WO2020037988A1 - 一种燃料电池汽车节能供气系统 - Google Patents
一种燃料电池汽车节能供气系统 Download PDFInfo
- Publication number
- WO2020037988A1 WO2020037988A1 PCT/CN2019/080790 CN2019080790W WO2020037988A1 WO 2020037988 A1 WO2020037988 A1 WO 2020037988A1 CN 2019080790 W CN2019080790 W CN 2019080790W WO 2020037988 A1 WO2020037988 A1 WO 2020037988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- air
- hydrogen
- purpose compressor
- solenoid valve
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04111—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the invention relates to an energy-saving gas supply system for a fuel cell vehicle, and belongs to the field of energy-saving technologies in a new energy vehicle system.
- Hydrogen is generally a compressed gas, which has a high pressure. It is stored in a high-pressure gas cylinder, and its storage pressure can reach 70 MPa. Oxygen generally comes from air. Compressors and blowers are usually used to overcome the fuel cell flow. The resistance of the channel and pipeline sends the air containing oxygen into the cathode flow channel of the fuel cell, so that the oxygen has a certain kinetic energy to pass through the cathode catalytic layer of the fuel cell, and performs related electrochemical reactions.
- Compressing air with transmission machinery consumes the power generated by the fuel cell to provide the motive power required by the compressed air.
- the precious power generated by hydrogen is not fully used in the car, reducing the mileage of the fuel cell vehicle.
- fuel efficiency Due to the limited space in the car, it is not advisable to use hydrogen gas cylinders to store air in hydrogen-oxygen fuel cell vehicles.
- Patent CN201710431329.7 introduces a new energy vehicle centralized air supply system and air supply method.
- the system mainly includes a two-stage compressed air compressor, a fuel cell system, an air-cooled heat exchanger, and a pneumatic brake system.
- the patent mainly uses the compressed gas produced by the air compressor to lead into the expander to recover the pressure energy, and uses the cold and hot gas remaining from the battery reaction to recover the cold and heat.
- the pressure energy recovered by the system is provided by the air compressor.
- the energy recovery efficiency of this method is extremely low, which not only wastes the electricity generated by hydrogen, but also increases the complexity of the system.
- the high-pressure hydrogen bottle of a hydrogen-oxygen fuel cell vehicle is rich in energy, in addition to chemical energy, pressure energy. Using its pressure energy, it can drive compressed air devices to reduce the power consumed by the battery.
- Compressing air with transmission machinery consumes the power generated by the fuel cell to provide the motive power required by the compressed air.
- the precious power generated by hydrogen is not fully used in the car, reducing the mileage of the fuel cell vehicle.
- fuel efficiency Due to the limited space in the car, it is not advisable to use hydrogen gas cylinders to store air in hydrogen-oxygen fuel cell vehicles.
- Patent CN201710431329.7 introduces a new energy vehicle centralized air supply system and air supply method.
- the system mainly includes a two-stage compressed air compressor, a fuel cell system, an air-cooled heat exchanger, and a pneumatic brake system.
- the patent mainly uses the compressed gas produced by the air compressor to lead into the expander to recover the pressure energy, and uses the cold and hot gas remaining from the battery reaction to recover the cold and heat.
- the pressure energy recovered by the system is provided by the air compressor.
- the energy recovery efficiency of this method is extremely low, which not only wastes the electricity generated by hydrogen, but also increases the complexity of the system.
- the present invention provides an energy-saving gas supply system for a fuel cell vehicle.
- the energy-saving gas supply system should use the pressure energy of a high-pressure hydrogen cylinder to push an air compression device to pressurize the atmospheric air so
- the use of air in a hydrogen fuel cell stack directly converts the pressure energy of hydrogen into the pressure energy of air, which greatly improves the energy utilization rate.
- a fuel cell automobile energy-saving gas supply system which includes a high-pressure hydrogen cylinder for a vehicle, a pressure reducing solenoid valve, a multi-purpose compressor, a pressure sensor, and a control system.
- a pressure reducing solenoid valve or a high-pressure hydrogen cylinder for vehicles is connected to the pressure reducing solenoid valve through a pipeline.
- the outlet of the pressure reducing solenoid valve is connected to the hydrogen inlet of the multi-purpose compressor. The air sucked in by the other end of the multi-purpose compressor is compressed and compressed.
