WO2020038069A1 - Exposure control method and device, and electronic apparatus - Google Patents

Exposure control method and device, and electronic apparatus Download PDF

Info

Publication number
WO2020038069A1
WO2020038069A1 PCT/CN2019/090146 CN2019090146W WO2020038069A1 WO 2020038069 A1 WO2020038069 A1 WO 2020038069A1 CN 2019090146 W CN2019090146 W CN 2019090146W WO 2020038069 A1 WO2020038069 A1 WO 2020038069A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
night scene
image
scene mode
frame
Prior art date
Application number
PCT/CN2019/090146
Other languages
French (fr)
Chinese (zh)
Inventor
胡孔勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020038069A1 publication Critical patent/WO2020038069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time

Definitions

  • the present application relates to the technical field of mobile terminals, and in particular, to an exposure control method, device, and electronic device.
  • This application is intended to solve at least one of the technical problems in the related technology.
  • this application proposes an exposure control method that dynamically adjusts the applicable night scene mode by identifying whether there is a portrait in the night scene, and uses the corresponding exposure parameters to perform exposure control of the image to be acquired, which improves the image in the night scene. Imaging quality.
  • the application proposes an exposure control device.
  • the present application proposes an electronic device.
  • the present application proposes a computer-readable storage medium.
  • An embodiment of one aspect of the present application provides an exposure control method, including:
  • the exposure parameter is used for exposure control.
  • An embodiment of another aspect of the present application provides an exposure control device, including:
  • a scene determination module configured to determine that a current shooting scene belongs to a night scene scene
  • a recognition module for recognizing a face area of a preview image, and identifying a night scene mode applicable to a current shooting scene according to whether a face area is recognized;
  • a parameter determining module configured to determine an exposure parameter of an image to be acquired in each frame according to the night scene mode
  • a control module configured to perform exposure control by using the exposure parameter.
  • An embodiment of another aspect of the present application provides an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, the implementation is implemented as described above. Aspect of the exposure control method.
  • An embodiment of yet another aspect of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the exposure control method according to the foregoing aspect is implemented.
  • FIG. 1 is a schematic flowchart of an exposure control method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another exposure control method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another exposure control method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of still another exposure control method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an exposure control apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the internal structure of the electronic device 200 in one embodiment.
  • FIG. 7 is a schematic diagram of an image processing circuit 90 in one embodiment.
  • this application proposes an exposure control method, determining that the current shooting scene belongs to a night scene, performing face area recognition on the preview image, identifying whether a face area is recognized, identifying a night scene mode applicable to the current shooting scene, and according to the night scene mode, Determine the exposure parameters of the images to be collected for each frame, use the exposure parameters for exposure control, dynamically adjust the applicable night scene mode by identifying whether there is a portrait in the night scene, and use the corresponding exposure parameters for exposure control of the images to be collected, which improves the Imaging quality of images in night scenes.
  • FIG. 1 is a schematic flowchart of an exposure control method according to an embodiment of the present application.
  • the method includes the following steps:
  • Step 101 Determine that the current shooting scene belongs to a night scene.
  • an image acquisition module is used to obtain a preview graphic of the current scene, image feature extraction is performed on the preview image, the extracted image features are input to a recognition model, and the current scene is determined according to the type of scene output by the recognition model.
  • the shooting scene is a night scene, where the recognition model has learned to obtain the correspondence between the image features and the scene type.
  • a user operation for scene switching is detected, and when a user operation switched to a night scene is detected, the ambient brightness is detected to obtain brightness information.
  • electronic The built-in light metering module detects the current ambient brightness and determines the brightness information of the current environment. According to the brightness information, it is determined that the current shooting scene belongs to a night scene.
  • the brightness index Lix_index can be used to measure the brightness level. The greater the value of the brightness information, the lower the brightness of the current scene.
  • the ratio of the obtained brightness information to the preset brightness value is Yes, if the obtained brightness information is greater than a preset brightness value, it is determined that the current shooting scene belongs to a night scene.
  • the obtained brightness information is less than a preset brightness value, it is determined that the current shooting scene belongs to a non-night scene, and in a non-night scene, imaging is performed in a high dynamic range mode, where high dynamic range imaging can be performed by setting different Exposure compensation value, to obtain a higher dynamic range. For example, 3 frames of images can be acquired, and the interval of the exposure compensation value is [-4, +1].
  • Step 102 Perform face area recognition on the preview image, and identify a night scene mode applicable to the current shooting scene according to whether the face area is recognized.
  • face area recognition is performed on the preview image to identify whether the preview image contains a human face.
  • a face detection algorithm may be adopted, for example, a skin detection-based face detection algorithm or a facial feature feature Face detection algorithm, etc., to detect the face interest area FACE ROI, identify the face area in the preview image, if there is a face area, the face interest area FACE ROI box is displayed, if it is not recognized, it is not displayed.
  • the face interest area FACE ROI box determines whether there is a face area in the preview image according to the recognition result.
  • a night portrait mode is determined. If a face area is not recognized, a non-night portrait mode is determined.
  • the portrait night mode and the non-night night mode use different exposure compensation values. This is because when the image processor performs post-processing on the image, it will increase the brightness of the face area based on the face brightening related algorithm. If the exposure is collected with normal exposure, the image will be superimposed with the later face brightening effect. The final image will have face brightness distortion. Therefore, in order to avoid this kind of brightness distortion, a lower exposure compensation value can be used in portrait night scene mode to offset all or part of the face brightening effect in the later stage.
  • Step 103 Determine the exposure parameters of the images to be collected in each frame according to the night scene mode.
  • the exposure parameters include exposure compensation value, sensitivity and exposure time.
  • the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range, and in the non portrait night scene mode, each frame is determined from the corresponding second value range. Preset exposure compensation value for the image to be acquired.
  • the upper limit of the first value range is smaller than the upper limit of the second value range.
  • the preset sensitivity of each frame to be acquired is determined, the reference exposure amount is determined based on the brightness information of the preview image, and each frame is determined based on the reference exposure amount and the preset exposure compensation value of each frame to be acquired image.
  • the target exposure of the image to be acquired is determined according to the target exposure of the image to be acquired in each frame and the preset sensitivity of the image to be acquired in each frame to determine the exposure time of the image to be acquired in each frame.
  • Step 104 Use exposure parameters to perform exposure control.
  • the exposure control is performed using the determined exposure parameters of the images to be acquired in each frame.
  • the exposure control method in the embodiment of the present application it is determined that the current shooting scene belongs to a night scene, and face area recognition is performed on the preview image. According to whether a face area is recognized, a night scene mode applicable to the current shooting scene is identified, and each of the night scene modes is determined according to the night scene mode.
  • the exposure parameters of the frame to be captured are adjusted by using the exposure parameters.
  • the night scene is identified to dynamically adjust the applicable night scene mode.
  • the corresponding exposure parameters are used to control the exposure of the image to be collected, which improves the night scene. Imaging quality of the lower image.
  • this embodiment provides another exposure control method, which illustrates that before the face area recognition of the preview image, the night scene mode needs to be determined according to the degree of jitter of the imaging device.
  • FIG. 2 is the implementation of this application.
  • the flow chart of another exposure control method provided by the example is shown in FIG. 2. Before step 102, the method may further include the following steps:
  • Step 201 Obtain the degree of shaking of the imaging device, and determine the night scene mode according to the degree of shaking.
  • the night scene mode determined according to the degree of shaking includes a portrait night scene mode or a non-portrait night scene mode, a single-frame night scene mode, and a tripod night scene mode.
  • the collected displacement information is acquired from a sensor provided in the imaging device, and the degree of jitter of the imaging device is determined according to the displacement information.
  • the sensor may be a gyroscope, and the gyroscope may output displacement information of three axes of x, y, and z.
  • the gyroscope may output displacement information of three axes of x, y, and z.
  • the information takes an absolute value and is added and summed.
  • the sum of the displacement information corresponding to the three axes is represented by S.
  • the value of the displacement information S is used to indicate the degree of jitter of the imaging device.
  • a preset dither threshold is determined, and the obtained dither degree is compared with a preset threshold to determine the current night scene mode.
  • the dither threshold is divided into a first dither threshold and a second dither threshold. , Wherein the first jitter threshold is greater than the second jitter threshold.
  • the night scene mode is determined according to the shake threshold, specifically: if the degree of shake is less than the first shake threshold and greater than the second shake threshold, the night scene mode may be determined according to the degree of shake using a portrait night scene mode or a non-portrait night scene mode; if the shake degree is greater than or equal to The first jitter threshold is determined to adopt a single-frame night scene mode; if the degree of jitter is less than or equal to the second jitter threshold, it is determined to use a tripod night scene mode.
  • the number of frames of the image to be collected in the night scene mode is larger than the number of frames in the portrait night mode or the non-portrait night scene mode, and the number of frames of the image to be collected in the single frame night scene mode is less than that in the portrait night scene mode or the non-portrait night scene mode. number.
  • a portrait night scene mode or a non-portrait night scene mode can be used, and then the face image area can be further identified by identifying whether the preview image contains a face night scene mode or a non-night night scene mode.
  • the night scene mode can be determined by the degree of jitter
  • the tripod night scene mode can be used, because the tripod night scene mode has very little jitter, and the imaging device itself has an anti-shake elimination strategy, such as Optical Image Stabilization (OIS), etc.
  • OIS Optical Image Stabilization
  • the jitter in the tripod night scene mode is very small, so it can take a long time to obtain a high-quality picture, such as 1 minute. Even if a person appears in the image, it can't stay still for 1 minute. It does not distinguish whether or not a face area is included, that is, no special processing is performed even if a portrait is included.
  • the single-frame night scene mode can be used. Due to the large jitter, the single-frame night scene mode only uses a single frame acquisition and a single exposure measurement to shorten the exposure time and avoid blurs and ghosts. Therefore, It does not distinguish whether or not a face region is included.
  • the current shooting scene belongs to a night scene
  • the current night scene mode is determined according to the jitter situation.
  • the preview is further performed.
  • the image performs face area recognition, according to whether the face area is recognized, and the night scene mode applicable to the current shooting scene, and according to the night scene mode, the exposure parameters of each frame to be collected are determined, and the exposure parameters are used for exposure control. Whether there is a portrait, to dynamically adjust the applicable night scene mode and use the corresponding exposure parameters to control the exposure of the image to be collected, improving the imaging quality of the image in the night scene.
  • an embodiment of the present application further proposes an exposure control method, which further clearly explains how to determine the exposure parameters of the images to be collected in each frame according to the determined night scene mode or portrait night scene mode.
  • 3 is a schematic flowchart of another exposure control method provided by an embodiment of the present application. As shown in FIG. 3, step 103 may further include the following sub-steps:
  • Step 1031 determine the preset sensitivity of the image to be collected for each frame.
  • the night scene mode is a portrait night scene mode or a non-portrait night scene mode
  • the preset sensitivity iso of each image to be acquired in each frame in the portrait night scene mode or the non-portrait night scene mode is determined, for example, the preset sensitivity is 200 iso.
  • the preset sensitivity value is small to prevent more noise from appearing in the captured image and improve the imaging quality of the image.
  • the preset sensitivities of the images to be collected in each frame in the portrait night scene mode or the non-portrait night scene mode may be completely the same, or there may be minor differences.
  • the preset sensitivity of each frame to be collected is 200iso, or the preset sensitivity of the first frame is 200iso, and subsequent frames are incremented by 5iso per frame.
  • the value of the preset sensitivity is not limited in this embodiment.
  • Step 1032 Determine a preset exposure compensation value for each frame of the image to be acquired according to the night scene mode.
  • the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range.
  • the image to be acquired is set It is set to 7 frames, and the first value range corresponding to the exposure compensation value EV (Exposure Compensation Value) is [-6,0] EV, so that the preset exposure compensation values of the images to be collected for each frame are determined as: [-6 , -4, -2,0,0,0,0] EV.
  • the preset exposure compensation value of each frame to be acquired is determined from the corresponding second value range.
  • the The acquired image is set to 7 frames, and the range of the exposure compensation value is set to [-6, + 1] EV.
  • the corresponding exposure compensation value can be [-6, -3 , 0, + 1, + 1, + 1, + 1] EV.
  • the exposure compensation value can also be changed according to the ambient brightness and the captured image, and the exposure range can be reduced.
  • the range of the exposure compensation value can be adjusted to [-5, + 1] EV.
  • Step 1033 Determine a reference exposure amount according to the brightness information of the preview image.
  • the reference exposure amount is determined according to the brightness information of the preview image.
  • the brightness information of the preview image corresponding to the current shooting scene is measured by the photometry module in the electronic device, and the set comparison value is used.
  • Low sensitivity convert the measured brightness information, determine the reference exposure, and set it to EVO.
  • the sensitivity measured by the photometry module is 500iso
  • the exposure time is 50 milliseconds (ms)
  • the target sensitivity If it is 100iso, the sensitivity obtained after conversion is 100iso, the exposure time is 250ms, and the sensitivity is 100iso and the exposure time is 250ms as the reference exposure amount EVO.
  • EVO is the reference exposure that is most suitable for the current night scene environment, but the reference exposure EVO is not a fixed value, but a value that changes according to the brightness information of the preview image.
  • the preview The brightness information of the image will change, and the reference exposure EV0 will also change.
  • Step 1034 Determine the target exposure amount of the image to be acquired for each frame according to the reference exposure amount and the preset exposure compensation value of the image to be acquired for each frame.
  • the corresponding preset exposure compensation values for the 7 frames of images to be acquired are -6EV, -4EV, -2EV, 0EV, 0EV, 0EV, and 0EV, respectively, where "+” indicates that it is being measured.
  • the corresponding number is the number of steps to compensate for the exposure. According to the preset exposure compensation value and reference exposure for each frame of the image to be collected, determine the frame to be collected. Target exposure of the image.
