charged to the capacitance under the influence of the application of the excitation signal as an analog voltage value (count). This count has a proportional relationship with the electrode capacitance change amount.
 (動作)
 主に図8を参照して、表示装置101の検出動作について、以下に説明する。
(motion)
The detection operation of the display device 101 will be described below mainly with reference to FIG.
 ステップS100にて、圧力が検出される。具体的には、まず、ステップS110にて、励起信号源80から圧力検出電極40へ励起信号が印加される。そして、ステップS120にて、電荷が検出される。具体的には、ステップS121にて、複数の列電極21(第1電極)に誘起された電荷が、電荷検出器81によって個別に検出される。またステップ122にて、複数の行電極31(第2電極)に誘起された電荷が、電荷検出器82によって個別に検出される。 圧 力 In step S100, pressure is detected. Specifically, first, in step S110, an excitation signal is applied from the excitation signal source 80 to the pressure detection electrode 40. Then, in step S120, charges are detected. Specifically, in step S121, the charges induced in the plurality of column electrodes 21 (first electrodes) are individually detected by the charge detector 81. In step 122, the charges induced in the plurality of row electrodes 31 (second electrodes) are individually detected by the charge detector 82.
 ステップS200にて、上記の圧力検出の結果に基づいて、制御部90は、指示体900(図6)がタッチ面F1(図6)上において局所的に圧力を印加しているか否かを判定する。この判定は、例えば、後述する図11および図12のグラフに示されるように、ある程度の強度を有するピークが検出されたか否かによって判定され得る。当該強度は、予め定められていてよい。その場合、表示装置101は、当該強度を記憶しておくための記憶部(図示せず)を有していてよい。ステップS200における判定結果がNOの場合、処理が再度ステップS100に戻る。一方、判定結果がYESの場合、処理が、以下で述べるステップS300へと進む。 In step S200, based on the result of the above pressure detection, control unit 90 determines whether or not indicator 900 (FIG. 6) locally applies pressure on touch surface F1 (FIG. 6). I do. This determination can be made based on, for example, whether or not a peak having a certain intensity is detected, as shown in graphs of FIGS. 11 and 12 described later. The strength may be determined in advance. In that case, the display device 101 may include a storage unit (not shown) for storing the intensity. If the decision result in the step S200 is NO, the process returns to the step S100 again. On the other hand, when the result of the determination is YES, the process proceeds to step S300 described below.
 ステップS300にて、通常の投影型静電容量方式による位置検出の動作が行われる。すなわち、列電極21と行電極31との間の相互容量の検出が行われる。具体的には、まず、ステップS310にて、圧力検出電極40に一定電位を印加しつつ、励起信号源80によって複数の列電極21(第1電極)へ個別に励起信号が印加される。そして、ステップS320にて、複数の行電極31に誘起された電荷が、電荷検出器82によって個別に検出される。 に て In step S300, an operation of position detection by a normal projection-type capacitance system is performed. That is, the mutual capacitance between the column electrode 21 and the row electrode 31 is detected. Specifically, first, in step S310, an excitation signal is individually applied to the plurality of column electrodes 21 (first electrodes) by the excitation signal source 80 while applying a constant potential to the pressure detection electrode 40. Then, in step S320, the charges induced in the plurality of row electrodes 31 are individually detected by the charge detector 82.
 なお、上記ステップS200は、必ずしも行われなくてもよい。特に、指示体900の非接触での接近を検出することが必要な場合、ステップS200は省略されてよい。ステップS200が省略される場合、ステップS100およびステップS300の順番は逆であってよい。 Note that step S200 does not necessarily have to be performed. In particular, when it is necessary to detect the non-contact approach of the indicator 900, step S200 may be omitted. When step S200 is omitted, the order of step S100 and step S300 may be reversed.
 上記ステップS120においては、列電極21に誘起された電荷が個別に検出され、かつ行電極31に誘起された電荷が個別に検出される。よって、ステップ300だけでなく、ステップS100においても、指示体900の位置を検出することができる。ステップS120においては、必ずしも位置が検出されなくてよい。位置が検出されない場合、列電極21に誘起された電荷は、必ずしも個別に検出される必要はない。また行電極31に誘起された電荷は、必ずしも個別に検出される必要はない。例えば、電荷検出器81は、複数の行電極31に誘起された総電荷を一括して検出してよい。 In step S120, the charges induced on the column electrodes 21 are individually detected, and the charges induced on the row electrodes 31 are individually detected. Therefore, the position of the indicator 900 can be detected not only in step 300 but also in step S100. In step S120, the position need not always be detected. When the position is not detected, the charges induced in the column electrodes 21 do not necessarily need to be individually detected. Further, the charges induced in the row electrodes 31 do not necessarily need to be individually detected. For example, the charge detector 81 may collectively detect the total charges induced in the plurality of row electrodes 31.
 (シミュレーション)
 図9は、図4に示された長さS1=sと、図6に示された容量C1~C3間での容量比C3/(C1+C2+C3)の計算値との関係を示すグラフ図である。容量C1は圧力検出電極40と列電極21との間の静電容量であり、容量C2は圧力検出電極40と行電極31との間の静電容量であり、容量C3は圧力検出電極40と指示体900との間の静電容量である。
(simulation)
FIG. 9 is a graph showing the relationship between the length S1 = s shown in FIG. 4 and the calculated value of the capacitance ratio C3 / (C1 + C2 + C3) between the capacitors C1 to C3 shown in FIG. The capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21, the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31, and the capacitance C3 is the capacitance between the pressure detection electrode 40 and the row electrode 31. This is the capacitance between the pointer and the indicator 900.
 本シミュレーションにおいては、指示体900は、1つの検出セルCLと同じ大きさを有する導体である。図4におけるダイヤモンド形状部の配置のピッチは5.6mmに固定される。言い換えれば、1つの検出セルCLの大きさは5.6mm四方に固定される。一方で、カバーパネル13の厚みc(図1)は、0.5mm、1.0mm、1.5mm、または2.0mmとされる。粘着材14(図1)の厚みは0.2mmに固定され、保護膜12(図1)の厚みは無視し得るものとされ、よって距離tは、0.7mm、1.2mm、1.7mm、または2.2mmとされる。各距離tに関して、容量比と長さsとの関係が計算される。図9に示された計算の結果から、容量比は、長さsがしきい値を超えると急増することがわかる。このしきい値は、距離tの約2倍となっている。よって、不等式t>s/2が満たされる場合には容量比が十分に抑制される。 In the simulation, the indicator 900 is a conductor having the same size as one detection cell CL. The pitch of the arrangement of the diamond-shaped portions in FIG. 4 is fixed at 5.6 mm. In other words, the size of one detection cell CL is fixed at 5.6 mm square. On the other hand, the thickness c (FIG. 1) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm. The thickness of the adhesive 14 (FIG. 1) is fixed at 0.2 mm, and the thickness of the protective film 12 (FIG. 1) is negligible, so that the distance t is 0.7 mm, 1.2 mm, 1.7 mm. , Or 2.2 mm. For each distance t, the relationship between the capacity ratio and the length s is calculated. From the result of the calculation shown in FIG. 9, it can be seen that the capacity ratio sharply increases when the length s exceeds the threshold value. This threshold is about twice the distance t. Therefore, when the inequality t> s / 2 is satisfied, the capacitance ratio is sufficiently suppressed.
 図10は、圧力検出時、すなわち列電極21と行電極31とが等しい定電位であり、圧力検出電極40に励起信号が印加されたとき、圧力検出電極40からの電気力線が列電極21および行電極31の間の長さsの間隔の上方で指示体900へと接近する様子を示す模式図である。上述した容量比は、列電極21と行電極31との間を通って圧力検出電極40と指示体900とが結合する度合いに対応している。よって、容量比が十分に抑制されるということは、圧力検出電極40と指示体900との間の電界が列電極21および行電極31によって十分に遮蔽されるということを意味する。一方で、t≦s/2の場合は、遮蔽が不十分となり、圧力検出電極40から列電極21または行電極31へと生じるフリンジ電界は、タッチ面F1上の指示体900へと優先的に結合する(図中、矢印RD参照)。 FIG. 10 shows that when the pressure is detected, that is, when the column electrode 21 and the row electrode 31 are at the same constant potential and an excitation signal is applied to the pressure detection electrode 40, the lines of electric force from the pressure detection electrode 40 FIG. 7 is a schematic diagram showing a state in which the display approaches a pointer 900 above an interval of a length s between row electrodes 31. The above-described capacitance ratio corresponds to the degree of coupling between the pressure detection electrode 40 and the indicator 900 passing between the column electrode 21 and the row electrode 31. Therefore, that the capacitance ratio is sufficiently suppressed means that the electric field between the pressure detection electrode 40 and the indicator 900 is sufficiently shielded by the column electrode 21 and the row electrode 31. On the other hand, when t ≦ s / 2, the shielding is insufficient, and the fringe electric field generated from the pressure detection electrode 40 to the column electrode 21 or the row electrode 31 is preferentially given to the indicator 900 on the touch surface F1. (See arrow RD in the figure).