- the air is directly used in the cathode of the stack;
- the pressure sensor includes a hydrogen inlet pressure sensor provided on the line between the pressure reducing solenoid valve and the multi-purpose compressor and a Air outlet pressure sensor;
- the control system uses a PLC controller, which is electrically connected to the pressure reducing solenoid valve, hydrogen inlet pressure sensor, air outlet pressure sensor, and multi-purpose compressor;
- the hydrogen inlet pressure sensor detects hydrogen The force is lower than the automatic working inlet pressure of the multi-purpose compressor set by the PLC controller, or the air outlet end pressure sensor detects that the air outlet end pressure is lower than the air pressure set by the PLC controller, and the control system starts the multi-purpose
- the compressor power supply system uses electric energy to drive a multi-purpose compressor, and compresses hydrogen and air at the same time to ensure the gas supply of the fuel cell stack.
- the control system issues an alarm to remind the user that the fuel is insufficient; when the user adds hydrogen, the pressure reaches a normal value , The alarm is cancelled, the control system cuts off the external power supply of the multi-purpose compressor, and the entire gas supply system works normally.
- the control system uses an S7-200 PLC controller.
- this fuel cell automobile energy-saving air supply system includes a high-pressure hydrogen cylinder for a vehicle, a pressure reducing solenoid valve, a multi-purpose compressor, and a control system.
- the control system uses a PLC controller.
- the hydrogen inlet pressure sensor is set on the pipeline between the pressure reducing solenoid valve and the multi-purpose compressor.
- the air outlet pressure sensor is set on the pipeline where the multi-purpose compressor discharges compressed air.
- Electric energy drives a multi-purpose compressor, which compresses hydrogen and air at the same time, ensuring the gas supply of the fuel cell stack.
- the energy-saving gas supply system has a simple structure, takes up a small space, and is easy to integrate.
- the pressure energy of the high-pressure hydrogen cylinder is used to push the air compression device to pressurize the atmospheric pressure so that the air is used in the hydrogen fuel cell stack.
- the pressure energy of the hydrogen is directly converted into the pressure energy of the air, which greatly improves the energy utilization rate.
- Figure 1 is a schematic diagram of an energy-saving air supply system for a fuel cell vehicle.
- Figure 2 is a schematic diagram of the SP-200PLC controller.
- FIG. 1 shows a schematic diagram of a fuel cell vehicle energy-saving air supply system.
- This fuel cell automobile energy-saving gas supply system includes a high-pressure hydrogen cylinder for a vehicle 1, a pressure reducing solenoid valve 2, a multi-purpose compressor 3, a pressure sensor and a control system 5, the pressure sensor includes a hydrogen inlet pressure sensor 4a, and an air outlet pressure Sensor 4b.
- the high-pressure hydrogen cylinder 1 for vehicles is connected to the pressure reducing solenoid valve 2 through a pipeline.
- the outlet of the pressure reducing solenoid valve 2 is connected to the hydrogen inlet of the multi-purpose compressor 3. The air sucked in by the other end of the multi-purpose compressor 3 is compressed.
- Air is directly used in the cathode of the stack; the air inlet of the multi-purpose compressor 3 is filtered air in the atmosphere, and the lower pressure hydrogen discharged from the hydrogen outlet of the multi-purpose compressor acts on the anode of the stack; the pressure at the hydrogen inlet
- the sensor 4a is installed on the hydrogen inlet side, and the air outlet side pressure sensor 4b is installed on the air outlet side.
- the control system (5) uses a PLC controller, which is electrically connected to the pressure reducing solenoid valve 2, the pressure sensor, and the multi-purpose compressor 3, and can control the actions of the pressure reducing solenoid valve 2 and the multi-purpose compressor 3.
- Figure 2 shows a schematic diagram of a PLC controller.
- the hydrogen inlet pressure sensor 4a, the air outlet pressure sensor 4b, the pressure reducing solenoid valve 2 and the compressor control relay are electrically connected to the SP-200 controller, the compressor control relay is electrically connected to the multi-purpose compressor 3, and the multi-purpose compressor 3 Powered by onboard power.