  • the target exposure of the frame image is determined as EVO * 2 -6 , that is, EVO / 64, that is, reducing the brightness of the frame image acquisition; if the exposure compensation value of a frame image is 0EV, and the reference exposure is EVO, the target exposure of the frame image is determined as EVO * 1, that It is EVO, that is, the exposure is performed based on the reference exposure amount.
  • the method for confirming the target exposure amount of the images to be collected in other frames is the same, which is not listed here.
  • the determination method of the target exposure amount of the images to be collected in each frame is the same, and is not repeated here.
  • Step 1035 Determine the exposure duration of the image to be acquired in each frame according to the target exposure of the image to be acquired in each frame and the preset sensitivity of the image to be acquired in each frame.
  • the aperture value in the night scene mode, is fixed when collecting each frame of images.
  • the target exposure amount is determined by the sensitivity and the exposure duration.
  • the corresponding exposure time can be determined.
  • the sensitivity IOS value and exposure time corresponding to the reference exposure are divided into: 100iso and 250ms, the preset sensitivity of a frame to be captured is 100iso, and the exposure compensation value is -4EV.
  • Target exposure time is That is 16ms, which means that the exposure time is reduced.
  • the exposure compensation value is EV
  • the obtained exposure time is 250ms.
  • the exposure time of each frame can be determined.
  • the minimum exposure duration supported by the shutter is 10 milliseconds (ms).
  • the metering device may mistakenly assume that the current scene light Brighter, so that the determined reference exposure is smaller, that is, the exposure duration corresponding to the reference exposure is shorter.
  • the calculated exposure time may be lower than the preset minimum exposure time of 10ms, such as 8ms, then increase the exposure time from 8ms to 10ms, and determine to increase the corresponding magnification compensation value to ensure that the darkest There is a certain shooting brightness in one frame.
  • the images to be collected in each frame are increased according to this magnification compensation value, so that the brightness of the obtained images to be collected increases linearly, so that the acquired images are synthesized in subsequent images.
  • the transition of the halo is natural, improving the effect of the synthesized image.
  • the maximum exposure duration of a single frame calculated with the reference exposure amount may be greater than the maximum value set for the exposure duration, for example, 5 seconds, for example, the The sensitivity is 100iso and the exposure time is 4 seconds.
  • the preset sensitivity of the image to be captured is also 100iso.
  • the calculated exposure time is 8 seconds, which exceeds the preset maximum of 5 Seconds, you need to reduce the exposure time of the frame to a preset maximum of 5 seconds, determine the reduction ratio, and adjust the sensitivity at this ratio to prevent the exposure time from being too long.
  • the exposure control method in the embodiment of the present application according to the night scene mode being a portrait night scene mode or a non-portrait night scene mode, a preset sensitivity and a preset exposure compensation value of each frame to be collected are determined, and the brightness information of the preview image is used to determine
  • the reference exposure amount according to the reference exposure amount, determines the target exposure amount corresponding to the image to be collected for each frame, and determines the exposure duration according to the target exposure amount and the preset sensitivity of the preset image to be collected for each frame, thereby determining each frame to be collected
  • the exposure parameters of the image by setting different exposure parameters in portrait night scene mode or non-portrait night scene mode, realize the dynamic adjustment of the exposure parameters when shooting night scenes, and improve the imaging quality of night scenes.
  • FIG. 4 is a schematic flowchart of another exposure control method provided by an embodiment of the present application. As shown in FIG. 4, after step 104, the method It can also include the following steps:
  • Step 401 Acquire each frame image collected under exposure control, and synthesize each frame image to obtain an imaging image.
  • each frame image acquired under the control of the corresponding exposure parameter is acquired, and the acquired images are aligned to eliminate the influence of jitter, and at the same time, the image
  • the moving objects in the image are detected to eliminate ghosting, and then the corresponding pixels in each frame image are weighted and synthesized to obtain a corresponding one frame target image.
  • the exposure parameters used for each frame of the image acquired are different and correspond to different exposure durations, by combining the images of each frame, the dark portion of the final output imaging image can be obtained from the corresponding pixel information in the image with the longer exposure duration. For compensation, the bright part can be suppressed by the corresponding pixel information in the image with a shorter exposure time.
  • the amplitude and position of the noise generated by the current are random. Therefore, when multiple images are superimposed and synthesized, the noise can be canceled each other, thereby improving the imaging quality.
  • the exposure control method in the embodiment of the present application it is determined that the current shooting scene belongs to a night scene, and face area recognition is performed on the preview image. According to whether a face area is recognized, a night scene mode applicable to the current shooting scene is identified, and each of the night scene modes is determined according to the night scene mode.
  • the exposure parameters of the frame to be captured are adjusted by using the exposure parameters.
  • the night scene is identified to dynamically adjust the applicable night scene mode.
  • the corresponding exposure parameters are used to control the exposure of the image to be collected, which improves the night scene.
  • the image quality of the image is reduced, and at the same time, multiple frames of image are synthesized to preserve the details of the highlights and the corresponding transitions, which improves the imaging effect.
  • the present application also proposes an exposure control device.
  • FIG. 5 is a schematic structural diagram of an exposure control apparatus according to an embodiment of the present application.
  • the device includes a scene determination module 51, an identification module 52, a parameter determination module 53, and a control module 54.
  • the scene determining module 51 is configured to determine that a current shooting scene belongs to a night scene.
  • the recognition module 52 is configured to recognize a face area of the preview image, and identify a night scene mode applicable to the current shooting scene according to whether the face area is recognized.
  • a parameter determining module 53 is configured to determine an exposure parameter of an image to be acquired in each frame according to a night scene mode.
  • the control module 54 is configured to perform exposure control by using an exposure parameter.
  • the apparatus further includes a determination module and a synthesis module.
  • the determining module is configured to obtain the degree of jitter of the imaging device, and determine that the degree of jitter is less than the first jitter threshold and greater than the second jitter threshold, where the first jitter threshold is greater than the second jitter threshold.
  • the determining module is further used for:
  • the degree of jitter is greater than or equal to the first jitter threshold, it is determined that a single-frame night scene mode is adopted;
  • the number of frames of the image to be acquired in the tripod night scene mode is greater than the number of frames in the portrait night scene mode or the non-portrait night scene mode;
  • the number of frames to be captured in the single-frame night scene mode is smaller than the number of frames in the portrait night scene mode or the non-portrait night scene mode.
  • the determining module is further specifically used to:
  • a synthesizing module is configured to acquire each frame image collected under exposure control; and synthesize each frame image to obtain an imaging image.
  • the foregoing identification module 52 is specifically configured to:
  • a portrait night scene mode is determined
  • night portrait mode and non-night portrait mode use different exposure compensation values.
  • the parameter determining module 53 is specifically configured to:
  • the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range
  • the preset exposure compensation value of each frame to be acquired is determined from the corresponding second value range
  • the upper limit of the first value range is smaller than the upper limit of the second value range.
  • the above-mentioned parameter determining module 53 is further specifically configured to:
  • the exposure time of the images to be acquired in each frame is determined.
  • the foregoing scenario determining module 51 is specifically configured to:
  • Detecting a user operation for scene switching when detecting a user operation switching to a night scene, detecting the ambient brightness to obtain brightness information; and according to the brightness information, determining that the current shooting scene belongs to a night scene.
  • the foregoing scene determination module 51 is further specifically configured to: if it is determined that the current shooting scene belongs to a non-night scene according to the brightness information, and use a high dynamic range mode for imaging.
  • the foregoing scenario determination module 51 is further specifically configured to:
  • Extract the image features of the preview image input the extracted image features into the recognition model, and determine that the current shooting scene belongs to the night scene according to the type of scene output by the recognition model; wherein the recognition model has learned to obtain the correspondence between the image features and the scene type.
  • the exposure control device of the embodiment of the present application it is determined that the current shooting scene belongs to a night scene, and the current night scene mode is determined through the shake situation, and the face area recognition is performed on the preview image.
  • the night scene mode applicable to the shooting scene according to the night scene mode, determine the exposure parameters of the frames to be captured, use the exposure parameters to perform exposure control, and dynamically adjust the applicable night scene mode by identifying whether there is a portrait in the night scene and use the corresponding exposure.
  • the parameter controls the exposure of the image to be collected, which improves the imaging quality of the image in the night scene. At the same time, it combines multiple frames of images to retain the details of the highlights and the corresponding transitions, which improves the imaging effect.
  • an embodiment of the present application further provides an electronic device including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, The exposure control method according to the foregoing method embodiment is implemented.
  • FIG. 6 is a schematic diagram of the internal structure of the electronic device 200 in one embodiment.
  • the electronic device 200 includes a processor 60, a memory 50 (for example, a non-volatile storage medium), an internal memory 82, a display screen 83, and an input device 84 connected through a system bus 81.
  • the memory 50 of the electronic device 200 stores an operating system and computer-readable instructions.
  • the computer-readable instructions can be executed by the processor 60 to implement the control method in the embodiment of the present application.
  • the processor 60 is used to provide computing and control capabilities to support the operation of the entire electronic device 200.
  • the internal memory 50 of the electronic device 200 provides an environment for execution of computer-readable instructions in the memory 52.
  • the display screen 83 of the electronic device 200 may be a liquid crystal display or an electronic ink display.
  • the input device 84 may be a touch layer covered on the display screen 83, or may be a button, a trackball, or a touch button provided on the housing of the electronic device 200.
  • Board which can also be an external keyboard, trackpad, or mouse.
  • the electronic device 200 may be a mobile phone, a tablet computer, a notebook computer, a personal digital assistant, or a wearable device (for example, a smart bracelet, a smart watch, a smart helmet, or smart glasses).
  • Those skilled in the art can understand that the structure shown in FIG. 6 is only a schematic diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the electronic device 200 to which the solution of the present application is applied.
  • the specific electronic device 200 may include more or fewer components than shown in the figure, or some components may be combined, or have different component arrangements.
  • the electronic device 200 includes an image processing circuit 90.
  • the image processing circuit 90 may be implemented by using hardware and / or software components, including various types of defining an ISP (Image Signal Processing) pipeline. Processing unit.
  • FIG. 7 is a schematic diagram of an image processing circuit 90 in one embodiment. As shown in FIG. 7, for ease of description, only aspects of the image processing technology related to the embodiments of the present application are shown.
  • the image processing circuit 90 includes an ISP processor 91 (the ISP processor 91 may be the processor 60) and a control logic 92.
  • the image data captured by the camera 93 is first processed by the ISP processor 91.
  • the ISP processor 91 analyzes the image data to capture image statistical information that can be used to determine one or more control parameters of the camera 93.
  • the camera 93 may include one or more lenses 932 and an image sensor 934.
  • the image sensor 934 may include a color filter array (such as a Bayer filter). The image sensor 934 may obtain light intensity and wavelength information captured by each imaging pixel, and provide a set of raw image data that can be processed by the ISP processor 91.
  • the sensor 94 (such as a gyroscope) may provide parameters (such as image stabilization parameters) of the acquired image processing to the ISP processor 91 based on the interface type of the sensor 94.
  • the sensor 94 interface may be a SMIA (Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the foregoing interfaces.
  • the image sensor 934 may also send the original image data to the sensor 94.
  • the sensor 94 may provide the original image data to the ISP processor 91 based on the interface type of the sensor 94, or the sensor 94 stores the original image data into the image memory 95.
  • the ISP processor 91 processes the original image data pixel by pixel in a variety of formats. For example, each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 91 may perform one or more image processing operations on the original image data and collect statistical information about the image data. The image processing operations may be performed with the same or different bit depth accuracy.
  • the ISP processor 91 may also receive image data from the image memory 95.
  • the sensor 94 interface sends the original image data to the image memory 95, and the original image data in the image memory 95 is then provided to the ISP processor 91 for processing.
  • the image memory 95 may be an independent dedicated memory in the memory 50, a part of the memory 50, a storage device, or an electronic device, and may include a DMA (Direct Memory Access) feature.
  • DMA Direct Memory Access
  • the ISP processor 91 may perform one or more image processing operations, such as time-domain filtering.
  • the processed image data may be sent to the image memory 95 for further processing before being displayed.
  • the ISP processor 91 receives processing data from the image memory 95, and performs processing on the image data in the original domain and in the RGB and YCbCr color spaces.
  • the image data processed by the ISP processor 91 may be output to a display 97 (the display 97 may include a display screen 83) for viewing by a user and / or further processing by a graphics engine or a GPU (Graphics Processing Unit).
  • the output of the ISP processor 91 can also be sent to the image memory 95, and the display 97 can read image data from the image memory 95.
  • the image memory 95 may be configured to implement one or more frame buffers.
  • the output of the ISP processor 91 may be sent to an encoder / decoder 96 to encode / decode image data.
  • the encoded image data can be saved and decompressed before being displayed on the display 97 device.
  • the encoder / decoder 96 may be implemented by a CPU or a GPU or a coprocessor.
  • the statistical data determined by the ISP processor 91 may be sent to the control logic unit 92.
  • the statistical data may include image information of the image sensor 934 such as auto exposure, auto white balance, auto focus, flicker detection, black level compensation, and lens 932 shading correction.
  • the control logic 92 may include a processing element and / or a microcontroller that executes one or more routines (such as firmware). The one or more routines may determine the control parameters of the camera 93 and the ISP processor according to the received statistical data. 91 control parameters.
  • control parameters of the camera 93 may include sensor 94 control parameters (such as gain, integration time for exposure control, anti-shake parameters, etc.), camera flash control parameters, lens 932 control parameters (such as focus distance for focusing or zooming), or these parameters The combination.
  • the ISP control parameters may include gain levels and color correction matrices for automatic white balance and color adjustment (eg, during RGB processing), and lens 932 shading correction parameters.
  • the following are the steps of implementing the exposure control method by using the processor 60 in FIG. 6 or the image processing circuit 90 (specifically, the ISP processor 91) in FIG. 7:
  • an embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored.
  • a computer program When instructions in the storage medium are executed by a processor, the implementation is implemented as in the foregoing method embodiment.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of this application includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved. It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments can be implemented by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