 なお、ギャップGPが固体からなる場合は、ギャップGPが空気などの気体からなる場合よりも、通常、ギャップGPの誘電率が大きくなる。よって、位置検出時において、列電極21と行電極31との間の電界が圧力検出電極40へ結合しやすくなる。その結果、位置検出感度が低下する。列電極21と行電極31との間の距離を大きくとることによってこの感度低下を抑えることが可能ではあるが、そのためには列電極21または行電極31の面積を縮小する必要がある。この面積縮小の結果、列電極21または行電極31と圧力検出電極40との間の平行平板容量が小さくなり、フリンジ容量成分の割合が大きくなる。フリンジ容量は平行平板容量に比して、距離変化に対する容量変化が小さい。このことは、列電極21または行電極31と圧力検出電極40との間の静電容量の変化が距離変化に対して鈍くなることを意味する。すなわち圧力検出感度が低下することを意味する。したがってギャップGPは、固体からなるよりも、空気などの気体からなることが望ましい。 (4) When the gap GP is made of a solid, the dielectric constant of the gap GP is usually higher than when the gap GP is made of a gas such as air. Therefore, at the time of position detection, the electric field between the column electrode 21 and the row electrode 31 is easily coupled to the pressure detection electrode 40. As a result, the position detection sensitivity decreases. Although it is possible to suppress this decrease in sensitivity by increasing the distance between the column electrode 21 and the row electrode 31, it is necessary to reduce the area of the column electrode 21 or the row electrode 31. As a result of this area reduction, the parallel plate capacitance between the column electrode 21 or the row electrode 31 and the pressure detection electrode 40 decreases, and the ratio of the fringe capacitance component increases. The fringe capacitance has a smaller capacitance change with distance change than the parallel plate capacitance. This means that the change in the capacitance between the column electrode 21 or the row electrode 31 and the pressure detection electrode 40 becomes slow with respect to the change in the distance. That is, the pressure detection sensitivity is reduced. Therefore, it is desirable that the gap GP is made of a gas such as air rather than a solid.
 (タッチ面が清浄な場合の動作実験)
 タッチ面F1が清浄な場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。なお、カバーパネル13の厚みc(図1)は1mm、粘着材14(図1)の厚みは0.2mm、長さs(図4)は0.5mmとされた。また指示体900として、接地された疑似指が100g重の荷重で用いられた。
(Operation experiment when the touch surface is clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is clean. The thickness c (FIG. 1) of the cover panel 13 was 1 mm, the thickness of the adhesive 14 (FIG. 1) was 0.2 mm, and the length s (FIG. 4) was 0.5 mm. As the indicator 900, a grounded pseudo finger was used with a load of 100 g weight.
 図11は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、列電極21(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図12は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、行電極31(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、圧力が存在することがわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 11 shows an example of the output count of each of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. FIG. 12 shows an example of the output count of the detection integrator of each of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). In addition, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)). A distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the location of the pseudo finger.
 図13は、清浄なタッチ面へ疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、疑似指の接近または接触がわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 13 is a graph showing an example of a mutual capacitance detection operation result when a pseudo finger is pressed against a clean touch surface. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result of the detection, a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
 (タッチ面が清浄でない場合の動作実験)
 タッチ面F1が清浄でない場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。上述した、タッチ面が清浄な場合の動作実験とは異なり、本実験においては、タッチ面F1上への疑似指の接触は行われず、代わりに、タッチ面F1に塩水が付着された。なお、これ以外の条件は、上述した、タッチ面が清浄な場合の動作実験と同様である。
(Operation experiment when the touch surface is not clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is not clean. Unlike the above-described operation experiment in the case where the touch surface is clean, in this experiment, the pseudo finger did not touch the touch surface F1, and instead, salt water was attached to the touch surface F1. The other conditions are the same as those in the above-described operation experiment when the touch surface is clean.
 図14は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、列電極21(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図15は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、行電極31(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、図11および図12の検出結果とは異なり、ノイズレベルに近いカウントしか検出されなかった。カウントが有意な大きさを有しないことから、指示体からの圧力が存在しないことがわかる。このように、塩水が検出結果へ及ぼす影響が抑えられているのは、前述したシミュレーションの説明において述べたように、不等式t>s/2が満たされることによって、圧力検出電極40と指示体900との間の電界が列電極21および行電極31によって十分に遮蔽されるからである。 FIG. 14 is a graph showing an example of output counts of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. FIG. 15 is a graph showing an example of the output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)). As a result of the detection, FIG. 12 and only the counts close to the noise level were detected, unlike the detection results of Fig. 12. Since the counts do not have a significant magnitude, it can be seen that there is no pressure from the indicator. Is suppressed on the detection result because the inequality t> s / 2 is satisfied and the electric field between the pressure detection electrode 40 and the indicator 900 is satisfied, as described in the above description of the simulation. Is sufficiently shielded by the column electrode 21 and the row electrode 31.
 図16は、タッチ面F1へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、ノイズレベルよりも大きな、有意なカウントが検出された。カウントが有意な大きさを有することから、この検出結果から、疑似指の接近または接触があったと誤認されてしまう可能性がある。ステップS200(図8)によってステップS300(図8)の実行が制限される場合、このような誤認を避けることができる。 FIG. 16 is a graph showing an example of a mutual capacitance detection operation result when salt water adheres to the touch surface F1. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result, a significant count larger than the noise level was detected. Since the count has a significant size, there is a possibility that the detection result may be mistaken for the approach or contact of the pseudo finger. When the execution of step S300 (FIG. 8) is restricted by step S200 (FIG. 8), such erroneous recognition can be avoided.
 なお、タッチ面F1が清浄でない場合は、図16に示されているように、指示体に起因しないカウント、すなわちノイズ、が高くなるので、相互容量検出に基づく位置検出が困難となり得る。そのような場合、相互容量検出に依存せずに、圧力検出に付随しての位置検出(図11および図12参照)が行われてよい。この場合、マルチタッチの検出は困難であるが、シングルタッチの検出は可能である。また、図11および図12に示されているように電極X0~X19および電極Y0~Y51の各々のカウントが検出されることによって、指示体の位置座標を検出することが可能である。 If the touch surface F1 is not clean, as shown in FIG. 16, the count due to the indicator, that is, noise increases, so that position detection based on mutual capacitance detection may be difficult. In such a case, position detection (see FIGS. 11 and 12) accompanying pressure detection may be performed without depending on mutual capacitance detection. In this case, detection of multi-touch is difficult, but detection of single touch is possible. Further, as shown in FIGS. 11 and 12, by detecting the counts of the electrodes X0 to X19 and the electrodes Y0 to Y51, the position coordinates of the pointer can be detected.
 (効果)
 本実施の形態によれば、上記シミュレーションの説明において述べたように、不等式t>s/2が満たされていることにより、圧力検出電極40とタッチ面F1との間が列電極21および行電極31によって十分に遮蔽される。よって、タッチ面F1上の異物によって圧力検出が乱されることが防止される。
(effect)
According to the present embodiment, as described in the description of the simulation, since the inequality t> s / 2 is satisfied, the gap between the column electrode 21 and the row electrode between the pressure detection electrode 40 and the touch surface F1 is satisfied. 31 are sufficiently shielded. Therefore, it is possible to prevent the pressure detection from being disturbed by the foreign matter on the touch surface F1.
 不等式t>s/2を満たす長さsは、平行領域(図4において、寸法sを介して、列電極21の辺と行電極31の辺とが平行に対向する領域)における列電極21と行電極31との間の距離であってよい。これにより、平行領域全体にわたって、圧力検出電極40とタッチ面F1との間が列電極21および行電極31によって十分に遮蔽される。よって、圧力検出がタッチ面F1上の異物によって乱されることが、より十分に防止される。 The length s satisfying the inequality t> s / 2 is equal to the length of the column electrode 21 in the parallel region (the region where the side of the column electrode 21 and the side of the row electrode 31 face in parallel in FIG. 4 via the dimension s). The distance from the row electrode 31 may be used. Accordingly, the column electrode 21 and the row electrode 31 sufficiently shield the space between the pressure detection electrode 40 and the touch surface F1 over the entire parallel region. Therefore, it is more sufficiently prevented that the pressure detection is disturbed by the foreign matter on the touch surface F1.
 液晶パネル2が横電界型液晶パネルである場合、横電界によって制御される液晶層19の配向が、液晶パネル2の帯電に起因して発生される縦電界によって乱されやすい。よって、液晶パネル2から静電気を除去するための構造が必要である。この目的のために、液晶層19とギャップGPとの間において、外部電位が印加され得る構造が必要である。本実施の形態によれば、この構造として圧力検出電極40を用いることによって、静電気を除去するための専用の構造を省略することができる。これにより、液晶パネル2の構成を簡素化することができる。 (4) When the liquid crystal panel 2 is a horizontal electric field type liquid crystal panel, the orientation of the liquid crystal layer 19 controlled by the horizontal electric field is easily disturbed by a vertical electric field generated due to charging of the liquid crystal panel 2. Therefore, a structure for removing static electricity from the liquid crystal panel 2 is required. For this purpose, a structure capable of applying an external potential between the liquid crystal layer 19 and the gap GP is required. According to the present embodiment, by using the pressure detection electrode 40 as this structure, a dedicated structure for removing static electricity can be omitted. Thereby, the configuration of the liquid crystal panel 2 can be simplified.
