WO2020037675A1 - Data priority indication for uplink grant - Google Patents

Data priority indication for uplink grant Download PDF

Info

Publication number
WO2020037675A1
WO2020037675A1 PCT/CN2018/102323 CN2018102323W WO2020037675A1 WO 2020037675 A1 WO2020037675 A1 WO 2020037675A1 CN 2018102323 W CN2018102323 W CN 2018102323W WO 2020037675 A1 WO2020037675 A1 WO 2020037675A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
priority
message
control element
need
Prior art date
Application number
PCT/CN2018/102323
Other languages
French (fr)
Inventor
Liang Fang
Heikki Einari Sipola
Haitao Li
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2018/102323 priority Critical patent/WO2020037675A1/en
Priority to CN201880096804.2A priority patent/CN112602366A/en
Publication of WO2020037675A1 publication Critical patent/WO2020037675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the invention relates to communications.
  • network allocates radio resources for terminal devices based on requests from the terminal devices.
  • the number of terminal devices continues to increase, there may be situations in which the network is unable to serve the terminal devices quickly enough to maintain a certain service.
  • the horde of uplink grant requests may block even the most critical services. Therefore, it may be beneficial to provide solutions which enable the network to serve at least the most critical terminal devices and/or services.
  • Figure 1 illustrates an example a wireless communication system to which embodiments of the invention may be applied
  • FIGS. 2 and 3 illustrate flow diagrams according to some embodiments
  • FIGS. 4A and 4B illustrate signal diagrams according to some embodiments
  • FIGS 5A, 5B, 5C and 5D illustrate some embodiments
  • FIGS. 6A and 6B illustrate signal diagrams according to some embodiments
  • FIGS 8 and 9 illustrate block diagrams of apparatuses according to some embodiments.
  • UMTS universal mobile telecommunications system
  • UTRAN long term evolution
  • LTE long term evolution
  • WiMAX wireless local area network
  • PCS personal communications services
  • WCDMA wideband code division multiple access
  • UWB ultra-wideband
  • IMS Internet Protocol multimedia subsystems
  • Figure 1 depicts examples of simplified system architectures only showing some elements and functional entities, all being logical units, whose implementation may differ from what is shown.
  • the connections shown in Figure 1 are logical connections; the actual physical connections may be different. It is apparent to a person skilled in the art that the system typically comprises also other functions and structures than those shown in Figure 1.
  • Figure 1 shows a part of an exemplifying radio access network.
  • Figure 1 shows user devices 100 and 102 configured to be in a wireless connection on one or more communication channels in a cell with an access node (such as (e/g) NodeB) 104 providing the cell.
  • the physical link from a user device to a (e/g) NodeB is called uplink (UL) or reverse link and the physical link from the (e/g) NodeB to the user device is called downlink or forward link.
  • (e/g) NodeBs or their functionalities may be implemented by using any node, host, server or access point etc. entity suitable for such a usage.
  • Said node 104 may be referred to as network node 104 or network element 104 in a broader sense.
  • a communications system typically comprises more than one (e/g) NodeB in which case the (e/g) NodeBs may also be configured to communicate with one another over links, wired or wireless, designed for the purpose. These links may be used for signalling purposes.
  • the (e/g) NodeB is a computing device configured to control the radio resources of communication system it is coupled to.
  • the NodeB may also be referred to as a base station, an access point or any other type of interfacing device including a relay station capable of operating in a wireless environment.
  • the (e/g) NodeB includes or is coupled to transceivers. From the transceivers of the (e/g) NodeB, a connection is provided to an antenna unit that establishes bi-directional radio links to user devices.
  • the antenna unit may comprise a plurality of antennas or antenna elements.
  • the (e/g) NodeB is further connected to core network 110 (CN or next generation core NGC) .
  • core network 110 CN or next generation core NGC
  • S-GW serving gateway
  • P-GW packet data network gateway
  • MME mobile management entity
  • the user device also called UE, user equipment, user terminal, terminal device, etc.
  • UE user equipment
  • user terminal terminal device
  • any feature described herein with a user device may be implemented with a corresponding apparatus, such as a relay node.
  • a relay node is a layer 3 relay (self-backhauling relay) towards the base station.
  • the user device typically refers to a portable computing device that includes wireless mobile communication devices operating with or without a subscriber identification module (SIM) , including, but not limited to, the following types of devices: a mobile station (mobile phone) , smartphone, personal digital assistant (PDA) , handset, device using a wireless modem (alarm or measurement device, etc. ) , laptop and/or touch screen computer, tablet, game console, notebook, and multimedia device.
  • SIM subscriber identification module
  • a mobile station mobile phone
  • smartphone personal digital assistant
  • handset device using a wireless modem (alarm or measurement device, etc. )
  • laptop and/or touch screen computer tablet, game console, notebook, and multimedia device.
  • a user device may also be a nearly exclusive uplink only device, of which an example is a camera or video camera loading images or video clips to a network.
  • a user device may also be a device having capability to operate in Internet of Things (IoT) network which is a scenario in which objects are provided with the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.
  • IoT Internet of Things
  • the user device (or in some embodiments a layer 3 relay node) is configured to perform one or more of user equipment functionalities.
  • the user device may also be called a subscriber unit, mobile station, remote terminal, access terminal, user terminal or user equipment (UE) just to mention but a few names or apparatuses.
  • CPS cyber-physical system
  • ICT devices sensors, actuators, processors microcontrollers, etc.
  • Mobile cyber physical systems in which the physical system in question has inherent mobility, are a subcategory of cyber-physical systems. Examples of mobile physical systems include mobile robotics and electronics transported by humans or animals.
  • 5G enables using multiple input -multiple output (MIMO) antennas, many more base stations or nodes than the LTE (a so-called small cell concept) , including macro sites operating in co-operation with smaller stations and employing a variety of radio technologies depending on service needs, use cases and/or spectrum available.
  • MIMO multiple input -multiple output
  • 5G mobile communications supports a wide range of use cases and related applications including video streaming, augmented reality, different ways of data sharing and various forms of machine type applications, including vehicular safety, different sensors and real-time control.
  • 5G is expected to have multiple radio interfaces, namely cmWave and mmWave, and also being integradable with existing legacy radio access technologies, such as the LTE.
  • Integration with the LTE may be implemented, at least in the early phase, as a system, where macro coverage is provided by the LTE and 5G radio interface access comes from small cells by aggregation to the LTE.
  • 5G is planned to support both inter-RAT operability (such as LTE-5G) and inter-RI operability (inter-radio interface operability, such as cmWave-mmWave) .
  • inter-RAT operability such as LTE-5G
  • inter-RI operability inter-radio interface operability, such as cmWave-mmWave
  • One of the concepts considered to be used in 5G networks is network slicing in which multiple independent and dedicated virtual sub-networks (network instances) may be created within the same infrastructure to run services that have different requirements on latency, reliability, throughput and mobility.
  • the current architecture in LTE networks is fully distributed in the radio and fully centralized in the core network.
  • the low latency applications and services in 5G require to bring the content close to the radio which leads to local break out and multi-access edge computing (MEC) .
  • 5G enables analytics and knowledge generation to occur at the source of the data. This approach requires leveraging resources that may not be continuously connected to a network such as laptops, smartphones, tablets and sensors.
  • MEC provides a distributed computing environment for application and service hosting. It also has the ability to store and process content in close proximity to cellular subscribers for faster response time.
  • Edge computing covers a wide range of technologies such as wireless sensor networks, mobile data acquisition, mobile signature analysis, cooperative distributed peer-to-peer ad hoc networking and processing also classifiable as local cloud/fog computing and grid/mesh computing, dew computing, mobile edge computing, cloudlet, distributed data storage and retrieval, autonomic self-healing networks, remote cloud services, augmented and virtual reality, data caching, Internet of Things (massive connectivity and/or latency critical) , critical communications (autonomous vehicles, traffic safety, real-time analytics, time-critical control, healthcare applications) .
  • technologies such as wireless sensor networks, mobile data acquisition, mobile signature analysis, cooperative distributed peer-to-peer ad hoc networking and processing also classifiable as local cloud/fog computing and grid/mesh computing, dew computing, mobile edge computing, cloudlet, distributed data storage and retrieval, autonomic self-healing networks, remote cloud services, augmented and virtual reality, data caching, Internet of Things (massive connectivity and/or latency critical)
  • the communication system is also able to communicate with other networks, such as a public switched telephone network or the Internet 112, or utilise services provided by them.
  • the communication network may also be able to support the usage of cloud services, for example at least part of core network operations may be carried out as a cloud service (this is depicted in Figure 1 by “cloud” 114) .
  • the communication system may also comprise a central control entity, or a like, providing facilities for networks of different operators to cooperate for example in spectrum sharing.
  • Edge cloud may be brought into radio access network (RAN) by utilizing network function virtualization (NVF) and software defined networking (SDN) .
  • RAN radio access network
  • NVF network function virtualization
  • SDN software defined networking
  • Using edge cloud may mean access node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head or base station comprising radio parts. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts.
  • Application of cloudRAN architecture enables RAN real time functions being carried out at the RAN side (in a distributed unit, DU 104) and non-real time functions being carried out in a centralized manner (in a centralized unit, CU 108) .
  • 5G may also utilize satellite communication to enhance or complement the coverage of 5G service, for example by providing backhauling.
  • Possible use cases are providing service continuity for machine-to-machine (M2M) or Internet of Things (IoT) devices or for passengers on board of vehicles, or ensuring service availability for critical communications, and future railway/maritime/aeronautical communications.
  • Satellite communication may utilise geostationary earth orbit (GEO) satellite systems, but also low earth orbit (LEO) satellite systems, in particular mega-constellations (systems in which hundreds of (nano) satellites are deployed) .
  • GEO geostationary earth orbit
  • LEO low earth orbit
  • mega-constellations systems in which hundreds of (nano) satellites are deployed
  • Each satellite 106 in the mega-constellation may cover several satellite-enabled network entities that create on-ground cells.
  • the on-ground cells may be created through an on-ground relay node 104 or by a gNB located on-ground or in a satellite.
  • the depicted system is only an example of a part of a radio access system and in practice, the system may comprise a plurality of (e/g) NodeBs, the user device may have an access to a plurality of radio cells and the system may comprise also other apparatuses, such as physical layer relay nodes or other network elements, etc. At least one of the (e/g) NodeBs or may be a Home (e/g) nodeB. Additionally, in a geographical area of a radio communication system a plurality of different kinds of radio cells as well as a plurality of radio cells may be provided.
  • Radio cells may be macro cells (or umbrella cells) which are large cells, usually having a diameter of up to tens of kilometers, or smaller cells such as micro-, femto-or picocells.
  • the (e/g) NodeBs of Figure 1 may provide any kind of these cells.
  • a cellular radio system may be implemented as a multilayer network including several kinds of cells. Typically, in multilayer networks, one access node provides one kind of a cell or cells, and thus a plurality of (e/g) NodeBs are required to provide such a network structure.
  • a network which is able to use “plug-and-play” (e/g) NodeBs includes, in addition to Home (e/g) NodeBs (H (e/g) nodeBs) , a home node B gateway, or HNB-GW (not shown in Figure 1) .
  • HNB-GW HNB Gateway
