WO2020039013A1 - Arrangement de mesure de charge et procédé de mesure de charge - Google Patents

Arrangement de mesure de charge et procédé de mesure de charge Download PDF

Info

Publication number
WO2020039013A1
WO2020039013A1 PCT/EP2019/072415 EP2019072415W WO2020039013A1 WO 2020039013 A1 WO2020039013 A1 WO 2020039013A1 EP 2019072415 W EP2019072415 W EP 2019072415W WO 2020039013 A1 WO2020039013 A1 WO 2020039013A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
coil
load
sensor head
generating
Prior art date
Application number
PCT/EP2019/072415
Other languages
German (de)
English (en)
Inventor
Christoph Schanz
Original Assignee
Trafag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trafag Ag filed Critical Trafag Ag
Publication of WO2020039013A1 publication Critical patent/WO2020039013A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • the invention relates to a load measuring device and a
  • Load measurement method for measuring a load in a test object For measuring a load in a test object.
  • the invention particularly relates to a method and a device for measuring a mechanical load on a test object.
  • Loads are understood to mean forces, torques or mechanical stresses on the test object.
  • Torque measuring arrangement with a torque sensor for a torque sensor for measuring a torque on a rotating test object, in particular in the form of a shaft, with the detection of
  • refinements of the invention relate to a measuring method for measuring a torque by detecting
  • Magnetic field changes due to the Villari effect, and more particularly designed for magnetoelastic ( inverse magnetorestrictive) detection of torques.
  • Torque sensors of this type which detect torques in test objects, in particular waves, due to magnetic field changes, and the scientific foundations for this are described in the following references:
  • a type of torque transducer as described in D4 (DE 30 31 997 A1), has proven to be particularly effective for the measurement of torques in shafts and other measuring points.
  • exemplary embodiments relate to a pressure sensor with a membrane as the test object and a tension detection device for detecting a mechanical tension in the membrane by active magnetization.
  • Measured variables torque, force and position can be determined on ferromagnetic objects.
  • Magnetoelastic (or also inverse magnetostrictive) sensors or eddy current or eddy current sensors are usually used.
  • the ferromagnetic materials used change their permeability under the influence of tensile or compressive stresses (also called the Villari effect). Differentiating the individual effects is usually difficult in practice, only the eddy current sensor is easier to distinguish from the other effects due to its frequency dependence.
  • the state of the magnetization of the object is often not known or is influenced by the processing and handling of the objects, so that wide industrial use is often difficult.
  • D7 EP 3'51'265 A1 it is known to compensate for this disadvantage by active magnetization by means of an alternating magnetic field in the kHz range.
  • generator and detector coils namely two first magnetic field detection coils A1, A2 and two second magnetic field detection coils B1, B2 and a central generator coil Lg in a cross arrangement (X arrangement) are used.
  • the difference between the coil pair AB (A1 + A2) - (B1 + B2) is determined in an analog signal processing scheme.
  • the object of the invention is to create a load measuring device and a load measuring method with which a load can be measured more reproducibly even under changing conditions.
  • the invention provides a load measuring device according to claim 1 and a load measuring method according to the subclaim.
  • the invention provides a first aspect thereof
  • a load measuring device for measuring a load in a test object comprising: a sensor head, a magnetic field generating device for generating a magnetic field in the test object, the magnetic field generating device at least one magnetic field generating coil in the sensor head and one
  • a first magnetic field detection device for detecting a first magnetic field parameter changing due to a load in the test object and for generating a first
  • Magnetic field parameter signal which is generated due to the periodic
  • the first magnetic field detection device has at least a first magnetic field detection coil in the sensor head, a second magnetic field detection device for detecting a second magnetic field parameter changing due to a load in the test object and for generating a second magnetic field parameter signal that changes periodically due to the periodically generated measuring field, being the second
  • Magnetic field detection device at least a second Magnetic field detection coil in the sensor head, and an evaluation device for generating a measurement signal from the first and the second magnetic field parameter signal, wherein the sensor head is designed without flux amplifier without magnetic flux amplifier for the coils arranged therein, and wherein the current source for supplying the magnetic field generating coil with a periodically with a frequency of greater 50 kHz alternating current is formed.
  • the power source to power the
  • Magnetic field generating coil is formed with current at a frequency of 80 kHz to 120 kHz.
  • Magnetic field detection coils are provided in a V arrangement or an X arrangement in the sensor head.
  • the coils of the sensor head are arranged in a coil component with an arrangement of planar coil packages in printed circuit board technology.
  • a coil arrangement of the sensor head has no ferrite and no magnetic yoke.
  • the coil component is neither equipped with a ferrite, nor with any other magnetic flux amplifier