 圧力検出動作(図8:ステップS100)においては、液晶パネル2に設けられた圧力検出電極40の電荷ではなく、液晶パネル2から比較的離れて配置されている列電極21および行電極31の電荷が検出される。これにより、液晶パネル2から発生する電磁ノイズが検出へ及ぼす影響を抑えることができる。なお、この影響を考慮する必要がない場合は、列電極21および行電極31へ励起信号を印加し、圧力検出電極40の電荷が検出されてよい。 In the pressure detection operation (FIG. 8: step S100), not the charge of the pressure detection electrode 40 provided on the liquid crystal panel 2 but the charge of the column electrode 21 and the row electrode 31 which are arranged relatively far from the liquid crystal panel 2. Is detected. Thereby, the influence of the electromagnetic noise generated from the liquid crystal panel 2 on the detection can be suppressed. When it is not necessary to consider this effect, an excitation signal may be applied to the column electrode 21 and the row electrode 31 to detect the charge of the pressure detection electrode 40.
 励起信号源80が圧力検出電極40へ励起信号を印加したときに、電荷検出器81および電荷検出器82が動作してよい。この動作によって、指示体900によって指示された位置が特定され得る。この方法による位置の特定は、タッチ面F1上の異物によって乱されにくい。よって、タッチ面F1上へ異物が付着した状態でも位置検出を行うことができる。 (4) When the excitation signal source 80 applies an excitation signal to the pressure detection electrode 40, the charge detector 81 and the charge detector 82 may operate. With this operation, the position indicated by the indicator 900 can be specified. Specifying the position by this method is not easily disturbed by a foreign substance on the touch surface F1. Therefore, position detection can be performed even in a state in which foreign matter has adhered to the touch surface F1.
 <実施の形態2>
 (構成)
 図17は、本実施の形態2における表示装置102の構成を概略的に示す部分断面図である。図18は、表示装置102(図17)の前面側の層構成を概略的に示す分解斜視図である。図19は、表示装置102(図17)へ指示体900が接触した状態を模式的に示す図である。
<Embodiment 2>
(Constitution)
FIG. 17 is a partial cross-sectional view schematically showing a configuration of a display device 102 according to the second embodiment. FIG. 18 is an exploded perspective view schematically showing a layer configuration on the front side of display device 102 (FIG. 17). FIG. 19 is a diagram schematically illustrating a state in which the indicator 900 is in contact with the display device 102 (FIG. 17).
 表示装置102が有するタッチパネル1の構成は、ベース基板10および粘着材14(図1:実施の形態1)が省略されることによって簡素化されている。これを実現するために、位置検出層LDは、カバーパネル13の内面F2上に直接的に設けられている。なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 The structure of the touch panel 1 included in the display device 102 is simplified by omitting the base substrate 10 and the adhesive 14 (FIG. 1: Embodiment 1). To achieve this, the position detection layer LD is provided directly on the inner surface F2 of the cover panel 13. The remaining configuration is substantially the same as the configuration of the above-described first embodiment. Therefore, the same or corresponding elements are denoted by the same reference characters, and description thereof will not be repeated.
 (シミュレーション)
 図20は、図4に示された長さS1=sと、図19に示された容量C1~C3間での容量比C3/(C1+C2+C3)の計算値との関係を示すグラフ図である。実施の形態1と同様、容量C1は圧力検出電極40と列電極21との間の静電容量であり、容量C2は圧力検出電極40と行電極31との間の静電容量であり、容量C3は圧力検出電極40と指示体900との間の静電容量である。本シミュレーションにおいては、指示体900は、1つの検出セルCLと同じ大きさを有する導体である。図4におけるダイヤモンド形状部の配置のピッチは5.6mmに固定される。言い換えれば、1つの検出セルCLの大きさは5.6mm四方に固定される。一方で、カバーパネル13の厚みc(図17)は、0.5mm、1.0mm、1.5mm、または2.0mmとされる。本実施の形態においては、厚みcが距離tに対応する。各距離tに関して、容量比と長さsとの関係が計算される。図20に示された計算の結果から、容量比は、長さsがしきい値を超えると急増することがわかる。このしきい値は、距離tの約2倍となっている。よって、実施の形態1と同様に、不等式t>s/2が満たされる場合には容量比が十分に抑制される。容量比が十分に抑制されるということは、圧力検出電極40と指示体900との間の電界が列電極21および行電極31によって十分に遮蔽されるということを意味する。
(simulation)
FIG. 20 is a graph showing the relationship between the length S1 = s shown in FIG. 4 and the calculated value of the capacitance ratio C3 / (C1 + C2 + C3) between the capacitors C1 to C3 shown in FIG. As in the first embodiment, the capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21, and the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31. C3 is the capacitance between the pressure detection electrode 40 and the indicator 900. In this simulation, the indicator 900 is a conductor having the same size as one detection cell CL. The pitch of the arrangement of the diamond-shaped portions in FIG. 4 is fixed at 5.6 mm. In other words, the size of one detection cell CL is fixed at 5.6 mm square. On the other hand, the thickness c (FIG. 17) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm. In the present embodiment, the thickness c corresponds to the distance t. For each distance t, the relationship between the capacity ratio and the length s is calculated. From the result of the calculation shown in FIG. 20, it can be seen that the capacity ratio sharply increases when the length s exceeds the threshold. This threshold is about twice the distance t. Therefore, as in the first embodiment, when the inequality t> s / 2 is satisfied, the capacitance ratio is sufficiently suppressed. When the capacitance ratio is sufficiently suppressed, it means that the electric field between the pressure detection electrode 40 and the indicator 900 is sufficiently shielded by the column electrode 21 and the row electrode 31.
 (タッチ面が清浄な場合の動作実験)
 タッチ面F1が清浄な場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。なお、カバーパネル13の厚みc(図17)は1mm、長さs(図4)は0.5mmとされた。また指示体900として、接地された疑似指が100g重の荷重で用いられた。
(Operation experiment when the touch surface is clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is clean. The thickness c (FIG. 17) of the cover panel 13 was 1 mm, and the length s (FIG. 4) was 0.5 mm. As the indicator 900, a grounded pseudo finger was used with a load of 100 g weight.
 図21は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、列電極21(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図22は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、行電極31(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、圧力が存在することがわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 21 shows an example of the output count of the detection integrator of each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. FIG. 22 shows an example of an output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). In addition, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)). A distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the location of the pseudo finger.
 図23は、清浄なタッチ面へ疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、疑似指の接近または接触がわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 23 is a graph showing an example of the result of the mutual capacitance detection operation when a pseudo finger is pressed against a clean touch surface. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result of the detection, a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
 (タッチ面が清浄でない場合の動作実験)
 タッチ面F1が清浄でない場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。上述した、タッチ面が清浄な場合の動作実験とは異なり、本実験においては、タッチ面F1上への疑似指の接触は行われず、代わりに、タッチ面F1に塩水が付着された。なお、これ以外の条件は、上述した、タッチ面が清浄な場合の動作実験と同様である。
(Operation experiment when the touch surface is not clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is not clean. Unlike the above-described operation experiment in the case where the touch surface is clean, in this experiment, the pseudo finger did not touch the touch surface F1, and instead, salt water was attached to the touch surface F1. The other conditions are the same as those in the above-described operation experiment when the touch surface is clean.
 図24は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、列電極21(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図25は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、行電極31(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、図21および図22の検出結果とは異なり、ノイズレベルに近いカウントしか検出されなかった。カウントが有意な大きさを有しないことから、指示体からの圧力が存在しないことがわかる。このように、塩水が検出結果へ及ぼす影響が抑えられているのは、前述したシミュレーションの説明において述べたように、不等式t>s/2が満たされることによって、圧力検出電極40と指示体900との間の電界が列電極21および行電極31によって十分に遮蔽されるからである。 FIG. 24 is a graph showing an example of the output count of the detection integrator of each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. FIG. 25 is a graph showing an example of an output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31 (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21 (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected (step S122 (step S122 (FIG. 8)). As a result of the detection, FIG. 22 and only the count close to the noise level was detected, unlike the detection result of Fig. 22. Since the count does not have a significant size, it can be seen that there is no pressure from the indicator. Is suppressed on the detection result because the inequality t> s / 2 is satisfied and the electric field between the pressure detection electrode 40 and the indicator 900 is satisfied, as described in the above description of the simulation. Is sufficiently shielded by the column electrode 21 and the row electrode 31.
 図26は、タッチ面F1へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、ノイズレベルよりも大きな、有意なカウントが検出された。カウントが有意な大きさを有することから、この検出結果から、疑似指の接近または接触があったと誤認されてしまう可能性がある。ステップS200(図8)によってステップS300(図8)の実行が制限される場合、このような誤認を避けることができる。 FIG. 26 is a graph showing an example of the result of the mutual capacitance detection operation when salt water adheres to the touch surface F1. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21 (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31 (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result, a significant count larger than the noise level was detected. Since the count has a significant size, there is a possibility that the detection result may be mistaken for the approach or contact of the pseudo finger. When the execution of step S300 (FIG. 8) is restricted by step S200 (FIG. 8), such erroneous recognition can be avoided.