  • a HNB Gateway (HNB-GW) which is typically installed within an operator’s network may aggregate traffic from a large number of HNBs back to a core network.
  • NB-IoT Narrowband Internet of Things
  • DV data volume
  • PH power headroom
  • CE Media Access Control
  • BSR Buffer Status Report
  • DV and PH MAC CE or BSR MAC CE can be used, generally, to indicate a need to transmit data. I.e. the UE may request radio resources from the network to transmit data.
  • the DV and PH or BSR reporting procedure may be applicable for NB-IoT UEs and may be used to provide the serving network node (e.g.
  • the DV field may identify the total amount of data available across all logical channels and of data not yet associated with a logical channel after all MAC Protocol Data Units (PDUs) for the Transmission Time Interval (TTI) have been built.
  • PDUs Protocol Data Units
  • the amount of data may be indicated in number of bytes. It may include all data that is available for transmission in the Radio Link Control (RLC) layer, in the Packet Data Converge Protocol (PDCP) layer, and in the Radio Resource Control (RRC) layer.
  • RLC Radio Link Control
  • PDCP Packet Data Converge Protocol
  • RRC Radio Resource Control
  • the current problem may be that the UE cannot express priority of the data that it needs to transmit.
  • the network i.e. which allocates the radio resources
  • the network does not know which UE should be served first and/or quicker.
  • Figure 2 illustrates a flow diagram indicating a method in a terminal device of a wireless network, the method comprising: transmitting (block 202) a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; receiving (block 204) , from the network node, an uplink grant message as a response to the transmitted message; and transmitting (block 206) the data at least partially on radio resources indicated in the uplink grant message.
  • Figure 3 illustrates a flow diagram indicating a method in a network node of a wireless network, the method comprising: receiving (block 302) a message from a terminal device of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; performing (block 304) allocation of radio resources based at least on the received message; and transmitting (block 306) , to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
  • terminal device may denote UE 100 or UE 102 (or some other UE) .
  • network node may refer to network node 104 or access node 104.
  • Wireless network may refer to any wireless network.
  • the wireless network is a cellular network.
  • the wireless network is a cellular network utilizing NB-IoT technology.
  • the wireless network is a NB-IoT network.
  • the UE 100 may request radio resources for transmitting data from its transmit buffer.
  • the UE 100 indicates priority of the data in the radio resources request message (i.e. transmitted in block 202) .
  • the network node 104 may, for example, serve first UE or UEs that has/have higher priority data to be transmitted compared with a UE or UEs that has/have lower priority data for transmission.
  • the network node 104 may differentiate UEs or UE’s mission critical service, and may thus schedule Narrowband Physical Uplink Shared Channel (NPUSCH) with priority in MAC layer for UE that is mission critical and/or has mission critical service (in other words has high priority data to be transmitted) .
  • NPUSCH Narrowband Physical Uplink Shared Channel
  • UE type A (e.g. UE 100) is used to detect earthquake.
  • UE type A may utilize User Plane Cellular Internet of Things (CIoT) Evolved Packet System (EPS) Optimization.
  • CCIoT User Plane Cellular Internet of Things
  • EPS Evolved Packet System
  • the UE type A may require two services:
  • DRB Data Radio Bearer
  • ⁇ UE type B is used to electricity charge.
  • UE type B may utilize User Plane CIoT EPS Optimisation and one service is required:
  • control plane CIot EPS optimization may enable support of efficient transport of user data (IP, non-IP or SMS) over control plane via the MME without triggering data radio bearer establishment.
  • the scheduling scheme is assumed to be round robin. So, for example, if the system is dimensioned to support high number of NB-IoT UEs, the mac-ContentionResolutionTimer-r13 may be set to 960 ms (millisecond) . Hence, in case UE type A triggers earthquake alarm, Random Access Channel (RACH) access is successful (i.e. Msg3 is received, note that DV and PH CEs or BSR CE may be reported with Msg3 or included in Msg3) , it may take up to 960 ms (just before ContentionResolutionTimer-r13 expiry) to schedule the urgent NPUSCH. In this example, assumption is that setting of “mac-ContentionResolutionTimer-r13” represents the maximum scheduling delay after msg3 reception. This delay can be assumed by e.g. the following configuration:
  • ⁇ NPUSCH and NB-IoT Physical Downlink Control Channel (NPDCCH) repetition is set to 4, and suppose all NPUSCH CRC OK,
  • UE 100 (which can be UE type A or UE type B, for example) , acquires data for transmission (block 402) .
  • data may be water metering reading (s) , earthquake alarm and earthquake data.
  • the UE 100 determines priority of the data. The determination may be based on preconfigured classes and/or priority configuration information from the network (e.g. from network node 102) . That is, the network may, in some embodiments, configure priorities of different data classes. Hence, the UE 100 may determine priority of the data. The UE 100 may then use the reserved data priority block of the message (i.e.
  • the network node 104 may first process and allocate radio resources for UEs that request radio resources for high priority data (e.g. earthquake alarm) for certain TTI, then process medium priority requests and finally lower priority requests. How the network node 102 utilizes the priority information may vary between implementations, but it may be beneficial to provide radio resources for high/higher priority data as soon as possible or at least before providing resources for lower priority requests. For example, the network node 104 may maintain a queue for said radio resource request messages, wherein high priority request are always processed before lower priority requests. Requests here refer to the message or messages of block 202.
  • the network node 104 indicates the resources to the UE 100 with an uplink grant message (block 408) .
  • UE 100 may then transmit data on the indicated radio resources. If not all data, that needs to be transmitted, is successfully transmitted in block 206, the UE 100 may request further resources similarly as in block 404. Data that needs to be transmitted may refer to data that is in transmission buffer of an UE, for example.
  • Figure 4B illustrates a signal diagram in which two UEs (i.e. UE 100 and UE 102) request radio resources for transmitting data according to an embodiment.
  • blocks 412, 422 may be similar as block 402; blocks 414, 424 may be similar as block 404; block 430 may be similar as block 304; and blocks 418, 428 may be similar as block 408.
  • the network node 104 may need to provide resources for more than one UE.
  • the UE 100 may transmit the message (i.e. UL grant request) , wherein the message indicates the priority of the data to be transmitted. In this case it is either medium or high priority.
  • UE 102 i.e. type B UE in this example
  • the network node 104 may allocate resources first to UE 100 and after that to UE 102. That is, network node 104 may prioritize UE 100 transmission over UE 102 transmission. Such may also or alternatively comprise allocating more resources for UE 100.
  • the UL grant messages 418, 428 may indicate the allocated radio resources. As UE 102 transmission has lower priority, it may need to wait longer for the UL grant, i.e. time between transmitting the message of block 424 and receiving grant in block 428 may be longer compared with time between blocks 414 and 418.
  • the UE 100 may select the highest priority logical channel, classify priority (based on predetermined configuration or configuration by the network) and indicate this priority in the message that requests the radio resources.
  • the network node 104 may then allocate (as in block 430) radio resources based on the indicated priorities.
  • the performing the allocation of radio resources is based on a plurality of messages from a plurality of terminal devices (e.g.
  • the network node 104 is further configured to process one or more messages indicating a higher priority of data that needs to be transmitted with a higher priority compared with one or more messages indicating a lower priority of data that needs to be transmitted.
  • this may mean that the network node 104 processes message from UE 100 before processing message from UE 102.
  • this may mean that the network node 104 allocates radio resources to UE 100 before allocating radio resource to UE 102.
  • the message from UE 100 indicates higher priority than the message from UE 102. It could well be the other way around in some examples. In such case (s) the network node 102 may prioritize UE 102 over UE 100.
  • Figures 5A, 5B, 5C and 5D illustrate some examples on how the priority can be expressed by the UE 100, 102 to the network node 104.
  • Figures 5A and 5B relate to DV and PH MAC CE reporting and
  • Figures 5C and 5D relate to BSR MAC CE reporting.
  • the message 3 may comprise PH MAC CE 506 and DV MAC CE 508, and reserved bits 502, 504.
  • the bits 502, 504 are used to indicate the priority of the data that needs to be transmitted. So, the message indicating the need to transmit data further comprises the DV CE 508 and PH CE 506.
  • the reserved data priority block may thus be indicated with reference number 510 as shown in Figure 5B.
  • the reserved data priority block may denote and/or comprise the reserved bits 502, 504. So, the reserved data priority block 510 may be used to indicate four different classes/options: “00” , “01” , “10” , “11” . As noted above, three priority classes may be used in some examples.
  • “00” may denote high priority, such as earthquake alarm (e.g. SRB)
  • “01” may denote medium priority such as earthquake data (e.g. DRB 1)
  • “10” may denote low priority (e.g. DRB 2) .
  • the message indicating the need to transmit data further comprises BSR CE 514.
  • BSR CE 514 may normally comprise Logical Channel Group (LCG) Identifier (ID) 512 which may be used, e.g. in LTE, to indicate logical channel group.
  • LCG Logical Channel Group
  • ID Logical Channel Group
  • the BSR message comprises a reserved data priority block 520 and BSR CE 514.
  • the block 520 may utilize the bits reserved for LGC ID 512. Said block 520 may be used similarly as block 510, for example.
  • Msg3 of RACH procedure may comprise, for example, either BSR CE 514 or DV and PH CEs 506, 508. Both may be used to indicate the need to transmit data, and with the proposed solution also the priority of the data according to predetermined class system or according to network configuration.
  • BSR is referred to as Short BSR.
  • the reserved data priority block 510, 520 indicates one of at least three different priority classes. As noted above, there can be more or less than three priority classes. In one embodiment, there is three priority classes: DRB 1 (low priority) , DRB 2 (medium priority) , and SRB (high priority) .
  • the reserved data priority block 510, 520 precedes, in the message (i.e. message transmitted in block 202 and referred to as Msg3 of RACH process at least in some examples) , the BSR CE 514 or the PH CE 506 and DV CE 508.
  • the message i.e. message transmitted in block 202 and referred to as Msg3 of RACH process at least in some examples
  • blocks 502, 504 and 512 may be used to indicate said priority and may already be available, although not used as in the current solution, for the UE.
  • Figures 6A and 6B illustrate signal diagrams according to some embodiments.
  • the network node 104 may transmit (in block 602) a priority configuration information to the UE 100, wherein the priority configuration information indicates a data type and/or data priority.
  • the UE 100 may receive the priority configuration information.
  • the UE 100 may include, from a transmit buffer of the UE 100, at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data (e.g. message discussed above with respect to block 202) .
  • the UE 100 may transmit the message indicating the need to transmit data and comprising said at least some data.
  • the network node 104 may receive the message and allocated radio resources as was discussed above.
  • Uplink grant message may be transmitted as shown in block 608, and in block 610 the UE 100 may transmit the needed data (e.g. the data that did not fit into the message of block 606 and/or data that needs to be transmitted but has a different data type or data priority than the indicated data type or data priority (i.e. indicated with message 602) ) . So, the priority configuration information in block 602 may cause the UE 100 to include at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data. This procedure may be referred to as Early Data Transmission (EDT) . However, in the current solutions it is not possible to indicate what type of data or what priority class data should be included into the message (e.g. Msg 3) as in now proposed.
  • EDT Early Data Transmission
  • the network may configure that only the earthquake alarm (s) should be transmitted already with the message of block 202 or 606.
  • the highest priority data is configured to be transmitted in said message. However, this may be up to the network to decide.
  • the solution of Figure 6A may work individually or together with the solution in which the UE 100 indicates the priority of the data that needs to be transmitted.
  • the UE 100 may indicate priority of the data that it needs to transmit, wherein said data may exclude the data that is already included in message of block 606.