  • Magnetic yoke provided.
  • the sensor head has a housing that surrounds the coils in the circumferential direction.
  • the housing is formed from or with a ferromagnetic material.
  • the housing is made of an electrically conductive material that prevents the penetration of high-frequency electrical fields. It is preferred that the housing is provided on the inside and / or outside with a shield for shielding high-frequency electrical fields.
  • the coils of the sensor head by means of an elastic connection in the sensor head and / or in the housing of the
  • the coils are held by means of a carrier which has a carrier fastening area for fastening the carrier in the sensor head, a coil fastening region to which the coils are fastened and a plurality of spring elements and / or elastic connecting bridges between the
  • Carrier mounting area and the coil mounting area are Carrier mounting area and the coil mounting area.
  • the carrier is designed as a printed circuit board on which at least one coil component with one, several or all of the coils is soldered.
  • the coil mounting area is a central area surrounded by the carrier mounting area.
  • the elastic connecting bridges be electrical
  • the invention relates to a load measurement method for measuring a load in a test object, with:
  • Magnetic field parameter signal which is generated due to the periodic
  • magnetic flux amplifiers are always provided in the generation coil and in the magnetic field detection coils.
  • a flux amplifier yoke which is V-shaped or X-shaped, a projection being provided on an intersection area on which the generating coil is seated, while the magnetic field detection coils are provided on projections on arms of the magnetic yoke.
  • the magnetic flux is increased in order to achieve a sufficient signal strength.
  • the flux amplifier consists of ferrite or corresponding flux-enhancing materials and thus of materials other than the coils or the other components of the corresponding sensor head.
  • Magnetic flux can be compensated for by a corresponding increase in the frequencies of the magnetic field generation current.
  • the invention thus relates to a load measuring method and a load measuring device using a sensor head without ferrite and without another flux conductor.
  • Generating a measurement signal is the signal / carrier ratio.
  • the sensor is also significantly less susceptible to
  • a total current consumption of the inductors is obtained which is comparable to a sensor which is operated at 10 kHz and is provided with a ferrite flux amplifier.
  • a further improvement of the measurement signal even under different mechanical loads is achieved if, as is provided in particularly preferred configurations, stress decoupling of a coil structure within the sensor head is carried out.
  • the coils are connected to a housing or the like via an elastic connection connected. This can be achieved, for example, with a stress decoupling PCB.
  • the at least one coil can be soldered onto the stress decoupling PCB and thus suspended in a housing.
  • Mechanical stress is preferably absorbed from the outside by means of at least one spring and thus cannot lead to an offset shift in the coil.
  • the coils are preferably designed as planar coils.
  • Load measuring device is in particular as a torque sensor or
  • planar coils for use with torque sensors and force sensors are inductors embedded in an FR4. So far the planar coils for use with torque sensors and force sensors are inductors embedded in an FR4. So far the
  • Inductors reinforced by the use of a ferrite reinforced by the use of a ferrite.
  • the planar coils are part of the entire sensor in the product and integrated in the structure and in the
  • planar coils are anchored in some form to the housing in order to be resistant to vibration, shock and other influences on the sensor.
  • This signal change can occur in an offset-reversible or non-reversible manner with the mechanical or thermal stress and thereby causes a certain error budget.
  • the planar coils can be integrated into a sensor in a stress-decoupled manner.
  • a suitable stress decoupling such as a carrier PCB designed as a spring
  • the planar coils can be integrated into a sensor in a stress-decoupled manner.
  • a carrier circuit board with four spring suspensions is provided. Tests have shown that a reduction to two spring suspensions significantly improves stress decoupling.
  • the stiffness of the carrier board can be adjusted via the width of the spring struts.
  • Figure 1 is an exploded perspective view of an embodiment of a load measuring device in the form of a torque sensor.
  • FIG. 2 is a perspective view of the load measuring device of FIG.
  • Figure 4 is a section on the line A-A of Figure 3;
  • Fig. 5 is a side view of the load measuring device.
  • Load measuring device 10 is shown for measuring a load on a test object, not shown.
  • the load measuring device 10 is
  • the load measuring device 10 could, for example, also be designed as a force sensor.
  • the load measuring device 10 is designed to measure a load on a ferromagnetic test object using magnetic measuring methods.
  • the load measuring device 10 is designed as a magnetoelastic or inverse magnetostrictive sensor.
  • the ferromagnetic materials of the test object change their permeability under the influence of tensile or
  • the load measuring device 10 is designed to be active
  • the load measuring device 10 has a sensor head 16 accommodated in a housing 14. Furthermore, the load measuring device 10 has a magnetic field generating device 18, a first one
  • Magnetic field detection device 20 and a second