 なお、タッチ面F1が清浄でない場合は、図26に示されているように、指示体に起因しないカウント、すなわちノイズ、が高くなるので、相互容量検出に基づく位置検出が困難となり得る。そのような場合、相互容量検出に依存せずに、圧力検出に付随しての位置検出(図21および図22参照)が行われてよい。この場合、マルチタッチの検出は困難であるが、シングルタッチの検出は可能である。また、図21および図22に示されているように電極X0~X19および電極Y0~Y51の各々のカウントが検出されることによって、指示体の位置座標を検出することが可能である。 When the touch surface F1 is not clean, as shown in FIG. 26, the count not caused by the pointer, that is, the noise increases, so that the position detection based on the mutual capacitance detection may be difficult. In such a case, position detection accompanying the pressure detection (see FIGS. 21 and 22) may be performed without depending on the mutual capacitance detection. In this case, detection of multi-touch is difficult, but detection of single touch is possible. Further, as shown in FIG. 21 and FIG. 22, it is possible to detect the position coordinates of the pointer by detecting the count of each of the electrodes X0 to X19 and the electrodes Y0 to Y51.
 <実施の形態3>
 本実施の形態の表示装置においては、透明導電体からなる列電極21および行電極31(図4:実施の形態1)に代わって、金属メッシュからなる列電極および行電極が用いられる。これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、以下において、主に列配線および行配線の構成について説明する。
<Embodiment 3>
In the display device of the present embodiment, a column electrode and a row electrode made of a metal mesh are used instead of the column electrode 21 and the row electrode 31 made of a transparent conductor (FIG. 4: Embodiment 1). Other configurations are almost the same as the configuration of the first embodiment described above, and therefore, the configuration of the column wiring and the row wiring will be mainly described below.
 図27は、本実施の形態3におけるタッチパネル1の列電極21M(第1電極)および行電極31M(第2電極)の平面レイアウトを概略的に示す部分平面図である。なお、図27においては、列電極21Mおよび行電極31Mの各々の外縁が示されており、列電極21Mおよび行電極31Mの各々が有する微細構造、具体的にはメッシュパターン(図28~図32参照)、の図示は省略されている。 FIG. 27 is a partial plan view schematically showing a planar layout of column electrodes 21M (first electrodes) and row electrodes 31M (second electrodes) of touch panel 1 in the third embodiment. In FIG. 27, the outer edges of each of the column electrode 21M and the row electrode 31M are shown, and the fine structure of each of the column electrode 21M and the row electrode 31M, specifically, a mesh pattern (FIGS. 28 to 32) ) Are not shown.
 本実施の形態においては、列電極21および行電極31(図4:実施の形態1)のそれぞれに代わって、列電極21Mおよび行電極31Mが設けられている。平面レイアウトにおいて、列電極21Mおよび行電極31Mの間には、列電極21Mおよび行電極31Mのいずれからも絶縁された分離領域RSが設けられている。実施の形態1の場合(図4)とほぼ同様に、平面視(図27)において複数の列電極21Mと複数の行電極31Mとの間の間隔(分離領域RSに対応)中の任意の点を通って列電極21Mと行電極31Mとを最短距離で結ぶ線分の最大長さを長さsと定義する。図示されている例においては、平面視における複数の列電極21Mと複数の行電極31Mとの間のすべての点が考慮された場合に、長さS1が、上記の長さsに対応する。なお、長さS2は、長さS1よりも短いので最大長さではなく、よって長さsには対応しない。このように定義された長さsと、距離t(図1)との関係として、不等式t>s/2が満たされる。 In the present embodiment, column electrode 21M and row electrode 31M are provided instead of column electrode 21 and row electrode 31 (FIG. 4: Embodiment 1). In the planar layout, an isolation region RS insulated from both the column electrode 21M and the row electrode 31M is provided between the column electrode 21M and the row electrode 31M. Similar to the case of the first embodiment (FIG. 4), any point in the interval (corresponding to the isolation region RS) between the plurality of column electrodes 21M and the plurality of row electrodes 31M in plan view (FIG. 27). The maximum length of a line segment connecting the column electrode 21M and the row electrode 31M at the shortest distance through is defined as the length s. In the illustrated example, when all points between the plurality of column electrodes 21M and the plurality of row electrodes 31M in plan view are considered, the length S1 corresponds to the length s. Note that the length S2 is shorter than the length S1, and is not the maximum length, and thus does not correspond to the length s. As a relationship between the length s thus defined and the distance t (FIG. 1), the inequality t> s / 2 is satisfied.
 本実施の形態において位置検出層LD(図1)は、列電極21Mと行電極31Mとが平面視において間隔を介して平行に対向している平行領域を有している(例えば、図27における破線部MGaで示された領域を参照)。平行領域における列電極21Mと行電極31Mとの間の距離が長さS1=sに対応している。 In the present embodiment, the position detection layer LD (FIG. 1) has a parallel region in which the column electrode 21M and the row electrode 31M face each other in parallel in a plan view with an interval therebetween (for example, in FIG. 27). (See the area indicated by the broken line MGa). The distance between the column electrode 21M and the row electrode 31M in the parallel region corresponds to the length S1 = s.
 本実施の形態においては、上述した列電極21Mおよび行電極31Mを構成するために、位置検出層LD(図1)は、第1金属メッシュ20(図28を参照して後述)と、第2金属メッシュ30(図30を参照して後述)とを含む。これら金属メッシュは、アルミニウムなどの金属から作られた、メッシュパターンを有する部材である。メッシュパターンを有することによって、透光性を有しない金属材料を用いつつ、巨視的に見た場合には透光性を有する部材を構成することができる。以下、これら金属メッシュの構成について説明する。 In the present embodiment, the position detection layer LD (FIG. 1) includes a first metal mesh 20 (described later with reference to FIG. 28) and a second A metal mesh 30 (described later with reference to FIG. 30). These metal meshes are members having a mesh pattern made of a metal such as aluminum. By having a mesh pattern, a member having a light-transmitting property when viewed macroscopically can be formed using a metal material having no light-transmitting property. Hereinafter, the configuration of these metal meshes will be described.
 図28は、図27の破線部MGaにおける第1金属メッシュ20の構成を概略的に示す部分平面図である。図29は、図28の破線部MGbの拡大図である。なお、図28および図29の各々における実線の太さの相違は、図を見やすくするためのものであり、メッシュパターンの太さの相違を意味ものではない。メッシュパターンの太さは均一であることが好ましい。また図29中の破線の小円は、説明のために描画されているものであって、構成を表すものではない。また図29には、参考のため、第2金属メッシュ30が2点鎖線で示されている。 FIG. 28 is a partial plan view schematically showing the configuration of the first metal mesh 20 in the broken line portion MGa in FIG. FIG. 29 is an enlarged view of a broken line portion MGb in FIG. Note that the difference in the thickness of the solid line in each of FIG. 28 and FIG. 29 is for making the figure easier to see, and does not mean the difference in the thickness of the mesh pattern. The mesh pattern preferably has a uniform thickness. The small circles indicated by broken lines in FIG. 29 are drawn for explanation, and do not represent the configuration. In FIG. 29, the second metal mesh 30 is shown by a two-dot chain line for reference.
 第1金属メッシュ20は第1メッシュパターンを有している。第1メッシュパターンは、平面視において2次元的な周期構造(第1の周期構造)を有している。図28に示された例においては、第1メッシュパターンは縦方向および横方向のそれぞれに沿って周期P1および周期P2を有している。周期P1および周期P2は、互いに異なってもよく、あるいは互いに同じであってもよい。第1メッシュパターンは局所的に断線部を有している。「断線部」とは、メッシュパターンが有する細線構造が局所的に分断された部分のことである。具体的には、断線部21c(第1断線部)、断線部22c、および断線部23cが設けられている。 The first metal mesh 20 has a first mesh pattern. The first mesh pattern has a two-dimensional periodic structure (first periodic structure) in plan view. In the example shown in FIG. 28, the first mesh pattern has a period P1 and a period P2 along the vertical direction and the horizontal direction, respectively. The period P1 and the period P2 may be different from each other, or may be the same as each other. The first mesh pattern has a locally broken portion. The “disconnection portion” is a portion where the fine line structure of the mesh pattern is locally divided. Specifically, a disconnection portion 21c (first disconnection portion), a disconnection portion 22c, and a disconnection portion 23c are provided.
