WO2020036329A1 - Fluorescent probe for detecting nad(p)h in mitochondria, and detection method using same - Google Patents

Fluorescent probe for detecting nad(p)h in mitochondria, and detection method using same Download PDF

Info

Publication number
WO2020036329A1
WO2020036329A1 PCT/KR2019/009056 KR2019009056W WO2020036329A1 WO 2020036329 A1 WO2020036329 A1 WO 2020036329A1 KR 2019009056 W KR2019009056 W KR 2019009056W WO 2020036329 A1 WO2020036329 A1 WO 2020036329A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
fluorescence
formula
nad
mitochondria
Prior art date
Application number
PCT/KR2019/009056
Other languages
French (fr)
Korean (ko)
Inventor
이민희
신동식
주진희
윤다영
장민정
윤신아
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180095559A external-priority patent/KR102051757B1/en
Priority claimed from KR1020180152022A external-priority patent/KR102154073B1/en
Priority claimed from KR1020180168537A external-priority patent/KR102089393B1/en
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2020036329A1 publication Critical patent/WO2020036329A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/10Aza-phenanthrenes
    • C07D221/12Phenanthridines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Definitions

  • the present invention relates to a fluorescent probe for detecting NAD (P) H in mitochondria and a detection method using the same.
  • NAD (P) H plays an important role as a coenzyme of many biological processes, including energy metabolism, immune function, biosynthesis, cell death and aging. Abnormal levels of NAD (P) H are associated with neoplasia, cancer, ischemia, diabetes and the like. In particular, NAD (P) H located in the mitochondria is essential for the maintenance of mitochondrial antioxidant defenses and the regulation of mitochondrial membrane potential, as well as ATP production by mitochondrial respiratory chain.
  • NAD (P) H in mitochondria cause mitochondrial dysfunction, production of reactive oxygen species (ROS), DNA damage, etc., and are involved in stroke, Alzheimer's disease and Parkinson's disease, and recently NAD (P) H in mitochondria Has been reported to be overexpressed in various cancers.
  • ROS reactive oxygen species
  • NAD (P) H has also been used for quantification and imaging of human derived biospecimens.
  • NAD (P) H is known to absorb light of about 340 nm and display a fluorescent signal at about 450 nm.
  • some fluorescent off-on probes have been developed for the selective detection of NAD (P) H in human cells.
  • Another object of the present invention is to provide a composition for detecting NAD (P) H in mitochondria, a fluorescent chemical sensor for detecting NAD (P) H, or a kit for detecting NAD (P) H.
  • Still another object of the present invention is to provide a composition for detecting cancer cells or a kit for detecting cancer cells.
  • Still another object of the present invention is to provide a method for detecting NAD (P) H in mitochondria.
  • the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a composition for detecting NAD (P) H in mitochondria, a fluorescence chemical sensor for detecting NAD (P) H, or NAD comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient:
  • P NAD H detection kits.
  • the present invention provides a composition for detecting cancer cells or a kit for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention comprises the steps of (a) treating the compound of formula (1) according to claim 1 or a pharmaceutically acceptable salt to the cell by reacting; And (b) measuring any one or more indicators selected from the group consisting of fluorescence wavelength, fluorescence intensity and optical change of the reacted reactant.
  • the method provides a method for detecting NAD (P) H in mitochondria.
  • X is a mitochondrial target moiety.
  • the probes of the present invention exhibit high selectivity and sensitivity to NAD (P) H and emit strong red fluorescence in the presence of NAD (P) H.
  • the probe shows a predominant accumulation in the mitochondria of living cells, can be used to detect and quantify NAD (P) H in the mitochondria, and can provide a selective image of mitochondria in real time, biological pathway research and pathology This can be useful for identifying diagnosis. It can also be used to distinguish cancer cells from normal cells based on the mapping of NAD (P) H dependent fluorescence intensities in mitochondria.
  • FIG. 1 illustrates a NAD (P) H detection mechanism using probe 1 of the present invention.
  • Figure 2 shows the synthesis of probes 1 and 2 in a scheme.
  • FIG. 3 shows (a) absorption of probe 1 (10 ⁇ M) in the absence and presence of NADH (2 mM) and (b) fluorescence spectrum, (c) for probe 1 (10 ⁇ M) upon addition of NADH (2 mM). Fluorescence spectra of probe 1 (10 ⁇ M) were confirmed with increasing time-dependent fluorescence and (d) concentration of NADH (0-3 mM).
  • Figure 6 shows (a) simultaneous staining of probe 1 and organelle tracker in live MDA-MB-231 cells, and (b) the degree of coexistence between probe 1 and organelle tracker.
  • probe 1 is a confocal microscopy image of glucose or FCCP treated MDA-MB-231 cells, (a) probe 1 (5 ⁇ M) alone, (b) glucose (20 mM), followed by probe 1 (5) ⁇ M) addition, (c) after adding FCCP (5 ⁇ M), adding probe 1 (5 ⁇ M), and (d) fluorescence intensity of probe 1 in the cells.
  • Figure 8 relates to confocal microscopy images of co-culture of NIH-3T3 and MDA-MB-231 cells, (a) after addition of Calcein AM (2 ⁇ M) to NIH-3T3 cells, MDA-MB-231 cells After incubation, probe 1 (5 ⁇ M) was added, (b, c) fluorescence intensity of probe 1 in live MDA-MB-231 and NIH-3T3 cells.
  • FIG. 10 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, (c) HR-ESI-MS spectrum of Compound 1.
  • FIG. 10 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, (c) HR-ESI-MS spectrum of Compound 1.
  • FIG. 11 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, and (C) HR-ESI-MS spectrum of Compound 2.
  • FIG. 11 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, and (C) HR-ESI-MS spectrum of Compound 2.
  • FIG. 13 is a plot of fluorescence intensity (FI) plots at (a) absorbance, (b) fluorescent spectra, and (c) 471 nm of Compound 1 according to f w .
  • FI fluorescence intensity
  • FIG. 15 shows (a) absorbance, (b) fluorescent spectra and (c) fluorescence intensity (FI) plots at 480 nm of Compound 2 according to f w .
  • FIG. 15 shows (a) absorbance, (b) fluorescent spectra and (c) fluorescence intensity (FI) plots at 480 nm of Compound 2 according to f w .
  • FIG. 16 shows (a) UV / Vis absorbance, (b) fluorescence spectra of compounds 1, 2 and 3 with and without 20 equivalents of NaHS (equiv.), And c) FE-SEM image, (d) a diagram showing the DLS size distribution.
  • FIG. 17 shows FE-SEM images and DLS size distributions of (a, b) Compound 1, (c, d) Compound 2, and (e, f) Compound 3, respectively.
  • FIG. 18 shows (a) fluorescence reaction of Compound 1 with various acidic reducing species (20 equivalents), (b) fluorescence changes at different concentrations of NaHS, (c) fluorescence intensity at 480 nm according to NaHS concentration, (d) Fluorescence change with time of Compound 1 with and without 20 equivalents (equiv.) of NaHS (black line).
  • FIG. 19 shows (a) fluorescence spectra of Compound 1 for compounds with various metal ions, anions, redox species and thiol groups, and (b) fluorescence intensity (FI) at 480 nm of Compound 1 in the presence of various metal ions and anions. The figure which shows the change.
  • FIG. 20 is a plot of UV / Vis absorbance of Compound 1 at different concentrations of NaHS (0-34 equivalent).
  • FIG. 21 shows fluorescence changes of (a) Compound 1 and (b) Compound 2 with respect to excess amount of various thiol groups.
  • FIG. 22 is a diagram showing a TLC analysis of Compound 1 for (a) 0.8 equivalent of NaHS and (b) 50 equivalent of NaHS.
  • FIG. 23 is a plot of the fluorescence intensity (FI) plot of Compound 1 against NaHS concentration at 480 nm.
  • FIG. 24 shows the fluorescence spectra of Compound 1 over time in the presence of a NaHS 20 equivalent.
  • FIG. 25 shows fluorescence changes of Compound 1 relative to NaHS 20 equivalents at pH 1-11.
  • FIG. 26 shows (a) a TLC plate immersed in a DCM solution of Compound 1, (b) a TLC plate coated with Compound 1 exposed to vapor comprising a volatile solution, and (c) after exposure to various vapors. Fluorescence of the coated TLC plate, (d) is a diagram showing the fluorescence change of the TLC plate coated with Compound 1 when exposed to increasing concentration of NaHS.
  • FIG. 27 is a fluorescence of TLC plates coated with Compounds 1, 2, and 3.
  • FIG. 27 is a fluorescence of TLC plates coated with Compounds 1, 2, and 3.
  • 29 is a result of confirming the fluorescence change of Compound 1 (5 ⁇ M) in the EtOH solution containing different proportions of water
  • Figure 29 (a) is 0-50%
  • Figure 29b is 50-90% results
  • insertion Drawing shows fluorescence intensity (FI) vs. It is a graph showing [Water] (%).
  • 29C is a result of confirming the degree of visualization of Compound 1 fluorescence change with increasing water, and all spectra were obtained using 350 nm excitation.
  • Figure 30 (a) is the result of confirming the change in the fluorescence intensity ratio of the compound 1 according to the various moisture ratio (0-90%) in the ACN, MeOH and EtOH solution
  • Figure 30 (b) shows the fluorescence intensity ratio in the ACN solution [ Water] (%) is a result of confirming the linear correlation
  • Figure 30 (c) and Figure 30 (d) is a result of confirming the linear correlation between the fluorescence intensity ratio in the MeOH solution and [Water] (%)
  • 30 (e) and 30 (f) confirm the linear correlation between the fluorescence intensity ratio in the EtOH solution and [Water] (%), and all data were obtained at 350 nm excited state.
  • FIG. 31 shows partial 1H NMR spectra of Compound 1 in CDCl 3 containing DMSO-d 6 at different ratios, FIG. 31 (a) 0%, FIG. 31 (b) 50%, and FIG. 31 (c) 100. % (v / v), asterisk (*) indicates residual CDCl 3 solvent.
  • FIG. 32 (a) shows the fluorescence color change of the paper strip immersed in Compound 1 in EtOH, MeOH and ACN solutions containing different percentages of water
  • FIG. 32 (b) shows the paper strip by simple drying.
  • the fluorescence change was confirmed using a portable UV lamp providing 365 nm excitation.
  • FIG. 33 is a schematic diagram showing a method of detecting water using a paper strip impregnated with compound 1.
  • the inventors of the present invention can be utilized to quantify NAD (P) H in the mitochondria of living cells, since the probe developed in the present invention is reduced in the presence of non-fluorescence or NAD (P) H, showing a strong red fluorescence.
  • the present invention was completed while confirming that real-time quantitative analysis was possible.
  • the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the compound or a pharmaceutically acceptable salt thereof may be represented by the following formula (2).
  • the present invention also provides a composition for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the present invention also provides a fluorescence chemical sensor for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the present invention also provides a kit for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the present invention provides a composition for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the present invention provides a kit for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a mitochondrial target moiety.
  • the mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
  • the present invention comprises the steps of (a) treating the compound of formula (1) according to claim 1 or a pharmaceutically acceptable salt to the cell by reacting; And (b) measuring any one or more indicators selected from the group consisting of fluorescence wavelength, fluorescence intensity and optical change of the reacted reactant.
  • the method provides a method for detecting NAD (P) H in mitochondria.
  • the indicator may be measured by one or more methods selected from the group consisting of UV-Vis (Ultraviolet-visible) spectrophotometer, fluorescence photometer, electrospray ionization mass spectroscopy and confocal microscope, but is not limited thereto. Specify it.
  • PIPES buffer pH7.4 contains 25 mM piperazine-N, N'-bis (2-ethanesulfonic acid) (piperazine-N, N'-bis (2-ethanesulfonic acid; PIPES) and 100 mM NaCl
  • PIPES buffer pH7.4 contains 25 mM piperazine-N, N'-bis (2-ethanesulfonic acid) (piperazine-N, N'-bis (2-ethanesulfonic acid; PIPES) and 100 mM NaCl
  • DMSO dimethyl sulfoxide
  • DMEM medium phosphated buffered saline (PBS), fetal bovine serum (FBS), try's balanced salt solution (HBSS) with trypsin 0.25% -EDTA and penicillin / streptomycin was used.
  • MitoTracker Green FM Mitsubishi Chemical Company
  • ER-Tracker Green dye endoplasmic reticulum (ER) -Tracker
  • LysoTracker Green DND-26 Lysosome-Tracker
  • UV-Vis absorbance was performed using a Spectra Max i3x micro plate reader (Molecular devices, San Jose, Calif.). Fluorescence images were obtained using Zeiss LSM-700. Red (probe 1) and green (tracker) fluorescence were obtained using excitation at 488 nm and 555 nm and band-path emission filters at 300-578 nm and 568-800 nm, respectively.
  • MDA-MB-231 Breast adenocarcinoma cell line (MDA-MB-231) was cultured in a 37 ° C., 5% CO 2 incubator using high glucose DMEM medium supplemented with 10% fetal bovine serum, 1% penicillin / streptomycin, and fresh medium every 2 days. Replaced with.
  • the medium was removed, washed with PBS, PBS was removed, 1.5 mL of trypsin 0.25% -EDTA was added and then incubated for 3 minutes in a 37 °C, 5% CO 2 incubator. After separating the cells from the flask, 1 mL of medium was added to the flask and mixed.
  • MDA-MB-231 cells were incubated for 24 hours (37 ° C., 5% CO 2 ) in coverslips of 35 mm confocal dishes at a concentration of 10 5 cells / mL, then the cells were washed with PBS and Probe 1 (1 mM stock solution) was added to the cells. Fluorescence images of the cells were acquired every 10 minutes for 2 hours using confocal microscopy.
  • MDA-MB-231 cells were dispensed in 96 well plates at 1 ⁇ 10 4 cells / well concentration and incubated for 24 hours to allow cells to adhere to the plate bottom. Thereafter, the medium was removed, and probe 1 was added to the cells at concentrations of 1, 3, 5, 10, 15, 20, 30 ⁇ M, and only the medium was added to the control group. After 6 hours of incubation, probe 1 was removed and washed with PBS. MTT reagent (0.5 mg / mL) was then added to each well and further incubated for 3 hours. After 3 hours, the MTT reagent was removed and DMSO (100 ⁇ l / well) was added to each well and the plate was shaken gently to dissolve formazan crystals for 30 minutes. Absorbance was read at 550 nm using a Spectra Max i3x micro plate reader.
  • MDA-MB-231 cells were dispensed onto glass coverslips of confocal dishes without surface treatment and attached for 24 hours. Thereafter, the medium was removed, washed with PBS, and then stained with probe 1, before the organelle tracker MitoTracker® Green FM (Mitochondria, 100 nM), ER-Tracker TM Green dye (ER, 100nM) and LysoTracker® Green DND- 26 (Lysosome, 100 nM) was treated and stained for 30 minutes. The cells were stained with one of the organelle trackers, and then sequentially treated with probe 1 for 90 minutes. Fluorescence images were acquired every 10 minutes using confocal microscopy.
  • MitoTracker® Green FM Mitochondria, 100 nM
  • ER-Tracker TM Green dye ER, 100nM
  • LysoTracker® Green DND- 26 Lysosome, 100 nM
  • NIH-3T3 cells Prior to mixing with MDA-MB-231 cells, NIH-3T3 cells were stained with Calcein AM and the mixture of cells was co-cultured for 24 hours in glass coverslips of confocal dishes. Mixed cells were stained with probe 1 for 2 hours and visualized with confocal fluorescence microscopy (Zeiss LSM-700, Axio Observer), and fluorescence images were obtained using Plan-Apochromat 63X / 1.40 oil immersion lens. Mito-Tracker Green FM, ER-Tracker Green dye and Lyso-Tracker Green DND-26 were excited at 488 nm and emission fluorescence was obtained at 300-578 nm using a band emission filter. Image analysis was performed using ZEN software and Image J software.
  • Probes 3, 4 and (3-bromopropyl) triphenyl-phosphonium bromide were prepared with reference to conventional methods (Sens. Actuators B Chem. 2016, 222, 48-54., Cryst. Growth Des. 2013, 13 , 1978-1987., Biomaterials 2016, 107, 33-43.).
  • the chemical structures of probes 1 and 2 were confirmed by 1 H, 13 C NMR spectroscopy and HR-ESI-MS.
  • Probe 1 Absorption and fluorescence changes of probe 1 in the presence of NADH were performed in PIPES buffer (pH 7.4, 25 mM) with 2% (v / v) DMSO. Probe 1 did not exhibit unique absorption and emission bands in the visible and far infrared regions. However, in the presence of NADH, probe 1 showed a new absorption band at 570 nm and showed a visual color change from yellow to purple, confirming that visual inspection of NADH was possible (FIG. 3A). Probe 1 at 570 nm showed a new emission band at 615 nm and showed a visual color change with bright red fluorescence (FIG. 3B).
  • probe 1 (10 ⁇ M) in the presence of various biologically relevant metals, anions, reactive oxygen species, thiols, NADPH, NADH and other biomolecules revealed that probe 1 was evident at 615 nm in the presence of NADH and NADPH. An increase in fluorescence was shown (FIG. 4).
  • Probe 1 produces highly selective fluorescence images for cellular NAD (P) H without interference from other biologically relevant species.
  • Probe 1 showed excellent selectivity with respect to NADH, it was intended to demonstrate the cell activity of probe 1 in the detection of NADH in mitochondria of live breast cancer cells (MDA-MB-231). Initially, cells were treated with various concentrations of probe 1 and incubated for 6 hours and 24 hours to assess cytotoxicity.
  • probe 1 selectively targets mitochondria in living cells.
  • probe 1 and organelle markers were co-stained respectively.
  • the merged image of probe 1 (red) and the mitochondrial marker (green) shows that the two stains coexist in most cells, while the merged image of probe 1 and lysosomal marker, or probe 1 and vesicle marker, No coexistence of stains was observed.
  • probe 1 correlates strongly with commercially available mitochondrial marker dyes and is located in the mitochondria of living cells.
  • NAD (P) H of mitochondria Two groups of cells under different conditions were prepared and transient fluorescence images were obtained. Since glucose mediated NAD (P) H production occurs through glycolysis, pyruvic acid oxidation, and citric acid circulation, MDA-MB-231 cells were preincubated with glucose in the NAD (P) H boosting group.
  • carbonyl cyano 4-trifluoromethoxyphenylhydrazone interferes with ATP synthesis by delivering protons through the mitochondrial lining, pre-culturing MDA-MB-231 cells with FCCP in a group depleted of NAD (P) H to induce oxidation of mitochondrial NADH through NADH dehydrogenase It was.
  • probe 1 produces a fluorescent signal dependent on mitochondrial NAD (P) H.
  • probe 1 Because cancer cells grow faster and differentiate than normal cells, the fluorescent signals of probe 1 were compared in mitochondria of living cancer cells (MDA-MB-231) and fibroblasts (NIH-3T3).
  • the signal of the fluorescence image showed a clear difference between the MDA-MB-231 cells and the NIH-3T3 cells (FIG. 8).
  • NIH-3T3 cells stained with Calcein AM green showed weak red fluorescence signal of probe 1.
  • probe 1 can be used to detect cancer cells surrounded by normal cells by mapping the difference in fluorescence intensity.
  • the present inventors have synthesized a novel compound for aggregation-induced emmission luminogen (AIEgen) induced by aggregation reaction capable of detecting hydrogen sulfide (H 2 S), which is a thiol such as GSH, Cys and Hcy. It can selectively detect H 2 S even if it reacts with interferences such as compounds having a) group, redox species (ROS), metal ions and anions, and can also be used as a sensor that can detect H 2 S gas. It was found that the present invention was completed.
  • AIEgen aggregation-induced emmission luminogen
  • the present invention provides a compound represented by the following formula (3) or a pharmaceutically acceptable salt thereof.
  • R 1 is selected from the group consisting of hydroxy, amine, (C 1 -C 4) alkylamine, (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy and halogen,
  • R 2 , R 3 and R 4 may each be the same or different and are selected from the group consisting of hydrogen, amine, (C 1 -C 4) alkylamine, (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy and halogen.)
  • R 1 is selected from the group consisting of hydroxy, amine, (C1 ⁇ C4) alkylamine, (C1 ⁇ C4) alkyl, (C1 ⁇ C4) alkoxy and halogen, R 2 , R 3 and R 4 is It may be hydrogen.
  • R 1 is selected from the group consisting of hydroxy, amine and (C1 ⁇ C4) alkylamine, R 2 , R 3 and R 4 may be hydrogen. Preferably, R 1 is hydroxy and R 2 , R 3 and R 4 may be hydrogen.
  • the present invention provides a composition for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a fluorescent probe for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a sensor kit for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
  • the sensor kit may detect hydrogen sulfide by forming a dimer of two compounds according to Chemical Formula 3 or a pharmaceutically acceptable salt thereof fluorescence through disulfide bonds in the presence of hydrogen sulfide, but is not limited thereto.
  • the hydrogen sulfide may be hydrogen sulfide present in an aqueous solution or gas phase, but is not limited thereto.
  • the present invention comprises the steps of reacting a sample containing hydrogen sulfide, and the two compounds according to the formula (3) or a pharmaceutically acceptable salt thereof by contacting; And it provides a hydrogen sulfide detection method comprising the step of measuring one or more indicators selected from the group consisting of the fluorescence signal, absorbance and optical change of the reacted reactant.
  • the fluorescent signal provides a hydrogen sulfide detection method characterized in that the presence of hydrogen sulfide, two compounds according to the formula (3) or a pharmaceutically acceptable salt thereof is generated by the dimer form obtained through disulfide bonds, the hydrogen sulfide May be, but is not limited to, hydrogen sulfide present in an aqueous solution or gas phase.
  • AIEgen novel compounds comprising disulfide bonds according to the invention can form a special AIEgen dimerization reaction via a thiol-disulfide exchange between molecules for the selective detection of H 2 S in aqueous and gaseous phases.
  • Compound 1 was composed of disulfide bonds as sites of the dimerization reaction for tetraphenylethene (TPE) and H 2 S as AIEgen. Initially, compound 1 showed weak fluorescence. However, when H 2 S is present, Compound 1 shows a strong blue fluorescence showing Compound 2, a TPE dimer, due to the increased Aggregation-induced emmission effect. Thereafter, when H 2 S was overreacted, compound 2 was modified to non-fluorescent TPE-NH 2 .
  • Example 10 UV / Vis Absorbance And fluorescence spectroscopy methods
  • Compound 1 when H 2 S is present, breaks the disulfide bond of Compound 1 to form TPE-SH, and then Compound 1 undergoes another thiol-disulfide bond exchange, thereby replacing the intramolecular cyclization reaction.
  • AIEgen dimerization reaction This resulted in the formation of Compound 2, a TPE dimer with significant fluorescence.
  • AIEgen dimers resulted from the agglomeration of compound 1 by hydrophobic bonding of a portion of TPE in aqueous solution. In other words, in the aggregation state, the result of the dimerization reaction from thiol-disulfide exchange is more favorable than the intramolecular cyclization reaction.
  • AIE phenomena in water-DMSO mixtures were analyzed with different proportions of water (f w ) in compounds 1, 2 and 3 (FIGS. 13-15).
  • f w increased from 50% to 90%
  • disulfide-bonded AIEgen Compound 1 showed increased fluorescence at 471 nm.
  • Compound 3 which is TPE-NH 2
  • an increase in fluorescence intensity was observed at 500 nm when f w increased from 60% to 90%.
  • compound 2 a TPE dimer, stabilized when f w > 30% and f w reached 60%, and increased fluorescence was observed.
  • the increased fluorescence intensity was more than 16 times higher than that of Compounds 1 and 3.
  • Compound 1 can produce TPE-NH 2 Compound 3 through the formation of Compound 2, which is optionally a TPE dimer, in the presence of H 2 S.
  • concentration of fluorescence of Compound 1 was concentrated in the 0-34 equivalent (0-170 ⁇ M) of NaHS.
  • the fluorescence intensity increased proportionally between 0 and 100 ⁇ M NaHS at 480 nm, which is a range of general physiological values of H 2 S (FIG. 23).
  • the detection limit (LOD, 3 ⁇ / s) of Compound 1 to NaHS was 84 nM, which allows Compound 1 to detect 0.01-3 ⁇ M of intracellular H 2 S levels.
  • Silica gel TLC plates were coated with compound 1 to detect H 2 S gas. As shown in FIG. 26A, the silica gel TLC plate with glass on the back was cut into 2 cm x 2 cm pieces, soaked in DCM solution of compound 1 (0.5 mM), and dried. Each Compound 1 coated plate was placed on a vial containing excess amount of volatile solution for 30 seconds (FIG. 26B).
  • Glass plates include H 2 S, H 2 O 2 , acetaldehyde, ethyl acetate (EA), acetone, diethyl ether, chloroform (CH 2 Cl 2 ) , Hydrochloric acid (HCl), trifluoroacetic acid (TFA), sulfuric acid (H 2 SO 4 ), acetic acid (AcOH), hydrazine (N 2 H 4 ), Various vapors have been exposed, including methylamine (CH 3 NH 2 ), ammonia (NH 3 ) and formaldehyde. A small UV lamp was used to observe the change in fluorescence color under excitation conditions of 365 nm.
  • Compound 1 easily generates AIEgen of the H 2 S-selective dimer, resulting in the formation of Compound 2, which is a TPE dimer, on a silica gel TLC plate with glass on the back.
  • Silica gel TLC plates coated with compounds 1, 2 and 3 were prepared (FIG. 27). Light blue fluorescence was observed in Compound 1 coated plates after exposure to H 2 S vapor, and fluorescence was also observed in Compound 2 coated plates, but not in Compound 3 coated plates.
  • the compounds (1) coated on a glass silica gel TLC plate may be selectively detected by the H 2 S gas, it may be used as the sensor kit for H 2 S gas detection of toxicity in a working environment.
  • the present invention can provide a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof.
  • R 1 to R 3 is halogen and the other is hydrogen
  • R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
  • R 1 to R 3 is fluoro, the remainder is hydrogen, and R 4 is (C 1 to C 6) alkyl, or a pharmaceutically acceptable derivative thereof. It may be a salt.
  • the present invention can provide a composition for detecting water, comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • R 1 to R 3 is halogen and the other is hydrogen
  • R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
  • R 1 to R 3 is fluoro, the remainder is hydrogen, and R 4 is (C 1 to C 6) alkyl, or a pharmaceutically acceptable derivative thereof. It may be a salt.
  • the naphthalimide derivative represented by Chemical Formula 4 or a pharmaceutically acceptable salt thereof may exhibit a double emission wavelength in the presence of water in a sample, and may change the fluorescence intensity according to the water content contained therein.
  • Compound 1 exhibits a unique absorption and dual release to water, which are distinguished from various organic solvents, in ethanol and methanol, which are magnetic solvents having the same polarity as water. It is confirmed that the ratio change can be provided through the dual emission, and the accurate detection and real time monitoring can be easily visualized by providing the change of the fluorescent color.
  • the present invention can provide a fluorescent probe for moisture detection comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • R 1 to R 3 is halogen and the other is hydrogen
  • R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
  • the present invention can provide a strip for detecting moisture, comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • R 1 to R 3 is halogen and the other is hydrogen
  • R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
  • a paper strip impregnated with Compound 1 was prepared by immersing filter paper in a solution of Compound 1 (1.0 mM) in CHCl 3 and drying in an oven for one day. And, repeatedly immersed in an aqueous solution of EtOH and dried to confirm the reversible fluorescence reaction of the paper strip in which Compound 1 is infiltrated against water, as shown in Figure 32b when the paper strip is immersed in an aqueous solution of EtOH containing 10% moisture, The color changed rapidly from blue to white and the strip returned to blue fluorescence again by simple drying of the solvent.
  • the paper strip can be repeatedly used for moisture detection, the paper strip can be used very effectively for moisture detection by quickly and simply visualizing fluorescence color change as well as reusability.
  • the present invention comprises the steps of reacting by adding a sample to a composition comprising the naphthalimide derivative or a pharmaceutically acceptable salt thereof; And measuring one or more indicators selected from the group consisting of absorbance, fluorescence intensity, and optical change of the reacted reactant.
  • the sample may be an organic solvent.
  • UV-2600 Shiadzu Corporation, Kyoto, Kyoto Prefecture, Japan
  • RF-6000 Shiadzu Corporation, Kyoto, Kyoto Prefecture, Japan
  • reaction mixture was stirred overnight at room temperature under N 2 gas and confirmed by thin layer chromatography (TLC).
  • reaction mixture was quenched in aqueous sodium bicarbonate solution, diluted with DCM (50 mL) and washed with water (100 mL).
  • Trifluoroacetic anhydride (0.14 g, 0.53 mmol) and sodium carbonate (0.03 g, 0.26 mmol) in a mixture of 1,4-dioxane (5 mL) dissolved in trifluoroacetic anhydride ( trifluoroacetic anhydride (0.11 mL, 0.79 mmol) was added slowly and the reaction mixture was stirred for 2 h at N 2 gas room temperature.
  • the mixture was diluted with ethyl acetate (50 mL), washed with water and the organic layer was collected and dried over anhydrous Na 2 SO 4 .
  • Compound 1 showed an absorption band at about 350 nm and two strong emission bands at 452 and 558 nm.
  • the stoke shift ( ⁇ ) of the double emission was 102 and 208 nm, respectively, and this large stoke shift was due to the efficient intramolecular charge transfer of the naphthalimide moiety.
  • the pale yellow solution of compound 1 showed brilliant white fluorescence.
  • the yellow solution of compound 4 showed a greenish yellow fluorescence.
  • Compound 1 identified two absorption bands at 350 and 460 nm with dual emission of about 440 and 560 nm in DMF and DMSO and showed yellow fluorescence.
  • Compound 1 exhibits a unique absorption and double release of water, which are distinguished from various organic solvents, in ethanol and methanol, which are magnetic solvents of the same polarity as water.
  • Compound 1 may provide a change in ratio through the double release of the water contained in the organic solvent, it is possible to easily visualize the change in the fluorescent color to enable accurate detection and real-time monitoring.
  • Compound 2 was found to exhibit two absorption wavelengths at 350 and 440 nm with two emission wavelengths at about 430 and 550 nm in several polar solvents such as ACN, MeOH, EtOH, DMF, and DMSO.
  • the solutions showed a variety of fluorescent colors, from sky blue to yellow green.
  • Compound 2 showed absorption of about 350 nm and single emission at about 420 nm with dark blue fluorescence.
  • the ratio of fluorescence intensity versus [Water] (%) was obtained from the ratio quantitative fluorescence change of compound 1 to moisture in various organic solvents such as ACN, MeOH, and EtOH, as shown in FIG.
  • the linear correlation between the fluorescence intensity ratio and the moisture ratio of Compound 1 in the EtOH solvent is shown to enable accurate moisture sensing.
  • Compound 1 can be used as a ratiometric fluorescent moisture sensitive probe that enables quantitative analysis of moisture as well as simple visual analysis.
  • the downfield shift is due to the intermolecular hydrogen bond between the difluoroacetamide proton of compound 1 and the sulfonyl oxygen atom of the DMSO-d 6 solvent.
  • the water detection using the compound 1 the compound 1 (1.0 mM) of the filter paper was immersed in the CHCl 3 solution was dried in an oven for one day to prepare a paper strip impregnated with a compound 1.
  • the strip was immersed in EtOH, MeOH and ACN solution containing moisture (0, 5, 10, 20 and 30%, v / v) at various ratios and 365 nm using a portable UV lamp. Fluorescence color changes were visualized with excitation light.
  • the paper strip can be repeatedly used for moisture detection, the paper strip can be used very effectively for moisture detection by quickly and simply visualizing fluorescence color change as well as reusability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The present invention relates to a fluorescent probe for detecting NAD(P)H in mitochondria, and a detection method using same. A probe of the present invention exhibits high selectivity and sensitivity to NAD(P)H and emits strong red fluorescence in the presence of NAD(P)H. Therefore, the probe exhibits predominant accumulation in the mitochondria of living cells, is usable in the detection and quantification of NAD(P)H in the mitochondria, and can provide a selective image of the mitochondria in real time, thereby being effectively usable for biological pathway studies and the identification of pathological diagnoses and the like. In addition, the present invention can be used to differentiate cancer cells from normal cells on the basis of mapping of the intensity of NAD(P)H-dependent fluorescence in mitochondria.