  • Magnetic field detection device 22
  • the magnetic field generating device 18 is designed to generate a magnetic field in the test object.
  • the magnetic field generating device 18 has a magnetic field generating coil 24 - also called a generator coil - in the
  • Magnetic field generating coil 24 with a periodically changing current.
  • the current source 26 can be arranged in the torque sensor 12, in particular in the housing 14.
  • the current source 26 can be arranged as an electronic component on an electronics unit 28.
  • the current source 26 is provided externally, for example as an alternating current source.
  • the current source 26 is designed to
  • Magnetic field generating coil 24 with a frequency of greater than 50 kHz, more particularly with a frequency of 80 kHz-120 kHz.
  • the first magnetic field detection device 20 is for detecting a first one that changes due to a load in the test object
  • the first magnetic field detection device 20 has at least one first magnetic field detection coil 30.
  • the second magnetic field detection device 22 is also designed to detect a magnetic field parameter - second magnetic field parameter - which changes due to a load in the test object. Because of this, it generates a second magnetic field parameter signal, which also changes periodically due to the periodically generated measuring field.
  • the first and second magnetic field parameters can e.g. B. field strengths in different directions.
  • the different coils 24, 30, 32 are housed together as planar coils 34 in a coil component 36, which together
  • Magnetic field generating coil 24 and the magnetic field detection coil 30, 32 houses.
  • the arrangement of the coils 24, 30, 32 can be V-shaped, with an imaginary connecting line between the magnetic field generating coil 24 and the first magnetic field detection coil 30 coinciding with a second imaginary connecting line between the magnetic field generating coil 24 and the second
  • Magnetic field detection coil 32 crosses at an angle between 10 ° and 170 °, preferably between 60 ° and 120 °, more particularly between 80 ° and 100 ° and particularly preferably at an angle of 90 °.
  • Magnetic field detection coils 30 and two second magnetic field detection coils 32 are provided, which are provided in an X arrangement with the magnetic field generating coil 24 in the middle.
  • the coil component 36 has no magnetic flux amplifier.
  • the entire sensor head 16 is free of flux amplifiers, without ferrites or others soft magnetic materials for flux reinforcement for the coils 24, 30, 32, provided.
  • planar coils 34 are only in a suitable matrix material 38
  • the coil component is manufactured using printed circuit board technology.
  • the different coils 24, 30, 32 of the sensor head 16 are connected to the housing 14 via at least one elastic connection 40 and / or via a spring element 42 or via a spring.
  • a carrier 44 which has a carrier fastening region 46 for fastening the carrier 44 to the housing, a coil fastening region 48 for fastening one or more of the coils 24, 30, 32 and at least one elastic one
  • the coil fastening area 48 is connected to the carrier fastening area 46 via the at least one elastic connecting bridge 50.
  • the carrier 44 is in the form of a
  • Connection bridges 50 are guided to electrically connect the coils.
  • the carrier attachment area 46 lies in a ring or in regions around the centrally arranged coil attachment area 48.
  • the coil component 36 is preferably soldered to the coil mounting area 48.
  • the stiffness of the spring element 42 and the spring properties of the elastic connection 40 can be adjusted via the width of the connecting bridge 50 and / or its length.
  • bracket mounting area 46 There may be between the bracket mounting area 46 and the bracket mounting area 46 and the bracket mounting area 46 and the bracket mounting area 46 and the bracket mounting area 46
  • Coil attachment area 48 a plurality of elastic connecting bridges 50 be provided, for example two, three or four connecting bridges are provided.
  • the housing 14 has a base plate 54 with an opening for an electrical plug-in connection 56 and an annular housing region 58 and, in the embodiment shown, also a cover 60. Except for the cover 60, there are electrically and / or magnetically shielding materials for the housing 14
  • the cover 60 is designed to protect the sensor head 16 from environmental influences and is made of a material which allows magnetic fields to be conducted well to the test object. For example, a plastic material is provided for the cover 60.
  • the load measuring method described in more detail below can be carried out.
  • the load measuring device is arranged with the cover 60 towards the test object (not shown) and fixed to the test object.
  • the test object can be, for example, a rotating shaft made of ferromagnetic materials.
  • a magnetic field is generated in the range of 80-120 kHz by applying the current to the magnetic field generating coil and introduced into the test object.
  • Magnetic field detection device 22 changes the direction of the applied magnetic field due to loads in the test object.
  • the corresponding signals of the magnetic field detection device 20, 22 can for example consist of signals A1 and A2 from two first
  • Magnetic field detection coils 30 and signals B1 and B2 from two second magnetic field detection coils 32 exist.
  • a measurement signal indicating the load can thus be generated in an evaluation device 62, which can also be accommodated in the electronics unit 28.
  • An example of the corresponding generation is in the
  • Test objects are described in DE 10 2017 104 547.3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