The present invention provides an exposure control method and device, and an electronic apparatus, relating to the technical field of mobile terminals. The method comprises: determining that a current shooting scenario is a night scenario; performing face region recognition on a preview image, and identifying, according to whether a face region is recognized, an applicable night mode for the current shooting scenario; determining, according to the night mode, an exposure parameter of each frame of an image to be acquired; using the exposure parameter to perform exposure control; dynamically adjusting the applicable night mode by identifying whether a person is in the night scenario; and using a corresponding exposure parameter to perform exposure control on the image to be acquired. The invention improves imaging quality of an image in a night scenario, and resolves the technical issue of low imaging quality caused by using only one type of shooting mode when shooting a night scenario.

Description

曝光控制方法、装置和电子设备Exposure control method, device and electronic equipment
相关申请的交叉引用Cross-reference to related applications
本申请要求OPPO广东移动通信有限公司于2018年8月22日提交的、申请名称为“曝光控制方法、装置和电子设备”的、中国专利申请号“201810963326.2”的优先权。This application claims the priority of Chinese Patent Application No. “201810963326.2” filed by OPPO Guangdong Mobile Communication Co., Ltd. on August 22, 2018, with the application name “Exposure Control Method, Device and Electronic Equipment”.
技术领域Technical field
本申请涉及移动终端技术领域,尤其涉及一种曝光控制方法、装置和电子设备。The present application relates to the technical field of mobile terminals, and in particular, to an exposure control method, device, and electronic device.
背景技术Background technique
随着移动终端技术和图像处理技术的发展,人们对于拍摄的要求越来越高,即使是环境光线较暗的夜晚,也希望可以获取高质量的图像。然而,夜景场景由于光源强弱和位置不定,较白天的场景更加复杂多变,从而拍摄模式需要根据不同的夜景场景灵活调整,以获取高质量图像。With the development of mobile terminal technology and image processing technology, people have higher and higher requirements for shooting. Even at night when the ambient light is dark, they also hope to obtain high-quality images. However, night scenes are more complicated and changeable than daytime scenes due to the intensity and location of the light source. Therefore, the shooting mode needs to be flexibly adjusted according to different night scenes to obtain high-quality images.
发明内容Summary of the Invention
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。This application is intended to solve at least one of the technical problems in the related technology.
为此,本申请提出一种曝光控制方法,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质量。For this reason, this application proposes an exposure control method that dynamically adjusts the applicable night scene mode by identifying whether there is a portrait in the night scene, and uses the corresponding exposure parameters to perform exposure control of the image to be acquired, which improves the image in the night scene. Imaging quality.
本申请提出一种曝光控制装置。The application proposes an exposure control device.
本申请提出一种电子设备。The present application proposes an electronic device.
本申请提出一种计算机可读存储介质。The present application proposes a computer-readable storage medium.
本申请一方面实施例提出了一种曝光控制方法,包括:An embodiment of one aspect of the present application provides an exposure control method, including:
确定当前拍摄场景属于夜景场景;Determine that the current shooting scene is a night scene;
对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式;Perform face area recognition on the preview image, and identify the night scene mode applicable to the current shooting scene based on whether the face area is recognized;
根据所述夜景模式,确定各帧待采集图像的曝光参数;Determining an exposure parameter of an image to be acquired in each frame according to the night scene mode;
采用所述曝光参数进行曝光控制。The exposure parameter is used for exposure control.
本申请又一方面实施例提出了一种曝光控制装置,包括:An embodiment of another aspect of the present application provides an exposure control device, including:
场景确定模块,用于确定当前拍摄场景属于夜景场景;A scene determination module, configured to determine that a current shooting scene belongs to a night scene scene;
识别模块,用于对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式;A recognition module for recognizing a face area of a preview image, and identifying a night scene mode applicable to a current shooting scene according to whether a face area is recognized;
参数确定模块,用于根据所述夜景模式,确定各帧待采集图像的曝光参数;A parameter determining module, configured to determine an exposure parameter of an image to be acquired in each frame according to the night scene mode;
控制模块,用于采用所述曝光参数进行曝光控制。A control module, configured to perform exposure control by using the exposure parameter.
本申请又一方面实施例提出了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述一方面所述的曝光控制方法。An embodiment of another aspect of the present application provides an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the implementation is implemented as described above. Aspect of the exposure control method.
本申请又一方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如前述一方面所述的曝光控制方法。An embodiment of yet another aspect of the present application provides a computer-readable storage medium on which a computer program is stored. When the program is executed by a processor, the exposure control method according to the foregoing aspect is implemented.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and / or additional aspects and advantages of this application will become apparent and easily understood from the following description of the embodiments in conjunction with the accompanying drawings, in which:
图1为本申请实施例所提供的一种曝光控制方法的流程示意图;FIG. 1 is a schematic flowchart of an exposure control method according to an embodiment of the present application;
图2为本申请实施例所提供的另一种曝光控制方法的流程示意图;2 is a schematic flowchart of another exposure control method according to an embodiment of the present application;
图3为本申请实施例所提供的又一种曝光控制方法的流程示意图;3 is a schematic flowchart of another exposure control method according to an embodiment of the present application;
图4为本申请实施例所提供的再一种曝光控制方法的流程示意图;4 is a schematic flowchart of still another exposure control method according to an embodiment of the present application;
图5为本申请实施例提供的一种曝光控制装置的结构示意图;5 is a schematic structural diagram of an exposure control apparatus according to an embodiment of the present application;
图6为一个实施例中电子设备200的内部结构示意图;以及FIG. 6 is a schematic diagram of the internal structure of the electronic device 200 in one embodiment; and
图7为一个实施例中图像处理电路90的示意图。FIG. 7 is a schematic diagram of an image processing circuit 90 in one embodiment.
具体实施方式detailed description
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。Hereinafter, embodiments of the present application will be described in detail. Examples of the embodiments are shown in the accompanying drawings, wherein the same or similar reference numerals represent the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the drawings are exemplary, and are intended to explain the present application, and should not be construed as limiting the present application.
下面参考附图描述本申请实施例的曝光控制方法、装置和电子设备。The exposure control method, device and electronic equipment according to the embodiments of the present application will be described below with reference to the drawings.
目前,在夜景场景下,移动终端大都采用单一夜景模式进行拍摄,而单一的夜景模式无法适用于所有的夜景场景,从而出现成像质量较低的问题。为此本申请提出了一种曝光控制方法,确定当前拍摄场景属于夜景场景,对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,根据夜景模式,确定各帧待采集图像的曝光参数,采用曝光参数进行曝光控制,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质 量。At present, in night scenes, most mobile terminals use a single night scene mode for shooting, but a single night scene mode cannot be applied to all night scenes, resulting in a problem of lower imaging quality. To this end, this application proposes an exposure control method, determining that the current shooting scene belongs to a night scene, performing face area recognition on the preview image, identifying whether a face area is recognized, identifying a night scene mode applicable to the current shooting scene, and according to the night scene mode, Determine the exposure parameters of the images to be collected for each frame, use the exposure parameters for exposure control, dynamically adjust the applicable night scene mode by identifying whether there is a portrait in the night scene, and use the corresponding exposure parameters for exposure control of the images to be collected, which improves the Imaging quality of images in night scenes.
图1为本申请实施例所提供的一种曝光控制方法的流程示意图。FIG. 1 is a schematic flowchart of an exposure control method according to an embodiment of the present application.
如图1所示,该方法包括以下步骤:As shown in Figure 1, the method includes the following steps:
步骤101,确定当前拍摄场景属于夜景场景。Step 101: Determine that the current shooting scene belongs to a night scene.
作为一种可能的实现方式,根据当前拍摄场景,利用图像采集模块获取当前场景的预览图形,对预览图像进行图像特征提取,将提取的图像特征输入识别模型,根据识别模型输出的场景类型确定当前拍摄场景属于夜景场景,其中,识别模型已学习得到图像特征与场景类型之间的对应关系。As a possible implementation method, according to the current shooting scene, an image acquisition module is used to obtain a preview graphic of the current scene, image feature extraction is performed on the preview image, the extracted image features are input to a recognition model, and the current scene is determined according to the type of scene output by the recognition model. The shooting scene is a night scene, where the recognition model has learned to obtain the correspondence between the image features and the scene type.
作为另一种可能的实现方式,探测用于场景切换的用户操作,当探测到切换至夜景场景的用户操作时,检测环境亮度,以得到亮度信息,作为一种可能的实现方式,可通过电子设备内置的测光模块对当前的环境亮度进行检测,确定当前环境的亮度信息。根据亮度信息,确定当前拍摄场景属于夜景场景,例如,可通过亮度指数Lix_index衡量亮度高低其中,亮度信息的值越大,代表当前场景亮度越低,将获取的亮度信息和预设的亮度值比对,若获取的亮度信息大于预设亮度值时,确定当前拍摄场景属于夜景场景。进一步,若获取的亮度信息小于预设亮度值,则确定当前拍摄场景属于非夜景场景,在非夜景场景下,采用高动态范围模式进行成像,其中,高动态范围成像时,可通过设置不同的曝光补偿值,获取较高的动态范围,例如,可以采集3帧图像,曝光补偿值的区间为[-4,+1]。As another possible implementation manner, a user operation for scene switching is detected, and when a user operation switched to a night scene is detected, the ambient brightness is detected to obtain brightness information. As a possible implementation manner, electronic The built-in light metering module detects the current ambient brightness and determines the brightness information of the current environment. According to the brightness information, it is determined that the current shooting scene belongs to a night scene. For example, the brightness index Lix_index can be used to measure the brightness level. The greater the value of the brightness information, the lower the brightness of the current scene. The ratio of the obtained brightness information to the preset brightness value is Yes, if the obtained brightness information is greater than a preset brightness value, it is determined that the current shooting scene belongs to a night scene. Further, if the obtained brightness information is less than a preset brightness value, it is determined that the current shooting scene belongs to a non-night scene, and in a non-night scene, imaging is performed in a high dynamic range mode, where high dynamic range imaging can be performed by setting different Exposure compensation value, to obtain a higher dynamic range. For example, 3 frames of images can be acquired, and the interval of the exposure compensation value is [-4, +1].
步骤102,对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式。Step 102: Perform face area recognition on the preview image, and identify a night scene mode applicable to the current shooting scene according to whether the face area is recognized.
具体地,对预览图像进行人脸区域识别,识别预览图像是是否包含人脸,作为一种可能的实现方式,可以采用人脸探测算法,例如基于肤色的人脸探测算法或基于人脸五官特征的人脸探测算法等,探测人脸感兴趣区域FACE ROI,识别预览图像中的人脸区域,若存在人脸区域,则显示人脸感兴趣区域FACE ROI框,若未识别到,则不显示人脸感兴趣区域FACE ROI框,根据识别的结果,确定预览图像中是否存在人脸区域。Specifically, face area recognition is performed on the preview image to identify whether the preview image contains a human face. As a possible implementation manner, a face detection algorithm may be adopted, for example, a skin detection-based face detection algorithm or a facial feature feature Face detection algorithm, etc., to detect the face interest area FACE ROI, identify the face area in the preview image, if there is a face area, the face interest area FACE ROI box is displayed, if it is not recognized, it is not displayed The face interest area FACE ROI box determines whether there is a face area in the preview image according to the recognition result.
进而,若识别出人脸区域,确定采用人像夜景模式,若未识别出人脸区域,确定采用非人像夜景模式,其中,人像夜景模式和非人像夜景模式采用不同的曝光补偿值。这是由于,在图像处理器对图像进行后期处理时,会基于人脸提亮的相关算法提高人脸区域的亮度,若采用正常曝光量进行曝光采集图像,与后期人脸提亮效果叠加导致最终图像会出现人脸亮度失真。因此,为了避免出现这种亮度失真,在人像夜景模式下可以采用较低的曝光补偿值,以抵消全部或部分后期人脸提亮效果。Furthermore, if a face area is recognized, a night portrait mode is determined. If a face area is not recognized, a non-night portrait mode is determined. The portrait night mode and the non-night night mode use different exposure compensation values. This is because when the image processor performs post-processing on the image, it will increase the brightness of the face area based on the face brightening related algorithm. If the exposure is collected with normal exposure, the image will be superimposed with the later face brightening effect. The final image will have face brightness distortion. Therefore, in order to avoid this kind of brightness distortion, a lower exposure compensation value can be used in portrait night scene mode to offset all or part of the face brightening effect in the later stage.
步骤103,根据夜景模式,确定各帧待采集图像的曝光参数。Step 103: Determine the exposure parameters of the images to be collected in each frame according to the night scene mode.
其中,曝光参数包括曝光补偿值、感光度和曝光时长。Among them, the exposure parameters include exposure compensation value, sensitivity and exposure time.
具体地,人像夜景模式下,从对应的第一取值范围内,确定各帧待采集图像预设的曝光补偿值,非人像夜景模式下,从对应的第二取值范围内,确定各帧待采集图像预设的曝光补偿值。其中,第一取值范围上限小于第二取值范围上限。Specifically, in the portrait night scene mode, the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range, and in the non portrait night scene mode, each frame is determined from the corresponding second value range. Preset exposure compensation value for the image to be acquired. The upper limit of the first value range is smaller than the upper limit of the second value range.
进一步,根据夜景模式,确定各帧待采集图像预设的感光度,根据预览图像的亮度信息,确定基准曝光量,根据基准曝光量和各帧待采集图像预设的曝光补偿值,确定各帧待采集图像的目标曝光量,根据各帧待采集图像的目标曝光量和各帧待采集图像预设的感光度,确定各帧待采集图像的曝光时长。Further, according to the night scene mode, the preset sensitivity of each frame to be acquired is determined, the reference exposure amount is determined based on the brightness information of the preview image, and each frame is determined based on the reference exposure amount and the preset exposure compensation value of each frame to be acquired image. The target exposure of the image to be acquired is determined according to the target exposure of the image to be acquired in each frame and the preset sensitivity of the image to be acquired in each frame to determine the exposure time of the image to be acquired in each frame.
步骤104,采用曝光参数进行曝光控制。Step 104: Use exposure parameters to perform exposure control.
具体地,根据确定的夜景模式,采用确定的各帧待采集图像的曝光参数进行曝光控制。Specifically, according to the determined night scene mode, the exposure control is performed using the determined exposure parameters of the images to be acquired in each frame.
