WO2020036171A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2020036171A1
WO2020036171A1 PCT/JP2019/031822 JP2019031822W WO2020036171A1 WO 2020036171 A1 WO2020036171 A1 WO 2020036171A1 JP 2019031822 W JP2019031822 W JP 2019031822W WO 2020036171 A1 WO2020036171 A1 WO 2020036171A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
group
formula
receiving layer
partial structure
Prior art date
Application number
PCT/JP2019/031822
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 弘中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020537081A priority Critical patent/JP7106651B2/en
Publication of WO2020036171A1 publication Critical patent/WO2020036171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a sensor.
  • Non-Patent Document 1 discloses the use of a resonance-type sensor (specifically, a quartz crystal microbalance sensor) having a receiving layer containing a porphyrin compound in order to detect biogas. .
  • the present inventor produced a resonance type and a stress type sensor having a receiving layer composed of a porphyrin compound disclosed in Non-Patent Document 1, and found that the detection target component contained in the system at a low concentration was highly sensitive and selective. could not be detected. That is, in the form of Non-Patent Document 1, it is difficult to apply to low-concentration subjects such as breath and skin gas.
  • the object of the present invention is to provide a sensor having excellent sensitivity and selectivity to a detection target component (for example, a biological gas such as a ketone compound) contained in a system at a low concentration.
  • a detection target component for example, a biological gas such as a ketone compound
  • the present invention it is possible to provide a sensor having excellent sensitivity and selectivity for a detection target component contained in a system at a low concentration.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the weight average molecular weight is defined as a value in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
  • GPC measurement uses HLC-8121GPC (manufactured by Tosoh), two columns of TSKgel GMH HR- H (20) HT (manufactured by Tosoh, 7.8 mm ID ⁇ 30 cm) as columns, and 1,2,2,2 as eluents.
  • HLC-8121GPC manufactured by Tosoh
  • TSKgel GMH HR- H (20) HT manufactured by Tosoh, 7.8 mm ID ⁇ 30 cm
  • 1,2,2,2 as eluents.
  • 4-trichlorobenzene Use 4-trichlorobenzene.
  • the conditions are as follows: the sample concentration is 0.02% by mass, the flow rate is 1.0 ml / min, the sample injection amount is 300 ⁇ l, the measurement temperature is 160 ° C., and an IR (infrared) detector is used.
  • ppm means “parts-per-million (10 ⁇ 6 )” and “ppt” means “parts-per-trillion (10
  • the bonding direction of the divalent linking group described in the present specification is not particularly limited.
  • X 1 is —CO—CR 9 R 10 —
  • —CO— may be bonded to the Y 1 side
  • —CR 9 R 10 — may be bonded to the Y 1 side.
  • the sensor of the present invention has a receptor layer containing a polymer having a repeating unit having a partial structure represented by the following formula (1) (hereinafter, also referred to as “specific polymer”).
  • the detection target component is detected as a result of the detection target component adsorbing to the reception layer through some interaction between the specific polymer contained in the reception layer and the detection target component.
  • the sensor of the present invention has excellent sensitivity and selectivity to a detection target component (particularly, a ketone-based compound) contained at a low concentration in the system.
  • the ability of the sensor to detect trace components and the ability to adsorb the target component of the specific polymer contained in the receptor layer act synergistically, and have not been found before. It is considered that the sensitivity and the potential of the molecular recognition ability of the specific polymer were exhibited.
  • the sensor of the present invention will be described in detail. First, the specific polymer contained in the receiving layer will be described in detail.
  • the specific polymer has a repeating unit having a partial structure represented by the formula (1). Since the partial structure represented by the formula (1) is a rigid and bent structure, the specific polymer can form fine and random voids on the molecular level in the receiving layer. The void formed by the specific polymer can have a high sensitivity and a high selectivity for the detection target component, possibly due to some kind of molecular interaction different from the molecular sieving function.
  • L 1 and L 2 each independently represent a divalent linking group.
  • the divalent linking group include —O—, —CO—, —COO—, —CONH—, —S—, —SO 2 —, and —NR A —
  • R A is a hydrogen atom or an alkyl
  • a group obtained by combining these (for example, -O-divalent hydrocarbon group-) is exemplified.
  • the partial structure represented by the formula (2) is preferable as the partial structure represented by the formula (1) from the viewpoint that the sensitivity and / or the selectivity of the sensor are more excellent.
  • X 1 and X 2 are each independently —CR 1 R 2 —, —CR 3 R 4 —CR 5 R 6 —, —CR 7 CRCR 8 —, —CO—, —CO Represents —CR 9 R 10 — or —O—.
  • Y 1 and Y 2 each independently represent —CR 11 R 12 —, —O—, or a single bond.
  • R 1 to R 12 each independently represent a hydrogen atom or a substituent.
  • the type of the substituent is not particularly limited, and examples thereof include a halogen atom (such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an aryl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • acyloxy group an aminocarbonylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfamoylamino group, an alkyl or arylsulfonylamino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, a sulfamoyl group, Sur Group, alkyl or arylsulfinyl group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, amino group (including alkylamino group and anilino group)
  • a hydrocarbon group is preferable as the substituent, and an alkyl group or an aryl group is preferable because the sensitivity and / or selectivity of the sensor are more excellent.
  • the carbon number of the alkyl group is not particularly limited, and is preferably from 1 to 5, more preferably from 1 to 3, and still more preferably 1, from the viewpoint that the sensitivity and / or selectivity of the sensor are more excellent.
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 are independently bonded to each other to form a ring It may be.
  • the type of ring formed is not particularly limited, and may be an aromatic ring or a non-aromatic ring.
  • the aromatic ring include an aromatic hydrocarbon ring (for example, a benzene ring and a fluorene ring) or an aromatic heterocyclic ring.
  • the non-aromatic ring include an aliphatic hydrocarbon ring.
  • X 1 represents —CR 3 R 4 —CR 5 R 6 —
  • X 2 represents —CR 3 R 4 —CR 5. It is preferred to represent R 6- .
  • the partial structure represented by the formula (1) is preferably a partial structure represented by the formula (1-A) to the formula (1-D) from the viewpoint that the sensitivity and / or the selectivity of the sensor are more excellent.
  • X 1 and X 2 in the formula (2) are —CR 1 R 2 —
  • Y 1 and Y 2 are —CR 11 R 12 —.
  • the partial structure represented by the formula (1-B) is such that X 1 and X 2 in the formula (2) are —CR 7 CRCR 8 —, and Y 1 and Y 2 are a single bond.
  • X 1 and X 2 in the formula (2) are —CR 3 R 4 —CR 5 R 6 —, and Y 1 and
  • the partial structure represented by the formula (1-D) corresponds to the embodiment in which Y 2 is —O—, wherein X 1 and X 2 in the formula (2) are —O—, and Y 1 and Y 2 There -CR 11 R 12 - corresponding to the is aspect.
  • the repeating unit having the partial structure represented by the formula (1) only needs to include the partial structure represented by the above formula (1) as the partial structure, but the sensor has higher sensitivity and / or selectivity.
  • the repeating unit is preferably represented by the formula (3).
  • L 1 and L 2 are the same as those defined L 1 and L 2 in Formula (1) described above.
  • Z 1 to Z 4 each independently represent —O—, —S—, or —SO 2 —.
  • A represents an aromatic ring or a non-aromatic ring which may have a substituent.
  • the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the hetero atom contained in the aromatic heterocyclic ring include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocycle examples include a pyridine ring, a pyrrole ring, and a thiophene ring.
  • the aromatic ring may be monocyclic or polycyclic. When the aromatic ring is polycyclic, it may be a condensed ring or a ring in which two aromatic rings are connected via a hetero atom.
  • Non-aromatic rings include aliphatic hydrocarbon rings and aliphatic heterocycles.
  • the hetero atom contained in the aliphatic heterocyclic ring includes, for example, an oxygen atom, a nitrogen atom, and a sulfur atom.
  • Examples of the aliphatic hydrocarbon ring include a cyclohexane ring.
  • Examples of the aliphatic heterocyclic ring include a tetrahydrofuran ring and a piperidine ring.
  • the non-aromatic ring may be monocyclic or polycyclic.
  • Examples of the substituent which the aromatic ring and the non-aromatic ring may have include the groups exemplified as the substituents represented by R 1 to R 12 described above.
  • a repeating unit represented by the formula (4) is preferable from the viewpoint that the sensitivity and / or selectivity of the sensor are more excellent.