 第1金属メッシュ20は、複数の列電極21Mと、複数の第1ダミー電極22と、複数の第1フローティング電極23とを含む。第1ダミー電極22は、平面視において行電極31M(図30を参照して後述)に重なっている。ただし、第1ダミー電極22は、平面視において行電極31Mと列電極21Mとが重なる領域には設けられていない。第1フローティング電極23は、列電極21Mと第1ダミー電極22との間に配置されている。 The first metal mesh 20 includes a plurality of column electrodes 21M, a plurality of first dummy electrodes 22, and a plurality of first floating electrodes 23. The first dummy electrode 22 overlaps with the row electrode 31M (described later with reference to FIG. 30) in plan view. However, the first dummy electrode 22 is not provided in a region where the row electrode 31M and the column electrode 21M overlap in plan view. The first floating electrode 23 is arranged between the column electrode 21M and the first dummy electrode 22.
 断線部21cは、列電極21Mから、第1ダミー電極22および第1フローティング電極23を絶縁している。言い換えれば、断線部21cは、第1金属メッシュ20において、列電極21Mと、列電極21M以外の部分との間を絶縁している。断線部22cは、第1ダミー電極22から第1フローティング電極23を絶縁している。断線部23cは、第1フローティング電極23の各々を、互いに絶縁された複数の部分へと区画している。 The disconnection portion 21c insulates the first dummy electrode 22 and the first floating electrode 23 from the column electrode 21M. In other words, the disconnection portion 21c insulates the first metal mesh 20 from the column electrode 21M and a portion other than the column electrode 21M. The disconnection portion 22c insulates the first floating electrode 23 from the first dummy electrode 22. The disconnection portion 23c divides each of the first floating electrodes 23 into a plurality of portions that are insulated from each other.
 なお、図29に示されているように、第1メッシュパターンの断線部に、第1メッシュパターンから離れた微小パターン(図中、小円内に示されたパターン)が設けられていてもよい。この微小パターンは、第1金属メッシュ20の材料と同じ材料から形成されていてよい。この微小パターンは、第1メッシュパターンの本来の方向とは異なる方向に延びる線状パターンであることが好ましく、この線状パターンは、第1メッシュパターンの本来の方向に直交する方向であることが好ましい。またこの線状パターンの長さは、断線部によって第1メッシュパターンが分断される長さに等しいことが好ましい。 Note that, as shown in FIG. 29, a minute pattern (a pattern shown in a small circle in the figure) apart from the first mesh pattern may be provided at a broken portion of the first mesh pattern. . This minute pattern may be formed from the same material as the material of the first metal mesh 20. This fine pattern is preferably a linear pattern extending in a direction different from the original direction of the first mesh pattern, and the linear pattern may be a direction orthogonal to the original direction of the first mesh pattern. preferable. Further, it is preferable that the length of the linear pattern is equal to the length at which the first mesh pattern is divided by the disconnection portion.
 図30は、図27の破線部MGaにおける第2金属メッシュ30の構成を概略的に示す部分平面図である。図31は、図30の破線部MGbの拡大図である。なお、図30および図31の各々における実線の太さの相違は、図を見やすくするためのものであり、メッシュパターンの太さの相違を意味ものではない。メッシュパターンの太さは均一であることが好ましい。また図31中の破線の小円は、説明のために描画されているものであって、構成を表すものではない。また図31には、参考のため、第1金属メッシュ20が2点鎖線で示されている。 FIG. 30 is a partial plan view schematically showing the configuration of the second metal mesh 30 in the broken line portion MGa in FIG. FIG. 31 is an enlarged view of a broken line portion MGb in FIG. Note that the difference in thickness between the solid lines in each of FIGS. 30 and 31 is for facilitating viewing of the drawing, and does not mean the difference in thickness between the mesh patterns. The mesh pattern preferably has a uniform thickness. Also, the broken small circles in FIG. 31 are drawn for explanation, and do not represent the configuration. In FIG. 31, the first metal mesh 20 is shown by a two-dot chain line for reference.
 第2金属メッシュ30は、厚み方向において層間絶縁膜11(図2参照)を介して第1金属メッシュ20に対向している。本実施の形態においては、層間絶縁膜11は、検出エリア9(図3)の全体にわたって設けられていてよい。第2金属メッシュ30は、第2メッシュパターンを有している。第2メッシュパターンは、平面視において2次元的な周期構造(第2の周期構造)を有している。図30に示された例においては、第2メッシュパターンは縦方向および横方向のそれぞれに沿って周期P1および周期P2を有している。すなわち、第2メッシュパターンは第1メッシュパターンと同じ2つの周期を有している。ただし後述するように、第1メッシュパターンの配置と第2メッシュパターンの配置との間には位相ずれが存在する。第2メッシュパターンは局所的に断線部を有している。具体的には、断線部31c(第2断線部)、断線部32c、および断線部33cが設けられている。 The second metal mesh 30 faces the first metal mesh 20 via the interlayer insulating film 11 (see FIG. 2) in the thickness direction. In the present embodiment, the interlayer insulating film 11 may be provided over the entire detection area 9 (FIG. 3). The second metal mesh 30 has a second mesh pattern. The second mesh pattern has a two-dimensional periodic structure (second periodic structure) in plan view. In the example shown in FIG. 30, the second mesh pattern has a period P1 and a period P2 along the vertical direction and the horizontal direction, respectively. That is, the second mesh pattern has the same two periods as the first mesh pattern. However, as described later, there is a phase shift between the arrangement of the first mesh pattern and the arrangement of the second mesh pattern. The second mesh pattern has a locally broken portion. Specifically, a disconnection portion 31c (second disconnection portion), a disconnection portion 32c, and a disconnection portion 33c are provided.
 第2金属メッシュ30は、複数の行電極31Mと、複数の第2ダミー電極32と、複数の第2フローティング電極33とを含む。第2ダミー電極32は、平面視において列電極21M(図28)に重なっている。ただし、第2ダミー電極32は、平面視において列電極21Mと行電極31Mとが重なる領域には設けられていない。第2フローティング電極33は、行電極31Mと第2ダミー電極32との間に配置されている。 The second metal mesh 30 includes a plurality of row electrodes 31M, a plurality of second dummy electrodes 32, and a plurality of second floating electrodes 33. The second dummy electrode 32 overlaps the column electrode 21M (FIG. 28) in plan view. However, the second dummy electrode 32 is not provided in a region where the column electrode 21M and the row electrode 31M overlap in plan view. The second floating electrode 33 is disposed between the row electrode 31M and the second dummy electrode 32.
 断線部31cは、行電極31Mから、第2ダミー電極32および第2フローティング電極33を絶縁している。言い換えれば、断線部31cは、第2金属メッシュ30において、行電極31Mと、行電極31M以外の部分との間を絶縁している。断線部32cは、第2ダミー電極32から第2フローティング電極33を絶縁している。断線部33cは、第2フローティング電極33の各々を、互いに絶縁された複数の部分へと区画している。 The disconnection part 31c insulates the second dummy electrode 32 and the second floating electrode 33 from the row electrode 31M. In other words, the disconnection portion 31c insulates the second metal mesh 30 from the row electrode 31M and a portion other than the row electrode 31M. The disconnection part 32 c insulates the second floating electrode 33 from the second dummy electrode 32. The disconnection portion 33c divides each of the second floating electrodes 33 into a plurality of portions that are insulated from each other.
 なお、図31に示されているように、第2メッシュパターンの断線部に、第2メッシュパターンから離れた微小パターン(図中、小円内に示されたパターン)が設けられていてもよい。この微小パターンは、第2金属メッシュ30の材料と同じ材料から形成されていてよい。この微小パターンは、第2メッシュパターンの本来の方向とは異なる方向に延びる線状パターンであることが好ましく、この線状パターンは、第2メッシュパターンの本来の方向に直交する方向であることが好ましい。またこの線状パターンの長さは、断線部によって第2メッシュパターンが分断される長さに等しいことが好ましい。 In addition, as shown in FIG. 31, a minute pattern (a pattern shown in a small circle in the figure) apart from the second mesh pattern may be provided in the broken portion of the second mesh pattern. . This minute pattern may be formed from the same material as the material of the second metal mesh 30. This fine pattern is preferably a linear pattern extending in a direction different from the original direction of the second mesh pattern, and the linear pattern is preferably a direction orthogonal to the original direction of the second mesh pattern. preferable. Further, it is preferable that the length of the linear pattern is equal to the length at which the second mesh pattern is divided by the disconnection portion.
 図32は、図27の破線部MGaにおける第1金属メッシュ20および第2金属メッシュ30の構成を概略的に示す部分平面図である。図を見やすくするために、第1金属メッシュ20は相対的に太い線で表わされており、第2金属メッシュ30は相対的に細い線で表わされている。言い換えれば、第1金属メッシュ20が有する第1メッシュパターンの周期構造、すなわち第1の周期構造、は、図中の太線に対応しており、第2金属メッシュ30が有する第2メッシュパターンの周期構造、すなわち第2の周期構造、は、図中の細線に対応している。図32に示されているように、第2の周期構造は第1の周期構造に対して相補的である。言い換えれば、第1の周期構造と第2の周期構造との間には位相ずれが設けられている。この位相ずれは、図示されているように、おおよそ半周期であることが好ましい。 FIG. 32 is a partial plan view schematically showing the configuration of the first metal mesh 20 and the second metal mesh 30 in the broken line portion MGa in FIG. The first metal mesh 20 is represented by a relatively thick line, and the second metal mesh 30 is represented by a relatively thin line, for easy understanding of the drawing. In other words, the periodic structure of the first mesh pattern of the first metal mesh 20, that is, the first periodic structure, corresponds to the thick line in the drawing, and the period of the second mesh pattern of the second metal mesh 30. The structure, that is, the second periodic structure corresponds to the thin line in the figure. As shown in FIG. 32, the second periodic structure is complementary to the first periodic structure. In other words, a phase shift is provided between the first periodic structure and the second periodic structure. This phase shift is preferably about a half cycle as shown.