L'invention vise à améliorer l'indépendance vis-à-vis des influences extérieures et réalise à cet effet un arrangement de mesure de charge (10) destiné à mesurer une charge dans un objet en essai, comprenant : une tête de capteur (16), un dispositif de génération de champ magnétique (18) destiné à générer un champ magnétique dans ledit objet en essai, le dispositif de génération de champ magnétique (18) comprenant au moins une bobine de génération de champ magnétique (24, 30, 32) dans la tête de capteur (16) et une source de courant (26) destinée à alimenter la bobine de génération de champ magnétique (24, 30, 32) avec un courant variant périodiquement, un premier dispositif de détection de champ magnétique (18) destiné à détecter un premier paramètre de champ magnétique qui varie en raison d'une charge dans l'objet en essai et destiné à générer un premier signal de paramètre de champ magnétique qui varie périodiquement en raison du champ de mesure généré périodiquement, le premier dispositif de détection de champ magnétique (18) comprenant au moins une première bobine de détection de champ magnétique (30) dans la tête de capteur (16), un deuxième dispositif de détection de champ magnétique (22) destiné à détecter un deuxième paramètre de champ magnétique qui varie en raison d'une charge dans l'objet en essai et destiné à générer un deuxième signal de paramètre de champ magnétique qui varie périodiquement en raison du champ de mesure généré périodiquement, le deuxième dispositif de détection de champ magnétique (22) comprenant au moins une deuxième bobine de détection de champ magnétique (32) dans la tête de capteur (16), et un dispositif d'interprétation (62) destiné à générer un signal de mesure à partir du premier et du deuxième signal de paramètre de champ magnétique, la tête de capteur (16) exempte d'amplificateur de flux étant configurée sans amplificateur de flux magnétique pour les bobines qui y sont disposées et la source de courant (26) étant configurée pour alimenter la bobine de génération de champ magnétique (24, 30, 32) avec un courant qui varie périodiquement à une fréquence supérieure à 50 kHz.
PCT/EP2019/072415 2018-08-21 2019-08-21 Arrangement de mesure de charge et procédé de mesure de charge WO2020039013A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018120400.0 2018-08-21
DE102018120400.0A DE102018120400A1 (de) 2018-08-21 2018-08-21 Belastungsmessvorrichtung und Belastungsmessverfahren