  • the content of the repeating unit having the partial structure represented by the formula (1) is not particularly limited, the content is preferably 10 to 10 with respect to all the repeating units of the specific polymer, since the sensor is more excellent in sensitivity and / or selectivity. It is preferably 100% by mass, more preferably 40 to 100% by mass.
  • the weight average molecular weight of the specific polymer is preferably from 10,000 to 1,000,000, more preferably from 20,000 to 500,000, from the viewpoint that the sensitivity and / or selectivity of the sensor is more excellent.
  • the specific polymer can be produced by a known method.
  • the sensor of the present invention has a receiving layer containing a specific polymer.
  • the configuration of the sensor of the present invention is not particularly limited as long as it has a predetermined receiving layer, but it has at least a sensor body (for example, a resonance sensor body or a stress sensor body) and a receiving layer containing a specific polymer. Is preferred.
  • the sensor of the present invention may have a predetermined receiving layer and other members other than the sensor main body.
  • the content of the specific polymer in the receiving layer varies depending on the form of the sensor, it is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, and more preferably 50 to 100% by mass based on the total mass of the receiving layer.
  • the method for forming the specific polymer-containing receptor layer is not particularly limited.
  • a composition obtained by dissolving a specific polymer in a solvent such as tetrahydrofuran
  • a method of coating and drying the obtained coating film to form a film may be mentioned.
  • the application method include an ink-jet method, a dipping method, and a spray method.
  • the thickness of the receptor layer containing the specific polymer varies depending on the form of the sensor, but is preferably from 10 nm to 100 ⁇ m, more preferably from 50 nm to 50 ⁇ m, even more preferably from 100 nm to 10 ⁇ m.
  • the senor of the present invention further has another receiving layer in addition to the receiving layer containing the specific polymer.
  • the sensor of the present invention has another receiving layer having a different property, for example, there is an advantage that it is possible to detect other components or to improve the measurement accuracy for a composite gas.
  • the receiving layer containing the specific polymer and the other receiving layer may be separately arranged or may be laminated.
  • Specific examples of the other receiving layer include a receiving layer obtained by using a hydrophobic compound (for example, poly (1-trimethylsilyl-1-propyne)).
  • a hydrophobic compound for example, poly (1-trimethylsilyl-1-propyne
  • the resonance type sensor of the present invention adsorbs a specific kind of gas molecules contained in air on the surface and determines whether or not the adsorbed gas molecules are adsorbed or the amount of the adsorbed gas molecules by changing the resonance frequency of a dielectric material (piezoelectric material) that is resonantly driven (specifically, Specifically, the target gas is detected. That is, the resonance type sensor is a sensor using a mass micro-balancing method.
  • FIG. 1 is a cross-sectional view schematically showing an example of a laminated structure in a resonance type sensor of the present invention. The resonance type sensor shown in FIG.
  • a substrate for supporting the resonance type sensor may be provided on the surface of the first electrode 1 opposite to the side in contact with the dielectric material 2. If the dielectric material is self-oscillating, the substrate is not essential. On the other hand, when the dielectric material is a ceramic piezoelectric element or the like, a substrate is required to drive the element resonantly.
  • a voltage is applied to a fine dielectric material (piezoelectric material) to vibrate the dielectric material at a constant frequency (resonance frequency), and the mass increase due to gas adsorption on the surface of the dielectric material resonates.
  • the change is detected as a change in frequency (specifically, a decrease).
  • a sensor using a QCM (Quartz Crystal Mass micro-balancing; a quartz oscillator micro-balancing) method using quartz as a dielectric material to be driven for resonance hereinafter, referred to as a quartz resonator micro balance) , "QCM sensor" are known.
  • a QCM sensor In a QCM sensor, electrodes are usually provided on both surfaces of a crystal thin film cut at a specific angle (AT-cut), and a voltage is applied to cause shear vibration in a horizontal direction with respect to the crystal surface at a resonance frequency. Since this resonance frequency decreases in accordance with the mass of the gas adsorbed on the electrode, a change in mass of the substance on the electrode can be detected.
  • the QCM sensor itself having a quartz oscillator composed of quartz and an electrode sandwiching the quartz is known, and can be prepared by an ordinary method, or a commercially available product may be used.
  • a QCM sensor as one mode of the resonance type sensor of the present invention includes a specific polymer for adsorbing a detection target component on one electrode surface of a pair of electrodes provided with a dielectric material interposed therebetween. It is preferred to have a receiving layer. That is, as the resonance type sensor of the present invention, a QCM sensor having a quartz oscillator and a receiving layer disposed on the quartz oscillator is preferable. The mass of the detection target component adsorbed on the receiving layer containing the specific polymer is detected as a change (specifically, a decrease) in the resonance frequency of the quartz oscillator driven in resonance.
  • Electrodes used for the resonance sensor there is no particular limitation on the electrodes used for the resonance sensor, and metal materials and the like usually used for the electrodes can be used.
  • a resonance type sensor using a ceramic dielectric (piezoelectric material) without using quartz or quartz as a dielectric material can be adopted.
  • Such sensors include cantilever sensors and surface acoustic wave (SAW) sensors. Since a ceramic dielectric material can be formed on a substrate using a sputtering method, a vacuum evaporation method, or the like, there is an advantage that the ceramic dielectric material can be applied to the production of a sensor using a MEMS (Micro Electro Mechanical Systems) technique.
  • Such ceramic dielectric materials include, for example, lead zirconate titanate (PZT), lead zirconate titanate doped with niobium (PZTN), zinc oxide (ZnO), and aluminum nitride (AIN).
  • electrodes are arranged on both surfaces of a film formed of the ceramic dielectric material, and a specific voltage is applied between the electrodes to drive the ceramic dielectric material in resonance.
  • a detection target component is adsorbed on one electrode surface of a pair of electrodes provided with the dielectric material interposed therebetween. It is preferable to dispose a receiving layer containing the specific polymer of (1). The mass of the detection target component adsorbed on the receiving layer containing the specific polymer is detected as a change (specifically, a decrease) in the resonance frequency of the ceramic dielectric material driven in resonance.
  • Examples of the type of the stress sensor of the present invention include a film-type surface stress sensor and a cantilever sensor.
  • the use of the sensor of the present invention is not particularly limited, and includes, for example, for inspection of breath or skin gas, for quantitative measurement of odor, for inspection of gas leak, and for environmental investigation.
  • the sensor of the present invention can detect a detection target component contained in a system at a low concentration with high sensitivity and high selectivity. Therefore, the sensor of the present invention is particularly suitable for the inspection of the breath gas or the skin gas containing the detection target component at a low concentration.
  • the skin gas in the present invention is a general term for volatile substances emitted from the body surface.
  • the detection target component is contained in the system at a low concentration
  • the gas of the detection target component is present in the system in the range of 1 volume ppm to 100 ppm by volume.
  • the sensor of the present invention more preferably detects the detection target component contained in the system with high sensitivity and selectively in the lower concentration range of 1 vol. Ppt to 10 vol ppm, and more preferably 1 vol. It is further preferable that the detection target component contained in the system is selectively detected with high sensitivity in the range of ppt to 1 ppm by volume.
  • the detection target component of the sensor of the present invention is preferably a hydrophilic compound, since it can be detected with higher sensitivity and higher selectivity when it is contained in the system at a low concentration.
  • a hydrophilic compound refers to, for example, a compound having an SP (Solubility Parameter) value of 9 to 17 (cal / cm 3 ) 1/2 , and specifically, acetone (10.0) , Ethanol (12.7), acetonitrile (11.9), and acetic acid (12.6).
  • the SP value (solubility parameter) is defined by the theory of Hildebrand's regular solution, and more specifically, the molar evaporation heat of a compound is ⁇ H, the molar volume is V, the gas constant is R, and the absolute temperature is Let T be an amount (cal / cm 3 ) 1/2 defined by (( ⁇ H-RT) / V) 1/2 .
  • Example 1 Polymer-1 was synthesized with reference to the method described in Chemical Communications, 2004, 230-231.
  • Polymer-1 (10 mg) was dissolved in THF (tetrahydrofuran, manufactured by Wako Pure Chemical Industries, Ltd.) (8 g). The obtained solution was dropped on one surface of a quartz oscillator in a QCM sensor (Quartz Crystal Microbalance, manufactured by Tama Device), and further dried at 80 ° C. to form a film made of Polymer-1 as a receiving layer.
  • the obtained QCM sensor having a receiving layer was put into a flow cell, and 1 mL of saturated vapor of each of the following test gases was passed therethrough to evaluate the sensitivity and selectivity of the QCM sensor having the receiving layer to a component to be detected. Table 1 shows the results.