Description

미토콘드리아 내 NAD(P)H 검출을 위한 형광 프로브 및 이를 이용한 검출방법Fluorescent probe for detecting NAD (P) H in mitochondria and detection method using same
본 발명은 미토콘드리아 내 NAD(P)H 검출을 위한 형광 프로브 및 이를 이용한 검출방법에 관한 것이다.The present invention relates to a fluorescent probe for detecting NAD (P) H in mitochondria and a detection method using the same.
감소된 니코틴아미드 아데닌 다이뉴클레오타이드(nicotinamide adenine dinucleotide; NADH) 및 이의 인산 에스테르(NADPH)는 모든 살아있는 세포에서 발견되는 필수 생체분자이다. NAD(P)H는 에너지 대사, 면역 기능, 생합성, 세포 사멸 및 노화를 포함한 여러 생물학적 과정의 조효소(coenzyme)로서 중요한 역할을 한다. NAD(P)H의 비정상적인 수치는 신생물(neoplasia), 암, 허혈(ischemia), 당뇨 등과 관련되어 있다. 특히, 미토콘드리아에 위치한 NAD(P)H는 미토콘드리아 호흡 연쇄에 의한 ATP 생산 뿐만 아니라 미토콘드리아 항산화 방어의 유지 및 미토콘드리아 막 전위 조절에 필수적이다. 미토콘드리아 내 NAD(P)H의 비정상적인 수치는 미토콘드리아 기능 장애, 활성 산소종(ROS)의 생성, DNA 손상 등을 유발하며, 뇌졸중, 알츠하이머 병 및 파킨슨 병 등에 관여하고, 최근 미토콘드리아 내 NAD(P)H는 다양한 암에서 과발현되는 것으로 보고된 바 있다.Reduced nicotinamide adenine dinucleotide (NADH) and phosphate esters thereof (NADPH) are essential biomolecules found in all living cells. NAD (P) H plays an important role as a coenzyme of many biological processes, including energy metabolism, immune function, biosynthesis, cell death and aging. Abnormal levels of NAD (P) H are associated with neoplasia, cancer, ischemia, diabetes and the like. In particular, NAD (P) H located in the mitochondria is essential for the maintenance of mitochondrial antioxidant defenses and the regulation of mitochondrial membrane potential, as well as ATP production by mitochondrial respiratory chain. Abnormal levels of NAD (P) H in mitochondria cause mitochondrial dysfunction, production of reactive oxygen species (ROS), DNA damage, etc., and are involved in stroke, Alzheimer's disease and Parkinson's disease, and recently NAD (P) H in mitochondria Has been reported to be overexpressed in various cancers.
현재까지 in vitro에서 NAD(P)H를 검출하기 위해, 고성능 액체 크로마토그래피(high-performance liquid chromatography; HPLC), 효소 순환 분석(enzymatic cycling assay), 모세관 전기영동(capillary electrophoresis)과 같은 몇 가지 방법이 사용되었다. 또한, NAD(P)H는 인체 유래 검체(biospecimens)의 정량화 및 영상화에 사용되어 왔다. NAD(P)H는 340 nm 정도의 빛을 흡수하고 450 nm 정도에서 형광 신호를 나타내는 것으로 알려져 있다. 그러나, 양자 수율(quantum yield)이 상대적으로 낮고(ФF = 0.019), 짧은 여기 및 방출 파장은 다른 생체분자의 자가 형광에 의해 쉽게 간섭된다. 최근, 인간 세포에서 NAD(P)H의 선택적 검출을 위해 일부 형광 Off-On 프로브가 개발되었다. 그러나 이러한 프로브는 비특이적인 방식으로 작동하고 미토콘드리아 특이적 분석에 활용이 불가능 하다. 따라서, 긴 여기 및 방출 파장과 높은 양자 효율로 실시간 NAD(P)H를 검출할 수 있는 새로운 형광 프로브의 개발이 필요한 실정이다. To date, the detection of NAD (P) H in vitro involves several methods, such as high-performance liquid chromatography (HPLC), enzymatic cycling assays, and capillary electrophoresis. This was used. NAD (P) H has also been used for quantification and imaging of human derived biospecimens. NAD (P) H is known to absorb light of about 340 nm and display a fluorescent signal at about 450 nm. However, the quantum yield is relatively low (Ф F = 0.019), and short excitation and emission wavelengths are easily interfered by the autofluorescence of other biomolecules. Recently, some fluorescent off-on probes have been developed for the selective detection of NAD (P) H in human cells. However, these probes operate in a nonspecific manner and are not available for mitochondrial specific analysis. Accordingly, there is a need for the development of new fluorescent probes capable of detecting real-time NAD (P) H with long excitation and emission wavelengths and high quantum efficiency.
본 발명의 목적은 신규 화합물 또는 이의 약학적으로 허용가능한 염을 제공하는 데에 있다.It is an object of the present invention to provide novel compounds or pharmaceutically acceptable salts thereof.
본 발명의 다른 목적은 미토콘드리아 내 NAD(P)H 검출용 조성물, NAD(P)H 검출용 형광 화학 센서, 또는 NAD(P)H 검출용 키트를 제공하는 데에 있다.Another object of the present invention is to provide a composition for detecting NAD (P) H in mitochondria, a fluorescent chemical sensor for detecting NAD (P) H, or a kit for detecting NAD (P) H.
본 발명의 또 다른 목적은 암세포 검출용 조성물 또는 암세포 검출용 키트를 제공하는 데에 있다.Still another object of the present invention is to provide a composition for detecting cancer cells or a kit for detecting cancer cells.
본 발명의 또 다른 목적은 미토콘드리아 내 NAD(P)H의 검출방법을 제공하는 데에 있다.Still another object of the present invention is to provide a method for detecting NAD (P) H in mitochondria.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다.In order to achieve the above object, the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 조성물, NAD(P)H 검출용 형광 화학 센서, 또는 NAD(P)H 검출용 키트를 제공한다.The present invention also provides a composition for detecting NAD (P) H in mitochondria, a fluorescence chemical sensor for detecting NAD (P) H, or NAD comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient: Provided are (P) H detection kits.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암세포 검출용 조성물 또는 암세포 검출용 키트를 제공한다.In another aspect, the present invention provides a composition for detecting cancer cells or a kit for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 (a) 제 1항에 따른 화학식 1의 화합물 또는 약학적으로 허용가능한 염을 세포에 처리하여 반응시키는 단계; 및 (b) 상기 반응시킨 반응물의 형광 파장, 형광 세기 및 광학적 변화로 이루어진 군에서 선택된 어느 하나 이상의 지표를 측정하는 단계;를 포함하는 미토콘드리아 내 NAD(P)H의 검출방법을 제공한다.In addition, the present invention comprises the steps of (a) treating the compound of formula (1) according to claim 1 or a pharmaceutically acceptable salt to the cell by reacting; And (b) measuring any one or more indicators selected from the group consisting of fluorescence wavelength, fluorescence intensity and optical change of the reacted reactant. The method provides a method for detecting NAD (P) H in mitochondria.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000001
Figure PCTKR2019009056-appb-I000001
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
본 발명의 프로브는 NAD(P)H에 높은 선택성 및 민감성을 나타내며, NAD(P)H 존재 하에 강한 적색 형광을 방출한다. 이에, 상기 프로브는 살아있는 세포의 미토콘드리아 내 우세한 축적을 나타내고, 미토콘드리아 내 NAD(P)H를 검출하고 정량하는데 사용될 수 있으며, 미토콘드리아의 선택적인 이미지를 실시간 제공할 수 있는 바, 생물학적 경로 연구 및 병리학적 진단 등을 밝히는데 유용하게 활용될 수 있다. 또한, 미토콘드리아 내 NAD(P)H 의존성 형광 강도의 매핑에 기초하여 암세포와 정상 세포를 구별하는 데 사용될 수 있다.The probes of the present invention exhibit high selectivity and sensitivity to NAD (P) H and emit strong red fluorescence in the presence of NAD (P) H. Thus, the probe shows a predominant accumulation in the mitochondria of living cells, can be used to detect and quantify NAD (P) H in the mitochondria, and can provide a selective image of mitochondria in real time, biological pathway research and pathology This can be useful for identifying diagnosis. It can also be used to distinguish cancer cells from normal cells based on the mapping of NAD (P) H dependent fluorescence intensities in mitochondria.
도 1은 본 발명의 프로브 1을 이용한 NAD(P)H 검출 메커니즘을 나타낸 것이다.1 illustrates a NAD (P) H detection mechanism using probe 1 of the present invention.
도 2는 프로브 1 및 2의 합성을 반응식으로 나타낸 것이다.Figure 2 shows the synthesis of probes 1 and 2 in a scheme.
도 3은 (a) NADH(2 mM)의 부재 및 존재하에서 프로브 1(10 μM)의 흡수 및 (b) 형광 스펙트럼, (c) NADH(2 mM) 첨가 시, 프로브 1(10 μM)에 대한 시간 의존적 형광 증가, (d) NADH(0-3 mM)의 농도 증가에 따른 프로브 1(10 μM)의 형광 스펙트럼을 확인한 것이다. FIG. 3 shows (a) absorption of probe 1 (10 μM) in the absence and presence of NADH (2 mM) and (b) fluorescence spectrum, (c) for probe 1 (10 μM) upon addition of NADH (2 mM). Fluorescence spectra of probe 1 (10 μM) were confirmed with increasing time-dependent fluorescence and (d) concentration of NADH (0-3 mM).
도 4는 다양한 생물학적 관련 금속, 음이온, 활성 산소종, 티올, NADPH, NADH 및 기타 생체분자 존재하에 프로브 1(10 μM)에 대한 상대적인 형광 강도를 확인한 것이다(1: 프로브 1, 2: K+, 3: Na+, 4: Cu+, 5: Cu2 +, 6: Ca2 +, 7: Co2 +, 8: Mg2+, 9: Zn2 +, 10: Fe2 +, 11: Fe3 +, 12: Cl-, 13: CN-, 14: H2PO4 -, 15: OAc-, 16: OH-, 17: ClO-, 18: H2O2, 19: HOOtBu, 20: ·O2 - , 21: ·OH-, 22: ·OtBu, 23: Cys, 24: GSH, 25: Hcy, 26: H2S, 27: FADH2, 28: ATP, 29: ADP, 30: 포도당, 31: NAD+, 32: NADPH, 33: NADH).4 shows the relative fluorescence intensity for probe 1 (10 μM) in the presence of various biologically relevant metals, anions, reactive oxygen species, thiols, NADPH, NADH and other biomolecules (1: probe 1, 2: K + , 3: Na + , 4: Cu + , 5: Cu 2 + , 6: Ca 2 + , 7: Co 2 + , 8: Mg 2+ , 9: Zn 2 + , 10: Fe 2 + , 11: Fe 3 +, 12: Cl -, 13 : CN -, 14: H 2 PO 4 -, 15: OAc -, 16: OH -, 17: ClO -, 18: H 2 O 2, 19: HOO t Bu, 20: · O 2 -, 21: · OH -, 22: · O t Bu, 23: Cys, 24: GSH, 25: Hcy, 26: H 2 S, 27: FADH 2, 28: ATP, 29: ADP, 30 : Glucose, 31: NAD + , 32: NADPH, 33: NADH).
도 5는 MDA-MB-231 세포에서 프로브 1의 세포 독성 여부를 확인한 것이다.5 shows the cytotoxicity of probe 1 in MDA-MB-231 cells.
도 6은 (a) 살아있는 MDA-MB-231 세포에서 프로브 1 및 organelle tracker의 동시 염색, (b) 프로브 1과 organelle tracker간의 공존화 정도를 확인한 것이다. Figure 6 shows (a) simultaneous staining of probe 1 and organelle tracker in live MDA-MB-231 cells, and (b) the degree of coexistence between probe 1 and organelle tracker.
도 7은 포도당 또는 FCCP 처리된 MDA-MB-231 세포의 공초점 현미경 이미지에 관한 것으로, (a) 프로브 1(5 μM) 단독, (b) 포도당(20 mM)를 첨가 후, 프로브 1(5 μM) 첨가, (c) FCCP(5 μM) 첨가 후, 프로브 1(5 μM) 첨가, (d) 세포에서 프로브 1의 형광 강도를 확인한 것이다. 7 is a confocal microscopy image of glucose or FCCP treated MDA-MB-231 cells, (a) probe 1 (5 μM) alone, (b) glucose (20 mM), followed by probe 1 (5) μM) addition, (c) after adding FCCP (5 μM), adding probe 1 (5 μM), and (d) fluorescence intensity of probe 1 in the cells.
도 8은 NIH-3T3 및 MDA-MB-231 세포의 공배양에서 공초점 현미경 이미지에 관한 것으로, (a) NIH-3T3 세포에 Calcein AM(2 μM)을 첨가 후, MDA-MB-231 세포와 배양한 후, 프로브 1(5 μM) 첨가, (b, c) 살아있는 MDA-MB-231 및 NIH-3T3 세포에서 프로브 1의 형광 강도를 나타낸 것이다.Figure 8 relates to confocal microscopy images of co-culture of NIH-3T3 and MDA-MB-231 cells, (a) after addition of Calcein AM (2 μM) to NIH-3T3 cells, MDA-MB-231 cells After incubation, probe 1 (5 μM) was added, (b, c) fluorescence intensity of probe 1 in live MDA-MB-231 and NIH-3T3 cells.
도 9는 응집반응으로 유도되는 형광(AIE)을 기초로한 화합물 1의 H2S 센싱 메카니즘을 나타낸 도면이다.9 shows the H 2 S sensing mechanism of Compound 1 based on fluorescence (AIE) induced by aggregation.
도 10은 화합물 1의 (a)1H NMR 스펙트럼, (b)13C NMR 스펙트럼, (c)HR-ESI-MS 스펙트럼을 나타낸 도면이다.10 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, (c) HR-ESI-MS spectrum of Compound 1. FIG.
도 11은 화합물 2의 (a)1H NMR 스펙트럼, (b)13C NMR 스펙트럼, (C)HR-ESI-MS 스펙트럼을 나타낸 도면이다.FIG. 11 is a diagram showing (a) 1 H NMR spectrum, (b) 13 C NMR spectrum, and (C) HR-ESI-MS spectrum of Compound 2. FIG.
도 12는 H2S 존재하에 화합물 1의 반응 메카니즘을 나타낸 도면이다.12 is a diagram showing the reaction mechanism of Compound 1 in the presence of H 2 S.
도 13은 fw에 따른 화합물 1의 (a)흡광도, (b)형광 스펙트라, (c)471nm에서의 형광세기(FI) 플롯(plot)을 나타낸 도면이다.FIG. 13 is a plot of fluorescence intensity (FI) plots at (a) absorbance, (b) fluorescent spectra, and (c) 471 nm of Compound 1 according to f w . FIG.
도 14는 fw에 따른 화합물 3의 (a)흡광도, (b)형광 스펙트라, (c)500nm에서의 형광세기(FI) 플롯(plot)을 나타낸 도면이다.14 shows (a) absorbance, (b) fluorescence spectra, and (c) fluorescence intensity (FI) plots at 500 nm according to f w .
도 15는 fw에 따른 화합물 2의 (a)흡광도, (b)형광 스펙트라, (c)480nm에서의 형광세기(FI) 플롯(plot)을 나타낸 도면이다.FIG. 15 shows (a) absorbance, (b) fluorescent spectra and (c) fluorescence intensity (FI) plots at 480 nm of Compound 2 according to f w . FIG.
도 16은 NaHS의 20등가물(equiv.)이 존재 할때와 없을 때의 화합물 1, 2 및 3의 (a)UV/Vis 흡광도, (b)형광 스펙트라를 나타내며, NaHS의 존재에 화합물 1의 (c)FE-SEM 이미지, (d)DLS 크기 분포를 나타낸 도면이다.FIG. 16 shows (a) UV / Vis absorbance, (b) fluorescence spectra of compounds 1, 2 and 3 with and without 20 equivalents of NaHS (equiv.), And c) FE-SEM image, (d) a diagram showing the DLS size distribution.
도 17은 (a, b)화합물 1, (c, d)화합물 2, (e, f)화합물 3 각각의 FE-SEM이미지와 DLS 크기 분포를 나타낸 도면이다.FIG. 17 shows FE-SEM images and DLS size distributions of (a, b) Compound 1, (c, d) Compound 2, and (e, f) Compound 3, respectively.
도 18은 (a)다양한 산환 환원종(20 등가물)에 대한 화합물 1의 형광 반응, (b)다른 농도의 NaHS에서의 형광 변화, (c)NaHS 농도에 따른 480nm에서의 형광 세기(FI), (d)NaHS의 20등가물(equiv.)이 존재 할때(빨간줄)와 없을 때(검은줄) 화합물 1의 시간에 따른 형광 변화를 나타낸 도면이다.FIG. 18 shows (a) fluorescence reaction of Compound 1 with various acidic reducing species (20 equivalents), (b) fluorescence changes at different concentrations of NaHS, (c) fluorescence intensity at 480 nm according to NaHS concentration, (d) Fluorescence change with time of Compound 1 with and without 20 equivalents (equiv.) of NaHS (black line).
도 19는 (a)다양한 금속이온, 음이온, 산화 환원 종 및 티올기를 가진 화합물에 대한 화합물 1의 형광 스펙트라, (b)다양한 금속이온과 음이온의 존재에 화합물 1의 480nm에서의 형광세기(FI) 변화를 나타낸 도면이다.FIG. 19 shows (a) fluorescence spectra of Compound 1 for compounds with various metal ions, anions, redox species and thiol groups, and (b) fluorescence intensity (FI) at 480 nm of Compound 1 in the presence of various metal ions and anions. The figure which shows the change.
도 20은 다른 농도의 NaHS(0-34 등가물)에서 화합물 1의 UV/Vis 흡광도를 나타낸 도면이다.FIG. 20 is a plot of UV / Vis absorbance of Compound 1 at different concentrations of NaHS (0-34 equivalent). FIG.
도 21은 초과량의 다양한 티올기를 가진 화합물에 대한 (a)화합물 1, (b)화합물 2의 형광변화를 나타낸 도면이다.FIG. 21 shows fluorescence changes of (a) Compound 1 and (b) Compound 2 with respect to excess amount of various thiol groups.
도 22는 (a)NaHS의 0.8등가물, (b)NaHS의 50등가물에 대한 화합물 1의 TLC 분석을 나타낸 도면이다.FIG. 22 is a diagram showing a TLC analysis of Compound 1 for (a) 0.8 equivalent of NaHS and (b) 50 equivalent of NaHS.
도 23은 480nm에서 NaHS 농도에 대한 화합물 1의 형광세기(FI) 플롯(plot)을 나타낸 도면이다.FIG. 23 is a plot of the fluorescence intensity (FI) plot of Compound 1 against NaHS concentration at 480 nm.
도 24는 NaHS 20등가물의 존재에 시간에 따른 화합물 1의 형광 스펙트라를 나타낸 도면이다.FIG. 24 shows the fluorescence spectra of Compound 1 over time in the presence of a NaHS 20 equivalent. FIG.
도 25는 pH 1 - 11에서의 NaHS 20등가물에 대한 화합물 1의 형광 변화를 나타낸 도면이다.FIG. 25 shows fluorescence changes of Compound 1 relative to NaHS 20 equivalents at pH 1-11.
도 26은 (a)화합물 1의 DCM 용액에 담궈진 TLC 플레이트, (b)휘발성 용액을 포함하는 증기에 노출된 화합물 1이 코팅된 TLC 플레이트, (c)다양한 증기에 노출된 후, 화합물 1이 코팅된 TLC 플레이트의 형광반응, (d)NaHS의 증가되는 농도에 노출 되었을 때, 화합물 1이 코팅된 TLC 플레이트의 형광변화를 나타낸 도면이다.FIG. 26 shows (a) a TLC plate immersed in a DCM solution of Compound 1, (b) a TLC plate coated with Compound 1 exposed to vapor comprising a volatile solution, and (c) after exposure to various vapors. Fluorescence of the coated TLC plate, (d) is a diagram showing the fluorescence change of the TLC plate coated with Compound 1 when exposed to increasing concentration of NaHS.
도 27은 화합물 1, 2 및 3이 코팅된 TLC 플레이트의 형광색을 나타낸 도면이다.FIG. 27 is a fluorescence of TLC plates coated with Compounds 1, 2, and 3. FIG.
도 28은 DMS0 10%가 포함된 물에서 각 화합물의 표준 흡수(Abs.) 및 형광(Em.) 스펙트럼을 확인한 결과로, 도 28(a)는 화합물 1, 도 28(b)는 화합물 2, 도 28(c)는 화합물 3 및 도 28(d)는 화합물 4의 결과이며, 각 화합물은 5 μM 농도이며 삽입된 사진은 시각 및 형광색을 확인한 결과이다.28 is a result of confirming the standard absorption (Abs.) And fluorescence (Em.) Spectrum of each compound in water containing 10% DMS0, Figure 28 (a) is Compound 1, 28 (b) is Compound 2, Figure 28 (c) is a compound 3 and Figure 28 (d) is a result of compound 4, each compound is 5 μM concentration and the inserted picture is a result of checking the visual and fluorescence color.
도 29는 각각 다른 비율의 수분이 포함된 EtOH 용액에서 화합물 1(5 μM)의 형광 변화를 확인한 결과로, 도 29(a)는 0-50%, 도 29b는 50-90% 결과이며, 삽입된 도면은 형광 강도 (FI) vs. [Water](%)를 나타낸 그래프이다. 도 29c는 물 증가에 따른 화합물 1 형광색 변화의 시각화 정도를 확인한 결과이며, 모든 스펙트럼은 350nm 여기를 사용하여 얻었다.29 is a result of confirming the fluorescence change of Compound 1 (5 μM) in the EtOH solution containing different proportions of water, Figure 29 (a) is 0-50%, Figure 29b is 50-90% results, insertion Drawing shows fluorescence intensity (FI) vs. It is a graph showing [Water] (%). 29C is a result of confirming the degree of visualization of Compound 1 fluorescence change with increasing water, and all spectra were obtained using 350 nm excitation.
도 30(a)는 ACN, MeOH 및 EtOH 용액에서 다양한 수분 비율(0-90%)에 따른 화합물 1의 형광 강도 비율 변화를 확인한 결과이며, 도 30(b)는 ACN 용액 내 형광 강도 비율과 [Water] (%) 사이의 선형 상관관계를 확인한 결과이며, 도 30(c) 및 도 30(d)는 MeOH 용액 내 형광 강도 비율과 [Water] (%) 사이의 선형 상관관계를 확인한 결과이며, 도 30(e) 및 도 30(f)는 EtOH 용액 내 형광 강도 비율과 [Water] (%) 사이의 선형 상관관계를 확인한 결과로, 모든 데이터는 350 nm 여기 상태에서 획득되었다.Figure 30 (a) is the result of confirming the change in the fluorescence intensity ratio of the compound 1 according to the various moisture ratio (0-90%) in the ACN, MeOH and EtOH solution, Figure 30 (b) shows the fluorescence intensity ratio in the ACN solution [ Water] (%) is a result of confirming the linear correlation, Figure 30 (c) and Figure 30 (d) is a result of confirming the linear correlation between the fluorescence intensity ratio in the MeOH solution and [Water] (%) 30 (e) and 30 (f) confirm the linear correlation between the fluorescence intensity ratio in the EtOH solution and [Water] (%), and all data were obtained at 350 nm excited state.
도 31은 DMSO-d6가 상이한 비율로 함유된 CDCl3 중 화합물 1의 부분 1H NMR 스펙트라를 확인한 결과로, 도 31(a) 0%, 도 31(b) 50% 및 도 31(c) 100% (v/v)이며, 별표(*)는 잔류 CDCl3 용매를 나타낸다.FIG. 31 shows partial 1H NMR spectra of Compound 1 in CDCl 3 containing DMSO-d 6 at different ratios, FIG. 31 (a) 0%, FIG. 31 (b) 50%, and FIG. 31 (c) 100. % (v / v), asterisk (*) indicates residual CDCl 3 solvent.
도 32(a)는 상이한 비율(%)의 물이 포함된 EtOH, MeOH 및 ACN 용액에서 화합물 1에 침지된 종이 스트립의 형광색 변화를 확인한 결과이며, 도 32(b)는 단순 건조에 의한 종이 스트립의 형광색 변화 가역성을 확인한 결과로, 형광색 변화는 365 nm 여기를 제공하는 휴대용 UV 램프를 사용하여 확인하였다.FIG. 32 (a) shows the fluorescence color change of the paper strip immersed in Compound 1 in EtOH, MeOH and ACN solutions containing different percentages of water, and FIG. 32 (b) shows the paper strip by simple drying. As a result of confirming the reversibility of the fluorescence change of, the fluorescence change was confirmed using a portable UV lamp providing 365 nm excitation.
도 33은 화합물 1이 함침된 종이 스트립를 이용한 수분 검출 방법을 나타낸 모식도 이다.33 is a schematic diagram showing a method of detecting water using a paper strip impregnated with compound 1. FIG.
본 발명의 발명자들은 본 발명에서 개발한 프로브가 비형광이나 NAD(P)H 존재 하에 환원되어 강한 적색 형광을 나타내는 바, 살아있는 세포의 미토콘드리아 내 NAD(P)H를 정량하는데 활용될 수 있으며, 특히 실시간 정량분석이 가능함을 확인하며 본 발명을 완성하였다.The inventors of the present invention can be utilized to quantify NAD (P) H in the mitochondria of living cells, since the probe developed in the present invention is reduced in the presence of non-fluorescence or NAD (P) H, showing a strong red fluorescence. The present invention was completed while confirming that real-time quantitative analysis was possible.
이에, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다.Accordingly, the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000002
Figure PCTKR2019009056-appb-I000002
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
바람직하게는, 상기 화합물 또는 이의 약학적으로 허용가능한 염은 하기 화학식 2로 표시되는 것일 수 있다.Preferably, the compound or a pharmaceutically acceptable salt thereof may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2019009056-appb-I000003
Figure PCTKR2019009056-appb-I000003
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 조성물을 제공한다.The present invention also provides a composition for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000004
Figure PCTKR2019009056-appb-I000004