本申请实施例的曝光控制方法中,确定当前拍摄场景属于夜景场景,对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,根据夜景模式,确定各帧待采集图像的曝光参数,采用曝光参数进行曝光控制,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质量。In the exposure control method in the embodiment of the present application, it is determined that the current shooting scene belongs to a night scene, and face area recognition is performed on the preview image. According to whether a face area is recognized, a night scene mode applicable to the current shooting scene is identified, and each of the night scene modes is determined according to the night scene mode. The exposure parameters of the frame to be captured are adjusted by using the exposure parameters. The night scene is identified to dynamically adjust the applicable night scene mode. The corresponding exposure parameters are used to control the exposure of the image to be collected, which improves the night scene. Imaging quality of the lower image.
基于上一实施例,本实施例提供了另一种曝光控制方法,说明了在对预览图像进行人脸区域识别之前,需要先根据成像设备的抖动程度,确定夜景模式,图2为本申请实施例所提供的另一种曝光控制方法的流程示意图,如图2所示,在步骤102之前,还可以包括如下步骤:Based on the previous embodiment, this embodiment provides another exposure control method, which illustrates that before the face area recognition of the preview image, the night scene mode needs to be determined according to the degree of jitter of the imaging device. FIG. 2 is the implementation of this application. The flow chart of another exposure control method provided by the example is shown in FIG. 2. Before step 102, the method may further include the following steps:
步骤201,获取成像设备的抖动程度,根据抖动程度确定夜景模式。Step 201: Obtain the degree of shaking of the imaging device, and determine the night scene mode according to the degree of shaking.
其中,根据抖动程度确定的夜景模式包含人像夜景模式或非人像夜景模式,单帧夜景模式和脚架夜景模式。The night scene mode determined according to the degree of shaking includes a portrait night scene mode or a non-portrait night scene mode, a single-frame night scene mode, and a tripod night scene mode.
具体地,从成像设备中设置的传感器,获取采集到的位移信息,根据位移信息,确定成像设备的抖动程度。作为一种可能的实现方式,该传感器可以为陀螺仪,陀螺仪可以输出x、y和z三个轴的位移信息,通过获取陀螺仪的三个轴的位移信息,将三个轴对应的位移信息取绝对值并相加求和,三个轴对应的位移信息之和用S来表示,通过位移信息S的取值来指示成像设备的抖动程度。Specifically, the collected displacement information is acquired from a sensor provided in the imaging device, and the degree of jitter of the imaging device is determined according to the displacement information. As a possible implementation manner, the sensor may be a gyroscope, and the gyroscope may output displacement information of three axes of x, y, and z. By acquiring the displacement information of the three axes of the gyroscope, the corresponding displacement of the three axes is obtained. The information takes an absolute value and is added and summed. The sum of the displacement information corresponding to the three axes is represented by S. The value of the displacement information S is used to indicate the degree of jitter of the imaging device.
本申请实施例中,预设抖动阈值,将获取的抖动程度和预设的阈值比较来确定当前所属的夜景模式,为了便于区分夜景模式,将抖动阈值分为第一抖动阈值和第二抖动阈值,其中,第一抖动阈值大于第二抖动阈值。根据抖动阈值确定夜景模式,具体为:若抖动程度小于第一抖动阈值,且大于第二抖动阈值,则根据抖动程度确定夜景模式可采用人像夜景模式或非人像夜景模式;若抖动程度大于或等于第一抖动阈值,确定采用单帧夜景模式;若抖动程度小于或等于第二抖动阈值,确定采用脚架夜景模式。其中,脚架夜景模式下待采集图像的帧 数大于人像夜景模式或非人像夜景模式下的帧数,单帧夜景模式下待采集图像的帧数小于人像夜景模式或非人像夜景模式下的帧数。In the embodiment of the present application, a preset dither threshold is determined, and the obtained dither degree is compared with a preset threshold to determine the current night scene mode. In order to distinguish the night scene mode, the dither threshold is divided into a first dither threshold and a second dither threshold. , Wherein the first jitter threshold is greater than the second jitter threshold. The night scene mode is determined according to the shake threshold, specifically: if the degree of shake is less than the first shake threshold and greater than the second shake threshold, the night scene mode may be determined according to the degree of shake using a portrait night scene mode or a non-portrait night scene mode; if the shake degree is greater than or equal to The first jitter threshold is determined to adopt a single-frame night scene mode; if the degree of jitter is less than or equal to the second jitter threshold, it is determined to use a tripod night scene mode. Among them, the number of frames of the image to be collected in the night scene mode is larger than the number of frames in the portrait night mode or the non-portrait night scene mode, and the number of frames of the image to be collected in the single frame night scene mode is less than that in the portrait night scene mode or the non-portrait night scene mode. number.
需要说明的是,通过抖动程度确定当前的夜景模式可采用人像夜景模式或非人像夜景模式后,可进一步通过识别预览图像中是否包含人脸区域,来确定是人像夜景模式还是非人像夜景模式,具体可参照上一实施例中的步骤102,此处不再赘述。而当通过抖动程度确定夜景模式可采用脚架夜景模式时,因脚架夜景模式抖动非常小,加上成像设备本身具有防抖动消除策略,如光学防抖(Optical image stabilization,OIS)等,因此,脚架夜景模式下的抖动是非常小的,因此可拍摄的时间较久,从而获取高质量的画面,例如为1分钟,即使图像中有人像出现,也无法保持1分钟不动,因此,并不区分是否包含人脸区域,也就是说即使包含人像也不做特殊处理。而当通过抖动程度确定夜景模式可采用单帧夜景模式时,单帧夜景模式因抖动较大,仅采用采集单帧,单次曝光的测量来缩短曝光时间,避免出现模糊和鬼影,因此,也不区分是否包含人脸区域的情况。It should be noted that after determining the current night scene mode based on the degree of dithering, a portrait night scene mode or a non-portrait night scene mode can be used, and then the face image area can be further identified by identifying whether the preview image contains a face night scene mode or a non-night night scene mode. For details, refer to step 102 in the previous embodiment, and details are not described herein again. When the night scene mode can be determined by the degree of jitter, the tripod night scene mode can be used, because the tripod night scene mode has very little jitter, and the imaging device itself has an anti-shake elimination strategy, such as Optical Image Stabilization (OIS), etc. Therefore, the jitter in the tripod night scene mode is very small, so it can take a long time to obtain a high-quality picture, such as 1 minute. Even if a person appears in the image, it can't stay still for 1 minute. It does not distinguish whether or not a face area is included, that is, no special processing is performed even if a portrait is included. When the night scene mode is determined by the degree of dithering, the single-frame night scene mode can be used. Due to the large jitter, the single-frame night scene mode only uses a single frame acquisition and a single exposure measurement to shorten the exposure time and avoid blurs and ghosts. Therefore, It does not distinguish whether or not a face region is included.
本申请实施例的曝光控制方法中,确定当前拍摄场景属于夜景场景,根据抖动情况,确定当前所属的夜景模式,当确定当前所属的夜景模式为人像夜景模式或非人像夜景模式时,进一步对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,根据夜景模式,确定各帧待采集图像的曝光参数,采用曝光参数进行曝光控制,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质量。In the exposure control method of the embodiment of the present application, it is determined that the current shooting scene belongs to a night scene, and the current night scene mode is determined according to the jitter situation. When it is determined that the current night scene mode is a portrait night scene mode or a non-portrait night scene mode, the preview is further performed. The image performs face area recognition, according to whether the face area is recognized, and the night scene mode applicable to the current shooting scene, and according to the night scene mode, the exposure parameters of each frame to be collected are determined, and the exposure parameters are used for exposure control. Whether there is a portrait, to dynamically adjust the applicable night scene mode and use the corresponding exposure parameters to control the exposure of the image to be collected, improving the imaging quality of the image in the night scene.
基于上述实施例,本申请实施例还提出了一种曝光控制方法,进一步清楚的说明了根据确定的夜景模式为人像夜景模式或非人像夜景模式,如何确定各帧待采集图像的曝光参数,图3为本申请实施例所提供的又一种曝光控制方法的流程示意图,如图3所示,步骤103还可以包含如下的子步骤:Based on the above embodiments, an embodiment of the present application further proposes an exposure control method, which further clearly explains how to determine the exposure parameters of the images to be collected in each frame according to the determined night scene mode or portrait night scene mode. 3 is a schematic flowchart of another exposure control method provided by an embodiment of the present application. As shown in FIG. 3, step 103 may further include the following sub-steps:
步骤1031,根据夜景模式,确定各帧待采集图像预设的感光度。 Step 1031, according to the night scene mode, determine the preset sensitivity of the image to be collected for each frame.
本申请实施例中,夜景模式为人像夜景模式或非人像夜景模式,确定人像夜景模式或非人像夜景模式下各帧待采集图像预设的感光度iso,例如,预设感光度为200iso。预设感光度取值较小,从而防止采集图像上出现较多的噪点,提高图像的成像质量。In the embodiment of the present application, the night scene mode is a portrait night scene mode or a non-portrait night scene mode, and the preset sensitivity iso of each image to be acquired in each frame in the portrait night scene mode or the non-portrait night scene mode is determined, for example, the preset sensitivity is 200 iso. The preset sensitivity value is small to prevent more noise from appearing in the captured image and improve the imaging quality of the image.
需要说明的是,本实施例中,人像夜景模式或非人像夜景模式下各帧待采集图像的预设感光度,可以完全相同,也可以存在较小的差异,例如,在人像夜景模式下,各帧待采集图像预设感光度均为200iso,或者第一帧预设感光度为200iso,后续帧以每帧增加5iso进行递增,对于预设感光度的取值本实施例中不作限定。It should be noted that in this embodiment, the preset sensitivities of the images to be collected in each frame in the portrait night scene mode or the non-portrait night scene mode may be completely the same, or there may be minor differences. For example, in the portrait night scene mode, The preset sensitivity of each frame to be collected is 200iso, or the preset sensitivity of the first frame is 200iso, and subsequent frames are incremented by 5iso per frame. The value of the preset sensitivity is not limited in this embodiment.
步骤1032,根据夜景模式,确定各帧待采集图像预设的曝光补偿值。Step 1032: Determine a preset exposure compensation value for each frame of the image to be acquired according to the night scene mode.
具体地,基于不同的夜景模式,确定不同的各帧待待机图像预设的曝光补偿值。Specifically, based on different night scene modes, different preset exposure compensation values for each frame of the standby image are determined.
在一种场景下,若夜景模式为人像夜景模式,从对应的第一取值范围内,确定各帧待采集图像的预设的曝光补偿值,例如,人像夜景模式下,待采集的图像设定为7帧,将曝光补偿值EV(Exposure Compensation Value)对应的第一取值范围为[-6,0]EV,从而确定各帧待采集图像预设的曝光补偿值分别为:[-6,-4,-2,0,0,0,0]EV。In one scene, if the night scene mode is portrait night scene mode, the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range. For example, in portrait night scene mode, the image to be acquired is set It is set to 7 frames, and the first value range corresponding to the exposure compensation value EV (Exposure Compensation Value) is [-6,0] EV, so that the preset exposure compensation values of the images to be collected for each frame are determined as: [-6 , -4, -2,0,0,0,0] EV.
在另一种场景下,若夜景模式为非人像夜景模式下,从对应的第二取值范围内,确定各帧待采集图像的预设的曝光补偿值,例如,非人像夜景模式下,待采集的图像设定为7帧,将曝光补偿值的范围设定为[-6,+1]EV,例如,对应待采集的7帧图像,对应曝光补偿值可分别为[-6,-3,0,+1,+1,+1,+1]EV。In another scenario, if the night scene mode is a non-portrait night scene mode, the preset exposure compensation value of each frame to be acquired is determined from the corresponding second value range. For example, in a non-portrait night scene mode, the The acquired image is set to 7 frames, and the range of the exposure compensation value is set to [-6, + 1] EV. For example, for the 7 frames of image to be acquired, the corresponding exposure compensation value can be [-6, -3 , 0, + 1, + 1, + 1, + 1] EV.
需要说明的是,在实际应用中,根据环境亮度和拍摄的图像,曝光补偿值还可以发生变化,将曝光的范围调小,例如,在非人像夜景模式下,曝光补偿值的范围可调整为[-5,+1]EV。It should be noted that in actual applications, the exposure compensation value can also be changed according to the ambient brightness and the captured image, and the exposure range can be reduced. For example, in the non-portrait night scene mode, the range of the exposure compensation value can be adjusted to [-5, + 1] EV.
步骤1033,根据预览图像的亮度信息,确定基准曝光量。Step 1033: Determine a reference exposure amount according to the brightness information of the preview image.
具体地,根据预览图像的亮度信息,确定基准曝光量,作为一种可能的实现方式,通过电子设备中的测光模块,测量当前拍摄场景对应的预览图像的亮度信息,并以设定的较低的感光度,将测量得到的亮度信息进行转化,确定基准曝光量,设定为EVO,例如,根据测光模块测量得到的感光度为500iso,曝光时间为50毫秒(ms),目标感光度为100iso,则转化后得到感光度为100iso,曝光时间为250ms,将感光度100iso,曝光时间250ms作为基准曝光量EVO。Specifically, the reference exposure amount is determined according to the brightness information of the preview image. As a possible implementation manner, the brightness information of the preview image corresponding to the current shooting scene is measured by the photometry module in the electronic device, and the set comparison value is used. Low sensitivity, convert the measured brightness information, determine the reference exposure, and set it to EVO. For example, the sensitivity measured by the photometry module is 500iso, the exposure time is 50 milliseconds (ms), and the target sensitivity If it is 100iso, the sensitivity obtained after conversion is 100iso, the exposure time is 250ms, and the sensitivity is 100iso and the exposure time is 250ms as the reference exposure amount EVO.
需要说明的是,EVO是最适合当前夜景环境的基准曝光量,但基准曝光量EVO并不是一个固定的值,而是根据预览图像的亮度信息进行变化的值,当环境亮度发生变化时,预览图像的亮度信息则会发生变化,那么基准曝光量EV0则也发生变化。It should be noted that EVO is the reference exposure that is most suitable for the current night scene environment, but the reference exposure EVO is not a fixed value, but a value that changes according to the brightness information of the preview image. When the environment brightness changes, the preview The brightness information of the image will change, and the reference exposure EV0 will also change.
需要说明的是,上述步骤1031,步骤1032和步骤1033的执行并没有时序之分。It should be noted that there is no timing difference between the execution of the above steps 1031, 1032, and 1033.
步骤1034,根据基准曝光量和各帧待采集图像预设的曝光补偿值,确定各帧待采集图像的目标曝光量。Step 1034: Determine the target exposure amount of the image to be acquired for each frame according to the reference exposure amount and the preset exposure compensation value of the image to be acquired for each frame.
例如,在人像夜景模式下,待采集的7帧图像,对应的预设的曝光补偿值分别为-6EV,-4EV,-2EV,0EV,0EV,0EV,0EV,其中,“+”表示在测光所定基准曝光量的基础上增加曝光,“-”表示减少曝光,相应的数字为补偿曝光的级数,根据各帧待采集图像预设的曝光补偿值和基准曝光量,确定各帧待采集图像的目标曝光量,例如,若一帧图像的曝光补偿值为-6EV,数字-6为补偿曝光的级数,基准曝光量为EVO,则确定的该帧图像的目标曝光量为EVO*2 -6,即EVO/64,即降低该帧图像采集的亮度;若一帧图像的曝光补偿值为0EV,基准曝光量为EVO,则确定的该帧图像的目标曝光量为EVO*1,即为EVO,即以基准曝光量进行曝光,同理,其他各帧待采集图像的目标曝光量的确认方法相同,此处不一一列举。 For example, in the portrait night scene mode, the corresponding preset exposure compensation values for the 7 frames of images to be acquired are -6EV, -4EV, -2EV, 0EV, 0EV, 0EV, and 0EV, respectively, where "+" indicates that it is being measured. Increase the exposure based on the reference exposure set by the light. "-" Means decrease exposure. The corresponding number is the number of steps to compensate for the exposure. According to the preset exposure compensation value and reference exposure for each frame of the image to be collected, determine the frame to be collected. Target exposure of the image. For example, if the exposure compensation value of a frame of image is -6EV, the number -6 is the number of steps to compensate the exposure, and the reference exposure is EVO, then the target exposure of the frame image is determined as EVO * 2 -6 , that is, EVO / 64, that is, reducing the brightness of the frame image acquisition; if the exposure compensation value of a frame image is 0EV, and the reference exposure is EVO, the target exposure of the frame image is determined as EVO * 1, that It is EVO, that is, the exposure is performed based on the reference exposure amount. Similarly, the method for confirming the target exposure amount of the images to be collected in other frames is the same, which is not listed here.
需要说明的是,非人像夜景模式下,各帧待采集图像的目标曝光量的确定方法相同,此 处不再赘述。It should be noted that, in the non-portrait night scene mode, the determination method of the target exposure amount of the images to be collected in each frame is the same, and is not repeated here.