  • Example 2 to 4 The following Polymer-2 to Polymer-4 were respectively synthesized, and a QCM sensor having a receiving layer containing each polymer was formed according to the same procedure as in Example 1 by using each polymer instead of Polymer-1. An evaluation was performed.
  • Example 1 In the same manner as in Example 1, except that Polymer-1 was changed to a tetrakis (butoxyphenyl) porphyrin copper complex described in Non-Patent Document 1 (Sensors and Actuators B 173 (2012) 555-561). A QCM sensor having a receiving layer composed of a phenyl) porphyrin copper complex was obtained. The sensitivity and selectivity of the QCM sensor having the receiving layer to the detection target component were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 2 A QCM sensor having a receiving layer made of polyisobutylene was obtained in the same manner as in Example 1 except that Polymer-1 was changed to polyisobutylene. The sensitivity and selectivity of the QCM sensor having the receiving layer to the detection target component were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Table 1 shows the results of the above evaluation tests.
  • the QCM sensors having the receiving layer containing the specific polymer were different from the QCM sensors having the receiving layer containing other polymers (Comparative Examples 1 and 2) in It was shown that acetone contained in the system at a low concentration can be detected with high sensitivity and high selectivity.

Abstract

The present invention provides a sensor that has excellent sensitivity and selectivity with respect to a component to be detected, said component being contained at a low concentration in a system. A sensor according to the present invention is a resonance type or stress type sensor which has a receiving layer that contains a polymer having a repeating unit that has a partial structure represented by formula (1).

Description

センサSensor
 本発明は、センサに関する。 The present invention relates to a sensor.
 空気中を漂う希薄なガスを高感度に検知したり、モニタリングしたりする需要が高まっている。例えば、呼気および皮膚ガス等の生体ガスにケトン系化合物が含まれていることが知られており、ケトン系化合物をセンサで検知した結果を健康状態の診断の指標として利用することが考えられている。
 例えば、非特許文献1には、生体ガスを検知するために、ポルフィリン系化合物を含む受容層を有する共振式センサ(具体的には、水晶振動子マイクロバランスセンサ)を用いることが開示されている。
There is an increasing demand for highly sensitive detection and monitoring of rare gases floating in the air. For example, it is known that a biological gas such as breath and skin gas contains a ketone compound, and it is considered that a result of detecting the ketone compound with a sensor may be used as an index for diagnosing a health condition. I have.
For example, Non-Patent Document 1 discloses the use of a resonance-type sensor (specifically, a quartz crystal microbalance sensor) having a receiving layer containing a porphyrin compound in order to detect biogas. .
 本発明者が非特許文献1で開示されたポルフィリン系化合物からなる受容層を有する共振式および応力式のセンサを作製したところ、系中に低濃度で含まれる検知対象成分を高感度かつ選択的に検知できなかった。すなわち、非特許文献1の形態では、例えば、呼気および皮膚ガスのような、低濃度の被検体への適用は困難であった。 The present inventor produced a resonance type and a stress type sensor having a receiving layer composed of a porphyrin compound disclosed in Non-Patent Document 1, and found that the detection target component contained in the system at a low concentration was highly sensitive and selective. Could not be detected. That is, in the form of Non-Patent Document 1, it is difficult to apply to low-concentration subjects such as breath and skin gas.
 本発明は、系中に低濃度で含まれる検知対象成分(例えば、ケトン系化合物等の生体ガス)に対する感度および選択性が優れるセンサの提供を課題とする。 The object of the present invention is to provide a sensor having excellent sensitivity and selectivity to a detection target component (for example, a biological gas such as a ketone compound) contained in a system at a low concentration.
 本発明者は、上記課題について鋭意検討した結果、所定の受容層を用いれば、所望の効果が得られるのを見出し、本発明に至った。
 すなわち、以下の構成により上記課題が解決できるのを見出した。
As a result of intensive studies on the above problems, the present inventors have found that a desired effect can be obtained by using a predetermined receiving layer, and have reached the present invention.
That is, it has been found that the above-mentioned problems can be solved by the following configuration.
(1) 後述する式(1)で表される部分構造を有する繰り返し単位を有する高分子を含む受容層を有する、共振式または応力式のセンサ。
(2) 式(1)で表される部分構造が、後述する式(2)で表される部分構造である、(1)に記載のセンサ。
(3) 式(1)で表される部分構造が、式(1-A)~式(1-D)で表される部分構造である、(1)または(2)に記載のセンサ。
(4) 受容層と、さらに他の受容層とを有する、(1)~(3)のいずれかに記載のセンサ。
(5) 共振式である、(1)~(4)のいずれかに記載のセンサ。
(1) A resonance type or stress type sensor having a receptor layer containing a polymer having a repeating unit having a partial structure represented by the following formula (1).
(2) The sensor according to (1), wherein the partial structure represented by Expression (1) is a partial structure represented by Expression (2) described later.
(3) The sensor according to (1) or (2), wherein the partial structure represented by the formula (1) is a partial structure represented by the formulas (1-A) to (1-D).
(4) The sensor according to any one of (1) to (3), further comprising a receiving layer and another receiving layer.
(5) The sensor according to any one of (1) to (4), which is a resonance type.
 本発明によれば、系中に低濃度で含まれる検知対象成分に対する感度および選択性が優れるセンサを提供できる。 According to the present invention, it is possible to provide a sensor having excellent sensitivity and selectivity for a detection target component contained in a system at a low concentration.
本発明の共振式センサの一例を模式的に示す断面図である。It is sectional drawing which shows an example of the resonance type sensor of this invention typically.
 以下に、本発明のセンサについて説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
 なお、本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、重量平均分子量は、GPC(Gel Permeation Chromatography)測定によるポリスチレン換算値として定義される。
 例えば、GPC測定は、HLC-8121GPC(東ソー製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0ml/min、サンプル注入量を300μl、測定温度を160℃とし、IR(infrared)検出器を用いて行う。
 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味する。
Hereinafter, the sensor of the present invention will be described.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present invention, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In the present specification, the weight average molecular weight is defined as a value in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
For example, GPC measurement uses HLC-8121GPC (manufactured by Tosoh), two columns of TSKgel GMH HR- H (20) HT (manufactured by Tosoh, 7.8 mm ID × 30 cm) as columns, and 1,2,2,2 as eluents. Use 4-trichlorobenzene. The conditions are as follows: the sample concentration is 0.02% by mass, the flow rate is 1.0 ml / min, the sample injection amount is 300 μl, the measurement temperature is 160 ° C., and an IR (infrared) detector is used.
In the present specification, “ppm” means “parts-per-million (10 −6 )” and “ppt” means “parts-per-trillion (10 −12 )”.
 本明細書において表記される2価の連結基の結合方向は、特に制限されない。例えば、Xが-CO-CR10-である場合、-CO-がY側に結合しても、-CR10-がY側に結合してもよい。 The bonding direction of the divalent linking group described in the present specification is not particularly limited. For example, when X 1 is —CO—CR 9 R 10 —, —CO— may be bonded to the Y 1 side, or —CR 9 R 10 — may be bonded to the Y 1 side.
 本発明のセンサは、後述の式(1)で表される部分構造を有する繰り返し単位を有する高分子(以下、「特定高分子」ともいう。)を含む受容層を有する。
 本発明のセンサにおいては、受容層に含まれる特定高分子と検知対象成分との間の何らかの相互作用を介して、検知対象成分が受容層に吸着する結果、検知対象成分を検知する。
 本発明のセンサは、系中に低濃度で含まれる検知対象成分(特に、ケトン系化合物)に対する感度および選択性が優れる。この理由は明らかになっていないが、センサの微量成分の検知能力と、受容層に含まれる特定高分子の検知対象成分の吸着能力とが相乗的に作用し、従来見出されていなかった高い感度を示すと共に、特定高分子のもつ分子認識能力のポテンシャルが発揮されたと考えられる。
 以下、本発明のセンサについて詳述する。まず、受容層に含まれる特定高分子について詳述する。
The sensor of the present invention has a receptor layer containing a polymer having a repeating unit having a partial structure represented by the following formula (1) (hereinafter, also referred to as “specific polymer”).
In the sensor according to the present invention, the detection target component is detected as a result of the detection target component adsorbing to the reception layer through some interaction between the specific polymer contained in the reception layer and the detection target component.
The sensor of the present invention has excellent sensitivity and selectivity to a detection target component (particularly, a ketone-based compound) contained at a low concentration in the system. Although the reason for this has not been clarified, the ability of the sensor to detect trace components and the ability to adsorb the target component of the specific polymer contained in the receptor layer act synergistically, and have not been found before. It is considered that the sensitivity and the potential of the molecular recognition ability of the specific polymer were exhibited.