- the hydrogen inlet pressure sensor 4a detects that the pressure is lower than the automatic working inlet pressure of the multi-purpose compressor 3 set by the PLC controller, or the air
- the outlet pressure sensor 4b detects that the air outlet pressure is lower than the air pressure set by the PLC controller.
- the PLC controller starts the multi-purpose compressor 3 via the compressor control relay, and uses the on-board power to drive the multi-purpose compressor 3 to ensure fuel. Gas supply to the battery stack; at this time the control system 5 issues an alarm to alert the user of insufficient fuel.
- the PLC controller is a programmable logic controller of digital operation electronic system, which is used to control the production process of the machine.
- the simplest Siemens S7 series PLC commonly used on the market is small, fast, standardized, with network communication capabilities, stronger functions, and higher reliability.
- the S7-200 PLC controller (model 6ES7211-0BA23-0XB0, AC / DC / relay, 6 points input and 4 points output) is a micro PLC, which is suitable for automatic detection, monitoring and control in various industries and various occasions.
- the powerful functions of the S7-200 PLC make it stand-alone operation, or Even a network can achieve complex control functions.
- the embodiment of the present invention is the same as the best embodiment of the present invention.
- This fuel cell vehicle energy-saving gas supply system has a simple structure, takes up a small space, and is easy to achieve integration.
- the pressure energy of the high-pressure hydrogen cylinder is used to push the air compression device to pressurize the atmospheric pressure so that the air is used in the hydrogen fuel cell stack.
- the pressure energy of the hydrogen is directly converted into the pressure energy of the air, which greatly improves the energy utilization rate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Fuzzy Systems (AREA)
- Automation & Control Theory (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种燃料电池汽车节能供气系统,该系统氢气压力传感器(4a)设置在减压电磁阀(2)与多用途压缩机(3)之间的管线上,空气压力传感器(4b)设置在多用途压缩机(3)排出压缩空气的管线上;当经过减压电磁阀(2)的氢气压力不足以推动多用途压缩机(3)工作时,或空气出口端压力传感器(4b)检测到空气出口端压力低于PLC控制器设定的空气压力时,控制系统(5)启动多用途压缩机供电系统,使用电能驱动多用途压缩机(3),同时压缩氢气与空气,保证燃料电池堆的气体供应,该系统容易实现集成化,利用高压氢气瓶的压力能,推动空气压缩装置,将常压空气加压,以便氢燃料电池堆中使用空气,直接将氢气的压力能转变为空气的压力能,极大提高了能量利用率。