Publications (1)

Publication Number Publication Date
WO2020039013A1 true WO2020039013A1 (fr) 2020-02-27

Family

ID=67742413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/072415 WO2020039013A1 (fr) 2018-08-21 2019-08-21 Arrangement de mesure de charge et procédé de mesure de charge

Country Status (2)

Country Link
DE (1) DE102018120400A1 (fr)
WO (1) WO2020039013A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904107A (zh) * 2021-01-15 2021-06-04 公牛集团股份有限公司 电器设备及其负载检测电路
DE102022129926A1 (de) 2022-11-11 2024-05-16 Trafag Ag Sensorkopf für Belastungsmessvorrichtung mit Magnetspulen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123710A1 (de) 2020-09-11 2022-03-17 Trafag Ag Messverfahren, Messvorrichtung, Steuerung und Computerprogrammprodukt
DE102021123394A1 (de) 2021-09-09 2023-03-09 Trafag Ag Belastungsmessanordnung zum magnetostriktiven Messen einer Belastung an einem Testobjekt sowie Herstellverfahren
DE102021123392A1 (de) 2021-09-09 2023-03-09 Trafag Ag Belastungsmessanordnung und Belastungsmessverfahren zum Messen einer Belastung an einem Testobjekt mit Nebenübertragungselement

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011340A (en) 1957-06-26 1961-12-05 Asea Ab Means for measuring a torsional stress in a shaft of magnetostrictive material
US3311818A (en) 1963-03-11 1967-03-28 Api Instr Company Non-contact apparatus for magnetically measuring strain
US4135391A (en) 1977-11-22 1979-01-23 Asea Aktiebolag Torque transducer
DE3031997A1 (de) 1980-08-25 1982-03-11 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur beruehrungslosen messung statischer und dynamischer drehmomente
EP0384042A2 (fr) 1989-02-22 1990-08-29 Kubota Corporation Capteur de couple magnétostrictif
US5902934A (en) * 1990-12-10 1999-05-11 Sensortech, L.P. Phase magnitude signal detector
US20010029791A1 (en) * 2000-04-17 2001-10-18 Suzuki Motor Corporation Steering force detecting magnetostrictive torque sensor
DE10212784A1 (de) * 2002-03-22 2003-10-02 Hella Kg Hueck & Co Anordnung zur mechanischen Anbindung eines Sensors an einen Stromleiter in einem Kraftfahrzeug
EP3051265A1 (fr) 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Dispositif de mesure de force
EP3285055A1 (fr) * 2016-08-18 2018-02-21 General Electric Company Capteurs magnétostrictifs sans contact et procédés de fonctionnement de tels capteurs
US20180231425A1 (en) * 2017-02-15 2018-08-16 Ncte Ag Magnetoelastic Torque Sensor
DE102017104547A1 (de) 2017-03-03 2018-09-06 Trafag Ag Drucksensor sowie Druckmessverfahren
DE102017112913A1 (de) 2017-06-12 2018-12-13 Trafag Ag Belastungsmessverfahren, Belastungsmessvorrichtung und Belastungsmessanordnung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117529A1 (de) * 2016-06-02 2017-12-07 Trafag Ag Drehmomentsensoranordnung und Verfahren zur Drehmomentmessung sowie Drehmomentregelvorrichtung und Elektroantrieb
DE102016122172B4 (de) * 2016-07-25 2018-02-01 Trafag Ag Sensorkopf für einen Kraft- oder Drehmomentsensor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011340A (en) 1957-06-26 1961-12-05 Asea Ab Means for measuring a torsional stress in a shaft of magnetostrictive material
US3311818A (en) 1963-03-11 1967-03-28 Api Instr Company Non-contact apparatus for magnetically measuring strain
US4135391A (en) 1977-11-22 1979-01-23 Asea Aktiebolag Torque transducer
DE3031997A1 (de) 1980-08-25 1982-03-11 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur beruehrungslosen messung statischer und dynamischer drehmomente
EP0384042A2 (fr) 1989-02-22 1990-08-29 Kubota Corporation Capteur de couple magnétostrictif
US5902934A (en) * 1990-12-10 1999-05-11 Sensortech, L.P. Phase magnitude signal detector
US20010029791A1 (en) * 2000-04-17 2001-10-18 Suzuki Motor Corporation Steering force detecting magnetostrictive torque sensor
DE10212784A1 (de) * 2002-03-22 2003-10-02 Hella Kg Hueck & Co Anordnung zur mechanischen Anbindung eines Sensors an einen Stromleiter in einem Kraftfahrzeug
EP3051265A1 (fr) 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Dispositif de mesure de force
EP3285055A1 (fr) * 2016-08-18 2018-02-21 General Electric Company Capteurs magnétostrictifs sans contact et procédés de fonctionnement de tels capteurs
US20180231425A1 (en) * 2017-02-15 2018-08-16 Ncte Ag Magnetoelastic Torque Sensor
DE102017104547A1 (de) 2017-03-03 2018-09-06 Trafag Ag Drucksensor sowie Druckmessverfahren
DE102017112913A1 (de) 2017-06-12 2018-12-13 Trafag Ag Belastungsmessverfahren, Belastungsmessvorrichtung und Belastungsmessanordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GERHARD HINZHEINZ VOIGT: "Sensors", 1989, VCH VERLAGSGESELLSCHAFT MBH, article "Magnoelastic Sensors", pages: 97 - 152