Hereinafter, the sensor of the present invention will be described in detail. First, the specific polymer contained in the receiving layer will be described in detail.
[特定高分子]
 特定高分子は、式(1)で表される部分構造を有する繰り返し単位を有する。
 式(1)で表される部分構造が剛直かつ屈曲した構造であることから、受容層中において特定高分子は分子レベルの大きさの微細で、かつ、ランダムな空隙を形成し得る。特定高分子によって形成される空隙は、分子ふるい機能とも異なる、何らかの分子相互作用によってか、検知対象成分を高感度、かつ、高選択的に吸着できる。
[Specific polymer]
The specific polymer has a repeating unit having a partial structure represented by the formula (1).
Since the partial structure represented by the formula (1) is a rigid and bent structure, the specific polymer can form fine and random voids on the molecular level in the receiving layer. The void formed by the specific polymer can have a high sensitivity and a high selectivity for the detection target component, possibly due to some kind of molecular interaction different from the molecular sieving function.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、LおよびLは、それぞれ独立に、2価の連結基を表す。
 2価の連結基としては、例えば、-O-、-CO-、-COO-、-CONH-、-S-、-SO-、-NR-(Rは、水素原子、または、アルキル基を表す。)、2価の炭化水素基(例えば、アルキレン基、アルケニレン基(例:-CH=CH-)、アルキニレン基(例:-C≡C-)、および、アリーレン基)、または、これらを組み合わせた基(例えば、-O-2価の炭化水素基-)が挙げられる。
 センサの感度および/または選択性がより優れる点から、式(1)で表される部分構造としては、式(2)で表される部分構造が好ましい。
In the formula (1), L 1 and L 2 each independently represent a divalent linking group.
Examples of the divalent linking group include —O—, —CO—, —COO—, —CONH—, —S—, —SO 2 —, and —NR A — (R A is a hydrogen atom or an alkyl A divalent hydrocarbon group (eg, an alkylene group, an alkenylene group (eg, —CH = CH—), an alkynylene group (eg, —C≡C—), and an arylene group), or A group obtained by combining these (for example, -O-divalent hydrocarbon group-) is exemplified.
The partial structure represented by the formula (2) is preferable as the partial structure represented by the formula (1) from the viewpoint that the sensitivity and / or the selectivity of the sensor are more excellent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)中、XおよびXは、それぞれ独立に、-CR-、-CR-CR-、-CR=CR-、-CO-、-CO-CR10-、または、-O-を表す。
 YおよびYは、それぞれ独立に、-CR1112-、-O-、または、単結合を表す。
 R~R12は、それぞれ独立に、水素原子または置換基を表す。
 置換基の種類は特に制限されず、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、および、ヨウ素原子等)、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、水酸基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アミノ基(アルキルアミノ基およびアニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、および、シリル基が挙げられる。
 なかでも、センサの感度および/または選択性がより優れる点から、置換基としては、炭化水素基が好ましく、アルキル基またはアリール基が好ましい。
 アルキル基の炭素数は特に制限されず、センサの感度および/または選択性がより優れる点から、1~5が好ましく、1~3がより好ましく、1がさらに好ましい。
In the formula (2), X 1 and X 2 are each independently —CR 1 R 2 —, —CR 3 R 4 —CR 5 R 6 —, —CR 7 CRCR 8 —, —CO—, —CO Represents —CR 9 R 10 — or —O—.
Y 1 and Y 2 each independently represent —CR 11 R 12 —, —O—, or a single bond.
R 1 to R 12 each independently represent a hydrogen atom or a substituent.
The type of the substituent is not particularly limited, and examples thereof include a halogen atom (such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an aryl group. , Heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, amino group (including alkylamino group and anilino group) An acylamino group, an aminocarbonylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfamoylamino group, an alkyl or arylsulfonylamino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, a sulfamoyl group, Sur Group, alkyl or arylsulfinyl group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl or heterocyclic azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group , A phosphinylamino group, and a silyl group.
Among them, a hydrocarbon group is preferable as the substituent, and an alkyl group or an aryl group is preferable because the sensitivity and / or selectivity of the sensor are more excellent.
The carbon number of the alkyl group is not particularly limited, and is preferably from 1 to 5, more preferably from 1 to 3, and still more preferably 1, from the viewpoint that the sensitivity and / or selectivity of the sensor are more excellent.
 RとR、RとR、RとR、RとR、RとR10、および、R11とR12は、それぞれ独立に、互いに結合して環を形成していてもよい。
 形成される環の種類は特に制限されず、芳香環であっても、非芳香環であってもよい。芳香環としては、芳香族炭化水素環(例えば、ベンゼン環およびフルオレン環)または芳香族複素環が挙げられる。非芳香環としては、脂肪族炭化水素環が挙げられる。
R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 are independently bonded to each other to form a ring It may be.
The type of ring formed is not particularly limited, and may be an aromatic ring or a non-aromatic ring. Examples of the aromatic ring include an aromatic hydrocarbon ring (for example, a benzene ring and a fluorene ring) or an aromatic heterocyclic ring. Examples of the non-aromatic ring include an aliphatic hydrocarbon ring.
 なお、Yが-O-である場合、Xは-CR-CR-を表し、Yが-O-である場合、Xは-CR-CR-を表すことが好ましい。また、Yが単結合である場合、Xは-CR=CR-を表し、Yが単結合である場合、Xは-CR=CR-を表すことが好ましい。 When Y 1 is —O—, X 1 represents —CR 3 R 4 —CR 5 R 6 —, and when Y 2 is —O—, X 2 represents —CR 3 R 4 —CR 5. It is preferred to represent R 6- . Also, if Y 1 is a single bond, X 1 is -CR 7 = CR 8 - represents, if Y 2 is a single bond, X 2 is -CR 7 = CR 8 - preferably represents a.
 センサの感度および/または選択性がより優れる点から、式(1)で表される部分構造としては、式(1-A)~式(1-D)で表される部分構造が好ましい。
 なお、式(1-A)で表される部分構造は、式(2)中のXおよびXが-CR-であり、YおよびYが-CR1112-である態様に該当し、式(1-B)で表される部分構造は、式(2)中のXおよびXが-CR=CR-であり、YおよびYが単結合である態様に該当し、式(1-C)で表される部分構造は、式(2)中のXおよびXが-CR-CR-であり、YおよびYが-O-である態様に該当し、式(1-D)で表される部分構造は、式(2)中のXおよびXが-O-であり、YおよびYが-CR1112-である態様に該当する。
The partial structure represented by the formula (1) is preferably a partial structure represented by the formula (1-A) to the formula (1-D) from the viewpoint that the sensitivity and / or the selectivity of the sensor are more excellent.
In the partial structure represented by the formula (1-A), X 1 and X 2 in the formula (2) are —CR 1 R 2 —, and Y 1 and Y 2 are —CR 11 R 12 —. In a certain embodiment, the partial structure represented by the formula (1-B) is such that X 1 and X 2 in the formula (2) are —CR 7 CRCR 8 —, and Y 1 and Y 2 are a single bond. In the partial structure represented by the formula (1-C), X 1 and X 2 in the formula (2) are —CR 3 R 4 —CR 5 R 6 —, and Y 1 and The partial structure represented by the formula (1-D) corresponds to the embodiment in which Y 2 is —O—, wherein X 1 and X 2 in the formula (2) are —O—, and Y 1 and Y 2 There -CR 11 R 12 - corresponding to the is aspect.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)で表される部分構造を有する繰り返し単位は、部分構造として上記式(1)で表される部分構造を含んでいればよいが、センサの感度および/または選択性がより優れる点から、式(3)で表される繰り返し単位であることが好ましい。 The repeating unit having the partial structure represented by the formula (1) only needs to include the partial structure represented by the above formula (1) as the partial structure, but the sensor has higher sensitivity and / or selectivity. Thus, the repeating unit is preferably represented by the formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、LおよびLの定義は、上述した式(1)中のLおよびLの定義と同義である。
 Z~Zは、それぞれ独立に、-O-、-S-、または、-SO-を表す。
 Aは、置換基を有していてもよい芳香族環または非芳香族環を表す。
 芳香族環としては、芳香族炭化水素環および芳香族複素環が挙げられる。芳香族複素環に含まれるヘテロ原子としては、例えば、酸素原子、窒素原子、および、硫黄原子が挙げられる。
 芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、および、アントラセン環が挙げられる。芳香族複素環としては、例えば、ピリジン環、ピロール環、および、チオフェン環が挙げられる。
 芳香族環は、単環であっても、多環であってもよい。芳香族環が多環である場合、縮合環であってもよいし、2つの芳香族環がヘテロ原子を介して連結した環であってもよい。
In the formula (3), the definition of L 1 and L 2 are the same as those defined L 1 and L 2 in Formula (1) described above.