Description
本发明涉及一种燃料电池汽车节能供气系统,属于新能源汽车系统中的节能技术领域。
以氢气为燃料的燃料电池汽车,除了要有氢气外,还必须有氧气。氢气一般是压缩气体,有较高的压力,储存在高压气瓶中,其储存压力可达70MPa;氧气一般来自于空气,通常使用压缩机、鼓风机等带有压缩性质的机械,克服燃料电池流道、管线阻力,将含有氧气的空气输送到燃料电池阴极流道内,使氧气有一定的动能透过燃料电池的阴极催化层,进行相关的电化学反应。
用压缩机、鼓风机等传动机械压缩空气需要消耗燃料电池发出的电力,以提供压缩空气所需的原动力,导致由氢气产生的珍贵的电力没有完全用到汽车行驶,降低了燃料电池汽车的行驶里程与燃料利用率。由于汽车内的空间有限,故氢氧燃料电池汽车采用气瓶储存空气是不可取的。
专利CN201710431329.7介绍了一种新能源汽车集中供气系统及供气方法,该系统主要包括两级压缩空气压缩机、燃料电池系统、风冷换热器以及气压制动刹车系统。该专利主要利用空气压缩机产出的压缩气体导入膨胀机进行压力能的回收,并利用电池反应剩余的冷热气体进行冷量和热量的回收。但是值得关注的是该系统所回收的压力能是由空气压缩机所提供的,该方式的能量回收效率极低,不仅浪费了氢气所产生的电能,也增加了系统的复杂性。
氢氧燃料电池汽车的高压氢瓶中富含能量,其中除了化学能,还有压力能。利用其压力能,可以驱动压缩空气的装置,以减小耗用电池发电的电力。
用压缩机、鼓风机等传动机械压缩空气需要消耗燃料电池发出的电力,以提供压缩空气所需的原动力,导致由氢气产生的珍贵的电力没有完全用到汽车行驶,降低了燃料电池汽车的行驶里程与燃料利用率。由于汽车内的空间有限,故氢氧燃料电池汽车采用气瓶储存空气是不可取的。
专利CN201710431329.7介绍了一种新能源汽车集中供气系统及供气方法,该系统主要包括两级压缩空气压缩机、燃料电池系统、风冷换热器以及气压制动刹车系统。该专利主要利用空气压缩机产出的压缩气体导入膨胀机进行压力能的回收,并利用电池反应剩余的冷热气体进行冷量和热量的回收。但是值得关注的是该系统所回收的压力能是由空气压缩机所提供的,该方式的能量回收效率极低,不仅浪费了氢气所产生的电能,也增加了系统的复杂性。
为了克服现有技术中存在的问题,本发明提供一种燃料电池汽车节能供气系统,该节能供气系统应利用高压氢气瓶的压力能,推动空气压缩装置,将常压空气加压,以便氢燃料电池堆中使用空气,直接将氢气的压力能转变为空气的压力能,极大提高了能量利用率。
本发明采用的技术方案是:一种燃料电池汽车节能供气系统,它包括车用高压氢气瓶、减压电磁阀、多用途压缩机、压力传感器和控制系统,所述车用高压氢气瓶上安装减压电磁阀或车用高压氢气瓶通过管线与减压电磁阀相连,减压电磁阀的出口与多用途压缩机氢气进口相连,多用途压缩机的另一端吸入的空气被压缩,被压缩的空气直接用于电池堆阴极;所述压力传感器包含一个设置在减压电磁阀与多用途压缩机之间管线上的氢气进口端压力传感器和一个设置在多用途压缩机排出压缩空气管线上的空气出口端压力传感器;所述控制系统采用PLC控制器,PLC控制器与减压电磁阀、氢气进口端压力传感器、空气出口端压力传感器、多用途压缩机电连接;当经过减压电磁阀的氢气压力不足以推动多用途压缩机工作时,所述氢气进口端压力传感器检测到氢气压力低于PLC控制器设定的多用途压缩机自动工作进口压力,或所述空气出口端压力传感器检测到空气出口端压力低于PLC控制器设定的空气压力,所述控制系统启动多用途压缩机供电系统,使用电能驱动多用途压缩机,同时压缩氢气与空气,保证燃料电池堆的气体供应;此时控制系统发出警报,提示用户燃料不足;当用户加充氢气后,压力达到正常值,警报解除,控制系统切断多用途压缩机外部供电,整个供气系统正常工作。
所述控制系统采用S7-200 PLC控制器。
本发明的有益效果是:这种燃料电池汽车节能供气系统包括车用高压氢气瓶、减压电磁阀、多用途压缩机和控制系统。控制系统采用PLC控制器,氢气进口端压力传感器设置在减压电磁阀与多用途压缩机之间管线上,空气出口端压力传感器设置在多用途压缩机排出压缩空气的管线上;当经过减压电磁阀的氢气压力不足以推动多用途压缩机工作时,或空气出口端压力传感器检测到空气出口端压力低于PLC控制器的设定空气压力时,控制系统启动多用途压缩机供电系统,使用电能驱动多用途压缩机,同时压缩氢气与空气,保证燃料电池堆的气体供应。该节能供气系统结构简单,占用空间小,容易实现集成化。利用高压氢气瓶的压力能,推动空气压缩装置,将常压空气加压,以便氢燃料电池堆中使用空气,直接将氢气的压力能转变为空气的压力能,极大提高了能量利用率。
图1是燃料电池汽车节能供气系统的原理图。
图2是SP-200PLC控制器的原理图。
图中:1、车用高压氢气瓶,2、减压电磁阀,3、多用途压缩机,4a、氢气进口端压力传感器,4b、空气出口端压力传感器,5、控制系统。
图1示出了一种燃料电池汽车节能供气系统的原理图。这种燃料电池汽车节能供气系统包括车用高压氢气瓶1、减压电磁阀2、多用途压缩机3、压力传感器和控制系统5,压力传感器包括氢气进口端压力传感器4a、空气出口端压力传感器4b。车用高压氢气瓶1通过管线与减压电磁阀2相连,减压电磁阀2的出口与多用途压缩机3氢气进口相连,多用途压缩机3的另一端吸入的空气被压缩,被压缩的空气直接用于电池堆阴极;多用途压缩机3的空气进口端为经过滤后的大气中的空气,多用途压缩机氢气出口端排出的较低压力氢气作用于电池堆阳极;氢气进口端压力传感器4a安装在氢气进口端,空气出口端压力传感器4b安装在空气出口端。控制系统(5)采用PLC控制器,PLC控制器与减压电磁阀2、压力传感器、多用途压缩机3电连接,并可控制减压电磁阀2及多用途压缩机3的动作。