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 형광 화학 센서를 제공한다.The present invention also provides a fluorescence chemical sensor for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000005
Figure PCTKR2019009056-appb-I000005
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 키트를 제공한다.The present invention also provides a kit for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000006
Figure PCTKR2019009056-appb-I000006
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암세포 검출용 조성물을 제공한다.In another aspect, the present invention provides a composition for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000007
Figure PCTKR2019009056-appb-I000007
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암세포 검출용 키트를 제공한다.In another aspect, the present invention provides a kit for detecting cancer cells comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2019009056-appb-I000008
Figure PCTKR2019009056-appb-I000008
상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The mitochondrial target moiety may be selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine, but is not limited thereto.
또한, 본 발명은 (a) 제 1항에 따른 화학식 1의 화합물 또는 약학적으로 허용가능한 염을 세포에 처리하여 반응시키는 단계; 및 (b) 상기 반응시킨 반응물의 형광 파장, 형광 세기 및 광학적 변화로 이루어진 군에서 선택된 어느 하나 이상의 지표를 측정하는 단계;를 포함하는 미토콘드리아 내 NAD(P)H의 검출방법을 제공한다.In addition, the present invention comprises the steps of (a) treating the compound of formula (1) according to claim 1 or a pharmaceutically acceptable salt to the cell by reacting; And (b) measuring any one or more indicators selected from the group consisting of fluorescence wavelength, fluorescence intensity and optical change of the reacted reactant. The method provides a method for detecting NAD (P) H in mitochondria.
상기 지표는 UV-Vis(Ultraviolet-visible) 분광 광도계, 형광 광도계, 전자분무 이온화 질량 분광법 및 공초점 현미경으로 이루어진 군에서 선택된 어느 하나 이상을 방법을 이용하여 측정할 수 있으나, 이에 제한되는 것은 아님을 명시한다.The indicator may be measured by one or more methods selected from the group consisting of UV-Vis (Ultraviolet-visible) spectrophotometer, fluorescence photometer, electrospray ionization mass spectroscopy and confocal microscope, but is not limited thereto. Specify it.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1: 합성 물질 및 방법Example 1: Synthetic Materials and Methods
모든 시약은 Alfa(Alfa, Heysham, LA3 2XY, United Kingdom), Aldrich(Aldrich, St. Louis, MO, USA) 및 TCI(TCI, Tokyo, Japan)에서 구입하였으며, 추가 정제 없이 사용하였다. 모든 용매는 분석용 또는 HPLC용을 사용하였다. HR-ESI-MS 데이터는 한국 기초과학연구원(서울)에서 액체 크로마토그래피 질량 분석기(LC/MS)를 사용하여 획득하였다. NMR 스펙트럼 데이터는 Bruker(500 MHz) 기기를 사용하여 획득하였다.All reagents were purchased from Alfa (Alfa, Heysham, LA3 2XY, United Kingdom), Aldrich (Aldrich, St. Louis, MO, USA) and TCI (TCI, Tokyo, Japan) and used without further purification. All solvents were used for analytical or HPLC. HR-ESI-MS data were obtained using a liquid chromatography mass spectrometer (LC / MS) from the Korea Institute of Basic Science (Seoul). NMR spectral data were obtained using a Bruker (500 MHz) instrument.
실시예 2: UV/Vis 흡수 및 형광 분광학 분석Example 2: UV / Vis Absorption and Fluorescence Spectroscopy Analysis
분광학 실험에 사용된 용매는 형광 불순물이 없는 HPLC 등급을 사용하였으며, 물은 탈이온수를 사용하였다. PIPES 버퍼(pH7.4)는 25 mM의 피페라진-N,N'-비스(2-에탄술폰산)(piperazine-N,N'-bis(2-ethanesulfonic acid; PIPES) 및 100 mM NaCl을 탈이온수에서 용해하여 제조하였다. 합성 프로브의 저장 용액은 디메틸 설폭사이드(dimethyl sulfoxide; DMSO)를 사용하여 제조하였다. 프로브의 모든 스펙트럼은 2%(v/v) DMSO가 첨가된 PIPES 버퍼(25 mM, pH 7.4)를 사용하여 기록하였다. 흡수 및 형광 분광학 데이터는 분광 광도계(UV-2600, Shimadzu Corporation, Kyoto, Japan)를 사용하여 획득하였다. 570 nm의 여기 파장 및 5 nm의 여기/방출 슬릿 폭으로 측정하였다.The solvent used in the spectroscopy experiment was HPLC grade free of fluorescent impurities, and deionized water was used for water. PIPES buffer (pH7.4) contains 25 mM piperazine-N, N'-bis (2-ethanesulfonic acid) (piperazine-N, N'-bis (2-ethanesulfonic acid; PIPES) and 100 mM NaCl The stock solution of the synthetic probe was prepared using dimethyl sulfoxide (DMSO) All spectra of the probe were PIPES buffer (25 mM, pH) with 2% (v / v) DMSO added. 7.4) Absorption and fluorescence spectroscopy data were obtained using a spectrophotometer (UV-2600, Shimadzu Corporation, Kyoto, Japan), measured with an excitation wavelength of 570 nm and an excitation / emission slit width of 5 nm. It was.
실시예 3: 세포 배양 및 세포 독성 분석 Example 3: Cell Culture and Cytotoxicity Assay
세포 배양을 위해, DMEM 배지, 인산완충식염수(phosphated buffered saline; PBS), 우태아혈청(fetal bovine serum; FBS), 트립신 0.25%-EDTA가 첨가된 HBSS(Hank's balanced salt solution) 및 페니실린/스트렙토마이신을 사용하였다. MitoTracker Green FM(Mitochondria-Tracker) 및 ER-Tracker Green dye(endoplasmic reticulum(ER)-Tracker) 및 LysoTracker Green DND-26(Lysosome-Tracker)은 Invitrogen(Carlsbad, CA)에서 구입하였다. MTT는 Sigma-Aldrich(St. Louis, MO)에서 구입하여 추가 정제 없이 사용하였다. UV-Vis 흡광도는 Spectra Max i3x 마이크로 플레이트 판독기(Molecular devices, San Jose, CA)를 사용하여 수행하였다. 형광 이미지는 Zeiss LSM-700을 사용하여 획득하였다. 적색(프로브 1) 및 녹색(추적자) 형광은 각각 488 nm 및 555 nm에서의 여기 및 300-578 nm 및 568-800 nm에서의 대역(band-path) 방출 필터를 사용하여 획득하였다.For cell culture, DMEM medium, phosphated buffered saline (PBS), fetal bovine serum (FBS), try's balanced salt solution (HBSS) with trypsin 0.25% -EDTA and penicillin / streptomycin Was used. MitoTracker Green FM (Mitochondria-Tracker) and ER-Tracker Green dye (endoplasmic reticulum (ER) -Tracker) and LysoTracker Green DND-26 (Lysosome-Tracker) were purchased from Invitrogen (Carlsbad, CA). MTT was purchased from Sigma-Aldrich (St. Louis, Mo.) and used without further purification. UV-Vis absorbance was performed using a Spectra Max i3x micro plate reader (Molecular devices, San Jose, Calif.). Fluorescence images were obtained using Zeiss LSM-700. Red (probe 1) and green (tracker) fluorescence were obtained using excitation at 488 nm and 555 nm and band-path emission filters at 300-578 nm and 568-800 nm, respectively.
실시예 4: in vitro 형광 현미경 분석 Example 4: In vitro Fluorescence Microscopy
유방 선암 세포주(MDA-MB-231)는 10% 우태아혈청, 1% 페니실린/스트렙토마이신이 첨가된 고 글루코즈 DMEM 배지를 사용하여 37℃, 5% CO2 배양기에서 배양하였으며, 2일마다 신선한 배지로 교체하였다. 세포가 80-90% 자라면 배지를 제거하고, PBS로 세척한 후, PBS를 제거하고 1.5 mL의 트립신 0.25%-EDTA를 첨가한 다음 37℃, 5% CO2 배양기에서 3분간 배양하였다. 플라스크로부터 세포를 분리한 후, 1 mL의 배지를 플라스크에 첨가하고 혼합하였다. 이후, 세포 현탁액을 1000 rpm에서 3분간 원심분리하여 상등액을 제거하고, 세포 펠렛에 3 mL의 새로운 배지를 첨가하여 펠렛을 재현탁하였다. MDA-MB-231 세포는 105 세포/mL의 농도로 35 mm 공초점 디쉬의 커버슬립에서 24시간 동안 배양(37℃, 5% CO2)한 다음, 세포를 PBS로 세척하고, 5 μM의 프로브 1(1 mM 저장 용액)을 세포에 첨가하였다. 세포의 형광 이미지는 공초점 현미경을 사용하여 2시간 동안 10분마다 획득하였다.Breast adenocarcinoma cell line (MDA-MB-231) was cultured in a 37 ° C., 5% CO 2 incubator using high glucose DMEM medium supplemented with 10% fetal bovine serum, 1% penicillin / streptomycin, and fresh medium every 2 days. Replaced with. When the cells grew to 80-90%, the medium was removed, washed with PBS, PBS was removed, 1.5 mL of trypsin 0.25% -EDTA was added and then incubated for 3 minutes in a 37 ℃, 5% CO 2 incubator. After separating the cells from the flask, 1 mL of medium was added to the flask and mixed. The cell suspension was then centrifuged at 1000 rpm for 3 minutes to remove the supernatant, and the pellet was resuspended by adding 3 mL of fresh medium to the cell pellet. MDA-MB-231 cells were incubated for 24 hours (37 ° C., 5% CO 2 ) in coverslips of 35 mm confocal dishes at a concentration of 10 5 cells / mL, then the cells were washed with PBS and Probe 1 (1 mM stock solution) was added to the cells. Fluorescence images of the cells were acquired every 10 minutes for 2 hours using confocal microscopy.
실시예 5: 세포 독성 분석 Example 5: Cytotoxicity Assay
MDA-MB-231 세포를 96 웰 플레이트에 1 X 104 세포/웰 농도로 분주하고, 24시간 동안 배양하여 세포가 플레이트 바닥에 부착되도록 하였다. 이후, 배지를 제거하고, 프로브 1을 1, 3, 5, 10, 15, 20, 30 μM의 농도로 세포에 첨가하였으며, 대조군에는 배지만을 첨가하였다. 6시간 배양 후, 프로브 1을 제거하고, PBS로 세척하였다. 이어서 MTT 시약(0.5 mg/mL)을 각 웰에 첨가하고 3시간 동안 추가 배양하였다. 3시간 후, MTT 시약을 제거하고 DMSO(100 ㎕/웰)를 각 웰에 첨가한 다음 플레이트를 부드럽게 흔들어주며 포르마잔 결정을 30분 동안 용해시켰다. 흡광도는 Spectra Max i3x 마이크로 플레이트 판독기를 사용하여 550 nm에서 판독하였다.MDA-MB-231 cells were dispensed in 96 well plates at 1 × 10 4 cells / well concentration and incubated for 24 hours to allow cells to adhere to the plate bottom. Thereafter, the medium was removed, and probe 1 was added to the cells at concentrations of 1, 3, 5, 10, 15, 20, 30 μM, and only the medium was added to the control group. After 6 hours of incubation, probe 1 was removed and washed with PBS. MTT reagent (0.5 mg / mL) was then added to each well and further incubated for 3 hours. After 3 hours, the MTT reagent was removed and DMSO (100 μl / well) was added to each well and the plate was shaken gently to dissolve formazan crystals for 30 minutes. Absorbance was read at 550 nm using a Spectra Max i3x micro plate reader.
실시예 6: 공초점 현미경 이미지 분석Example 6: Confocal Microscopy Image Analysis
MDA-MB-231 세포를 표면 처리 없이 공초점 디쉬의 유리 커버슬립에 분주하고 24시간 동안 부착시켰다. 이후, 배지를 제거하고 PBS로 세척한 후, 프로브 1로 염색하기 전, organelle tracker인 MitoTracker® Green FM(Mitochondria, 100 nM), ER-Tracker™ Green dye(ER, 100nM) 및 LysoTracker® Green DND-26(Lysosome, 100 nM)을 처리하여 30분간 염색하였다. 세포를 organelle tracker 중 하나로 염색한 후, 순차적으로 프로브 1을 처리하여 90분간 염색하였다. 공초점 현미경을 이용하여 10분마다 형광 이미지를 획득하였다. MDA-MB-231 cells were dispensed onto glass coverslips of confocal dishes without surface treatment and attached for 24 hours. Thereafter, the medium was removed, washed with PBS, and then stained with probe 1, before the organelle tracker MitoTracker® Green FM (Mitochondria, 100 nM), ER-Tracker ™ Green dye (ER, 100nM) and LysoTracker® Green DND- 26 (Lysosome, 100 nM) was treated and stained for 30 minutes. The cells were stained with one of the organelle trackers, and then sequentially treated with probe 1 for 90 minutes. Fluorescence images were acquired every 10 minutes using confocal microscopy.
MDA-MB-231 세포와 혼합하기 전, NIH-3T3 세포를 Calcein AM으로 염색하고, 세포의 혼합물을 공초점 디쉬의 유리 커버슬립에서 24시간 동안 공동 배양하였다. 혼합된 세포를 프로브 1로 2시간 동안 염색하고, 공초점 형광 현미경(Zeiss LSM-700, Axio Observer)으로 시각화 하였으며, 형광 이미지는 Plan-Apochromat 63X/1.40 오일 침지 렌즈를 사용하여 획득하였다. Mito-Tracker Green FM, ER-Tracker Green dye, Lyso-Tracker Green DND-26은 488 nm에서 여기되었고, 방출 형광은 대역 방출 필터를 사용하여 300-578 nm에서 획득하였다. 이미지 분석은 ZEN 소프트웨어와 Image J 소프트웨어를 사용하여 수행하였다.Prior to mixing with MDA-MB-231 cells, NIH-3T3 cells were stained with Calcein AM and the mixture of cells was co-cultured for 24 hours in glass coverslips of confocal dishes. Mixed cells were stained with probe 1 for 2 hours and visualized with confocal fluorescence microscopy (Zeiss LSM-700, Axio Observer), and fluorescence images were obtained using Plan-Apochromat 63X / 1.40 oil immersion lens. Mito-Tracker Green FM, ER-Tracker Green dye and Lyso-Tracker Green DND-26 were excited at 488 nm and emission fluorescence was obtained at 300-578 nm using a band emission filter. Image analysis was performed using ZEN software and Image J software.
실시예 7: 프로브 1의 합성Example 7: Synthesis of Probe 1
CH3CN(10 mL)에 용해된 (3-브로모프로필)트리페닐포스포늄 브로마이드(1.68 g, 3.61 mmol) 및 NaI(544 mg, 3.62 mmol) 혼합물에 전구체 3(1.00 g, 3.63 mmol)을 첨가하였다. 생성된 반응 혼합물을 밤새도록 교반하고 환류시켰다. 실온으로 냉각시킨 후, 용매를 증발시키고, CH2Cl2(3 X 100 mL) 및 염수(100 mL)를 첨가하여 CH2Cl2 층을 획득하였다. CH2Cl2 층을 Na2SO4 상에서 건조시킨 후, 여과 및 농축하였으며, CH2Cl2/MeOH/에틸 아세테이트(v/v/v, 8:1:1)를 용리액으로 사용하여 실리카 겔 크로마토그래피로 정제하여 갈색 고체(1) (270 mg, 13%)을 수득하였다.To a mixture of (3-bromopropyl) triphenylphosphonium bromide (1.68 g, 3.61 mmol) and NaI (544 mg, 3.62 mmol) dissolved in CH 3 CN (10 mL) was added precursor 3 (1.00 g, 3.63 mmol). Added. The resulting reaction mixture was stirred overnight and refluxed. After cooling to rt, the solvent was evaporated and CH 2 Cl 2 layer was added by adding CH 2 Cl 2 (3 × 100 mL) and brine (100 mL). The CH 2 Cl 2 layer was dried over Na 2 SO 4 , filtered and concentrated, and silica gel chromatography using CH 2 Cl 2 / MeOH / ethyl acetate (v / v / v, 8: 1: 1) as eluent. Purification by chromatography gave a brown solid (1) (270 mg, 13%).
1H NMR (DMSO-d6, 500 MHz): δ 1.09 (s, 6H), 2.48 - 2.56 (m, 2H), 2.62 (s, 2H), 2.67 (s, 2H), 3.78 - 3.84 (m, 2H), 5.04 (t, J = 7.5 Hz, 2H), 7.05 (s, 1H), 7.37 (d, J = 16 Hz, 1H), 7.64 (d, J = 16.5 Hz, 1H), 7.74 - 7.78 (m, 5H), 7.86 - 7.90 (m, 10H), 8.06 - 8.09 (m, 1H), 8.78 (d, J = 8 Hz, 1H), 9.02 (d, J = 6 Hz, 1H), 9.60 (s, 1H) ppm. 13C NMR (DMSO-d6, 125 MHz): δ 18.2, 18.6, 24.0, 28.0, 32.3, 38.6, 42.7, 55.6, 60.7, 79.6, 113.1, 113.9, 118.0, 118.7, 125.9, 130.0, 130.93, 134.2, 135.6, 136.8, 143.1, 144.1, 154.1, 170.4 ppm. HR-ESI-MS m/z [M]2+ calc. 289.63962, obs. 289.64233. 1 H NMR (DMSO-d 6 , 500 MHz): δ 1.09 (s, 6H), 2.48-2.56 (m, 2H), 2.62 (s, 2H), 2.67 (s, 2H), 3.78-3.84 (m, 2H), 5.04 (t, J = 7.5 Hz, 2H) , 7.05 (s, 1H), 7.37 (d, J = 16 Hz, 1H), 7.64 (d, J = 16.5 Hz, 1H), 7.74-7.78 (m, 5H), 7.86-7.90 (m, 10H), 8.06-8.09 (m, 1H), 8.78 (d, J = 8 Hz, 1H), 9.02 (d, J = 6 Hz, 1H), 9.60 (s, 1H) ppm. 13 C NMR (DMSO-d 6 , 125 MHz): δ 18.2, 18.6, 24.0, 28.0, 32.3, 38.6, 42.7, 55.6, 60.7, 79.6, 113.1, 113.9, 118.0, 118.7, 125.9, 130.0, 130.93, 134.2, 135.6, 136.8, 143.1, 144.1, 154.1, 170.4 ppm. HR-ESI-MS m / z [M] 2+ calc. 289.63962, obs. 289.64233.
실시예 8: 프로브 2의 합성 Example 8: Synthesis of Probe 2
CH2Cl2(25 mL)에 용해된 전구체 3(270 mg, 0.98 mmol)의 용액에 메틸 트리플루오로메탄설포네이트(0.55 mL, 4.89 mmol)를 첨가하였다. 생성된 반응 혼합물을 실온에서 3시간 동안 교반하였다. 이후, 황색 침전물을 여과하고, CH2Cl2 및 디에틸 에테르로 세척한 다음, 진공 하에 건조시켜 담황색 고체(2)(182 mg, 63%)를 수득하였다.To a solution of precursor 3 (270 mg, 0.98 mmol) dissolved in CH 2 Cl 2 (25 mL) was added methyl trifluoromethanesulfonate (0.55 mL, 4.89 mmol). The resulting reaction mixture was stirred at rt for 3 h. The yellow precipitate was then filtered off, washed with CH 2 Cl 2 and diethyl ether and dried under vacuum to give a pale yellow solid (2) (182 mg, 63%).
1H NMR (DMSO-d6, 500 MHz): δ 1.04 (s, 6H), 2.55 (s, 2H), 2.68 (s, 2H), 4.35 (s, 3H), 6.97 (s, 1H), 7.36 (d, J = 16.5 Hz, 1H), 7.71 (d, J = 16 Hz, 1H), 8.14 - 8.17 (m, 1H), 8.75 (d, J = 8 Hz, 1H), 8.89 (d, J = 6 Hz, 1H), 9.29 (s, 1H) ppm. 13C NMR (DMSO-d6, 125 MHz): δ 27.9, 32.2, 38.4, 42.6, 48.6, 79.8, 113.1, 113.8, 119.9, 122.4, 126.0, 128.1, 129.9, 135.8, 136.4, 142.4, 144.9, 153.9, 170.3 ppm. HR-ESI-MS m / z [M]+ calc. 290.16517, obs. 290.156801H NMR (DMSO-d6, 500 MHz): δ 1.04 (s, 6H), 2.55 (s, 2H), 2.68 (s, 2H), 4.35 (s, 3H), 6.97 (s, 1H), 7.36 (d, J = 16.5 Hz, 1H), 7.71 (d, J = 16 Hz, 1H), 8.14 - 8.17 (m, 1H), 8.75 (d, J = 8 Hz, 1H), 8.89 (d, J = 6 Hz, 1H), 9.29 (s, 1H) ppm. 13C NMR (DMSO-d6, 125 MHz): δ 27.9, 32.2, 38.4, 42.6, 48.6, 79.8, 113.1, 113.8, 119.9, 122.4, 126.0, 128.1, 129.9, 135.8, 136.4, 142.4, 144.9, 153.9, 170.3 ppm. HR-ESI-MS m/z [M]+ calc. 290.16517, obs. 290.15680. 1 H NMR (DMSO-d 6 , 500 MHz) : δ 1.04 (s, 6H), 2.55 (s, 2H), 2.68 (s, 2H), 4.35 (s, 3H), 6.97 (s, 1H), 7.36 (d, J = 16.5 Hz, 1H), 7.71 (d, J = 16 Hz, 1H), 8.14-8.17 (m, 1H), 8.75 (d , J = 8 Hz, 1H), 8.89 (d, J = 6 Hz, 1H), 9.29 (s, 1H) ppm. 13 C NMR (DMSO-d 6 , 125 MHz): δ 27.9, 32.2, 38.4, 42.6, 48.6, 79.8, 113.1, 113.8, 119.9, 122.4, 126.0, 128.1, 129.9, 135.8, 136.4, 142.4, 144.9, 153.9, 170.3 ppm. HR-ESI-MS m / z [M] + calc. 290.16517, obs. 290.156801H NMR (DMSO-d 6 , 500 MHz): δ 1.04 (s, 6H), 2.55 (s, 2H), 2.68 (s, 2H), 4.35 (s, 3H), 6.97 (s, 1H), 7.36 (d, J = 16.5 Hz, 1H), 7.71 (d, J = 16 Hz, 1H), 8.14-8.17 (m, 1H), 8.75 (d, J = 8 Hz, 1H), 8.89 (d, J = 6 Hz, 1H), 9.29 (s, 1H) ppm. 13 C NMR (DMSO-d 6 , 125 MHz): δ 27.9, 32.2, 38.4, 42.6, 48.6, 79.8, 113.1, 113.8, 119.9, 122.4, 126.0, 128.1, 129.9, 135.8, 136.4, 142.4, 144.9, 153.9, 170.3 ppm. HR-ESI-MS m / z [M] + calc. 290.16517, obs. 290.15680.
실험예Experimental Example 1: 미토콘드리아 내  1: in the mitochondria NAD(P)HNAD (P) H 검출을 위한 형광  Fluorescence for detection 프로브의Of probe 효과 effect
프로브 1 및 2의 합성 반응식은 도 2에 나타내었다. 프로브 3, 4 및 (3-브로 모프로필)트리페닐-포스포늄 브로마이드는 종래 방법을 참고하여 제조하였다(Sens. Actuators B Chem. 2016, 222, 48-54., Cryst. Growth Des. 2013, 13, 1978-1987., Biomaterials 2016, 107, 33-43.). 프로브 1 및 2의 화학 구조는 1H, 13C NMR 분광법 및 HR-ESI-MS로 확인하였다.Synthetic schemes of probes 1 and 2 are shown in FIG. 2. Probes 3, 4 and (3-bromopropyl) triphenyl-phosphonium bromide were prepared with reference to conventional methods (Sens. Actuators B Chem. 2016, 222, 48-54., Cryst. Growth Des. 2013, 13 , 1978-1987., Biomaterials 2016, 107, 33-43.). The chemical structures of probes 1 and 2 were confirmed by 1 H, 13 C NMR spectroscopy and HR-ESI-MS.
NADH 존재 하에 프로브 1의 흡수 및 형광 변화는 2%(v/v) DMSO가 첨가된 PIPES 버퍼(pH 7.4, 25 mM)에서 수행하였다. 프로브 1은 가시 및 원적외선 영역에서 특유의 흡수 및 방출 밴드를 나타내지 않았다. 그러나, NADH의 존재 하에 프로브 1은 570 nm에서 새로운 흡수 밴드를 나타냈고, 노란색에서 보라색으로 시각적인 색 변화를 나타내어 NADH의 육안 검사가 가능함을 확인하였다(도 3a). 570 nm의 여기에서 프로브 1은 615 nm에서 새로운 방출 밴드를 나타냈고, 밝은 적색 형광으로 시각적인 색 변화를 나타내었다(도 3b). 또한, 형광 양자 수율은 표준물질로서 크리스탈 바이올렛 퍼클로레이트(cresyl violet perchlorate)(ФF = 0.22)를 사용하여 측정한 결과, 프로브 1이 세포 NAD(P)H에 반응하여 원적외선 방출 영역에서 형광 off-on 변화를 나타내는 것을 확인하였으며, 이는 분석물에 의존하지 않는 자체 형광의 간섭 없이 쉽게 검출될 수 있음을 의미한다.Absorption and fluorescence changes of probe 1 in the presence of NADH were performed in PIPES buffer (pH 7.4, 25 mM) with 2% (v / v) DMSO. Probe 1 did not exhibit unique absorption and emission bands in the visible and far infrared regions. However, in the presence of NADH, probe 1 showed a new absorption band at 570 nm and showed a visual color change from yellow to purple, confirming that visual inspection of NADH was possible (FIG. 3A). Probe 1 at 570 nm showed a new emission band at 615 nm and showed a visual color change with bright red fluorescence (FIG. 3B). In addition, fluorescence quantum yield was measured using crystal violet perchlorate (Ф F = 0.22) as a standard, and probe 1 responded to the cell NAD (P) H, causing fluorescence off-on in the far infrared emission region. It was found to show a change, which means that it can be easily detected without the interference of its own fluorescence, which does not depend on the analyte.
NADH의 존재 하에 프로브 1의 시간 의존적 형광 변화를 관찰하였다. 프로브 1(10 μM) 용액에 NADH(2 mM)를 첨가하면 형광 신호가 615 nm에서 검출되고, 37℃에서 23시간 동안 점차적으로 증가하는 것을 확인하였다(도 3c).The time dependent fluorescence change of probe 1 was observed in the presence of NADH. Addition of NADH (2 mM) to the Probe 1 (10 μM) solution confirmed that the fluorescence signal was detected at 615 nm and gradually increased at 37 ° C. for 23 hours (FIG. 3C).
NADH의 정량 분석은 2%(v/v) DMSO가 첨가된 PIPES 버퍼(pH 7.4, 25 mM)에 프로브 1을 용해하여 수행하였다. NADH의 농도가 0에서 3 mM로 증가되면 615 nm에서 형광 강도가 점차적으로 증가하는 것을 확인하였다(도 3d). NADH 농도 대 615 nm에서의 형광 강도의 플롯은 0 내지 800 μM 사이의 NADH 농도에 대한 양호한 선형성을 나타내었으며, NADH의 검출 한계는 1.5 μM이었다(도 3d의 삽입).Quantitative analysis of NADH was performed by dissolving probe 1 in PIPES buffer (pH 7.4, 25 mM) with 2% (v / v) DMSO. When the concentration of NADH was increased from 0 to 3 mM, it was confirmed that the fluorescence intensity gradually increased at 615 nm (FIG. 3D). Plots of NADH concentration versus fluorescence intensity at 615 nm showed good linearity for NADH concentrations between 0 and 800 μM with a detection limit of NADH of 1.5 μM (insertion of FIG. 3D).