Z 1 to Z 4 each independently represent —O—, —S—, or —SO 2 —.
A represents an aromatic ring or a non-aromatic ring which may have a substituent.
Examples of the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Examples of the hetero atom contained in the aromatic heterocyclic ring include an oxygen atom, a nitrogen atom, and a sulfur atom.
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring. Examples of the aromatic heterocycle include a pyridine ring, a pyrrole ring, and a thiophene ring.
The aromatic ring may be monocyclic or polycyclic. When the aromatic ring is polycyclic, it may be a condensed ring or a ring in which two aromatic rings are connected via a hetero atom.
 非芳香族環としては、脂肪族炭化水素環および脂肪族複素環が挙げられる。脂肪族複素環に含まれるヘテロ原子としては、例えば、酸素原子、窒素原子、および、硫黄原子が挙げられる。
 脂肪族炭化水素環としては、例えば、シクロヘキサン環が挙げられる。脂肪族複素環としては、例えば、テトラヒドロフラン環、および、ピペリジン環が挙げられる。
 非芳香族環は、単環であっても、多環であってもよい。
Non-aromatic rings include aliphatic hydrocarbon rings and aliphatic heterocycles. The hetero atom contained in the aliphatic heterocyclic ring includes, for example, an oxygen atom, a nitrogen atom, and a sulfur atom.
Examples of the aliphatic hydrocarbon ring include a cyclohexane ring. Examples of the aliphatic heterocyclic ring include a tetrahydrofuran ring and a piperidine ring.
The non-aromatic ring may be monocyclic or polycyclic.
 芳香族環および非芳香族環が有してもよい置換基としては、上述したR~R12で表される置換基で例示した基が挙げられる。 Examples of the substituent which the aromatic ring and the non-aromatic ring may have include the groups exemplified as the substituents represented by R 1 to R 12 described above.
 センサの感度および/または選択性がより優れる点から、式(3)で表される繰り返し単位としては、式(4)で表される繰り返し単位が好ましい。 As the repeating unit represented by the formula (3), a repeating unit represented by the formula (4) is preferable from the viewpoint that the sensitivity and / or selectivity of the sensor are more excellent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)中、X、X、YおよびYの定義は、上述した式(2)中のX、X、YおよびYの定義と同義である。
 式(4)中、Z~ZおよびAの定義は、上述した式(3)中のZ~ZおよびAの定義と同義である。
In the formula (4), of X 1, X 2, Y 1 and Y 2 definition is synonymous with X 1, the X 2, Y 1 and Y 2 defined in the above Expression (2).
Definition in the formula (4), Z 1 ~ Z 4 and A are the same as those defined Z 1 ~ Z 4 and A in the above Expression (3).
 式(1)で表される部分構造を有する繰り返し単位の含有量は特に制限されないが、センサの感度および/または選択性がより優れる点から、特定高分子の全繰り返し単位に対して、10~100質量%が好ましく、40~100質量%がより好ましい。
 特定高分子の重量平均分子量は、センサの感度および/または選択性がより優れる点から、10,000~1,000,000が好ましく、20,000~500,000がより好ましい。
Although the content of the repeating unit having the partial structure represented by the formula (1) is not particularly limited, the content is preferably 10 to 10 with respect to all the repeating units of the specific polymer, since the sensor is more excellent in sensitivity and / or selectivity. It is preferably 100% by mass, more preferably 40 to 100% by mass.
The weight average molecular weight of the specific polymer is preferably from 10,000 to 1,000,000, more preferably from 20,000 to 500,000, from the viewpoint that the sensitivity and / or selectivity of the sensor is more excellent.
 式(1)で表される部分構造を有する繰り返し単位の具体例を以下に示す。 具体 Specific examples of the repeating unit having the partial structure represented by the formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 特定高分子は、公知の方法により製造できる。 The specific polymer can be produced by a known method.
[センサの形態]
<受容層>
 本発明のセンサは、特定高分子を含む受容層を有する。本発明のセンサは、所定の受容層を有していればその構成は特に制限されないが、センサ本体(例えば、共振式センサ本体または応力センサ本体)と特定高分子を含む受容層とを少なくとも有するのが好ましい。なお、本発明のセンサは、所定の受容層、および、センサ本体以外の他の部材を有していてもよい。
 受容層中の特定高分子の含有量は、センサの形態によっても異なるが、受容層の全質量に対して、10~100質量%が好ましく、30~100質量%がより好ましく、50~100質量%がさらに好ましく、75~100質量%が特に好ましく、90~100質量%が最も好ましい。
 特定高分子を含む受容層を形成する方法は特に制限はなく、例えば、特定高分子を溶剤(テトラヒドロフラン等)に溶解して得られる組成物を、特定高分子を含む受容層を形成する面に塗布して、さらに得られた塗膜を乾燥して膜を形成する方法が挙げられる。塗布方法としては、例えば、インクジェット法、ディップ法、および、スプレー法が挙げられる。
 特定高分子を含む受容層の膜厚は、センサの形態によっても異なるが、10nm~100μmが好ましく、50nm~50μmがより好ましく、100nm~10μmがさらに好ましい。
[Sensor form]
<Receiving layer>
The sensor of the present invention has a receiving layer containing a specific polymer. The configuration of the sensor of the present invention is not particularly limited as long as it has a predetermined receiving layer, but it has at least a sensor body (for example, a resonance sensor body or a stress sensor body) and a receiving layer containing a specific polymer. Is preferred. Note that the sensor of the present invention may have a predetermined receiving layer and other members other than the sensor main body.
Although the content of the specific polymer in the receiving layer varies depending on the form of the sensor, it is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, and more preferably 50 to 100% by mass based on the total mass of the receiving layer. % Is more preferable, 75 to 100% by mass is particularly preferable, and 90 to 100% by mass is most preferable.
The method for forming the specific polymer-containing receptor layer is not particularly limited. For example, a composition obtained by dissolving a specific polymer in a solvent (such as tetrahydrofuran) is coated on the surface on which the specific polymer-containing receptor layer is to be formed. A method of coating and drying the obtained coating film to form a film may be mentioned. Examples of the application method include an ink-jet method, a dipping method, and a spray method.
The thickness of the receptor layer containing the specific polymer varies depending on the form of the sensor, but is preferably from 10 nm to 100 μm, more preferably from 50 nm to 50 μm, even more preferably from 100 nm to 10 μm.
 なお、本発明のセンサは、特定高分子を含む受容層の他にも、さらに他の受容層を有するのも好ましい。本発明のセンサが、異なる性質を有する他の受容層を有する場合、例えば、他の成分も検知できるようにできたり、複合ガスに対する測定精度を向上できたりする利点がある。特定高分子を含む受容層と他の受容層とは、別々に配置されていてもよいし、積層されていてもよい。
 他の受容層の具体例としては、疎水的な化合物(例えば、ポリ(1-トリメチルシリル-1-プロピン))を用いて得られる受容層が挙げられる。これにより、本発明のセンサが、特定高分子を含む親水的な受容層と、疎水的な受容層とを有するので、多様な成分の検知が可能となる。
In addition, it is preferable that the sensor of the present invention further has another receiving layer in addition to the receiving layer containing the specific polymer. When the sensor of the present invention has another receiving layer having a different property, for example, there is an advantage that it is possible to detect other components or to improve the measurement accuracy for a composite gas. The receiving layer containing the specific polymer and the other receiving layer may be separately arranged or may be laminated.
Specific examples of the other receiving layer include a receiving layer obtained by using a hydrophobic compound (for example, poly (1-trimethylsilyl-1-propyne)). Thereby, since the sensor of the present invention has the hydrophilic receiving layer containing the specific polymer and the hydrophobic receiving layer, it is possible to detect various components.