图2示出了PLC控制器的原理图。氢气进口端压力传感器4a、空气出口端压力传感器4b、减压电磁阀2和压缩机控制继电器电连接SP-200控制器,压缩机控制继电器与多用途压缩机3电连接,多用途压缩机3由随车电源驱动。
当经过减压电磁阀2的氢气压力不足以推动多用途压缩机3时,即氢气进口端压力传感器4a检测到压力低于PLC控制器设定的多用途压缩机3自动工作进口压力,或空气出口端压力传感器4b检测到空气出口端压力低于PLC控制器设定的空气压力,PLC控制器经压缩机控制继电器启动多用途压缩机3,使用随车电源驱动多用途压缩机3,保证燃料电池堆的气体供应;此时控制系统5发出警报,提示用户燃料不足。当用户加充氢气后,压力达到正常值,警报解除,控制系统5切断多用途压缩机3的外部供电,整个供气系统正常工作。当系统关机时,减压电磁阀2关闭,系统停止工作。
PLC控制器是数字运算操作电子系统的可编程逻辑控制器,用于控制机械的生产过程。现在市面上常用的最简单的西门子S7系列PLC体积小、速度快、标准化,具有网络通信能力,功能更强,可靠性更高,S7-200 PLC控制器(型号为6ES7211-0BA23-0XB0,AC/DC/继电器,6点输入4点输出)是微型PLC,它适用于各行各业,各种场合中的自动检测、监测及控制等,S7-200 PLC的强大功能使其无论单机运行,或连成网络都能实现复杂的控制功能。
本发明的实施方式同本发明的最佳实施方式。
这种燃料电池汽车节能供气系统结构简单,占用空间小,容易实现集成化。利用高压氢气瓶的压力能,推动空气压缩装置,将常压空气加压,以便氢燃料电池堆中使用空气,直接将氢气的压力能转变为空气的压力能,极大提高了能量利用率。
无。
Claims (2)
- 一种燃料电池汽车节能供气系统,它包括车用高压氢气瓶(1)、减压电磁阀(2)、多用途压缩机(3)、压力传感器和控制系统(5),其特征是:所述车用高压氢气瓶(1)上安装减压电磁阀(2)或车用高压氢气瓶(1)通过管线与减压电磁阀(2)相连,减压电磁阀(2)的出口与多用途压缩机(3)氢气进口相连,多用途压缩机(3)的另一端吸入的空气被压缩,被压缩的空气直接用于电池堆阴极;所述压力传感器包含一个设置在减压电磁阀(2)与多用途压缩机(3)之间管线上的氢气进口端压力传感器(4a)和一个设置在多用途压缩机(3)排出压缩空气管线上的空气出口端压力传感器(4b);所述控制系统(5)采用PLC控制器,PLC控制器与减压电磁阀(2)、氢气进口端压力传感器(4a)、空气出口端压力传感器(4b)、多用途压缩机(3)电连接;当经过减压电磁阀(2)的氢气压力不足以推动多用途压缩机(3)工作时,所述氢气进口端压力传感器(4a)检测到氢气压力低于PLC控制器设定的多用途压缩机(3)自动工作进口压力,或所述空气出口端压力传感器(4b)检测到空气出口端压力低于PLC控制器设定的空气压力,所述控制系统(5)启动多用途压缩机供电系统,使用电能驱动多用途压缩机(3),同时压缩氢气与空气,保证燃料电池堆的气体供应;此时控制系统(5)发出警报,提示用户燃料不足;当用户加充氢气后,压力达到正常值,警报解除,控制系统(5)切断多用途压缩机外部供电,整个供气系统正常工作。
- 根据权利要求1所述的一种燃料电池汽车节能供气系统,其特征是:所述控制系统(5)采用S7-200 PLC控制器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020543997A JP7050362B2 (ja) | 2018-08-19 | 2019-04-01 | 燃料電池自動車向け省エネガス供給システム |
US17/030,469 US20210013527A1 (en) | 2018-08-19 | 2020-09-24 | Gas supply system for fuel cell vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810944410.XA CN109017409B (zh) | 2018-08-19 | 2018-08-19 | 一种燃料电池汽车节能供气系统 |
CN201810944410.X | 2018-08-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/030,469 Continuation-In-Part US20210013527A1 (en) | 2018-08-19 | 2020-09-24 | Gas supply system for fuel cell vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020037988A1 true WO2020037988A1 (zh) | 2020-02-27 |
Family
ID=64631971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/080790 WO2020037988A1 (zh) | 2018-08-19 | 2019-04-01 | 一种燃料电池汽车节能供气系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210013527A1 (zh) |
JP (1) | JP7050362B2 (zh) |
CN (1) | CN109017409B (zh) |