  • network node 104 may receive the most critical data before transmitting message 608 and receiving message 610.
  • message 610 may be transmitted to some other entity in some examples.
  • the most critical data which is network configurable via message 602
  • the processing of said data can be performed quicker than in prior art solutions. Hence, for example, earthquake alarm can be given faster. Such may be lifesaving in some situations.
  • blocks 608 and 610 may equal to blocks 408 and 206 respectively.
  • UE 100, 102 there can be more than one UE 100, 102 that utilizes the EDT option, and it may also be possible that the network node 104 can configure more than one UE 100, 102 to utilize the priority transmission (can be referred to as EDT) .
  • EDT the priority transmission
  • UE 100 is configured to utilize priority transmission (block 622) and UE 102 is either not configured at all to use said priority transmission or it is explicitly configured to not utilize the priority transmission (block 632) by the network node 104.
  • UE 100 has data for transmission (block 624) it may include the high priority data (i.e.
  • the network node 104 may allocate radio resources for the UEs 100, 102 (block 640) . Again this can be similar as was discussed above with respect to block 430, for example. In blocks 628, 638, the network node 104 may transmit UL grants to the UEs 100, 102 according to and/or indicating the allocated radio resources.
  • Figure 6B shows that in block 636 the UE’s 102 data has lower priority, this does not necessarily have to be case. So, basically the data that needs to be transmitted by the UE 100 and UE 102 may have same priority. Furthermore, both may have EDT enabled, but only UE 100 may have data that needs to be transmitted which has certain priority (i.e. configured at block 622) meeting the configured criterion/criteria. So, even if EDT is enabled for a UE, data that does not meet the configured criterion may not be transmitted with Msg 3 by the UE.
  • UE type C (e.g. UE 100) may be used for medical emergency and two kinds of different priority data may be required:
  • UE type D (e.g. UE 102) on the other hand may be used for smart water meter and only one service may be needed:
  • Both kinds of data may be transmitted through SRB or DBR from MAC layer. Thus it may be necessary to differentiate the priority when UE transmits Msg3 in EDT and UE may need to know when EDT is necessary since patient vital sign data may be transmitted periodically while medical emergency notification may be transmitted only when sudden disease happens.
  • UE type C may transmit message to a Medical Center which may be an APP server which is connected to EPS (see CIoT EPS) .
  • the solution is for a system utilizing LTE Bandwidth reduced Low complexity Coverage Enhancement (BL/CE) .
  • the wireless network may be a cellular network utilizing LTE-BL/CE.
  • BSR MAC may be for LTE-BL/CE. So, if EDT is utilized as discussed in Figures 6A and 6B, for LTE-BL/CE the BSR MAC may comprise the high priority data (i.e. data that the network may configure to be transmitted in the BSR MAC. If NB-IoT is utilized, Msg 3 may be used, for example.
  • NPUSCH Physical Uplink Shared Channe
  • the message may comprise BSR (e.g. indicating low priority) .
  • the message may comprise BSR (e.g. indicating high priority and/or comprising EDT data) .
  • the network may allocate radio resources on PUSCH.
  • Figure 7 illustrates yet another embodiment.
  • the message (transmitted in block 202, 404, 414, 424, 606, 626, and/or 636) may be configured such that it supports the indication of the priority and/or addition of at least some data into the message.
  • messages 702, 704, 706 are shown which each indicate a different priority: “00” equaling 0, “01” equaling 1 and “10” equaling 2.
  • the priority may be indicated with block 710 which may be for example, block 510 or block 520. Rest of the message may be indicated with reference number 720 or block 720.
  • the block 720 may thus comprise, depending on situation, DV CE, PH CE, BSR CE and/or priority data (i.e. EDT data that may be transmitted in Msg 3 (e.g. comprising DV CE and PH CE) and/or in BSR) .
  • Figures 8 and 9 provide apparatuses 800, 900 comprising a control circuitry (CTRL) 810, 910, such as at least one processor, and at least one memory 830, 930 including a computer program code (software) 832, 932, wherein the at least one memory and the computer program code (software) 832, 932, are configured, with the at least one processor, to cause the respective apparatus 800, 900 to carry out any one of the embodiments described above, such as with reference to Figures 1 to 7, or operations thereof.
  • CTRL control circuitry
  • the memory 830, 930 may be implemented using any suitable data storage technology, such as semiconductor based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the memory 830, 930 may comprise a database 834, 934 for storing data.
  • Data may comprise, for example, the configuration information, priority information (e.g. priority classes) and/or data that needs to be transmitted.
  • the apparatus 800, 900 may further comprise radio interface (TRX) 820, 920 comprising hardware and/or software for realizing communication connectivity according to one or more communication protocols.
  • TRX radio interface
  • the TRX may provide the apparatus with communication capabilities to access the radio access network and enable communication between network nodes, for example.
  • the TRX may comprise standard well-known components such as an amplifier, filter, frequency-converter, (de) modulator, and encoder/decoder circuitries and one or more antennas.
  • the apparatus 800, 900 may also comprise user interface 840, 940 comprising, for example, at least one keypad, a microphone, a touch display, a display, a speaker, etc.
  • the user interface 840, 940 may be used to control the respective apparatus by a user of the apparatus 800, 900.
  • the apparatus 800 may be or be comprised in a UE, such as the UE 100 or 102.
  • the CTRL 810 comprises a message transmitting circuitry 812 configured to transmit a message to a network node 104 of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; a receiving circuitry 814 configured to receive an uplink grant message as a response to the transmitted message; and a data transmitting circuitry 816 configured to transmit the data at least partially on radio resources indicated in the uplink grant message.
  • circuitry 812 may perform at least operations described with respect to block 202; circuitry 814 may perform at least operations described with respect to block 204; and circuitry 816 may perform at least operations described with respect to block 206.
  • the apparatus 900 may be or be comprised in a base station (also called a base transceiver station, a Node B, a radio network controller, an evolved Node B, or a g Node B, for example) .
  • the apparatus 900 may be the network node 104 or comprised in the network node 104, for example.
  • the CTRL 910 comprises a receiving circuitry 912 configured to receive a message from a terminal device (e.g. UE 100 and/or UE 102) of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; an allocation circuitry 914 configured to perform allocation of radio resources based at least on the received message; and a transmitting circuitry 916 configured to cause transmitting, to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
  • circuitry 912 may perform at least operations described with respect to block 302; circuitry 914 may perform at least operations described with respect to block 304; and circuitry 916 may perform at least operations described with respect to block 306.
  • the apparatus 900 may comprise a remote control unit (RCU) , such as a host computer or a server computer, operatively coupled (e.g. via a wireless or wired network) to a remote radio head (RRH) , such as a Transmission Point (TRP) , located in a base station or network node 104, for example.
  • RCU remote control unit
  • RRH remote radio head
  • TRP Transmission Point
  • at least some of the described processes may be performed by the RCU.
  • the execution of at least some of the described processes may be shared among the RRH and the RCU.
  • the RCU may generate a virtual network through which the RCU communicates with the RRH.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Network virtualization may involve platform virtualization, often combined with resource virtualization.
  • Network virtualization may be categorized as external virtual networking which combines many networks, or parts of networks, into the server computer or the host computer (i.e. to the RCU) . External network virtualization is targeted to optimized network sharing. Another category is internal virtual networking which provides network-like functionality to the software containers on a single system.
  • the virtual network may provide flexible distribution of operations between the RRH and the RCU.
  • any digital signal processing task may be performed in either the RRH or the RCU and the boundary where the responsibility is shifted between the RRH and the RCU may be selected according to implementation.
  • circuitry refers to all of the following: (a) hardware-only circuit implementations, such as implementations in only analog and/or digital circuitry, and (b) combinations of circuits and soft-ware (and/or firmware) , such as (as applicable) : (i) a combination of processor (s) or (ii) portions of processor (s) /software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus to perform various functions, and (c) circuits, such as a microprocessor (s) or a portion of a microprocessor (s) , that require software or firmware for operation, even if the software or firmware is not physically present.
  • circuitry applies to all uses of this term in this application.
  • circuitry would also cover an implementation of merely a processor (or multiple processors) or a portion of a processor and its (or their) accompanying software and/or firmware.
  • circuitry would also cover, for example and if applicable to the particular element, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or a similar integrated circuit in a server, a cellular network device, or another network device.
  • At least some of the processes described in connection with Figures 1 to 9 may be carried out by an apparatus comprising corresponding means for carrying out at least some of the described processes.
  • Some example means for carrying out the processes may include at least one of the following: detector, processor (including dual-core and multiple-core processors) , digital signal processor, controller, receiver, transmitter, encoder, decoder, memory, RAM, ROM, software, firmware, display, user interface, display circuitry, user interface circuitry, user interface software, display software, circuit, antenna, antenna circuitry, and circuitry.
  • the at least one processor, the memory, and the computer program code form processing means or comprises one or more computer program code portions for carrying out one or more operations according to any one of the embodiments of Figures 1 to 9 or operations thereof.
  • the apparatus carrying out the embodiments comprises a circuitry including at least one processor and at least one memory including computer program code. When activated, the circuitry causes the apparatus to perform at least some of the functionalities according to any one of the embodiments of Figures 1 to 9, or operations thereof.
  • the techniques and methods described herein may be implemented by various means. For example, these techniques may be implemented in hardware (one or more devices) , firmware (one or more devices) , software (one or more modules) , or combinations thereof.
  • the apparatus (es) of embodiments may be implemented within one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination
  • the implementation can be carried out through modules of at least one chip set (e.g. procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory unit and executed by processors.
  • the memory unit may be implemented within the processor or externally to the processor. In the latter case, it can be communicatively coupled to the processor via various means, as is known in the art.
  • the components of the systems described herein may be rearranged and/or complemented by additional components in order to facilitate the achievements of the various aspects, etc., described with regard thereto, and they are not limited to the precise configurations set forth in the given figures, as will be appreciated by one skilled in the art.
  • Embodiments as described may also be carried out in the form of a computer process defined by a computer program or portions thereof. Embodiments of the methods described in connection with Figures 1 to 9 may be carried out by executing at least one portion of a computer program comprising corresponding instructions.
  • the computer program may be in source code form, object code form, or in some intermediate form, and it may be stored in some sort of carrier, which may be any entity or device capable of carrying the program.
  • the computer program may be stored on a computer program distribution medium readable by a computer or a processor.
  • the computer program medium may be, for example but not limited to, a record medium, computer memory, read-only memory, electrical carrier signal, telecommunications signal, and software distribution package, for example.
  • the computer program medium may be a non-transitory medium, for example. Coding of software for carrying out the embodiments as shown and described is well within the scope of a person of ordinary skill in the art.
  • a computer-readable medium comprises said computer program.