<共振式センサ>
 本発明の共振式センサは、空気中に含まれる特定種のガス分子を表面に吸着し、吸着の有無または吸着量を、共振駆動する誘電体材料(圧電材料)の共振周波数の変化量(具体的には、減少量)として捉えて、目的のガスを検知する。すなわち、共振式センサは、質量マイクロバランシング(Mass micro-balancing)法を利用したセンサである。
 図1は、本発明の共振式センサにおける積層構造の一例を模式的に示す断面図である。図1に示される共振式センサは、第1電極1、誘電体材料2、第2電極3、および、特定高分子を含む受容層4が順次設けられた積層構造を有している。また、第1電極1の、誘電体材料2と接する側とは反対側の面には、共振式センサを支持するための基板が設けられていてもよい。誘電体材料が自励発振式である場合、基板は必須ではない。他方、誘電体材料がセラミック圧電素子等の場合には、素子を共振駆動するために基板が必要となる。
<Resonant sensor>
The resonance type sensor of the present invention adsorbs a specific kind of gas molecules contained in air on the surface and determines whether or not the adsorbed gas molecules are adsorbed or the amount of the adsorbed gas molecules by changing the resonance frequency of a dielectric material (piezoelectric material) that is resonantly driven (specifically, Specifically, the target gas is detected. That is, the resonance type sensor is a sensor using a mass micro-balancing method.
FIG. 1 is a cross-sectional view schematically showing an example of a laminated structure in a resonance type sensor of the present invention. The resonance type sensor shown in FIG. 1 has a laminated structure in which a first electrode 1, a dielectric material 2, a second electrode 3, and a receiving layer 4 containing a specific polymer are sequentially provided. Further, a substrate for supporting the resonance type sensor may be provided on the surface of the first electrode 1 opposite to the side in contact with the dielectric material 2. If the dielectric material is self-oscillating, the substrate is not essential. On the other hand, when the dielectric material is a ceramic piezoelectric element or the like, a substrate is required to drive the element resonantly.
 質量マイクロバランシング法によるセンシングでは、微細な誘電体材料(圧電材料)に電圧をかけて誘電体材料を一定の周波数(共振周波数)で振動させ、誘電体材料表面へのガス吸着による質量増加を共振周波数の変化(具体的には、減少)として検知する。質量マイクロバランシング法を利用した共振式センサの代表的な例として、共振駆動させる誘電体材料として水晶を用いたQCM(Quartz Crystal Mass micro-balancing;水晶振動子マイクロバランス)方式を用いたセンサ(以下、「QCMセンサ」ともいう。)が知られている。
 QCMセンサは、通常、特定の角度(AT-カット)で切り出した水晶の薄膜の両面に電極を設け、電圧をかけて水晶面と水平方向に共振周波数でずり振動させる。この共振周波数は電極上に吸着したガスの質量に応じて減少するため、電極上の物質の質量変化を捉えられる。水晶とこれを挟む電極とからなる水晶振動子を有するQCMセンサそれ自体は公知であり、常法により調製でき、また市販品を用いてもよい。
 本発明の共振式センサの一形態としてのQCMセンサは、誘電体材料を挟んで設けられた1対の電極のうち、一方の電極表面に、検知対象成分を吸着させるための特定高分子を含む受容層を有するのが好ましい。つまり、本発明の共振式センサとしては、水晶振動子と、水晶振動子上に配置された受容層とを有するQCMセンサが好ましい。この特定高分子を含む受容層に吸着した検知対象成分の質量を、共振駆動する水晶振動子の共振周波数の変化(具体的には、減少)として検知する。
In sensing by the mass micro-balancing method, a voltage is applied to a fine dielectric material (piezoelectric material) to vibrate the dielectric material at a constant frequency (resonance frequency), and the mass increase due to gas adsorption on the surface of the dielectric material resonates. The change is detected as a change in frequency (specifically, a decrease). As a typical example of a resonance type sensor using the mass micro-balancing method, a sensor using a QCM (Quartz Crystal Mass micro-balancing; a quartz oscillator micro-balancing) method using quartz as a dielectric material to be driven for resonance (hereinafter, referred to as a quartz resonator micro balance) , "QCM sensor") are known.
In a QCM sensor, electrodes are usually provided on both surfaces of a crystal thin film cut at a specific angle (AT-cut), and a voltage is applied to cause shear vibration in a horizontal direction with respect to the crystal surface at a resonance frequency. Since this resonance frequency decreases in accordance with the mass of the gas adsorbed on the electrode, a change in mass of the substance on the electrode can be detected. The QCM sensor itself having a quartz oscillator composed of quartz and an electrode sandwiching the quartz is known, and can be prepared by an ordinary method, or a commercially available product may be used.
A QCM sensor as one mode of the resonance type sensor of the present invention includes a specific polymer for adsorbing a detection target component on one electrode surface of a pair of electrodes provided with a dielectric material interposed therebetween. It is preferred to have a receiving layer. That is, as the resonance type sensor of the present invention, a QCM sensor having a quartz oscillator and a receiving layer disposed on the quartz oscillator is preferable. The mass of the detection target component adsorbed on the receiving layer containing the specific polymer is detected as a change (specifically, a decrease) in the resonance frequency of the quartz oscillator driven in resonance.
 共振式センサに用いる上記電極に特に制限はなく、電極として通常用いられる金属材料等を使用できる。 電極 There is no particular limitation on the electrodes used for the resonance sensor, and metal materials and the like usually used for the electrodes can be used.
 上記共振式センサとしてQCMセンサの他にも、誘電体材料として水晶または石英等を用いずに、セラミック誘電体(圧電材料)を用いた共振式センサも採用できる。このようなセンサとしては、カンチレバー式センサおよび表面弾性波(SAW)センサが挙げられる。セラミック誘電体材料は、スパッタ法または真空蒸着法等を用いて基板上に製膜できるため、MEMS(Micro Electro Mechanical Systems)技術を用いたセンサの作製に適用できる利点がある。このようなセラミック誘電体材料として、例えば、チタン酸ジルコン酸鉛(PZT)、ニオブをドープしたチタン酸ジルコン酸鉛(PZTN)、酸化亜鉛(ZnO)、および、窒化アルミニウム(AIN)が挙げられる。 と し て In addition to the QCM sensor as the resonance type sensor, a resonance type sensor using a ceramic dielectric (piezoelectric material) without using quartz or quartz as a dielectric material can be adopted. Such sensors include cantilever sensors and surface acoustic wave (SAW) sensors. Since a ceramic dielectric material can be formed on a substrate using a sputtering method, a vacuum evaporation method, or the like, there is an advantage that the ceramic dielectric material can be applied to the production of a sensor using a MEMS (Micro Electro Mechanical Systems) technique. Such ceramic dielectric materials include, for example, lead zirconate titanate (PZT), lead zirconate titanate doped with niobium (PZTN), zinc oxide (ZnO), and aluminum nitride (AIN).
 カンチレバー式センサでは、上記セラミック誘電体材料で形成した膜の両面に電極を配し、電極間に特定の電圧を印加して、セラミック誘電体材料を共振駆動させる。セラミック誘電体材料を用いた共振式センサを本発明の共振式センサとする場合、誘電体材料を挟んで設けられた1対の電極のうち一方の電極表面には、検知対象成分を吸着させるための特定高分子を含む受容層を配置するのが好ましい。この特定高分子を含む受容層に吸着した検知対象成分の質量を、共振駆動するセラミック誘電体材料の共振周波数の変化(具体的には、減少)として検知する。 In the cantilever sensor, electrodes are arranged on both surfaces of a film formed of the ceramic dielectric material, and a specific voltage is applied between the electrodes to drive the ceramic dielectric material in resonance. When a resonance sensor using a ceramic dielectric material is used as the resonance sensor of the present invention, a detection target component is adsorbed on one electrode surface of a pair of electrodes provided with the dielectric material interposed therebetween. It is preferable to dispose a receiving layer containing the specific polymer of (1). The mass of the detection target component adsorbed on the receiving layer containing the specific polymer is detected as a change (specifically, a decrease) in the resonance frequency of the ceramic dielectric material driven in resonance.
<応力センサ>
 本発明の応力センサの形式としては、例えば、膜型表面応力センサ、および、カンチレバーセンサが挙げられる。
<Stress sensor>
Examples of the type of the stress sensor of the present invention include a film-type surface stress sensor and a cantilever sensor.
[用途]
 本発明のセンサの用途は特に制限されず、例えば、呼気または皮膚ガスの検査用、臭気の定量測定用、ガスリークの検査用、および、環境調査用が挙げられる。
 本発明のセンサは、系中に低濃度で含まれる検知対象成分を高感度かつ高選択に検知できる。そのため、本発明のセンサは、検知対象成分が低濃度で含まれる呼気ガスまたは皮膚ガスの検査に特に好適である。ここで、本発明における皮膚ガスとは、体表面から放散される揮発性物質の総称である。
 また、検知対象成分が系中に低濃度で含まれる場合の具体例としては、系中に検知対象成分の気体が1体積ppt~100体積ppmの範囲で存在する場合が挙げられる。本発明のセンサは、より低濃度である1体積ppt~10体積ppmの範囲で系中に含まれる検知対象成分を高感度かつ選択的に検出するのがより好ましく、さらに低濃度である1体積ppt~1体積ppmの範囲で系中に含まれる検知対象成分を高感度かつ選択的に検知するのがさらに好ましい。
[Use]
The use of the sensor of the present invention is not particularly limited, and includes, for example, for inspection of breath or skin gas, for quantitative measurement of odor, for inspection of gas leak, and for environmental investigation.