步骤1035,根据各帧待采集图像的目标曝光量和各帧待采集图像预设的感光度,确定各帧待采集图像的曝光时长。Step 1035: Determine the exposure duration of the image to be acquired in each frame according to the target exposure of the image to be acquired in each frame and the preset sensitivity of the image to be acquired in each frame.
本申请实施例中,在夜景模式下,采集各帧图像时,光圈值是固定的,针对每一帧待采集图像,目标曝光量由感光度和曝光时长共同确定的,当感光度确定时,则对应的曝光时长则可以确定。In the embodiment of the present application, in the night scene mode, the aperture value is fixed when collecting each frame of images. For each image to be collected, the target exposure amount is determined by the sensitivity and the exposure duration. When the sensitivity is determined, The corresponding exposure time can be determined.
例如,基准曝光量对应的感光度IOS值和曝光时间分为为:100iso和250ms,一帧待采集图像的预设的感光度为100iso,曝光补偿值为-4EV,则该帧待采集图像的目标曝光时长为
Figure PCTCN2019090146-appb-000001
即为16ms,即降低了曝光时长,同理当曝光补偿值为EV时,得到的曝光时长则为250ms。同理,可确定各帧的曝光时长。通过设置的较宽的动态范围,使得待采集的各帧图像分别采用不同的曝光时长进行采集,从而使得图像中各部分的细节均可以在不同的曝光时长的控制下得到清晰的成像,从而提高成像效果。
For example, the sensitivity IOS value and exposure time corresponding to the reference exposure are divided into: 100iso and 250ms, the preset sensitivity of a frame to be captured is 100iso, and the exposure compensation value is -4EV. Target exposure time is
Figure PCTCN2019090146-appb-000001
That is 16ms, which means that the exposure time is reduced. Similarly, when the exposure compensation value is EV, the obtained exposure time is 250ms. Similarly, the exposure time of each frame can be determined. By setting a wider dynamic range, each frame of images to be collected is acquired with different exposure durations, so that the details of each part of the image can be clearly imaged under the control of different exposure durations, thereby improving Imaging effect.
本申请实施例中,快门支持的曝光时长的最低值为10毫秒(ms),在一种可能的场景下,当拍摄场景中有较量的灯光照射摄像头时,测光装置会误以为当前场景光线较亮,使得确定的基准曝光量较小,即基准曝光量对应的曝光时长较小,进而,以基准曝光量为EVO计算得到各帧待采集图像的曝光时长时,容易出现曝光补偿值对应-6E时,计算得到的曝光时长可能低于预设的曝光时长的最小值10ms,例如为8ms,则将曝光时长由8ms提升至10ms,并确定提升对应的倍率补偿值,以保证采集最暗的一帧时有一定的拍摄亮度,同时,各帧待采集图像都按照这个倍率补偿值进行提升,以使得得到的待采集图像在亮度上是成线性增加的,以使得采集的图像在后续图像合成时,光晕的过渡自然,提高合成后图像的效果。In the embodiment of the present application, the minimum exposure duration supported by the shutter is 10 milliseconds (ms). In one possible scenario, when a relatively large amount of light illuminates the camera in the shooting scene, the metering device may mistakenly assume that the current scene light Brighter, so that the determined reference exposure is smaller, that is, the exposure duration corresponding to the reference exposure is shorter. Furthermore, when the exposure duration of each frame to be captured is calculated by using the reference exposure as EVO, it is easy to correspond to the exposure compensation value − At 6E, the calculated exposure time may be lower than the preset minimum exposure time of 10ms, such as 8ms, then increase the exposure time from 8ms to 10ms, and determine to increase the corresponding magnification compensation value to ensure that the darkest There is a certain shooting brightness in one frame. At the same time, the images to be collected in each frame are increased according to this magnification compensation value, so that the brightness of the obtained images to be collected increases linearly, so that the acquired images are synthesized in subsequent images. As a result, the transition of the halo is natural, improving the effect of the synthesized image.
在另一种可能的场景下,当环境非常黑时,以基准曝光量计算得到的单帧最长曝光时长可能会大于曝光时长设定的最大值,例如,5秒,例如,基准曝光量的感光度为100iso,曝光时长为4秒,对应曝光补偿值为+1EV时,待采集图像的预设感光度也为100iso,则计算得到的曝光时长为8秒,超过了预设的最大值5秒,则需要将该帧曝光时长进行压低,压低到预设的最大值5秒,确定压低的倍率,并以此倍率调整感光度,防止曝光时长过久,当最长的曝光时长进行压缩后,若还需要调整曝光时的曝光量,则仅通过适当提高感光度的值来提高拍摄时的亮度,而感光值在提升时也不能超过预设的感光值的上限,例如550iso,这是因为设置较大的感光度,会增加图片的中的噪点,降低成像质量。In another possible scenario, when the environment is very dark, the maximum exposure duration of a single frame calculated with the reference exposure amount may be greater than the maximum value set for the exposure duration, for example, 5 seconds, for example, the The sensitivity is 100iso and the exposure time is 4 seconds. When the corresponding exposure compensation value is + 1EV, the preset sensitivity of the image to be captured is also 100iso. The calculated exposure time is 8 seconds, which exceeds the preset maximum of 5 Seconds, you need to reduce the exposure time of the frame to a preset maximum of 5 seconds, determine the reduction ratio, and adjust the sensitivity at this ratio to prevent the exposure time from being too long. After the longest exposure time is compressed If you also need to adjust the exposure amount during exposure, you can only increase the brightness of the shooting by appropriately increasing the sensitivity value, and the sensitivity value cannot exceed the upper limit of the preset sensitivity value, such as 550iso. Setting a larger sensitivity will increase the noise in the picture and reduce the imaging quality.
本申请实施例的曝光控制方法中,根据夜景模式为人像夜景模式或非人像夜景模式,确定各帧待采集图像的预设感光度和预设的曝光补偿值,根据预览图像的亮度信息,确定基准曝光量,依据基准曝光量,确定对应各帧待采集图像的目标曝光量,根据目标曝光量和预设的各帧待采集图像的预设感光度,确定曝光时长,从而确定各帧待采集图像的曝光参数,通 过在人像夜景模式或非人像夜景模式下设定不同的曝光参数,实现了动态调整夜景拍摄时的曝光参数,提高了夜景拍摄时图像的成像质量。In the exposure control method in the embodiment of the present application, according to the night scene mode being a portrait night scene mode or a non-portrait night scene mode, a preset sensitivity and a preset exposure compensation value of each frame to be collected are determined, and the brightness information of the preview image is used to determine The reference exposure amount, according to the reference exposure amount, determines the target exposure amount corresponding to the image to be collected for each frame, and determines the exposure duration according to the target exposure amount and the preset sensitivity of the preset image to be collected for each frame, thereby determining each frame to be collected The exposure parameters of the image, by setting different exposure parameters in portrait night scene mode or non-portrait night scene mode, realize the dynamic adjustment of the exposure parameters when shooting night scenes, and improve the imaging quality of night scenes.
基于上述实施例,本申请实施例还提出了一种曝光控制方法,图4为本申请实施例所提供的再一种曝光控制方法的流程示意图,如图4所示,步骤104之后,该方法还可以包括如下步骤:Based on the above embodiments, an embodiment of the present application further proposes an exposure control method. FIG. 4 is a schematic flowchart of another exposure control method provided by an embodiment of the present application. As shown in FIG. 4, after step 104, the method It can also include the following steps:
步骤401,获取在曝光控制下采集到的各帧图像,对各帧图像进行合成,得到成像图像。Step 401: Acquire each frame image collected under exposure control, and synthesize each frame image to obtain an imaging image.
具体地,根据确定的各帧待采集图像的曝光参数,获取在对应的曝光参数控制下采集到的各帧图像,将获取到的各帧图像进行对齐,以消除抖动的影响,同时,对图像中的运动物体进行检测,以消除鬼影,进而,将各帧图像中对应像素进行加权合成,得到对应的一帧目标图像。由于获取到的各帧图像采用的曝光参数不同,对应不同的曝光时长,因此,通过将各帧图像进行合成,则最终输出的成像图像中暗部可以由曝光时长较长的图像中的对应像素信息进行补偿,亮部可以由曝光时长较短的图像中对应像素信息进行压制,因此,最终输出的合成成像图像不存在过曝区域及欠曝区域,图像的亮度明暗过度均匀,具有较佳的成像效果。同时,在合成过程中,因电流生成的噪声幅度和位置是随机的,因此,在多张图像进行叠加合成时,噪声可以被相互抵消,从而提高了成像质量。Specifically, according to the determined exposure parameters of the images to be acquired for each frame, each frame image acquired under the control of the corresponding exposure parameter is acquired, and the acquired images are aligned to eliminate the influence of jitter, and at the same time, the image The moving objects in the image are detected to eliminate ghosting, and then the corresponding pixels in each frame image are weighted and synthesized to obtain a corresponding one frame target image. Because the exposure parameters used for each frame of the image acquired are different and correspond to different exposure durations, by combining the images of each frame, the dark portion of the final output imaging image can be obtained from the corresponding pixel information in the image with the longer exposure duration. For compensation, the bright part can be suppressed by the corresponding pixel information in the image with a shorter exposure time. Therefore, there is no over-exposed area and under-exposed area in the final composite imaging image, and the brightness of the image is excessively uniform, which has better imaging. effect. At the same time, during the synthesis process, the amplitude and position of the noise generated by the current are random. Therefore, when multiple images are superimposed and synthesized, the noise can be canceled each other, thereby improving the imaging quality.
本申请实施例的曝光控制方法中,确定当前拍摄场景属于夜景场景,对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,根据夜景模式,确定各帧待采集图像的曝光参数,采用曝光参数进行曝光控制,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质量,同时,并将多帧图像进行合成,保留亮部细节和相应的过渡,提高了成像效果。In the exposure control method in the embodiment of the present application, it is determined that the current shooting scene belongs to a night scene, and face area recognition is performed on the preview image. According to whether a face area is recognized, a night scene mode applicable to the current shooting scene is identified, and each of the night scene modes is determined according to the night scene mode. The exposure parameters of the frame to be captured are adjusted by using the exposure parameters. The night scene is identified to dynamically adjust the applicable night scene mode. The corresponding exposure parameters are used to control the exposure of the image to be collected, which improves the night scene. The image quality of the image is reduced, and at the same time, multiple frames of image are synthesized to preserve the details of the highlights and the corresponding transitions, which improves the imaging effect.
为了实现上述实施例,本申请还提出一种曝光控制装置。In order to implement the above embodiments, the present application also proposes an exposure control device.
图5为本申请实施例提供的一种曝光控制装置的结构示意图。FIG. 5 is a schematic structural diagram of an exposure control apparatus according to an embodiment of the present application.
如图5所示,该装置包括:场景确定模块51、识别模块52、参数确定模块53和控制模块54。As shown in FIG. 5, the device includes a scene determination module 51, an identification module 52, a parameter determination module 53, and a control module 54.
场景确定模块51,用于确定当前拍摄场景属于夜景场景。The scene determining module 51 is configured to determine that a current shooting scene belongs to a night scene.
识别模块52,用于对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式。The recognition module 52 is configured to recognize a face area of the preview image, and identify a night scene mode applicable to the current shooting scene according to whether the face area is recognized.
参数确定模块53,用于根据夜景模式,确定各帧待采集图像的曝光参数。A parameter determining module 53 is configured to determine an exposure parameter of an image to be acquired in each frame according to a night scene mode.
控制模块54,用于采用曝光参数进行曝光控制。The control module 54 is configured to perform exposure control by using an exposure parameter.
进一步地,在本申请实施例的一种可能的实现方式中,该装置还包含确定模块和合成模块。Further, in a possible implementation manner of the embodiment of the present application, the apparatus further includes a determination module and a synthesis module.
确定模块,用于获取成像设备的抖动程度,确定抖动程度小于第一抖动阈值,且大于第二抖动阈值,其中,第一抖动阈值大于第二抖动阈值。The determining module is configured to obtain the degree of jitter of the imaging device, and determine that the degree of jitter is less than the first jitter threshold and greater than the second jitter threshold, where the first jitter threshold is greater than the second jitter threshold.
作为一种可能的实现方式,确定模块,还用于:As a possible implementation manner, the determining module is further used for:
若抖动程度大于或等于第一抖动阈值,确定采用单帧夜景模式;If the degree of jitter is greater than or equal to the first jitter threshold, it is determined that a single-frame night scene mode is adopted;
若抖动程度小于或等于第二抖动阈值,确定采用脚架夜景模式;If the degree of jitter is less than or equal to the second jitter threshold, determine that a tripod night scene mode is adopted;
其中,脚架夜景模式下待采集图像的帧数大于人像夜景模式或非人像夜景模式下的帧数;Among them, the number of frames of the image to be acquired in the tripod night scene mode is greater than the number of frames in the portrait night scene mode or the non-portrait night scene mode;
单帧夜景模式下待采集图像的帧数小于人像夜景模式或非人像夜景模式下的帧数。The number of frames to be captured in the single-frame night scene mode is smaller than the number of frames in the portrait night scene mode or the non-portrait night scene mode.
作为一种可能的实现方式,确定模块,具体还用于:As a possible implementation manner, the determining module is further specifically used to:
从成像设备设置的传感器,获取采集到的位移信息;根据位移信息,确定成像设备的抖动程度。Obtain the collected displacement information from the sensors set on the imaging device; and determine the degree of jitter of the imaging device based on the displacement information.
合成模块,用于获取在曝光控制下采集到的各帧图像;对各帧图像进行合成,得到成像图像。A synthesizing module is configured to acquire each frame image collected under exposure control; and synthesize each frame image to obtain an imaging image.
作为一种可能的实现方式,上述识别模块52,具体用于:As a possible implementation manner, the foregoing identification module 52 is specifically configured to:
若识别出人脸区域,确定采用人像夜景模式;If a face area is identified, a portrait night scene mode is determined;
若未识别出人脸区域,确定采用非人像夜景模式;If no face area is identified, a non-portrait night scene mode is determined;
其中,人像夜景模式与非人像夜景模式采用不同的曝光补偿值。Among them, night portrait mode and non-night portrait mode use different exposure compensation values.
作为一种可能的实现方式,参数确定模块53,具体用于:As a possible implementation manner, the parameter determining module 53 is specifically configured to:
人像夜景模式下,从对应的第一取值范围内,确定各帧待采集图像预设的曝光补偿值;In portrait night scene mode, the preset exposure compensation value of each frame to be acquired is determined from the corresponding first value range;
非人像夜景模式下,从对应的第二取值范围内,确定各帧待采集图像预设的曝光补偿值;In the non-portrait night scene mode, the preset exposure compensation value of each frame to be acquired is determined from the corresponding second value range;
其中,第一取值范围上限小于第二取值范围上限。The upper limit of the first value range is smaller than the upper limit of the second value range.
进一步,作为一种可能的实现方式,上述参数确定模块53,具体还用于:Further, as a possible implementation manner, the above-mentioned parameter determining module 53 is further specifically configured to:
根据夜景模式,确定各帧待采集图像预设的感光度;Determine the preset sensitivity of the image to be collected for each frame according to the night scene mode;
根据预览图像的亮度信息,确定基准曝光量;Determine the reference exposure based on the brightness information of the preview image;
根据基准曝光量和各帧待采集图像预设的曝光补偿值,确定各帧待采集图像的目标曝光量;Determining the target exposure amount of the image to be acquired for each frame according to the reference exposure amount and the preset exposure compensation value of the image to be acquired for each frame;
根据各帧待采集图像的目标曝光量和各帧待采集图像预设的感光度,确定各帧待采集图像的曝光时长。According to the target exposure amount of the images to be acquired in each frame and the preset sensitivity of the images to be acquired in each frame, the exposure time of the images to be acquired in each frame is determined.
作为一种可能的实现方式,上述场景确定模块51,具体用于:As a possible implementation manner, the foregoing scenario determining module 51 is specifically configured to:
探测用于场景切换的用户操作;当探测到切换至夜景场景的用户操作时,检测环境亮度,以得到亮度信息;根据亮度信息,确定当前拍摄场景属于夜景场景。Detecting a user operation for scene switching; when detecting a user operation switching to a night scene, detecting the ambient brightness to obtain brightness information; and according to the brightness information, determining that the current shooting scene belongs to a night scene.
作为一种可能的实现方式,上述场景确定模块51,具体还用于:若根据亮度信息,确 定当前拍摄场景属于非夜景场景,采用高动态范围模式进行成像。As a possible implementation manner, the foregoing scene determination module 51 is further specifically configured to: if it is determined that the current shooting scene belongs to a non-night scene according to the brightness information, and use a high dynamic range mode for imaging.