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904107A (zh) * 2021-01-15 2021-06-04 公牛集团股份有限公司 电器设备及其负载检测电路
CN112904107B (zh) * 2021-01-15 2024-04-30 公牛集团股份有限公司 电器设备及其负载检测电路
DE102022129926A1 (de) 2022-11-11 2024-05-16 Trafag Ag Sensorkopf für Belastungsmessvorrichtung mit Magnetspulen

Also Published As

Publication number Publication date
DE102018120400A1 (de) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2020039013A1 (fr) Arrangement de mesure de charge et procédé de mesure de charge
DE69936138T2 (de) Magnetischer kraftsensor und verfahren zu dessen herstellung
EP2795278B1 (fr) Machine pourvue d'un dispositif de mesure pour mesurer des forces et/ou des charges
DE102008061067B4 (de) Integrierte Schaltung, System und Verfahren, die magnetfeldempfindliche Elemente und Spulen umfassen und verwenden
DE102007003830B4 (de) Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE102017112913A1 (de) Belastungsmessverfahren, Belastungsmessvorrichtung und Belastungsmessanordnung
DE102008040707A1 (de) Positionssensor vom Permanentmagnetentyp
DE102017104547A1 (de) Drucksensor sowie Druckmessverfahren
DE102011081869A1 (de) Messkopf für einen magnetoelastischen Sensor
EP3019843B1 (fr) Pièce mécanique et procédé de détermination d'une force de sollicitation agissant sur une pièce mécanique
DE102018120401A1 (de) Belastungsmessvorrichtung
DE102018115713B4 (de) Verfahren, Vorrichtung und Anordnung zur Belastungsmessung an einem Testobjekt
EP2631620A2 (fr) Procédé et agencement de mesure destinés à mesurer des tensions mécaniques dans des pièces à usiner ferromagnétiques
DE102019102454B3 (de) Anordnung und Verfahren zur Messung einer mechanischen Belastung eines Testobjekts unter Erfassung von Magnetfeldänderungen
DE102005028214A1 (de) Vibrationsmesssystem
DE2425177B2 (de) Druckmeßwertgeber
DE102019108898B4 (de) Vorrichtung und Anordnung zur Belastungsmessung an einem Testobjekt, insbesondere einer Fahrwerkskomponente
DE102016119094A1 (de) Drehmomentsensor-Baugruppe für einen Motor umfassend eine zentrale Scheibe und einen äußeren Kranz
WO2008083653A1 (fr) Dispositif de mesure
CH696859A5 (de) Stromsensor mit mehreren Magnetfeldsensoren.
DE102008044125A1 (de) Sensoranordnung mit einem magnetoelastischen Verformungselement
DE102018123800A1 (de) Belastungsmessanordnung mit einem Lastelement und einem Belastungssensor, Herstellungsverfahren und Belastungsmessverfahren
DE102022129926A1 (de) Sensorkopf für Belastungsmessvorrichtung mit Magnetspulen
AT504137A4 (de) Einrichtung zur messung
EP3885727A1 (fr) Système de détection de la dilatation d'un produit élastomère

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758697

Country of ref document: EP

Kind code of ref document: A1