WO (1) | WO2020037988A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114400353A (zh) * | 2022-01-24 | 2022-04-26 | 北京国家新能源汽车技术创新中心有限公司 | 一种车载氢系统零部件验证装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109017409B (zh) * | 2018-08-19 | 2020-07-24 | 大连理工大学 | 一种燃料电池汽车节能供气系统 |
CN109823201A (zh) * | 2018-12-29 | 2019-05-31 | 吴志新 | 一种电动汽车刹车系统储气瓶的压缩充气系统及方法 |
CN112803045A (zh) * | 2021-04-14 | 2021-05-14 | 北京氢澜科技有限公司 | 燃料电池的氢气系统控制方法、装置及设备 |
CN114420974A (zh) * | 2021-12-14 | 2022-04-29 | 东风汽车集团股份有限公司 | 一种燃料电池车用外部供氢系统 |
CN114475366B (zh) * | 2022-03-18 | 2024-08-20 | 湖南精准信息科技有限公司 | 基于凸优化的燃料电池汽车节能驾驶方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194389A (zh) * | 2005-07-27 | 2008-06-04 | 丰田自动车株式会社 | 燃料电池系统 |
CN101764239A (zh) * | 2008-12-26 | 2010-06-30 | 上海神力科技有限公司 | 一种带有脉宽调制电磁阀的燃料电池氢气循环系统 |
CN105633435A (zh) * | 2015-12-31 | 2016-06-01 | 北京建筑大学 | 一种车用燃料电池系统及其工作方法 |
US20160190611A1 (en) * | 2014-12-29 | 2016-06-30 | Volkswagen Ag | Fuel cell system as well as vehicle having such a fuel cell system |
CN106486685A (zh) * | 2015-08-24 | 2017-03-08 | 北京亿华通科技股份有限公司 | 一种燃料电池系统及燃料电池系统的工作方法 |
CN109017409A (zh) * | 2018-08-19 | 2018-12-18 | 大连理工大学 | 一种燃料电池汽车节能供气系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523176A (en) * | 1994-06-17 | 1996-06-04 | Fonda-Bonardi; G. | Apparatus for generating electricity |
US20020112479A1 (en) | 2001-01-09 | 2002-08-22 | Keefer Bowie G. | Power plant with energy recovery from fuel storage |
JP4938224B2 (ja) | 2004-03-10 | 2012-05-23 | トヨタ自動車株式会社 | 燃料電池システム |
US8101308B2 (en) * | 2008-06-25 | 2012-01-24 | GM Global Technology Operations LLC | Adaptive compressor surge control in a fuel cell system |
JP6233520B2 (ja) | 2014-07-24 | 2017-11-29 | 日産自動車株式会社 | 燃料電池システム |
CN204271190U (zh) * | 2014-11-20 | 2015-04-15 | 双登集团股份有限公司 | 一种自给充装的燃料电池氢气供气系统 |
CN106784923A (zh) * | 2017-03-27 | 2017-05-31 | 上海重塑能源科技有限公司 | 燃料电池供气系统 |
CN107310343B (zh) * | 2017-06-08 | 2019-10-11 | 西安交通大学 | 一种新能源汽车集中供气系统及供气方法 |
CN108099884B (zh) * | 2018-01-04 | 2023-07-07 | 郑州轻工业学院 | 一种燃料电池汽车供气系统 |
CN208714974U (zh) * | 2018-08-19 | 2019-04-09 | 大连理工大学 | 一种燃料电池汽车节能供气系统 |
-
2018
- 2018-08-19 CN CN201810944410.XA patent/CN109017409B/zh not_active Expired - Fee Related
-
2019
- 2019-04-01 JP JP2020543997A patent/JP7050362B2/ja active Active
- 2019-04-01 WO PCT/CN2019/080790 patent/WO2020037988A1/zh active Application Filing
-
2020