Abstract

There is provided a method in a terminal device of a wireless network, the method comprising: transmitting a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; receiving, from the network node, an uplink grant message as a response to the transmitted message; and transmitting the data at least partially on radio resources indicated in the uplink grant message.

Description

DATA PRIORITY INDICATION FOR UPLINK GRANT TECHNICAL FIELD
The invention relates to communications.
BACKGROUND
In a wireless network, network allocates radio resources for terminal devices based on requests from the terminal devices. As the number of terminal devices continues to increase, there may be situations in which the network is unable to serve the terminal devices quickly enough to maintain a certain service. Hence, the horde of uplink grant requests may block even the most critical services. Therefore, it may be beneficial to provide solutions which enable the network to serve at least the most critical terminal devices and/or services.
BRIEF DESCRIPTION
According to an aspect, there is provided the subject matter of the independent claims. Some embodiments are defined in the dependent claims.
One or more examples of implementations are set forth in more detail in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF DRAWINGS
In the following some embodiments will be described with reference to the attached drawings, in which
Figure 1 illustrates an example a wireless communication system to which embodiments of the invention may be applied;
Figures 2 and 3 illustrate flow diagrams according to some embodiments;
Figures 4A and 4B illustrate signal diagrams according to some embodiments;
Figures 5A, 5B, 5C and 5D illustrate some embodiments;
Figures 6A and 6B illustrate signal diagrams according to some embodiments;
Figure 7 illustrates an embodiment; and
Figures 8 and 9 illustrate block diagrams of apparatuses according to some embodiments.
DETAILED DESCRIPTION OF SOME EMBODIMENTS
The following embodiments are exemplifying. Although the specification may refer to “an” , “one” , or “some” embodiment (s) in several locations of the text, this does not necessarily mean that each reference is made to the same embodiment (s) , or that a particular feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments.
In the following, different exemplifying embodiments will be described using, as an example of an access architecture to which the embodiments may be applied, a radio access architecture based on long term evolution advanced (LTE Advanced, LTE-A) or new radio (NR, 5G) , without restricting the embodiments to such an architecture, however. It is obvious for a person skilled in the art that the embodiments may also be applied to other kinds of communications networks having suitable means by adjusting parameters and procedures appropriately. Some examples of other options for suitable systems are the universal mobile telecommunications system (UMTS) radio access network (UTRAN or E-UTRAN) , long term evolution (LTE, the same as E-UTRA) , wireless local area network (WLAN or WiFi) , worldwide interoperability for microwave access (WiMAX) , 
Figure PCTCN2018102323-appb-000001
personal communications services (PCS) , 
Figure PCTCN2018102323-appb-000002
wideband code division multiple access (WCDMA) , systems using ultra-wideband (UWB) technology, sensor networks, mobile ad-hoc networks (MANETs) and Internet Protocol multimedia subsystems (IMS) or any combination thereof.
Figure 1 depicts examples of simplified system architectures only showing some elements and functional entities, all being logical units, whose implementation may differ from what is shown. The connections shown in Figure 1 are logical connections; the actual physical connections may be different. It is apparent to a person skilled in the art that the system typically comprises also other functions and structures than those shown in Figure 1.
The embodiments are not, however, restricted to the system given as an example but a person skilled in the art may apply the solution to other communication systems provided with necessary properties.
The example of Figure 1 shows a part of an exemplifying radio access network.
Figure 1 shows  user devices  100 and 102 configured to be in a wireless connection on one or more communication channels in a cell with an access node (such as (e/g) NodeB) 104 providing the cell. The physical link from a user device to a (e/g) NodeB is called uplink (UL) or reverse link and the physical link from the (e/g) NodeB to the user device is called downlink or forward link. It should be appreciated that (e/g) NodeBs or their functionalities may be implemented by using any node, host, server or access point etc. entity suitable for such a usage. Said node 104 may be referred to as network node 104 or network element 104 in a broader sense.
A communications system typically comprises more than one (e/g) NodeB in which case the (e/g) NodeBs may also be configured to communicate with one another over links, wired or wireless, designed for the purpose. These links may be used for signalling purposes. The (e/g) NodeB is a computing device configured to control the radio resources of communication system it is coupled to. The NodeB may also be referred to as a base station, an access point or any other type of interfacing device including a relay station capable of operating in a wireless environment. The (e/g) NodeB includes or is coupled to transceivers. From the transceivers of the (e/g) NodeB, a connection is provided to an antenna unit that establishes bi-directional radio links to user devices. The antenna unit may comprise a plurality of antennas or antenna elements. The (e/g) NodeB is further connected to core network 110 (CN or next generation core NGC) . Depending on the system, the counterpart on the CN side can be a serving gateway (S-GW, routing and forwarding user data packets) , packet data network gateway (P-GW) , for providing connectivity of user devices (UEs) to external packet data networks, or mobile management entity (MME) , etc.
The user device (also called UE, user equipment, user terminal, terminal device, etc. ) illustrates one type of an apparatus to which resources on the air interface are allocated and assigned, and thus any feature described herein with a user device may be implemented with a corresponding apparatus, such as a relay node. An example of such a relay node is a layer 3 relay (self-backhauling relay) towards the base station.
The user device typically refers to a portable computing device that includes wireless mobile communication devices operating with or without a subscriber identification module (SIM) , including, but not limited to, the following types of devices: a mobile station (mobile phone) , smartphone, personal digital assistant (PDA) , handset, device using a wireless modem (alarm or measurement  device, etc. ) , laptop and/or touch screen computer, tablet, game console, notebook, and multimedia device. It should be appreciated that a user device may also be a nearly exclusive uplink only device, of which an example is a camera or video camera loading images or video clips to a network. A user device may also be a device having capability to operate in Internet of Things (IoT) network which is a scenario in which objects are provided with the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. The user device (or in some embodiments a layer 3 relay node) is configured to perform one or more of user equipment functionalities. The user device may also be called a subscriber unit, mobile station, remote terminal, access terminal, user terminal or user equipment (UE) just to mention but a few names or apparatuses.
Various techniques described herein may also be applied to a cyber-physical system (CPS) (a system of collaborating computational elements controlling physical entities) . CPS may enable the implementation and exploitation of massive amounts of interconnected ICT devices (sensors, actuators, processors microcontrollers, etc. ) embedded in physical objects at different locations. Mobile cyber physical systems, in which the physical system in question has inherent mobility, are a subcategory of cyber-physical systems. Examples of mobile physical systems include mobile robotics and electronics transported by humans or animals.
It should be understood that, in Figure 1, user devices are depicted to include 2 antennas only for the sake of clarity. The number of reception and/or transmission antennas may naturally vary according to a current implementation.
Additionally, although the apparatuses have been depicted as single entities, different units, processors and/or memory units (not all shown in Figure 1) may be implemented.
5G enables using multiple input -multiple output (MIMO) antennas, many more base stations or nodes than the LTE (a so-called small cell concept) , including macro sites operating in co-operation with smaller stations and employing a variety of radio technologies depending on service needs, use cases and/or spectrum available. 5G mobile communications supports a wide range of use cases and related applications including video streaming, augmented reality, different ways of data sharing and various forms of machine type applications, including vehicular safety, different sensors and real-time control. 5G is expected to have multiple radio interfaces, namely cmWave and mmWave, and also being integradable with existing legacy radio access technologies, such as the LTE.  Integration with the LTE may be implemented, at least in the early phase, as a system, where macro coverage is provided by the LTE and 5G radio interface access comes from small cells by aggregation to the LTE. In other words, 5G is planned to support both inter-RAT operability (such as LTE-5G) and inter-RI operability (inter-radio interface operability, such as cmWave-mmWave) . One of the concepts considered to be used in 5G networks is network slicing in which multiple independent and dedicated virtual sub-networks (network instances) may be created within the same infrastructure to run services that have different requirements on latency, reliability, throughput and mobility.
The current architecture in LTE networks is fully distributed in the radio and fully centralized in the core network. The low latency applications and services in 5G require to bring the content close to the radio which leads to local break out and multi-access edge computing (MEC) . 5G enables analytics and knowledge generation to occur at the source of the data. This approach requires leveraging resources that may not be continuously connected to a network such as laptops, smartphones, tablets and sensors. MEC provides a distributed computing environment for application and service hosting. It also has the ability to store and process content in close proximity to cellular subscribers for faster response time. Edge computing covers a wide range of technologies such as wireless sensor networks, mobile data acquisition, mobile signature analysis, cooperative distributed peer-to-peer ad hoc networking and processing also classifiable as local cloud/fog computing and grid/mesh computing, dew computing, mobile edge computing, cloudlet, distributed data storage and retrieval, autonomic self-healing networks, remote cloud services, augmented and virtual reality, data caching, Internet of Things (massive connectivity and/or latency critical) , critical communications (autonomous vehicles, traffic safety, real-time analytics, time-critical control, healthcare applications) .
The communication system is also able to communicate with other networks, such as a public switched telephone network or the Internet 112, or utilise services provided by them. The communication network may also be able to support the usage of cloud services, for example at least part of core network operations may be carried out as a cloud service (this is depicted in Figure 1 by “cloud” 114) . The communication system may also comprise a central control entity, or a like, providing facilities for networks of different operators to cooperate for example in spectrum sharing.
Edge cloud may be brought into radio access network (RAN) by utilizing network function virtualization (NVF) and software defined networking (SDN) . Using edge cloud may mean access node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head or base station comprising radio parts. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. Application of cloudRAN architecture enables RAN real time functions being carried out at the RAN side (in a distributed unit, DU 104) and non-real time functions being carried out in a centralized manner (in a centralized unit, CU 108) .
It should also be understood that the distribution of labour between core network operations and base station operations may differ from that of the LTE or even be non-existent. Some other technology advancements probably to be used are Big Data and all-IP, which may change the way networks are being constructed and managed. 5G (or new radio, NR) networks are being designed to support multiple hierarchies, where MEC servers can be placed between the core and the base station or nodeB (gNB) . It should be appreciated that MEC can be applied in 4G networks as well.
5G may also utilize satellite communication to enhance or complement the coverage of 5G service, for example by providing backhauling. Possible use cases are providing service continuity for machine-to-machine (M2M) or Internet of Things (IoT) devices or for passengers on board of vehicles, or ensuring service availability for critical communications, and future railway/maritime/aeronautical communications. Satellite communication may utilise geostationary earth orbit (GEO) satellite systems, but also low earth orbit (LEO) satellite systems, in particular mega-constellations (systems in which hundreds of (nano) satellites are deployed) . Each satellite 106 in the mega-constellation may cover several satellite-enabled network entities that create on-ground cells. The on-ground cells may be created through an on-ground relay node 104 or by a gNB located on-ground or in a satellite.
It is obvious for a person skilled in the art that the depicted system is only an example of a part of a radio access system and in practice, the system may comprise a plurality of (e/g) NodeBs, the user device may have an access to a plurality of radio cells and the system may comprise also other apparatuses, such as physical layer relay nodes or other network elements, etc. At least one of the (e/g) NodeBs or may be a Home (e/g) nodeB. Additionally, in a geographical area of  a radio communication system a plurality of different kinds of radio cells as well as a plurality of radio cells may be provided. Radio cells may be macro cells (or umbrella cells) which are large cells, usually having a diameter of up to tens of kilometers, or smaller cells such as micro-, femto-or picocells. The (e/g) NodeBs of Figure 1 may provide any kind of these cells. A cellular radio system may be implemented as a multilayer network including several kinds of cells. Typically, in multilayer networks, one access node provides one kind of a cell or cells, and thus a plurality of (e/g) NodeBs are required to provide such a network structure.
For fulfilling the need for improving the deployment and performance of communication systems, the concept of “plug-and-play” (e/g) NodeBs has been introduced. Typically, a network which is able to use “plug-and-play” (e/g) Node Bs, includes, in addition to Home (e/g) NodeBs (H (e/g) nodeBs) , a home node B gateway, or HNB-GW (not shown in Figure 1) . A HNB Gateway (HNB-GW) , which is typically installed within an operator’s network may aggregate traffic from a large number of HNBs back to a core network.
For Narrowband (NB) Internet of Things (IoT) , referred to as NB-IoT, currently used data volume (DV) and power headroom (PH) report Media Access Control (MAC) Control Element (CE) may not fulfil Quality of Service requirements as required by currents specifications. Similar note may be made at least with respect to Buffer Status Report (BSR) MAC CE. DV and PH MAC CE or BSR MAC CE can be used, generally, to indicate a need to transmit data. I.e. the UE may request radio resources from the network to transmit data. The DV and PH or BSR reporting procedure may be applicable for NB-IoT UEs and may be used to provide the serving network node (e.g. eNB) with information about the amount of data available for transmission in the UL buffers associated with the MAC entity. The DV field may identify the total amount of data available across all logical channels and of data not yet associated with a logical channel after all MAC Protocol Data Units (PDUs) for the Transmission Time Interval (TTI) have been built. The amount of data may be indicated in number of bytes. It may include all data that is available for transmission in the Radio Link Control (RLC) layer, in the Packet Data Converge Protocol (PDCP) layer, and in the Radio Resource Control (RRC) layer. The request, by the UE, may be triggered by, for example, arrival of data into transmit buffer of the UE. The current problem may be that the UE cannot express priority of the data that it needs to transmit. Hence, the network (i.e. which allocates the radio resources) does not know which UE should be served first and/or quicker. It needs to be noted that there can be hundreds and  even thousands of UEs that request radio resources and hence it may be beneficial to provide solutions which enable this horde of requests to be processed dynamically and in a way that enables the most important requests to be served first. Therefore, there is provided a solution for prioritizing data that needs to be transmitted by a UE.
Figure 2 illustrates a flow diagram indicating a method in a terminal device of a wireless network, the method comprising: transmitting (block 202) a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; receiving (block 204) , from the network node, an uplink grant message as a response to the transmitted message; and transmitting (block 206) the data at least partially on radio resources indicated in the uplink grant message.
Figure 3 illustrates a flow diagram indicating a method in a network node of a wireless network, the method comprising: receiving (block 302) a message from a terminal device of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; performing (block 304) allocation of radio resources based at least on the received message; and transmitting (block 306) , to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
In Figures 2 and 3, terminal device may denote UE 100 or UE 102 (or some other UE) . Similarly, network node may refer to network node 104 or access node 104. Wireless network may refer to any wireless network. In an embodiment, the wireless network is a cellular network. In an embodiment, the the wireless network is a cellular network utilizing NB-IoT technology. In an embodiment, the wireless network is a NB-IoT network.
So, basically, the UE 100 may request radio resources for transmitting data from its transmit buffer. To help the network node 104 to allocate radio resources in a dynamic and efficient manner, the UE 100 indicates priority of the data in the radio resources request message (i.e. transmitted in block 202) . Thus, the network node 104 may, for example, serve first UE or UEs that has/have higher priority data to be transmitted compared with a UE or UEs that has/have lower priority data for transmission. So, the network node 104 may differentiate UEs or UE’s mission critical service, and may thus schedule Narrowband Physical Uplink Shared Channel (NPUSCH) with priority in MAC layer for UE that is  mission critical and/or has mission critical service (in other words has high priority data to be transmitted) .
Let us look closer on the problem, that is being solved by the proposed solution, with the help of some examples. Suppose that there are two kinds of UEs for different usage:
· UE type A (e.g. UE 100) is used to detect earthquake. UE type A may utilize User Plane Cellular Internet of Things (CIoT) Evolved Packet System (EPS) Optimization. The UE type A may require two services:
1. In case low-level earthquake, collects data (medium priority) . Utilizes Data Radio Bearer (DRB) service.
2. In case high-level earthquake, trigger alarm (high priority) . Utilizes Signaling Radio Bearer (SRB) service.
· UE type B is used to electricity charge. UE type B may utilize User Plane CIoT EPS Optimisation and one service is required:
1. Count and report electricity consumption (low priority) Utilizes Data Radio Bearer (DRB) service.
It is noted that control plane CIot EPS optimization may enable support of efficient transport of user data (IP, non-IP or SMS) over control plane via the MME without triggering data radio bearer establishment.
As the current systems do not support indication of priority, the scheduling scheme is assumed to be round robin. So, for example, if the system is dimensioned to support high number of NB-IoT UEs, the mac-ContentionResolutionTimer-r13 may be set to 960 ms (millisecond) . Hence, in case UE type A triggers earthquake alarm, Random Access Channel (RACH) access is successful (i.e. Msg3 is received, note that DV and PH CEs or BSR CE may be reported with Msg3 or included in Msg3) , it may take up to 960 ms (just before ContentionResolutionTimer-r13 expiry) to schedule the urgent NPUSCH. In this example, assumption is that setting of “mac-ContentionResolutionTimer-r13” represents the maximum scheduling delay after msg3 reception. This delay can be assumed by e.g. the following configuration:
· There’re at least 240 type A UEs to collect data or type B UEs, which have reported Data Volume and Power Headroom Report MAC CE or BSR CE, waiting for handling in the previous TTIs earlier than this type A UE for earthquake alarm,
· NPUSCH and NB-IoT Physical Downlink Control Channel (NPDCCH) repetition is set to 4, and suppose all NPUSCH CRC OK,
· In case NB-IoT single-tone, only one UE is scheduled per TTI.
However, if repetition is more than 4, and/or NPUSCH retransmissions are required, and/or there are more UEs waiting to be scheduled, mac-ContentionResolutionTimer-r13 could expire and it would take even longer time to schedule this UE urgent NPUSCH. So, by providing a solution in which the data priority (e.g. low (DRB 1) , medium (DRB 2) , high (SRB) ) may be indicated with the uplink grant requesting message, such as the message 3 of RACH. Hence, the network may know which UE should be allocated resources with higher priority. It is noted that the priority class system having three different priority classes is one example. However, the proposed solution is not necessarily limited to utilizing only three different classes.
So, let us now look at Figure 4A that illustrates a signal diagram according to an embodiment. Referring to Figure 4A, UE 100 (which can be UE type A or UE type B, for example) , acquires data for transmission (block 402) . Examples of such data may be water metering reading (s) , earthquake alarm and earthquake data. The UE 100 determines priority of the data. The determination may be based on preconfigured classes and/or priority configuration information from the network (e.g. from network node 102) . That is, the network may, in some embodiments, configure priorities of different data classes. Hence, the UE 100 may determine priority of the data. The UE 100 may then use the reserved data priority block of the message (i.e. message of block 202) to indicate the determined priority of the data. Said message may be transmitted to the network node 104 and received by the network node 104 in block 404. Based on said message (and possibly other similar messages from other UEs) , the network node 104 performs allocation of radio resources in block 304. To give an example, the network node 104 may first process and allocate radio resources for UEs that request radio resources for high priority data (e.g. earthquake alarm) for certain TTI, then process medium priority requests and finally lower priority requests. How the network node 102 utilizes the priority information may vary between implementations, but it may be beneficial to provide radio resources for high/higher priority data as soon as possible or at least before providing resources for lower priority requests. For example, the network node 104 may maintain a queue for said radio resource request messages, wherein high priority  request are always processed before lower priority requests. Requests here refer to the message or messages of block 202.
Once the radio resources, requested by the message transmitted in block 404, have been allocated, the network node 104 indicates the resources to the UE 100 with an uplink grant message (block 408) . UE 100 may then transmit data on the indicated radio resources. If not all data, that needs to be transmitted, is successfully transmitted in block 206, the UE 100 may request further resources similarly as in block 404. Data that needs to be transmitted may refer to data that is in transmission buffer of an UE, for example.
Figure 4B illustrates a signal diagram in which two UEs (i.e. UE 100 and UE 102) request radio resources for transmitting data according to an embodiment. Basically, blocks 412, 422 may be similar as block 402;  blocks  414, 424 may be similar as block 404; block 430 may be similar as block 304; and blocks 418, 428 may be similar as block 408. However, as there may be more radio resource request messages, the network node 104 may need to provide resources for more than one UE. Naturally, there can be more than two UEs.
Above we described one example in which type A UE has data of two different priority (medium and high) and type B UE has data of one priority (i.e. low) . Let us now discuss Figure 4B using the same example. So, in block 414, the UE 100 (type A UE in this example) may transmit the message (i.e. UL grant request) , wherein the message indicates the priority of the data to be transmitted. In this case it is either medium or high priority. At the same time or substantially at the same time, UE 102 (i.e. type B UE in this example) may transmit similar UL grant request that indicates that the data that needs to be transmitted by the UE 102 has low priority. Thus, in block 430, the network node 104 may allocate resources first to UE 100 and after that to UE 102. That is, network node 104 may prioritize UE 100 transmission over UE 102 transmission. Such may also or alternatively comprise allocating more resources for UE 100. The  UL grant messages  418, 428 may indicate the allocated radio resources. As UE 102 transmission has lower priority, it may need to wait longer for the UL grant, i.e. time between transmitting the message of block 424 and receiving grant in block 428 may be longer compared with time between  blocks  414 and 418.
So, basically, the UE 100 may select the highest priority logical channel, classify priority (based on predetermined configuration or configuration by the network) and indicate this priority in the message that requests the radio resources. The network node 104 may then allocate (as in block 430) radio  resources based on the indicated priorities. In an embodiment, the performing the allocation of radio resources (e.g. block 430) is based on a plurality of messages from a plurality of terminal devices (e.g. from  UEs  100, 102 respectively) , the plurality of messages (blocks 414, 424) indicating data transmission need by the plurality of terminal devices, wherein the network node 104 is further configured to process one or more messages indicating a higher priority of data that needs to be transmitted with a higher priority compared with one or more messages indicating a lower priority of data that needs to be transmitted. As noted this may mean that the network node 104 processes message from UE 100 before processing message from UE 102. Alternatively or additionally this may mean that the network node 104 allocates radio resources to UE 100 before allocating radio resource to UE 102. It is noted that in this example the message from UE 100 indicates higher priority than the message from UE 102. It could well be the other way around in some examples. In such case (s) the network node 102 may prioritize UE 102 over UE 100.
Figures 5A, 5B, 5C and 5D illustrate some examples on how the priority can be expressed by the  UE  100, 102 to the network node 104. Figures 5A and 5B relate to DV and PH MAC CE reporting and Figures 5C and 5D relate to BSR MAC CE reporting.
Referring first to Figure 5A, the message 3 may comprise PH MAC CE 506 and DV MAC CE 508, and reserved  bits  502, 504. According to an embodiment, the  bits  502, 504 are used to indicate the priority of the data that needs to be transmitted. So, the message indicating the need to transmit data further comprises the DV CE 508 and PH CE 506. The reserved data priority block may thus be indicated with reference number 510 as shown in Figure 5B. The reserved data priority block may denote and/or comprise the reserved  bits  502, 504. So, the reserved data priority block 510 may be used to indicate four different classes/options: “00” , “01” , “10” , “11” . As noted above, three priority classes may be used in some examples. As an example, “00” may denote high priority, such as earthquake alarm (e.g. SRB) , “01” may denote medium priority such as earthquake data (e.g. DRB 1) and “10” may denote low priority (e.g. DRB 2) .
Similarly, as noted above, in an embodiment, the message indicating the need to transmit data further comprises BSR CE 514. Referring to Figure 5C, BSR CE 514 may normally comprise Logical Channel Group (LCG) Identifier (ID) 512 which may be used, e.g. in LTE, to indicate logical channel group. However, as,  for example, NB-IoT may utilize only one LCG or only one logical channel, there may be no need to use element 512 in BSR message. Hence, as shown in Figure 5D, the BSR message comprises a reserved data priority block 520 and BSR CE 514. The block 520 may utilize the bits reserved for LGC ID 512. Said block 520 may be used similarly as block 510, for example. It is noted that Msg3 of RACH procedure may comprise, for example, either BSR CE 514 or DV and  PH CEs  506, 508. Both may be used to indicate the need to transmit data, and with the proposed solution also the priority of the data according to predetermined class system or according to network configuration.
In an embodiment, BSR is referred to as Short BSR.
According to an embodiment, with reference to Figures 5B and 5D, the reserved  data priority block  510, 520 indicates one of at least three different priority classes. As noted above, there can be more or less than three priority classes. In one embodiment, there is three priority classes: DRB 1 (low priority) , DRB 2 (medium priority) , and SRB (high priority) .
According to an embodiment, with reference to Figures 5B and 5D, the reserved  data priority block  510, 520 precedes, in the message (i.e. message transmitted in block 202 and referred to as Msg3 of RACH process at least in some examples) , the BSR CE 514 or the PH CE 506 and DV CE 508. However, it is possible to utilize some other location of the message to indicate said priority. But as  noted blocks  502, 504 and 512 may be used to indicate said priority and may already be available, although not used as in the current solution, for the UE.
Figures 6A and 6B illustrate signal diagrams according to some embodiments. Referring first to Figure 6A, the network node 104 may transmit (in block 602) a priority configuration information to the UE 100, wherein the priority configuration information indicates a data type and/or data priority. The UE 100 may receive the priority configuration information. In block 604, the UE 100 may include, from a transmit buffer of the UE 100, at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data (e.g. message discussed above with respect to block 202) . Further, in block 606, the UE 100 may transmit the message indicating the need to transmit data and comprising said at least some data. The network node 104 may receive the message and allocated radio resources as was discussed above. Uplink grant message may be transmitted as shown in block 608, and in block 610 the UE 100 may transmit the needed data (e.g. the data that did not fit into the message of block 606 and/or data that needs to be transmitted  but has a different data type or data priority than the indicated data type or data priority (i.e. indicated with message 602) ) . So, the priority configuration information in block 602 may cause the UE 100 to include at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data. This procedure may be referred to as Early Data Transmission (EDT) . However, in the current solutions it is not possible to indicate what type of data or what priority class data should be included into the message (e.g. Msg 3) as in now proposed. For example, using the proposed solution the network may configure that only the earthquake alarm (s) should be transmitted already with the message of  block  202 or 606. In an embodiment, the highest priority data is configured to be transmitted in said message. However, this may be up to the network to decide. The solution of Figure 6A may work individually or together with the solution in which the UE 100 indicates the priority of the data that needs to be transmitted.
It is also pointed out that the UE 100 may indicate priority of the data that it needs to transmit, wherein said data may exclude the data that is already included in message of block 606. It is also noted that using the proposed approach, network node 104 may receive the most critical data before transmitting message 608 and receiving message 610. Also, message 610 may be transmitted to some other entity in some examples. As the most critical data, which is network configurable via message 602, can be receive already in block 606, the processing of said data can be performed quicker than in prior art solutions. Hence, for example, earthquake alarm can be given faster. Such may be lifesaving in some situations. Further, in essence blocks 608 and 610 may equal to  blocks  408 and 206 respectively.
Referring now to Figure 6B, as can be seen, there can be more than one  UE  100, 102 that utilizes the EDT option, and it may also be possible that the network node 104 can configure more than one  UE  100, 102 to utilize the priority transmission (can be referred to as EDT) . However, in the example of Figure 6B only UE 100 is configured to utilize priority transmission (block 622) and UE 102 is either not configured at all to use said priority transmission or it is explicitly configured to not utilize the priority transmission (block 632) by the network node 104. Hence, when UE 100 has data for transmission (block 624) it may include the high priority data (i.e. that which was configured in block 622 or possibly preconfigured to the UE 100) into the message of block 626 (e.g. Msg 3) and transmit the message to the network node 104. This is similar function as  was described with respect to Figure 6A. However, as UE 102 is not configured to utilize the priority transmission and determines in block 634 that it has data to transmit, UE 102 cannot include data in the message that is transmitted in block 636. However, in some embodiments said UL grant request (or Msg 3) indicates the priority of the data that the UE 102 needs to transmit. This is similar functions as is described above (e.g. Figure 2) . Based on the priority indications of respective data, the network node 104 may allocate radio resources for the UEs 100, 102 (block 640) . Again this can be similar as was discussed above with respect to block 430, for example. In blocks 628, 638, the network node 104 may transmit UL grants to the  UEs  100, 102 according to and/or indicating the allocated radio resources.
Although Figure 6B shows that in block 636 the UE’s 102 data has lower priority, this does not necessarily have to be case. So, basically the data that needs to be transmitted by the UE 100 and UE 102 may have same priority. Furthermore, both may have EDT enabled, but only UE 100 may have data that needs to be transmitted which has certain priority (i.e. configured at block 622) meeting the configured criterion/criteria. So, even if EDT is enabled for a UE, data that does not meet the configured criterion may not be transmitted with Msg 3 by the UE.
For example, UE type C (e.g. UE 100) may be used for medical emergency and two kinds of different priority data may be required:
1. Medical emergency notification in case patient is in sudden disease (high priority) (SRB) ,
2. Patient vital signs transmission to disease center (middle priority) (SRB or DBR) .
UE type D (e.g. UE 102) on the other hand may be used for smart water meter and only one service may be needed:
1. Transmits water metering data periodically. (low priority) (SRB or DBR)
Both kinds of data may be transmitted through SRB or DBR from MAC layer. Thus it may be necessary to differentiate the priority when UE transmits Msg3 in EDT and UE may need to know when EDT is necessary since patient vital sign data may be transmitted periodically while medical emergency notification may be transmitted only when sudden disease happens. UE type C may transmit  message to a Medical Center which may be an APP server which is connected to EPS (see CIoT EPS) .
In an embodiment, the solution is for a system utilizing LTE Bandwidth reduced Low complexity Coverage Enhancement (BL/CE) . That is the wireless network may be a cellular network utilizing LTE-BL/CE. For example, BSR MAC may be for LTE-BL/CE. So, if EDT is utilized as discussed in Figures 6A and 6B, for LTE-BL/CE the BSR MAC may comprise the high priority data (i.e. data that the network may configure to be transmitted in the BSR MAC. If NB-IoT is utilized, Msg 3 may be used, for example.
It is further noted that above reference is made to NPUSCH. This may refer to situations where the system utilizes NB-IoT. If additionally and/or alternatively, for example, LTE-BL/CE is utilized, the system may utilize Physical Uplink Shared Channe (PUSCH) .
So, with reference to Figure 6B, in block 636, if LTE-BL/CE is utilized, the message may comprise BSR (e.g. indicating low priority) . Further, in block 626, the message may comprise BSR (e.g. indicating high priority and/or comprising EDT data) . In such cases, the network may allocate radio resources on PUSCH.
Figure 7 illustrates yet another embodiment. Referring to Figure 7, it is shown how the message (transmitted in  block  202, 404, 414, 424, 606, 626, and/or 636) may be configured such that it supports the indication of the priority and/or addition of at least some data into the message. So,  messages  702, 704, 706 are shown which each indicate a different priority: “00” equaling 0, “01” equaling 1 and “10” equaling 2. The priority may be indicated with block 710 which may be for example, block 510 or block 520. Rest of the message may be indicated with reference number 720 or block 720. The block 720 may thus comprise, depending on situation, DV CE, PH CE, BSR CE and/or priority data (i.e. EDT data that may be transmitted in Msg 3 (e.g. comprising DV CE and PH CE) and/or in BSR) .
Figures 8 and 9 provide  apparatuses  800, 900 comprising a control circuitry (CTRL) 810, 910, such as at least one processor, and at least one  memory  830, 930 including a computer program code (software) 832, 932, wherein the at least one memory and the computer program code (software) 832, 932, are configured, with the at least one processor, to cause the  respective apparatus  800, 900 to carry out any one of the embodiments described above, such as with reference to Figures 1 to 7, or operations thereof.
Referring to Figures 8 and 9, the  memory  830, 930 may be implemented using any suitable data storage technology, such as semiconductor based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The  memory  830, 930 may comprise a  database  834, 934 for storing data. Data may comprise, for example, the configuration information, priority information (e.g. priority classes) and/or data that needs to be transmitted.
The  apparatus  800, 900 may further comprise radio interface (TRX) 820, 920 comprising hardware and/or software for realizing communication connectivity according to one or more communication protocols. The TRX may provide the apparatus with communication capabilities to access the radio access network and enable communication between network nodes, for example. The TRX may comprise standard well-known components such as an amplifier, filter, frequency-converter, (de) modulator, and encoder/decoder circuitries and one or more antennas.
The  apparatus  800, 900 may also comprise  user interface  840, 940 comprising, for example, at least one keypad, a microphone, a touch display, a display, a speaker, etc. The  user interface  840, 940 may be used to control the respective apparatus by a user of the  apparatus  800, 900.
In an embodiment, the apparatus 800 may be or be comprised in a UE, such as the  UE  100 or 102.
According to an embodiment, the CTRL 810 comprises a message transmitting circuitry 812 configured to transmit a message to a network node 104 of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; a receiving circuitry 814 configured to receive an uplink grant message as a response to the transmitted message; and a data transmitting circuitry 816 configured to transmit the data at least partially on radio resources indicated in the uplink grant message. So, basically circuitry 812 may perform at least operations described with respect to block 202; circuitry 814 may perform at least operations described with respect to block 204; and circuitry 816 may perform at least operations described with respect to block 206.
In an embodiment, the apparatus 900 may be or be comprised in a base station (also called a base transceiver station, a Node B, a radio network controller, an evolved Node B, or a g Node B, for example) . The apparatus 900  may be the network node 104 or comprised in the network node 104, for example.
According to an embodiment, the CTRL 910 comprises a receiving circuitry 912 configured to receive a message from a terminal device (e.g. UE 100 and/or UE 102) of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted; an allocation circuitry 914 configured to perform allocation of radio resources based at least on the received message; and a transmitting circuitry 916 configured to cause transmitting, to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data. So, basically circuitry 912 may perform at least operations described with respect to block 302; circuitry 914 may perform at least operations described with respect to block 304; and circuitry 916 may perform at least operations described with respect to block 306.
In an embodiment, at least some of the functionalities of the apparatus 900 may be shared between two physically separate devices, forming one operational entity. Therefore, the apparatus 900 may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes. Thus, the apparatus 900 utilizing such shared architecture, may comprise a remote control unit (RCU) , such as a host computer or a server computer, operatively coupled (e.g. via a wireless or wired network) to a remote radio head (RRH) , such as a Transmission Point (TRP) , located in a base station or network node 104, for example. In an embodiment, at least some of the described processes may be performed by the RCU. In an embodiment, the execution of at least some of the described processes may be shared among the RRH and the RCU.
In an embodiment, the RCU may generate a virtual network through which the RCU communicates with the RRH. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Network virtualization may involve platform virtualization, often combined with resource virtualization. Network virtualization may be categorized as external virtual networking which combines many networks, or parts of networks, into the server computer or the host computer (i.e. to the RCU) . External network virtualization is targeted to optimized network sharing. Another category is internal virtual networking which provides network-like  functionality to the software containers on a single system.
In an embodiment, the virtual network may provide flexible distribution of operations between the RRH and the RCU. In practice, any digital signal processing task may be performed in either the RRH or the RCU and the boundary where the responsibility is shifted between the RRH and the RCU may be selected according to implementation.
As used in this application, the term ‘circuitry’ refers to all of the following: (a) hardware-only circuit implementations, such as implementations in only analog and/or digital circuitry, and (b) combinations of circuits and soft-ware (and/or firmware) , such as (as applicable) : (i) a combination of processor (s) or (ii) portions of processor (s) /software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus to perform various functions, and (c) circuits, such as a microprocessor (s) or a portion of a microprocessor (s) , that require software or firmware for operation, even if the software or firmware is not physically present. This definition of ‘circuitry’ applies to all uses of this term in this application. As a further example, as used in this application, the term ‘circuitry’ would also cover an implementation of merely a processor (or multiple processors) or a portion of a processor and its (or their) accompanying software and/or firmware. The term ‘circuitry’ would also cover, for example and if applicable to the particular element, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or a similar integrated circuit in a server, a cellular network device, or another network device.
In an embodiment, at least some of the processes described in connection with Figures 1 to 9 may be carried out by an apparatus comprising corresponding means for carrying out at least some of the described processes. Some example means for carrying out the processes may include at least one of the following: detector, processor (including dual-core and multiple-core processors) , digital signal processor, controller, receiver, transmitter, encoder, decoder, memory, RAM, ROM, software, firmware, display, user interface, display circuitry, user interface circuitry, user interface software, display software, circuit, antenna, antenna circuitry, and circuitry. In an embodiment, the at least one processor, the memory, and the computer program code form processing means or comprises one or more computer program code portions for carrying out one or more operations according to any one of the embodiments of Figures 1 to 9 or operations thereof.
According to yet another embodiment, the apparatus carrying out the embodiments comprises a circuitry including at least one processor and at least one memory including computer program code. When activated, the circuitry causes the apparatus to perform at least some of the functionalities according to any one of the embodiments of Figures 1 to 9, or operations thereof.
The techniques and methods described herein may be implemented by various means. For example, these techniques may be implemented in hardware (one or more devices) , firmware (one or more devices) , software (one or more modules) , or combinations thereof. For a hardware implementation, the apparatus (es) of embodiments may be implemented within one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof. For firmware or software, the implementation can be carried out through modules of at least one chip set (e.g. procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit and executed by processors. The memory unit may be implemented within the processor or externally to the processor. In the latter case, it can be communicatively coupled to the processor via various means, as is known in the art. Additionally, the components of the systems described herein may be rearranged and/or complemented by additional components in order to facilitate the achievements of the various aspects, etc., described with regard thereto, and they are not limited to the precise configurations set forth in the given figures, as will be appreciated by one skilled in the art.
Embodiments as described may also be carried out in the form of a computer process defined by a computer program or portions thereof. Embodiments of the methods described in connection with Figures 1 to 9 may be carried out by executing at least one portion of a computer program comprising corresponding instructions. The computer program may be in source code form, object code form, or in some intermediate form, and it may be stored in some sort of carrier, which may be any entity or device capable of carrying the program. For example, the computer program may be stored on a computer program distribution medium readable by a computer or a processor. The computer program medium may be, for example but not limited to, a record medium,  computer memory, read-only memory, electrical carrier signal, telecommunications signal, and software distribution package, for example. The computer program medium may be a non-transitory medium, for example. Coding of software for carrying out the embodiments as shown and described is well within the scope of a person of ordinary skill in the art. In an embodiment, a computer-readable medium comprises said computer program.
Even though the invention has been described above with reference to an example according to the accompanying drawings, it is clear that the invention is not restricted thereto but can be modified in several ways within the scope of the appended claims. Therefore, all words and expressions should be interpreted broadly and they are intended to illustrate, not to restrict, the embodiment. It will be obvious to a person skilled in the art that, as technology advances, the inventive concept can be implemented in various ways. Further, it is clear to a person skilled in the art that the described embodiments may, but are not required to, be combined with other embodiments in various ways.

Claims (37)

  1. A method in a terminal device of a wireless network, the method comprising:
    transmitting a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    receiving, from the network node, an uplink grant message as a response to the transmitted message; and
    transmitting the data at least partially on radio resources indicated in the uplink grant message.
  2. The method of claim 1, wherein the wireless network is a cellular network utilizing Narrowband Internet of Things, NB-IoT, technology.
  3. The method of claim 1 or 2, wherein the message indicating the need to transmit data further comprises a buffer status report control element.
  4. The method of claim 1 or 2, wherein the message indicating the need to transmit data further comprises a data volume control element and a power head room report control element.
  5. The method of any preceding claim, wherein the reserved data priority block comprises at least two bits for indicating the priority of the data that needs to be transmitted.
  6. The method of claim 5, wherein the reserved data priority block indicates one of at least three different priority classes.
  7. The method of any of claims 3 to 6, wherein the reserved data priority block precedes, in the message, the buffer status report control element or the data volume control element and the power head room report control element.
  8. The method of any preceding claim, further comprising:
    receiving a priority configuration information from the wireless network, wherein the priority configuration information indicates a data type and/or data priority;
    including, from a transmit buffer of the terminal device, at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data; and
    transmitting the message indicating the need to transmit data and comprising said at least some data.
  9. A method in a network node of a wireless network, the method comprising:
    receiving a message from a terminal device of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    performing allocation of radio resources based at least on the received message; and
    transmitting, to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
  10. The method of claim 9, wherein the performing the allocation of radio resources is based on a plurality of messages from a plurality of terminal devices, the plurality of messages indicating data transmission need by the plurality of terminal devices, the method further comprising:
    processing one or more messages indicating a higher priority of data that needs to be transmitted with a higher priority compared with one or more messages indicating a lower priority of data that needs to be transmitted.
  11. The method of claim 9 or 10, wherein the wireless network is a cellular network utilizing Narrowband Internet of Things, NB-IoT, technology.
  12. The method of any preceding claim 9 to 11, wherein the message indicating the need to transmit data further comprises a buffer status report control element.
  13. The method of any preceding claim 9 to 11, wherein the message indicating the need to transmit data further comprises a data volume control element and a power head room report control element.
  14. The method of any preceding claim 9 to 13, wherein the reserved data priority block comprises at least two bits for indicating the priority of the data that needs to be transmitted.
  15. The method of claim 14, wherein the reserved data priority block indicates one of at least three different priority classes.
  16. The method of any of claims 12 to 15, wherein the reserved data priority block precedes the buffer status report control element or the data volume control element and the power head room report control element.
  17. The method of any preceding claim 9 to 16, further comprising:
    transmitting a priority configuration information to the terminal device, wherein the priority configuration information indicates a data type and/or data priority, the priority configuration information causing the terminal device to include at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data.
  18. An apparatus comprising means for causing a terminal device of a wireless network at least to perform:
    transmitting a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    receiving, from the network node, an uplink grant message as a response to the transmitted message; and
    transmitting the data at least partially on radio resources indicated in the uplink grant message.
  19. The apparatus of claim 18, wherein the wireless network is a cellular network utilizing Narrowband Internet of Things, NB-IoT, technology.
  20. The apparatus of claim 18 or 19, wherein the message indicating the need to transmit data further comprises a buffer status report control element.
  21. The apparatus of claim 18 or 19, wherein the message indicating the need to transmit data further comprises a data volume control element and a power head room report control element.
  22. The apparatus of any of claims 18 to 21, wherein the reserved data priority block comprises at least two bits for indicating the priority of the data that needs to be transmitted.
  23. The apparatus of claim 22, wherein the reserved data priority block indicates one of at least three different priority classes.
  24. The apparatus of any of claims 20 to 23, wherein the reserved data priority block precedes, in the message, the buffer status report control element or the data volume control element and the power head room report control element.
  25. The apparatus of any of claims 18 to 24, wherein the means are further configured to cause the terminal device to perform:
    receiving a priority configuration information from the wireless network, wherein the priority configuration information indicates a data type and/or data priority;
    including, from a transmit buffer of the terminal device, at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data; and
    transmitting the message indicating the need to transmit data and comprising said at least some data.
  26. An apparatus comprising means for causing a network node of a wireless network at least to perform:
    receiving a message from a terminal device of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    performing allocation of radio resources based at least on the received message; and
    transmitting, to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
  27. The apparatus of claim 26, wherein the performing the allocation of radio resources is based on a plurality of messages from a plurality of terminal devices, the plurality of messages indicating data transmission need by the plurality of terminal devices, wherein means are further configured to cause the network node to perform:
    processing one or more messages indicating a higher priority of data that needs to be transmitted with a higher priority compared with one or more messages indicating a lower priority of data that needs to be transmitted.
  28. The apparatus of claim 26 or 27, wherein the wireless network is a cellular network utilizing Narrowband Internet of Things, NB-loT, technology.
  29. The apparatus of any of claims 26 to 28, wherein the message indicating the need to transmit data further comprises a buffer status report control element.
  30. The apparatus of any of claims 26 to 28, wherein the message indicating the need to transmit data further comprises a data volume control element and a power head room report control element.
  31. The apparatus of any preceding claim 26 to 30, wherein the reserved data priority block comprises at least two bits for indicating the priority of the data that needs to be transmitted.
  32. The apparatus of claim 31, wherein the reserved data priority block indicates one of at least three different priority classes.
  33. The apparatus of any of claims 29 to 32, wherein the reserved data priority block precedes the buffer status report control element or the data volume control element and the power head room report control element.
  34. The apparatus of any of claims 26 to 33, wherein means are further configured to cause the network node to perform:
    transmitting a priority configuration information to the terminal device, wherein the priority configuration information indicates a data type and/or data priority, the priority configuration information causing the terminal device to include at least some data being of the indicated data type and/or having the indicated data priority into the message indicating the need to transmit data.
  35. The apparatus of any of claims 17 to 25 or the apparatus of any of claims 26 to 34, wherein the means comprises:
    at least one processor, and
    at least one memory comprising a computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to cause the performance of the apparatus.
  36. A computer readable medium comprising program instructions stored thereon for causing a terminal device of a wireless network to perform at least the following:
    transmitting a message to a network node of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    receiving, from the network node, an uplink grant message as a response to the transmitted message; and
    transmitting the data at least partially on radio resources indicated in the uplink grant message.
  37. A computer readable medium comprising program instructions stored thereon for causing a network node of a wireless network to perform at least the following:
    receiving a message from a terminal device of the wireless network, the message indicating a need to transmit data, wherein the message comprises a reserved data priority block that indicates priority of the data that needs to be transmitted;
    performing allocation of radio resources based at least on the received message; and
    transmitting, to the terminal device, an uplink grant message indicating allocated radio resources for transmitting data.
PCT/CN2018/102323 2018-08-24 2018-08-24 Data priority indication for uplink grant WO2020037675A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/102323 WO2020037675A1 (en) 2018-08-24 2018-08-24 Data priority indication for uplink grant
CN201880096804.2A CN112602366A (en) 2018-08-24 2018-08-24 Data priority indication for uplink grants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102323 WO2020037675A1 (en) 2018-08-24 2018-08-24 Data priority indication for uplink grant

Publications (1)

Publication Number Publication Date
WO2020037675A1 true WO2020037675A1 (en) 2020-02-27

Family

ID=69592128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102323 WO2020037675A1 (en) 2018-08-24 2018-08-24 Data priority indication for uplink grant

Country Status (2)

Country Link
CN (1) CN112602366A (en)
WO (1) WO2020037675A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242304A (en) * 2021-05-13 2021-08-10 南方电网数字电网研究院有限公司 Edge side multi-energy data acquisition scheduling control method, device, equipment and medium
WO2023138605A1 (en) * 2022-01-20 2023-07-27 展讯通信(上海)有限公司 Buffer state reporting method, device, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348752A (en) * 2006-10-09 2015-02-11 摩托罗拉移动公司 Apparatus and method for uplink scheduling on shared channels
WO2015043939A1 (en) * 2013-09-26 2015-04-02 Sony Corporation Communications system, infrastructure equipment, communication terminal and method
CN107079473A (en) * 2014-09-26 2017-08-18 阿尔卡特朗讯 Uplink resource allocation for organizing the direct communication between interior user equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917137B2 (en) * 2009-02-04 2011-03-29 Nokia Corporation Optimization of uplink resource grant procedure and apparatus
CN114222372A (en) * 2015-04-17 2022-03-22 索尼公司 Electronic device and method for wireless communication
WO2018036629A1 (en) * 2016-08-25 2018-03-01 Nokia Solutions And Networks Oy Improving uplink communication efficiency in a wireless network
US10834747B2 (en) * 2016-11-04 2020-11-10 Telefonaktiebolagett LM Ericcson (publ) Methods and apparatuses for transmission scheduling in a wireless communication system
KR20190100243A (en) * 2016-12-30 2019-08-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Data transmission method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348752A (en) * 2006-10-09 2015-02-11 摩托罗拉移动公司 Apparatus and method for uplink scheduling on shared channels
WO2015043939A1 (en) * 2013-09-26 2015-04-02 Sony Corporation Communications system, infrastructure equipment, communication terminal and method
CN107079473A (en) * 2014-09-26 2017-08-18 阿尔卡特朗讯 Uplink resource allocation for organizing the direct communication between interior user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Introduction of EDT for eMTC and NB-IoT enhancements", 3GPP TSG-RAN2 MEETING #101BIS R2-1804331, 20 April 2018 (2018-04-20), XP051428079 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242304A (en) * 2021-05-13 2021-08-10 南方电网数字电网研究院有限公司 Edge side multi-energy data acquisition scheduling control method, device, equipment and medium
WO2023138605A1 (en) * 2022-01-20 2023-07-27 展讯通信(上海)有限公司 Buffer state reporting method, device, and storage medium

Also Published As

Publication number Publication date
CN112602366A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
US20220053362A1 (en) Priority handling at quality of service flow relocation
WO2020037675A1 (en) Data priority indication for uplink grant
EP3857951B1 (en) Logical channel cell restriction
WO2020056594A1 (en) Apparatus and method for data transmission
EP3952588B1 (en) Determining channel occupancy for sidelink communication
US11523402B2 (en) Reconfiguring resources for transmission
US20220030588A1 (en) Resource Allocation for Data Transmission
WO2021047767A1 (en) Mobility of integrated access and backhaul nodes
US20230397042A1 (en) Data arrival indication
US20230379920A1 (en) Mutliplexing and transmitting cancelled uplink control information
US20230389109A1 (en) Small Data Transmission Control
US20220311538A1 (en) Allocating radio resources based on user mode
US20240056990A1 (en) Assigning power control parameters for multiple transmission reception point operation
US20230397241A1 (en) Delay information
WO2022218620A1 (en) Radio bearer reconfiguration
WO2022223498A1 (en) Method for sharing baseband computing resources
WO2023083641A1 (en) Uplink transmit power control
WO2022200033A1 (en) Data transmission in inactive state connection
WO2022207279A1 (en) Data volume range for initiating small data transmission
EP4292385A1 (en) Temporary identification for a terminal device
WO2020120825A1 (en) Packet communications
WO2022184402A1 (en) Small data transmission control
EP4316107A1 (en) Control channel detection in terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930804

Country of ref document: EP

Kind code of ref document: A1