作为另一种可能的实现方式,上述场景确定模块51,具体还用于:As another possible implementation manner, the foregoing scenario determination module 51 is further specifically configured to:
对预览图像进行图像特征提取;将提取的图像特征输入识别模型,根据识别模型输出的场景类型确定当前拍摄场景属于夜景场景;其中,识别模型已学习得到图像特征与场景类型之间的对应关系。Extract the image features of the preview image; input the extracted image features into the recognition model, and determine that the current shooting scene belongs to the night scene according to the type of scene output by the recognition model; wherein the recognition model has learned to obtain the correspondence between the image features and the scene type.
需要说明的是,前述对方法实施例的解释说明也适用于该实施例的装置,此处不再赘述。It should be noted that the foregoing explanation of the method embodiment is also applicable to the device in this embodiment, and details are not described herein again.
本申请实施例的曝光控制装置中,确定当前拍摄场景属于夜景场景,并通过抖动情况,确定当前可采用的夜景模式,对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,根据夜景模式,确定各帧待采集图像的曝光参数,采用曝光参数进行曝光控制,通过识别夜景场景中是否有人像,来动态调整适用的夜景模式,并采用对应的曝光参数进行待采集图像的曝光控制,提高了夜景场景下图像的成像质量,同时,并将多帧图像进行合成,保留亮部细节和相应的过渡,提高了成像效果。In the exposure control device of the embodiment of the present application, it is determined that the current shooting scene belongs to a night scene, and the current night scene mode is determined through the shake situation, and the face area recognition is performed on the preview image. The night scene mode applicable to the shooting scene, according to the night scene mode, determine the exposure parameters of the frames to be captured, use the exposure parameters to perform exposure control, and dynamically adjust the applicable night scene mode by identifying whether there is a portrait in the night scene and use the corresponding exposure. The parameter controls the exposure of the image to be collected, which improves the imaging quality of the image in the night scene. At the same time, it combines multiple frames of images to retain the details of the highlights and the corresponding transitions, which improves the imaging effect.
为了实现上述实施例,本申请实施例还提出了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述方法实施例所述的曝光控制方法。In order to implement the foregoing embodiments, an embodiment of the present application further provides an electronic device including a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, The exposure control method according to the foregoing method embodiment is implemented.
图6为一个实施例中电子设备200的内部结构示意图。该电子设备200包括通过系统总线81连接的处理器60、存储器50(例如为非易失性存储介质)、内存储器82、显示屏83和输入装置84。其中,电子设备200的存储器50存储有操作系统和计算机可读指令。该计算机可读指令可被处理器60执行,以实现本申请实施方式的控制方法。该处理器60用于提供计算和控制能力,支撑整个电子设备200的运行。电子设备200的内存储器50为存储器52中的计算机可读指令的运行提供环境。电子设备200的显示屏83可以是液晶显示屏或者电子墨水显示屏等,输入装置84可以是显示屏83上覆盖的触摸层,也可以是电子设备200外壳上设置的按键、轨迹球或触控板,也可以是外接的键盘、触控板或鼠标等。该电子设备200可以是手机、平板电脑、笔记本电脑、个人数字助理或穿戴式设备(例如智能手环、智能手表、智能头盔、智能眼镜)等。本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的示意图,并不构成对本申请方案所应用于其上的电子设备200的限定,具体的电子设备200可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。FIG. 6 is a schematic diagram of the internal structure of the electronic device 200 in one embodiment. The electronic device 200 includes a processor 60, a memory 50 (for example, a non-volatile storage medium), an internal memory 82, a display screen 83, and an input device 84 connected through a system bus 81. The memory 50 of the electronic device 200 stores an operating system and computer-readable instructions. The computer-readable instructions can be executed by the processor 60 to implement the control method in the embodiment of the present application. The processor 60 is used to provide computing and control capabilities to support the operation of the entire electronic device 200. The internal memory 50 of the electronic device 200 provides an environment for execution of computer-readable instructions in the memory 52. The display screen 83 of the electronic device 200 may be a liquid crystal display or an electronic ink display. The input device 84 may be a touch layer covered on the display screen 83, or may be a button, a trackball, or a touch button provided on the housing of the electronic device 200. Board, which can also be an external keyboard, trackpad, or mouse. The electronic device 200 may be a mobile phone, a tablet computer, a notebook computer, a personal digital assistant, or a wearable device (for example, a smart bracelet, a smart watch, a smart helmet, or smart glasses). Those skilled in the art can understand that the structure shown in FIG. 6 is only a schematic diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the electronic device 200 to which the solution of the present application is applied. The specific electronic device 200 may include more or fewer components than shown in the figure, or some components may be combined, or have different component arrangements.
请参阅图7,本申请实施例的电子设备200中包括图像处理电路90,图像处理电路90可利用硬件和/或软件组件实现,包括定义ISP(Image Signal Processing,图像信号处理)管线的各种处理单元。图7为一个实施例中图像处理电路90的示意图。如图7所示,为便于说明,仅示出与本申请实施例相关的图像处理技术的各个方面。Please refer to FIG. 7. The electronic device 200 according to the embodiment of the present application includes an image processing circuit 90. The image processing circuit 90 may be implemented by using hardware and / or software components, including various types of defining an ISP (Image Signal Processing) pipeline. Processing unit. FIG. 7 is a schematic diagram of an image processing circuit 90 in one embodiment. As shown in FIG. 7, for ease of description, only aspects of the image processing technology related to the embodiments of the present application are shown.
如图7所示,图像处理电路90包括ISP处理器91(ISP处理器91可为处理器60)和控制逻辑器92。摄像头93捕捉的图像数据首先由ISP处理器91处理,ISP处理器91对图像数据进行分析以捕捉可用于确定摄像头93的一个或多个控制参数的图像统计信息。摄像头93可包括一个或多个透镜932和图像传感器934。图像传感器934可包括色彩滤镜阵列(如Bayer滤镜),图像传感器934可获取每个成像像素捕捉的光强度和波长信息,并提供可由ISP处理器91处理的一组原始图像数据。传感器94(如陀螺仪)可基于传感器94接口类型把采集的图像处理的参数(如防抖参数)提供给ISP处理器91。传感器94接口可以为SMIA(Standard Mobile Imaging Architecture,标准移动成像架构)接口、其它串行或并行照相机接口或上述接口的组合。As shown in FIG. 7, the image processing circuit 90 includes an ISP processor 91 (the ISP processor 91 may be the processor 60) and a control logic 92. The image data captured by the camera 93 is first processed by the ISP processor 91. The ISP processor 91 analyzes the image data to capture image statistical information that can be used to determine one or more control parameters of the camera 93. The camera 93 may include one or more lenses 932 and an image sensor 934. The image sensor 934 may include a color filter array (such as a Bayer filter). The image sensor 934 may obtain light intensity and wavelength information captured by each imaging pixel, and provide a set of raw image data that can be processed by the ISP processor 91. The sensor 94 (such as a gyroscope) may provide parameters (such as image stabilization parameters) of the acquired image processing to the ISP processor 91 based on the interface type of the sensor 94. The sensor 94 interface may be a SMIA (Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the foregoing interfaces.
此外,图像传感器934也可将原始图像数据发送给传感器94,传感器94可基于传感器94接口类型把原始图像数据提供给ISP处理器91,或者传感器94将原始图像数据存储到图像存储器95中。In addition, the image sensor 934 may also send the original image data to the sensor 94. The sensor 94 may provide the original image data to the ISP processor 91 based on the interface type of the sensor 94, or the sensor 94 stores the original image data into the image memory 95.
ISP处理器91按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,ISP处理器91可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。The ISP processor 91 processes the original image data pixel by pixel in a variety of formats. For example, each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 91 may perform one or more image processing operations on the original image data and collect statistical information about the image data. The image processing operations may be performed with the same or different bit depth accuracy.
ISP处理器91还可从图像存储器95接收图像数据。例如,传感器94接口将原始图像数据发送给图像存储器95,图像存储器95中的原始图像数据再提供给ISP处理器91以供处理。图像存储器95可为存储器50、存储器50的一部分、存储设备、或电子设备内的独立的专用存储器,并可包括DMA(Direct Memory Access,直接直接存储器存取)特征。The ISP processor 91 may also receive image data from the image memory 95. For example, the sensor 94 interface sends the original image data to the image memory 95, and the original image data in the image memory 95 is then provided to the ISP processor 91 for processing. The image memory 95 may be an independent dedicated memory in the memory 50, a part of the memory 50, a storage device, or an electronic device, and may include a DMA (Direct Memory Access) feature.
当接收到来自图像传感器934接口或来自传感器94接口或来自图像存储器95的原始图像数据时,ISP处理器91可进行一个或多个图像处理操作,如时域滤波。处理后的图像数据可发送给图像存储器95,以便在被显示之前进行另外的处理。ISP处理器91从图像存储器95接收处理数据,并对处理数据进行原始域中以及RGB和YCbCr颜色空间中的图像数据处理。ISP处理器91处理后的图像数据可输出给显示器97(显示器97可包括显示屏83),以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进一步处理。此外,ISP处理器91的输出还可发送给图像存储器95,且显示器97可从图像存储器95读取图像数据。在一个实施例中,图像存储器95可被配置为实现一个或多个帧缓冲器。此外,ISP处理器91的输出可发送给编码器/解码器96,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器97设备上之前解压缩。编码器/解码器96可由CPU或GPU或协处理器实现。When receiving raw image data from the image sensor 934 interface or from the sensor 94 interface or from the image memory 95, the ISP processor 91 may perform one or more image processing operations, such as time-domain filtering. The processed image data may be sent to the image memory 95 for further processing before being displayed. The ISP processor 91 receives processing data from the image memory 95, and performs processing on the image data in the original domain and in the RGB and YCbCr color spaces. The image data processed by the ISP processor 91 may be output to a display 97 (the display 97 may include a display screen 83) for viewing by a user and / or further processing by a graphics engine or a GPU (Graphics Processing Unit). In addition, the output of the ISP processor 91 can also be sent to the image memory 95, and the display 97 can read image data from the image memory 95. In one embodiment, the image memory 95 may be configured to implement one or more frame buffers. In addition, the output of the ISP processor 91 may be sent to an encoder / decoder 96 to encode / decode image data. The encoded image data can be saved and decompressed before being displayed on the display 97 device. The encoder / decoder 96 may be implemented by a CPU or a GPU or a coprocessor.
ISP处理器91确定的统计数据可发送给控制逻辑器92单元。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜932阴影校正等图像传感器 934统计信息。控制逻辑器92可包括执行一个或多个例程(如固件)的处理元件和/或微控制器,一个或多个例程可根据接收的统计数据,确定摄像头93的控制参数及ISP处理器91的控制参数。例如,摄像头93的控制参数可包括传感器94控制参数(例如增益、曝光控制的积分时间、防抖参数等)、照相机闪光控制参数、透镜932控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。ISP控制参数可包括用于自动白平衡和颜色调整(例如,在RGB处理期间)的增益水平和色彩校正矩阵,以及透镜932阴影校正参数。The statistical data determined by the ISP processor 91 may be sent to the control logic unit 92. For example, the statistical data may include image information of the image sensor 934 such as auto exposure, auto white balance, auto focus, flicker detection, black level compensation, and lens 932 shading correction. The control logic 92 may include a processing element and / or a microcontroller that executes one or more routines (such as firmware). The one or more routines may determine the control parameters of the camera 93 and the ISP processor according to the received statistical data. 91 control parameters. For example, the control parameters of the camera 93 may include sensor 94 control parameters (such as gain, integration time for exposure control, anti-shake parameters, etc.), camera flash control parameters, lens 932 control parameters (such as focus distance for focusing or zooming), or these parameters The combination. The ISP control parameters may include gain levels and color correction matrices for automatic white balance and color adjustment (eg, during RGB processing), and lens 932 shading correction parameters.
例如,以下为运用图6中的处理器60或运用图7中的图像处理电路90(具体为ISP处理器91)实现曝光控制方法的步骤:For example, the following are the steps of implementing the exposure control method by using the processor 60 in FIG. 6 or the image processing circuit 90 (specifically, the ISP processor 91) in FIG. 7:
01:确定当前拍摄场景属于夜景场景;01: Make sure the current shooting scene belongs to night scene;
02:对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式;02: Perform face area recognition on the preview image, and identify the night scene mode applicable to the current shooting scene based on whether the face area is recognized;
03:根据夜景模式,确定各帧待采集图像的曝光参数;03: Determine the exposure parameters of the images to be collected in each frame according to the night scene mode;
04:采用曝光参数进行曝光控制。04: Use exposure parameters for exposure control.
为了实现上述实施例,本申请实施例还提出了一种计算机可读存储介质,其上存储有计算机程序,当所述存储介质中的指令由处理器被执行时,实现如前述方法实施例所述的曝光控制方法。In order to implement the foregoing embodiment, an embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored. When instructions in the storage medium are executed by a processor, the implementation is implemented as in the foregoing method embodiment. The exposure control method described above.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” and the like means specific features described in conjunction with the embodiments or examples , Structure, material, or characteristic is included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Moreover, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, without any contradiction, those skilled in the art may combine and combine different embodiments or examples and features of the different embodiments or examples described in this specification.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality" is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process And, the scope of the preferred embodiments of this application includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved. It is understood by those skilled in the art to which the embodiments of the present application pertain.
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment. For the purposes of this specification, a "computer-readable medium" may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device. More specific examples (non-exhaustive list) of computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM). In addition, the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that each part of the application may be implemented by hardware, software, firmware, or a combination thereof. In the above embodiments, multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system. For example, if implemented in hardware as in another embodiment, it may be implemented using any one or a combination of the following techniques known in the art: Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。A person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments can be implemented by a program instructing related hardware. The program can be stored in a computer-readable storage medium. The program is When executed, one or a combination of the steps of the method embodiment is included.
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module. The above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。The aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk. Although the embodiments of the present application have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limitations on the present application. Those skilled in the art may, within the scope of the present application, understand the above. Embodiments are subject to change, modification, substitution, and modification.