- 2020-09-24 US US17/030,469 patent/US20210013527A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194389A (zh) * | 2005-07-27 | 2008-06-04 | 丰田自动车株式会社 | 燃料电池系统 |
CN101764239A (zh) * | 2008-12-26 | 2010-06-30 | 上海神力科技有限公司 | 一种带有脉宽调制电磁阀的燃料电池氢气循环系统 |
US20160190611A1 (en) * | 2014-12-29 | 2016-06-30 | Volkswagen Ag | Fuel cell system as well as vehicle having such a fuel cell system |
CN106486685A (zh) * | 2015-08-24 | 2017-03-08 | 北京亿华通科技股份有限公司 | 一种燃料电池系统及燃料电池系统的工作方法 |
CN105633435A (zh) * | 2015-12-31 | 2016-06-01 | 北京建筑大学 | 一种车用燃料电池系统及其工作方法 |
CN109017409A (zh) * | 2018-08-19 | 2018-12-18 | 大连理工大学 | 一种燃料电池汽车节能供气系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114400353A (zh) * | 2022-01-24 | 2022-04-26 | 北京国家新能源汽车技术创新中心有限公司 | 一种车载氢系统零部件验证装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109017409B (zh) | 2020-07-24 |
JP7050362B2 (ja) | 2022-04-08 |
JP2021515958A (ja) | 2021-06-24 |
US20210013527A1 (en) | 2021-01-14 |
CN109017409A (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020037988A1 (zh) | 一种燃料电池汽车节能供气系统 | |
WO2023035567A1 (zh) | 具有冷却功能的空压机系统、燃料电池系统及控制方法 | |
CN112259759B (zh) | 一种燃料电池发动机 | |
US20240178423A1 (en) | Apparatus, system and method for generating nitrogen gas from fuel-cell exhaust gas | |
CN112382779A (zh) | 一种带有能量回收系统的燃料电池装置 | |
CN114122458B (zh) | 氢燃料电池车辆及其供氢系统 | |
CN213232516U (zh) | 一种制备高压高纯氢气的电化学氢泵系统 | |
CN208714974U (zh) | 一种燃料电池汽车节能供气系统 | |
CN110400951B (zh) | 一种氢燃料电池系统 | |
CN1268024C (zh) | 燃料电池用压缩机-膨胀机系统 | |
CN110752395B (zh) | 氢能汽车涡轮控制系统和氢能汽车 | |
CN209744040U (zh) | 一种无人机用制氢加氢中继站 | |
CN112467178A (zh) | 一种以铁粉为燃料的车载燃料电池供氢系统 | |
CN213845337U (zh) | 一种带有能量回收系统的燃料电池装置 | |
AU2023239656A1 (en) | Compression system with gas leak recovery and fuel cells, and method | |
CN210429978U (zh) | 一种氢燃料电池系统 | |
CN107492672B (zh) | 一种氢能汽车上专用的氢能压力发电设备 | |
CN114597454A (zh) | 一种dcdc集成动力电池的断电后继续吹扫系统 | |
CN219497849U (zh) | 一种防阻塞的空气压缩系统 | |
CN213007636U (zh) | 一种纯电动冷藏车的制冷机供电电路 | |
CN217444449U (zh) | 一种适用于高空作业的燃料电池发动机 | |
CN221299445U (zh) | 一种气体压缩机的气体系统 | |
CN215377454U (zh) | 一种四级压缩的空压机布置结构 | |
CN214705993U (zh) | 一种用于氢燃料电池的空压机组 | |
KR20140046190A (ko) | 잠수함의 연료전지 시스템 및 그 연료전지 시스템의 가스 제거방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19851796 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020543997 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19851796 Country of ref document: EP Kind code of ref document: A1 |