The sensor of the present invention can detect a detection target component contained in a system at a low concentration with high sensitivity and high selectivity. Therefore, the sensor of the present invention is particularly suitable for the inspection of the breath gas or the skin gas containing the detection target component at a low concentration. Here, the skin gas in the present invention is a general term for volatile substances emitted from the body surface.
Further, as a specific example of the case where the detection target component is contained in the system at a low concentration, there is a case where the gas of the detection target component is present in the system in the range of 1 volume ppm to 100 ppm by volume. The sensor of the present invention more preferably detects the detection target component contained in the system with high sensitivity and selectively in the lower concentration range of 1 vol. Ppt to 10 vol ppm, and more preferably 1 vol. It is further preferable that the detection target component contained in the system is selectively detected with high sensitivity in the range of ppt to 1 ppm by volume.
[検知対象成分]
 本発明のセンサの検知対象成分は、系中に低濃度で含まれる場合に、より高感度かつ高選択に検知できる点から、親水的な化合物が好ましい。
 本明細書において親水的な化合物とは、例えば、SP(Solubility Parameter)値が、9~17(cal/cm31/2である化合物を指し、具体的には、アセトン(10.0)、エタノール(12.7)、アセトニトリル(11.9)、および、酢酸(12.6)が挙げられる。
 ここで、SP値(溶解度パラメータ)とは、ヒルデブランドの正則溶液の理論により定義され、より具体的には、化合物のモル蒸発熱をΔH、モル体積をV、気体定数をR、絶対温度をTとするとき、((ΔH-RT)/V)1/2により定義される量(cal/cm31/2である。
[Detection target component]
The detection target component of the sensor of the present invention is preferably a hydrophilic compound, since it can be detected with higher sensitivity and higher selectivity when it is contained in the system at a low concentration.
In the present specification, a hydrophilic compound refers to, for example, a compound having an SP (Solubility Parameter) value of 9 to 17 (cal / cm 3 ) 1/2 , and specifically, acetone (10.0) , Ethanol (12.7), acetonitrile (11.9), and acetic acid (12.6).
Here, the SP value (solubility parameter) is defined by the theory of Hildebrand's regular solution, and more specifically, the molar evaporation heat of a compound is ΔH, the molar volume is V, the gas constant is R, and the absolute temperature is Let T be an amount (cal / cm 3 ) 1/2 defined by ((ΔH-RT) / V) 1/2 .
 以下、実施例を用いて、本発明について詳細に説明する。ただし、本発明はこれに限定されるものではない。なお、各成分の配合量は、特に断りにない限り、質量基準を示す。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to this. In addition, the compounding quantity of each component shows a mass reference | standard, unless there is particular notice.
[実施例1]
 Chemical Communications, 2004, 230-231に記載の方法を参考に、Polymer-1を合成した。
[Example 1]
Polymer-1 was synthesized with reference to the method described in Chemical Communications, 2004, 230-231.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Polymer-1(10mg)を、THF(テトラヒドロフラン、和光純薬工業製)(8g)に溶解させた。得られた溶液を、QCMセンサ(Quartz Crystal Microbalance、多摩デバイス製)中の水晶振動子上の片面に滴下し、さらに80℃で乾燥させ、受容層としてPolymer-1からなる膜を形成した。
 得られた受容層を有するQCMセンサをフローセルに入れ、下記に示す各種試験ガスの飽和蒸気1mLを通し、受容層を有するQCMセンサの検知対象成分に対する感度と選択性を評価した。結果を表1に示す。
Polymer-1 (10 mg) was dissolved in THF (tetrahydrofuran, manufactured by Wako Pure Chemical Industries, Ltd.) (8 g). The obtained solution was dropped on one surface of a quartz oscillator in a QCM sensor (Quartz Crystal Microbalance, manufactured by Tama Device), and further dried at 80 ° C. to form a film made of Polymer-1 as a receiving layer.
The obtained QCM sensor having a receiving layer was put into a flow cell, and 1 mL of saturated vapor of each of the following test gases was passed therethrough to evaluate the sensitivity and selectivity of the QCM sensor having the receiving layer to a component to be detected. Table 1 shows the results.
[実施例2~4]
 以下のPolymer-2~4をそれぞれ合成し、Polymer-1の代わりにそれぞれのポリマーを用いて、実施例1と同様の手順に従って、各ポリマーを含む受容層を有するQCMセンサをそれぞれ形成し、各種評価を行った。
[Examples 2 to 4]
The following Polymer-2 to Polymer-4 were respectively synthesized, and a QCM sensor having a receiving layer containing each polymer was formed according to the same procedure as in Example 1 by using each polymer instead of Polymer-1. An evaluation was performed.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[比較例1]
 Polymer-1を、非特許文献1(Sensors and Actuators B 173 (2012) 555-561)に記載のテトラキス(ブトキシフェニル)ポルフィリン銅錯体に変更した以外は、実施例1と同様にして、テトラキス(ブトキシフェニル)ポルフィリン銅錯体からなる受容層を有するQCMセンサを得た。
 受容層を有するQCMセンサの検知対象成分に対する感度と選択性を、実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 1]
In the same manner as in Example 1, except that Polymer-1 was changed to a tetrakis (butoxyphenyl) porphyrin copper complex described in Non-Patent Document 1 (Sensors and Actuators B 173 (2012) 555-561). A QCM sensor having a receiving layer composed of a phenyl) porphyrin copper complex was obtained.
The sensitivity and selectivity of the QCM sensor having the receiving layer to the detection target component were evaluated in the same manner as in Example 1. Table 1 shows the results.
[比較例2]
 Polymer-1をポリイソブチレンに変更した以外は、実施例1と同様にして、ポリイソブチレンからなる受容層を有するQCMセンサを得た。
 受容層を有するQCMセンサの検知対象成分に対する感度と選択性を、実施例1と同様にして評価した。結果を表1に示す。
[Comparative Example 2]
A QCM sensor having a receiving layer made of polyisobutylene was obtained in the same manner as in Example 1 except that Polymer-1 was changed to polyisobutylene.
The sensitivity and selectivity of the QCM sensor having the receiving layer to the detection target component were evaluated in the same manner as in Example 1. Table 1 shows the results.
[評価]
<感度>
 アセトンを含む飽和蒸気を1mLフローした際の、受容層を有するQCMセンサに生じた周波数変化の絶対値を基に、以下に示す基準で感度を評価した。ここで、周波数変化の絶対値が大きいほど、QCMセンサの感度が優れる。
 5:100Hz以上
 4:70Hz以上100Hz未満
 3:40Hz以上70Hz未満
 2:10Hz以上40Hz未満
 1:10Hz未満
[Evaluation]
<Sensitivity>
Based on the absolute value of the frequency change generated in the QCM sensor having the receiving layer when 1 mL of saturated steam containing acetone was flown, the sensitivity was evaluated based on the following criteria. Here, the larger the absolute value of the frequency change, the better the sensitivity of the QCM sensor.
5: 100 Hz or higher 4: 70 Hz or higher but lower than 100 Hz 3: 40 Hz or higher but lower than 70 Hz 2: 10 Hz or higher but lower than 40 Hz 1: 1 Hz or lower
<選択性>
 n-ヘキサンの飽和蒸気を1mLフローした際のQCMセンサの周波数変化の絶対値(RA[Hz])に対する、アセトンの飽和蒸気を1mLフローした際のQCMの周波数変化の絶対値(RN[Hz])の比(RN/RA)を算出し、アセトンに対するQCMセンサの選択性を以下の基準で評価した。比の値が大きいほど、QCMセンサの選択性が優れる。
 5:20以上
 4:13以上20未満
 3:6以上13未満
 2:2以上6未満
 1:2未満
<Selectivity>
Absolute value of the frequency change of the QCM sensor when 1 mL of saturated vapor of n-hexane flows (RA [Hz]), and the absolute value of the change in frequency of QCM when 1 mL of saturated vapor of acetone flows (RN [Hz]) ) Was calculated, and the selectivity of the QCM sensor to acetone was evaluated according to the following criteria. The higher the value of the ratio, the better the selectivity of the QCM sensor.