Claims (20)

  1. 一种曝光控制方法,其特征在于,所述方法包括以下步骤:An exposure control method, characterized in that the method includes the following steps:
    确定当前拍摄场景属于夜景场景;Determine that the current shooting scene is a night scene;
    对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式;Perform face area recognition on the preview image, and identify the night scene mode applicable to the current shooting scene based on whether the face area is recognized;
    根据所述夜景模式,确定各帧待采集图像的曝光参数;Determining an exposure parameter of an image to be acquired in each frame according to the night scene mode;
    采用所述曝光参数进行曝光控制。The exposure parameter is used for exposure control.
  2. 根据权利要求1所述的曝光控制方法,其特征在于,所述根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式,包括:The exposure control method according to claim 1, wherein the identifying a night scene mode applicable to a current shooting scene according to whether a human face area is recognized comprises:
    若识别出人脸区域,确定采用人像夜景模式;If a face area is identified, a portrait night scene mode is determined;
    若未识别出人脸区域,确定采用非人像夜景模式;If no face area is identified, a non-portrait night scene mode is determined;
    其中,所述人像夜景模式与所述非人像夜景模式采用不同的曝光补偿值。Wherein, the portrait night scene mode and the non- portrait night scene mode use different exposure compensation values.
  3. 根据权利要求2所述的曝光控制方法,其特征在于,所述曝光参数包括曝光补偿值,所述根据所述夜景模式,确定各帧待采集图像的曝光参数,包括:The exposure control method according to claim 2, wherein the exposure parameter includes an exposure compensation value, and determining the exposure parameter of each frame to be acquired according to the night scene mode comprises:
    所述人像夜景模式下,从对应的第一取值范围内,确定各帧待采集图像预设的曝光补偿值;In the portrait night scene mode, determining a preset exposure compensation value for each frame of images to be acquired from a corresponding first value range;
    所述非人像夜景模式下,从对应的第二取值范围内,确定各帧待采集图像预设的曝光补偿值;In the non-portrait night scene mode, determining a preset exposure compensation value for each frame of images to be acquired from a corresponding second value range;
    其中,所述第一取值范围上限小于所述第二取值范围上限。The upper limit of the first value range is smaller than the upper limit of the second value range.
  4. 根据权利要求1-3任一项所述的曝光控制方法,其特征在于,所述对预览图像进行人脸区域识别之前,还包括:The exposure control method according to any one of claims 1 to 3, wherein before performing face area recognition on the preview image, further comprising:
    获取成像设备的抖动程度;Obtain the degree of jitter of the imaging device;
    确定所述抖动程度小于第一抖动阈值,且大于第二抖动阈值;Determining that the degree of jitter is less than a first jitter threshold and greater than a second jitter threshold;
    其中,所述第一抖动阈值大于所述第二抖动阈值。The first jitter threshold is greater than the second jitter threshold.
  5. 根据权利要求4所述的曝光控制方法,其特征在于,所述获取成像设备的抖动程度之后,还包括:The exposure control method according to claim 4, wherein after the obtaining the degree of jitter of the imaging device, further comprising:
    若所述抖动程度大于或等于所述第一抖动阈值,确定采用单帧夜景模式;If the degree of jitter is greater than or equal to the first jitter threshold, determining that a single-frame night scene mode is adopted;
    若所述抖动程度小于或等于所述第二抖动阈值,确定采用脚架夜景模式;If the degree of jitter is less than or equal to the second jitter threshold, determining to use a tripod night scene mode;
    其中,所述脚架夜景模式下待采集图像的帧数大于所述人像夜景模式或所述非人像夜景模式下的帧数;Wherein, the number of frames of the image to be collected in the tripod night scene mode is greater than the number of frames in the portrait night scene mode or the non-personal night scene mode;
    所述单帧夜景模式下待采集图像的帧数小于所述人像夜景模式或所述非人像夜景模式下的帧数。The number of frames of the image to be collected in the single-frame night scene mode is smaller than the number of frames in the portrait night scene mode or the non-personal night scene mode.
  6. 根据权利要求3所述的曝光控制方法,其特征在于,所述根据所述夜景模式,确定各帧待采集图像的曝光参数,还包括:The method for controlling exposure according to claim 3, wherein determining an exposure parameter of an image to be acquired in each frame according to the night scene mode further comprises:
    根据所述夜景模式,确定各帧待采集图像预设的感光度;Determining, according to the night scene mode, a preset sensitivity of the image to be collected in each frame;
    根据所述预览图像的亮度信息,确定基准曝光量;Determining a reference exposure amount according to the brightness information of the preview image;
    根据所述基准曝光量和各帧待采集图像预设的曝光补偿值,确定各帧待采集图像的目标曝光量;Determining the target exposure amount of the image to be acquired for each frame according to the reference exposure amount and the preset exposure compensation value of the image to be acquired for each frame;
    根据各帧待采集图像的目标曝光量和各帧待采集图像预设的感光度,确定各帧待采集图像的曝光时长。According to the target exposure amount of the images to be acquired in each frame and the preset sensitivity of the images to be acquired in each frame, the exposure time of the images to be acquired in each frame is determined.
  7. 根据权利要求4或5所述的曝光控制方法,其特征在于,所述获取成像设备的抖动程度,包括:The exposure control method according to claim 4 or 5, wherein the obtaining the degree of jitter of the imaging device comprises:
    从成像设备设置的传感器,获取采集到的位移信息;Obtain the collected displacement information from the sensors set by the imaging equipment;
    根据所述位移信息,确定所述成像设备的抖动程度。According to the displacement information, a degree of shaking of the imaging device is determined.
  8. 根据权利要求1-7任一项所述的曝光控制方法,其特征在于,所述采用所述曝光参数进行曝光控制之后,还包括:The exposure control method according to any one of claims 1 to 7, wherein after the performing exposure control by using the exposure parameter, further comprising:
    获取在所述曝光控制下采集到的各帧图像;Acquiring each frame image acquired under the exposure control;
    对各帧图像进行合成,得到成像图像。The images of each frame are synthesized to obtain an imaging image.
  9. 根据权利要求1-7任一项所述的曝光控制方法,其特征在于,所述确定当前拍摄场景属于夜景场景,包括:The exposure control method according to any one of claims 1 to 7, wherein the determining that a current shooting scene belongs to a night scene scene comprises:
    对所述预览图像进行图像特征提取;Performing image feature extraction on the preview image;
    将提取的图像特征输入识别模型,根据所述识别模型输出的场景类型确定当前拍摄场景属于夜景场景;其中,所述识别模型已学习得到图像特征与场景类型之间的对应关系。The extracted image features are input to a recognition model, and the current shooting scene is determined to be a night scene according to the type of scene output by the recognition model; wherein the recognition model has learned to obtain the correspondence between the image features and the scene type.
  10. 根据权利要求1-7任一项所述的曝光控制方法,其特征在于,所述确定当前拍摄场景属于夜景场景,包括:The exposure control method according to any one of claims 1 to 7, wherein the determining that a current shooting scene belongs to a night scene scene comprises:
    探测用于场景切换的用户操作;Detect user operations for scene switching;
    当探测到切换至夜景场景的用户操作时,检测环境亮度,以得到亮度信息;When a user operation that switches to a night scene is detected, the ambient brightness is detected to obtain brightness information;
    根据所述亮度信息,确定当前拍摄场景属于夜景场景。According to the brightness information, it is determined that the current shooting scene belongs to a night scene.
  11. 根据权利要求10所述的曝光控制方法,其特征在于,所述检测环境亮度,以得到亮度信息之后,还包括:The exposure control method according to claim 10, wherein after detecting the ambient brightness to obtain the brightness information, the method further comprises:
    若根据所述亮度信息,确定当前拍摄场景属于非夜景场景,采用高动态范围模式进行成像。If it is determined that the current shooting scene belongs to a non-night scene according to the brightness information, imaging is performed in a high dynamic range mode.
  12. 一种曝光控制装置,其特征在于,所述装置包括:An exposure control device, characterized in that the device includes:
    场景确定模块,用于确定当前拍摄场景属于夜景场景;A scene determination module, configured to determine that a current shooting scene belongs to a night scene scene;
    识别模块,用于对预览图像进行人脸区域识别,根据是否识别出人脸区域,识别当前拍摄场景适用的夜景模式;A recognition module for recognizing a face area of a preview image, and identifying a night scene mode applicable to a current shooting scene according to whether a face area is recognized;
    参数确定模块,用于根据所述夜景模式,确定各帧待采集图像的曝光参数;A parameter determining module, configured to determine an exposure parameter of an image to be acquired in each frame according to the night scene mode;
    控制模块,用于采用所述曝光参数进行曝光控制。A control module, configured to perform exposure control by using the exposure parameter.
  13. 根据权利要求12所述的曝光控制装置,其特征在于,所述识别模块,具体用于:The exposure control device according to claim 12, wherein the identification module is specifically configured to:
    若识别出人脸区域,确定采用人像夜景模式;If a face area is identified, a portrait night scene mode is determined;
    若未识别出人脸区域,确定采用非人像夜景模式;If no face area is identified, a non-portrait night scene mode is determined;
    其中,所述人像夜景模式与所述非人像夜景模式采用不同的曝光补偿值。Wherein, the portrait night scene mode and the non- portrait night scene mode use different exposure compensation values.
  14. 根据权利要求13所述的曝光控制装置,其特征在于,所述曝光参数包括曝光补偿值,所述参数确定模块,具体用于:The exposure control device according to claim 13, wherein the exposure parameter includes an exposure compensation value, and the parameter determination module is specifically configured to:
    所述人像夜景模式下,从对应的第一取值范围内,确定各帧待采集图像预设的曝光补偿值;In the portrait night scene mode, determining a preset exposure compensation value for each frame of images to be acquired from a corresponding first value range;
    所述非人像夜景模式下,从对应的第二取值范围内,确定各帧待采集图像预设的曝光补偿值;In the non-portrait night scene mode, determining a preset exposure compensation value for each frame of images to be acquired from a corresponding second value range;
    其中,所述第一取值范围上限小于所述第二取值范围上限。The upper limit of the first value range is smaller than the upper limit of the second value range.
  15. 根据权利要求12-14任一项所述的曝光控制装置,其特征在于,所述装置,还包括:The exposure control device according to any one of claims 12 to 14, wherein the device further comprises:
    确定模块,用于获取成像设备的抖动程度;确定所述抖动程度小于第一抖动阈值,且大于第二抖动阈值;其中,所述第一抖动阈值大于所述第二抖动阈值。A determining module is configured to obtain a degree of jitter of the imaging device; determine that the degree of jitter is less than a first jitter threshold and greater than a second jitter threshold; wherein the first jitter threshold is greater than the second jitter threshold.
  16. 根据权利要求15所述的曝光控制装置,其特征在于,所述确定模块,还用于:The exposure control device according to claim 15, wherein the determining module is further configured to:
    若所述抖动程度大于或等于所述第一抖动阈值,确定采用单帧夜景模式;If the degree of jitter is greater than or equal to the first jitter threshold, determining that a single-frame night scene mode is adopted;
    若所述抖动程度小于或等于所述第二抖动阈值,确定采用脚架夜景模式;If the degree of jitter is less than or equal to the second jitter threshold, determining to use a tripod night scene mode;
    其中,所述脚架夜景模式下待采集图像的帧数大于所述人像夜景模式或所述非人像夜景模式下的帧数;Wherein, the number of frames of the image to be collected in the tripod night scene mode is greater than the number of frames in the portrait night scene mode or the non-personal night scene mode;
    所述单帧夜景模式下待采集图像的帧数小于所述人像夜景模式或所述非人像夜景模式下的帧数。The number of frames of the image to be collected in the single-frame night scene mode is smaller than the number of frames in the portrait night scene mode or the non-personal night scene mode.
  17. 根据权利要求14所述的曝光控制装置,其特征在于,所述参数确定模块,具体还用于:The exposure control device according to claim 14, wherein the parameter determining module is further configured to:
    根据所述夜景模式,确定各帧待采集图像预设的感光度;Determining, according to the night scene mode, a preset sensitivity of the image to be collected in each frame;
    根据所述预览图像的亮度信息,确定基准曝光量;Determining a reference exposure amount according to the brightness information of the preview image;
    根据所述基准曝光量和各帧待采集图像预设的曝光补偿值,确定各帧待采集图像的目标曝光量;Determining the target exposure amount of the image to be acquired for each frame according to the reference exposure amount and the preset exposure compensation value of the image to be acquired for each frame;
    根据各帧待采集图像的目标曝光量和各帧待采集图像预设的感光度,确定各帧待采集图 像的曝光时长。According to the target exposure of the image to be acquired in each frame and the preset sensitivity of the image to be acquired in each frame, the exposure time of the image to be acquired in each frame is determined.
  18. 根据权利要求15或16所述的曝光控制装置,其特征在于,所述确定模块,具体还用于:The exposure control device according to claim 15 or 16, wherein the determining module is further configured to:
    从成像设备设置的传感器,获取采集到的位移信息;Obtain the collected displacement information from the sensors set by the imaging equipment;
    根据所述位移信息,确定所述成像设备的抖动程度。According to the displacement information, a degree of shaking of the imaging device is determined.
  19. 一种电子设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-11中任一所述的曝光控制方法。An electronic device, comprising: a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the program, the processor implements any of claims 1-11. A method for controlling exposure.
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-11中任一所述的曝光控制方法。A computer-readable storage medium having stored thereon a computer program, characterized in that when the program is executed by a processor, the exposure control method according to any one of claims 1-11 is implemented.
PCT/CN2019/090146 2018-08-22 2019-06-05 Exposure control method and device, and electronic apparatus WO2020038069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810963326.2A CN109068067B (en) 2018-08-22 2018-08-22 Exposure control method and device and electronic equipment
CN201810963326.2 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020038069A1 true WO2020038069A1 (en) 2020-02-27