 本実施の形態の実施例としては、第1および第2メッシュパターンを構成する金属細線の幅は3μmである。また第1および第2メッシュパターンの断線部の断線間隔は10μmである。また第1フローティング電極23の幅(図28における横方向の寸法)は800μmである。また、周期P1およびP2(図28、図30および図32)の各々は400μmである。また、ベース基板10(図1)の厚みは0.9mmである。 と し て As an example of the present embodiment, the width of the fine metal wire constituting the first and second mesh patterns is 3 μm. The break interval between the break portions of the first and second mesh patterns is 10 μm. The width of the first floating electrode 23 (the horizontal dimension in FIG. 28) is 800 μm. Each of the periods P1 and P2 (FIGS. 28, 30 and 32) is 400 μm. The thickness of the base substrate 10 (FIG. 1) is 0.9 mm.
 (シミュレーション)
 図33は、図27に示された長さsと、図6に示された容量と類似の容量の容量比の計算値との関係を示すグラフ図である。本シミュレーションにおいては、容量C1は圧力検出電極40と列電極21Mとの間の静電容量であり、容量C2は圧力検出電極40と行電極31Mとの間の静電容量であり、容量C3は圧力検出電極40と指示体900との間の静電容量である。カバーパネル13の厚みc(図1)は、0.5mm、1.0mm、1.5mm、または2.0mmとされる。粘着材14(図1)の厚みは0.2mmに固定され、保護膜12(図1)の厚みは無視し得るものとされ、よって距離tは、0.7mm、1.2mm、1.7mm、または2.2mmとされる。各距離tに関して、容量比と長さsとの関係が計算される。図33に示された計算の結果から、容量比は、長さsがしきい値を超えると急増することがわかる。このしきい値は、距離tの約2倍となっている。よって、不等式t>s/2が満たされる場合には容量比が十分に抑制される。容量比が十分に抑制されるということは、圧力検出電極40と指示体900との間の電界が列電極21Mおよび行電極31Mによって十分に遮蔽されるということを意味する。
(simulation)
FIG. 33 is a graph showing the relationship between the length s shown in FIG. 27 and the calculated value of the capacitance ratio of the capacitance similar to the capacitance shown in FIG. In this simulation, the capacitance C1 is the capacitance between the pressure detection electrode 40 and the column electrode 21M, the capacitance C2 is the capacitance between the pressure detection electrode 40 and the row electrode 31M, and the capacitance C3 is The capacitance between the pressure detection electrode 40 and the indicator 900. The thickness c (FIG. 1) of the cover panel 13 is 0.5 mm, 1.0 mm, 1.5 mm, or 2.0 mm. The thickness of the adhesive 14 (FIG. 1) is fixed at 0.2 mm, and the thickness of the protective film 12 (FIG. 1) is negligible, so that the distance t is 0.7 mm, 1.2 mm, 1.7 mm. , Or 2.2 mm. For each distance t, the relationship between the capacity ratio and the length s is calculated. From the result of the calculation shown in FIG. 33, it can be seen that the capacity ratio sharply increases when the length s exceeds the threshold value. This threshold is about twice the distance t. Therefore, when the inequality t> s / 2 is satisfied, the capacitance ratio is sufficiently suppressed. That the capacitance ratio is sufficiently suppressed means that the electric field between the pressure detection electrode 40 and the indicator 900 is sufficiently shielded by the column electrode 21M and the row electrode 31M.
 (タッチ面が清浄な場合の動作実験)
 タッチ面F1が清浄な場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。なお、カバーパネル13の厚みc(図1)は1mm、粘着材14(図1)の厚みは0.2mm、長さs(図27)は0.5mmとされた。また指示体900として、接地された疑似指が100g重の荷重で用いられた。
(Operation experiment when the touch surface is clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is clean. The thickness c (FIG. 1) of the cover panel 13 was 1 mm, the thickness of the adhesive 14 (FIG. 1) was 0.2 mm, and the length s (FIG. 27) was 0.5 mm. As the indicator 900, a grounded pseudo finger was used with a load of 100 g weight.
 図34は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、列電極21M(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図35は、清浄なタッチ面F1へ疑似指が押しつけられた場合の圧力検出動作における、行電極31M(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21M(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31M(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、圧力が存在することがわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 34 shows an example of the output count of each of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. FIG. 35 shows an example of the output count of each detection integrator of the electrodes Y0 to Y51 constituting the row electrode 31M (second electrode) in the pressure detection operation when the pseudo finger is pressed against the clean touch surface F1. FIG. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) was detected (step S122 (step S122 (FIG. 8)). A distinct peak in the count value was detected, the significant magnitude of the count indicates the presence of pressure, and the coordinates of the peak indicate the position of the pseudo finger.
 図36は、清浄なタッチ面へ疑似指が押しつけられた場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21M(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31M(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、有意なカウント値での明確なピークが検出された。カウントが有意な大きさを有することから、疑似指の接近または接触がわかり、また、ピークの座標から疑似指の位置がわかる。 FIG. 36 is a graph showing an example of the result of the mutual capacitance detection operation when a pseudo finger is pressed against a clean touch surface. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21M (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result of the detection, a clear peak at a significant count value was detected. Since the count has a significant size, the approach or contact of the pseudo finger is known, and the position of the pseudo finger is known from the coordinates of the peak.
 (タッチ面が清浄でない場合の動作実験)
 タッチ面F1が清浄でない場合における圧力検出(ステップS100(図8)に対応)および相互容量検出(ステップS300(図8)に対応)の動作についての実験結果について、以下に説明する。上述した、タッチ面が清浄な場合の動作実験とは異なり、本実験においては、タッチ面F1上への疑似指の接触は行われず、代わりに、タッチ面F1に塩水が付着された。なお、これ以外の条件は、上述した、タッチ面が清浄な場合の動作実験と同様である。
(Operation experiment when the touch surface is not clean)
The following describes experimental results on operations of pressure detection (corresponding to step S100 (FIG. 8)) and mutual capacitance detection (corresponding to step S300 (FIG. 8)) when the touch surface F1 is not clean. Unlike the above-described operation experiment in the case where the touch surface is clean, in this experiment, the pseudo finger did not touch the touch surface F1, and instead, salt water was attached to the touch surface F1. The other conditions are the same as those in the above-described operation experiment when the touch surface is clean.
 図37は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、列電極21M(第1電極)を構成する電極X0~X19の各々の検出積分器の出力カウントの例を示すグラフ図である。図38は、タッチ面F1へ塩水が付着した場合の圧力検出動作における、行電極31M(第2電極)を構成する電極Y0~Y51の各々の検出積分器の出力カウントの例を示すグラフ図である。圧力検出電極40へ励起信号としてのパルスが入力された(ステップS110(図8)に対応)。そして、列電極21M(第1電極)を構成する電極X0~X19のそれぞれに接続されている検出積分器のカウントが検出された(ステップS121(図8)に対応)。また、行電極31M(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS122(ステップS122(図8))。検出の結果、図34および図35の検出結果とは異なり、ノイズレベルに近いカウントしか検出されなかった。カウントが有意な大きさを有しないことから、指示体からの圧力が存在しないことがわかる。このように、塩水が検出結果へ及ぼす影響が抑えられているのは、前述したシミュレーションの説明において述べたように、不等式t>s/2が満たされることによって、圧力検出電極40と指示体900との間の電界が列電極21Mおよび行電極31Mによって十分に遮蔽されるからである。 FIG. 37 is a graph showing an example of output counts of the detection integrators of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. FIG. 38 is a graph showing an example of the output count of each of the detection integrators of the electrodes Y0 to Y51 constituting the row electrode 31M (second electrode) in the pressure detection operation when salt water adheres to the touch surface F1. is there. A pulse as an excitation signal was input to the pressure detection electrode 40 (corresponding to step S110 (FIG. 8)). Then, the count of the detection integrator connected to each of the electrodes X0 to X19 constituting the column electrode 21M (first electrode) was detected (corresponding to step S121 (FIG. 8)). Further, the count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected (step S122 (step S122 (FIG. 8)). As a result of the detection, FIG. 35, only counts close to the noise level were detected, indicating that there was no pressure from the indicator since the counts did not have a significant magnitude. Is suppressed on the detection result because the inequality t> s / 2 is satisfied and the electric field between the pressure detection electrode 40 and the indicator 900 is satisfied, as described in the above description of the simulation. Is sufficiently shielded by the column electrodes 21M and the row electrodes 31M.