5:20 or more 4:13 or more and less than 20 3: 6 or more and less than 13 2: 2 or more and less than 6 1: 2 or less
 以上の評価試験の結果を表1に示す。 Table 1 shows the results of the above evaluation tests.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1の通り、特定高分子を含む受容層を有するQCMセンサ(実施例1~4)は、これ以外の高分子を含む受容層を有するQCMセンサ(比較例1~2)と比較して、系中に低濃度で含まれるアセトンを高感度かつ高選択で検知できるのが示された。 As shown in Table 1, the QCM sensors having the receiving layer containing the specific polymer (Examples 1 to 4) were different from the QCM sensors having the receiving layer containing other polymers (Comparative Examples 1 and 2) in It was shown that acetone contained in the system at a low concentration can be detected with high sensitivity and high selectivity.
 1 第1電極
 2 誘電体材料(圧電材料)
 3 第2電極
 4 特定高分子を含む受容層
1 first electrode 2 dielectric material (piezoelectric material)
3 second electrode 4 receiving layer containing specific polymer

Claims (5)

  1.  式(1)で表される部分構造を有する繰り返し単位を有する高分子を含む受容層を有する、共振式または応力式のセンサ。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、LおよびLは、それぞれ独立に、2価の連結基を表す。
    A resonance-type or stress-type sensor having a receptor layer containing a polymer having a repeating unit having a partial structure represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), L 1 and L 2 each independently represent a divalent linking group.
  2.  前記式(1)で表される部分構造が、式(2)で表される部分構造である、請求項1に記載のセンサ。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、XおよびXは、それぞれ独立に、-CR-、-CR-CR-、-CR=CR-、-CO-、-CO-CR10-、または、-O-を表す。YおよびYは、それぞれ独立に、-CR1112-、-O-、または、単結合を表す。
     R~R12は、水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR10、および、R11とR12は、それぞれ独立に、互いに結合して環を形成していてもよい。
    The sensor according to claim 1, wherein the partial structure represented by the formula (1) is a partial structure represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), X 1 and X 2 are each independently —CR 1 R 2 —, —CR 3 R 4 —CR 5 R 6 —, —CR 7 CRCR 8 —, —CO—, —CO Represents —CR 9 R 10 — or —O—. Y 1 and Y 2 each independently represent —CR 11 R 12 —, —O—, or a single bond.
    R 1 to R 12 represent a hydrogen atom or a substituent. R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 are independently bonded to each other to form a ring It may be.
  3.  前記式(1)で表される部分構造が、式(1-A)~式(1-D)で表される部分構造である、請求項1または2に記載のセンサ。
    Figure JPOXMLDOC01-appb-C000003
    3. The sensor according to claim 1, wherein the partial structure represented by the formula (1) is a partial structure represented by the formulas (1-A) to (1-D).
    Figure JPOXMLDOC01-appb-C000003
  4.  前記受容層と、さらに他の受容層とを有する、請求項1~3のいずれか1項に記載のセンサ。 (4) The sensor according to any one of (1) to (3), further comprising the receiving layer and another receiving layer.
  5.  共振式である、請求項1~4のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 4, wherein the sensor is a resonance type.
PCT/JP2019/031822 2018-08-17 2019-08-13 Sensor WO2020036171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020537081A JP7106651B2 (en) 2018-08-17 2019-08-13 sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-153513 2018-08-17
JP2018153513 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020036171A1 true WO2020036171A1 (en) 2020-02-20

Family

ID=69525350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031822 WO2020036171A1 (en) 2018-08-17 2019-08-13 Sensor

Country Status (2)

Country Link
JP (1) JP7106651B2 (en)
WO (1) WO2020036171A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023355A (en) * 2021-10-22 2023-04-28 江苏三月科技股份有限公司 Aromatic amine organic compound and organic electroluminescent device prepared from same
CN116082285A (en) * 2021-11-05 2023-05-09 江苏三月科技股份有限公司 Aromatic amine organic compound and organic electroluminescent device prepared from same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289821A (en) * 2005-04-12 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film, base material film and organic electroluminescent element
JP2013539040A (en) * 2010-09-30 2013-10-17 スリーエム イノベイティブ プロパティズ カンパニー Sensor element, manufacturing method thereof, and sensor device including the same
JP2014518568A (en) * 2011-04-13 2014-07-31 スリーエム イノベイティブ プロパティズ カンパニー Usage of Absorbent Sensor Element
WO2016121155A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 Sensor having porous material or particulate material as receptor layer
JP2017509744A (en) * 2014-02-27 2017-04-06 国立大学法人京都大学 Crosslinked polymer, process for producing the same, molecular sieve composition and material separation membrane
WO2017085796A1 (en) * 2015-11-17 2017-05-26 株式会社アロマビット Odor sensor and odor measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289821A (en) * 2005-04-12 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film, base material film and organic electroluminescent element
JP2013539040A (en) * 2010-09-30 2013-10-17 スリーエム イノベイティブ プロパティズ カンパニー Sensor element, manufacturing method thereof, and sensor device including the same
JP2014518568A (en) * 2011-04-13 2014-07-31 スリーエム イノベイティブ プロパティズ カンパニー Usage of Absorbent Sensor Element
JP2017509744A (en) * 2014-02-27 2017-04-06 国立大学法人京都大学 Crosslinked polymer, process for producing the same, molecular sieve composition and material separation membrane
WO2016121155A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 Sensor having porous material or particulate material as receptor layer
WO2017085796A1 (en) * 2015-11-17 2017-05-26 株式会社アロマビット Odor sensor and odor measurement system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PALMA-CANDO, ALEX: "Electrogenerated Thin Films of Microporous Polymer Networks with Remarkably Increased Electrochemical Response to Nitroaromatic Analytes", ACS APPLIED MATERIALS & INTERFACES, vol. 7, no. 21, 3 June 2015 (2015-06-03), pages 11127 - 11133, XP055687271 *
ZHAO, PENG: "Conjugated Polymer Nanoparticles Based Fluorescent Electronic Nose for the Identification of Volatile Compounds", ANALYTICAL CHEMISTRY, vol. 90, no. 7, 3 April 2018 (2018-04-03), pages 4815 - 4822, XP055687269 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023355A (en) * 2021-10-22 2023-04-28 江苏三月科技股份有限公司 Aromatic amine organic compound and organic electroluminescent device prepared from same
CN116082285A (en) * 2021-11-05 2023-05-09 江苏三月科技股份有限公司 Aromatic amine organic compound and organic electroluminescent device prepared from same

Also Published As

Publication number Publication date
JP7106651B2 (en) 2022-07-26
JPWO2020036171A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP3737112B2 (en) Polymer sensor
WO2020036171A1 (en) Sensor
JP5955342B2 (en) Humidity sensor comprising a polymer layer containing a mixture of polyamides as a moisture absorbing layer
US20220259343A1 (en) Polymers for caloric applications
KR20160001369A (en) Array of sensors for gas/voc detection and use thereof
JP2006329931A (en) Detection sensor and oscillator
Lee et al. CMUT as a chemical sensor for DMMP detection
JP5885015B2 (en) Gas sensor
US20200158707A1 (en) Sensor
JP2012013620A (en) Qcm device and detection method of gas molecules using qcm device
Ni et al. Piezoelectric quartz crystal sensor array with optimized oscillator circuit for analysis of organic vapors mixtures
US11428669B2 (en) Resonant sensor
JP7254900B2 (en) sensor
Hwang et al. Performance enhancement of a microfabricated resonator using electrospun nanoporous polymer wire
JPWO2018180793A1 (en) Gas detection element and manufacturing method thereof
KR100495663B1 (en) Sensitive substance and surface acoustic wave gas sensor used with this
Hao et al. A chemical surface acoustic wave (SAW) sensor array for sensing different concentration of NH 3
JP2010071716A (en) Qcm device and method for manufacturing the same
US20230400436A1 (en) Gas sensor devices containing cryptophane a sensing layer
Cao et al. Hydrophobic MOF/PDMS-Based QCM Sensors for VOCs Identification and Quantitative Detection in High-Humidity Environments
WO2023145434A1 (en) Detection device
JP2024010900A (en) gas sensor
Ralib et al. Chitosan Coating on Quartz Crystal Microbalance Gas Sensor for Isopropyl Alcohol and Acetone Detection
Ren Piezoelectric sensor sensitive to nitrobenzene based on a cyclohexanone-formaldehyde coating
Johar et al. VOCs sensors based on bulk acoustic resonators: a comprehensive review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849378

Country of ref document: EP

Kind code of ref document: A1