Family

ID=64755843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090146 WO2020038069A1 (en) 2018-08-22 2019-06-05 Exposure control method and device, and electronic apparatus

Country Status (2)

Country Link
CN (1) CN109068067B (en)
WO (1) WO2020038069A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986129A (en) * 2020-06-30 2020-11-24 普联技术有限公司 HDR image generation method and device based on multi-shot image fusion and storage medium
CN112819722A (en) * 2021-02-03 2021-05-18 东莞埃科思科技有限公司 Infrared image face exposure method, device, equipment and storage medium
CN112911165A (en) * 2021-03-02 2021-06-04 杭州海康慧影科技有限公司 Endoscope exposure method, device and computer readable storage medium
CN112929576A (en) * 2021-02-01 2021-06-08 北京字节跳动网络技术有限公司 Image processing method, device, equipment and storage medium
CN113422908A (en) * 2021-07-01 2021-09-21 联想(北京)有限公司 Data processing method and device
CN113766260A (en) * 2021-08-24 2021-12-07 武汉瓯越网视有限公司 Face automatic exposure optimization method, storage medium, electronic device and system
CN114222075A (en) * 2022-01-28 2022-03-22 广州华多网络科技有限公司 Mobile terminal image processing method and device, equipment, medium and product thereof
CN114500865A (en) * 2022-01-29 2022-05-13 北京精英路通科技有限公司 Method and device for regulating and controlling light supplement lamp, electronic equipment and storage medium
CN115314629A (en) * 2021-05-08 2022-11-08 杭州海康威视数字技术股份有限公司 Imaging method, system and camera
CN115314628A (en) * 2021-05-08 2022-11-08 杭州海康威视数字技术股份有限公司 Imaging method, system and camera
CN115706766A (en) * 2021-08-12 2023-02-17 荣耀终端有限公司 Video processing method and device, electronic equipment and storage medium
CN116894984A (en) * 2023-09-07 2023-10-17 中海物业管理有限公司 Image recognition-based access method for home and computer readable storage medium
WO2023231479A1 (en) * 2022-06-01 2023-12-07 同方威视科技江苏有限公司 Pupil detection method and apparatus, and storage medium and electronic device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068067B (en) * 2018-08-22 2020-06-12 Oppo广东移动通信有限公司 Exposure control method and device and electronic equipment
CN109618102B (en) * 2019-01-28 2021-08-31 Oppo广东移动通信有限公司 Focusing processing method and device, electronic equipment and storage medium
CN109862282B (en) * 2019-02-18 2021-04-30 Oppo广东移动通信有限公司 Method and device for processing person image
CN109831628B (en) * 2019-03-14 2021-07-16 Oppo广东移动通信有限公司 Terminal photographing mode adjusting method and device, terminal and storage medium
CN109831629B (en) * 2019-03-14 2021-07-02 Oppo广东移动通信有限公司 Terminal photographing mode adjusting method and device, terminal and storage medium
CN112396574B (en) * 2019-08-02 2024-02-02 浙江宇视科技有限公司 License plate image quality processing method and device, storage medium and electronic equipment
CN112532857B (en) * 2019-09-18 2022-04-12 华为技术有限公司 Shooting method and equipment for delayed photography
CN110740238B (en) * 2019-10-24 2021-05-11 华南农业大学 Light splitting HDR camera applied to mobile robot SLAM field
CN111131693B (en) * 2019-11-07 2021-07-30 深圳市艾为智能有限公司 Face image enhancement method based on multi-exposure face detection
CN113099101B (en) * 2019-12-23 2023-03-24 杭州宇泛智能科技有限公司 Camera shooting parameter adjusting method and device and electronic equipment
CN111402135B (en) * 2020-03-17 2023-06-20 Oppo广东移动通信有限公司 Image processing method, device, electronic equipment and computer readable storage medium
CN111447374B (en) * 2020-05-13 2021-01-26 重庆紫光华山智安科技有限公司 Light supplement adjusting method and device, electronic equipment and storage medium
CN111654623B (en) * 2020-05-29 2022-03-22 维沃移动通信有限公司 Photographing method and device and electronic equipment
CN117714900A (en) * 2023-08-01 2024-03-15 荣耀终端有限公司 Video shooting method, device, electronic equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037975A1 (en) * 2006-08-08 2008-02-14 Kenichi Nakajima Imaging device
CN101772952A (en) * 2007-07-23 2010-07-07 松下电器产业株式会社 Imaging device
CN103002224A (en) * 2011-09-09 2013-03-27 佳能株式会社 Image capture apparatus and control method thereof
CN103227896A (en) * 2012-01-26 2013-07-31 佳能株式会社 Electronic apparatus, electronic apparatus control method, and storage medium
CN103841324A (en) * 2014-02-20 2014-06-04 小米科技有限责任公司 Shooting processing method and device and terminal device
CN109068067A (en) * 2018-08-22 2018-12-21 Oppo广东移动通信有限公司 Exposal control method, device and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386793B2 (en) * 2006-12-11 2014-01-15 株式会社リコー Imaging apparatus and exposure control method for imaging apparatus
KR101594295B1 (en) * 2009-07-07 2016-02-16 삼성전자주식회사 Photographing apparatus and photographing method
CN103220431A (en) * 2013-05-07 2013-07-24 深圳市中兴移动通信有限公司 Method and device for automatically switching photographing mode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037975A1 (en) * 2006-08-08 2008-02-14 Kenichi Nakajima Imaging device
CN101772952A (en) * 2007-07-23 2010-07-07 松下电器产业株式会社 Imaging device
CN103002224A (en) * 2011-09-09 2013-03-27 佳能株式会社 Image capture apparatus and control method thereof
CN103227896A (en) * 2012-01-26 2013-07-31 佳能株式会社 Electronic apparatus, electronic apparatus control method, and storage medium
CN103841324A (en) * 2014-02-20 2014-06-04 小米科技有限责任公司 Shooting processing method and device and terminal device
CN109068067A (en) * 2018-08-22 2018-12-21 Oppo广东移动通信有限公司 Exposal control method, device and electronic equipment

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986129A (en) * 2020-06-30 2020-11-24 普联技术有限公司 HDR image generation method and device based on multi-shot image fusion and storage medium
CN111986129B (en) * 2020-06-30 2024-03-19 普联技术有限公司 HDR image generation method, equipment and storage medium based on multi-shot image fusion
CN112929576A (en) * 2021-02-01 2021-06-08 北京字节跳动网络技术有限公司 Image processing method, device, equipment and storage medium
CN112929576B (en) * 2021-02-01 2023-08-01 北京字节跳动网络技术有限公司 Image processing method, device, equipment and storage medium
CN112819722A (en) * 2021-02-03 2021-05-18 东莞埃科思科技有限公司 Infrared image face exposure method, device, equipment and storage medium
CN112911165A (en) * 2021-03-02 2021-06-04 杭州海康慧影科技有限公司 Endoscope exposure method, device and computer readable storage medium
CN112911165B (en) * 2021-03-02 2023-06-16 杭州海康慧影科技有限公司 Endoscope exposure method, device and computer readable storage medium
CN115314628B (en) * 2021-05-08 2024-03-01 杭州海康威视数字技术股份有限公司 Imaging method, imaging system and camera
CN115314629A (en) * 2021-05-08 2022-11-08 杭州海康威视数字技术股份有限公司 Imaging method, system and camera
CN115314628A (en) * 2021-05-08 2022-11-08 杭州海康威视数字技术股份有限公司 Imaging method, system and camera
CN115314629B (en) * 2021-05-08 2024-03-01 杭州海康威视数字技术股份有限公司 Imaging method, imaging system and camera
CN113422908A (en) * 2021-07-01 2021-09-21 联想(北京)有限公司 Data processing method and device
CN113422908B (en) * 2021-07-01 2023-05-23 联想(北京)有限公司 Data processing method and device
CN115706766B (en) * 2021-08-12 2023-12-15 荣耀终端有限公司 Video processing method, device, electronic equipment and storage medium
CN115706766A (en) * 2021-08-12 2023-02-17 荣耀终端有限公司 Video processing method and device, electronic equipment and storage medium
CN113766260A (en) * 2021-08-24 2021-12-07 武汉瓯越网视有限公司 Face automatic exposure optimization method, storage medium, electronic device and system
CN114222075A (en) * 2022-01-28 2022-03-22 广州华多网络科技有限公司 Mobile terminal image processing method and device, equipment, medium and product thereof
CN114500865A (en) * 2022-01-29 2022-05-13 北京精英路通科技有限公司 Method and device for regulating and controlling light supplement lamp, electronic equipment and storage medium
CN114500865B (en) * 2022-01-29 2024-04-09 北京精英路通科技有限公司 Method and device for regulating and controlling light supplementing lamp, electronic equipment and storage medium
WO2023231479A1 (en) * 2022-06-01 2023-12-07 同方威视科技江苏有限公司 Pupil detection method and apparatus, and storage medium and electronic device
CN116894984B (en) * 2023-09-07 2023-12-26 中海物业管理有限公司 Image recognition-based access method for home and computer readable storage medium
CN116894984A (en) * 2023-09-07 2023-10-17 中海物业管理有限公司 Image recognition-based access method for home and computer readable storage medium

Also Published As

Publication number Publication date
CN109068067B (en) 2020-06-12
CN109068067A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020038069A1 (en) Exposure control method and device, and electronic apparatus
WO2020038072A1 (en) Exposure control method and device, and electronic device
US11582400B2 (en) Method of image processing based on plurality of frames of images, electronic device, and storage medium
JP6911202B2 (en) Imaging control method and imaging device
AU2019326496B2 (en) Method for capturing images at night, apparatus, electronic device, and storage medium
CN110072052B (en) Image processing method and device based on multi-frame image and electronic equipment
CN110062160B (en) Image processing method and device
CN108683862B (en) Imaging control method, imaging control device, electronic equipment and computer-readable storage medium
WO2020057199A1 (en) Imaging method and device, and electronic device
CN109788207B (en) Image synthesis method and device, electronic equipment and readable storage medium
WO2020034737A1 (en) Imaging control method, apparatus, electronic device, and computer-readable storage medium
WO2020029732A1 (en) Panoramic photographing method and apparatus, and imaging device
CN110290289B (en) Image noise reduction method and device, electronic equipment and storage medium
CN110191291B (en) Image processing method and device based on multi-frame images
CN109194882B (en) Image processing method, image processing device, electronic equipment and storage medium
CN110166708B (en) Night scene image processing method and device, electronic equipment and storage medium
WO2020207261A1 (en) Image processing method and apparatus based on multiple frames of images, and electronic device
CN110248106B (en) Image noise reduction method and device, electronic equipment and storage medium
CN110166707B (en) Image processing method, image processing apparatus, electronic device, and storage medium
WO2020038087A1 (en) Method and apparatus for photographic control in super night scene mode and electronic device
US11490024B2 (en) Method for imaging controlling, electronic device, and non-transitory computer-readable storage medium
CN110166706B (en) Image processing method, image processing apparatus, electronic device, and storage medium
CN108833802B (en) Exposure control method and device and electronic equipment
CN110264420B (en) Image processing method and device based on multi-frame images
CN110166711B (en) Image processing method, image processing apparatus, electronic device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852464

Country of ref document: EP

Kind code of ref document: A1