 図39は、タッチ面F1へ塩水が付着した場合の相互容量検出動作の結果の例を示すグラフ図である。列電極21M(第1電極)を構成する電極X0~X19へ順番に励起信号としてのパルスが入力された(図8:ステップS310)。パルス毎に時分割されて、行電極31M(第2電極)としての電極Y0~Y51のそれぞれに接続されている検出積分器のカウントが検出された(ステップS310(図8))。検出の結果、ノイズレベルよりも大きな、有意なカウントが検出された。カウントが有意な大きさを有することから、この検出結果から、疑似指の接近または接触があったと誤認されてしまう可能性がある。ステップS200(図8)によってステップS300(図8)の実行が制限される場合、このような誤認を避けることができる。 FIG. 39 is a graph illustrating an example of a result of the mutual capacitance detection operation when salt water adheres to the touch surface F1. Pulses as excitation signals were sequentially input to the electrodes X0 to X19 constituting the column electrode 21M (first electrode) (FIG. 8: step S310). The count of the detection integrator connected to each of the electrodes Y0 to Y51 as the row electrode 31M (second electrode) is detected in a time-division manner for each pulse (step S310 (FIG. 8)). As a result, a significant count larger than the noise level was detected. Since the count has a significant size, there is a possibility that the detection result may be mistaken for the approach or contact of the pseudo finger. When the execution of step S300 (FIG. 8) is restricted by step S200 (FIG. 8), such erroneous recognition can be avoided.
 なお、タッチ面F1が清浄でない場合は、図39に示されているように、指示体に起因しないカウント、すなわちノイズ、が高くなるので、相互容量検出に基づく位置検出が困難となり得る。そのような場合、相互容量検出に依存せずに、圧力検出に付随しての位置検出(図34および図35参照)が行われてよい。この場合、マルチタッチの検出は困難であるが、シングルタッチの検出は可能である。また、図34および図35に示されているように電極X0~X19および電極Y0~Y51の各々のカウントが検出されることによって、指示体の位置座標を検出することが可能である。 If the touch surface F1 is not clean, as shown in FIG. 39, the count that is not caused by the indicator, that is, the noise increases, so that position detection based on mutual capacitance detection may be difficult. In such a case, position detection accompanying the pressure detection (see FIGS. 34 and 35) may be performed without depending on the mutual capacitance detection. In this case, detection of multi-touch is difficult, but detection of single touch is possible. Further, as shown in FIGS. 34 and 35, the position coordinates of the pointer can be detected by detecting the count of each of the electrodes X0 to X19 and the electrodes Y0 to Y51.
 (効果)
 本実施の形態によっても、実施の形態1とほぼ同様の効果が得られる。なお本実施の形態の、第1金属メッシュ20および第2金属メッシュ30を有する位置検出層LDが、実施の形態1に代わって実施の形態2に適用されてもよく、その場合、実施の形態2とほぼ同様の効果が得られる。
(effect)
According to the present embodiment, substantially the same effects as in the first embodiment can be obtained. Note that the position detection layer LD having the first metal mesh 20 and the second metal mesh 30 of the present embodiment may be applied to the second embodiment instead of the first embodiment. Almost the same effects as those of No. 2 can be obtained.
 さらに、本実施の形態によれば、行電極および列電極の材料として、透明導電材料ではなく金属材料が用いられる。これにより、電極の電気抵抗を低くすることができる。よって検出動作の速度を高めることができる。それを確かめるべく本発明者は、図8に示されたステップS100およびステップS300の各々を1回ずつ行う実験を行った。その結果、実施の形態3の場合の動作時間は、実施の形態1の場合の動作時間の約1/3に短縮された。 According to the present embodiment, a metal material is used as a material for the row electrode and the column electrode, instead of a transparent conductive material. Thereby, the electric resistance of the electrode can be reduced. Therefore, the speed of the detection operation can be increased. In order to confirm this, the inventor conducted an experiment in which each of Step S100 and Step S300 shown in FIG. 8 was performed once. As a result, the operation time in the third embodiment was reduced to about 1/3 of the operation time in the first embodiment.
 第2金属メッシュ30が有する第2メッシュパターンの周期構造、すなわち第2の周期構造、は、第1金属メッシュ20が有する第1メッシュパターンの周期構造、すなわち第1の周期構造、に対して相補的である。これにより、検出エリア9(図3)における反射率が均一化される。よって、第1金属メッシュ20および第2金属メッシュ30を視認されにくくすることができる。 The periodic structure of the second mesh pattern of the second metal mesh 30, that is, the second periodic structure is complementary to the periodic structure of the first mesh pattern of the first metal mesh 20, that is, the first periodic structure. It is a target. Thereby, the reflectance in the detection area 9 (FIG. 3) is made uniform. Therefore, it is possible to make the first metal mesh 20 and the second metal mesh 30 less visible.
 好ましくは、図29および図31に示されているように、第1および第2メッシュパターンの断線部に微小パターンが設けられる。これにより、断線部においてタッチパネル1の透光性が局所的に高くなることが避けられる。よって断線部を視認されにくくすることができる。 Preferably, as shown in FIGS. 29 and 31, a minute pattern is provided at a disconnection portion of the first and second mesh patterns. Accordingly, it is possible to prevent the translucency of the touch panel 1 from locally increasing in the disconnection portion. Therefore, the disconnection portion can be made hard to be visually recognized.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 In the present invention, it is possible to freely combine the embodiments or appropriately modify or omit the embodiments within the scope of the invention. Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that innumerable modifications that are not illustrated can be assumed without departing from the scope of the present invention.
 CL 検出セル、F1 タッチ面(第1面)、F2 内面(第2面)、GP ギャップ、LD 位置検出層、RS 分離領域、X0~X19,Y0~Y51 電極、1 タッチパネル、2 液晶パネル(表示パネル)、9 検出エリア、10 ベース基板、11 層間絶縁膜、12 保護膜、13 カバーパネル、14 粘着材、15 両面テープ、16 銀ペースト、17 偏光板、18 カラーフィルター基板、19 液晶層、20 第1金属メッシュ、21,21M 列電極(第1電極)、21c 断線部(第1断線部)、22c,23c 断線部、31c 断線部(第2断線部)、32c,33c 断線部、22 第1ダミー電極、23 第1フローティング電極、30 第2金属メッシュ、31,31M 行電極(第2電極)、32 第2ダミー電極、33 第2フローティング電極、40 圧力検出電極、50 コモン電極、51 画素電極、55 絶縁膜、60 TFT基板、80 励起信号源、81,82 電荷検出器、90 制御部、101,102 表示装置、900 指示体。 CL detection cell, F1 touch surface (first surface), F2 inner surface (second surface), GP gap, LD position detection layer, RS separation region, X0 to X19, Y0 to Y51 electrodes, 1 touch panel, 2 liquid crystal panel (display) Panel), 9 detection area, 10 base substrate, 11 interlayer insulating film, 12 protective film, 13 cover panel, 14 adhesive, 15 double-sided tape, 16 silver paste, 17 polarizing plate, 18 color filter substrate, 19 liquid crystal layer, 20 First metal mesh, 21, 21M {column electrode (first electrode), 21c} disconnection part (first disconnection part), 22c, 23c {disconnection part, 31c} disconnection part (second disconnection part), 32c, 33c {disconnection part, 22} th 1 dummy electrode, 23 {first floating electrode, 30 {second metal mesh, 31, 31M} row electrode (second electrode), 2 second dummy electrode, 33 second floating electrode, 40 pressure sensing electrode, 50 common electrode, 51 pixel electrode, 55 insulating film, 60 TFT substrate, 80 excitation signal source, 81, 82 charge detector, 90 control section, 101 , 102 ° display device, 900 ° indicator.

Claims (7)

  1.  指示体によって指示された位置を特定することができる表示装置であって、
     前記指示体によって指示されることになる第1面と、前記第1面と反対の第2面とを有するカバーパネルと、
     前記カバーパネルの前記第2面上に直接的または間接的に設けられ、前記第1面から距離tを有する位置検出層と、
    を備え、前記位置検出層は、
      互いに並走する複数の第1電極と、
      互いに並走し、前記複数の第1電極と交差する複数の第2電極と、
      厚み方向において前記複数の第1電極と前記複数の第2電極との間を絶縁する層間絶縁膜と、
    を含み、前記表示装置はさらに
     厚み方向においてギャップを介して前記位置検出層に対向する圧力検出電極を有し、前記カバーパネルの前記第2面が前記ギャップに向かって撓むことができるように前記カバーパネルを支持する表示パネルと、
    を備え、
     平面視における前記複数の第1電極と前記複数の第2電極との間の間隔中の任意の点を通って第1電極と第2電極とを最短距離で結ぶ線分の最大長さを長さsと定義したとき、
      t>s/2
    が満たされている、表示装置。
    A display device capable of specifying a position pointed by a pointer,
    A cover panel having a first surface to be indicated by the indicator, and a second surface opposite to the first surface;
    A position detection layer provided directly or indirectly on the second surface of the cover panel and having a distance t from the first surface;
    Comprising, the position detection layer,
    A plurality of first electrodes running side by side with each other;
    A plurality of second electrodes running parallel to each other and intersecting with the plurality of first electrodes;
    An interlayer insulating film insulating between the plurality of first electrodes and the plurality of second electrodes in a thickness direction;
    The display device further includes a pressure detection electrode facing the position detection layer via a gap in a thickness direction, so that the second surface of the cover panel can bend toward the gap. A display panel supporting the cover panel;
    With
    The maximum length of a line connecting the first electrode and the second electrode at the shortest distance through an arbitrary point in the interval between the plurality of first electrodes and the plurality of second electrodes in plan view is set to be long. When defined as s
    t> s / 2
    Is satisfied, the display device.
