WO2020037528A1 - 一种球座 - Google Patents

一种球座 Download PDF

Info

Publication number
WO2020037528A1
WO2020037528A1 PCT/CN2018/101649 CN2018101649W WO2020037528A1 WO 2020037528 A1 WO2020037528 A1 WO 2020037528A1 CN 2018101649 W CN2018101649 W CN 2018101649W WO 2020037528 A1 WO2020037528 A1 WO 2020037528A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
slip
outer diameter
ball seat
seat according
Prior art date
Application number
PCT/CN2018/101649
Other languages
English (en)
French (fr)
Inventor
曾琦军
Original Assignee
成都维泰油气能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都维泰油气能源技术有限公司 filed Critical 成都维泰油气能源技术有限公司
Priority to PCT/CN2018/101649 priority Critical patent/WO2020037528A1/zh
Priority to US16/079,564 priority patent/US10934803B2/en
Priority to CA3061414A priority patent/CA3061414C/en
Publication of WO2020037528A1 publication Critical patent/WO2020037528A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1293Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0413Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using means for blocking fluid flow, e.g. drop balls or darts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/01Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions

Definitions

  • the invention relates to the technical field of downhole tools, in particular to a ball seat used for the segmental modification of oil and gas wells.
  • composite ball seats or cast iron ball seats are usually used as segmented tools. These two ball seats have their own advantages, such as composite ball seats. After the fracturing operation is completed, these composite ball seats must be drilled and ground through coiled tubing to form a full bore. However, due to structural and material limitations, It takes longer.
  • the cast iron ball seat used in the staged fracturing transformation operation is usually a large diameter ball seat.
  • This ball seat is characterized by a large internal diameter and can be directly returned to production after fracturing is completed.
  • the oil and gas production of oil and gas wells also declines, and the second transformation of oil and gas wells has become an important way to increase the production of oil and gas wells.
  • the seal member is completely sealed with the inner wall of the wellbore by pressing the seal member to complete the plugging seal; the reliability of the existing ball seat seal is not very high.
  • the technical problem to be solved by the invention is how to improve the sealing reliability of the ball seat.
  • the present invention provides a ball seat, which is used for the segmented reconstruction of oil and gas wells, and includes a lower joint, slips, seals, and a central tube.
  • the central tube has a truncated cone shape.
  • the larger outer diameter is provided with a plugging port, and the seal and the slip are sleeved on the outer side of the smaller outer diameter end of the central pipe in order along the direction in which the outer diameter of the central pipe decreases.
  • One end of the piece is in contact with one end of the slip, and the end of the smaller outer diameter of the central tube is located in the slip; one end of the lower joint is in contact with the other end of the slip, so
  • the lower joint is provided with a seat sealing tool connection structure;
  • the seal is a two-stage structure in the axial direction, and a section of the seal located at the larger outer end of the central pipe is a first section of the seal, which is located at
  • the one-piece seal at the smaller outer diameter of the central tube is a second-piece seal, the hardness of the first-piece seal is less than the hardness of the second-piece seal, and the first-piece seal and the The second-stage seals snap into each other.
  • the beneficial effects of the present invention are that the hardness of the first-stage seal is relatively small, and the first-stage seal is located at the larger outer diameter end of the central tube, so that the seal is easier to expand and it is easy to form an initial seal;
  • the hardness of the second stage seal is greater, which reduces the fluidity of the cartridge, improves the pressure bearing effect of the seal, and ensures the reliability of the seal.
  • a boss is provided on the outer circumferential side of the larger outer diameter end of the central tube, and the boss forms a transitional inclined surface with the outer surface of the smaller outer diameter end of the central tube; The other end of the seal covers the transition bevel.
  • the beneficial effect of adopting the above-mentioned further solution is that, since a boss is provided on the outer side of the end of the central tube with a larger outer diameter, the boss and the outer surface of the end of the central tube with a smaller outer diameter form a transitional bevel.
  • the slip pushes the seal to move the first seal toward the larger outer diameter of the central tube.
  • the outer diameter of the central tube rapidly increases and the first seal
  • the parts are quickly squeezed and expanded, and the seals contact the inner wall of the wellbore quickly to form the initial seal.
  • the ball seat completes the seat seal, the first seal is pressed against the transition slope, and the second seal is pressed against the slip. Then, the seal is elastically squeezed, and the position and space of elastic recovery at both ends are limited, so the seal cannot be elastically recovered, its sealing effect can be continuously maintained, and its sealing reliability will not be affected.
  • boss extends in the axial direction of the central tube to an end of the central tube having a larger outer diameter end.
  • a friction layer is provided on the surface of the slip, and the friction layer has a multilayer structure.
  • the above-mentioned further scheme has the beneficial effect that: in the conventional slip structure, slip teeth are provided on the slip to realize the anchoring of the slip and the inner wall of the oil and gas well;
  • the structure is more complicated, and there are more procedures in the assembly process.
  • the slip of the slip is only available at the slip teeth, and the anchoring effect is not very reliable; the entire slip surface and the oil and gas well are realized by setting a friction layer.
  • the anchoring of the inner wall improves the anchoring effect of the slip and the inner wall of the oil and gas well, and the structure is relatively simple; in addition, the slip structure of the multilayer friction layer improves the reliability of the friction layer and the effect of friction anchoring.
  • a plurality of groove structures are axially provided on the outer side of the slip, and the plurality of grooves are evenly distributed in a circumferential direction on the outer side of the slip.
  • the beneficial effect of adopting the above-mentioned further solution is that: a plurality of groove structures evenly distributed on the outer axial direction of the slips, during the sealing process, the slips are extruded and expanded as the inner diameter of the central tube becomes larger, Large stresses are generated at the grooves, causing cracks at the groove structure to anchor the inner wall of the wellbore; uniformly distributed groove structure makes the cracks at the same size, and the entire ball's slips are anchored in the circumferential direction.
  • the force is also consistent, which increases the bearing capacity of the entire ball seat and improves the reliability of the ball seat seal.
  • the Mohs hardness of the friction layer is greater than or equal to 3.
  • the beneficial effect of adopting the above-mentioned further solution is that the high-hardness friction particles are directly arranged on the surface of the slip, so that the friction layer and the slip are an integrated structure, and the reliability of the connection between the friction layer and the slip is improved.
  • a proportional relationship between a length of the seal in the axial direction and a length of the slip in the axial direction is: 2: 5 to 3: 5.
  • the beneficial effect of adopting the foregoing further solution is that, for a ball seat provided in a single slip structure, due to the stress of elastic recovery due to the squeezed elastic seal, by setting the length of the seal in the axial direction and the The length ratio relationship of the slips in the axial direction is: 2: 5 to 3: 5, to ensure that the anchoring capacity and sealing reliability of the ball slips are optimal.
  • baffle ring is provided between the seal and the slip, the baffle is in contact with the seal and the slip, respectively, and the inner diameter of the baffle matches the outer diameter of the central tube.
  • the beneficial effect of adopting the above-mentioned further solution is that during the sealing process of the ball seat, a sealing end is provided at the larger end of the central tube to seal, and the larger end of the central tube must bear a large amount.
  • the pressure that is, the direction of the pressure is: the outer diameter of the central tube is larger than that of the central tube, and the smaller diameter of the central tube.
  • One end of the seal must withstand great pressure. Deformation, improve the pressure bearing capacity and sealing performance of the entire ball seat.
  • the retaining ring has a multilayer structure in the axial direction.
  • the beneficial effect of adopting the above-mentioned further scheme is that during the sealing process, the retaining ring will be subjected to a large pressing force. If the pressure is too large, the retaining ring will be fractured.
  • the intermediate retaining ring can also play a good role in limiting pressure because the retaining ring in the middle position will not be broken.
  • the seat sealing tool connection structure is an internal thread structure.
  • the above-mentioned further solution has the beneficial effect that the lower joint is connected with the seat sealing tool through the thread structure.
  • the thrust of the seat sealing tool to the slip through the lower joint is very stable, and the extrusion effect is very good;
  • the seat seal tool needs to be separated from the lower joint. Because the thread structure is provided, the thread is directly cut off, and the seat seal tool is reliably separated from the lower joint.
  • the circumferential shear force is more balanced Very easy to control.
  • an outer diameter of the seal is larger than an outer diameter of the slip.
  • the beneficial effect of adopting the above-mentioned further solution is that, since the outer diameter of the seal is larger than the outer diameter of the slip, during the sealing process, the seal axis will contact the inner wall of the wellbore, and the seal and the wellbore are pressed by the slip. The inner wall is sealed to form an anchor and seal synchronized with the slip.
  • a ratio of an outer diameter of the seal to an outer diameter of the slip is between 1.04 and 1.08.
  • the above-mentioned further solution has the beneficial effect that setting the ratio of the outer diameter of the outer slip of the seal to the above-mentioned value can ensure that the sealing performance of the seal and the anchoring effect of the slip are optimal.
  • slip, the lower joint, the seal, the central tube, and the baffle are soluble materials.
  • the above-mentioned further solution has the beneficial effect that the friction layer of the entire ball seat slip is made of insoluble materials, and other parts are made of soluble materials, so that there are almost no residual parts in the wellbore, and it is not necessary to perform grinding in the later stage.
  • FIG. 1 is a sectional view of a ball seat according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an external structure of a tee according to an embodiment of the present invention.
  • FIG. 3 is a sectional view of a lower joint according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an external structure of a joint according to an embodiment of the present invention.
  • FIG. 5 is a sectional view of a slip according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a slip outside the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a baffle ring according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an external structure of a baffle ring according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a sealing member according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an external structure of a seal according to an embodiment of the present invention.
  • FIG. 11 is a sectional view of a central tube according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an external structure of a central tube according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of an embodiment of the present invention including a seat sealing tool
  • FIG. 14 is a sectional view of a seat seal completed in a wellbore according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of another embodiment of a boss of the present invention.
  • Fig. 16 is a sectional view of a seat seal completed in a wellbore according to another embodiment of the present invention.
  • FIG. 1 and FIG. 2 The sectional view of the ball seat in this embodiment and the schematic diagram of the external structure are shown in FIG. 1 and FIG. 2.
  • This embodiment provides a ball seat for the segmental reconstruction of oil and gas wells, including lower joint 01, slip 02, seal 04 and central pipe.
  • the central tube 05 is in the shape of a truncated cone.
  • the larger end of the central tube 05 is provided with a sealing port.
  • the seal 04 and the slipper 02 are sleeved on the outer side of the central tube 05 in the direction of the outer diameter of the central tube 05.
  • the lower joint 01 is provided with a seat sealing tool seat sealing tool connection structure 011;
  • the seal is a two-stage structure in the axial direction, and a section of the seal located at the larger outer diameter of the center pipe 05 is the first stage seal Piece 041, a section of the seal located at the smaller outer diameter of the central tube 05 is the second section of the seal 042, the hardness of the first section of the seal 041 is smaller than that of the second section of the seal 042, and the first section of the seal 041 and The second-stage seals 042 are engaged with each other.
  • a boss 051 is provided on the outer side of the larger outer diameter of the central tube 05 in the outer circumferential direction, and the boss forms a transition bevel 052 with the outer surface of the smaller outer diameter end of the central tube; a stop ring 03 is provided between the seal 04 and the slip 02.
  • the retaining ring 03 is in contact with the sealing member 04 and the slip 02, respectively.
  • the inner diameter of the retaining ring 03 matches the outer diameter of the central tube 05.
  • the seal is relatively easy to expand and it is easy to form an initial seal; meanwhile, the second stage seal
  • the hardness of 042 is large, which reduces the fluidity of the cartridge, improves the pressure-bearing effect of the seal, ensures the reliability of the seal, and does not affect its sealing force, which can withstand a sealing force of 15 to 18 tons. between.
  • the outer diameter of the central tube 05 A boss 051 is provided on the outer side of the larger end in the circumferential direction, and the boss 051 forms a transitional bevel 052 with the outer surface of the smaller outer diameter of the central tube 05.
  • the slip pushes the seal to make the first seal.
  • the piece 041 moves toward the larger outer diameter of the central tube 05.
  • the outer diameter of the central tube 05 rapidly increases, and the first sealing member 042 is quickly squeezed and expanded to seal quickly.
  • the element contacts the inner wall of the wellbore to form an initial seal.
  • the first seal 042 is pressed against the transition bevel 052
  • the second seal 042 is pressed against the slip 02, and the elastically squeezed seal is elastically restored at both ends. Position and space are restricted, so the seal cannot be elastically restored, its sealing effect can be maintained continuously, and its reliability will not be affected.
  • the seat sealing tool 06 is connected to the lower joint 01, and the ball seat is placed in the wellbore to reach the set position.
  • the seat sealing tool 06 is pulled upward through the lower joint 01, and at the same time, the central tube is pushed down.
  • 05 that is, the central tube 05 of the ball seat is pushed downward to move the central tube 05 and the lower joint 01 into a relative movement.
  • the seal 04 and the retaining ring 03 will be squeezed and produce elastic deformation, and the seal 04 will contact and seal the inner wall of the wellbore.
  • the slip 02 will rupture and anchor in the casing wall of the oil and gas well.
  • the seat sealing tool and the lower joint 01 fall off, and the seat sealing tool is taken out.
  • the slip 02 is anchored to the inner wall of the oil and gas well bore through the friction layer 021 on its outer surface, and the seat sealing is completed.
  • the cross-sectional view of the lower joint 01 and the schematic diagram of the external structure are shown in FIG. 3 and FIG. 4.
  • the relative position in the radial direction ensures that the slips 02 are evenly stressed during the sealing process.
  • the seat sealing tool seat sealing tool connection structure 011 of the cavity 01 of the lower joint is an internal thread structure.
  • the lower joint 01 is connected with the seat sealing tool.
  • the thrust of the seat sealing tool to the slip 02 through the lower joint 01 is very stable, and the extrusion effect is very good.
  • the thread structure is provided, the thread is directly cut off, and the seat sealing tool is reliably separated from the lower joint 01.
  • the circumferential shear force is relatively balanced, which is very easy. control.
  • the surface of the slip 02 is provided with a friction layer 021.
  • the friction layer 021 is a multi-layer structure. In the groove structure 022, eight grooves are evenly distributed in the circumferential direction outside the kava 02, and the Mohs hardness of the friction layer 021 is greater than or equal to 3.
  • the friction layer 021 in this embodiment is provided as a five-layer structure, and the friction layer 021 is fixed to the surface of the slip 02 by means of high-temperature sintering.
  • the friction layer 021 in this embodiment is a metal particle having a particle size between 5 and 100 mesh.
  • the slip 02 teeth will be set on the slip 02 to realize the anchoring of the slips 02 and the inner wall of the oil and gas well; this kind of additional slip slip 02 teeth on the slip 02 has a complicated structure. There are many procedures in the assembly process. At the same time, the anchoring of the slipper 02 is only available at the teeth of the slipper 02, and the anchoring effect is not very reliable; the friction surface 021 is provided to achieve the entire surface of the slipper 02 and oil and gas.
  • the anchoring of the inner wall of the well improves the anchoring effect of the slipper 02 and the inner wall of the oil and gas well, and the structure is relatively simple; in addition, the slipper 02 structure of the multi-layer friction layer 021 improves the reliability and friction anchoring of the friction layer 021 Effect.
  • the slipper 02 was extruded and expanded as the inner diameter of the central tube 05 became larger.
  • the cracks at the groove structure 022 make the slips 02 anchor to the inner wall of the wellbore; the uniformly distributed groove structure 022 makes the cracks slip 02 the same size, and the entire ball's slips 02 are anchored in the circumferential direction.
  • the constant force is also consistent, which increases the bearing capacity of the entire ball seat and improves the reliability of the ball seat seal.
  • the depth of the groove structure 022 is 4 mm
  • the width of the groove structure 022 is 4 mm, to ensure that the slip 02 is easily broken.
  • the friction layer 021 can also be formed on the surface of the slip 02 by sputtering or bonding.
  • FIG. 7 and FIG. 8 is a cross-sectional view and a schematic diagram of the external structure of the baffle ring 03 in this embodiment.
  • the structure of the baffle ring 03 is a 4-layer baffle ring 03, and the thickness of the baffle ring 03 is alternately arranged.
  • the larger end of the central tube 05 is provided with a sealing opening to seal, and the larger end of the central tube 05 is subjected to a large pressure, that is, the pressure direction is: center
  • the outer diameter of the tube 05 is larger than that of the central tube 05.
  • the one end of the seal 04 has to bear a lot of pressure.
  • one end of the seal 04 is prevented from being deformed by high pressure, and the whole is improved.
  • Ball bearing pressure capacity and sealing performance By providing a four-layer structure, when the outer retaining ring near the sealing member 04 is broken, the intermediate retaining ring can not be broken, and the intermediate retaining ring can also play a good role in limiting pressure.
  • the baffle ring 03 in this embodiment uses a soluble material with a hardness of not less than 3 on the Mohs hardness scale, which ensures a good pressure-bearing capacity of the baffle ring 03 during extrusion.
  • FIGS. 9 and 10 A cross-sectional view of the seal 04 and a schematic diagram of the external structure of this embodiment are shown in FIGS. 9 and 10.
  • the seal 04 is a two-stage structure in the axial direction.
  • a section of the seal 04 located at the larger outer diameter of the central tube 05 is the first section.
  • Seal 041, a section of seal 04 located at the smaller outer diameter of the central tube 05 is the second section of seal 042, the hardness of the first section of seal 041 is less than that of the second section of seal 042, and the first section of seal 041 and the second-stage seal 042 are engaged with each other.
  • the central tube 05 has a cylindrical structure with a larger outer diameter, and a boss 051 formed at one end of the cylindrical structure and the smaller outer diameter of the central tube 05.
  • the boss 051 extends in the axial direction of the central tube 05 to the end with the larger outer diameter of the central tube 05, and forms an integral structure with the larger outer diameter of the central tube 05.
  • the boss 051 and the central tube 05 have an outer diameter smaller than The outer surface of the small end forms a transitional bevel 052.
  • the other end of the seal 04 is squeezed and covered on the transitional bevel and is located on the outer cylindrical surface of the cylindrical structure. Because the hardness of the first stage seal 041 is small, the seal is relatively easy to expand, and it is easy to form an initial seal. At the same time, the second stage seal 042 has a higher hardness, which reduces the fluidity of the cartridge and improves the seal. The pressure-bearing effect ensures the reliability of the seal.
  • the boss 051 Since the boss 051 is provided on the outer side of the larger outer diameter of the central tube 05 in the circumferential direction, the boss 051 and the outer surface of the smaller outer diameter of the central tube 05 form a transition bevel 052.
  • the slip Push the seal to move the first seal 041 toward the larger outer diameter of the central tube 05.
  • the outer diameter of the central tube 05 When the first seal 041 reaches the transition bevel 052, the outer diameter of the central tube 05 rapidly increases, and the first seal 042 is Rapid extrusion and expansion, and the seal quickly contacts the inner wall of the wellbore to form an initial seal.
  • the overall height of the boss 051 in this embodiment is 5 mm, the taper of the central tube 05 is 15 degrees, and the outer diameter of the central tube 05 matches the inner diameter of the slip 02.
  • the height of the boss 051 can be set to any value between 2mm and 6mm. It may be provided as an intermittent ring structure.
  • the taper of the central tube 05 can be arbitrarily selected between 10 degrees and 18 degrees.
  • the ratio between the length of the seal 04 in the axial direction and the length of the slip 02 in the axial direction is 1: 2.
  • the ratio of the length of the seal 04 in the axial direction to the length of the slip 02 in the axial direction is proportional. It is 1: 2 to ensure that the anchoring capacity and sealing reliability of the ball slip 02 are optimal.
  • the length ratio relationship between the seal 04 and the slip 02 may be appropriately selected to achieve the best fit.
  • the outer diameter of the seal 04 is larger than the outer diameter of the slips 02, and the ratio of the outer diameter of the outer diameter of the seals 04 of the slips 02 is between 1.05.
  • the axis of the seal 04 will contact the inner wall of the wellbore 07, and the seal 04 will be sealed with the inner wall of the wellbore 07 by the slip 02 to form an anchor and seal synchronized with the slip 02.
  • the slips 02, the lower joint 01, the seal 04, the center tube 05, and the stop ring 03 are soluble materials, and a magnesium aluminum alloy soluble material is selected.
  • This embodiment includes a cross-sectional view of the seat sealing tool 06. See FIG. 13.
  • the seat sealing tool 06 is connected to the lower joint 01 through threads to facilitate the use and transfer of the product.
  • the uniform force of the lower joint 01 is achieved by thread cutting, and Advance evenly.
  • a sectional view of the seat seal is completed in the wellbore 07.
  • the seat seal tool 06 is connected to the lower joint 01, and the ball seat is placed in the wellbore 07 to reach the set position.
  • the tool 06 is pulled upward through the lower joint 01, and at the same time, the central pipe 05 is pushed downward, that is, the central pipe 05 of the ball seat is moved downward, so that the central pipe 05 and the lower joint 01 form a relative movement.
  • the seal 04 and the retaining ring 03 are extruded and elastically deformed.
  • the first section of the seal 041 in the seal is extruded and covered on the transition slope, located on the outer cylindrical surface of the cylindrical structure, and the seal 04
  • the first stage seal 041 and the second stage seal 042 are in contact with the inner wall of the wellbore 07 and sealed.
  • the slip 02 ruptures and anchors in the casing wall of the oil and gas well.
  • the thrust of the seat sealing tool 06 reaches a certain value
  • the seat The sealing tool 06 and the lower joint 01 are detached, and the seat sealing tool 06 is taken out.
  • the lower joint 01 is a soluble material and will not remain in the wellbore 07.
  • the slip 02 passes through the friction layer 021 on the outer surface and the inner wall anchor of the oil and gas wellbore 07.
  • the seat seal is complete.
  • the sectional view of the central tube 05 and the schematic diagram of the external structure are shown in FIG. 15.
  • the boss 051 on the outer side of the central tube 05 forms a transition bevel 052 with the outer surface of the smaller outer diameter end of the central tube 05.
  • One end of the first seal 041 is squeezed on the large transition slope and covers the transition slope 051.
  • a cross-sectional view of a seat seal is completed in a wellbore. See FIG. 16.
  • the seat seal tool 06 is connected to the lower joint 01, and the ball seat is placed in the well shaft 07 to reach the set position.
  • the tool 06 is pulled upward through the lower joint 01, and at the same time, the central pipe 05 is pushed downward, that is, the central pipe 05 of the ball seat is moved downward, so that the central pipe 05 and the lower joint 01 form a relative movement.
  • the seal 04 and the retaining ring 03 will be squeezed and produce elastic deformation.
  • the first seal 041 in the seal 04 is squeezed on the large transition bevel 052 and covers the transition bevel 052.
  • the seal 04 and the wellbore 07 The inner wall contacts and seals.
  • the slip 02 ruptures and anchors in the casing wall of the oil and gas well.
  • the thrust of the seat sealing tool 06 reaches a certain value, the seat sealing tool 06 and the lower joint 01 fall off, the seat sealing tool 06 is taken out, and the lower joint 01 is a soluble material and will not remain in the wellbore 07.
  • the slipper 02 is anchored to the inner wall of the oil and gas wellbore 07 by the friction layer 021 on its outer surface, and the seat seal is completed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Earth Drilling (AREA)

Abstract

一种球座,用于油气井的分段改造,包括下接头(01)、卡瓦(02)、密封件(04)和中心管(05),中心管(05)呈圆锥台状,密封件(04)和卡瓦(02)沿中心管(05)外径缩小的方向依次套接在中心管(05)的外径较小一端的外侧,密封件(04)的一端与卡瓦(02)的一端抵接,中心管(05)外径较小一端的端部位于卡瓦(02)内;下接头(01)的一端与卡瓦(02)的另一端抵接,下接头(01)内设有座封工具连接结构(011);密封件(04)为两段式结构,第一段密封件(041)的硬度小于第二段密封件的硬度(042)。由于第一段密封件(041)的硬度较小,且第一段密封件(041)位于所述中心管(05)的外径较大一端,容易形成初始密封;同时,第二段密封件(043)的硬度较大,减少了胶筒的流动性,提高了密封件的承压效果,确保了密封的可靠性。

Description

一种球座 技术领域
本发明涉及井下工具技术领域,具体涉及一种用于石油天然气井分段改造球座。
背景技术
在油气井分段压裂改造作业中,通常会用到复合球座或铸铁球座作为分段的工具。这两种球座各有优势,如复合球座,压裂作业结束之后,必须通过连续油管钻磨掉这些复合球座,形成全通径的井眼,但是由于结构和材料限制,钻磨所需时间较长。
运用在分段压裂改造作业中的铸铁球座通常为大通径球座,这种球座的特点在于内通径大,可以在压裂完成后,直接返排投产。随着油气井生产年限的增加,油气井的油气产量也随之下降,油气井的二次改造成为增加油气井产量的重要方式。然而,现有的单卡瓦球座和桥塞,通过挤压密封件,使密封件与井筒内壁完全密封,完成封堵密封;现有的球座密封的可靠性不是很高。
发明内容
本发明所要解决的技术问题是:如何提高球座的密封可靠性。
为了解决上述技术问题,本发明提供一种球座,用于油气井的分段改造,包括下接头、卡瓦、密封件和中心管,所述中心管呈圆锥台状,所述中心管的外径较大一端设有封堵口,所述密封件和所述卡瓦沿所述中心管外径缩小的方向依次套接在所述中心管的外径较小一端的外侧,所述密封件的一端与所述卡瓦的一端抵接,所述中心管外径较小一端的端部位于所述卡瓦内;所述下接头的一端与所述卡瓦的另一端抵接,所述下接头内设有座封工具连接结构;所述密封件在轴向上为两段式结构,位于所述中心管的外径较大一端 的一段密封件为第一段密封件,位于所述中心管的外径较小一端的一段密封件为第二段密封件,所述第一段密封件的硬度小于所述第二段密封件的硬度,所述第一段密封件与所述第二段密封件相互卡接。
本发明的有益效果:由于第一段密封件的硬度较小,且第一段密封件位于所述中心管的外径较大一端,这样密封件比较容易膨胀,很容易形成初始密封;同时,第二段密封件的硬度较大,减少了胶筒的流动性,提高了密封件的承压效果,确保了密封的可靠性。
进一步,所述中心管的外径较大一端外侧周向上设置有凸台,所述凸台与所述中心管外径较小端的外表面形成过渡斜面;所述球座完成座封后,所述密封件的另一端覆盖所述过渡斜面。
采用上述进一步方案的有益效果是:由于在中心管的外径较大一端外侧周向上设置有凸台,所述凸台与所述中心管外径较小端的外表面形成过渡斜面,在球座座封的过程中,卡瓦推动密封件,使第一密封件向中心管的外径较大一端移动,当第一密封件到达过渡斜面时,中心管的外径快速变大,第一密封件被快速挤压膨胀,迅速地密封件与井筒内壁接触形成初始密封,在球座完成座封的时候,第一密封件与过渡斜面挤压抵接,第二密封件与卡瓦挤压抵接,被弹性挤压密封件,两端弹性恢复的位置和空间都被限制了,所以密封件不能够弹性恢复,其密封效果可以持续保持,其密封的可靠性不会受到影响。
进一步,所述凸台在所述中心管的轴向上延伸至所述所述中心管的外径较大一端的端部。
采用上述进一步方案的有益效果是:使凸台和中心管的外径较大一端形成整体结构。
进一步,所述卡瓦的表面设置有摩擦层,所述摩擦层为多层结构。
采用上述进一步方案的有益效果是:在常规的卡瓦结构中,在卡瓦上会设置卡瓦齿来实现卡瓦与油气井内壁的锚定;这种在卡瓦上额外设置卡瓦齿, 结构较为复杂,在装配的过程中工序较多,同时,卡瓦的锚定了只有在卡瓦齿处才有,锚定效果不是很可靠;通过设置摩擦层实现了整个卡瓦表面与油气井内壁的锚定,提高了卡瓦与油气井内壁的锚定效果,同时结构较为简单;另外,多层摩擦层的卡瓦结构,提高了摩擦层的可靠性和摩擦锚定的效果。
进一步,所述卡瓦外侧轴向上设置有多个凹槽结构,所述多个凹槽均布在所述卡瓦外侧的周向上。
采用上述进一步方案的有益效果是:多个均布在卡瓦外侧轴向上的凹槽结构,在座封过程中,卡瓦随着中心管的内径变大进而被挤压膨胀,在凹槽结构处产生较大的应力,在凹槽结构处开裂,使卡瓦与井筒内壁锚定;均布的凹槽结构,使得开裂的卡瓦大小一致,整个球座的卡瓦在周向上的锚定力也是一致的,增大了整个球座的承压能力,提高了球座密封的可靠性。
进一步,所述摩擦层的莫氏硬度大于或等于3。
采用上述进一步方案的有益效果是:直接将高硬度摩擦颗粒物设置在卡瓦表面上,使得摩擦层和卡瓦为一体结构,提高了摩擦层与卡瓦的之间连接的可靠性。
进一步,所述密封件在所述轴向上的长度和所述卡瓦在所述轴向上的长度比例关系为:2:5至3:5。
采用上述进一步方案的有益效果是:对于设置成单卡瓦结构的球座,由于被挤压的弹性密封件存在弹性恢复的应力,通过设置所述密封件在所述轴向上的长度和所述卡瓦在所述轴向上的长度比例关系为:2:5至3:5,确保球座卡瓦的锚定能力和密封可靠性达到最佳。
进一步,所述密封件和所述卡瓦之间设置有档环,所述档环分别与所述密封件和所述卡瓦抵接,所述档环内径与所述中心管的外径匹配。
采用上述进一步方案的有益效果是:在球座的座封过程中,所述中心管的外径较大一端设有封堵口会进行密封,中心管的外径较大一端就要承受很大的压力,即压力方向为:中心管的外径较大一端超中心管的外径较小一端, 密封件的一端要承受很大的压力,通过设置档环,避免密封件的一端因为高压产生变形,提高整个球座的承压能力和密封性能。
进一步,所述档环在所述轴向上为多层结构。
采用上述进一步方案的有益效果是:在座封过程中,挡环会受到较大的挤压力,如果压力过大,挡环会被压裂,通过设置多层结构,当靠近密封件的外层挡环发生破裂时,中间位置的挡环由于不会破裂,中间挡环还可以起到良好的限位承压作用。
进一步,所述座封工具连接结构为内螺纹结构。
采用上述进一步方案的有益效果是:通过螺纹结构是下接头与座封工具连接,在挤压座封过程中,使得座封工具通过下接头对卡瓦的推力非常稳定,挤压效果很好;通过在完成座封的时候,需要将座封工具与下接头分离,由于设置的是螺纹结构,直接将螺纹剪切掉,座封工具就与下接头可靠分离,周向上的剪切力比较均衡,非常容易控制。
进一步,所述密封件的外径大于所述卡瓦的外径。
采用上述进一步方案的有益效果是:由于所述密封件的外径大于所述卡瓦的外径,在座封过程中,密封件轴线会与井筒内壁接触,通过卡瓦挤压使得密封件与井筒内壁密封,形成与卡瓦同步的锚定与密封。
进一步,所述密封件的外径所述卡瓦的外径的比值位于1.04至1.08之间。
采用上述进一步方案的有益效果是:将密封件的外径卡瓦的外径的比值设定为上述数值,可以确保密封件的密封性能和卡瓦的锚定效果达到最佳。
进一步,所述卡瓦、所述下接头、所述密封件、所述中心管和所述档环为可溶材料。
采用上述进一步方案的有益效果是:整个球座处理卡瓦的摩擦层为不可溶材料外,其他部件都为可溶材料,这样在井筒中几乎不会有残留部件,不需要在后期进行打磨。
附图说明
本发明上述和/或附加方面的优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例球座的剖视图;
图2是本发明实施例球座外部结构示意图;
图3是本发明实施例下接头剖视图;
图4是本发明实施例下接头外部结构示意图;
图5是本发明实施例卡瓦剖视图;
图6是本发明实施例卡瓦外不结构示意图;
图7是本发明实施例档环剖视图;
图8是本发明实施例档环外部结构示意图;
图9是本发明实施例密封件剖视图;
图10是本发明实施例密封件外部结构示意图;
图11是本发明实施例中心管剖视图;
图12是本发明实施例中心管外部结构示意图;
图13是本发明实施例包括座封工具的剖视图;
图14是本发明实施例在井筒中完成座封剖视图;
图15是本发明凸台另一实施例结构图;
图16是本发明另一实施例在井筒中完成座封剖视图。
其中图1中附图标记与部件名称之间的对应关系为:
01、下接头,011、座封工具连接结构,02、卡瓦、021、摩擦层,022、凹槽结构,03、档环,04、密封件,041、第一段密封件,042、第二段密封件,05、中心管,051、凸台,052、过渡斜面,06、座封工具,07、井筒。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
本实施例球座剖视图及外部结构示意图参见图1和图2,本实施例提供一种球座,用于油气井的分段改造,包括下接头01、卡瓦02、密封件04和中心管05,中心管05呈圆锥台状,中心管05的外径较大一端设有封堵口,密封件04和卡瓦02沿中心管05外径缩小的方向依次套接在中心管05的外径较小一端的外侧,密封件04的一端与卡瓦02的一端抵接,中心管05外径较小一端的端部位于卡瓦02内;下接头01的一端与卡瓦02的另一端抵接,下接头01内设有座封工具座封工具连接结构011;密封件在轴向上为两段式结构,位于中心管05的外径较大一端的一段密封件为第一段密封件041,位于中心管05的外径较小一端的一段密封件为第二段密封件042,第一段密封件041的硬度小于第二段密封件042的硬度,第一段密封件041与第二段密封件042相互卡接。中心管05的外径较大一端外侧周向上设置有凸台051,凸台与中心管外径较小端的外表面形成过渡斜面052;密封件04和卡瓦02之间设置有档环03,档环03分别与密封件04和卡瓦02抵接,档环03内径与中心管05的外径匹配。
由于第一段密封件041的硬度较小,且第一段密封件041位于中心管05的外径较大一端,这样密封件比较容易膨胀,很容易形成初始密封;同时,第二段密封件042的硬度较大,减少了胶筒的流动性,提高了密封件的承压效果,确保了密封的可靠性,也不会影响其座封力,可以承受的座封力在15至18吨之间。
同时,在现有的桥塞中,在加压到10Mpa时,密封件和井筒内壁之间很容易泄漏,其主要原因是初始密封效果不好,本实施例中,在中心管05的外径较大一端外侧周向上设置有凸台051,凸台051与中心管05外径较小端的外表面形成过渡斜面052,在球座座封的过程中,卡瓦推动密封件,使第 一密封件041向中心管05的外径较大一端移动,当第一密封件041到达过渡斜面052时,中心管05的外径快速变大,第一密封件042被快速挤压膨胀,迅速地密封件与井筒内壁接触形成初始密封。在球座完成座封的时候,第一密封件042与过渡斜面052挤压抵接,第二密封件042与卡瓦02挤压抵接,被弹性挤压的密封件,两端弹性恢复的位置和空间都被限制了,所以密封件不能够弹性恢复,其密封效果可以持续保持,其密封的可靠性不会受到影响。
在球座座封过程中,通过座封工具06与下接头01连接,将球座放入井筒中,到达设定位置,座封工具06通过下接头01向上拉,同时也向下推动中心管05,即推动球座的中心管05向下移动,以使中心管05和下接头01形成相对移动。密封件04和档环03会受到挤压并产生弹性形变,并使密封件04与井筒内壁接触并密封,卡瓦02发生破裂并锚定在油气井套管壁内,当座封工具的推力达到一定值后,座封工具与下接头01脱落,座封工具取出,同时,卡瓦02通过其外表面的摩擦层021与油气井筒内壁锚定,座封完成。
本实施例下接头01剖视图及外部结构示意图参见图3和图4,下接头01与卡瓦02抵接处设置有项卡瓦02内腔凸出结构,便于限制下接头01和卡瓦02在径向上的相对位置,确保座封过程中卡瓦02受力均匀。同时,下接头01空腔的座封工具座封工具连接结构011为内螺纹结构。
通过螺纹结构是下接头01与座封工具连接,在挤压座封过程中,使得座封工具通过下接头01对卡瓦02的推力非常稳定,挤压效果很好;通过在完成座封的时候,需要将座封工具06与下接头01分离,由于设置的是螺纹结构,直接将螺纹剪切掉,座封工具就与下接头01可靠分离,周向上的剪切力比较均衡,非常容易控制。
本实施例卡瓦02剖视图及外部结构示意图参见图5和图6,卡瓦02的表面设置有摩擦层021,摩擦层021为多层结构,在卡瓦02外侧轴向上设置 有8个凹槽结构022,8个凹槽均布在卡瓦02外侧的周向上,其中,摩擦层021的莫氏硬度大于或等于3。本实施例中的摩擦层021设置为五层结构,摩擦层021是通过高温烧结的方式被固定到卡瓦02的表面。本实施例中的摩擦层021是粒径为5-100目之间的金属颗粒物。
在常规的卡瓦02结构中,在卡瓦02上会设置卡瓦02齿来实现卡瓦02与油气井内壁的锚定;这种在卡瓦02上额外设置卡瓦02齿,结构较为复杂,在装配的过程中工序较多,同时,卡瓦02的锚定了只有在卡瓦02齿处才有,锚定效果不是很可靠;通过设置摩擦层021实现了整个卡瓦02表面与油气井内壁的锚定,提高了卡瓦02与油气井内壁的锚定效果,同时结构较为简单;另外,多层摩擦层021的卡瓦02结构,提高了摩擦层021的可靠性和摩擦锚定的效果。
8个均布在卡瓦02外侧轴向上的凹槽结构022,在座封过程中,卡瓦02随着中心管05的内径变大进而被挤压膨胀,在凹槽结构022处产生较大的应力,在凹槽结构022处开裂,使卡瓦02与井筒内壁锚定;均布的凹槽结构022,使得开裂的卡瓦02大小一致,整个球座的卡瓦02在周向上的锚定力也是一致的,增大了整个球座的承压能力,提高了球座密封的可靠性。本实施例中凹槽结构022的深度为4mm,凹槽结构022的宽度为4mm,确保卡瓦02比较容易破裂。
在具体产品应用中,可以根据产品的使用环境和条件,设置为4个、6个、12个等凹槽结构022;其凹槽的宽度和深度也可以设置为其他值,比如5mm或6mm等。其中,摩擦层021还可以通过溅射或粘接的方式这是在卡瓦02的表面。
本实施例档环03剖视图及外部结构示意图参见图7和图8,档环03结构为4层档环03,档环03的厚薄交替设置。在球座的座封过程中,中心管05的外径较大一端设有封堵口会进行密封,中心管05的外径较大一端就要承受很大的压力,即压力方向为:中心管05的外径较大一端超中心管05的 外径较小一端,密封件04的一端要承受很大的压力,通过设置档环03,避免密封件04的一端因为高压产生变形,提高整个球座的承压能力和密封性能。通过设置4层结构,当靠近密封件04的外层挡环发生破裂时,中间位置的挡环由于不会破裂,中间挡环还可以起到良好的限位承压作用。
本实施例中的档环03采用的是硬度为莫氏硬度不小于3的可溶材料,确保在挤压时,档环03的良好承压能力。
本实施例密封件04剖视图及外部结构示意图参见图9和图10,密封件04在轴向上为两段式结构,位于中心管05的外径较大一端的一段密封件04为第一段密封件041,位于中心管05的外径较小一端的一段密封件04为第二段密封件042,第一段密封件041的硬度小于第二段密封件042的硬度,第一段密封件041与第二段密封件042相互卡接。
本实施例中心管05剖视图及外部结构示意图参见图11和图12,中心管05的外径较大呈圆柱结构,圆柱结构的一端与中心管05的外径较小一端形成的凸台051,凸台051在中心管05的轴向上延伸至中心管05的外径较大一端的端部,和中心管05的外径较大一端形成整体结构;凸台051与中心管05外径较小端的外表面形成过渡斜面052,球座完成座封后,密封件04的另一端被挤压覆盖于过渡斜面上,并位于圆柱结构的外圆柱面上。由于第一段密封件041的硬度较小,这样密封件比较容易膨胀,很容易形成初始密封;同时,第二段密封件042的硬度较大,减少了胶筒的流动性,提高了密封件的承压效果,确保了密封的可靠性。
由于在中心管05的外径较大一端外侧周向上设置有凸台051,凸台051与中心管05外径较小端的外表面形成过渡斜面052,在球座座封的过程中,卡瓦推动密封件,使第一密封件041向中心管05的外径较大一端移动,当第一密封件041到达过渡斜面052时,中心管05的外径快速变大,第一密封件042被快速挤压膨胀,迅速地密封件与井筒内壁接触形成初始密封。本实施例中的凸台051整体高度为5mm,中心管05的锥度为15度,中心管05 的外径与卡瓦02的内径匹配。
在具体应用中,凸台051的高度可以设置在2mm至6mm之间的任意值。也可以设置为间断式的环状结构。中心管05的锥度可以在10度至18度之间任意选择。
在本实施例中,密封件04在轴向上的长度和卡瓦02在轴向上的长度比例关系为:1:2。对于设置成单卡瓦02结构的球座,由于被挤压的弹性密封件04存在弹性恢复的应力,通过设置密封件04在轴向上的长度和卡瓦02在轴向上的长度比例关系为:1:2,确保球座卡瓦02的锚定能力和密封可靠性达到最佳。
在具体应用中,可以适当选择密封件04和卡瓦02的长度比例关系,以达到最佳配合。
在本实施例中,密封件04的外径大于卡瓦02的外径,其中,密封件04的外径卡瓦02的外径的比值为1.05之间。在座封过程中,密封件04轴线会与井筒07内壁接触,通过卡瓦02挤压使得密封件04与井筒07内壁密封,形成与卡瓦02同步的锚定与密封。
在本实施例中,卡瓦02、下接头01、密封件04、中心管05和档环03为可溶材料,选用的是镁铝合金可溶材料。
本实施例包括座封工具06的剖视图参见图13,座封工具06通过螺纹与下接头01连接,方便产品的使用与转运;同时,通过螺纹剪切实现了下接头01的均匀受力,和均匀推进。
本实施例在井筒07中完成座封剖视图参见图14,在球座座封过程中,通过座封工具06与下接头01连接,将球座放入井筒07中,到达设定位置,座封工具06通过下接头01向上拉,同时也向下推动中心管05,即推动球座的中心管05向下移动,以使中心管05和下接头01形成相对移动。密封件04和档环03会受到挤压并产生弹性形变,密封件中的第一段密封件041被挤压覆盖于过渡斜面上,位于圆柱结构的外圆柱面上,并使密封件04中的 第一段密封件041和第二段密封件042与井筒07内壁接触并密封,卡瓦02发生破裂并锚定在油气井套管壁内,当座封工具06的推力达到一定值后,座封工具06与下接头01脱落,座封工具06取出,下接头01为可溶材料,不会残留在井筒07中,同时,卡瓦02通过其外表面的摩擦层021与油气井筒07内壁锚定,座封完成。
另一实施例中心管05剖视图及外部结构示意图参见图15,中心管05外侧的凸台051,凸台051与中心管05外径较小端的外表面形成过渡斜面052,球座完成座封后,第一密封件041的一端被挤压大过渡斜面上,并覆盖过渡斜面051。
另一实施例在井筒中完成座封剖视图参见图16,在球座座封过程中,通过座封工具06与下接头01连接,将球座放入井筒07中,到达设定位置,座封工具06通过下接头01向上拉,同时也向下推动中心管05,即推动球座的中心管05向下移动,以使中心管05和下接头01形成相对移动。密封件04和档环03会受到挤压并产生弹性形变,密封件04中的第一段密封件041,被挤压大过渡斜面052上,并覆盖过渡斜面052;使密封件04与井筒07内壁接触并密封,卡瓦02发生破裂并锚定在油气井套管壁内,当座封工具06的推力达到一定值后,座封工具06与下接头01脱落,座封工具06取出,下接头01为可溶材料,不会残留在井筒07中,同时,卡瓦02通过其外表面的摩擦层021与油气井筒07内壁锚定,座封完成。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语 “安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种球座,用于油气井的分段改造,包括下接头、卡瓦、密封件和中心管,其特征在于,所述中心管呈圆锥台状,所述中心管的外径较大一端设有封堵口,所述密封件和所述卡瓦沿所述中心管外径缩小的方向依次套接在所述中心管的外径较小一端的外侧,所述密封件的一端与所述卡瓦的一端抵接,所述中心管外径较小一端的端部位于所述卡瓦内;所述下接头的一端与所述卡瓦的另一端抵接,所述下接头内设有座封工具连接结构;所述密封件在轴向上为两段式结构,位于所述中心管的外径较大一端的一段密封件为第一段密封件,位于所述中心管的外径较小一端的一段密封件为第二段密封件,所述第一段密封件的硬度小于所述第二段密封件的硬度,所述第一段密封件与所述第二段密封件相互卡接。
  2. 根据权利要求1所述的球座,其特征在于,所述中心管的外径较大一端外侧周向上设置有凸台,所述凸台与所述中心管外径较小端的外表面形成过渡斜面;所述球座完成座封后,所述密封件的另一端覆盖所述过渡斜面。
  3. 根据权利要求2所述的球座,其特征在于,所述凸台在所述中心管的轴向上延伸至所述所述中心管的外径较大一端的端部。
  4. 根据权利要求3所述的球座,其特征在于,所述卡瓦的表面设置有摩擦层,所述摩擦层为多层结构。
  5. 根据权利要求4所述的球座,其特征在于,所述卡瓦外侧轴向上设置有多个凹槽结构,所述多个凹槽均布在所述卡瓦外侧的周向上。
  6. 根据权利要求5所述的球座,其特征在于,所述摩擦层的莫氏硬度大于或等于3。
  7. 根据权利要求6所述的球座,其特征在于,所述密封件在所述轴向上的长度和所述卡瓦在所述轴向上的长度比例关系为:2:5至3:5。
  8. 根据权利要求7所述的球座,其特征在于,所述密封件和所述卡瓦之间设置有档环,所述档环分别与所述密封件和所述卡瓦抵接,所述档环内 径与所述中心管的外径匹配。
  9. 根据权利要求8所述的球座,其特征在于,所述档环在所述轴向上为多层结构。
  10. 根据权利要求9所述的球座,其特征在于,所述座封工具连接结构为内螺纹结构。
  11. 根据权利要求10所述的球座,其特征在于,所述密封件的外径大于所述卡瓦的外径。
  12. 根据权利要求11所述的球座,其特征在于,所述密封件的外径所述卡瓦的外径的比值位于1.04至1.08之间。
  13. 根据权利要求12所述的球座,其特征在于,所述卡瓦、所述下接头、所述密封件、所述中心管和所述档环为可溶材料。
  14. 根据权利要求3所述的球座,其特征在于,所述密封件和所述卡瓦之间设置有档环,所述档环内径与所述中心管的外径匹配。
  15. 根据权利要求14所述的球座,其特征在于,所述档环在所述轴向上为多层结构。
  16. 根据权利要求15所述的球座,其特征在于,所述座封工具连接结构为内螺纹结构。
  17. 根据权利要求16所述的球座,其特征在于,所述密封件的外径大于所述卡瓦的外径。
  18. 根据权利要求17所述的球座,其特征在于,所述密封件的外径所述卡瓦的外径的比值位于1.04至1.08之间。
  19. 根据权利要求18所述的球座,其特征在于,所述卡瓦、所述下接头、所述密封件、所述中心管和所述档环为可溶材料。
PCT/CN2018/101649 2018-08-22 2018-08-22 一种球座 WO2020037528A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/101649 WO2020037528A1 (zh) 2018-08-22 2018-08-22 一种球座
US16/079,564 US10934803B2 (en) 2018-08-22 2018-08-22 Ball seat
CA3061414A CA3061414C (en) 2018-08-22 2018-08-22 Ball seat with two-segment sealing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101649 WO2020037528A1 (zh) 2018-08-22 2018-08-22 一种球座

Publications (1)

Publication Number Publication Date
WO2020037528A1 true WO2020037528A1 (zh) 2020-02-27

Family

ID=69592412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101649 WO2020037528A1 (zh) 2018-08-22 2018-08-22 一种球座

Country Status (3)

Country Link
US (1) US10934803B2 (zh)
CA (1) CA3061414C (zh)
WO (1) WO2020037528A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261691B2 (en) * 2020-07-15 2022-03-01 Vertechs Petroleum Technology Innovation & Equipment Manufacturing Co., Ltd. Integrated coupling and downhole plugging system and plugging method
CN114382436B (zh) * 2020-10-22 2024-03-01 中国石油天然气集团有限公司 卡瓦机构
US11499390B2 (en) * 2020-12-21 2022-11-15 Aimin Chen Sealing assembly for dissolvable bridge plug, a dissolvable bridge plug and a sealing method for gap
CN115288670A (zh) * 2022-07-11 2022-11-04 重庆伟耘科技发展有限公司 一种油田示踪介质释放装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2481843Y (zh) * 2001-04-06 2002-03-13 赵文泉 无定位油管堵塞器
US20160108700A1 (en) * 2014-10-20 2016-04-21 Baker Hughes Incorporated Compensating pressure chamber for setting in low and high hydrostatic pressure applications
CN207538786U (zh) * 2017-11-20 2018-06-26 中石化石油工程技术服务有限公司 一种裸眼侧钻斜向器
CN207554014U (zh) * 2017-12-20 2018-06-29 成都维泰油气能源技术有限公司 一种球座

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343946A (en) * 1993-08-09 1994-09-06 Hydril Company High pressure packer for a drop-in check valve
US20160186511A1 (en) * 2014-10-23 2016-06-30 Hydrawell Inc. Expandable Plug Seat
US20180328137A1 (en) * 2017-05-10 2018-11-15 Petroquip Energy Services, Llp Frac Plug with Retention Mechanism
WO2019023413A1 (en) * 2017-07-26 2019-01-31 Schlumberger Technology Corporation FRACTURING DEFLECTOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2481843Y (zh) * 2001-04-06 2002-03-13 赵文泉 无定位油管堵塞器
US20160108700A1 (en) * 2014-10-20 2016-04-21 Baker Hughes Incorporated Compensating pressure chamber for setting in low and high hydrostatic pressure applications
CN207538786U (zh) * 2017-11-20 2018-06-26 中石化石油工程技术服务有限公司 一种裸眼侧钻斜向器
CN207554014U (zh) * 2017-12-20 2018-06-29 成都维泰油气能源技术有限公司 一种球座

Also Published As

Publication number Publication date
US10934803B2 (en) 2021-03-02
CA3061414A1 (en) 2020-02-22
US20200291739A1 (en) 2020-09-17
CA3061414C (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2020037528A1 (zh) 一种球座
CN209228337U (zh) 一种可溶解桥塞
US10385651B2 (en) Frac plug with retention mechanisim
CN110792408A (zh) 一种硬密封可溶桥塞
CN108915631B (zh) 一种组合式双胶筒裸眼封隔器
CN103573211B (zh) 一种复合桥塞及其中心管
CN115749677B (zh) 一种分段压裂c类页岩套变井的小直径可溶桥塞
US10633946B2 (en) Frac plug with retention mechanism
CN110552659B (zh) 一种全金属可溶桥塞
CN111287689A (zh) 一种单卡瓦全可溶油管封堵桥塞
CN110617026B (zh) 一种井下作业装置及方法
CN110513074A (zh) 可溶解桥塞
CN209724296U (zh) 一种轻质球座
US20180328137A1 (en) Frac Plug with Retention Mechanism
CN114809981A (zh) 一种新型适用于非常规油气开采的可溶球座结构
CN109944571A (zh) 一种轻质球座
CN217270122U (zh) 一种无芯轴双卡瓦可溶桥塞
CN116163684A (zh) 页岩气套变井分段压裂的外径75mm扩张后114.3mm的可溶桥塞
CN217055099U (zh) 一种可溶解桥塞
CN110017116A (zh) 压裂桥塞
CN212671679U (zh) 一种可快速降解的密封结构
CN205805498U (zh) 一种大通径液压封隔器
CN214330593U (zh) 一种双向承压压裂用可溶桥塞
CN111636845A (zh) 一种可快速降解的密封结构及其应用方法
CN108729895B (zh) 一种套管球座多级压裂工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3061414

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931229

Country of ref document: EP

Kind code of ref document: A1