다양한 생물학적 관련 금속, 음이온, 활성 산소종, 티올, NADPH, NADH 및 기타 생체분자 존재 하에 프로브 1(10 μM)에 대한 상대적인 형광 강도를 분석한 결과, 프로브 1은 NADH 및 NADPH 존재 하에 615 nm에서 명백한 형광 증가를 나타내었다(도 4). Analysis of the relative fluorescence intensity for probe 1 (10 μM) in the presence of various biologically relevant metals, anions, reactive oxygen species, thiols, NADPH, NADH and other biomolecules revealed that probe 1 was evident at 615 nm in the presence of NADH and NADPH. An increase in fluorescence was shown (FIG. 4).
이는 프로브 1이 생물학적으로 관련이 있는 다른 종의 간섭 없이 세포 NAD(P)H에 대해 매우 선택적 형광 이미지를 생성하는 것을 보여준다.This shows that Probe 1 produces highly selective fluorescence images for cellular NAD (P) H without interference from other biologically relevant species.
프로브 1이 NADH에 대하여 탁월한 선택성을 보이는 것을 확인한 바, 살아있는 유방암 세포(MDA-MB-231)의 미토콘드리아 내 NADH 검출에 있어서 프로브 1의 세포 활성을 입증하고자 하였다. 우선적으로, 세포에 다양한 농도의 프로브 1을 처리하고 6시간 및 24시간 동안 배양하여 세포 독성을 평가하였다. Probe 1 showed excellent selectivity with respect to NADH, it was intended to demonstrate the cell activity of probe 1 in the detection of NADH in mitochondria of live breast cancer cells (MDA-MB-231). Initially, cells were treated with various concentrations of probe 1 and incubated for 6 hours and 24 hours to assess cytotoxicity.
그 결과, 30 μM의 고농도에서 6시간 처리하였을 때, 세포 독성이 관찰되지 않았고, 24시간 처리하였을 때 80%의 생존력으로 세포 독성이 약간 증가하는 것을 확인하였다(도 5).As a result, when treated for 6 hours at a high concentration of 30 μM, no cytotoxicity was observed, it was confirmed that the cytotoxicity slightly increased with 80% viability when treated for 24 hours (Fig. 5).
살아있는 세포에서 프로브 1이 미토콘드리아를 선택적으로 표적하는지 여부를 확인하기 위해, 프로브 1 및 세포소기관 마커를 각각 동시 염색하였다. 그 결과, 프로브 1(적색)과 미토콘드리아 마커(녹색)의 병합 이미지를 보면, 대부분의 세포에서 두 염색이 공존하는 것을 확인한 반면, 프로브 1과 리소좀 마커, 또는 프로브 1과 소포체 마커의 병합 이미지에서는 두 염색의 공존이 관찰되지 않았다.To determine whether probe 1 selectively targets mitochondria in living cells, probe 1 and organelle markers were co-stained respectively. As a result, the merged image of probe 1 (red) and the mitochondrial marker (green) shows that the two stains coexist in most cells, while the merged image of probe 1 and lysosomal marker, or probe 1 and vesicle marker, No coexistence of stains was observed.
피어슨 상관계수(PCC) 값을 분석한 결과, 프로브 1과 미토콘드리아 마커 사이의 통계적으로 유의한 상관 관계(r = 0.98)가 나타났으나, 프로브 1과 리소좀 마커, 또는 프로브 1과 소포체 마커는 통계적으로 유의하지 않은 상관 관계(0.63, 0.81)를 나타내었다(도 6). Analysis of Pearson's correlation coefficient (PCC) values showed statistically significant correlation (r = 0.98) between probe 1 and mitochondrial markers, while probe 1 and lysosomal markers, or probe 1 and endoplasmic reticulum markers, were statistically significant. There was no significant correlation (0.63, 0.81) (FIG. 6).
이러한 결과는 프로브 1이 상업적으로 이용 가능한 미토콘드리아 마커 염료와 강한 양의 상관 관계를 나타내며, 살아있는 세포의 미토콘드리아에 위치한다는 것을 증명한다.These results demonstrate that probe 1 correlates strongly with commercially available mitochondrial marker dyes and is located in the mitochondria of living cells.
다음으로 프로브 1에서 얻어진 형광 신호가 미토콘드리아의 NAD(P)H에 의해 유도되었음을 증명하고자 실험을 수행하였다. 서로 다른 조건의 두 그룹의 세포를 준비하고 일시적인 형광 이미지를 획득하였다. 포도당 매개 NAD(P)H 생성은 해당(glycolysis), 피루브산 산화 및 구연산 순환을 통해 일어나기 때문에 NAD(P)H 부스팅 그룹(boosting group)으로 MDA-MB-231 세포를 포도당과 함께 사전 배양하였다. Next, an experiment was performed to prove that the fluorescence signal obtained from probe 1 was induced by NAD (P) H of mitochondria. Two groups of cells under different conditions were prepared and transient fluorescence images were obtained. Since glucose mediated NAD (P) H production occurs through glycolysis, pyruvic acid oxidation, and citric acid circulation, MDA-MB-231 cells were preincubated with glucose in the NAD (P) H boosting group.
반면, 카르보닐 시아노 4-트리플루오로메톡시페닐하이드라존[carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; FCCP]은 미토콘드리아 내막을 통해 양성자를 전달함으로써 ATP 합성을 방해하기 때문에 NAD(P)H가 고갈된 그룹으로 MDA-MB-231 세포를 FCCP와 사전 배양하여 NADH 탈수소 효소를 통한 미토콘드리아 NADH의 산화를 유도하였다. On the other hand, carbonyl cyano 4-trifluoromethoxyphenylhydrazone [carbonyl cyanide 4- (trifluoromethoxy) phenylhydrazone; FCCP] interferes with ATP synthesis by delivering protons through the mitochondrial lining, pre-culturing MDA-MB-231 cells with FCCP in a group depleted of NAD (P) H to induce oxidation of mitochondrial NADH through NADH dehydrogenase It was.
그 결과, FCCP로 전처리된 세포는 대조군 세포보다 낮은 형광 강도를 보인 반면, 포도당으로 전처리된 세포는 강한 형광 신호를 나타내었다(도 7). As a result, cells pretreated with FCCP showed lower fluorescence intensity than control cells, whereas cells pretreated with glucose showed strong fluorescence signal (FIG. 7).
이러한 결과는 프로브 1이 미토콘드리아 NAD(P)H에 의존적으로 형광 신호를 생성함을 보여준다.These results show that probe 1 produces a fluorescent signal dependent on mitochondrial NAD (P) H.
암세포가 정상 세포보다 빠르게 자라면서 분화하기 때문에, 살아있는 암세포(MDA-MB-231)와 섬유아세포(NIH-3T3)의 미토콘드리아에서 프로브 1의 형광 신호를 비교하였다. Because cancer cells grow faster and differentiate than normal cells, the fluorescent signals of probe 1 were compared in mitochondria of living cancer cells (MDA-MB-231) and fibroblasts (NIH-3T3).
그 결과, MDA-MB-231 세포와 NIH-3T3 세포 사이에서 형광 이미지의 신호는 명확한 차이를 나타내었다(도 8). MDA-MB-231 세포와 비교하였을 때, Calcein AM(녹색)으로 염색된 NIH-3T3 세포는 프로브 1의 적색 형광 신호가 약한 것을 확인하였다. As a result, the signal of the fluorescence image showed a clear difference between the MDA-MB-231 cells and the NIH-3T3 cells (FIG. 8). Compared with MDA-MB-231 cells, NIH-3T3 cells stained with Calcein AM (green) showed weak red fluorescence signal of probe 1.
이러한 결과는 프로브 1이 형광 강도의 차이를 매핑하여 정상 세포로 둘러싸인 암세포를 검출하는데 사용될 수 있음을 의미한다.These results indicate that probe 1 can be used to detect cancer cells surrounded by normal cells by mapping the difference in fluorescence intensity.
또한, 본 발명자들은 황화수소(H2S) 검출이 가능한 응집반응으로 유도되는 형광 발광(Aggregation-induced emmission luminogen; AIEgen) 신규 화합물을 합성하였으며, 이러한 신규 화합물은 GSH, Cys 및 Hcy와 같은 티올(thiol)기를 가진 화합물, 산화 환원종(ROS), 금속이온 및 음이온과 같은 간섭물과 함께 반응하여도 선택적으로 H2S를 검출할 수 있으며, H2S 가스를 검출할 수 있는 센서로도 이용할 수 있음을 밝혀내어 본 발명을 완성하였다. In addition, the present inventors have synthesized a novel compound for aggregation-induced emmission luminogen (AIEgen) induced by aggregation reaction capable of detecting hydrogen sulfide (H 2 S), which is a thiol such as GSH, Cys and Hcy. It can selectively detect H 2 S even if it reacts with interferences such as compounds having a) group, redox species (ROS), metal ions and anions, and can also be used as a sensor that can detect H 2 S gas. It was found that the present invention was completed.
본 발명은 하기 화학식 3으로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 제공한다.The present invention provides a compound represented by the following formula (3) or a pharmaceutically acceptable salt thereof.
[화학식 3][Formula 3]
Figure PCTKR2019009056-appb-I000009
Figure PCTKR2019009056-appb-I000009
(상기 화학식 3에서, (In Chemical Formula 3,
R1은 하이드록시, 아민, (C1~C4)알킬아민, (C1~C4)알킬, (C1~C4)알콕시 및 할로겐으로 이루어진 군에서 선택되며,R 1 is selected from the group consisting of hydroxy, amine, (C 1 -C 4) alkylamine, (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy and halogen,
R2, R3 및 R4은 각각 동일하거나 다를 수 있고, 수소, 아민, (C1~C4)알킬아민, (C1~C4)알킬, (C1~C4)알콕시 및 할로겐으로 이루어진 군에서 선택됨.)R 2 , R 3 and R 4 may each be the same or different and are selected from the group consisting of hydrogen, amine, (C 1 -C 4) alkylamine, (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy and halogen.)
이때, 상기 R1은 하이드록시, 아민, (C1~C4)알킬아민, (C1~C4)알킬, (C1~C4)알콕시 및 할로겐으로 이루어진 군에서 선택되며, R2, R3 및 R4은 수소일 수 있다.In this case, R 1 is selected from the group consisting of hydroxy, amine, (C1 ~ C4) alkylamine, (C1 ~ C4) alkyl, (C1 ~ C4) alkoxy and halogen, R 2 , R 3 and R 4 is It may be hydrogen.
또한, 상기 R1은 하이드록시, 아민 및 (C1~C4)알킬아민으로 이루어진 군에서 선택되며, R2, R3 및 R4은 수소일 수 있다. 바람직하게, R1은 하이드록시이며, R2, R3 및 R4은 수소일 수 있다.In addition, R 1 is selected from the group consisting of hydroxy, amine and (C1 ~ C4) alkylamine, R 2 , R 3 and R 4 may be hydrogen. Preferably, R 1 is hydroxy and R 2 , R 3 and R 4 may be hydrogen.
또한, 본 발명은 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 황화수소 검출용 조성물을 제공한다.In addition, the present invention provides a composition for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
또한, 본 발명은 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 황화수소 검출용 형광 프로브를 제공한다.The present invention also provides a fluorescent probe for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
또한, 본 발명은 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 황화수소 검출용 센서 키트를 제공한다.The present invention also provides a sensor kit for detecting hydrogen sulfide comprising the compound according to Formula 3 or a pharmaceutically acceptable salt thereof.
이때, 상기 센서 키트는 황화수소 존재 시 2개의 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염이 이황화 결합을 통해 형광을 나타내는 이합체를 형성하여 황화수소를 검출할 수 있으나, 이에 제한되는 것은 아니다. In this case, the sensor kit may detect hydrogen sulfide by forming a dimer of two compounds according to Chemical Formula 3 or a pharmaceutically acceptable salt thereof fluorescence through disulfide bonds in the presence of hydrogen sulfide, but is not limited thereto.
또한, 상기 황화수소는 수용액 또는 기상에 존재하는 황화수소일 수 있으나, 이에 제한되는 것은 아니다.In addition, the hydrogen sulfide may be hydrogen sulfide present in an aqueous solution or gas phase, but is not limited thereto.
또한, 본 발명은 황화수소가 포함된 시료와, 2개의 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염을 접촉하여 반응 시키는 단계; 및 상기 반응시킨 반응물의 형광 신호, 흡광 및 광학적 변화로 이루어진 군으로부터 선택된 하나 이상의 지표를 측정하는 단계를 포함하는 황화수소 검출 방법을 제공한다.In addition, the present invention comprises the steps of reacting a sample containing hydrogen sulfide, and the two compounds according to the formula (3) or a pharmaceutically acceptable salt thereof by contacting; And it provides a hydrogen sulfide detection method comprising the step of measuring one or more indicators selected from the group consisting of the fluorescence signal, absorbance and optical change of the reacted reactant.
이때, 상기 형광 신호는 황화수소 존재 시 2개의 상기 화학식 3에 따른 화합물 또는 이의 약학적으로 허용 가능한 염이 이황화 결합을 통해 얻어진 이합체 형태에 의해 발생되는 것을 특징으로 하는 황화수소 검출 방법을 제공하며, 상기 황화수소는 수용액 또는 기상에 존재하는 황화수소일 수 있으나, 이에 제한되는 것은 아니다.In this case, the fluorescent signal provides a hydrogen sulfide detection method characterized in that the presence of hydrogen sulfide, two compounds according to the formula (3) or a pharmaceutically acceptable salt thereof is generated by the dimer form obtained through disulfide bonds, the hydrogen sulfide May be, but is not limited to, hydrogen sulfide present in an aqueous solution or gas phase.
본 발명에 따른 이황화 결합을 포함하는 AIEgen 신규 화합물(화합물 1)은 수용액과 가스상에서 H2S의 선택적인 검출을 위해 분자 사이의 티올-이황화 교환을 매개로 특별한 AIEgen 이합체화 반응을 형성할 수 있다. 도 9에서와 같이 화합물 1은 AIEgen으로서 테트라페닐에텐(tetraphenylethene; TPE)과 H2S를 위한 이합체화 반응의 위치(site)로서 이황화결합으로 구성되었다. 초기에, 화합물 1은 약한 형광을 보여주었다. 그러나, H2S가 존재할 때, 화합물 1은 TPE 이합체인 화합물 2를 보여주며 강한 파란색 형광을 나타냈는데, 이것은 증가된 AIE(Aggregation-induced emmission) 효과 때문이다. 그 후, H2S가 초과 반응되었을 때, 화합물 2는 비-형광 TPE-NH2로 변형되었다. AIEgen novel compounds (compound 1) comprising disulfide bonds according to the invention can form a special AIEgen dimerization reaction via a thiol-disulfide exchange between molecules for the selective detection of H 2 S in aqueous and gaseous phases. . As shown in FIG. 9, Compound 1 was composed of disulfide bonds as sites of the dimerization reaction for tetraphenylethene (TPE) and H 2 S as AIEgen. Initially, compound 1 showed weak fluorescence. However, when H 2 S is present, Compound 1 shows a strong blue fluorescence showing Compound 2, a TPE dimer, due to the increased Aggregation-induced emmission effect. Thereafter, when H 2 S was overreacted, compound 2 was modified to non-fluorescent TPE-NH 2 .
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention to those skilled in the art to which the present invention pertains. Will be self-evident.
실시예Example 9: 재료 및 기기장치 9: Materials and Equipment
모든 형광 및 UV/Vis 흡광 데이터는 각각 RF-6000(Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan)과 UV-2600(Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) 분광광도계를 이용하여 얻었다. 1H 와 13C NMR 스펙트라는 CDCl3 (Cambridge Isotope Laboratories, Cambridge, MA)에 Brucker 500 MHz 분광기를 이용하여 얻었다. HR-ESI-MS 데이터는 한국기초과학연구원(서울)에서 액체 크로마토그래피 질량 분광기(liquid chromatography mass spectrometer; LC/MS)를 이용하여 얻었다. FE-SEM(Field emission scanning electron microscopy) 이미지는 가속전압 10kV에서 JEOL JSM-7600F기기를 이용하여 얻었다. SEM 이미지 샘플은 접착된 카본 테이프에 응집된 용액 몇방울을 올리고 Operon 동결건조기를 이용하여 3일동안 동결건조하였다. 그 후, 108 auto(Cressington Sputter Coater)로 40초간 Pt 코팅하여 준비하였다. 입자 크기와 분포는 입자 크기 분석기(Microtrac, UAP-150) DLS(dynamic light scattering)를 이용하여 측정되었다. 실리카 겔 60(Merck, 0.063 - 0.2 mm)이 컬럼 크로마토그래피를 위해 사용되었다. 분석적인 얇은 층 크로마토그래피는 Merck60 F254 실리카 겔(미리 코팅된 시트, 0.25 mm 두께)을 이용하여 수행되었다. 모든 반응은 질소 대기하에서 수행되었다. 피페라진(piperazine), 아세토니트릴(acetonitrile), 염화염의 Na+, K+, Ca2 +, Mg2 +, Ba2 +, Cd2 +, Co2 +, Pb2 +, Hg2+, Ni2 +, Cu2 +, Zn2 +, Fe2 +, Fe3 + 이온과 같은 금속, 테트라부틸암모니움(tetrabutylammonium;TBA) 염의 H2PO4 -, HSO4 -, ClO4 -, AcO-, CN-, OH-, F-, Cl-, I-이온과 같은 음이온, 시스테인(cysteine; Cys), 호모시스테인(homocysteine; Hcy), 글루타치온(glutathione; GSH), H2S 발생을 위한 소듐 하이드로설파이드(sodium hydrosulfide; NaHS)와 같은 티올기를 가진 화합물 및 합성을 위한 다른 화학물질 및 버퍼 용액을 포함하는 모든 시약들은 Aldrich, Alfa, TCI로부터 구매하여 받아진채로 사용되었다. 모든 용매는 분석용 시약을 사용하였다. 분광기 분석 실험을 위한 DMSO는 형광 불순물이 없는 HPLC 시약이며, 물은 탈이온화된 물을 사용하였다. All fluorescence and UV / Vis absorbance data were obtained using RF-6000 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) and UV-2600 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) spectrophotometers, respectively. 1 H and 13 C NMR spectra were obtained using a Brucker 500 MHz spectrometer on CDCl 3 (Cambridge Isotope Laboratories, Cambridge, Mass.). HR-ESI-MS data were obtained using a liquid chromatography mass spectrometer (LC / MS) from the Korea Basic Science Institute (Seoul). Field emission scanning electron microscopy (FE-SEM) images were obtained using a JEOL JSM-7600F instrument at an acceleration voltage of 10 kV. Samples of SEM images were loaded with a few drops of agglomerated solution onto the bonded carbon tape and lyophilized for 3 days using an Operon lyophilizer. Then, it was prepared by Pt coating for 40 seconds with 108 auto (Cressington Sputter Coater). Particle size and distribution were measured using a particle size analyzer (Microtrac, UAP-150) dynamic light scattering (DLS). Silica gel 60 (Merck, 0.063-0.2 mm) was used for column chromatography. Analytical thin layer chromatography was performed using Merck60 F 254 silica gel (precoated sheet, 0.25 mm thick). All reactions were carried out under a nitrogen atmosphere. Piperazine, acetonitrile, chloride Na + , K + , Ca 2 + , Mg 2 + , Ba 2 + , Cd 2 + , Co 2 + , Pb 2 + , Hg 2+ , Ni 2 +, Cu 2 +, Zn 2 +, Fe 2 +, Fe 3 + ions with a metal, tetrabutyl ammonium as (tetrabutylammonium; TBA) salt of H 2 PO 4 -, HSO 4 -, ClO 4 -, AcO -, CN -, OH -, F -, Cl -, I - anions, such as ion, cysteine (cysteine; Cys), homocysteine (homocysteine; Hcy), glutathione (glutathione; GSH), sodium hydro sulfide, (sodium for H 2 S generation All reagents, including compounds with thiol groups such as hydrosulfide (NaHS) and other chemical and buffer solutions for synthesis, were purchased from Aldrich, Alfa and TCI. All solvents used analytical reagents. DMSO for spectrophotometric assays is an HPLC reagent free of fluorescent impurities, and water is used as deionized water.
실시예Example 10: UV/ 10: UV / VisVis 흡광Absorbance 및 형광 분광분석 방법 And fluorescence spectroscopy methods
합성 화합물의 원액은 DMSO에 준비하였다. TBA염의 음이온과 염화염의 금속 이온 원액은 각각 DMSO와 물에 준비하였다. H2O2, 3차-부틸하이드로퍼옥사이드(tert-butylhydroperoxide; HOOtBu) 및 소듐 하이퍼클로라이드(NaOCl)는 각각 35%, 70% 및 11-14% 수용액을 이용하였다. 히드록시 라디칼(Hydroxyl radical;·OH) 및 3차-부톡시 라디칼(tert-butoxy radical; tBuO˙)은 각각 10 mM Fe(ClO4)2에 10 mM H2O2과 HOOtBu의 반응에 의해 발생되었다. 티올기를 가진 화합물의 원액은 20 mM pH 7.4 HEPES 버퍼 용액에서 준비되었다. 흡광 및 발광(emission) 측정을 위한 샘플은 쿼츠 큐벳(4mL volume)에 넣어져 측정되었다. 여기(excitation)와 발광(emission) 슬릿(slit) 너비 5, 10nm로 여기(excitation)는 320nm에서 측정되었다. Stock solutions of synthetic compounds were prepared in DMSO. The anion of TBA salt and the metal ion stock solution of chloride were prepared in DMSO and water, respectively. H 2 O 2 , tert-butylhydroperoxide ( tert- butylhydroperoxide; HOO t Bu) and sodium hyperchloride (NaOCl) were used in 35%, 70% and 11-14% aqueous solutions, respectively. Hydroxy radicals (OH) and tert- butoxy radicals ( t BuO˙) reacted with 10 mM H 2 O 2 and HOO t Bu in 10 mM Fe (ClO 4 ) 2 , respectively. Was caused by. Stock solutions of compounds with thiol groups were prepared in 20 mM pH 7.4 HEPES buffer solution. Samples for absorbance and emission measurements were measured in quartz cuvettes (4 mL volume). Excitation and emission Slit widths 5 and 10 nm with excitation were measured at 320 nm.
실시예Example 11: 화합물 1의 합성 11: Synthesis of Compound 1
화합물 3(50mg, 0.1mmol)과 10mL 다이클로로메탄(dichloromethane; DCM)에 4-니트로페닐 클로로포르메이트(4-nitrophenyl chloroformate)(58mg, 0.3mmol)의 혼합을 위해 피리딘(pyridine)(0.1mL, 1.2mmol)을 드롭방식으로 첨가하였다. 상기 용액은 질소가스 하에서 1시간동안 섞어주었다. 반응 완성은 TLC로 확인하였다. DCM/THF(v/v=1:1)의 2,2’-다이티올다이에탄올(2,2’-dithiodiethanol)(0.1mL, 0.8mmol)과 다이이소프로필에틸아민(diidopropylethylamine; DIPEA)(0.02mL, 0.1mmol)을 상기 용액에 첨가하였다. 그 후, 실온에서 하룻밤동안 섞어주었다. 용매를 제거한 후에, 조생성물은 DCM에 용해시키고, 물에 철저하게 헹궈낸 후, Na2SO4로 건조시켰다. 용매를 증발시킨 후에, 조생성물은 용리제로서 에틸아세테이트(ethylacetate)와 헥산(hexane)(v/v=1:3)을 이용하여 실리카 겔 컬럼 크로마토그래피로 정제하여 55% 수율(25mg)로 노란색 고상의 화합물 1을 얻었다. HR-ESI-MS m/z [M+Na]+ calcd 550.14790, found 550.14917. 1H NMR (CDCl3, 500 MHz): δ 2.90 (t, 2H, J = 7.5 Hz); 2.97 (t, 2H, J = 7.5 Hz); 3.89 (s, 2H); 4.40 (t, 2H, J = 7.5 Hz); 6.73 (s, 1H); 6.95-7.10 (m, 19H) ppm. 13C NMR (CDCl3, 125 MHz): δ 29.7, 37.5, 41.6, 60.3, 126.4, 127.6, 127.7, 131.3, 131.4, 132.1, 135.8, 139.1, 140.2, 140.7, 143.6, 143.7, 143.7 ppm.(도 10a, b, c).Pyridine (0.1 mL, for mixing 4-nitrophenyl chloroformate (58 mg, 0.3 mmol) in compound 3 (50 mg, 0.1 mmol) and 10 mL dichloromethane (DCM) 1.2 mmol) was added dropwise. The solution was mixed under nitrogen gas for 1 hour. Reaction completion was confirmed by TLC. 2,2'-dithiodiethanol (0.1 mL, 0.8 mmol) and diisopropylethylamine (DIPEA) in DCM / THF (v / v = 1: 1) mL, 0.1 mmol) was added to the solution. Thereafter, the mixture was mixed at room temperature overnight. After removal of the solvent, the crude product was dissolved in DCM, rinsed thoroughly in water and dried over Na 2 SO 4 . After evaporation of the solvent, the crude product was purified by silica gel column chromatography using ethylacetate and hexane (v / v = 1: 3) as eluent to give yellow color in 55% yield (25mg). Solid compound 1 was obtained. HR-ESI-MS m / z [M + Na] + calcd 550.14790, found 550.14917. 1 H NMR (CDCl 3 , 500 MHz): δ 2.90 (t, 2H, J = 7.5 Hz); 2.97 (t, 2H, J = 7.5 Hz); 3.89 (s, 2 H); 4.40 (t, 2H, J = 7.5 Hz); 6.73 (s, 1 H); 6.95-7.10 (m, 19 H) ppm. 13 C NMR (CDCl 3 , 125 MHz): δ 29.7, 37.5, 41.6, 60.3, 126.4, 127.6, 127.7, 131.3, 131.4, 132.1, 135.8, 139.1, 140.2, 140.7, 143.6, 143.7, 143.7 ppm. (FIG. 10A , b, c).
실시예Example 12: 화합물 2의 합성 12: Synthesis of Compound 2
화합물 1(0.8mg, 0.2mmol)은 4mL의 아세토니트릴(acetonitrile; ACN)에 용해되었고, 여기에 NaHS(7mg, 0.1mmol)를 포함하는 20mM HEPES 버퍼(pH 7.4) 6mL를 첨가하였다. 상기 용액을 30분 동안 섞어주었고, 반응과정은 TLC로 확인하였다. 조생성물은 DCM으로 희석시키고, 물에 철저하게 헹궈낸 후, Na2SO4로 건조시켰다. 용매를 증발시킨 후에, 조생성물은 용리제로서 에틸아세테이트와 헥산(v/v=1:3)을 이용하여 실리카 겔 컬럼 크로마토그래피로 정제하여 30% 수율(41mg)로 흰색 고상의 화합물 2를 얻었다. HR-ESI-MS m/z [M+Na]+ calcd 923.29707, found 923.29579. 1H NMR (CDCl3, 500 MHz): δ 2.95 (t, 4H, J = 7.5 Hz); 4.40 (t, 4H, J = 7.5 Hz); 6.95-7.02 (m, 15H); 7.03-7.11 (m, 26H) ppm. 13C NMR (CDCl3, 125 MHz): δ 37.3, 62.6, 117.9, 126.4, 126.5, 127.6, 127.7, 131.3, 131.4, 132.1, 140.2, 140.7, 143.6, 143.7 ppm.(도 11a, b, c).Compound 1 (0.8 mg, 0.2 mmol) was dissolved in 4 mL of acetonitrile (ACN), to which 6 mL of 20 mM HEPES buffer (pH 7.4) containing NaHS (7 mg, 0.1 mmol) was added. The solution was mixed for 30 minutes and the reaction was confirmed by TLC. The crude product was diluted with DCM, rinsed thoroughly in water and dried over Na 2 SO 4 . After evaporation of the solvent, the crude product was purified by silica gel column chromatography using ethyl acetate and hexane (v / v = 1: 3) as eluent to obtain white solid compound 2 in 30% yield (41 mg). . HR-ESI-MS m / z [M + Na] + calcd 923.29707, found 923.29579. 1 H NMR (CDCl 3 , 500 MHz): δ 2.95 (t, 4H, J = 7.5 Hz); 4.40 (t, 4H, J = 7.5 Hz); 6.95-7.02 (m, 15 H); 7.03-7.11 (m, 26H) ppm. 13 C NMR (CDCl 3 , 125 MHz): δ 37.3, 62.6, 117.9, 126.4, 126.5, 127.6, 127.7, 131.3, 131.4, 132.1, 140.2, 140.7, 143.6, 143.7 ppm. (FIGS. 11A, b, c).
실험예Experimental Example 2: 황화수소의 존재하에 화합물 1의 반응 기전 2: Mechanism of reaction of compound 1 in the presence of hydrogen sulfide
도 12와 같이, 화합물 1은 H2S가 존재할 때, 화합물 1의 이황화 결합이 끊어져 TPE-SH를 생성하고, 이후에 화합물 1은 또 다른 티올-이황화 결합 교환이 일어나서, 분자내의 고리화 반응 대신에 AIEgen 이합체화 반응을 이끌었다. 이것은 상당한 형광 발광을 하는 TPE 이합체인 화합물 2 형성을 초래하였다. 이러한 AIEgen 이합체는 수용액에서 TPE 일부분의 소수성 결합에 의한 화합물 1의 응집반응으로 생겨났다. 다시 말해서, 응집반응 상태에서, 티올-이황화 교환으로부터 이합체화 반응 결과는 분자내 고리화 반응 보다 더 호의적이다. 게다가, AIEgen의 이합체화 반응은 증가된 AIE 효과 때문에 강한 형광을 나타냈다. 그러나, H2S가 초과 반응되었을 때, TPE 이합체인 화합물 2는 분자내의 고리화 반응에 의해서 이황화 결합이 끊어져 매우 약한 형광을 보이는 TPE-NH2가 생성되었다. As shown in FIG. 12, Compound 1, when H 2 S is present, breaks the disulfide bond of Compound 1 to form TPE-SH, and then Compound 1 undergoes another thiol-disulfide bond exchange, thereby replacing the intramolecular cyclization reaction. To AIEgen dimerization reaction. This resulted in the formation of Compound 2, a TPE dimer with significant fluorescence. These AIEgen dimers resulted from the agglomeration of compound 1 by hydrophobic bonding of a portion of TPE in aqueous solution. In other words, in the aggregation state, the result of the dimerization reaction from thiol-disulfide exchange is more favorable than the intramolecular cyclization reaction. In addition, the dimerization reaction of AIEgen showed strong fluorescence due to the increased AIE effect. However, when H 2 S was excessively reacted, Compound 2, which is a TPE dimer, was broken by disintegration reaction in the molecule to generate TPE-NH 2 which showed very weak fluorescence.
실험예Experimental Example 3: 화합물 1, 2 및 3의 형광분석 3: Fluorescence of Compounds 1, 2 and 3
화합물 1, 2 및 3에서 다른 비율의 물(fw)과 함께 물-DMSO 혼합물에서의 AIE 현상을 분석하였다(도 13 - 15). fw가 50%에서 90%로 증가함으로써, 이황화 결합된 AIEgen 화합물 1은 471nm에서 증가된 형광을 보였다. TPE-NH2인 화합물 3에서, 형광 세기의 증가는 fw가 60%에서 90%로 증가했을 때 500nm에서 관찰되었다. 그러나, TPE 이합체인 화합물 2는 fw> 30%, fw가 60%에 도달했을 때 안정화 되면서 증가된 형광이 관찰되었다. 또한, 증가된 형광 세기는 화합물 1과 화합물 3의 형광 세기보다 16배 이상 더 높아짐이 관찰되었다. 이것으로 화합물 2의 두 TPE 때문에 화합물 1 및 화합물 3보다 더 큰 AIE 효과를 보여주었음을 알아냈다. 게다가, H2S가 존재할 때, 화합물 1의 이합체화 반응(화합물 2의 형성)으로 강한 AIE-에 기초한 형광 증가가 있음을 밝혀냈다. AIE phenomena in water-DMSO mixtures were analyzed with different proportions of water (f w ) in compounds 1, 2 and 3 (FIGS. 13-15). As f w increased from 50% to 90%, disulfide-bonded AIEgen Compound 1 showed increased fluorescence at 471 nm. In Compound 3, which is TPE-NH 2 , an increase in fluorescence intensity was observed at 500 nm when f w increased from 60% to 90%. However, compound 2, a TPE dimer, stabilized when f w > 30% and f w reached 60%, and increased fluorescence was observed. In addition, it was observed that the increased fluorescence intensity was more than 16 times higher than that of Compounds 1 and 3. This revealed that the two TPEs of Compound 2 showed a greater AIE effect than Compound 1 and Compound 3. In addition, when H 2 S is present, the dimerization reaction of Compound 1 (formation of Compound 2) revealed a strong AIE-based fluorescence increase.
실험예Experimental Example 4:  4: 황화수소에 대한 반응의 특성Characteristics of the reaction to hydrogen sulfide 분석 analysis
화합물 1의 흡광 및 형광의 변화는 40% DMSO(v/v)를 포함한 HEPES 버퍼(pH 7.4)에서 H2S가 존재할 때와 없을 때 관찰되었다(도 16a, b). 화합물 1의 용액은 314nm에서 흡광밴드와 464nm에서 발광 반응을 보였으나, 이 용액에 NaHS(H2S 도너)의 20등가물(equiv.)을 첨가했을 때, 흡광 및 발광 밴드는 강한 형광 증가를 보이며, 각각 342, 480nm로 변했다(도 16b 삽입). 이러한 결과의 스펙트라(spectra)는 비슷한 조건 하에서 TPE-NH2 화합물 3보다 독립된 TPE 이합체인 화합물 2의 스펙트라에 더 가깝게 일치했다(도 13 - 15).Changes in absorbance and fluorescence of Compound 1 were observed with and without H 2 S in HEPES buffer (pH 7.4) with 40% DMSO (v / v) (FIGS. 16A, B). The solution of Compound 1 showed an emission band at 314 nm and a luminescence reaction at 464 nm, but when 20 equivalents of NaHS (H 2 S donor) were added to this solution, the absorption and emission bands showed a strong fluorescence increase. , 342 and 480 nm, respectively (Fig. 16B insertion). The spectra of these results matched more closely to the spectra of Compound 2, an independent TPE dimer, than TPE-NH 2 Compound 3 under similar conditions (FIGS. 13-15).
게다가, NaHS가 존재할 때와 없을 때의 화합물 1의 응집반응은 FE-SEM과 DLS를 이용하여 알아냈다(도 16c, d), NaHS가 없을 때, 화합물 1은 응집되어 1,533nm의 평균 지름(Dave)을 보여줬다(도 17a, b). 그러나 NaHS가 존재할 때 응집체의 Dave은 1,070nm로 감소하였다. 게다가, 독립된 TPE 이합체인 화합물 2 응집체의 Dave은 826nm를 나타냈다(도 17c, d). 이와 대조적으로, TPE-NH2 화합물 3은 Dave=1,791nm로 상대적으로 큰 응집체를 보여줬다(도 17e, f). 이러한 결과로 응집체 크기는 수용액에서 AIEgen의 AIE 효과가 증가함에 따라 감소함을 알아냈다. 이로써 화합물 1은 H2S의 존재에 높은 발광체인 TPE 이합체 화합물 2의 형성을 이끌어냄을 증명하였다. 그러므로, 화합물 1은 수용액에서 H2S를 검출하기 위한 AIE 에 기초한 형광 프로브로서 사용될 수 있다.In addition, the aggregation reaction of Compound 1 with and without NaHS was determined using FE-SEM and DLS (FIG. 16C, d). In the absence of NaHS, Compound 1 aggregated to give an average diameter of 1,533 nm (D ave ) (FIG. 17A, b). However, in the presence of NaHS, the aggregated ave decreased to 1,070 nm. In addition, D ave of Compound 2 aggregate, which is an independent TPE dimer, exhibited 826 nm (FIG. 17C, d). In contrast, TPE-NH 2 Compound 3 showed a relatively large aggregate with D ave = 1,791 nm (FIG. 17E, f). These results showed that aggregate size decreased with increasing AIEgen's AIE effect in aqueous solution. This proved that Compound 1 led to the formation of TPE dimer Compound 2, which is a high emitter in the presence of H 2 S. Therefore, compound 1 can be used as a fluorescent probe based on AIE for detecting H 2 S in aqueous solution.
실험예Experimental Example 5:  5: 간섭물Interference 존재시, 황화수소에 대한 화합물 1의 선택적 반응 분석 Selective reaction analysis of compound 1 in the presence of hydrogen sulfide
40% DMSO(v/v)를 포함하는 HEPES 버퍼(pH7.4, 20mM)에서 다양한 금속이온, 음이온, 활성 산소 종(reactive oxygen species; ROS), 티올기를 가진 화합물을 37℃, 1시간동안 인큐베이션한 후에 형광 반응을 조사하였다. 도 18a에서 볼 수 있듯이, NaHS(H2S 도너)의 20등가물(equiv.)을 첨가했을 때, 화합물 1은 480nm에서 상당한 형광 세기의 증가를 보였다. 이와 대조적으로, GSH, Cys, Hcy, ClO-, ˙O2-, ˙OH, 및 tBuOOH를 포함하는 다른 산화 환원 종이 존재할 때 무시할 수 있는 형광 변화가 관찰되었다. 게다가, Na+, K+, Ca2 +, Mg2 +, Ba2 +, Cd2 +, Co2 +, Pb2 +, Hg2 +, Ni2 +, Cu2+, Zn2 +, Fe2 + 및 Fe3 +를 포함하는 다른 금속이온과 H2PO4 -, HSO4 -, ClO4 -, AcO-, CN-, OH-, F-, Cl- 및 I-를 포함하는 음이온이 존재할 때 형광 변화가 관찰되지 않았다(도 19). Incubation of compounds with various metal ions, anions, reactive oxygen species (ROS), and thiol groups in HEPES buffer containing 40% DMSO (v / v) at 37 ° C. for 1 hour After the fluorescence reaction was investigated. As can be seen in FIG. 18A, when the 20 equivalent of NaHS (H 2 S donor) (equiv.) Was added, Compound 1 showed a significant increase in fluorescence intensity at 480 nm. In contrast, negligible fluorescence changes were observed when other redox species, including GSH, Cys, Hcy, ClO ,, O 2 , ˙OH, and t BuOOH, were present. In addition, Na +, K +, Ca 2 +, Mg 2 +, Ba 2 +, Cd 2 +, Co 2 +, Pb 2 +, Hg 2 +, Ni 2 +, Cu 2+, Zn 2 +, Fe 2 + and Fe 3 + other metal ions and H 2 PO containing 4 -, HSO 4 -, ClO 4 -, AcO -, CN -, OH -, F -, Cl - as the anion containing exist - and I No fluorescence change was observed (FIG. 19).
이러한 결과로 화합물 1은 다른 잠재적인 간섭물에 대해 H2S는 매우 선택적인 형광 증가 반응을 보임을 알아냈다. As a result, Compound 1 found that H 2 S showed a highly selective fluorescence increase response to other potential interferences.
실험예Experimental Example 6: 황화수소 농도에 따른 반응의 특성 분석 6: Characterization of reaction according to hydrogen sulfide concentration
화합물 1을 사용하여 H2S 검출의 양적 분석을 위해, 다른 농도의 NaHS에서 화합물 1의 흡광 및 형광 변화를 관찰하였다. NaHS의 농도가 증가할 때, 341nm에서의 흡광 밴드는 342nm로 레드-이동(res-shift)되었는데, 이것은 TPE 이합체인 화합물 2의 형성 때문이다(도 20). 이와 대조적으로, 첨가된 NaHS의 농도가 증가할 때, 480nm에서 형광 세기가 점차적으로 증가(53배)되었다가 20등가물(equiv.)에서 포화상태가 되었다(도 18b, c). 점차적인 형광 증가는 또한 소형 UV 램프 하에서도 보여졌다(도 18c 삽입). 그러나, NaHS가 초과(1000등가물)된 경우에, 이황화 결합의 끊어짐을 매개로 TPE-NH2 화합물 3의 약한 발광 형성 때문에 화합물 1은 감소된 형광 세기를 보여줬다(도 21a). 화합물 3의 형성은 실리카 겔 TLC 분석을 이용해 확인하였다(도 22). 게다가, TPE 이합체인 화합물 2에서 NaHS가 초과 존재할 때 비슷한 형광 감소가 관찰되었으나, GSH, Cys 및 Hcy를 포함하여 다른 티올기를 가진 화합물이 초과 존재할 때에 화합물 2에서 무시할 수 있는 형광 변화가 관찰되었다(도 21b). 이것으로, 화합물 1은 H2S 존재 하에 선택적으로 TPE 이합체인 화합물 2의 형성을 통해 TPE-NH2 화합물 3을 생성할 수 있음을 알아냈다. H2S-선택적 형광 프로브 달성을 위해, 화합물 1의 형광 증가가 관찰된 범위인 NaHS의 0-34 등가물(0-170μM)에 집중하였다. 게다가, 480nm에서 형광세기가 0과 100 μM NaHS 사이에서 비례적으로 증가했는데, 이러한 범위는 H2S의 일반 생리학적 수치의 범위이다(도 23). 또한, NaHS에 대한 화합물 1의 검출한계(LOD, 3σ/s)는 84nM이었으며, 이것으로 화합물 1은 세포내의 H2S 수치인 0.01-3μM도 검출하는데 사용될 수 있다.For quantitative analysis of H 2 S detection using Compound 1, the absorption and fluorescence changes of Compound 1 were observed at different concentrations of NaHS. As the concentration of NaHS increased, the absorption band at 341 nm red-shifted to 342 nm due to the formation of Compound 2, a TPE dimer (FIG. 20). In contrast, when the concentration of added NaHS was increased, the fluorescence intensity gradually increased (53 times) at 480 nm and became saturated at 20 equivalents (Fig. 18b, c). Gradual fluorescence increase was also seen under the small UV lamp (Figure 18C inset). However, when NaHS was exceeded (1000 equivalent), Compound 1 showed a reduced fluorescence intensity due to the weak luminescence formation of TPE-NH 2 Compound 3 via the breakdown of disulfide bonds (FIG. 21A). Formation of compound 3 was confirmed using silica gel TLC analysis (FIG. 22). In addition, similar fluorescence decreases were observed when excess NaHS was present in compound 2, a TPE dimer, but negligible fluorescence changes were observed in compound 2 when excess compounds with other thiol groups, including GSH, Cys and Hcy, were present (FIG. 21b). As a result, it was found that Compound 1 can produce TPE-NH 2 Compound 3 through the formation of Compound 2, which is optionally a TPE dimer, in the presence of H 2 S. To achieve the H 2 S-selective fluorescent probe, the concentration of fluorescence of Compound 1 was concentrated in the 0-34 equivalent (0-170 μM) of NaHS. In addition, the fluorescence intensity increased proportionally between 0 and 100 μM NaHS at 480 nm, which is a range of general physiological values of H 2 S (FIG. 23). In addition, the detection limit (LOD, 3σ / s) of Compound 1 to NaHS was 84 nM, which allows Compound 1 to detect 0.01-3 μM of intracellular H 2 S levels.
실험예Experimental Example 7: 시간에 따른 황화수소에 대한 화합물 1의 특성 분석 7: Characterization of Compound 1 over Hydrogen Sulfide Over Time
H2S와의 반응에 화합물 1의 시간에 따른 형광 변화는 37℃에서 40% DMSO(v/v)를 포함하는 HEPES 버퍼(pH 7.4, 20mM)에서 관찰되었다. NaHS(H2S 도너)의 20등가물(equiv.)의 존재에, 480nm에서 형광 세기가 증가되었으며, 1시간내에 안정상태에 도달되었다(도 18d의 빨간줄, 도 24). 이와는 대조적으로, NaHS이 없을 때, 화합물 1은 2시간 후에도 형광이 보이지 않았다(도 18d의 검은줄). 이러한 결과로 화합물 1은 H2S가 없을 때 안정화되나, H2S에 매우 민감하게 반응하여 생리학적 조건에서도 형광 신호를 제공함을 알아냈다.Fluorescence change over time of compound 1 in reaction with H 2 S was observed in HEPES buffer (pH 7.4, 20 mM) containing 40% DMSO (v / v) at 37 ° C. In the presence of 20 equivalents (equiv.) Of NaHS (H 2 S donor), the fluorescence intensity increased at 480 nm and reached a steady state within 1 hour (red line in FIG. 18D, FIG. 24). In contrast, in the absence of NaHS, Compound 1 did not show fluorescence even after 2 hours (black lines in FIG. 18D). As a result, it was found that Compound 1 stabilizes in the absence of H 2 S, but reacts very sensitively to H 2 S to provide a fluorescent signal even under physiological conditions.
실험예Experimental Example 8: 화합물 1의 황화수소 검출에 pH의 효과 분석 8: Analysis of the Effect of pH on Hydrogen Sulfide Detection of Compound 1
NaHS가 존재하거나 없을 때, 화합물 1의 H2S 검출에 pH 효과를 조사하였다(도 25). NaHS(H2S 도너)의 20등가물(equiv.)의 존재에, 생리학적 조건에서 널리 관찰되는 pH 수치 5와 8 사이에서 화합물 1은 480nm에서 명확한 형광 증가를 보여줬다. 이와는 대조적으로, 화합물 1은 pH 수치 1과 7 사이에서 무시할 수 있는 형광 변화를 보여줬다. 그러나, pH 수치 8과 11에서 화합물 1은 약간의 형광 증가를 보여줬는데, 이것은 TPE 일부분에 결합된 이황화 결합의 민감함 때문이다. 이러한 결과로 화합물 1은 대부분의 생리학적 pH 값에서 H2S를 검출할 수 있는 형광 증가를 제공할 수 있음을 알아냈다. When NaHS was present or absent, pH effects were investigated for H 2 S detection of Compound 1 (FIG. 25). In the presence of a 20 equivalent (equiv.) Of NaHS (H 2 S donor), Compound 1 showed a clear fluorescence increase at 480 nm between pH values 5 and 8, which are widely observed under physiological conditions. In contrast, compound 1 showed a negligible fluorescence change between pH values 1 and 7. However, at pH values 8 and 11 Compound 1 showed a slight increase in fluorescence due to the sensitivity of disulfide bonds bound to the TPE moiety. As a result, it was found that Compound 1 can provide an increase in fluorescence capable of detecting H 2 S at most physiological pH values.
실험예Experimental Example 9: 황화수소 가스 검출  9: hydrogen sulfide gas detection 키트Kit 제조 및 이를 이용한 황화수소 가스 검출 Manufacture and Detection of Hydrogen Sulfide Gas Using the Same
H2S 가스를 검출하기 위해 화합물 1이 코팅된 실리카 겔 TLC 플레이트를 제작했다. 도 26a와 같이, 뒤쪽이 유리로 된 실리카 겔 TLC 플레이트는 2cm x 2cm 조각으로 자르고, 화합물 1의 DCM 용액에 담근(0.5mM)후에, 건조하였다. 각 화합물 1이 코팅된 플레이트는 초과적인 양의 휘발성 용액을 포함하는 바이알(vial) 위에 30초간 놓았다(도 26b). 유리 플레이트는 H2S, H2O2, 아세트알데하이드(acetaldehyde), 에틸 아세테이트(ethyl acetate; EA), 아세톤(acetone), 다이에틸 에테르(diethyl ether), 클로로폼(chloroform; CH2Cl2), 염산(hydrochloric acid; HCl), 트리플루오로아세트 산(trifluoroacetic acid; TFA), 황산(sulfuric acid; H2SO4), 아세트산(acetic acid; AcOH), 하이드라진(hydrazine; N2H4), 메틸아민(methylamine; CH3NH2), 암모니아(ammonia; NH3) 및 포름알데하이드(formaldehyde)를 포함하는 다양한 증기에 노출되었다. 소형 UV램프를 사용하여 365nm의 여기(excitation) 조건 하에서 형광색의 변화를 관찰하였다. H2S에 노출됐을 때, 상당히 밝은 파란 형광이 나타났으나, 다른 증기들에 노출됐을 때는 이러한 반응이 나타나지 않았다(도 26c). 게다가, 도 26d와 같이, NaHS 용액의 농도가 증가했을 때, 화합물 1이 코팅된 플레이트의 약한 파란 형광이 점차적으로 증가하였다. Silica gel TLC plates were coated with compound 1 to detect H 2 S gas. As shown in FIG. 26A, the silica gel TLC plate with glass on the back was cut into 2 cm x 2 cm pieces, soaked in DCM solution of compound 1 (0.5 mM), and dried. Each Compound 1 coated plate was placed on a vial containing excess amount of volatile solution for 30 seconds (FIG. 26B). Glass plates include H 2 S, H 2 O 2 , acetaldehyde, ethyl acetate (EA), acetone, diethyl ether, chloroform (CH 2 Cl 2 ) , Hydrochloric acid (HCl), trifluoroacetic acid (TFA), sulfuric acid (H 2 SO 4 ), acetic acid (AcOH), hydrazine (N 2 H 4 ), Various vapors have been exposed, including methylamine (CH 3 NH 2 ), ammonia (NH 3 ) and formaldehyde. A small UV lamp was used to observe the change in fluorescence color under excitation conditions of 365 nm. When exposed to H 2 S a fairly bright blue fluorescence appeared, but when exposed to other vapors this reaction did not occur (Figure 26c). In addition, as shown in FIG. 26D, as the concentration of the NaHS solution increased, the weak blue fluorescence of the plate coated with Compound 1 gradually increased.
화합물 1은 쉽게 H2S-선택성 이합체의 AIEgen이 발생되어 뒤쪽이 유리로 된 실리카 겔 TLC 플레이트에 TPE 이합체인 화합물 2의 형성을 초래한다. 화합물 1, 2 및 3이 코팅된 실리카 겔 TLC 플레이트를 준비하였다(도 27). H2S증기에 노출된 후에 화합물 1이 코팅된 플레이트에 밝은 파란 형광이 관찰되었으며, 화합물 2가 코팅된 플레이트에서도 형광이 관찰되었으나, 화합물 3이 코팅된 플레이트에서는 관찰되지 않았다. 결과적으로, 유리로 된 실리카 겔 TLC 플레이트에 코팅된 화합물 1은 H2S 가스를 선택적으로 검출할 수 있으며, 작업환경에서 독성의 H2S 가스 검출을 위한 센서 키트로서 사용될 수 있음을 보여주었다. Compound 1 easily generates AIEgen of the H 2 S-selective dimer, resulting in the formation of Compound 2, which is a TPE dimer, on a silica gel TLC plate with glass on the back. Silica gel TLC plates coated with compounds 1, 2 and 3 were prepared (FIG. 27). Light blue fluorescence was observed in Compound 1 coated plates after exposure to H 2 S vapor, and fluorescence was also observed in Compound 2 coated plates, but not in Compound 3 coated plates. As a result, shown that the compounds (1) coated on a glass silica gel TLC plate may be selectively detected by the H 2 S gas, it may be used as the sensor kit for H 2 S gas detection of toxicity in a working environment.
또한, 본 발명은 하기 화학식 4로 표시되는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염을 제공할 수 있다.In addition, the present invention can provide a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof.
[화학식 4][Formula 4]
Figure PCTKR2019009056-appb-I000010
Figure PCTKR2019009056-appb-I000010
상기 화학식 4에 있어서, R1 내지 R3 중 하나 이상은 할로겐이고 나머지는 수소이며, R4는 페닐, -COOH, -OH 및 (C1 내지 C6)알킬로 이루어진 군에서 선택되는 어느 하나일 수 있다.In Formula 4, at least one of R 1 to R 3 is halogen and the other is hydrogen, and R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
보다 상세하게 상기 화학식 4에 R1 내지 R3 중 하나 이상은 플루오로이고 나머지는 수소이며, R4는 (C1 내지 C6)알킬인 것을 특징으로 하는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염일 수 있다.More specifically, in Formula 4, at least one of R 1 to R 3 is fluoro, the remainder is hydrogen, and R 4 is (C 1 to C 6) alkyl, or a pharmaceutically acceptable derivative thereof. It may be a salt.
본 발명은 하기 화학식 4로 표시되는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 수분 검출용 조성물을 제공할 수 있다.The present invention can provide a composition for detecting water, comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 4][Formula 4]
Figure PCTKR2019009056-appb-I000011
Figure PCTKR2019009056-appb-I000011
상기 화학식 4에 있어서, R1 내지 R3 중 하나 이상은 할로겐이고 나머지는 수소이며, R4는 페닐, -COOH, -OH 및 (C1 내지 C6)알킬로 이루어진 군에서 선택되는 어느 하나일 수 있다.In Formula 4, at least one of R 1 to R 3 is halogen and the other is hydrogen, and R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
보다 상세하게 상기 화학식 4에 R1 내지 R3 중 하나 이상은 플루오로이고 나머지는 수소이며, R4는 (C1 내지 C6)알킬인 것을 특징으로 하는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염일 수 있다.More specifically, in Formula 4, at least one of R 1 to R 3 is fluoro, the remainder is hydrogen, and R 4 is (C 1 to C 6) alkyl, or a pharmaceutically acceptable derivative thereof. It may be a salt.
상기 화학식 4로 표시되는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염은 시료 내 수분 존재 시 이중 방출파장을 나타내며, 포함된 수분 함량에 따라 형광 세기가 변하는 것일 수 있다.The naphthalimide derivative represented by Chemical Formula 4 or a pharmaceutically acceptable salt thereof may exhibit a double emission wavelength in the presence of water in a sample, and may change the fluorescence intensity according to the water content contained therein.
본 발명의 실시예에 따르면, 상기 화학식 4로 표시되는 화합물 1 내지 4의 수분에 대한 흡광도 및 형광 스펙트럼을 확인한 결과, 도 28a와 같이 화합물 1은 약 350 nm에서 흡수 밴드가, 452 및 558 nm에서 2개의 강한 방출 밴드가 나타났다. 이중 방출의 스토크 이동(Δλ)은 각각 102 및 208 nm 였으며, 화합물 1의 옅은 노란색 용액은 빛나는 흰색 형광을 나타내었다.According to an embodiment of the present invention, as a result of confirming the absorbance and fluorescence spectrum of the water of the compounds 1 to 4 represented by the formula (4), as shown in Figure 28a Compound 1 has an absorption band at about 350 nm, at 452 and 558 nm Two strong emission bands appeared. The stoke shift (Δλ) of the double emission was 102 and 208 nm, respectively, and the pale yellow solution of compound 1 showed brilliant white fluorescence.
화합물 2는 도 28b와 같이 365 nm에서 흡수가, 550 nm (Δλ = 180 nm) 및 435 nm (Δλ = 70 nm)에서 방출이 확인되었으며, 옅은 노란색의 용액이 빛나는 노란 형광색을 나타내었다. Compound 2 showed absorption at 365 nm, emission at 550 nm (Δλ = 180 nm) and 435 nm (Δλ = 70 nm) as shown in FIG. 28B, and a pale yellow solution showed a brilliant yellow fluorescent color.
또한, 톨루엔(toluene), 디클로로메탄(dichloromethane; DCM), 테트라하이드로퓨란(tetrahydrofuran; THF), CHCl3, 아세톤(acetone), 아세토나이트릴(acetonitrile; ACN), N,N-디메틸포름아미드(N,N-dimethylformamide; DMF), 디메틸 설폭사이드 (dimethyl sulfoxide; DMSO), 메탄올(methanol; MeOH) 및 에탄올(ethanol; EtOH)과 같은 다양한 유기 용매에서 화합물 1, 2, 3 및 4의 흡수 및 형광 스펙트럼을 확인한 결과, 표 1과 같이 화합물 1은 DMF 및 DMSO에서 약 440 및 560 nm의 이중 방출과 함께 350 및 460 nm에서 두 개의 흡수 밴드가 확인되었으며, 노란 형광색을 나타내었다. In addition, toluene, dichloromethane (DCM), tetrahydrofuran (THF), CHCl 3 , acetone (acetone), acetonitrile (ACN), N, N-dimethylformamide (N Absorption and fluorescence spectra of compounds 1, 2, 3 and 4 in various organic solvents such as N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methanol (methanol; MeOH) and ethanol (EtOH) As a result, as shown in Table 1, Compound 1 showed two absorption bands at 350 and 460 nm with dual emission of about 440 and 560 nm in DMF and DMSO, and showed yellow fluorescence.
또한, 톨루엔, DCM, THF, CHCl3, 아세톤, MeOH 및 EtOH 용액에 대해서는 약 350 nm에서 흡수 밴드가 확인되었으며, 419-447 nm 범위에서 최고치의 단일 방출 밴드가 확인되었다. In addition, absorption bands were observed at about 350 nm for toluene, DCM, THF, CHCl 3 , acetone, MeOH and EtOH solutions, and the highest single emission band was found in the 419-447 nm range.
화합물 1의 톨루엔, DCM, THF, CHCl3, 아세톤 및 ACN 용액은 짙은 청색 형광이 나타난 반면, MeOH 및 EtOH 용액에서는 밝은 청색 형광이 확인되었다.Toluene, DCM, THF, CHCl 3 , acetone and ACN solutions of compound 1 showed a dark blue fluorescence, while bright blue fluorescence was observed in MeOH and EtOH solutions.
상기 결과에서 물에서 나타났던 화합물 1의 밝은 백색 형광은 실험 유기 용매에서는 나타나지 않았다.The bright white fluorescence of Compound 1 that appeared in water in the above results was not seen in the experimental organic solvent.
상기 결과로부터 화합물 1이 물과 같은 극성의 자성 용매인 에탄올과 메탄올에서도 다양한 유기용매와 구별되는 물에 대한 특유의 흡수 및 이중 방출이 나타나는 것으로 확인되었으며, 특히 화합물 1은 유기 용매에 포함된 수분에 대한 이중 방출을 통하여 비율 변화를 제공할 수 있으며, 형광색 변화를 손쉽게 시각화하여 제공함으로써 정확한 검출과 실시간 모니터링이 가능함이 확인되었다.From the above results, it was confirmed that Compound 1 exhibits a unique absorption and dual release to water, which are distinguished from various organic solvents, in ethanol and methanol, which are magnetic solvents having the same polarity as water. It is confirmed that the ratio change can be provided through the dual emission, and the accurate detection and real time monitoring can be easily visualized by providing the change of the fluorescent color.
이에 따라, 본 발명은 하기 화학식 4로 표시되는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 수분 검출용 형광 프로브를 제공할 수 있다.Accordingly, the present invention can provide a fluorescent probe for moisture detection comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 4][Formula 4]
Figure PCTKR2019009056-appb-I000012
Figure PCTKR2019009056-appb-I000012
상기 화학식 4에 있어서, R1 내지 R3 중 하나 이상은 할로겐이고 나머지는 수소이며, R4는 페닐, -COOH, -OH 및 (C1 내지 C6)알킬로 이루어진 군에서 선택되는 어느 하나일 수 있다.In Formula 4, at least one of R 1 to R 3 is halogen and the other is hydrogen, and R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
본 발명은 하기 화학식 4로 표시되는 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 수분 검출용 스트립을 제공할 수 있다.The present invention can provide a strip for detecting moisture, comprising a naphthalimide derivative represented by the following formula (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 4][Formula 4]
Figure PCTKR2019009056-appb-I000013
Figure PCTKR2019009056-appb-I000013
상기 화학식 4에 있어서, R1 내지 R3 중 하나 이상은 할로겐이고 나머지는 수소이며, R4는 페닐, -COOH, -OH 및 (C1 내지 C6)알킬로 이루어진 군에서 선택되는 어느 하나일 수 있다.In Formula 4, at least one of R 1 to R 3 is halogen and the other is hydrogen, and R 4 may be any one selected from the group consisting of phenyl, -COOH, -OH, and (C1 to C6) alkyl. .
본 발명의 다른 실시예에 따르면, 화합물 1을 이용한 간단한 수분 검출을 위해, 화합물 1(1.0 mM)의 CHCl3 용액에 여과지를 침지시킨 후 하루 동안 오븐에서 건조시켜 화합물 1이 함침된 종이 스트립을 준비하고, EtOH 수용액에 반복적으로 침지시키고 건조시켜 수분에 대하여 화합물 1이 침윤된 종이 스트립의 가역적 형광 반응을 확인한 결과, 도 32b와 같이 종이 스트립은 10% 수분을 함유하는 EtOH 수용액에 침지될 경우, 형광 색상이 청색에서 백색으로 급격하게 변화하였으며, 스트립은 용매 단순 건조에 의해 다시 청색 형광으로 되돌아갔다.According to another embodiment of the present invention, for simple moisture detection using Compound 1, a paper strip impregnated with Compound 1 was prepared by immersing filter paper in a solution of Compound 1 (1.0 mM) in CHCl 3 and drying in an oven for one day. And, repeatedly immersed in an aqueous solution of EtOH and dried to confirm the reversible fluorescence reaction of the paper strip in which Compound 1 is infiltrated against water, as shown in Figure 32b when the paper strip is immersed in an aqueous solution of EtOH containing 10% moisture, The color changed rapidly from blue to white and the strip returned to blue fluorescence again by simple drying of the solvent.
상기 결과로부터 종이 스트립은 수분 검출에 반복적으로 사용 가능한 것이 확인됨에 따라, 상기 종이 스트립은 재사용 가능성뿐만 아니라 형광색 변화를 신속하고 간편하게 시각화함으로써 수분 검출에 매우 효과적으로 사용될 수 있다. As it is confirmed from the above results that the paper strip can be repeatedly used for moisture detection, the paper strip can be used very effectively for moisture detection by quickly and simply visualizing fluorescence color change as well as reusability.
또한, 본 발명은 상기 나프탈이미드 유도체 또는 이의 약학적으로 허용가능한 염을 포함하는 조성물에 시료를 첨가하여 반응시키는 단계; 및 상기 반응시킨 반응물의 흡광도, 형광 세기 및 광학적 변화로 이루어진 군에서 선택되는 하나 이상의 지표를 측정하는 단계를 포함하는 수분 검출방법을 제공할 수 있다.In addition, the present invention comprises the steps of reacting by adding a sample to a composition comprising the naphthalimide derivative or a pharmaceutically acceptable salt thereof; And measuring one or more indicators selected from the group consisting of absorbance, fluorescence intensity, and optical change of the reacted reactant.
상기 시료는 유기용매일 수 있다.The sample may be an organic solvent.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples that are commonly applied to each embodiment according to the present invention.
실시예Example 13: 합성 물질 및 방법 13: Synthetic Materials and Methods
모든 시약을 Alfa (Alfa, Heysham, LA3 2XY, United Kingdom), Aldrich (Aldrich, St. Louis, MO, USA) 및 TCI (TCI, Tokyo, Japan)에서 구입하였으며, 추가 정제 없이 사용하였다.All reagents were purchased from Alfa (Alfa, Heysham, LA3 2XY, United Kingdom), Aldrich (Aldrich, St. Louis, MO, USA) and TCI (TCI, Tokyo, Japan) and used without further purification.
모든 용액은 분석 또는 HPLC 등급으로 사용하였으며, HR-ESI-MS 데이터는 the Korea Basic Science Institute (Seoul)의 액체 크로마토그래피 질량 분석기(LC/MS)에서 얻었으며, NMR 스펙트라는 Bruker (500 MHz) 장비에서 기록되었다.All solutions were used as analytical or HPLC grade, HR-ESI-MS data obtained from Liquid Chromatography Mass Spectrometer (LC / MS) of the Korea Basic Science Institute (Seoul), NMR Spectra Bruker (500 MHz) instrument Was recorded.
실시예Example 14: UV/ 14: UV / VisVis 흡수 및 형광 분광방법 Absorption and Fluorescence Spectroscopy
분광 연구를 위해 사용된 모든 용액은 HPLC 등급으로 사용되었다.All solutions used for spectroscopic studies were used in HPLC grade.
톨루엔(toluene), 디클로로메탄(dichloromethane; DCM), 테트라하이드로퓨란(tetrahydrofuran; THF), 클로로포름(chloroform), 아세톤(acetone), 아세토나이트릴(acetonitrile; ACN), N,N-디메틸포름아미드 (N,N-dimethylformamide; DMF), 디메틸 설폭사이드 (dimethyl sulfoxide; DMSO), 메탄올 (methanol), 에탄올 (ethanol) 및 물을 이용하여 화합물 스탁 용액을 준비하였다.Toluene, dichloromethane (DCM), tetrahydrofuran (THF), chloroform, acetone, acetone, acetonitrile (ACN), N, N-dimethylformamide (N Compound stock solution was prepared using N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methanol, methanol and ethanol.
모든 UV/Vis 흡광도 및 형광 스펙트럼은 UV-2600 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) 및 RF-6000 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) 분광기에서 각각 기록되었다.All UV / Vis absorbance and fluorescence spectra were recorded on UV-2600 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) and RF-6000 (Shimadzu Corporation, Kyoto, Kyoto Prefecture, Japan) spectrometers, respectively.
합성예Synthesis Example 1: 화합물 1 내지 4 합성 1: Synthesis of Compounds 1-4
화합물 3 및 화합물 4는 앞서 보고된 방법(Ghorbanian, S, et al.; J Chem Technol Biotechnol 2000, 75, 1127-1134 및 Lee, M. H. et al.; J. Am. Chem. Soc. 2012, 134, 1316-1322.)으로 합성하였으며, 화합물 4를 시작물질로 하여 화합물 1 및 2를 합성하였다. Compounds 3 and 4 were prepared by methods previously reported (Ghorbanian, S, et al .; J Chem Technol Biotechnol 2000, 75, 1127-1134 and Lee, MH et al .; J. Am. Chem. Soc. 2012, 134, 1316-1322.), And compound 1 and 2 were synthesized using compound 4 as a starting material.
[반응식 1] Scheme 1
Figure PCTKR2019009056-appb-I000014
Figure PCTKR2019009056-appb-I000014
1. 화합물 1 합성1. Compound 1 Synthesis
[반응식 2] Scheme 2
Figure PCTKR2019009056-appb-I000015
Figure PCTKR2019009056-appb-I000015
디클로로메탄(DCM, 50 mL)에 용해시킨 디플루오로아세테이트 산(0.13 mL, 2.06 mmol)과 옥살릴 클로라이드(0.26 mL; 3.07 mmol)의 혼합물에 디메틸포름아미드(DMF; 0.1 mL) 천천히 첨가하였다.Dimethylformamide (DMF; 0.1 mL) was slowly added to a mixture of difluoroacetic acid (0.13 mL, 2.06 mmol) and oxalyl chloride (0.26 mL; 3.07 mmol) dissolved in dichloromethane (DCM, 50 mL).
상기 반응혼합물을 N2 가스 하 실온에서 하룻밤 동안 교반하고 얇은층 크로마토그래피(TLC)로 확인하였다.The reaction mixture was stirred overnight at room temperature under N 2 gas and confirmed by thin layer chromatography (TLC).
TLC 플레이트에서 디플루오로아세트산을 증발시킨 후 반응 혼합물을 즉시 후속반응에 사용하였다. 디플루오로아세틸 클로라이드가 포함된 반응혼합물에 화합물 4가 용해된 DCM 용액을 첨가한 후 N2 가스 하 60℃에서 3시간 동안 환류시켰다.After evaporating difluoroacetic acid in a TLC plate the reaction mixture was immediately used for the subsequent reaction. A DCM solution containing Compound 4 was added to the reaction mixture containing difluoroacetyl chloride and refluxed at 60 ° C. under N 2 gas for 3 hours.
상기 반응혼합물을 소디움 비스카보네이트 수용액에 퀀칭하고, DCM (50 mL)로 희석한 후 물(100 mL)로 세척하였다.The reaction mixture was quenched in aqueous sodium bicarbonate solution, diluted with DCM (50 mL) and washed with water (100 mL).
유기층을 수집하여 무수 Na2SO4로 건조시키고 용액제거 후 용리액으로 에틸 아세테이트/헥산을 이용하여 실리카 겔 컬럼 크로마토그래피를 수행하여 노란색을 띄는 흰색 고체 화합물 1 (0.66 g, 92%)을 얻었다.The organic layer was collected, dried over anhydrous Na 2 SO 4 , and after solution removal, silica gel column chromatography was performed using ethyl acetate / hexane as eluent to obtain a yellowish white solid compound 1 (0.66 g, 92%).
HR-ESI-MS m/z [M]+ calc. 346.1439, [M+H]+ obs. 347.1513. 1H NMR (DMSO-d6, 500 MHz): δ 0.94 (t, J = 7.5 Hz, 3H); 1.32-1.40 (m, 2H); 1.59-1.65 (m, 2H); 4.03 (t, J = 7.5 Hz, 2H); 6.65 (t, J = 53.5 Hz, 1H); 7.90 (t, J = 7.8 Hz, 1H); 8.11 (d, J = 8.0 Hz, 1H); 8.48-8.54 (m, 3H) ppm. 13C NMR (DMSO-d6, 125 MHz): δ 163.2, 162.8, 162.0, 161.8, 161.6, 137.9, 131.0, 131.0, 129.1, 128.1, 126.9, 125.2, 122.3, 122.0, 119.6, 110.2, 108.3, 106.3, 39.4, 29.6, 19.8, 13.7 ppm.HR-ESI-MS m / z [M] + calc. 346.1439, [M + H] + obs. 347.1513. 1 H NMR (DMSO- d 6, 500 MHz): δ 0.94 (t, J = 7.5 Hz, 3H); 1.32-1.40 (m, 2 H); 1.59-1.65 (m, 2 H); 4.03 (t, J = 7.5 Hz, 2H); 6.65 (t, J = 53.5 Hz, 1 H); 7.90 (t, J = 7.8 Hz, 1H); 8.11 (d, J = 8.0 Hz, 1H); 8.48-8.54 (m, 3H) ppm. 13 C NMR (DMSO-d 6 , 125 MHz): δ 163.2, 162.8, 162.0, 161.8, 161.6, 137.9, 131.0, 131.0, 129.1, 128.1, 126.9, 125.2, 122.3, 122.0, 119.6, 110.2, 108.3, 106.3, 39.4, 29.6, 19.8, 13.7 ppm.
2. 화합물 2 합성2. Compound 2 Synthesis
[반응식 3] Scheme 3
Figure PCTKR2019009056-appb-I000016
Figure PCTKR2019009056-appb-I000016
화합물 4 (0.14 g, 0.53 mmol) 및 소디움 카보네이트 (sodium carbonate; 0.03 g, 0.26 mmol)를 1,4-디옥산 (1,4-dioxane; 5 mL)에 용해시킨 혼합물에 트리플루오로아세트산 무수물 (trifluoroacetic anhydride; 0.11 mL, 0.79 mmol) 천천히 첨가하고, 상기 반응 혼합물을 N2 가스 실온에서 2시간 동안 교반하였다.Trifluoroacetic anhydride (0.14 g, 0.53 mmol) and sodium carbonate (0.03 g, 0.26 mmol) in a mixture of 1,4-dioxane (5 mL) dissolved in trifluoroacetic anhydride ( trifluoroacetic anhydride (0.11 mL, 0.79 mmol) was added slowly and the reaction mixture was stirred for 2 h at N 2 gas room temperature.
상기 혼합물을 에틸 아세테이트(50 mL)로 희석하고 물로 세척한 후 유기층을 수집하여 무수 Na2SO4로 건조하였다.The mixture was diluted with ethyl acetate (50 mL), washed with water and the organic layer was collected and dried over anhydrous Na 2 SO 4 .
용매 제거 후, 정제되지 않은 생성물을 용리액으로 에틸 아세테이트/헥산 (v/v, 1:2)을 이용하여 실리카겔 컬럼 크로마토그래피로 정제하여 노란색을 띄는 흰색 고체 화합물 2 (0.16 g, 82%)를 얻었다. HR-ESI-MS m/z [M]+ calc. 364.1342, [M+H]+ obs. 365.1415. 1H NMR (DMSO-d6, 500 MHz): δ 0.93 (t, J = 7.5 Hz, 3H); 1.31-1.42 (m, 2H); 1.58-1.67 (m, 2H); 4.05 (t, J = 7.5 Hz, 2H); 7.92-7.95 (m, 1H); 7.96 (d, J = 8.0 Hz, 1H); 8.38-8.9 (m, 1H); 8.53-8.55 (m, 2H); 11.9 (s, 1H) ppm. 13C NMR (DMSO-d6, 125 MHz): δ 163.1, 162.7, 156.4, 156.1, 155.8, 155.5, 136.7, 131.1, 130.6, 129.3, 128.1, 127.3, 126.3, 124.4, 122.4, 121.0, 119.3, 117.0, 114.7, 112.4, 39.3, 29.5, 19.7, 13.6 ppm.After removal of the solvent, the crude product was purified by silica gel column chromatography using ethyl acetate / hexane (v / v, 1: 2) as eluent to give a yellowish white solid Compound 2 (0.16 g, 82%). . HR-ESI-MS m / z [M] + calc. 364.1342, [M + H] + obs. 365.1415. 1 H NMR (DMSO-d 6 , 500 MHz): δ 0.93 (t, J = 7.5 Hz, 3H); 1.31-1.42 (m, 2 H); 1.58-1.67 (m, 2 H); 4.05 (t, J = 7.5 Hz, 2H); 7.92-7.95 (m, 1 H); 7.96 (d, J = 8.0 Hz, 1H); 8.38-8.9 (m, 1 H); 8.53-8.55 (m, 2 H); 11.9 (s, 1 H) ppm. 13 C NMR (DMSO-d 6 , 125 MHz): δ 163.1, 162.7, 156.4, 156.1, 155.8, 155.5, 136.7, 131.1, 130.6, 129.3, 128.1, 127.3, 126.3, 124.4, 122.4, 121.0, 119.3, 117.0, 114.7, 112.4, 39.3, 29.5, 19.7, 13.6 ppm.
실험예Experimental Example 10: 수분 민감성 화합물의 특성 확인 10: Characterization of moisture sensitive compounds
상기 방법으로 합성된 화합물 1 내지 4의 수분에 대한 흡광도 및 형광 스펙트럼을 확인하였다.The absorbance and fluorescence spectrum of water of Compounds 1 to 4 synthesized by the above method were confirmed.
그 결과, 도 28a와 같이 화합물 1은 약 350 nm에서 흡수 밴드가, 452 및 558 nm에서 2개의 강한 방출 밴드가 나타났다. 이중 방출의 스토크 이동(Δλ)은 각각 102 및 208 nm 였으며, 이러한 큰 스토크 이동은 나프탈이미드 잔기의 효율적인 분자 내 전하 이동에 의한 것이다. 또한, 화합물 1의 옅은 노란색 용액은 빛나는 흰색 형광을 나타내었다.As a result, as shown in FIG. 28A, Compound 1 showed an absorption band at about 350 nm and two strong emission bands at 452 and 558 nm. The stoke shift (Δλ) of the double emission was 102 and 208 nm, respectively, and this large stoke shift was due to the efficient intramolecular charge transfer of the naphthalimide moiety. In addition, the pale yellow solution of compound 1 showed brilliant white fluorescence.
화합물 2는 도 28b와 같이 365 nm에서 흡수가, 550 nm (Δλ = 180 nm) 및 435 nm (Δλ = 70 nm)에서 방출이 확인되었으며, 옅은 노란색의 용액이 빛나는 노란 형광색을 나타내었다. Compound 2 showed absorption at 365 nm, emission at 550 nm (Δλ = 180 nm) and 435 nm (Δλ = 70 nm) as shown in FIG. 28B, and a pale yellow solution showed a brilliant yellow fluorescent color.
한편, 도 28c와 같이 동일한 조건에서 화합물 1 및 2와 대조적으로 화합물 3은 플루오르가 첨가된 아세트아미드 기가 없어 350 nm에서 흡수가 나타났고, 477 nm (Δλ = 127 nm)에서 단일 방출이 확인되었으며, 화합물 3의 무색 용액은 하늘색 형광이 나타났다.On the other hand, in contrast to Compounds 1 and 2 under the same conditions as in FIG. 28C, Compound 3 was absent at 350 nm due to the absence of acetamide groups to which fluorine was added, and a single emission was observed at 477 nm (Δλ = 127 nm). The colorless solution of compound 3 showed light blue fluorescence.
또한, 플루오르가 첨가된 아세트아미드 기 대신 아민기를 보유한 화합물 4는 도 28d와 같이 435 nm에서 흡수가 나타났으며, 545 nm(Δλ = 110 nm)에서 단일 방출이 확인되었다. 화합물 4의 노란색 용액은 녹색을 띄는 노란 형광색을 나타내었다.In addition, Compound 4 having an amine group instead of acetamide group added with fluorine showed absorption at 435 nm as shown in FIG. 28D, and a single emission was observed at 545 nm (Δλ = 110 nm). The yellow solution of compound 4 showed a greenish yellow fluorescence.
상기 결과로부터 화합물 1 및 2의 플루오로가 첨가된 아세트아미드 기가 ICT 진행을 기반으로 하는 이중 형광 방출 및 큰 스토크 이동에 중요한 역할을 하는 것이 확인되었다.From the above results, it was confirmed that the acetamide groups to which the fluoros of Compounds 1 and 2 played an important role in dual fluorescence emission and large stoke shift based on ICT progression.
한편, 물에 대한 화합물 1 및 2의 이중 방출을 이해하기 위해, 두 개의 방출 파장에서 방출 스펙트럼을 확인하였다. On the other hand, in order to understand the double emission of compounds 1 and 2 for water, emission spectra were identified at two emission wavelengths.
그 결과, 452 및 558 nm에서 기록된 화합물 1의 여기 스펙트럼은 각각 350 nm에서 한 개의 여기 밴드로 나타났으며, 상기 결과는 화합물 1의 흡수와 동일한 것으로 확인되었다.As a result, the excitation spectrum of Compound 1 recorded at 452 and 558 nm appeared as one excitation band at 350 nm, respectively, and the result was confirmed to be the same as the absorption of Compound 1.
상기 결과로부터 두 개의 여기 상태 종은 물에서 화합물 1의 여기 후 형성되는 것이 확인되었다. From the above results, it was confirmed that two excited species are formed after the excitation of compound 1 in water.
화합물 2의 경우, 435 nm에서 기록된 여기 스펙트럼이 화합물 2의 흡수와 동일하게 365 nm에서 단일 여기 밴드로 확인되었으나, 이와 대조적으로 550 nm의 여기 스펙트럼은 380 nm에서 여기 밴드로 나타났으며, 상기 결과는 화합물 2의 흡수와 비교하여 적색 이동된 것으로, 나프탈이미드의 ICT 특성이 크게 증가했기 때문일 수 있다.In the case of compound 2, the excitation spectrum recorded at 435 nm was confirmed as a single excitation band at 365 nm identically to the absorption of compound 2, whereas the excitation spectrum at 550 nm appeared as an excitation band at 380 nm, The results are red shifted compared to the uptake of compound 2, which may be due to a significant increase in the ICT properties of naphthalimide.
또한, 톨루엔(toluene), 디클로로메탄(dichloromethane; DCM), 테트라하이드로퓨란(tetrahydrofuran; THF), CHCl3, 아세톤(acetone), 아세토나이트릴(acetonitrile; ACN), N,N-디메틸포름아미드(N,N-dimethylformamide; DMF), 디메틸 설폭사이드 (dimethyl sulfoxide; DMSO), 메탄올(methanol; MeOH) 및 에탄올(ethanol; EtOH)과 같은 다양한 유기 용매에서 화합물 1, 2, 3 및 4의 흡수 및 형광 스펙트럼을 확인하였다.In addition, toluene, dichloromethane (DCM), tetrahydrofuran (THF), CHCl 3 , acetone (acetone), acetonitrile (ACN), N, N-dimethylformamide (N Absorption and fluorescence spectra of compounds 1, 2, 3 and 4 in various organic solvents such as N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methanol (methanol; MeOH) and ethanol (EtOH) It was confirmed.
그 결과, 화합물 1, 2, 3 및 4의 흡수 및 방출 밴드의 최고치는 표 1과 같이 확인되었다.As a result, the peaks of the absorption and emission bands of Compounds 1, 2, 3 and 4 were identified as in Table 1.
화합물 1은 DMF 및 DMSO에서 약 440 및 560 nm의 이중 방출과 함께 350 및 460 nm에서 두 개의 흡수 밴드가 확인되었으며, 노란 형광색을 나타내었다. Compound 1 identified two absorption bands at 350 and 460 nm with dual emission of about 440 and 560 nm in DMF and DMSO and showed yellow fluorescence.
또한, 톨루엔, DCM, THF, CHCl3, 아세톤, MeOH 및 EtOH 용액에 대해서는 약 350 nm에서 흡수 밴드가 확인되었으며, 419-447 nm 범위에서 최고치의 단일 방출 밴드가 확인되었다. In addition, absorption bands were observed at about 350 nm for toluene, DCM, THF, CHCl 3 , acetone, MeOH and EtOH solutions, and the highest single emission band was found in the 419-447 nm range.
화합물 1의 톨루엔, DCM, THF, CHCl3, 아세톤 및 ACN 용액은 짙은 청색 형광이 나타난 반면, MeOH 및 EtOH 용액에서는 밝은 청색 형광이 확인되었다.Toluene, DCM, THF, CHCl 3 , acetone and ACN solutions of compound 1 showed a dark blue fluorescence, while bright blue fluorescence was observed in MeOH and EtOH solutions.
상기 결과에서 물에서 나타났던 화합물 1의 밝은 백색 형광은 실험 유기 용매에서는 나타나지 않았다.The bright white fluorescence of Compound 1 that appeared in water in the above results was not seen in the experimental organic solvent.
상기 결과로부터 화합물 1이 물과 같은 극성의 자성 용매인 에탄올과 메탄올에서도 다양한 유기용매와 구별되는 물에 대한 특유의 흡수 및 이중 방출이 나타나는 것으로 확인되었다.From the above results, it was confirmed that Compound 1 exhibits a unique absorption and double release of water, which are distinguished from various organic solvents, in ethanol and methanol, which are magnetic solvents of the same polarity as water.
따라서, 화합물 1은 유기 용매에 포함된 수분에 대한 이중 방출을 통하여 비율 변화를 제공할 수 있으며, 형광색 변화를 손쉽게 시각화하여 제공함으로써 정확한 검출과 실시간 모니터링을 가능하게 할 수 있다.Therefore, Compound 1 may provide a change in ratio through the double release of the water contained in the organic solvent, it is possible to easily visualize the change in the fluorescent color to enable accurate detection and real-time monitoring.
SolventSolvent 1One 22 33 44
λabs(nm)λ abs (nm) λem(nm)λ em (nm) λabs(nm)λ abs (nm) λem(nm)λ em (nm) λabs(nm)λ abs (nm) λem(nm)λ em (nm) λabs(nm)λ abs (nm) λem(nm)λ em (nm)
TolueneToluene 350350 419419 345345 414414 345345 434434 405405 480480
DCMa DCM a 350350 419419 345345 414414 345345 439439 405405 490490
THFTHF 350350 428428 344344 414414 344344 444444 420420 502502
CHCl3 CHCl 3 350350 423423 350350 414414 352352 442442 405405 495495
AcetoneAcetone 350350 427427 350350 418418 358358 448448 420420 508508
445445 534534
ACNb ACN b 350350 427427 350350 418,537418,537 352352 450450 415415 514514
445445 461461 432432 553553
DMFc DMF c 350350 435,560435,560 350350 424,537424,537 363363 457457 430430 520520
460460 444444 443443 537537
DMSOd DMSO d 350350 444,560444,560 350350 424,537424,537 365365 463463 435435 530530
460460 446446 445445 537537
MeOHMeOH 350350 447447 350350 434,550434,550 352352 467467 430430 535535
430430 542542
EtOHEtOH 350350 444444 350350 434,550434,550 363363 463463 430430 530530
430430 550550
H2OH 2 O 350350 452,558452,558 365365 435,550435,550 350350 477477 435435 545545
aDichloromethane, bAcetonitrile, c N,N-Dimethylformamide, dDimethyl sufoxide a Dichloromethane, b Acetonitrile, c N, N -Dimethylformamide, d Dimethyl sufoxide
또한, 화합물 2는 ACN, MeOH, EtOH, DMF, 및 DMSO와 같은 몇 개의 극성 용매에서 약 430 및 550 nm 에서 두 개의 방출 파장과 함께 350 및 440 nm에서 두 개의 흡수 파장이 나타나는 것이 확인되었으며, 상기 용액들은 하늘색에서 황녹색까지 다양한 형광색이 나타났다.In addition, Compound 2 was found to exhibit two absorption wavelengths at 350 and 440 nm with two emission wavelengths at about 430 and 550 nm in several polar solvents such as ACN, MeOH, EtOH, DMF, and DMSO. The solutions showed a variety of fluorescent colors, from sky blue to yellow green.
상기 결과로부터 화합물 2는 극성 용매에서 나프탈이미드 모이어티의 ICT 과정이 유의하게 증가하는 것이 확인되었으며, 이러한 결과는 화합물 2의 강한 전자 구인성에 의한 것으로 플루오로아세틸 기를 가진 화합물 1과 비교하여 극성 용매에 매우 민감한 4-아미노 나프탈이미드 잔기의 ICT에 의한 것이다.From the above results, it was confirmed that Compound 2 significantly increased the ICT process of the naphthalimide moiety in the polar solvent, and this result was due to the strong electron withdrawing property of Compound 2 and compared with that of Compound 1 having a fluoroacetyl group. By ICT of 4-amino naphthalimide residues which are very sensitive to solvents.
그러나 톨루엔, DCM, THF 및 CHCl3 용매에서 화합물 2는 짙은 청색 형광과 함께 약 350 nm의 흡수와 약 420 nm에서의 단일 방출이 나타났다.However, in Toluene, DCM, THF and CHCl3 solvents, Compound 2 showed absorption of about 350 nm and single emission at about 420 nm with dark blue fluorescence.
화합물 1 및 2와 대조적으로 플루오로화된 아세트아미드 기가 없는 화합물 3 및 4는 표 1과 같이 실험 용매의 극성에 따라 단순한 용매화 발색 변화와 단일 흡수 및 방출 밴드만 나타났다.In contrast to compounds 1 and 2, compounds 3 and 4 without fluorinated acetamide groups showed only a simple solvation color change and a single absorption and emission band depending on the polarity of the experimental solvent as shown in Table 1.
상기 결과들을 바탕으로 다양한 비극성/극성 유기 용매에서 형광색 변화를 쉽게 시각화하고, 비율 계량 형광을 통하여 물을 검출할 수 있는 대표적인 수분 민감성 형광 프로브로 화합물 1을 사용하여, 각각 다른 비율의 수분([Water] %, v/v)이 포함된 EtOH, MeOH 및 ACN 용액에서 수분 검출 효과를 확인하였다.Based on the above results, using a compound 1 as a representative moisture sensitive fluorescence probe that can easily visualize fluorescence color change in various nonpolar / polar organic solvents and detect water through ratiometric fluorescence, water of different ratios ([Water] ]%, v / v) was confirmed the effect of moisture detection in EtOH, MeOH and ACN solution.
그 결과, 도 29와 같이 다른 비율의 수분이 포함된 EtOH 용액 내 화합물 1의 형광변화를 확인하였다. 도 29a를 참고하면, 무수 EtOH 용액에서 화합물 1은 442 nm의 중심 방출 밴드를 나타내었으며 점차 감소하였고, 558 nm를 중심으로 하는 새로운 방출 밴드가 나타나 [Water]의 50% 내에서 증가하였으며, 526 nm에서 명확한 등전점을 나타내었다.As a result, as shown in FIG. 29, the fluorescence change of Compound 1 in the EtOH solution containing water of different ratios was confirmed. Referring to FIG. 29A, in anhydrous EtOH solution, Compound 1 showed a central emission band of 442 nm and gradually decreased, and a new emission band centered at 558 nm appeared and increased within 50% of [Water], and 526 nm. Clear isoelectric point is shown at.
그러나 [Water] 50%에서 90%로 더 증가한 경우, 442 nm의 방출이 최대 파장 이동에 의해 452 nm로 약간 증가한 반면, 558 nm의 방출은 515 nm의 등흡수점으로 감소하는 것으로 확인되었다.However, when the [Water] increased further from 50% to 90%, the emission of 442 nm was slightly increased to 452 nm by the maximum wavelength shift, while the emission of 558 nm was reduced to the isoabsorption point of 515 nm.
또한, 화합물 1은 EtOH 용액에 포함된 수분 비율에 따라 형광색 변화를 쉽게 시각화할 수 있을 것으로 제안되며, 실제로 다양한 비율의 수분이 포함된 MeOH 및 ACN 용액을 이용하여 병행 실험을 수행한 결과, 유사한 결과가 나타나는 것을 확인할 수 있었다.In addition, it is suggested that Compound 1 can easily visualize the change in the fluorescence color according to the moisture ratio contained in the EtOH solution, and in fact, a parallel experiment was performed using MeOH and ACN solutions containing various ratios of water. Could be seen.
ACN, MeOH, 및 EtOH와 같은 다양한 유기 용매 내 수분에 대한 화합물 1의 비율 계량 형광 변화로부터 도 30과 같이 형광 강도 비율 대 [Water] (%) 값을 얻었으며, 상기 값은 ACN, MeOH, 및 EtOH 용매 내 화합물 1의 형광 강도 비율과 수분 비율 사이의 선형 상관 관계를 나타내어 정확한 수분 감지를 가능하게 한다.The ratio of fluorescence intensity versus [Water] (%) was obtained from the ratio quantitative fluorescence change of compound 1 to moisture in various organic solvents such as ACN, MeOH, and EtOH, as shown in FIG. The linear correlation between the fluorescence intensity ratio and the moisture ratio of Compound 1 in the EtOH solvent is shown to enable accurate moisture sensing.
도 30b의 선형 상관관계에서 ACN 내 수분은 0-70%까지 나타났으며, 도 30c 및 도 30d와 같이 MeOH은 0-30% 및 50-90%의 수분이 확인되었으며, 도 30e 및 도 30f에서는 EtOH에서 0-15% 및 60-90% 수분이 확인되었다.In the linear correlation of FIG. 30B, the moisture in the ACN was 0-70%, and as shown in FIGS. 30C and 30D, MeOH was found to be 0-30% and 50-90% of moisture, and in FIGS. 30E and 30F. 0-15% and 60-90% moisture was found in EtOH.
상기 결과로부터 화합물 1은 다양한 분석 조건에서 시료 내 포함된 넓은 범위의 수분 함량을 확인할 수 있는 것으로 확인되었다.From the results, it was confirmed that Compound 1 was able to confirm a wide range of moisture content contained in the sample under various analytical conditions.
또한, ACN, MeOH 및 EtOH 용매에서 화합물 1을 이용한 수분 검출 한계는 각각 0.78, 0.26 및 0.024% (v/v)로 나타났다.In addition, the moisture detection limits using Compound 1 in ACN, MeOH and EtOH solvents were 0.78, 0.26 and 0.024% (v / v), respectively.
상기 결과로부터 화합물 1은 간단한 시각적 분석뿐만 아니라 수분의 정량적 분석을 가능하게 하는 비율 계량 형광 수분 민감성 프로브로 사용될 수 있음이 확인되었다.From the above results, it was confirmed that Compound 1 can be used as a ratiometric fluorescent moisture sensitive probe that enables quantitative analysis of moisture as well as simple visual analysis.
수분에 대한 화합물 1의 감지 매커니즘을 확인하기 위해, 도 31b와 같이 화합물 1의 1H NMR 스팩트럼에서 DMSO-d6 및 CDCl3의 다른 부분을 확인하였다. In order to confirm the detection mechanism of Compound 1 with respect to moisture, other portions of DMSO-d 6 and CDCl 3 were identified in the 1 H NMR spectrum of Compound 1 as shown in FIG. 31B.
그 결과, 화합물 1의 디플루오로아세트아미드 기에서 양성자-중수소 교환을 피하기 위해, D2O 대신 DMSO-d6가 사용되었다.As a result, DMSO-d 6 was used instead of D 2 O to avoid proton-deuterium exchange in the difluoroacetamide group of Compound 1.
또한, 도 31a를 참고하면 CDCl31H NMR 스펙트럼에서 디플루오로아세트아미드 모이어티에 대한 양성자 Ha 및 Hb은 각각 8.6 및 6.2 ppm에서 확인되었다. 그러나 도 31b 및 도 31c와 같이 DMSO-d6 비율이 증가함에 따라, Ha 및 Hb가 각각 11.3 및 6.7 ppm로 이동되었다.In addition, referring to FIG. 31A, the protons Ha and Hb for the difluoroacetamide moiety in the 1 H NMR spectrum of CDCl 3 were identified at 8.6 and 6.2 ppm, respectively. However, as the DMSO-d 6 ratio increased, as shown in FIGS. 31B and 31C, Ha and Hb moved to 11.3 and 6.7 ppm, respectively.
상기 다운필드 이동은 화합물 1의 디플루오로아세트아미드 양성자와 DMSO-d6 용매의 설포닐 산소 원자 사이의 분자간 수소결합에 의한 것이다.The downfield shift is due to the intermolecular hydrogen bond between the difluoroacetamide proton of compound 1 and the sulfonyl oxygen atom of the DMSO-d 6 solvent.
수소 결합은 청색에서 노란색으로 형광색 변화를 수반하는 나프탈렌이미드의 ICT에 대하여 전자 당김-밀어내는 효과를 유의하게 증가시키는 데 중요한 역할을 했다.Hydrogen bonds played an important role in significantly increasing the electron-pulling effect on the ICT of naphthaleneimide with a fluorescence color change from blue to yellow.
상기 효과는 DMSO-d6에서 화합물 1의 방향성 양성자로부터 1H NMR 신호의 분명한 업필드 이동에 의해 증명될 수 있으며, 화합물 2에서도 CDCl3 중 DMSO-d6 비율의 증가에 따라 유사한 1H NMR 스펙트럼 변화가 확인되었다.This effect can be demonstrated by a clear upfield shift of the 1 H NMR signal from the directional proton of Compound 1 in DMSO-d 6 , and similar Compound 1 H NMR spectrum with increasing DMSO-d 6 ratio of CDCl 3 in Compound 2 Change was confirmed.
실험예Experimental Example 11: 유기 용매 내 수분 검출용 스트립 제조 및 확인 11: Preparation and identification of strips for detecting moisture in organic solvents
화합물 1을 이용한 간단한 수분 검출을 위해, 화합물 1(1.0 mM)의 CHCl3 용액에 여과지를 침지시킨 후 하루 동안 오븐에서 건조시켜 화합물 1이 함침된 종이 스트립을 준비하였다.For simplicity, the water detection using the compound 1, the compound 1 (1.0 mM) of the filter paper was immersed in the CHCl 3 solution was dried in an oven for one day to prepare a paper strip impregnated with a compound 1.
도 33과 같은 과정으로 상기 스트립을 다양한 비율로 수분(0, 5, 10, 20 및 30%, v/v)이 포함된 EtOH, MeOH 및 ACN 용액에 스트립을 담그고 휴대용 UV 램프를 이용하여 365 nm 여기광으로 형광색 변화를 시각화하였다.33, the strip was immersed in EtOH, MeOH and ACN solution containing moisture (0, 5, 10, 20 and 30%, v / v) at various ratios and 365 nm using a portable UV lamp. Fluorescence color changes were visualized with excitation light.
그 결과, 도 32a와 같이 화합물 1을 침윤시킨 종이 스트립이 짙은 청색의 형광을 나타내는 것이 확인되었다. As a result, it was confirmed that the paper strip in which Compound 1 was infiltrated showed dark blue fluorescence as shown in FIG. 32A.
순수한 EtOH, MeOH 및 ACN 용매에 담근 종이 스트립에서는 파란 형광색이 나타났으며, 수분 비율의 증가에 따라 특유의 형광색 변화가 빠르게 나타났으며, 상기 색 변화는 도 29와 유사하게 관찰되었다. The paper strips immersed in pure EtOH, MeOH, and ACN solvents showed blue fluorescence, and the characteristic fluorescence changes rapidly as the moisture ratio increases, and the color change is observed similarly to FIG. 29.
또한, EtOH 수용액에 반복적으로 침지시키고 건조시켜 수분에 대하여 화합물 1이 침윤된 종이 스트립의 가역적 형광 반응을 확인하였다. In addition, it was repeatedly immersed in an aqueous solution of EtOH and dried to confirm the reversible fluorescence of the paper strip in which Compound 1 was infiltrated with respect to moisture.
그 결과, 도 32b와 같이 종이 스트립은 10% 수분을 함유하는 EtOH 수용액에 침지될 경우, 형광 색상이 청색에서 백색으로 급격하게 변화하였으며, 스트립은 용매 단순 건조에 의해 다시 청색 형광으로 되돌아갔다.As a result, as shown in FIG. 32B, when the paper strip was immersed in an aqueous solution of EtOH containing 10% moisture, the fluorescent color rapidly changed from blue to white, and the strip returned to blue fluorescence by simple solvent drying.
상기 결과로부터 종이 스트립은 수분 검출에 반복적으로 사용 가능한 것이 확인됨에 따라, 상기 종이 스트립은 재사용 가능성뿐만 아니라 형광색 변화를 신속하고 간편하게 시각화함으로써 수분 검출에 매우 효과적으로 사용될 수 있다. As it is confirmed from the above results that the paper strip can be repeatedly used for moisture detection, the paper strip can be used very effectively for moisture detection by quickly and simply visualizing fluorescence color change as well as reusability.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be interpreted that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (15)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염:A compound represented by formula (1) or a pharmaceutically acceptable salt thereof:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000017
    Figure PCTKR2019009056-appb-I000017
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  2. 제 1항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용가능한 염.According to claim 1, wherein the mitochondrial target moiety is triphenylphosphonium cation (triphenylphosphonium cation), rhodamine (rhodamine) and hemiyanine (hemicyanine), characterized in that the compound or a pharmaceutically acceptable Possible salts.
  3. 제 1항에 있어서, 상기 화합물 또는 이의 약학적으로 허용가능한 염은 하기 화학식 2로 표시되는 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용가능한 염:The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein the compound or a pharmaceutically acceptable salt thereof is represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2019009056-appb-I000018
    Figure PCTKR2019009056-appb-I000018
  4. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 조성물:A composition for detecting NAD (P) H in mitochondria comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000019
    Figure PCTKR2019009056-appb-I000019
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  5. 제 4항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 미토콘드리아 내 NAD(P)H 검출용 조성물.5. The mitochondrial NAD (P) H according to claim 4, wherein the mitochondrial target moiety is selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine. Detection composition.
  6. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 형광 화학 센서:A fluorescent chemical sensor for detecting NAD (P) H in mitochondria comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000020
    Figure PCTKR2019009056-appb-I000020
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  7. 제 6항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 미토콘드리아 내 NAD(P)H 검출용 형광 화학 센서.7. The mitochondrial NAD (P) H according to claim 6, wherein the mitochondrial target moiety is selected from the group consisting of triphenylphosphonium cation, rhodamine, and hemicyanine. Fluorescent chemical sensor for detection.
  8. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 미토콘드리아 내 NAD(P)H 검출용 키트:Kit for detecting NAD (P) H in mitochondria comprising the compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000021
    Figure PCTKR2019009056-appb-I000021
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  9. 제 8항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 미토콘드리아 내 NAD(P)H 검출용 키트.9. The mitochondrial NAD (P) H according to claim 8, wherein the mitochondrial target moiety is selected from the group consisting of triphenylphosphonium cation, rhodamine, and hemicyanine. Detection kit.
  10. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암세포 검출용 조성물:A composition for detecting cancer cells comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000022
    Figure PCTKR2019009056-appb-I000022
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  11. 제 10항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 암세포 검출용 조성물.The composition of claim 10, wherein the mitochondrial target moiety is selected from the group consisting of triphenylphosphonium cation, rhodamine, and hemiyanine.
  12. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암세포 검출용 키트:Cancer cell detection kit comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2019009056-appb-I000023
    Figure PCTKR2019009056-appb-I000023
    상기 식에서, X는 미토콘드리아 표적 모이어티(moiety)임.Wherein X is a mitochondrial target moiety.
  13. 제 12항에 있어서, 상기 미토콘드리아 표적 모이어티는 트리페닐포스포늄 양이온(triphenylphosphonium cation), 로다민(rhodamine) 및 헤미사이아닌(hemicyanine)으로 이루어진 군에서 선택된 것을 특징으로 하는 암세포 검출용 키트.13. The kit for detecting cancer cells according to claim 12, wherein the mitochondrial target moiety is selected from the group consisting of triphenylphosphonium cation, rhodamine and hemicyanine.
  14. (a) 제 1항에 따른 화학식 1의 화합물 또는 약학적으로 허용가능한 염을 세포에 처리하여 반응시키는 단계; 및(a) treating a compound of formula 1 according to claim 1 or a pharmaceutically acceptable salt by reacting with a cell; And
    (b) 상기 반응시킨 반응물의 형광 파장, 형광 세기 및 광학적 변화로 이루어진 군에서 선택된 어느 하나 이상의 지표를 측정하는 단계;를 포함하는 미토콘드리아 내 NAD(P)H의 검출방법.(b) measuring at least one indicator selected from the group consisting of fluorescence wavelength, fluorescence intensity, and optical change of the reacted reactant.
  15. 제 14항에 있어서, 상기 지표는 UV-Vis(Ultraviolet-visible) 분광 광도계, 형광 광도계, 전자분무 이온화 질량 분광법 및 공초점 현미경으로 이루어진 군에서 선택된 어느 하나 이상을 방법을 이용하여 측정하는 것을 특징으로 하는 미토콘드리아 내 NAD(P)H의 검출방법.The method of claim 14, wherein the indicator is UV-Vis (Ultraviolet-visible) spectrophotometer, fluorescence photometer, electrospray ionization mass spectroscopy and confocal microscope characterized in that any one or more selected from the group consisting of using a method Method for detecting NAD (P) H in the mitochondria.
PCT/KR2019/009056 2018-08-16 2019-07-23 Fluorescent probe for detecting nad(p)h in mitochondria, and detection method using same WO2020036329A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0095559 2018-08-16
KR1020180095559A KR102051757B1 (en) 2018-08-16 2018-08-16 Novel compounds for the detection of hydrogen sulfide and sensor kit for the detection of hydrogen sulfide using the same
KR1020180152022A KR102154073B1 (en) 2018-11-30 2018-11-30 Composition for detecting water comprising naphthalimide derivatives
KR10-2018-0152022 2018-11-30
KR10-2018-0168537 2018-12-24
KR1020180168537A KR102089393B1 (en) 2018-12-24 2018-12-24 Fluorescent probe for detecting NAD(P)H in mitochondria, and method for detecting using the same

Publications (1)

Publication Number Publication Date
WO2020036329A1 true WO2020036329A1 (en) 2020-02-20

Family

ID=69525567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009056 WO2020036329A1 (en) 2018-08-16 2019-07-23 Fluorescent probe for detecting nad(p)h in mitochondria, and detection method using same

Country Status (1)

Country Link
WO (1) WO2020036329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940689A (en) * 2022-04-11 2022-08-26 浙江工业大学 Fluorescent probe for detecting mitochondrial temperature and preparation and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289252A1 (en) * 2013-11-22 2016-10-06 Medical Research Council Mitochondria-targeted dicarbonyl sequestering compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289252A1 (en) * 2013-11-22 2016-10-06 Medical Research Council Mitochondria-targeted dicarbonyl sequestering compounds

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AN, RUIBING ET AL.: "A ''turn-on'' fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and living cells", SENSORS AND ACTUATORS B: CHEMICAL, vol. 222, 2016, pages 48 - 54, XP055688193, DOI: 10.1016/j.snb.2015.08.035 *
JIN, F.: "Assembly, crystal structures, and luminescent properties of three new thiocyanate-bridging mercury(II) coordination polymers", JOURNAL OF COORDINATION CHEMISTRY, vol. 66, no. 20, 2013, pages 3686 - 3696, XP055688189, DOI: 10.1080/00958972.2013.851383 *
JIN, F.: "Diverse structural Ag (I) supramolecular complexes constructed from multidentate dicyanoisophorone-based ligands: structures and enhanced luminescence", CRYSTAL GROWTH & DESIGN, vol. 13, no. 5, 2013, pages 1978 - 1987, XP055688191, DOI: 10.1021/cg400025j *
JOO, J. H.: "Mitochondria-targetable red-emitting probe for real-time fluorescence monitoring of NAD(P)H in live cells", DYES AND PIGMENTS, 14 May 2019 (2019-05-14), pages 1 - 7, XP085741295, DOI: 10.1016/j.dyepig.2019.107561 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940689A (en) * 2022-04-11 2022-08-26 浙江工业大学 Fluorescent probe for detecting mitochondrial temperature and preparation and application thereof
CN114940689B (en) * 2022-04-11 2024-06-11 浙江工业大学 Fluorescent probe for detecting mitochondrial temperature and preparation and application thereof

Similar Documents

Publication Publication Date Title
WO2017010852A1 (en) Dye compound
WO2010120013A1 (en) Novel rhodamine derivative and hypochlorous acid detecting sensor comprising same
WO2021246762A1 (en) Composition, deposition source, organic electroluminescent device including same, and manufacturing method therefor
Zhang et al. Targetable N-annulated perylene-based colorimetric and ratiometric near-infrared fluorescent probes for the selective detection of hydrogen sulfide in mitochondria, lysosomes, and serum
WO2018052243A1 (en) Fluorescent probe for detecting hydrogen sulfide and method for preparing same
WO2020036329A1 (en) Fluorescent probe for detecting nad(p)h in mitochondria, and detection method using same
WO2017146400A1 (en) Compound and composition for detecting phosgene and diethyl chlorophosphate
WO2015111864A1 (en) Organic compound, and organic electroluminescent device containing same
WO2019039888A1 (en) Real-time fluorescence imaging sensor for measuring glutathione in organelle and preparation method therefor
WO2023058885A1 (en) Diagnostic biomarker for cancer and use thereof
WO2021101145A1 (en) Quencher and uses thereof
WO2019107662A1 (en) Novel thieno[3,2-b]pyridine-5(4h)-one derivative compound, preparation method thereof and use thereof
WO2018190452A1 (en) Novel amphipathic molecule based on tandem malonate and use thereof
WO2023013994A1 (en) Novel indole derivative, pharmaceutical composition comprising same, and use thereof
WO2017014601A1 (en) Indolizino [3,2-c] quinoline-based fluorescent probe
WO2016163727A2 (en) Radioactive probe for detecting hydrogen sulfide
WO2020067684A1 (en) Novel method for preparing (-)-cibenzoline succinate
WO2021225233A1 (en) Novel crystalline form of vascular leakage blocker compound
WO2021075904A1 (en) Novel triazine-based amphiphilic compound and use thereof
WO2020190034A1 (en) Novel naphthofuran derivative and use of same
WO2024172209A1 (en) Dual-modal iridium-based self-inert chemical sensor
WO2018012669A1 (en) Novel mesitylene-cored amphiphiles and uses thereof
WO2010117108A1 (en) Polyacetylene supramolecular sieve having selectivity for cationic or anionic compounds, and chemical sensor for detecting cationic or anionic compounds using same
WO2020050470A1 (en) Composition for detecting dsrnas, comprising merocyanine compound and isomer thereof, and method for providing information for diagnosing cancer, by using dsrna expression analysis
WO2015064786A1 (en) Cyanine dye for labeling biomolecules and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849272

Country of ref document: EP

Kind code of ref document: A1