  2.  前記位置検出層は、前記複数の第1電極と前記複数の第2電極とが平面視において間隔を介して平行に対向している平行領域を有しており、
     前記長さsは、前記平行領域において前記複数の第1電極と前記複数の第2電極との間の距離である、請求項1に記載の表示装置。
    The position detection layer has a parallel region in which the plurality of first electrodes and the plurality of second electrodes face in parallel with an interval in plan view,
    The display device according to claim 1, wherein the length s is a distance between the plurality of first electrodes and the plurality of second electrodes in the parallel region.
  3.  前記表示パネルは、横電界を発生させる電極構造と、前記電極構造と前記圧力検出電極との間に設けられた液晶層と、を含み、
     前記液晶層と前記ギャップとの間において、外部電位が印加され得る構造としては、前記圧力検出電極のみが設けられている、
    請求項1または2に記載の表示装置。
    The display panel includes an electrode structure that generates a lateral electric field, and a liquid crystal layer provided between the electrode structure and the pressure detection electrode,
    Between the liquid crystal layer and the gap, as a structure to which an external potential can be applied, only the pressure detection electrode is provided,
    The display device according to claim 1.
  4.  前記複数の第2電極に誘起された電荷を個別に検出することができる第1の電荷検出器と、
     前記複数の第1電極へ個別に励起信号を印加することができ、前記圧力検出電極へ励起信号を印加することができ、前記複数の第1電極へ励起信号を印加するタイミングと前記圧力検出電極へ励起信号を印加するタイミングとが相違するように動作する励起信号源と、
    をさらに備える、請求項1から3のいずれか1項に記載の表示装置。
    A first charge detector capable of individually detecting charges induced in the plurality of second electrodes;
    An excitation signal can be individually applied to the plurality of first electrodes, an excitation signal can be applied to the pressure detection electrode, and a timing of applying the excitation signal to the plurality of first electrodes and the pressure detection electrode An excitation signal source that operates so that the timing of applying the excitation signal to the
    The display device according to any one of claims 1 to 3, further comprising:
  5.  前記複数の第1電極へ個別に励起信号を印加するタイミングでは前記圧力検出電極が定電位となり、前記圧力検出電極へ励起信号を印加するタイミングでは前記複数の第1電極と前記複数の第2電極とが等しい定電位になるように、前記励起信号源は動作する、請求項4に記載の表示装置。 At the timing of individually applying an excitation signal to the plurality of first electrodes, the pressure detection electrode becomes a constant potential, and at the timing of applying an excitation signal to the pressure detection electrode, the plurality of first electrodes and the plurality of second electrodes are applied. The display device according to claim 4, wherein the excitation signal source operates so that the constant potentials are equal to each other.
  6.  前記複数の第1電極に誘起された電荷を個別に検出することができる第2の電荷検出器をさらに備え、
     前記励起信号源が前記圧力検出電極へ励起信号を印加したときに、前記第1の電荷検出器および前記第2の電荷検出器が動作する、
    請求項4または5に記載の表示装置。
    A second charge detector that can individually detect charges induced in the plurality of first electrodes,
    When the excitation signal source applies an excitation signal to the pressure detection electrode, the first charge detector and the second charge detector operate.
    The display device according to claim 4.
  7.  前記位置検出層は、
      第1メッシュパターンを有する第1金属メッシュと、
      厚み方向において前記層間絶縁膜を介して前記第1金属メッシュに対向し、第2メッシュパターンを有する第2金属メッシュと、
    を含み、
     前記第1メッシュパターンは平面視において第1の周期構造を有しており、かつ局所的に第1断線部を有しており、
     前記第2メッシュパターンは、平面視において第2の周期構造を有しており、かつ局所的に第2断線部を有しており、前記第2の周期構造は前記第1の周期構造に対して相補的であり、
     前記第1金属メッシュは、
      前記複数の第1電極と、
      平面視において前記複数の第2電極に重なり、前記第1断線部によって前記複数の第1電極から絶縁された複数の第1ダミー電極と、
      前記複数の第1電極と前記複数の第1ダミー電極との間に配置され、前記第1断線部によって前記複数の第1電極から絶縁された複数の第1フローティング電極と、
    を含み、
     前記第2金属メッシュは、
      前記複数の第2電極と、
      平面視において前記複数の第1電極に重なり、前記第2断線部によって前記複数の第2電極から絶縁された複数の第2ダミー電極と、
      前記複数の第2電極と前記複数の第2ダミー電極との間に配置され、前記第2断線部によって前記第2電極から絶縁された複数の第2フローティング電極と、
    を含む、
    請求項1から6のいずれか1項に記載の表示装置。
    The position detection layer,
    A first metal mesh having a first mesh pattern;
    A second metal mesh facing the first metal mesh via the interlayer insulating film in a thickness direction and having a second mesh pattern;
    Including
    The first mesh pattern has a first periodic structure in a plan view, and locally has a first disconnection portion,
    The second mesh pattern has a second periodic structure in a plan view and locally has a second disconnection portion, and the second periodic structure is different from the first periodic structure. And complementary,
    The first metal mesh,
    The plurality of first electrodes;
    A plurality of first dummy electrodes overlapping with the plurality of second electrodes in plan view and insulated from the plurality of first electrodes by the first disconnection portion;
    A plurality of first floating electrodes disposed between the plurality of first electrodes and the plurality of first dummy electrodes and insulated from the plurality of first electrodes by the first disconnection;
    Including
    The second metal mesh,
    The plurality of second electrodes;
    A plurality of second dummy electrodes overlapping with the plurality of first electrodes in plan view and insulated from the plurality of second electrodes by the second disconnection portion;
    A plurality of second floating electrodes disposed between the plurality of second electrodes and the plurality of second dummy electrodes and insulated from the second electrodes by the second disconnection;
    including,
    The display device according to claim 1.
PCT/JP2019/020194 2018-08-22 2019-05-22 Display device WO2020039675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018155430 2018-08-22
JP2018-155430 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020039675A1 true WO2020039675A1 (en) 2020-02-27

Family

ID=69592625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020194 WO2020039675A1 (en) 2018-08-22 2019-05-22 Display device

Country Status (1)

Country Link
WO (1) WO2020039675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116258024A (en) * 2023-05-16 2023-06-13 赛福凯尔(绍兴)医疗科技有限公司 Electric field visualization method and device for target area and computer equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190859A (en) * 2014-03-28 2015-11-02 ソニー株式会社 Sensor device, input device, and electronic apparatus
JP2018032171A (en) * 2016-08-23 2018-03-01 株式会社ジャパンディスプレイ Display
JP2018055236A (en) * 2016-09-27 2018-04-05 株式会社ジャパンディスプレイ Touch sensor and display device with touch sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190859A (en) * 2014-03-28 2015-11-02 ソニー株式会社 Sensor device, input device, and electronic apparatus
JP2018032171A (en) * 2016-08-23 2018-03-01 株式会社ジャパンディスプレイ Display
JP2018055236A (en) * 2016-09-27 2018-04-05 株式会社ジャパンディスプレイ Touch sensor and display device with touch sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116258024A (en) * 2023-05-16 2023-06-13 赛福凯尔(绍兴)医疗科技有限公司 Electric field visualization method and device for target area and computer equipment
CN116258024B (en) * 2023-05-16 2023-08-29 赛福凯尔(绍兴)医疗科技有限公司 Electric field visualization method and device for target area and computer equipment

Similar Documents

Publication Publication Date Title
US10365747B2 (en) Touch-sensing panel and force detection
JP6290953B2 (en) Touch input device
EP2811379B1 (en) Touch liquid crystal display device
KR101623809B1 (en) Press detection function-equipped touch panel
US8749519B2 (en) Touch panel device
US9207819B2 (en) Touch sensing display panel and touch sensing liquid crystal display panel
TWI433014B (en) Display device
US9007332B2 (en) Position sensing panel
TWI541712B (en) Touch screen, touch panel, and driving method thereof
KR20170079267A (en) Display device and method of driving the same
CN102375603A (en) Display device with touch tablet
JP2010122951A (en) Input device
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
JP2014170334A (en) Capacitance touch panel, and handheld electronic apparatus using the same
WO2020039675A1 (en) Display device
KR20180015235A (en) Capacitive input device
US10613688B2 (en) Touch substrate, touch panel and touch apparatus having the same, and fabricating method thereof
CN111025787A (en) Display panel and display device
JP2013156949A (en) Touch panel
CN106502479B (en) Touch display device
JP2013134698A (en) Touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP